WO2003053570A1 - Composition catalytique d'oxyde - Google Patents

Composition catalytique d'oxyde Download PDF

Info

Publication number
WO2003053570A1
WO2003053570A1 PCT/JP2002/013369 JP0213369W WO03053570A1 WO 2003053570 A1 WO2003053570 A1 WO 2003053570A1 JP 0213369 W JP0213369 W JP 0213369W WO 03053570 A1 WO03053570 A1 WO 03053570A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst composition
methyl methacrylate
mixture
reaction
oxide catalyst
Prior art date
Application number
PCT/JP2002/013369
Other languages
English (en)
French (fr)
Inventor
Toru Watanabe
Osamu Nagano
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to DE60239222T priority Critical patent/DE60239222D1/de
Priority to EP02786173A priority patent/EP1459803B1/en
Priority to US10/494,935 priority patent/US7012039B2/en
Priority to AU2002354236A priority patent/AU2002354236A1/en
Priority to KR1020047008253A priority patent/KR100579678B1/ko
Priority to JP2003554323A priority patent/JP4076227B2/ja
Publication of WO2003053570A1 publication Critical patent/WO2003053570A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/783Separation; Purification; Stabilisation; Use of additives by gas-liquid treatment, e.g. by gas-liquid absorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to an oxide catalyst composition. More specifically, the present invention provides a method for reacting at least one member selected from the group consisting of isobutylene and t-butyl alcohol with a molecular oxygen-containing gas to form methacryloline or methacryloline.
  • Catalyst composition for producing a mixture of styrene and methacrylic acid comprising molybdenum or a mixture of molybdenum and tungsten, bismuth, iron and antimony, and excluding promethium At least one element selected from the group consisting of a group of noid elements and yttrium, at least one element selected from the group consisting of calcium, rubidium and cesium; And a mixture containing cobalt as a sole component or cobalt as an essential component, and at least one selected from the group consisting of magnesium and nickel,
  • the present invention relates to an oxide catalyst composition having a specific composition ratio for the component elements.
  • the oxide catalyst composition of the present invention is excellent in thermal stability and reduction resistance, has a long catalyst life, and has a high selectivity for a target product.
  • by-products such as diacetyl are produced.
  • the target product can be stably produced for a long period of time while reducing the amount of formed impurities.
  • Methachlorin which has a low content of by-product impurities such as diacetyl, and a mixture of methacrolein and methacrylic acid can be used as a raw material for methyl methacrylate, which has excellent transparency.
  • the highly transparent methyl methacrylate polymer obtained by polymerizing the highly transparent methyl methacrylate is used as an alternative to glass or quartz, such as an optical fiber or a light guide plate. Since it can be used very advantageously in applications where high transparency is required, its commercial value is extremely high.
  • Conventional technology Conventional technology
  • methyl methacrylate polymers produced from methyl methacrylate are characterized by being glassy, hard, and transparent, and are often used as glass substitutes.
  • methyl methacrylate polymer has been attracting attention as an optical material replacing quartz in fields such as optical fiber, and its use is expanding. Therefore, high transparency and high weather resistance are required for methyl methacrylate polymer as a substitute for glass and quartz, and in order to obtain such excellent methyl methacrylate polymer, It is important that the resulting methyl methacrylate monomer has few trace impurities that impair the transparency and weather resistance of the polymer.
  • the method for producing industrially useful methyl methyl methacrylate involves two reaction steps called the direct meta method. And a method consisting of three reaction steps called the direct acid method.
  • a gas phase is obtained by using a molecular oxygen-containing gas in the presence of an oxide catalyst (hereinafter, often referred to as a “pre-stage catalyst”) using isobutylene and / or t-butyl alcohol as a raw material.
  • an oxide catalyst hereinafter, often referred to as a “pre-stage catalyst”
  • a first reaction step of oxidizing to produce methacryloline, and a step of converting the obtained methacrolein to a supported catalyst containing palladium together with methanol and molecular oxygen (hereinafter, often referred to as “post-stage catalyst”) This is a method consisting of two catalytic reaction steps, a second reaction step for producing methyl methacrylate at once by reacting in the presence.
  • a substance having an absorption in the visible light region of 400 nm to 780 nm is a coloring factor of methyl methacrylate.
  • Substances that absorb in this region include pyruvaldehyde, 2-acetylfuran, and the like, in addition to diacetyl, which has been conventionally known as a coloring factor substance, and these may also be coloring factor substances. found.
  • At least one selected from the group consisting of isobutylene and t-butyl alcohol is used as a raw material, and gas-phase oxidation is performed using a molecular oxygen-containing gas to produce a pre-stage for producing methacrolein.
  • the catalyst has been proposed by the present inventors (see, for example, WO95-325273, Japanese Patent Application Laid-Open No. 10-216253). However, these catalysts are a by-product It was not fully recognized at the time of the development of the catalyst that impurities such as diacetyl were responsible for coloring methyl methacrylate.
  • a second-stage catalyst containing palladium for producing methyl methacrylate by reacting methacrylone and methanol in the presence of molecular oxygen is described below. Numerous proposals have been made in U.S. Pat. No. 4,349,019, Japanese Patent Publication No. 57-35859, and U.S. Pat. No. 4,187,796. '' The second-stage catalytic reaction, in which molecular oxygen reacts with methacrolein and methanol to form methyl methacrylate, is performed under mild reaction temperature conditions from room temperature to 100 ° C.
  • the direct acid method is also a method for producing methyl methacrylate using isobutylene and / or t-butyl alcohol as a raw material.
  • the direct acid method is described in the “Petrochemical Process” (edited by the Petroleum Institute of Japan), pages 172-176, published by Kodansha Scientific, Japan.
  • the direct acid method has three processes: the first oxidation process, the second oxidation process, and the esterification process. It consists of a reaction step.
  • the first oxidation step at least one starting material selected from isobutylene and t-butyl alcohol is subjected to a gas phase catalytic oxidation reaction with molecular oxygen in the presence of a catalyst to produce methacryloline. .
  • the second oxidation step is a step of producing methacrylic acid ⁇ by subjecting the methacrylone obtained in the first oxidation step to a gas phase catalytic oxidation reaction with molecular oxygen in the presence of a catalyst.
  • the methacrylic acid obtained in the second oxidation step is further esterified to obtain methyl methacrylate.
  • the catalysts disclosed in these publications are mainly aimed at improving the yield, and data showing the performance of the catalyst include isobutylene and t-butyl alcohol. Only the conversion and the yield and selectivity of methacrylic acid / methacrylic acid are described.
  • the by-product impurities other than methacrylic acid and methacrylic acid which are the target products of the first oxidation step of the direct acid method
  • Japanese Patent Publication No. 53-23809 discloses acetic acid. , C 0 2 and have been described C_ ⁇ selectivity, Japanese Patent Publication 5 7 - 6 1 0 1 1 No. describes a acetone and selectivity of acetic acid, Japanese Patent Publication 5 1 - 1 3 1 2 5 No.
  • Japanese Patent Publication No. 5-86939 discloses that at least one member selected from the group consisting of isopylene and t-butyl alcohol is subjected to a gas phase catalytic oxidation reaction to form methacrylonitrile.
  • Oxidation products obtained during the production of acetic acid include low-level gases such as acetoaldehyde, acetate, acrolein acetic acid, and acrylic acid, in addition to methacryloline and methyl acrylate. It describes that high-boiling by-products such as maleic acid and aromatic carboxylic acid are included, and that polymers and tar-like substances are also present.
  • the reaction temperature is as high as 300 to 400 ° C.
  • most of the coloring factors such as diacetyl produced as a by-product in the first oxidation step are decomposed. Therefore, it is probable that the coloring factor substances were not regarded as a problem.
  • the reaction product gas containing molybdenum and phosphorus is carried out by introducing together with molecular oxygen into a heat exchange type multitubular second oxidation reactor filled with an oxide catalyst to produce methacrylic acid.
  • the gas outlet space of the second oxidation reactor is filled with a solid filler to reduce the volume of the empty tower after passing through the catalyst layer to shorten the residence time in the empty tower. This suppresses by-products of diketones. If diketones (acetonylacetone in the present embodiment) are present in the methacrylic acid obtained through the first oxidation step and the second oxidation step, the diketones in the polymethacrylate will be furan-based. There is a problem of coloring as a compound.
  • reducing the by-products of diketones by improving the catalyst in the first reactor is also effective in reducing the coloring factor of methyl methacrylate produced by the direct acid method. is there.
  • At least one selected from the group consisting of isobutylene and t-butyl alcohol is also used in the first oxidation step of the direct acid method in the gas phase in the presence of a catalyst.
  • impurities such as diacetyl by-produced during the production of methacrolein by the catalytic oxidation reaction were coloring substances of methyl methacrylate
  • the first oxidation step There was no knowledge about a method for improving the catalyst to reduce coloring factor impurities such as diacetyl by-produced in the production of methacrylone.
  • the advantage of this method is that the yield of methyl methacrylate is higher than that of the direct acid method, but diacetyl, which is a coloring factor, is hardly decomposed by the subsequent reaction catalyst, and There is a problem that it is brought into the purification process. Therefore, in the direct method, in order to improve the quality of methyl methacrylate, it is necessary to minimize the color-causing impurities in the first-stage reaction. For that purpose, there has been a strong demand for the development of a catalyst having a high selectivity for methacrolein, excellent heat resistance and reduction resistance, and a selectivity for coloring factor impurities as low as possible. Summary of the Invention
  • the present inventors have conducted intensive studies to develop a catalyst having a high selectivity for methacrolein, excellent heat resistance and reduction resistance, and a selectivity for coloring factor impurities as low as possible. went.
  • molybdenum or a mixture of molybdenum and ungustene, bismuth, iron, antimony, and lanthanide and yttrium elements other than promethium At least one element selected from the group consisting of: at least one element selected from the group consisting of calcium, rubidium, and cesium
  • a catalyst composition comprising one element and cobalt as a sole component or as a required component, and a mixture containing at least one selected from the group consisting of magnesium and nickel.
  • a main object of the present invention is to provide a highly transparent raw material of methyl methacrylate, which is very useful as a raw material of methyl methacrylate and has a low impurity content, and a mixture of methacryloline and methacrylic acid.
  • An object of the present invention is to provide an oxide catalyst composition for producing a mixture of the above.
  • the figure is a flow chart showing the production steps performed in the example to produce methyl methacrylate by the direct meta method.
  • At least one selected from the group consisting of isobutylene and t-butyl alcohol is reacted with a gas containing molecular oxygen to produce methacryloline or metachlorin and methanol.
  • An oxide catalyst composition represented by the following formula (I) for producing a mixture with lylic acid is provided.
  • A stands for lanthanum, cerium, praseodymium, neodymium ', samarium, euphyllium, pium, gadmium, terbium, sprosium, holmium, erbium, thurium, ittrubium, lutetium and yttrium. At least one element selected from the group consisting of tritium;
  • B is at least one element selected from the group consisting of calcium, rubidium and cesium;
  • X is cobalt alone or a mixture containing cobalt as an essential component and at least one selected from the group consisting of magnesium and nickel;
  • the range of the number of molybdenum (Mo) atoms to the total of 12 atoms of molybdenum (Mo) and tungsten (W) is more than 9 and not more than 12 and the number of atoms of tungsten (W) is 0 or more. Less than 3;
  • a, b, c, d, e, f, and g are bismuth (B i), A, B, and iron (F e) for a total of 12 atoms of molybdenum (M o) and tungsten (W), respectively.
  • B i bismuth
  • F e iron
  • M o molybdenum
  • W tungsten
  • X the atomic ratio of antimony (Sb) and oxygen ( ⁇ )
  • g is the number of oxygen atoms required to satisfy the valence state of the other elements present.
  • At least one selected from the group consisting of isobutylene and t-butyl alcohol is reacted with a molecular oxygen-containing gas to produce methacrylate or a mixture of methacrylate and methacrylate.
  • A is a group consisting of lanthanum, cerium, praseodymium, neodymium, samarium, euphyllium, gadmium, terbium, dysprosium, hormumium, erbium, thurium, ittrubium, lutetium and itttrium. At least one element selected more;
  • B is at least one element selected from the group consisting of calcium, reledium and cesium;
  • X is cobalt alone or a mixture containing cobalt as an essential component and at least one selected from the group consisting of magnesium and nickel;
  • the total number of atoms of molybdenum (Mo) to molybdenum (Mo) and tungsten (W) is more than 9 and less than or equal to 12 with respect to the atom.
  • the number of atoms of tungsten (W) is 0 or more 3 Less than;
  • a, b, c, d, e, f, and g are respectively bismuth (B i), A, B, iron (F e), and molybdenum (M o) and tungsten (W) for a total of 12 atoms.
  • X represents the atomic ratio of antimony (Sb) and oxygen (O),
  • g is the number of oxygen atoms required to satisfy the valence state of the other elements present.
  • the atomic ratio of cobalt to the total of cobalt, magnesium, and nickel is 0.5 or more;
  • the atomic ratio of magnesium to the total of cobalt, magnesium and nickel in the mixture X is 0.5 or less, and
  • the atomic ratio of nickel to the total of cobalt, magnesium and nickel in the mixture X is less than 0.33, Catalyst composition.
  • a, b, d, and f in the formula (I) are equal to the condition of the formula 0.2 d / (a + b + d) 0.9 and the condition of the formula 0.3 ⁇ d — f ⁇ 2.3 5.
  • the oxide catalyst composition of the present invention is represented by the following formula (I).
  • A consists of lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadmium, terbium, dysprosium, holmium, erbium, thurium, ittrium, lutetium, and yttrium. At least one element selected from the group;
  • B is at least one element selected from the group consisting of calcium, rubidium and cesium;
  • X is cobalt alone or a mixture containing cobalt as an essential component and at least one selected from the group consisting of magnesium and nickel;
  • the range of the number of molybdenum (Mo) atoms to the total of 12 atoms of molybdenum (Mo) and tungsten (W) is more than 9 to 12 or less, and the range of the number of atoms of tungsten (W) is 0 or more. Less than 3; and '
  • a, b, c, d, e, f, and g are bismuth (B i), A, B, and iron (F e) for a total of 12 atoms of molybdenum (Mo) and tungsten (W), respectively.
  • B i bismuth
  • A bismuth
  • B iron
  • F e iron
  • X the atomic ratio of antimony (Sb) and oxygen (0)
  • g is the number of oxygen atoms required to satisfy the valence state of the other elements present.
  • Molybdenum (Mo) is an essential element in the oxide catalyst composition of the present invention, but tungsten (W) can also be used as a partial substitute for Mo.
  • the range of the number of molybdenum atoms to the total of 12 atoms of molybdenum and tungsten is more than 9 and 12 or less, preferably more than 9.5 and 12 or less.
  • the range of the number of atoms of tungsten is 0 or more and less than 3, preferably 0 or more and less than 2.5.
  • Bismuth (B i) is an essential element for synthesizing methacrylone.
  • the atomic ratio (a) of Bi to the total of 12 atoms of M0 and W satisfies the condition of 0 ⁇ a ⁇ 8. Need You.
  • A is a lanthanide element excluding promethium, that is, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), and europium.
  • B is at least one element selected from the group consisting of calcium (K), rubidium (Rb), and cesium (Cs).
  • B is an essential element for further increasing the effect of A, and is also an important element for further increasing the selectivity of methacrolein.
  • the atomic ratio (c) of B to the total of 12 atoms of Mo and W must satisfy the condition 0 ⁇ c ⁇ 3.
  • the atomic ratio (c) of B is 3 or more, the amount of at least one element selected from the group consisting of calcium (K), rubidium (Rb) and cesium (Cs) is adjusted.
  • the oxide catalyst composition cannot sufficiently exhibit the desired catalytic activity.
  • the atomic ratio (c) of B to the total of 12 atoms of Mo and W is preferably more than 0 and less than 2.0, more preferably more than 0 and 1.5. The value is more preferably less than 0, more preferably more than 0 and less than 1.2.
  • the element A that is, La, Ce, Pr, Nd, Sm S, Eu, Gd, Tb, Dy, Ho, Er, At least one element selected from the group consisting of Tm, Yb, Lu and Y
  • the elements A The relative amounts of the three elements bismuth (B i) and element B (ie, at least one element selected from the group consisting of calcium, rubidium and cesium) are important.
  • the atomic ratios a, b, and c are set such that the atomic ratios a, b, and c satisfy the condition represented by the following formula: Must be satisfied, and it is preferable to satisfy the condition represented by the expression 0.05 ⁇ bZ (a + b + c) 0.5.
  • the relative amounts of the elements B, B i and the element A are important, and a, b, and c are expressed by the formulas 0 and c Z (a + b + c) ⁇ 0.9 must be satisfied, and furthermore, the condition expressed by the expression 0.1 and c / (a + b + c) and 0.8 must be satisfied. Is preferred.
  • a molybdenum compound of B i, element A and element B (or a tungsten compound of B i, element A and element B in addition to the molybdenum compound when W is contained) has a specific atomic ratio range In, it is considered that they are dissolved into each other and exhibit the advantageous properties desired in the present invention.
  • Iron (F e) is similar to the B i industrially Metaku b lay down an essential element in order to synthesis, F e content number becomes the CO and C_ ⁇ 2 such by-products is increased A tendency appears, and the selectivity of methacrolein decreases. Therefore, the atomic ratio (d) of Fe to the total 12 atoms of Mo and W must satisfy the condition of 0.2 ⁇ d ⁇ 5.
  • the relative amounts of F e, B i, and element A are important, and the atomic ratios a, b, and d are represented by the formula 0.01 ⁇ d Z (a + b + d). It is necessary to satisfy the condition expressed by ⁇ 0.9, and furthermore, the condition expressed by the expression 0.2 d z (a + b + d) ⁇ 0.9 is satisfied This is preferred.
  • the atomic ratios a, b, and d of the total of 12 atoms of Mo and W must be represented by the formulas 0.2 ⁇ d ⁇ 5 and 0 ⁇ d.
  • the two conditions of / (a + b + d) ⁇ 0.9 be satisfied, and furthermore, the expressions 0.2 ⁇ d ⁇ 4 and the expressions 0.0 1 ⁇ d X (a + b + cl) ⁇ 0.9, more preferably the equations 0.2 ⁇ d ⁇ 4 and 0.2 ⁇ d / More preferably, the two conditions of (a + b + d) ⁇ 0.9 are satisfied.
  • X is cobalt alone or a mixture containing cobalt as an essential component and at least one selected from the group consisting of magnesium and nickel. It is.
  • cobalt (C o) is indispensable as X in the formula (I)
  • the sum of Mo and W is 1 2
  • the atomic ratio of X to the atom (e) must satisfy the condition of l ⁇ e ⁇ l.
  • magnesium (Mg) and nickel (Ni) can be used as elements that substitute for part of Co in X of the above formula (I).
  • Mg raw materials and Ni raw materials are less expensive than C raw materials, and it is of great industrial significance that part of Co can be replaced with Mg or Ni from the viewpoint of catalyst production cost.
  • the oxide catalyst composition of the present invention does not contain C 0 but contains Mg alone or N'i alone or a mixture of only Mg and N ⁇ as X, a sufficient catalyst can be obtained. Performance cannot be demonstrated.
  • the atomic ratio of cobalt to the total of cobalt, magnesium, and nickel is preferably 0.5 or more.
  • the mixture X contains magnesium.
  • the atomic ratio of magnesium to the sum of cobalt, magnesium and nickel in the mixture X The ratio is preferably 0.5 or less, and when the mixture X contains nickel, the atomic ratio of nickel to the total of cobalt, magnesium, and nickel in the mixture X is less than 0.33. Is preferred.
  • Antimony (Sb) is an element required to suppress the selectivity of by-product aldehydes such as diacetyl and acetoaldehyde chloraine, and is an element of S (M o + W) 12 atoms.
  • the atomic ratio (f) of b must satisfy the condition of 0.1: f: 3 Further, in order to exhibit more excellent catalytic performance, it is preferable that the atomic ratio (f) of S b satisfies the condition of the following equation: 0.3 / 3 ⁇ f ⁇ 2.5.
  • the relative amount of Sb and Fe is important, and the atomic ratios d and f can be expressed by the formula 0.1 ⁇ d-f ⁇ 2.5. It is necessary to satisfy the following condition, and it is preferable to satisfy the condition represented by the expression 0.3 ⁇ d_i ⁇ 2.3 in order to exhibit better catalyst performance.
  • the atomic ratios d and f of F e and S b are determined by the formulas 0.3 ⁇ d—f ⁇ 2.3 and the formulas 0.2 ⁇ / (a + b + d) ⁇ 0.9 is more preferably satisfied simultaneously.
  • the method for producing the oxide catalyst composition of the present invention is not particularly limited, and a known method for obtaining the oxide represented by the formula (I) may be used.
  • the oxide catalyst composition of the present invention can be produced by a production method comprising the following first to third steps. In the first step, a catalyst raw material is prepared to obtain a raw material slurry.
  • Molybdenum, tungsten, bismuth, lanthanum, cerium, praseodymium, neodymium, samarium, euium pium, gadmium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, iron , Cobalt, magnesium, nickel, potassium, rubidium, and cesium are sources of ammonium or nitrate, nitrite, nitrite, hydrochloride, sulfate, and organic compounds that are soluble in water or nitric acid. Acid salts and the like can be mentioned.
  • ammonium salt is preferred as an element source of molybdenum and tungsten, and bismuth, lanthanum, cerium, praseodymium, neodymium, samarium, euportium, gadmium, terpium, dysprosium, holmium, and erbium.
  • Aluminum, ytterbium, lutetium, yttrium, iron, cobalt, magnesium, nickel, calcium, rubidium, and cesium Acid salts are preferred.
  • Antimony element sources include antimony pentoxide, antimony trioxide and metal antimony, but from the viewpoint of availability of raw materials, antimony trioxide is preferred.
  • the method for preparing the raw material slurry is not particularly limited, but for example, it can be prepared as follows. Ammonium molybdate, ammonium tungstate and antimony trioxide are added to water to form a suspension, and this suspension is heated at 80 to 90 ° C with stirring, and hydrogen peroxide water is added. To make a solution. A solution in which nitrates or nitrites of other elements are dissolved in water or an aqueous nitric acid solution is separately prepared, and mixed with the above-mentioned solution containing molybdenum, tungsten and antimony to prepare a raw material slurry.
  • the raw material slurry obtained in the first step is spray-dried to produce a spherical or pseudo-spherical dry particulate catalyst precursor.
  • the atomization of the raw material slurry may be performed by a method usually performed industrially, and may be performed by a method such as a centrifugal method, a two-fluid nozzle method and a high-pressure nozzle method.
  • the drying heat source it is preferable to use air heated by steam or electric heater or the like, and the temperature at the dryer entrance of the spray dryer is preferably in the range of 150 to 400 ° C.
  • a desired oxide catalyst composition is obtained by calcining the dried particulate catalyst precursor obtained in the second step.
  • the calcination of the dried particulate catalyst precursor is performed at a temperature in the range of 180 to 400 ° C. for about 0.5 to 24 hours.
  • the calcined catalyst obtained by calcining is extruded or tableted as necessary to obtain an appropriate shape. Bake for about 1-24 hours at a temperature range of ⁇ 600 ° C.
  • the calcination can be performed using a calcination furnace such as a rotary furnace, a tunnel furnace, and a Matsufur furnace.
  • the silica raw material used for the silica catalyst is a silica gel such as silica silicate or sodium silicate such as sodium silicate. Salt or the like can be used.
  • the amount of the Si component relative to the total of 12 atoms of Mo and W is preferably 3 atoms or less, more preferably 1 atom or less, and still more preferably 0.1 atom or less.
  • the oxide catalyst composition of the present invention is obtained by reacting at least one member selected from the group consisting of isobutylene and t-butyl alcohol with a molecular oxygen-containing gas to form methacryloline or methacryloline and methacryloline. It is a catalyst for producing a mixture with lylic acid.
  • the method for producing methacrylic acid or a mixture of methacrylic acid and methacrylic acid using the oxide catalyst composition of the present invention is not particularly limited. Preferred methods are described below.
  • a gas that reacts at least one selected from the group consisting of isobutylene and t-butyl alcohol with a molecular oxygen-containing gas is carried out in a fixed-bed reactor using a catalyst comprising the above-described oxide catalyst composition, preferably a tableting catalyst.
  • a raw material gas consisting of isobutylene, t-butyl alcohol, or a mixed gas of both, and a mixed gas of a molecular oxygen-containing gas and a diluent gas of 90 to 99% by volume is transferred to a catalyst bed made of an oxide catalyst composition.
  • Examples of the molecular oxygen-containing gas include pure oxygen gas, and a gas containing oxygen such as air.
  • Examples of the diluent gas include nitrogen, carbon dioxide, water vapor, and a mixed gas thereof.
  • the volume ratio is 0.04 ⁇ the molecular oxygen-containing gas Z (the molecular oxygen-containing gas + the diluent gas) less than 0.3. It is preferable to satisfy the conditions. Further, the concentration of molecular oxygen gas in the raw material gas is preferably 4 to 20% by volume.
  • the water vapor of the raw material gas is necessary to prevent coking of the catalyst.However, in order to suppress the by-products of carboxylic acids such as methacrylic acid and acetic acid, diluent gas is used as much as possible. It is preferable to lower the water vapor concentration in the inside. Water vapor in the raw material gas should be used in the range of usually more than 0% by volume and within 30% by volume. JP02 / 13369
  • the oxide catalyst composition of the present invention is excellent in thermal stability and resistance to reduction, has a long catalyst life, and has a high selectivity for a target product. Therefore, methacrylonitrile or methacrylonitrile is prepared using the oxide catalyst composition.
  • the target product can be produced stably for a long period of time while reducing the amount of by-product impurities such as diacetyl.
  • the metal-cooked lane produced using a conventional catalyst contained a large amount of diacetyl as many as several thousand: pm. However, by using the oxide catalyst composition of the present invention, the amount of diacetyl was reduced. Was found to be able to be reduced to 900 ppm or less.
  • the oxide catalyst composition of the present invention comprises: In addition, the amount of unidentified impurities R 1 and R 2 can be reduced.
  • methacrylin having a very small amount of coloring factor impurities such as diacetyl, and a mixture of methacrylin and methacrylic acid are highly transparent methyl methacrylate. It is very useful as a raw material.
  • Methods for producing methyl methacrylate include a direct acid method, which comprises three reaction steps, and a direct metal method, which comprises two reaction steps. It is implemented industrially.
  • the direct acid method is described in “Petrochemical Process” (edited by the Japan Petroleum Institute), pages 172-176, published by Kodansha Scientific, Japan.
  • the reoxidation method comprises three reaction steps: a first oxidation step, a second oxidation step, and an esterification step.
  • a first oxidation step at least one starting material selected from isobutylene and t-butyl alcohol is subjected to a gas-phase catalytic oxidation reaction with molecular oxygen in the presence of a catalyst to produce methacrolein.
  • the second oxidation step is a step in which methacrylic acid obtained in the first oxidation step is subjected to a gas-phase catalytic oxidation reaction with molecular oxygen in the presence of a catalyst to produce methacrylic acid.
  • methyl methacrylate obtained in the second oxidation step is further esterified to obtain methyl methacrylate.
  • the oxide catalyst composition of the present invention in the first oxidation step of the direct acid method to produce methacrylone, and then performing the second oxidation step and the esterification step, the methyl chloride is obtained. Methyl acid can be produced.
  • the reaction temperature is as high as 300 to 400 ° C, so it is considered that most of the coloring factor substances contained in methacrylone are decomposed. However, it is presumed that the coloring factor is not completely decomposed even in the direct acid method, and it is important to use methacrolein that does not contain the coloring factor as a raw material.
  • isobutylene and Z or t-butyl alcohol are used as raw materials, and a gas containing molecular oxygen is used in the presence of an oxide catalyst (hereinafter, often referred to as “pre-catalyst”).
  • pre-catalyst an oxide catalyst
  • a first reaction step in which phase-oxidation is performed to produce methchloreine, and the obtained methacrolein is treated with a supported catalyst containing palladium containing both methanol and molecular oxygen (hereinafter, often referred to as “second-stage catalyst”). This is a method consisting of two catalytic reaction steps, the second reaction step of producing methyl methacrylate at once by reacting in the presence.
  • the oxide catalyst composition of the present invention is useful as a first-step reaction catalyst in the direct meta method. It is. Specifically, the production of metachlorin or a mixture of methacrolein and methacrylic acid by the preferred method described above, that is, the first reaction step may be performed.
  • methyl methacrylate is reacted with methacrylone, which has a small amount of impurities, produced using the oxide catalyst composition of the present invention, and reacts with methyl methacrylate.
  • examples of the latter catalyst used in the second reaction step include US Pat. No. 4,349,191, Japanese Patent Publication No. 57-35859, and US Pat. No. 4,518,976. No., WO97 / 37551, etc., a catalyst containing palladium may be used.
  • the reaction may be carried out based on these publications.Specifically, molecular oxygen, methacrylone and methanol are added at room temperature to 100 ° C. in the presence of a subsequent catalyst.
  • the second reaction step is performed at a low temperature at which impurities such as diacetyl hardly react.
  • the first reaction step is performed using the conventional pre-catalyst, the secondary reaction of impurities such as diacetyl is performed. Since the amount of formation is large, the use of the oxide catalyst composition of the present invention as a pre-stage catalyst makes it possible to obtain methyl methacrylate having a small amount of impurities serving as a coloring factor substance.
  • the oxide catalyst composition of the present invention When the oxide catalyst composition of the present invention is used in the first reaction step, the amount of impurities in the methyl methacrylate obtained in the second reaction step is small, so that it is not necessary to repeat the purification step, and as a result, The loss power of methyl methacrylate This is very advantageous for industrial implementation because it reduces the cost and leads to lower costs.
  • the first and second reactions of the direct meta method and the purification step of methyl methacrylate can be carried out as a continuous reaction.
  • the method for producing methyl methacrylate by the direct meta method performed in the example of the present application that is, the production method represented by the flowchart in FIG.
  • Methyl methacrylate produced by the direct meta method using the oxide catalyst composition of the present invention as a pre-stage catalyst is very excellent in transparency.
  • the APHA value evaluated according to JIS-K6716 is 5 or less, and is obtained by polymerizing the methyl methacrylate.
  • the YI value of the coloring of the polymer to be measured according to JIS-K7103 is 10 or less.
  • Coloring impurities in methacrolein or a mixture of methacrolein and methacrylic acid were determined by gas chromatography.
  • TC- 1 60 m long
  • DB- 1 length 30 m
  • TG-WAX length 20 m
  • the entire amount of the product gas containing methacrylone or a mixture of methacrylone and methacrylic acid is condensed, and is used as an internal standard. Dimethyl kishetan was used.
  • the amount of diacetyl in methacrylone is 900 p p. m or less, and more preferably 600 ppm or less.
  • the degree of coloring of the methyl methacrylate monomer was evaluated according to JIS-K6716.
  • a solution prepared by dissolving platinum chloride and cobalt chloride in concentrated hydrochloric acid was diluted with distilled water to prepare a standard solution.
  • the value of APHA based on the degree of dilution was used as an index of the degree of coloring. That is, a standard solution having an APHA value of 5, 10, 15, and 20 was prepared by setting distilled water to an APH A value of 0 and sequentially decreasing the degree of dilution of the solution with distilled water.
  • the APHA value was evaluated by comparing methyl methacrylate monomer with a standard solution, and was used as an index of the degree of coloring of methyl methacrylate monomer.
  • the APHA value is preferably 5 or less.
  • a highly transparent methyl methacrylate polymer can be obtained.
  • the coloring of methyl methacrylate polymer obtained by polymerizing methyl methacrylate is carried out in accordance with the description of JIS-K7103, Test methods for yellowness and yellowing degree of plastics. It was measured. JP02 / 13369
  • a 55-cm long, 10-cm wide, 5-mm thick plate of methyl methacrylate polymer was prepared.
  • a gasket was sandwiched between two glass plates and clamped together to create a uniform space.
  • a mixture of methyl methacrylate and 2,2′-azobisisobutyronitrile as a polymerization initiator in an amount equivalent to 0.05% by weight was poured between glass plates using a funnel. The air was evacuated while the two glass plates were tightened with clamps, and then sealed. The entire glass plate was placed in warm water at 50 ⁇ 1 ° C for 6 hours, and then placed in a thermostat at 115 ⁇ 1 ° C for 2 hours to polymerize to obtain methyl methacrylate polymer.
  • the obtained polymer plate was visually evaluated from the longitudinal direction, and further analyzed by a long-path-transmission colorimeter.
  • ASA-2 type manufactured by Nippon Denshoku Industries Co., Ltd. was used.
  • evaluation index the yellowness YI described in JIS-K7103 plastic yellowness and yellowing test method was calculated from the measurement result using a long-light transmission colorimeter and used. ,.
  • the yellowness YI of the methyl methacrylate polymer is 10 or less, since the transparency is excellent.
  • the composition is expressed as an atomic ratio based on a total of 12 atoms of Mo and W. . 6 Ce 0. 4 ⁇ 0 ⁇ x C s 0. 4 F e x. 5 C o 8. 0 S b 0.
  • the oxide catalyst composition represented by 7 was prepared as follows.
  • solution A This aqueous solution was kept at 50 ° C (this solution is referred to as “solution A”). Also, 18.7 g of bismuth nitrate, 29.lg of cerium nitrate, 1.66 g of potassium nitrate, 100.4 g of iron nitrate and 389.0 g of nitrate Then, 12.9 g of cesium nitrate was dissolved in 350 g of a 15% by weight aqueous nitric acid solution (this solution was referred to as “solution B”). The solution A and the solution B were stirred and mixed for about 2 hours to obtain a raw material slurry.
  • This raw material slurry is spray-dried to obtain a spray-dried powder catalyst composition precursor, and the obtained catalyst composition precursor is calcined at 200 ° C. for 3 hours to obtain pseudo spherical particles.
  • the obtained particles were tablet-formed into a column having a diameter of 5.0 mm and a height of 4 mm, and then baked at 52 ° C for 3 hours to oxidize. A catalyst composition was obtained.
  • methacrylone was produced.
  • 4.0 g of the tableting-molded catalyst composition was filled into a SUS304 reaction tube with a 10 mm-diameter jacket, and at a reaction temperature of 350 ° C, isobutylene was 6% by volume and oxygen was 10.8.
  • a mixed gas consisting of 1% by volume, 10.0% by volume of water vapor, and 73.2% by volume of nitrogen was passed through at a flow rate of 100 ml Z (NTP) to perform a methacrylone synthesis reaction. .
  • NTP 100 ml Z
  • the conversion of isobutylene was 97.8%
  • the selectivity for methacrolein was 88.3%
  • the selectivity for methacrylic acid was 2.4%.
  • the condensate of the reaction product gas was analyzed, the amount of diacetyl produced was 500 ppm, the S 1 value was 10 and the S 2 value was 52.
  • the reaction temperature was raised to 480 ° C, the above mixed gas flow rate was changed to 220 m1Z min (NTP), and aeration was performed for 48 hours.
  • a rayne synthesis reaction was performed. After that, when the reaction temperature was returned to 350 ° C and the gas flow rate of the raw material mixed gas was returned to 100 m1Z, almost the same results as those obtained in the initial performance evaluation were obtained. That is, the conversion of isobutylene was 97.8%, the selectivity for methacrolein was 88.3%, and the selectivity for methacrylic acid was 2.4%.
  • the first-stage reaction step was carried out as follows with reference to the reaction method of Example 1 in Japanese Patent Application Laid-Open No. Heisei 9-1323950.
  • the composition of the obtained partially dehydrated methacrylone-containing gas was such that the total of liquid by-products such as methacryloline was 4.9 mol%, water was 2.7 mol%, and 7 seton was 0.2 mol%.
  • the total amount of gases such as nitrogen, oxygen, carbon dioxide, carbon monoxide, and unreacted isobutylene was 92.2 mol%.
  • the partially dehydrated methacrylone-containing gas was transferred to the bottom of a dewatering tower of a tray type equipped with a sieve tray with an inner diameter of 10 cm, a height of 5 m and an actual number of columns of 3.6 Nm 3 / Supplied in hr.
  • a solution of liquid methanol and 100 ppm by weight of hydroquinone was supplied at 200 g / hr.
  • the gas temperature in the dehydration tower is controlled at 44 ° C at the bottom and 18 ° C at the top of the tower.
  • the temperature of the liquid methanol was controlled at 18 ° C.
  • the top pressure of the dehydration tower was controlled at 1.5 kg./cm 2 .
  • the partially dehydrated mixed gas was further dehydrated, and a dehydrated mixed gas containing methacrylone and methyl gas was obtained from the top of the dehydration tower.
  • the obtained dehydrated mixed gas is supplied to the bottom gas phase of a tray-type absorption tower equipped with a sieve tray having an inner diameter of 10 cm, a height of 5 m, and an actual number of 30 columns, and the liquid methanol
  • a solution obtained by adding 100 parts by weight of hydroquinone to the solution was supplied at 900 g / r.
  • the liquid temperature at the bottom of the absorption tower was 16 ° (:, the liquid temperature at the top was controlled at -3 ° C, and the temperature of liquid methanol was controlled at 13 ° C.
  • the uppermost pressure was controlled to 1.4 kg Z cm 2. Under the above conditions, the liquid compound absorbed substantially all of the methacrolein gas and methanol gas in the dehydrated mixed gas.
  • a liquid mixture (A) containing a liquid methanol-carrying layer and liquid methanol was obtained from the bottom of the absorption tower, and the composition of the obtained liquid mixture was 311. 7% by weight, 66.8% by weight of methanol, 07% by weight of water, and 0.8% by weight of by-products such as acetate.
  • a second-stage reaction catalyst was produced according to Reference Example 1 and Example 1 of W97 / 3751.
  • W 0 9 7/3 7 5 1 of the same as the method of manufacturing the catalyst used in Reference Example 1, Japan and the aqueous silica Kazoru, Sno manufactured by Nissan Chemical Industries Te' Box N- 3 0 (S i ⁇ 2 Min: 30% by weight), aluminum nitrate and magnesium nitrate were added to the aqueous silica sol at an A 1 Z (S i + A 1) ratio of 10 mol% and a M g Z (S i + M g) ratio.
  • the resulting mixture was dissolved in 10 mol% and spray-dried with a spray dryer set at 130 ° C to obtain a spherical carrier having an average particle size of 60 m.
  • the obtained support was calcined in air at 300 ° C. for 2 hours and then at 600 ° C. for 3 hours, and then used as a catalyst support.
  • the carrier was mixed with an aqueous solution of 15% by weight of palladium chloride and 10% by weight of sodium chloride such that palladium was 5 parts by weight and lead content was 6.5 parts by weight per 100 parts by weight of the carrier. For 1 hour, and the palladium chloride and lead nitrate were completely adsorbed on the carrier.
  • the Pd / Pb-bearing composition ratio was 3 / 1.95 in atomic ratio, and the X-ray diffraction angle (20%) of the maximum intensity peak in the powder X-ray diffraction pattern was obtained.
  • the intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) Z lead metal (4 layers) was 1.1.24.
  • the catalyst intermediate was activated by the method of Example 1 of W97 / 3751. Equipped with a catalyst separator, the liquid phase is 5.0 liters.
  • the catalyst intermediate (1200 g) was charged into a stainless steel bubble column reactor of an external circulation type. 36.7% by weight of methacrylone / methanol solution was added to 2.16 liters of Zhr, 2 to 4% by weight of Na ⁇ H / methanol solution was 0.24 liters.
  • the reactor was continuously supplied at a pressure of 5 torr / hr (the concentration of chloraine in the reaction system consisting of the above two solutions was about 33% by weight), the reaction temperature was 80 ° C, and the reaction pressure was 5 kg / Air was supplied to the reactor while adjusting the amount of air so that the outlet oxygen concentration in cm 2 was 3.0% by volume (equivalent to an oxygen partial pressure of 0.15 kg / cm 2 ).
  • the Na aH concentration supplied to the reactor was controlled so that the pH of the reaction system was 7.1.
  • the reaction product (activated catalyst) was continuously withdrawn from the reactor at 2.4 liter / hr. The above activation process was completed in 50 hours.
  • the reaction product withdrawn from the reactor outlet contained on average about 270 ppm of lead. This is due to the action of methacrylic acid generated in the reaction system (the average concentration in the extracted reaction product is 1.1% by weight), and lead from the catalyst is ionized in the form of ion in the reaction system. It is presumed that the substance dissolved in the metal was reduced by the active hydrogen generated by the reaction between methacrolein and methanol.
  • the activated catalyst was analyzed, the Pd / Pb atomic ratio was 3 / 1.24, and the X-ray diffraction angle (2 2) of the peak with the highest intensity in the powder X-ray diffraction pattern was It was 38.65 2 degrees.
  • the sodium hydroxide solution and the methanol solution of lead acetate were adjusted so that the pH of the liquid in the two reactors was 6.1 and the lead concentration was 20% by weight.
  • a cooling solution was supplied to each reactor.
  • the reaction temperature is 8 0 ° C
  • reaction pressure is 3. 0 kg / cm 2
  • the oxygen partial pressure in the gas discharged Ri by reactor outlet reactor one at I 0. 0 9 5 kg Roh cm 2 In the reactor ⁇ it was 0.03 kg / cm 2 .
  • the oxidative esterification reaction of methacrylate is performed under the above conditions, and a reaction mixture (B) containing methyl methacrylate, water, methacrylate, methanol, and the like is added to the reactor. From the outlet. In this reaction, the conversion of methacrolein was 80.3%, and the selectivity for methyl methacrylate was 90.7%.
  • the methacrolein recovery step was carried out with reference to Example 1 of Japanese Patent Application Laid-Open No. 11-246643.
  • Step 3 The reaction mixture (B) consisting of methacryloline, methyl methacrylate, water, methacrylic acid and methanol obtained in the reaction step) was 15 cm in inner diameter, 6 m in height, 'Supplied at 1,600 g / hr to the 30th stage from the top of a tray type distillation column equipped with a sieve tray with 45 actual plates. Hydroquinone was supplied from the top of the tower so that the concentration of the polymerization inhibitor in the liquid flowing down in the tower was 100 ppm or more.
  • the top temperature of the distillation column is 31 ° C
  • the bottom temperature is 84 ° C
  • the temperature at the sixth stage from the bottom is 81.4 ° C
  • the pressure at the top is atmospheric pressure.
  • a bottom liquid (C) was obtained.
  • the bottom liquid (C) obtained in Step 4 was supplied to the oil-water separation tank at 800 g Zhr. Sulfuric acid was supplied to the pipe that sends the bottom liquid (C) to the oil / water separation tank so that the pH of the water layer in the oil / water separation tank was 2. The liquid in the oil / water separation tank was separated into an oil layer and an aqueous layer by a centrifuge, and the oil layer was subjected to the next high-boiling separation step. Two oil / water separation tanks were provided so that the receiving of supply liquid could be switched.
  • the high-boiling separation process was carried out with reference to Example 1 of Japanese Patent Application Laid-Open No. 11-132-224.
  • a device for draining under reduced pressure with a brine cooler is provided.
  • a condenser is provided for extracting and cooling the bottom vapor under reduced pressure to obtain a condensate.
  • a device that was controlled by a liquid level gauge was installed.
  • a methyl methacrylate solution containing 5 wt% of hydroquinone was supplied from the top of the column at 40 g / r, and the reflux rate was 1,000 g Zhr and the top pressure was 15 Continuous operation was performed under the condition of O mmH g. The temperatures at the top and bottom were 45 ° C and 70 ° C, respectively. Vapor was extracted from the top of the tower and made into condensate with a cooler. The condensate was withdrawn at 500 g Z hr.
  • the low-boiling separation step was carried out with reference to Example 1 of Japanese Patent Application Laid-Open No. Hei 11-135-523.
  • the condensate obtained in Step 6 was collected at the 10th stage from the top of a tray type distillation column equipped with a sieve tray with an inner diameter of 10 cm, a height of 5 m, and an actual number of stages of '30'. Supplied in ghr.
  • the top of the tower is equipped with a device for draining under reduced pressure with a brine cooler, and the bottom of the tower includes a cooler for extracting and cooling the bottom vapor under reduced pressure to obtain a condensate
  • a device controlled by a liquid level gauge was provided.
  • the condensate extracted in step 7 was collected at a depth of 500 g at the 35th stage from the top of a tray type distillation column equipped with a sieve tray with an inner diameter of 10 cm, a height of 5 m, and a number of plates of 70. / hr supplied.
  • the top of the tower is equipped with a device that can drain liquid under reduced pressure with a line cooler.
  • a device controlled by a surface gauge was installed. While supplying a methyl methacrylate solution containing 5 wt% of hydroquinone from the top of the column at 40 g / r, the reflux rate is 222 g / hr, and the top pressure is 14 O mmH It was operated continuously under the condition of g.
  • the temperature at the top and bottom was 55 ° C and 80 ° C, respectively.Vapor was extracted from the top, condensed with a cooler, and purified methyl methacrylate was collected at a flow rate of 450 g Obtained.
  • the APHA value of the obtained purified methyl methacrylate was about 3, and the yellow chromaticity YI of the methyl methacrylate polymer produced using it was 3.5. Thus, both the APHA value and the yellowness YI were excellent.
  • Comparative example Composition as a reference the atomic ratio Total 1 2 atoms of M o and W Mo 12 B i 6 C e 0. 4 K 0. Table with j C s 0. 4 F e ⁇ 5 C o 8. 0
  • the resulting oxide catalyst composition was produced as follows.
  • solution A In a solution of 1,750 g of warm water at about 50 ° C, 362 g of ammonium molybdate were dissolved (this solution is referred to as “solution A”). Also, 133 g of bismuth nitrate, 30.1 g of cerium nitrate, 1.72 g of potassium nitrate, 1103.9 g of iron nitrate, 402 g of cobalt nitrate and 13 g of cesium nitrate 4 g was dissolved in 35 g of a 15% by weight nitric acid aqueous solution (this solution is referred to as “solution B”). The solution A and the solution B were stirred and mixed for about 2 hours to obtain a raw material slurry.
  • This raw material slurry was spray-dried to obtain a spray-dried powder catalyst composition precursor, and the obtained catalyst composition precursor was calcined at 200 ° C. for 3 hours to obtain pseudo spherical particles.
  • the obtained particles were tablet-molded into a column having a diameter of 5.0 mm and a height of 4 mm, and then calcined at 500 ° C. for 3 hours to obtain an oxide catalyst composition.
  • methacrylone was produced in the same manner as in Example 1.
  • the conversion of isobutylene was 97.4%
  • the selectivity for methacrylein was 86.5%
  • the selectivity for methacrylic acid was 2.4 '%.
  • Analysis of the condensate of the reaction product gas revealed that the amount of diacetyl produced was 3,500 ppm, S 1 was 20 and S 2 was 56.
  • Example 2 a severe condition test was performed in the same manner as in Example 1 to evaluate the performance of the catalyst.
  • the isobutylene conversion was 97.
  • the selectivity for methacrylone was 86.3%
  • the selectivity for methacrylic acid was 2.4%.
  • the condensate of the reaction product gas was prayed, the amount of diacetyl produced was 3,600 ppm, the S 1 value was 21 and the S 2 value was 56.
  • methyl methacrylate was produced by the direct meta method in the same manner as in Example 1.
  • the APHA value of the obtained methyl methacrylate was 8, and the yellowness YI of the methyl methacrylate polymer produced therefrom was 12.5.
  • both the APHA value and the yellowness YI were inferior.
  • the amount of the raw materials was adjusted so that the oxide catalyst composition having the composition shown in Table 1 was obtained, and an oxide catalyst composition was produced in the same manner as in Example 1.
  • the firing of the catalyst was performed at the temperatures shown in Table 1.
  • Example 1 An initial reaction evaluation and a severe test were performed in the same manner as in Example 1.
  • Table 2 shows the results of the initial reaction evaluation
  • Table 3 shows the results of the evaluation under the initial reaction evaluation conditions after the severe test.
  • a methyl methacrylate monomer was produced by a direct meta-method, and a methyl methacrylate polymer was produced using the produced methyl methacrylate monomer.
  • Table 4 shows the APHA value of the methyl methacrylate monomer and the yellowness YI of the methyl methacrylate polymer.
  • Myuomikuron 9 composition a total of 2 atoms of M o and W as the atomic ratio to the reference. 5 W 2. 5 B i x. 7 C e o. 4 K 0. 2 C s 0. Z F e ⁇ 0 Co 6. 5 N i! .
  • the 0 S b 0. 5 in oxide catalyst composition represented was prepared as follows.
  • Ammonium paratungstate (103.6 g) was dissolved in warm water (1,900 g) at about 60 ° C, and heptomolybdate ammonium (26.7.lg) was further dissolved to obtain an aqueous solution. . 11.6 g of antimony trioxide was added to this aqueous solution to form a suspension. This suspension was heated to 90 ° C. with stirring to obtain a 30% by weight aqueous solution of hydrogen peroxide 50%. 0 g was added slowly. When the hydrogen peroxide solution was added, the color of the solution changed to a bright yellow color while foaming, and it became a solution.
  • solution A this solution was referred to as “solution A”.
  • 1319 g of bismuth nitrate, 28.0 g of cerium nitrate, 3.21 g of potassium nitrate, 64.6 g of iron nitrate, 302.2 g of cobalt nitrate, nickel nitrate 46.3 g of cesium nitrate 6.23 g was dissolved in 280 g of a 15% by weight aqueous nitric acid solution (this solution was referred to as "solution B").
  • the solution A and the solution B were stirred and mixed for about 2 hours to obtain a raw material slurry.
  • a spray-dried powder catalyst composition precursor was obtained by spray-drying this raw slurry, and the obtained catalyst precursor was calcined at 200 ° C. for 3 hours to obtain pseudo spherical particles.
  • the obtained particle body has a diameter of 5.0 m. After compression molding into a column having a height of 4 mm and a height of 4 mm, the mixture was calcined at 52 ° C. for 3 hours to obtain an oxide catalyst composition.
  • Example 2 shows the results of the initial reaction evaluation
  • Table 3 shows the results of the evaluation under the initial reaction evaluation conditions after the severe test.
  • a methyl methacrylate monomer was produced by the direct meta method, and a methyl methacrylate polymer was produced using the produced methyl methacrylate monomer.
  • Table 4 shows the APH A value of the methyl methacrylate monomer and the yellowness YI of the methyl methacrylate polymer.
  • the amount of raw materials was adjusted to obtain an oxide catalyst composition having the composition shown in Table 1, and an oxide catalyst composition was produced.
  • an oxide catalyst composition is produced in the same manner as in Example 1, and when tungsten is contained, the oxide catalyst composition is produced in the same manner as in Example 3.
  • a composition was prepared. The firing of the catalyst was performed at the temperatures shown in Table 1.
  • Example 2 shows the results of the initial reaction evaluation
  • Table 3 shows the results of the evaluation under the initial reaction evaluation conditions after the severe test.
  • a methyl methacrylate monomer was produced by the direct meta method, and methyl methacrylate was used by using the produced methyl methacrylate monomer. Polymers were manufactured.
  • Table 4 shows the APHA value of the methyl methacrylate monomer and the yellowness YI of the methyl methacrylate polymer. Comparative Example 2 to Comparative Example 16
  • the amount of raw materials was adjusted to obtain an oxide catalyst composition having the composition shown in Table 1, and an oxide catalyst composition was produced.
  • an oxide catalyst composition was produced in the same manner as in Comparative Example 1, and when antimony was contained but no tungsten was contained, the oxidation was carried out in the same manner as in Example 1.
  • a catalyst catalyst composition was prepared, and when antimony and tungsten were included, an oxide catalyst composition was prepared in the same manner as in Example 3. The calcination of the catalyst was performed at the temperatures shown in Table 1. Was. Table 2 shows the results of the initial reaction evaluation.
  • S1 and S2 which are the respective peak collisions of R1 and R2 when the peak area of diacetyl is 100, are obtained.
  • Example 9 4 4.4 Difficult case 10 o
  • the oxide catalyst compositions prepared in the examples showed high metachlorine even in a severe condition test in which methacrolein was produced at a high temperature. It showed selectivity and low yield of diacetyl, 11 and 12. Therefore, it has been found that the oxide catalyst composition of the present invention has a smaller amount of impurities generated and has excellent heat resistance and reduction resistance as compared with the conventional oxide catalyst composition.
  • the oxide catalyst composition of the present invention is excellent in thermal stability and reduction resistance, has a long catalyst life, and has a high selectivity of a target product.
  • the target product can be produced stably for a long period of time while reducing the amount of by-product impurities such as diacetyl.
  • Methacrolein having a low content of by-product impurities such as diacetyl, and a mixture of methacrylin and methyl methacrylate are very useful as a raw material of methyl methacrylate monomer having excellent transparency.
  • the highly transparent methyl methacrylate polymer obtained by polymerizing the highly transparent methyl methacrylate monomer can be used as an alternative to glass or quartz for high transparency such as optical fibers and light guide plates. Since it can be used very advantageously for applications that require, its commercial value is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

02 13369
1 明 細 書 酸化物触媒組成物 技術分野
本発明は、 酸化物触媒組成物に関する。 更に詳細には、 本 発明は、 イ ソブチレン及び t 一 ブチルアルコールか らなる群 よ り選ばれる少なく と も 1 種を分子状酸素含有ガス と反応さ せてメタク ロ レイ ンまたはメタ ク ロ レイ ンとメタク リ ル酸と の混合物を製造するための酸化物触媒組成物であって、 モリ ブデン又はモ リ ブデンと夕 ングステンの混合物、 ビスマス、 鉄、 ア ンチモンを含有し、 更にプロメチウムを除く ラ ンタ ノ ィ ド族元素とイ ッ ト リ ウムか らなる群よ り選ばれる少なく と も 1 種の元素、. カ リ ウム、 ルビジウム及びセシウムか らなる 群よ り選ばれる少なく とも 1種の元素、 並びにコバル ト単独、 またはコバル ト を必須成分と して、 更にマグネシウム及び二 ッ ケルからなる群よ り選ばれる少なく と も 1 種を含む混合物 を含有し、 該成分元素について特定の組成比を有する酸化物 触媒組成物に関する。
本発明の酸化物触媒組成物は熱安定性及ぴ耐還元性に優れ、 触媒寿命が長く 、' 目的生成物の選択率が高いので、 該酸化物 触媒組成物を用 いてメ タク ロ レイ ンまたはメタ ク ロ レイ ンと メ 夕 ク リ ル酸との混合物を製造する と、 ジァセチル等の副生 02 13369
2 成不純物の量を低減しながら、 長期間安定に目 的生成物の製 造を行なう こ とができる。 ジァセチル等の副生成不純物の含 有量の少ないメ タク ロ レイ ンや、 メタク ロ レイ ンとメタ ク リ ル酸との混合物は、 透明性に優れたメタ ク リ ル酸メチルの原 料と して非常に有用である。 該透明性に優れたメタク リ ル酸 メチルを重合して得られる透明性の優れたメタ ク リ ル酸メチ ルポ リ マーは、 ガラスや石英の代替と して、 光フ ァイバ一や 導光板などの高い透明性が求め られる用途に非常に有利に用 いる こ とができるので、 商業的価値が極めて高い。 従来技術
メ タ ク リ ル酸メチルか ら製造されるポ リ マーは、 ガラス状 で硬く 、 透明である こ とが特徴であ り 、 ガラス代替品と して 用い られる こ とが多い。 メ夕ク リ ル酸メチルポ リ マーは、 近 年、 光フ ァイバ一等の分野においても石英に替わる光学材料 と して注目 され、 その利用 も拡大している。 従って、 ガラス や石英の代替品 となるメ夕ク リ ル酸メチルポリ マーには高い 透明性や高い耐候性が要求され、 そのよ うな優れたメタク リ ル酸メチルポリ マ一を得るためには、 原料となるメタク リ ル 酸メチルモノ マーに、 該ポ リ マーの透明性と耐候性を損なう 微量不純物が少ない こ とが重要である。
工業的に有用な化合物であるメ夕ク リ ル酸メチルを製造す る方法と しては、 直メタ法と呼ばれる、 2 つの反応工程から なる方法と、 直酸法と呼ばれる、 3 つの反応工程からなる方 法とが知られている。 直メ夕法は、 イ ソプチレン及び また は t 一ブチルアルコ一ルを原料と し、 酸化物触媒 (以下、 屡々、 「前段触媒」 と云う) の存在下に分子状酸素含有ガス を用いて気相酸化してメタク口 レイ ンを製造する第 1 反応ェ 程と、 得られたメタク ロ レイ ンをメタノールと分子状酸素と を共にパラジウム含有担持触媒 (以下、 屡々、 「後段触媒」 と云う) の存在下に反応させて、 一挙にメ夕ク リル酸メチル を製造する第 2 反応工程の 2つの触媒反応工程からなる方法 である。
本発明者らによる最近の直メタ法の研究から、 4 0 0 n m 〜 7 8 0 n mの可視光領域に吸収をもつ物質がメ夕ク リル酸 メチルの着色要因物質であるこ とが判明した。 この領域に吸 収のある物質には、 従来から着色要因物質として知られてい たジァセチルの他に、 ピルビンアルデヒ ド、 2 ーァセチルフ ラン等が含まれており、 これらも着色要因物質である こ とが 判明した。
直メタ法において、 イ ソブチレン及び t 一ブチルアルコー ルよ りなる群から選ばれる少なく とも 1 種を原料とし、 分子 状酸素含有ガスを用いて気相酸化し、 メタクロ レイ ンを製造 するための前段触媒は、 本発明者らが提案したものである ( W〇 9 5 — 3 5 2 7 3 号公報、 日本国特開平 1 0 — 2 1 6 5 2 3号公報等を参照) 。 しかし、 これらの触媒が副生する ジァセチル等の不純物がメタク リル酸メチルを着色する要因 であるこ とは、 触媒の開発時には十分認識されていなかった。
また、 直メタ法の第 2反応工程において、 分子状酸素の存 在下にメタク ロ レイ ンとメタノールを反応させてメタク リル 酸メチル.を製造するための、 パラジウムを含む後段触媒につ いては、 米国特許第 4 3 4 9 0 1 9号、 日本国特公昭 5 7 — 3 5 8 5 9 号公報、 米国特許第 4 5 1 8 7 9 6号等に数多く の提案がなされている。' 分子状酸素とメタクロ レイ ンとメタ ノールが反応してメタク リル酸メチルが生成する後段触媒反 応は、 室温から 1 0 0 °Cという穏和な反応温度条件で行うた め、 メ夕ク リル酸メチルの着色要因物質となるジァセチル等 の不純物は後段触媒反応で殆ど反応する ことなく 、 そのまま 後の精製工程に持ち込まれる こ とが本発明者らの研究によつ て判明した。 精製工程に持ち込まれた着色要因物質を取り除 く ためには、 精製工程を繰り返し行わなければならず、 その 結果、 メタク リル酸メチルのロスが増加してコス ト高を招く ので、 工業上の実施に際しては非常に不利である。
直酸法もイ ソプチレン及び/または t 一ブチルアルコール を原料と してメタク リル酸メチルを製造する方法である。 直 酸法については、 日本国、 講談社サイェンティ フイ クから出 版されている 「石油化学プロセス」 (石油学会編) の第 1 7 2 〜 1 7 6 頁に記載されており、 この記載による と、 直酸法 は第 1酸化工程、 第 2酸化工程及びエステル化工程の 3 つの 反応工程から構成されている。 第 1酸化工程はイ ソプチレン と t 一ブチルアルコールから選ばれる少なく とも一つの出発 物質を、 触媒の存在下で分子状酸素と気相接触酸化反応させ て、 メタク ロ レイ ンを製造する工程である。 第 2酸化工程は 第 1酸化工程で得られたメタク ロ レイ ンを触媒の存在下で分 子状酸素と気相接触酸化反応させて、 メタク リル酸 ^製造す る工程である。 エステル化工程では、 第 2酸化工程で得られ たメタク リル酸をさ らにエステル化してメタク リル酸メチル を得る工程である。
直酸法の第 1酸化工程において、 イ ソブチレン及び t ーブ チルアルコールよ りなる群から選ばれる少なく とも 1種を気 相接触酸化反応に付してメタク ロ レイ ンを製造するための触 媒については数多く の提案がなされている。 これらは主とし て触媒を構成する成分及びその比率の選択にかかわるもので ある。 例えば、 日本国特公昭 4 8— 1 7 2 5 3号公報 (カナダ. 国特許第 9 4 7 7 7 2号に対応) 、 米国特許第 4 , 0 0 1 , 3 1 7号、 米国特許第 4, 5 3 7, 8 7 4号、 日本国特開昭 6 0 一 1 6 3 8 3 0号公報、 日本国特開昭 6 3— 1 2 2 6 4 1号公報 日本国特開平 2— 2 2 7 1 4 0 .号公報等が挙げられる。 またこ れらの公報に開示されている触媒は、 主と して収率の向上を 狙ったものであ り、 触媒の性能を示すデータと しては、 イ ソ ブチレン及び t 一ブチルアルコールの転化率とメタク 口 レイ ンゃメタク リル酸の収率や選択率のみが記載されている。 直酸法の第 1 酸化工程の目的生成物であるメタク ロレイ ン とメタク リ ル酸以外の副生成不純物に関しては、 例えば、 日 本国特公昭 5 3 — 2 3 8 0 9 号公報には、 酢酸、 C 0 2及び C〇の選択率が記載されており 、 日本国特公昭 5 7 - 6 1 0 1 1 号公報にはアセ トンと酢酸の選択率が記載されており、 日本国特公昭 5 1 — 1 3 1 2 5 号公報及び日本国特公昭 5 1 一 1 2 6 0 5号公報等には C〇 2 と C Oの選択率が記載され ている。 また、 米国特許第 3 , 9 2 8 , 4 6 2号 (日本国特 公昭 4 7 - 3 2 0 4 3号公報及び日本国特公昭 4 7 - 3 2 0 4 4号公報に対応) には、 ァク ロ レイ ンの選択率が 5〜 6 % と記載されている。 上記の公報に記載されている不純物は、 いずれも着色要因物質とは異なるものである。
更に、 日本国特公平 5 — 8 6 9 3 9号公報には、 イ ソプチ レン及び t 一ブチルアルコールよ りなる群から選ばれる少な く とも 1 種を気相接触酸化反応してメタク ロ レイ ンを製造す る際に得られた酸化生成ガスには、 メタク ロレイ ンとメ夕ク リル酸の他に、 ァセ トアルデヒ ド、 アセ ト ン、 ァク ロ レイ ン 酢酸、 アク リル酸等の低沸点副生物及びマレイ ン酸や芳香族 カルボン酸等の高沸点副生物が含まれ、 更に重合物やタール 状物質も存在する こ とが記載されている。 この公報において は、 酸化生成ガスをアルカ リ土類金属の固形の化合物に接触 させる ことで重合物等の生成を抑制するか、 或いは重合物等 を酸化生成ガス中から分解除去する こ とによって実質的に重 合物等を含まない酸化生成ガスを得る こ とを提案している。
この公報には、 メタク ロ レイ ンとメタク リル酸の生成量以外 にマレイ ン酸と重合物の生成量が記載されているが、 メ夕ク リル酸メチルの着色要因物質となる微量不純物に関する記載 は何もない。
また、 直酸法の第 2酸化工程においては、 反応温度が 3 0 0〜 4 0 0 °Cと高い為に、 第 1酸化工程で副生したジァセチ ル等の着色要因物質の大部分が分解されるので、 着色要因物 質についてはあま り 問題視されていなかったと考えられる。
しかし、 直酸法においても着色要因物質が第 2酸化工程で完 全に分解されるわけではないので、 着色要因物質を副生しな い第 1酸化工程の触媒が必要である。
直酸法の第 1 酸化工程及び第 2酸化工程に関連する、 メタ ク リル酸メチルの着色要因物質となる不純物に関しては、 日 本国特許第 2 5 0 9 0 4 9号公報 (米国特許第 5 , 2 6 1 ,
6 2 7号に対応) に不純物の低減に関する記載がある。 この ' 公報による と、 ビスマス、 モリ ブデンおよび鉄を含有してな る酸化物触媒を充填した熱交換型多管式第 1酸化反応器に、 イソブチレン、 t ーブ夕 ノール及びメチルー t 一ブチルエー テルからなる群のから選ばれた少なく とも 1種の化合物を分 子状酸素とともに導入して接触気相酸化反応を行い、 主と し てメタク ロ レイ ンを生成させ、 その後、 メタク ロ レイ ンを含 有する反応生成ガスを、 モリ ブデン及びリ ンを含有してなる 酸化物触媒を充填した熱交換型多管式第 2酸化反応器に分子 状酸素と ともに導入して接触気相酸化反応を行い、 メタク リ ル酸を生成させる。 この方法においては、 前記第 2酸化反応 器のガス出口部空間に固体充填物を充填して、 触媒層を通過 した後の空塔容積を減ら して該空塔での滞留時間を短くする ことで、 ジケ ト ン類の副生成を抑えている。 第 1酸化工程と 第 2酸化工程を経て得られたメタク リル酸にジケ ト ン類 (実 施例ではァセ トニルァセ トン) が存在する と、 ポリ メタク リ レー ト中でジケ トン類がフラン系化合物になって着色する こ とが問題になっている。
従って、 第 1 反応器の触媒を改良してジケ ト ン類の副生を 減らすこ とは、 直酸法で製造されるメタク リル酸メチルの着 色要因物質を低減するためにも効果的である。
上記した公報などの記載からわかるよう に、 直酸法の第 1 酸化工程においても、 イ ソブチレン及び t 一ブチルアルコ一 ルよ りなる群か ら選ばれる少なく とも 1 種を触媒の存在下に 気相接触酸化反応して、 メタク ロ レイ ンを製造する際に副生 するジァセチル等の不純物が、 メタク リル酸メチルの着色要 因物質である こ とはある程度認識されていたものの、 第 1酸 化工程でメタク ロ レイ ンを製造する際に副生するジァセチル 等の着色要因不純物を減らすために触媒を改良する方法に関 する知見は存在しなかった。
メタク リル酸メチルを直メタ法で製造する際には、 酸化メ チルエステル化(後段反応) を低温条件下 (室温〜 1 0
0 °C ) で行う。 この方法の利点は、 直酸法よ り もメタク リ ル 酸メチルの収率が高い点であるが、 着色要因物質であるジァ セチル等が後段反応触媒で殆ど分解される こ となく 、 その後 の精製工程に持ち込まれる という 問題がある。 従って、 直メ 夕法では、 メ タク リ ル酸メチルの品質を高めるために前段反 応における着色要因不純物をできるだけ少なく する必要があ る。 その為には、 メ タク ロ レイ ンの選択率が高く 、 耐熱性及 び耐還元性に優れ、 着色要因不純物の選択率ができるだけ低 い触媒の開発が強く 望まれていた。 発明の概要
本発明者ら は、 上記の状況を鑑み、 メ タク ロ レイ ンの選択 率が高く 、 耐熱性及び耐還元性に優れ、 着色要因不純物の選 択率ができるだけ低い触媒を開発すべく 鋭意研究を行っ た。 その結果、 驚く べき こ とに、 モ リ ブデン又はモリ ブデンと夕 ングステンの混合物、 ビスマス、 鉄、 アンチモンを含有し、 更にプロ メチウムを除く ラ ン夕 ノ ィ ド族元素とイ ツ ト リ ウム か らなる群よ り選ばれる少なく と も 1 種 ·の元素、 カ リ ウム、 ルビジウム及びセシウムからなる群よ り選ばれる少な · < とも
1 種の元素、 並びにコバル ト単独、 またはコバル ト を必須成 分と して、 更にマグネシウム及びニッケルか らなる群よ り選 ばれる少なく とも 1 種を含む混合物を含有する触媒組成物で あって、 各成分元素の原子比及びその相対量比を特定の範囲 に設定する ことによ り、 熱安定性及び耐還元性に優れていて 触媒寿命が長く、 メタク ロ レイ ンの選択率にも優れ、 メ夕ク リル酸メチルの着色要因となる不純物の選択率が低い触媒が 得られる ことを見いだした。 本発明は、 このような新たな知 見に基づいて完成されたものである。
従って、 本発明の主要な目的は、 透明性に優れたメタク リ ル酸メチルの原料として非常に有用な、 不純物の含有量の少 ないメタク ロ レイ ンや、 メタク ロ レイ ンとメタク リル酸との 混合物を製造するための酸化物触媒組成物を提供する ことに ある。
本発明の上記及びその他の諸目的、 諸特徴な らびに諸利益 は、 添付の図面を参照しながら述べる次の詳細な説明及び請 求の範囲から明らかになる。 図面の簡単な説明
図は、 直メタ法でメタク リル酸メチルを製造するために実 施例で行った製造工程を示すフ ローチャー トである。
符号の説明
1 : 前段反応工程
2 : メタク ロ レイ ン (M A L ) 吸収工程
3 : 後段反応工程
4 : メタク ロ レイ ン (M A L ) 回収工程 JP02/13369
11
5 : 酸処理 · 油水分離工程
6 : 高沸分離工程
7 : 低沸分離工程
8 : メタク リ ル酸メチル ( M M A ) 精製工程 . 発明の詳細な説明
本発明によれば、 イ ソブチレン及び t 一ブチルアルコール か らなる群よ り選ばれる少な く とも 1 種を分子状酸素含有ガ ス と反応させてメタク ロ レイ ンまたはメ タク ロ レイ ンとメタ ク リ ル酸との混合物を製造するための、 下記式 ( I ) で表さ れる酸化物触媒組成物が提供される。
(Mo + W)12B i aAbBcF edXeS b fOg ( I )
(式中、
Aはラ ンタ ン、 セ リ ウム、 プラセォジゥム、 ネオジゥム'、 サマ リ ウム、 ユウ口 ピウム、 ガ ド リ ゥム、 テルビウム、 ス プロシゥム、 ホルミニゥム、 エルビウム、 ツ リ ウム、 イ ツテ ルビゥム、 ルテチウム及びイ ッ ト リ ウムか らなる群よ り選ば れる少なく と も 1 種の元素であ り ;
Bはカ リ ウム、 ルビジウム及びセシウムか らなる群よ り選 ばれる少なく と も 1 種の元素であ り ;
Xはコバル ト単独、 またはコバル ト を必須成分と して、 更 にマグネシウム及ぴニッ ケルか らなる群よ り選ばれる少なく と も 1 種を含む混合物であ り ; モリ ブデン (Mo) とタ ングステン ( W) の合計 1 2 原子 に対するモリ ブデン (Mo) の原子数の範囲は 9 を超え 1 2 以下であ り、 タングステン (W) の原子数の範囲は 0 以上 3 未満であ り ; そして
a 、 b 、 c 、 d 、 e 、 f 及び g は、 それぞれ、 モリ ブデン (M o ) とタングステン (W) の合計 1 2原子に対するビス マス ( B i ) 、 A、 B、 鉄 ( F e ) 、 X、 アンチモン ( S b ) 及び酸素 (〇) の原子比率を表し、
0 < a≤ 8 、
0 < b ≤ 8 ,
0 < c < 3 、
0 . 2 < d < 5 、
1 ≤ e ≤ 1 2 、
0 . 1 < f < 3 、
gは存在する他の元素の原子価状態を満足さ せるのに必要な酸素の原子数であ り ; そして
a 、 b 、 c 、 d及び f は以下の式
0 . 0 2 < b / ( a + b + c ) < 0 . 6 、 0 < c / ( a + b + c ) ≤ 0 . 9 、
0 . 0 1 < d / ( a + b + d ) ≤ 0 . 9 、
0 . 1 < d - f < 2 . 5
の条件を満足する。 ) 次に本発明の理解を容易にするために、 本発明の基本的特 徴及び好ま じい態様を列挙する。
1 . イ ソブチレン及び t 一ブチルアルコールからなる群よ り 選ばれる少なく とも 1 種を分子状酸素含有ガスと反応させて メタク ロ レイ ンまたはメタク ロ レイ ンとメタク リル酸との混 合物を製造するための、 下記式 ( I ) で表される酸化物触媒 組成物。
(Mo + W)12B i aAbBcFedXeSbfOg ( I )
(式中、
Aはランタン、 セリ ウム、 プラセォジゥム、 ネオジゥム、 サマリ ウム、 ユウ口 ピウム、 ガ ド リ ゥム、 テルビウム、 ジス プロシゥム、 ホルミニゥム、 エルビウム、 ツリ ウム、 イ ツテ ルビゥム、 ルテチウム及びイ ツ ト リ ウムからなる群よ り選ば れる少なく とも 1種の元素であ り ;
Bはカ リ ウム、 リレビジゥム及びセシウムからなる群よ り選 ばれる少なく とも 1 種の元素であ り ;
Xはコバルト単独、 またはコバル トを必須成分として、 更 にマグネシウム及びニッケルからなる群よ り選ばれる少なく とも 1 種を含む混合物であ り ;
モリ ブデン ( Mo) とタングステン ( W) の合計 1 2原.子 に対するモリ ブデン (Mo) の原子数の範囲は 9 を超え 1 2 以下であ り、 タ ングステン (W) の原子数の範囲は 0以上 3 未満であ り ; そして
a、 b 、 c 、 d 、 e 、 f 及び gは、 それぞれ、 モリブデン (M o ) とタングステン (W) の合計 1 2原子に対するビス マス ( B i ) 、 A、 B、 鉄 ( F e ) 、 X、 アンチモン ( S b ) 及び酸素 ( O ) の原子比率を表し、
0 < a≤ 8 、
0 < b≤ 8 、
0 < c < 3 、
0 . 2 < d < 5 、
1 ≤ e ≤ 1 2 、
0 . 1 < f < 3 、
gは存在する他の元素の原子価状態を満足さ せるのに必要な酸素の原子数であ り ; そして
a 、 b、 c 、 d及び f は以下の式
0 . 0 2 < b / ( a + b + c ) < 0 . 6 、 0 < c / ( a + b + c ) ≤ 0 . 9 、
0 . 0 l < d / ( a + b + d ) ≤ 0 . 9 、
0 . 1 < d - f < 2 . 5
の条件を満足する。 )
2 . 式 ( I ) における該混合物 Xにおいて、 コバルト、 マグ ネシゥム及びニッケルの合計に対するコバル トの原子比率は 0 . 5以上であ り、 式 ( I ) における該混合物 Xがマグネシウムを含む場合に は、 該混合物 X中のコバル ト、 マグネシウム及びニッケルの 合計に対するマグネシウムの原子比率は 0 . 5以下であ り、 そして
式 ( I ) における該混合物 Xがニッケルを含む場合には、 該混合物 X中のコバル ト、 マグネシウム及びニッケルの合計 に対するニッケルの原子比率は 0 · 3 3未満である、 前項 1 に記載の酸化物触媒組成物。
3 . 式 ( I ) における a、 b、 c が式 0 . 0 5 < b Z ( a + b + c ) < 0 . 5 の条件を満足する、 前項 1 又は 2 に記載の 酸化物触媒組成物。
4. 式 ( I ) における a、 b、 cが式 0 . 1 く c / ( a + b + c ) < 0 . 8 の条件を満足する、 前項 1 〜 3 のいずれかに 記載の酸化物触媒組成物。
5 . 式 ( I ) における a、 b、 d、 f が、 式 0 . 2 ぐ d / ( a + b + d ) く 0 . 9 の条件と式 0 . 3 ≤ d — f ≤ 2 . 3 の条件を同時に満足する、 前項 1 〜 4 のいずれかに記載の酸 化物触媒組成物。 以下、 本発明について詳細に説明する 本発明の酸化物触媒組成物は、 下記式 ( I ) で表される。
(Mo + W)12B i aAbBcF e dXeS b f Og ( I )
(式中、
Aはラ ンタン、 セリ ウム、 プラセォジゥム、 ネオジゥム、 サマリ ウム、 ユウ口ピウム、 ガ ド リ ゥム、 テルビウム、 ジス プロシゥム、 ホルミニゥム、 エルビウム、 ツリ ウム、 イ ツテ ルビゥム、 ルテチウム、 イ ッ ト リ ウムからなる群よ り選ばれ る少なく とも 1種の元素であ り ;
Bはカ リ ウム、 ルビジウム及びセシウムからなる群よ り選 ばれる少なく とも 1種の元素であ り ;
Xはコバルト単独、 またはコバルトを必須成分として、 更 にマグネシウム及びニッケルからなる群よ り選ばれる少なく とも 1種を含む混合物であ り ;
モリ ブデン (Mo) とタ ングステン (W) の合計 1 2 原子 に対するモリ ブデン (Mo) の原子数の範囲は 9 を超え 1 2 以下であ り、 タングステン (W) の原子数の範囲は 0以上 3 未満であ り ; そして '
a、 b、 c , d、 e 、 f 及び gは、 それぞれ、 モリ プデン (M o ) とタングステン ( W ) の合計 1 2原子に対するビス マス ( B i ) 、 A、 B、 鉄 ( F e ) 、 X、 アンチモン ( S b ) 及び酸素 ( 0 ) の原子比率を表し、
0 < a≤ 8 、
0 < b≤ 8 、 P T腕/謂
17
0 < c < 3 、
0 . 2 < d < 5 、
1 ≤ e ≤ 1 2 、
0 . 1 < f < 3 ,
gは存在する他の元素の原子価状態を満足さ せるのに必要な酸素の原子数であ り ; そして
a、 b、 c 、 d及び ί は以下の式
0 . 0 2 < b / ( a + b + c ) < 0 . 6 、 0 < c / ( a + b + c ) ≤ 0 . 9 、
0 . 0 1 く d / ( a + b + d ) ≤ 0 . 9 、
0 . 1 < d - f < 2 . 5
の条件を満足する。 )
本発明の酸化物触媒組成物においてモリ ブデン (M o ) は 必須元素であるが、 タングステン ( W ) を M o の部分的な代 替え元素と して用いることもできる。 但し、 モリ ブデンとタ ングステンの合計 1 2原子に対するモリ ブデンの原子数の範 囲は 9 を超え 1 2以下であ り、 好ま しく は 9 . 5 を超え 1 2 以下である。 また、 タングステンの原子数の範囲は 0 以上 3 未満であ り、 好ましく は 0 以上 2 . 5未満である。
ビスマス ( B i ) は、 メタク ロ レイ ンを合成する上で必須 元素である。 本発明の酸化物触媒組成物に目的とする機能を 発現させるためには、 M 0 と Wの合計 1 2原子に対する B i の原子比率 ( a ) が、 0 < a≤ 8 の条件を満足する必要があ る。
Aはプロメチウムを除く ランタノイ ド族元素、 即ち、 ラン タン ( L a ) 、 セリ ウム ( C e ) 、 プラセォジゥム ( P r ) 、 ネオジゥム (N d ) 、 サマリ ウム ( S m) 、 ユウ口ピウム
( E u ) 、 ガ ド リ ゥム ( G d ) 、 テルビウム ( T b ) 、 ジス プロシゥム ( D y ) 、 ホルミニゥム ( H o ) 、 エルビウム
( E r ) 、 ツリ ウム ( T m ) 、 イ ッテルビウム ( Y b ) 、 ル テチウム ( L u ) 及びイ ッ ト リ ウム (Y ) からなる群よ り選 ばれる少なく とも 1 種の元素であ り、 触媒に耐熱性ゃ耐還元 性を付与する上で必要である。 本発明の酸化物触媒組成物に その機能を発現させるためには、 M o と Wの合計 1 2原子に 対する Aの原子比率 ( b ) は、 0 < b≤ 8 の条件を満足する 必要がある。
Bはカ リ ウム ( K) 、 ルビジウム ( R b ) 及びセシウム ( C s ) からなる群よ り選ばれる少なく とも 1種の元素である。
Bは Aの添加効果をさ らに高める上で必須であ り、 また、 メ タク ロ レイ ンの選択率をよ り高めるためにも重要な元素であ る。 M o と Wの合計 1 2原子に対する B の原子比率 ( c ) は 0 < c < 3 の条件を満足する必要がある。 Bの原子比率 (c ) が 3以上になると、 カ リ ウム (K) 、 ルビジウム (R b ) 及び セシウム ( C s ) からなる群より選ばれる少なく とも 1種の元 素の量を調節したり、 焼成温度を調整しても、 酸化物触媒組 成物は所望の触媒活性を充分に発現できなく なる。 また、 所 望の触媒活性を発現させるためには、 M o と Wの合計 1 2原 子に対する Bの原子比率 (c ) が 0 を超え 2 . 0未満である こ とが好ましく 、 0 を超え 1 . 5未満であるこ とがより好ま しく 、 0 を超え 1 . 2未満であることが更に好ましい。
本発明の酸化物触媒組成物においては、 元素 A (即ち、 L a、 C e 、 P r 、 N d、 S mゝ, E u、 G d、 T b、 D y、 H o、 E r 、 Tm、 Y b、 L u及び Yからなる群よ り選ばれる 少なく とも 1 種の元素) によって高選択率を維持し、 触媒の 耐熱性、 耐還元性を著しく改善するためには、 元素 A、 ビス マス ( B i ) 及び元素 B (即ち、 カ リ ウム、 ルビジウム及び セシウムからなる群よ り選ばれる少なく と も 1 種の元素) の 3種の元素の相対量が重要である。 具体的には、 式 ( I ) で 表される触媒組成物において、 原子比率 a、 b及び c が式 0 . 0 2 < b / ( a + b + c ) < 0 . 6 で表される条件を満 足しなければな らず、 式 0 . 0 5 < b Z ( a + b + c ) く 0 . 5で表される条件を満足することが好ましい。
更に、 元素 B の添加効果を相乗効果的に高めるためは、 元 素 B、 B i 及び元素 Aの相対量が重要であ り、 a、 b、 及び cが式 0 く c Z ( a + b + c ) ≤ 0 . 9 で表される条件を満 足する必要があ り、 さ らに式 0 . 1 く c / ( a + b + c ) く 0 . 8で表される条件を満足することが好ましい。
B i 、 元素 A及び元素 B の量関係が上記の条件を満たすこ とによって、 本発明で望まれる効果が得られる理由は明 らか ではないが、 次のよう に考え られる。 B i 、 元素 A及び元素 Bのモリ ブデン化合物 (又は、 Wが含まれる場合には該モ リ ブデン化合物に加えて、 B i 、 元素 A及び元素 Bのタンダス テン化合物) が特定の原子比領域においては、 互いに固溶化 し合い、 本発明において望まれる有利な特性を発揮している ものと考え られる。
鉄 ( F e ) は、 B i と同様に工業的にメタク ロ レイ ンを合 成する上で必須元素であるが、 F e含量が多く なる と C Oや C〇 2等の副生物が増加する傾向が現れ、 メタク ロ レイ ンの 選択率が低下してしまう。 従って、 M o と Wの合計 1 2原子 に対する F e の原子比率 ( d ) は、 0 . 2 < d < 5 の条件を 満足する必要がある。
さ ら に、 F e については、 F e、 B i 及び元素 Aとの相対 量が重要であ り 、 原子比率 a、 b及び dが式 0 . 0 1 < d Z ( a + b + d ) ≤ 0 . 9 で表される条件を満足する こ とが必 要であ り 、 さ ら に式 0 . 2く d Z ( a + b + d ) < 0 . 9 で 表される条件を満足する こ とが好ま しい。 特に、 メタク ロ レ イ ンに対する高い選択率を発揮するためには、 M o と Wの合 計 1 2原子に対する原子比率 a、 b及び dが式 0 . 2 < d < 5 及び式 0 < d / ( a + b + d ) ≤ 0 . 9 の 2 つの条件を満 足する こ とが好ま し く 、 さ ら に、 式 0 . 2 < d≤ 4及び式 0 . 0 1 < d X ( a + b + cl ) ≤ 0 . 9 の 2 つの条件を満足する こ とがよ り 好ま し く 、 式 0 . 2 < d≤ 4及び式 0 . 2 < d / ( a + b + d ) < 0 . 9 の 2つの条件を満足する ことが更に 好ましい。
式 ( I ) で表される本発明の酸化物触媒組成物において X はコバルト単独、 またはコバル トを必須成分'として、 更にマ グネシゥム及びニッケルからなる群よ り選ばれる少なく とも 1種を含む混合物である。 メタク ロ レイ ン選択率を低下させ る こ となく触媒活性を高める上で、 式 ( I ) における' Xと し てコバル ト ( C o ) が不可欠であ り 、 M o と Wの合計 1 2原 子に対する Xの原子比率 ( e ) は、 式 l ≤ e ^ l. 2 の条件を 満足する必要がある。
また、 マグネシウム ( M g ) とニッケル ( N i ) は上記式 ( I ) の Xにおいて、 C oの一部を代替する元素として使用 する ことが可能である。 M g原料や N i 原料は C 0原料に比 ベて安価であ り 、 触媒製造コス トの面から C oの一部を M g や N i に代替できる ことは、 工業的意義が大きい。 しかしな がら、 本発明の酸化物触媒組成物が C 0 を含まず、 Xと して M g単独や N'i 単独又は M g と N ϊ のみの混合物を含有する 場合には、 充分な触媒性能を発揮する こ とができない。 Xと して用いる混合物 (即ち、 混合物 X〉 においては、 コバル ト、 マグネシウム及びニッケルの合計に対するコバル トの原子比 率は 0 . 5 以上であることが好ましい。 また、 混合物 Xがマ グネシゥムを含む場合には、 該混合物 X中のコバル ト、 マグ ネシゥム及びニッケルの合計に対するマグネシウムの原子比 率は 0 . 5以下である ことが好ましく 、 混合物 Xがニッケル を含む場合には、 該混合物 X中のコバル ト、 マグネシウム及 びニッケルの合計に対するニッケルの原子比率は 0 . 3 3未 満である ことが好ましい。
アンチモン ( S b ) はジァセチルとァセ トアルデヒ ドゃァ クロ レイ ンなどの副生アルデヒ ド類の選択率を抑制するため に必要な元素であ り 、 (M o + W) 1 2原子に対する S b の 原子比率 ( f ) が式 0 . 1 ぐ : f ぐ 3 の条件を満足しなければ ならない。 さ らに、 よ り優れた触媒性能を発揮するためには、 S b の原子比率 ( f ) が式 0 · 3 ≤ f ≤ 2 . 5 の条件を満た すことが好ましい。
また、 メタク ロ レイ ンの選択率を維持するためには、 S b と F e の相対量が重要であ り、 原子比率 d と f が式 0 . 1 < d - f < 2 . 5 で表される条件を満足する こ とが必要であ り 、 式 0 . 3 ≤ d _ i ≤ 2 . 3で表される条件を満たすことがよ り良い触媒性能を発揮させる上で好ましい。
また、 メタク ロ レイ ンの高い選択率を得るためには、 F e と S b の原子比率 d と f が式 0 . 3 ≤ d— f ≤ 2 . 3及び式 0 . 2 < ά / ( a + b + d ) < 0 . 9 の 2 つの条件を同時に 満たすことがよ り好ましい。 次に本発明の酸化物触媒組成物の製造方法について説明す る。 本発明の酸化物触媒組成物の製造方法に特に限定はなく 、 式 ( I ) で表される酸化物が得られる公知の方法を用いれば よい。 例えば、 下記の第 1 工程〜第 3工程からなる製造方法 によって本発明の酸化物触媒組成物を製造する こ とができる。 第 1工程では、 触媒原料を調製して原料スラ リーを得る。 モリ ブデン、 タングステン、 ビスマス、 ランタン、 セリ ウム、 プラセォジゥム、 ネオジゥム、 サマリ ウム、 ユウ口 ピウム、 ガ ド リゥム、 テルビウム、 ジスプロシウム、 ホルミニゥム、 エルビウム、 ツリ ウム、 イ ッテルビウム、 ルテチウム、 イ ツ ト リ ウム、 鉄、 コバル ト、 マグネシウム、 ニッケル、 力 リウ ム、 ルビジウム、 セシウムの各元素の元素源と しては、 水ま たは硝酸に可溶なアンモニゥム塩、 硝酸塩、 亜硝酸塩、 塩酸 塩、 硫酸塩、 有機酸塩などを挙げる ことができる。 特にモリ ブデンとタングステンの元素源としてはアンモニゥム塩が好 ましく 、 ビスマス、 ランタン、 セリ ウム、 プラセォジゥム、 ネオジゥム、 サマ リ ウム、 ユウ口 ピウム、 ガ ド リ ゥム、 テル ピウム、 ジスプロシウム、 ホルミニゥム、 エルビウム、 ッ リ ゥム、 イ ッテルビウム、 ルテチウム、 イ ッ ト リ ウム、 鉄、 コ バル ト、 マグネシウム、 ニッケル、 カ リ ウム、 ルビジウム、 セシウムの各元素の元素源と してはそれぞれの硝酸塩ゃ亜硝 酸塩が好ましい。 アンチモンの元素源としては五酸化アンチ モン、 三酸化アンチモンや金属アンチモンが挙げられるが、 原料入手容易性の観点から、 三酸化アンチモンが好ま しい。 原料スラ リーの調製方法に特に限定はないが、 例えば、 以 下のよう にして調製する ことができる。 モリ ブデン酸アンモ 二ゥム、 タ ングステン酸アンモニゥム及び三酸化アンチモン を水に加えて懸濁液とし、 この懸濁液を攪拌下に 8 0 〜 9 0 °Cで加温し、 過酸化水素水を加えて溶液とする。 その他の 元素の硝酸塩や亜硝酸塩を水または硝酸水溶液に溶解させた 溶液を別途調製し、 上記のモリ ブデン、 タングステン及びァ ンチモンを含む溶液と混合して原料スラ リーとする。
第 2工程では、 上記の第 1 工程で得られた原料スラリーを 噴霧乾燥して球形もしく は疑似球形の乾燥粒子状触媒前駆体 を製造する。 原料スラ リーの噴霧化は、 通常工業的に実施さ れる方法で行えばよく 、 遠心方式、 二流体ノズル方式及び高 圧ノズル方式等の方法によって行う こ とができる。 乾燥熱源 と しては、 スチームまたは電気ヒー夕等によって加熱された 空気を用いる ことが好ましく 、 噴霧乾燥装置の乾燥機入り 口 温度は 1 5 0 〜 4 0 0 °Cの範囲が望ましい。 乾燥粒子状触媒 前駆体を用いる ことによって、 押出成形触媒やバラツキの少 ない打錠成型触媒の作製が可能となる。
第 3 工程では、 第 2工程で得られた乾燥粒子状触媒前駆体 を焼成する こ とで所望の酸化物触媒組成物を得る。 乾燥粒子 状触媒前駆体の仮焼は 1 8 0 〜 4 0 0 °Cの温度範囲で約 0 . 5 〜 2 4時間行う。 仮焼して得られた仮焼触媒は、 必要に応 じて押出成形や打錠成型して適切な形状にし、 その後 3 5 0 〜 6 0 0 °Cの温度範囲で約 1 〜 2 4時間焼成する。 焼成は、 回転炉、 ト ンネル炉、 マツフル炉等の焼成炉を用いて行う こ とができる。
酸化物触媒組成物の目的生成物の選択率を改善させる観点 からは、 酸化物触媒組成物中にシリカは含ませないか、 ある いは含有量はできるだけ少量である ことが望ま しい。 しかし、 酸化物触媒組成物の表面積を増大させ、 活性を高める目的で シリカを使用する場合は、 その原料と してシリ カゾル、 シリ 力ゲル、 また珪酸カ リ 、 珪酸ナ ト リ ウム等の珪酸塩等を使用 する ことができる。 この場合、 M o と Wの合計 1 2原子に対 する S i 成分の量は、 3原子以下が好ましく 、 よ り好ましく は 1原子以下、 更に好ましく は 0 . 1 原子以下である。 本発明の酸化物触媒組成物は、 イ ソブチレン及び t —プチ ルアルコ一ルからなる群より選ばれる少なく とも 1 種を分子 状酸素含有ガスと反応させてメタク ロ レイ ンまたはメタク ロ レイ ンとメタク リル酸との混合物を製造するための触媒であ る。 本発明の酸化物触媒組成物を用いてメタク 口 レイ ンまた はメタク ロ レイ ンとメタク リル酸との混合物を製造する方法 は特に限定されないが、 以下に好ましい方法について説明す る。
イ ソブチレン及び t 一ブチルアルコールからなる群よ り選 ばれる少なく とも 1 種を分子状酸素含有ガスと反応させる気 相接触酸化反応は、 固定床反応器内で上記の酸化物触媒組成 物よ りなる触媒、 好ましく は打錠成形触媒を用いて行う。 ィ ソブチレン、 t 一ブチルアルコールまたは両者の混合ガスと、 分子状酸素含有ガス と希釈ガスの混合ガス 9 0 〜 9 9容量% からなる原料ガスを、 酸化物触媒組成物よ.りなる触媒床に、 2 5 0 〜 4 5 0 °Cの温度範囲、 及び常圧〜 5 気圧の圧力下、 空間速度 4 0 0 〜 4 , 0 0 0 / h r [Normal Temperature and Pressure (NTP) 条件下] で導入させる こ とで気相接触 酸化反応を行う ことができる。
上記分子状酸素含有ガスの例としては、 純酸素ガス、 及び 空気等の酸素を含むガスが挙げられる。 また、 上記希釈ガス の例としては、 窒素、 二酸化炭素、 水蒸気及びこれらの混合 ガス等が挙げられる。
上記の混合ガスにおける、 分子状酸素含有ガスと希釈ガス の混合比に関しては、 体積比で、 0 . 0 4 <分子状酸素含有 ガス Z (分子状酸素含有ガス +希釈ガス) ぐ 0 . 3 の条件を 満足する ことが好ましい。 さ らに、 原料ガスにおける分子状 酸素ガスの濃度は 4 〜 2 0 容量%である こ とが好ましい。
原料ガスの水蒸気は、 触媒へのコ一キングを防ぐ点では必 要であるが、 メタク リル酸や酢酸ゃァク リ ル酸等のカルボン 酸'の副生を抑制するために、 できるだけ希釈ガス中の水蒸気 濃度を下げる ことが好ましい。 原料ガス中において水蒸気は、 通常 0容量%を越えて 3 0容量%以内の範囲で使用すること JP02/13369
2 7
が好ましい。
本発明の酸化物触媒組成物は熱安定性及び耐還元性に優れ、 触媒寿命が長く、 目的生成物の選択率が高いので、 該酸化物 触媒組成物を用いてメタク ロ レイ ンまたはメタク ロ レイ ンと メ夕ク リル酸との混合物を製造すると、 ジァセチル等の副生 成不純物の量を低減しながら、 長期間安定に目的生成物の製 造を行なう ことができる。 従来の触媒を用いて製造したメタ ク 口 レイ ンには、 数千: p mもの多量のジァセチルが含まれ ていたが、 本発明の酸化物触媒組成物を用いる こ とで、 ジァ セチルの量を 9 0 0 p p m以下に低減できる こ とが判明した。
また、 本発明者らが、 メタクロレイ ン及びメタク ロ レイ ン とメタク リル酸との混合物についてガスクロマ 卜グラフィ ー で分析した結果、 リ テンショ ン時間が約 1 7 . 3 分の位置に ジァセチルのピークが現れ、 リテンショ ン時間が約 2 2 . 0 分と約 3 9 . 2分の位置にも未同定のピークが検出された
(未同定ピークをそれぞれ R 1 と R 2 と命名 した) 。 ジァセ チルのピーク面積を 1 0 0 とした時の R 1 と R 2 のそれぞれ のピーク面積強度を求めたところ、 R 1 と R 2 も着色の要因 となり う る ことが判明した。 具体的には、 ジァセチルの生成 量が 6 5 0 p p mと少ない場合であっても、 R 1 と R 2 の生 成量 S 1 が 5 0以上、 S 2が 8 0以上である とメ夕ク リル酸 メチルが着色する傾向が見られることが本発明者らの研究過 程で確認された。 本発明の酸化物触媒組成物は、 ジァセチル のみならず、 未同定の不純物である R 1 と R 2 の生成量も低 減する こ とができる。
このよ う にジァセチルなどの着色要因不純物の量が非常に 少ないメタ ク ロ レイ ンや、 メタク ロ レイ ンとメ 夕 ク リル酸と の混合物は、 透明性に優れたメ夕ク リ ル酸メチルの原料と し て非常に有用である。
メ タク リ ル酸メチルを製造する方法と しては、 直酸法と呼 ばれる、 3 つの反応工程からなる方法と、 直メ タ法と呼ばれ る、 2 つの反応工程か らなる方法とが工業的に実施されてい る。
直酸法については、 日本国、 講談社サイェンティ フイ クか ら出版されている 「石油化学プロセス」 (石油学会編) の第 1 7 2 〜 1 7 6 頁に記載されてお り 、 この記載による と、 直 酸法は第 1 酸化工程、 第 2酸化工程及びエステル化工程の 3 つの反応工程か ら構成されている。 第 1 酸化工程はイ ソプチ レンと t 一ブチルアルコールか ら選ばれる少なく とも一つの 出発物質を、 触媒の存在下で分子状酸素と気相接触酸化反応 させて、 メ タ ク ロ レイ ンを製造する工程である。 第 2酸化工 程は、 第 1 酸化工程で得られたメタク ロ レイ ンを触媒の存在 下で分子状酸素と気相接触酸化反応させて、 メ タク リル酸を 製造する工程である。 エステル化工程では、 第 2酸化工程で 得られたメ 夕 ク リ ル酸をさ ら にエステル化してメタク リ ル酸 メチルを得る工程である。 本発明の酸化物触媒組成物を直酸法の第 1酸化工程に用い てメタク ロ レイ ンを製造し、 続いて第 2酸化工程とエステル 化工程を実施する こ とで、 メ夕ク リ ル酸メチルを製造する こ とができる。 本発明の酸化物触媒組成物を第 1 酸化工程に用 いてメタク ロ レイ ンを製造すると、 不純物の量が少ないメタ ク ロ レイ ンが得られるので、 第 2酸化工程で用いるメタク ロ レイ ン酸化触媒に対して不純物が与える影響、 例えば、 触媒 活性の低下や触媒の寿命の短命化、 を低減する ことができる。 また、 直酸法の第 2酸化工程においては、 反応温度が 3 0 0 〜 4 0 0 °Cと高い為に、 メタク ロ レイ ンに含まれる着色要因 物質の大部分が分解される と考えられるが、 直酸法において も着色要因物質は完全には分解されないと推定されるので、 着色要因物質を含まないメタクロ レイ ンを原料と して用いる こ とは重要である。
また、 直メタ法は、 イ ソブチレン及び Zまたは t 一プチル アルコールを原料と し、 酸化物触媒 (以下、 屡々、 「前段触 媒」 と云う) の存在下に分子状酸素含有ガスを用いて気相酸 化してメタク ロ レイ ンを製造する第 1 反応工程と、 得られた メタクロ レイ ンをメタノールと分子状酸素とを共にパラジゥ ム含有担持触媒 (以下、 屡々、 「後段触媒」 と云う) の存在 下に反応させて、 一挙にメタク リル酸メチルを製造する第 2 反応工程の 2 つの触媒反応工程からなる方法である。 本発明 の酸化物触媒組成物は、 直メタ法の前段反応触媒として有用 である。 具体的には、 上記した好ま しい方法でメタ ク ロ レイ ン又はメ タク ロ レイ ンと メ夕ク リ ル酸との混合物の製造、 即 ち、 第 1 反応工程を実施すればよい。
直メタ法の第 2反応工程においては、 本発明の酸化物触媒 組成物を用いて製造した、 不純物の量が少ないメタク ロ レイ ンとメタ ノールとを反応させて、 メ 夕 ク リ ル酸メチルを製造 する。 第 2 反応工程で用いる後段触媒と しては、 米国特許第 4 3 4 9 0 1 9号、 日本国特公昭 5 7 — 3 5 8 5 9号公報、 米国特許第 4 5 1 8 7 9 6号、 W0 9 7 / 3 7 5 1 等に開示 されているパラジウムを含む触媒を使用すればよい。 又、 反 応方式についても これら の公報に基づいて実施すればよいが、 具体的には、 分子状酸素、 メタク ロ レイ ン及びメタ ノールを 後段触媒の存在下、 室温か ら 1 0 0 °Cという穏和な反応温度 条件で反応させて、 メタ ク リ ル酸メチルを製造する。 このよ う に第 2反応工程はジァセチル等の不純物がほとんど反応し ない低温で実施するが、 上述のよ う に、 従来の前段触媒を用 いて第 1 反応工程を行なう とジァセチル等の不純物の副生成 量が大きいので、 本発明の酸化物触媒組成物を前段触媒と し て用いる こ とではじめて、 着色要因物質となる不純物の少な ぃメ タク リ ル酸メチルが得られる。 本発明の酸化物触媒組成 物を第 1 反応工程で用いる と、 第 2 反応工程で得られる メタ ク リ ル酸メチル中の不純物が少ないので、 精製工程を繰り返 し行う必要がなく 、 その結果、 メタ ク リ ル酸メチルのロス力 低減し、 コス ト安につながるので、 工業上の実施に際しても 非常に有利である。
直メタ法の前段反応及び後段反応、 並びにメ タク リル酸メ チルの精製工程は、 連辕反応と して実施する こ とが可能であ る。 そのよ うな方法の一例と して、 本願の実施例で行っ た直 メタ法によるメタ ク リ ル酸メチルの製造方法、 即ち図のフ ロ 一チヤ一トで表される製造方法が挙げられる。
本発明の酸化物触媒組成物を前段触媒と して用いる直メタ 法によっ て製造したメタク リ ル酸メチルは非常に透明性に優 れている。 本願の実施例及び比較例の結果か ら 明 らかなよう に、 J I S - K 6 7 1 6 に準じて評価した A P H A値は 5 以 下であ り 、 該メタク リ ル酸メチルを重合して得られるポ リ マ —の着色を J I S - K 7 1 0 3 に準じて測定した Y I 値は 1 0 以下である。
このよ う に透明度の優れたメタク リ ル酸メチルポリ マーは、 ガラスや石英の代替と して、 光フ ァイバ一や導光板などの高 い透明性が求め られる用途に非常に有利に用いる こ とができ るので、 商業的価値が極めて高い。 JP02/13369
3 2 発明を実施するための最良の形態 次に実施例及び比較例によって本発明をさ らに詳細に説明 するが、 本発明はこれらの実施例に限定されるものではない 尚、 酸化物触媒組成物における酸素原子の数は、 他の元素 の原子価条件によ り決定されるものであ り 、 実施例、 比較例 においては触媒組成物の組成を表す式中において酸素原子は 省略する。
実施例及び比較例において、 酸化物触媒組成物の性能につ いての種々の評価は以下の方法に従って行った。
<転化率と選択率 > 反応成績を表すために用いた転化率と選択率は次式で定義 される。 なお、 転化率と選択率を算出するための分析はガス ク ロマ トグラフィ 一で行った。
反応したイソプチレンまたは
t 一ブチルアルコールのモル数
転化率 X 1 0 0
供給したイソプチレンまたは
t —ブチルアルコールのモル数 生成したメタク ロ レインまたは
メタク リル酸のモル数
選択率 X 1 0 0
反応したイ ソプチレンまたは
t 一ブチルアルコールのモル数 <着色要因不純物の定量 >
メ タク ロ レイ ンまたはメ タク ロ レイ ンとメ夕 ク リ ル酸との 混合物に含まれる着色要因不純物はガスク ロマ トグラフィ ー で定量した。 日本国、 島津製作所製のガスク ロマ 卜グラフィ 一用装置 ( G C - 1 7 A ) に内径 0 . 2 5 mmのキヤ ビラ リ 一力 ラムである T C— 1 (長さ 6 0 m) 、 D B - 1 (長さ 3 0 m ) と T G— WA X (長さ 2 0 m) の 3 本をつなぎ、 全長 1 1 0 mのカ ラムにして用いた。 分析条件と しては、 カ ラム のイニシャル温度を 4 5 °Cに 3 0 分保持し、 その後 5 °C /分 の昇温速度で 2 2 0 °Cまで昇温し、 2 2 0 °Cで 2 5 分保持し た。 ガスク ロマ トグラフィ ーに付すサンプルと しては、 メタ ク ロ レイ ンまたはメタク ロ レイ ンとメ タク リル酸との混合物 を含む生成ガスの全量を凝縮し、 内部標準物質と して 1 , 2 -ジメ 卜キシェタンを加えたものを用いた。
上記の条件でガスク ロマ ト グラフィ ーを行っ たと ころ、 リ テンショ ン時間が約 1 7 . 3 分の位置にジァセチルの ピーク が現れた。 また、 リ テンショ ン時間が約 2 2 . 0 分と約 3 9 2 分の位置にも未同定ピークが検出され、 'それぞれ R 1 と R 2 と命名 した。 ジァセチルの ピーク面積を 1 0 0 と した時の R 1 と R 2 のそれぞれのピーク面積強度である を S 1 と S 2 を求め、 R 1 と R 2 の生成量と した。
透明性に優れたメタ ク リ ル酸メチルを直メ タ法で製造する ためには、 メタク ロ レイ ン中のジァセチルの量は 9 0 0 p Ό m以下である こ とが好ま しく 、 6 0 0 p p m以下である こ と がよ り好ま しい。
<メ タク リ ル酸メチルモノマーの着色評価 >
メタク リ ル酸メチルモノマーの着色の度合いは J I S -K 6 7 1 6 に従っ て評価した。 塩化白金カ リ ウム と塩化コバル ト を濃塩酸に溶解した溶液を蒸留水で希釈して標準液を調製 した。 希釈度合いに基づく A P H Aの数値を着色度合いの指 標と した。 即ち、 蒸留水を A P H A値 0 と し、 蒸留水による 上記溶液の希釈度合いを順次少なく してい く こ とで、 A P H A値 5 、 1 0 、 1 5 、 2 0 の標準液を準備した。 メタク リ ル 酸メチルモノ マ一を標準液と対比する こ とで A P H A値を評 価し、 メ 夕 ク リ ル酸メチルモノ マーの着色の度合いの指標と した。
メタク リ ル酸メチルモノマーの着色の度合い と しては、 A P H A値は 5 以下が好ま しい。 A P H A値が 5 以下のメタク リル酸メチルモノ マーを重合する こ とによっ て、 透明性に優 れたメタク リ ル酸メチルポ リ マ一が得られる。
<メタク リ ル酸メチルポリ マーの着色評価 >
メ タク リ ル酸メチルを重合して得られるメ 夕 ク リ ル酸メチ ルポ リ マーの着色は、 J I S— K 7 1 0 3 のプラスチッ ク の 黄色度及び黄変度試験方法の記載に準じて測定した。 JP02/13369
3 5 測定用サンプルと して長さ 5 5 c m、 幅 1 0 c m、 厚さ 5 m mのメタ ク リ ル酸メチルポリ マーの板を作成した。 2 枚の ガラス板にガスケッ ト をはさみ、 ク ラ ンプで締め付け、 隙間 の均一な空間を作製した。 メタク リ ル酸メチルに重合開始剤 と して 2 , 2 ' ーァゾビスイ ソプチロニ 卜 リ ルを 0 . 0 5 重 量%相当を混合したものをロー ト を使っ てガラス板の間に流 し込んだ。 2 枚のガラス板をク ラ ンプにて増 し締めしながら エア一抜きを行い、 密封した。 ガラス板ごと 5 0 ± 1 °Cの温 水に 6 時間入れ、 次いで 1 1 5 ± 1 °Cの恒温槽中に 2 時間入 れて重合し、 メタク リ ル酸メチルポ リ マ一を得た。 得られた ポリ マーを 自然冷却させた後、 ガラス板か ら厚さ 5 m mのメ タ ク リ ル酸メチルポ リ マーの板を取り外し、 長さ 5 5 c m、 幅 1 0 c mの板を切 り 出した。 切 り 出 した板の長手方向の両 端面をヤス リ とバフを使って研磨する こ とで仕上げて、 測定 用のメ夕ク リ ル酸メチルポリ マーの板を得た。
得られたポ リ マーの板を長手方向か ら 目視で評価し、 更に 長光路透過色測定器で分析した。 長光路透過色測定器は、 日 本国、 日本電色工業株式会社製の A S A— 2 型を使用 した。 評価の指標と しては、 J I S— K 7 1 0 3 プラスチッ クの黄 色度及び黄変度試験方法に記載の黄色度 Y I を長光路透過色 測定器による測定結果よ り 計算して用いた,。
メ タク リ ル酸メチルポ リ マーの黄色度 Y I が 1 0 以下であ れば透明性に優れているので好ま しい。 実施例 1
組成が M o と Wの合計 1 2原子を基準とした原子比として Mo12B i!.6Ce0.4Κ0· x C s 0.4 F e x.5 C o 8.0 S b 0.7 で表される酸化物触媒組成物を次のよう にして製造した。
約 5 0 °Cの温水 1 , 7 0 0 g にヘプ夕モリ ブデン酸アンモ ニゥム 3 5 0 . 0 g を溶解し、 水溶液を得た。 この水溶液に 三酸化アンチモン 1 6 . 8 g を加える と懸濁液になった。 こ の懸濁液を攪拌下に 9 0 °Cまで加温して、 3 0重量%の過酸 化水素水 6 5 . 0 g をゆつ く り と加えた。 過酸化水素水を加 えると、 発泡しながら液の色が山吹色に変化し溶液になつ た このまま 3 0分ほど攪拌を継続したのち、 この溶液を 5 0 °C まで降温して、 攪拌下にこの水溶液を 5 0 °Cで保持した (こ の溶液を 「 A液」 とする) 。 また、 硝酸ビスマス 1 2 8 . 7 g、 硝酸セ リ ウム 2 9 . l g、 硝酸カ リ ウム 1 . 6 6 g、 硝 酸鉄 1 0 0 . 4 g、 硝酸コノ ル ト 3 8 9 . 0 g、 硝酸セシゥ ム 1 2 . 9 gを 1 5重量%の硝酸水溶液 3 5 0 g に溶解した (この溶液を 「 B液」 とした) 。 A液と B液の両液を約 2 時 間程度攪拌混合して原料スラ リーを得た。 この原料スラ リ ー を噴霧乾燥して噴霧乾燥粉体触媒組成物前駆体を得、 得られ た触媒組成物前駆体を 2 0 0 °Cで 3 時間仮焼し、 疑似球形粒 子体を得た。 得られた粒子体を直径 5 . 0 mm, 高さ 4 m m の円柱状に打錠成型した後、 5 2 0 °Cで 3 時間焼成して酸化 物触媒組成物を得た。
酸化物触媒組成物の初期性能評価と して、 メタ ク ロ レイ ン を製造した。 打錠成型触媒組成物 4 . 0 g を直径 1 0 m mの ジャ ケッ ト付き S U S 3 0 4製反応管に充填し、 反応温度 3 5 0 °Cでイ ソブチレン 6容量%、 酸素 1 0 . 8容量%、 水蒸 気 1 0 . 0容量%、 窒素 7 3 . 2容量%か らなる混合ガスを l O O m l Z分 (N T P ) の流量で通気し、 メタク ロ レイ ン の合成反応を行った。 その結果、 イ ソブチレン転化率は 9 7 . 8 %であ り 、 メ タク ロ レイ ン選択率は 8 8 . 3 %、 メ タク リ ル酸選択率は 2 . 4 %であった。 反応生成ガスの凝縮液を分 析する と、 ジァセチルの生成量は 5 0 0 p p mであ り 、 S 1 値は 1 0 、 S 2値は 5 2 であった。
次いで、 過酷条件テス ト と して、 反応温度を 4 8 0 °Cに上 げ、 上記の混合ガス流量を 2 2 0 m 1 Z分 ( N T P ) に変更 して 4 8 時間通気し、 メタク ロ レイ ンの合成反応を行っ た。 その後、 反応温度を 3 5 0 °C、 原料混合ガス通気量を 1 0 0 m 1 Z分に戻したと ころ、 初期性能評価で得られた結果とほ ぼ同等の結果が得られた。 即ち、 イ ソブチレン転化率は 9 7 . 8 %であ り 、 メ タク ロ レイ ン選択率は 8 8 . 3 % , メ タク リ ル酸選択率は 2 . 4 %であった。 反応生成 スの凝縮液を分 析した と ころ、 ジァセチル生成量は 4 9 0 p p mであ り 、 S 1 値は 1 0 、 S 2値は 5 1 であっ た。 また、 上記の酸化物触媒組成物を用い、 図 1 に示したフロ —チャー トに準じて、 直メタ法でメ夕ク リ ル酸メチルを製造 した。
1 . 前段反応工程 : .
初めに、 前段反応工程を日本国特開平 9 一 3 2 3 9 5 0号 公報の実施例 1 の反応方法を参考にして、 以下のよう に実施 した。
上記で製造した本発明の打錠触媒を外径 5 0 . 7 mm, 内径 4 6 . 7 mmのジャケッ ト付きステン レス製 ( S U S 3 0 4製) 反応管のガス入口部から出口部に向かって、 触媒層 を 3 層の反応帯に分けて充填した。 入口部か ら順次触媒充填 密度 ( C ) は C l = 8 0 0 K g Zm 3 、 C 2 = 4 0 0 K g / m 3 、 C 3 = 1 0 0 0 K g Zm 3であ り 、 各反応帯の充填層 の高さ ( L ) は L 1 = 0 . 6 m、 L 2 = 1 . 5 m、 L 3 = 2 . 5 mとなるよう に充填した。 なお、 触媒充填密度は、 直径 5 mm、 高さ 4 mm、 貫通経 3 mmの円柱状磁器製ラッ シヒ リ ングと打錠触媒を混合する ことで調整した。
ジャケッ ト部の熱媒温度を 3 2 0 °Cと し、 t 一ブチルアル コール 5 . 7 5 v o l %、 酸素 8 . 3 7 v o l %、 水蒸気 4. 1 7 V o 1 %および窒素 8 1 . 7 1 V o 1 %の混合ガスを 2 9 0 °Cで反応管に導入し、 空間速度 ( S V ) 6 3 O h r 一 1 で反応を行った。 t 一ブチルアルコール転化率は 1 0 0 %で あ り、 メタク ロ レイ ン選択率は 8 6 . 4 ジァセチルの生 成量は 5 0 0 p p mであった。 また、 各反応帯の最高温度は それぞれ T 1 = 3 8 3 °C、 T 2 = 3 8 4 °C、 T 3 = 3 8 4 °C であった。 .
2 . メタク ロ レイ ン吸収工程 :
次に、 急冷塔、 脱水塔と吸収塔を用いたメタク ロレイ ン吸 収工程を、 日本国特開平 1 1一 8 0 0 7 7号公報 (米国特許 5 9 6 9 1 7 8 号) を参考にして、 以下のよう に実施した。 上記の工程 1 で得られたメ夕ク 口 レイ ン及び水蒸気を含有 するガスを急冷塔に導入した。 急冷塔ではクェンチ水を用い てガスを 4 4 °Cに冷却し、 ガスに含まれる水蒸気の大半、 酸 類及び高沸点物質を除去し、 部分脱水メタク ロ レイ ン含有ガ スを得た。 得られた部分脱水メタク ロ レイ ン含有ガスの組成 は、 メタク ロ レイ ンが 4 . 9 モル%、 水が 2 . 7 モル%、 7 セ トン等の液状副生物の合計が 0 . 2 モル%、 そして窒素、 酸素、 二酸化炭素、 一酸化炭素、 未反応イソブチレン等の気 体の合計が 9 2 . 2 モル%であった。
部分脱水メタク ロ レイ ン含有ガスを、 内径 1 0 c m、 高さ 5 m、 実段数 3 0 のシ一ブト レイ を装着した棚段塔型式の脱 水塔の塔底部へ 3 . 6 N m 3 / h r で供給した。 脱水塔の最 上段からは、 液状メタノールにハイ ドロキノ ン 1 0 0重量 p p mを加えた溶液を 2 0 0 g / h r で供給した。 脱水塔内に おけるガス温度は、 塔底部を 4 4 °C、 塔最上部を 1 8 °Cに制 PC蘭細 69
4 0 御し、 液状メタ ノールの温度は 1 8 °Cに制御した。 脱水塔の 最上部圧力は 1 . 5 k g. / c m 2 に制御した。 以上の条件で 部分脱水混合ガスを更に脱水し、 メタク ロ レイ ン及びメ夕 ノ —ルガスを含む脱水混合ガスを脱水塔の最上部よ り得た。
得られた脱水混合ガスを、 内径 1 0 c m、 高さ 5 m、 実段 数 3 0 のシーブ ト レイ を装着した棚段塔型式の吸収塔の塔底 気相部に供給し、 液状メタ ノールにハイ ド ロキノ ン 1 0 0 重 量 p p mを加えた溶液を 9 0 0 g / r で供給した。 吸収塔 内の塔底液温度は一 6 ° (:、 最上段の液温度は— 3 °Cに制御し 液状メタ ノ ールの温度は一 3 °Cに制御した。 また、 吸収塔の 塔最上部の圧力は 1 . 4 k g Z c m 2に制御した。 以上の条 件で、 脱水混合ガス中のメ タク ロ レイ ンガス とメ タ ノ一ルガ ズの実質的に全量を液状化合物に吸収させ、 液状メタ ク 口 レ イ ン及び液状メタ ノ ールを含む液状混合物 ( A ) を吸収塔の 底部か ら得た。 得られた液状混合物の組成は、 メ タ ク ロ レイ ンが 3 1 . 7 重量%、 メタ ノールが 6 6 . 8重量%、 水が 0 7 重量%、 アセ ト ン等の副生物が 0 . 8 重量%であっ た。
3 . 後段反応工程 :
初めに後段反応触媒を W〇 9 7 / 3 7 5 1 の参考例 1 と実 施例 1 に従って製造した。 W 0 9 7 / 3 7 5 1 の参考例 1 で 用いた触媒の製造方法と同様に、 水性シリ カゾルと して日本 国、 日産化学社製のスノ ーテッ クス N— 3 0 ( S i 〇 2分 : 3 0 重量% ) を用い、 水性シリ カゾルに硝酸アルミニウムと 硝酸マグネシウムをそれぞれ A 1 Z ( S i + A 1 ) の割合が 1 0 モル%、 M g Z ( S i + M g ) の割合が 1 0モル%とな るよう に加えて溶解し、 1 3 0 °Cに設定した噴霧乾燥機で噴 霧乾燥して平均粒径が 6 0 mの球状担体を得た。 得られた 担体を空気中で 3 0 0 °Cで 2時間、 ついで 6 0 0 °Cで 3 時間 焼成した後、 これを触媒の担体と して使用 した。 担体 1 0 0 重量部当たりパラジウムが 5 重量部、 鉛分が 6 . 5重量部と なるよう に、 担体を塩化パラジウム 1 5 重量%及び塩化ナ ト リ ウム 1 0 重量%水溶液と混合し、 室温で 1 時間撹拌し、 塩 化パラジウム及び硝酸鉛を担体に完全に吸着させた。 ついで P d + P b に対して 3倍モル量のヒ ドラジン水溶液をかき混 ぜながら滴下して、 塩化パラジウム及び硝酸鉛を還元し、 触 媒 〔 P d 5'。P b 6'5/ S i O「 A l 203— M g O ( P d、 P b の右肩の数字は、 担体 1 0 0重量部当た り の重量部を表 す) 〕 を得た (以下、 得られた触媒を 「触媒中間体」 と称 す) 。 得られた触媒中間体を分析したと ころ、 P d / P b担 持組成比は原子比で 3 / 1 . 9 5 、 粉末 X線回折パターンに おける最大強度ピークの X線回折角 ( 2 0 ) が 3 8 . 7 4 5 度、 そしてパラジウム金属 ( 3 d ) Z鉛金属 ( 4 ί ) の X線 光電子スぺク トルの強度比は 1 Ζ 1 . 2 4であった。
次に、 W Ο 9 7 / 3 7 5 1 の実施例 1 の方法で上記触媒中 間体を活性化した。 触媒分離器を備え、 液相部が 5 . 0 リ ッ トルの外部循環型ステン レス製気泡塔反応器に触媒中間体 1 2 0 0 g を仕込んだ。 3 6 . 7重量%のメタク ロ レイ ン/メ タノ一ル溶液を 2 . 1 6 リ ッ トル Z h r 、 2〜 4重量%の N a 〇 H/メタノ ール溶液を 0. 2 4 リ ッ トル/ h r で連続的 に反応器に供給し (上記 2種の溶液からなる反応系のメ夕ク ロ レイ ン濃度は約 3 3重量% ) 、 反応温度 8 0 °C、 反応圧力 5 k g / c m 2で出 口酸素濃度が 3 . 0容量% (酸素分圧 0 1 5 k g / c m 2相当) となるよ う に空気量を調整しながら 反応器に空気を供給した。 反応系の p Hは 7 . 1 となるよ う に反応器に供給する N a 〇 H濃度をコ ン ト ロールした。 反応 生成物 (活性化処理済触媒) は、 反応器か ら 2 . 4 リ ッ トル / h r で連続的に抜き出 した。 上記の活性化処理を 5 0時間 で終了 した。 上記反応の間、 反応器出 口か ら抜き出す反応生 成物は、 平均する と約 2 7 0 p p mの鉛を含んでいた。 これ は、 反応系中に生成したメタク リ ル酸 (抜き出 した反応生成 物中の平均濃度は 1 . 1 重量% ) の作用 によ り 、 触媒か ら鉛 がイ オンの形で反応系中に溶けだしたものが、 メ タク ロ レイ ンとメ タ ノ ールの反応によ り 生成する活性水素によ り還元さ れたもの と推定される。 活性化処理した触媒を分析したと こ ろ、 P d / P b原子比は 3 / 1 . 2 4であ り 、 粉末 X線回折 パターンにおける最大強度のピーク の X線回折角 ( 2 Θ ) は 3 8 . 6 5 2度であった。
工程 2 (メ タ ク ロ レイ ン吸収工程) で得られた液状混合物 ( A) と上記の後段反応触媒を用い、 日本国特開平 1 1 一 8 0 0 7 7 号公報 (米国特許 5 9 6 9 1 7 8 号に対応) の実施 例を参考にして、 以下の方法で後段反応を実施した。 液相部 が 5 . 0 リ ッ トルの外部循環型ステンレス製気泡塔反応器を 2器直列につないだ (反応器— I に反応器一 ]! をつないだ) 反応装置を用意し、 2器の反応器に各々 9 0 0 gの活性化し た後段触媒を仕込んだ。 この反応器一 I には、 工程 2で得た 液状混合物 ( A ) を 1 6 0 0 g / h rで供給した。 また、 2 器の反応器内の液の P Hが 6 . 1 、 鉛濃度が 2 0重量%にな るよ う に水酸化ナ 卜 リ ゥムのメタ ノ ール溶液及び酢酸鉛のメ タ ノ ール溶液を各反応器に供給した。 反応温度は 8 0 °C、 反 応圧力は 3 . 0 k g / c m 2、 反応器排出 口 よ り 排出される ガス中の酸素分圧は反応器一 I では 0 . 0 9 5 k gノ c m 2 反応器— Πでは 0 . 0 3 k g / c m 2であっ た。 以上の条件 下でメタク ロ レイ ンの酸化的エステル化反応を行い、 メタク リ レ酸メチル、 水、 メタ ク ロ レイ ン及びメタ ノ ール等を含有 する反応混合物 ( B ) を反応器一 Π の排出 口よ り得た。 この 反応におけるメ タ ク ロ レイ ン転化率は 8 0 . 3 %、 メタク リ ル酸メチル選択率は 9 0 . 7 %であった。
4 . メタ ク ロ レイ ン回収工程
メタ ク ロ レイ ン回収工程は日本国特開平 1 1 一 2 4 6 4 5 3 号公報の実施例 1 を参考に実施した。 上記工程 3 (後段反 応工程) で得たメタク ロ レイ ン、 メ タク リ ル酸メチル、 水、 メ タ ク リ ル酸及びメ タ ノールか らなる反応混合物 ( B ) を、 内径 1 5 c m、 高さ 6 m、 '実段数 4 5 のシーブ ト レーを装着 した棚段塔型式の蒸留塔の塔頂から 3 0段目 に 1 , 6 0 0 g / h r で供給した。 塔頂か ら は、 塔内の流下液中の重合禁止 剤濃度が 1 0 0 p p m以上になるよ う にハイ ド ロキノ ンを供 給した。 蒸留塔の塔頂温度は 3 1 °C、 塔底温度は 8 4 °C、 塔 底よ り 6段目 .の温度は 8 1 . 4 °C、 塔頂の圧力は大気圧で操 作し、 塔底液 ( C ) を得た。
5 . 酸処理 · 油水分離工程
工程 4で得た塔底液 ( C ) を 8 0 0 g Z h r で油水分離槽 へ供給した。 油水分離槽の水層の p Hが 2 になるよ う に、 油 水分離槽へ塔底液 ( C ) を送る配管には硫酸水を供給した。 油水分離槽の液を遠心分離器で油層と水層に分離し、 油層を 次の高沸分離工程に付した。 尚、 油水分離槽は 2器設け、 供 給液の受け入れを切 り替えできるよ う にした。
6 . 高沸分離ェ程
曰本国特開平 1 1 一 3 0 2 2 2 4号公報の実施例 1 を参考 に高沸分離工程を実施した。 内径 1 0 c m、. 高さ 5 m、 実段 数 3 0 のシーブ ト レーを装着した棚段塔型式の蒸留塔の塔頂 よ り 2 0段目 に工程 5 で遠心分離した油層を 6 0 0 g / h r で供給した。 塔頂にはブライ ン冷却器を有する減圧下で液抜 するための装置を設け、 塔底には、 減圧下で塔底蒸気を抜き 出して冷却し、 凝縮液を得るための冷却器を含む、 液面計で コ ン ト口一ルされた装置を設けた。 塔頂よ り 5 w t %のハイ ドロキノ ンを含有したメ夕ク リル酸メチル溶液を 4 0 g / r で供給し がら、 還流量が 1 , 0 0 0 g Z h r、 塔頂圧が 1 5 O mmH gの条件下で連続運転した。 塔頂と塔底の温度 はそれぞれ 4 5 °Cと 7 0 °Cとした。 塔頂から蒸気を抜き出し 冷却器で凝縮液とした。 凝縮液の抜き出しは 5 0 0 g Z h r で行った。
7 . 低沸分離ェ程
低沸分離工程を日本国特開平 1 1 一 3 5· 5 2 3 号公報の実 施例 1 を参考に実施した。 内径 1 0 c m、 高さ 5 m、 実段数' 3 0 のシーブト レ一を装着した棚段塔型式の蒸留塔の塔頂よ り 1 0段目に工程 6 で得た凝縮液を 5 0 0 g h r で供給し た。 塔頂にはブライ ン冷却器を有する減圧下で液抜きするた めの装置を設け、 塔底には、 減圧下で塔底蒸気を抜き出して 冷却し、 凝縮液を得るための冷却器を含む、 液面計でコン ト 口一ルされた装置を設けた。 塔頂よ り 5 w t %のハイ ドロキ ノ ンを含有したメ夕ク リル酸メチル溶液を 4 0 g / h rで供 給しながら、 還流量が 4 0 0 g / h r 、 塔頂圧が 2 5 0 m m H g の条件下で連続運転した。 塔頂と塔底の温度はそれぞれ 5 0 °(:と 8 0 °(: とした。 塔底よ り蒸気を抜き出し、 冷却器に よ り凝縮液とした 凝縮液の抜き出しは 5 0 0 g / h r で行 つた
8 . メタク リル酸メチル精製工程
工程 7 で抜き出した凝縮液を、 内径 1 0 c m、 高さ 5 m、 段数 7 0 のシーブ ト レーを装着した棚段塔型式の蒸留塔の塔 頂よ り 3 5段目 に 5 0 0 g / h r で供給した。 塔頂にはブラ イ ン冷却器を有する減圧下で液抜きできる装置を設け、 塔底 には、 減圧下で塔底蒸気を抜き出して冷却し、 凝縮液を得る ための冷却器を含む、 液面計でコン ト ロールされた装置を設 けた。 塔頂よ り 5 w t %のハイ ドロキノ ンを含有したメ夕ク リル酸メチル溶液を 4 0 g / rで供給しながら、 還流量が 2 2 5 g / h r 、 塔頂圧が 1 4 O mmH gの条件下で連続運 転した。 塔頂と塔底の温度はそれぞれ 5 5 °Cと 8 0 °Cと した 塔頂より蒸気を抜き出し、 冷却器で凝縮し、 4 5 0 g Z h r の流速で精製メ夕ク リル酸メチルを得た。
得られた精製メ夕ク リル酸メチルの A P H A値は約 3 であ り、 それを用いて製造したメタク リル酸メチルポリマーの黄 色度 Y I は 3 . 5 であった。 このよう に、 A P H A値と黄色 度 Y I はいずれも優れていた。 比較例 組成が M o と Wの合計 1 2原子を基準と した原子比と して Mo12B i 6C e0.4K0. j C s 0.4F e ^ 5 C o 8.0 で表される酸化物触媒組成物を次のよう にして製造した。
約 5 0 °Cの温水 1 , 7 5 0 g にヘプ夕モリ ブデン酸アンモ ニゥム 3 6 2 g を溶解した (この溶液を 「A液」 とする) 。 また、 硝酸ビスマス 1 3 3 g、 硝酸セリ ウム 3 0 . 1 g、 硝 酸カ リ ウム 1 . 7 2 g、 硝酸鉄 1 0 3 . 9 g、 硝酸コバル ト 4 0 2 g及び硝酸セシウム 1 3 . 4 g を 1 5重量%の硝酸水 溶液 3 5 5 g に溶解した (この溶液を 「 B液」 とする) 。 A 液と B液の両液を約 2時間程度攪拌混合して原料スラ リ ーを 得た。 この原料スラ リーを噴霧乾燥して噴霧乾燥粉体触媒組 成物前駆体を得、 得られた触媒組成物前駆体を 2 0 0 °Cで 3 時間仮焼し、 疑似球形粒子体を得た、 得られた粒子体を直径 5 . 0 mm、 高さ 4 mmの円柱状に打錠成型した後、 5 0 0 °Cで 3時間焼成して酸化物触媒組成物を得た。
酸化物触媒組成物の初期反応評価として、 実施例 1 と同様 にメタク ロ レイ ンを製造した。 その結果、 イ ソブチレン転化 率は 9 7 . 4 %であ り 、 メタク ロ レイ ン選択率は 8 6 . 5 %、 メタク リル酸選択率は 2 . 4' %であった。 反応生成ガスの凝 縮液を分析すると、 ジァセチルの生成量は 3 , 5 0 0 p p m であ り、 S 1 は 2 0 、 S 2 は 5 6であった。
次いで、 実施例 1 と同様に過酷条件テス トを実施して、 触 媒の性能を評価した。 その結果、 イ ソブチレン転化率は 9 7 . 4 %であ り 、 メタク ロ レイ ン選択率は 8 6 . 3 %、 メタク リ ル酸選択率は 2 . 4 %であった。 反応生成ガスの凝縮液を分 祈したと ころ、 ジァセチルの生成量は 3 , 6 0 0 p p mであ り、 S 1 値は 2 1 、 S 2値は 5 6 であった。
また、 上記の酸化物触媒組成物を用いて、 実施例 1 と同様 に直メタ法でメタク リル酸メチルを製造した。 得られたメタ ク リ ル酸メチルの A P H A値は 8であり、 それを用いて製造 したメタク リル酸メチルポリ マーの黄色度 Y I は 1 2 . 5 で あった。 このよ う に、 A P H A値と黄色度 Y I はいずれも劣 つていた。 実施例 2
表 1 に示した組成の酸化物触媒組成物が得られるよう に原 料の仕込み量を調整し、 実施例 1 と同様の方法で酸化物触媒 組成物を製造した。 また、 触媒の焼成は表 1 に示した温度で 行った。
実施例 1 と同様に初期反応評価及び過酷テス トを実施した。 表 2 に初期反応評価の結果を、 表 3 に過酷テス ト後に初期反応 評価条件で評価した結果を示した。 また、 実施例 1 と同様に直 メタ法でメタク リル酸メチルモノマーを製造し、 製造したメタ ク リル酸メチルモノマ一を用いてメタク リル酸メチルポリマ一 を製造した。 メタク リル酸メチルモノマーの A P H A値とメタ ク リル酸メチルポリマーの黄色度 Y I は表 4に示した。 実施例 3
組成が M o と Wの合計 1 2原子を基準と した原子比として Μο 9. 5W2. 5B i x. 7C e o. 4K0. 2C s 0. ZF e ^ 0Co6. 5N i!. 0S b0. 5 で表される酸化物触媒組成物を次のよう に製造した。
約 6 0 °Cの温水 1 , 9 0 0 g にパラタングステン酸アンモ ニゥム 1 0 3 . 6 g を溶解し、 更にヘプ夕モリ ブデン酸アン モニゥム 2 6 7 . l g を溶解して水溶液を得た。 この水溶液 に、 三酸化アンチモン 1 1 . 6 g を加える と懸濁液になった この懸濁液を攪拌下に 9 0 °Cまで加温して、 3 0 重量%の過 酸化水素水 5 0 . 0 g をゆっ く り と加えた。 過酸化水素水を 加える と、 発泡しながら液の色が山吹色に変化し溶液になつ た。 このまま 3 0分ほど攪拌を継続したのち、 この溶液を 5 0 °Cまで降温して、 攪拌下にこの水溶液を 5 0 で保持した (この溶液を 「 A液」 とする) 。 また、 硝酸ビスマス 1 3 1 9 g、 硝酸セリ ウム 2 8 . 0 g、 硝酸カ リ ウム 3 . 2 1 g 、 硝酸鉄 6 4 . 6 g、 硝酸コバル ト 3 0 2 . 2 g、 硝酸ニッケ ル 4 6 . 3 g 硝酸セシウム 6 . 2 3 g を 1 5重量%の硝酸 水溶液 2 8 0 g に溶解した (この溶液を 「 B液」 とした) 。 A液と B液の両液を約 2時間攪拌混合して原料スラ リ一を得 た。 この原料スラ リ ーを噴霧乾燥した噴霧乾燥粉体触媒組成 物前駆体を得、 得られた触媒前駆体を 2 0 0 °Cで 3 時間仮焼 し、 疑似球形粒子体を得た。 得られた粒子体を直径 5 . 0 m m、 高さ 4 m mの円柱状に打錠成型した後、 5 2 0 °Cで 3 時 間焼成して酸化物触媒組成物を得た。
実施例 1 と同様に初期反応評価及び過酷テス ト を実施した。 表 2 に初期反応評価の結果を、 表 3 に過酷テス ト後に初期反 応評価条件で評価した結果を示した。 また、 実施例 1 と同様 に直メタ法でメタク リ ル酸メチルモノマーを製造し、 製造し たメ タ ク リル酸メチルモノマ一を用いてメ 夕ク リ ル酸メチル ポリ マ一を製造した。 メ 夕ク リ ル酸メチルモノ マーの A P H A値とメ タク リ ル酸メチルポリ マ一の黄色度 Y I は表 4 に示 した。 実施例 4 〜実施例 2 0
表 1 に示した組成の酸化物触媒組成物が得られるよう に原 料の仕込み量を調整し、 酸化物触媒組成物を製造した。 なお、 タ ングステンが含まれない場合には、 実施例 1 と同様の方法 で酸化物触媒組成物を製造し、 タ ン.ダステンが含まれる場合 には 実施例 3 と同様の方法で酸化物触媒組成物を製造した。 また、 触媒の焼成は表 1 に示した温度で行っ た。
実施例 1 と同様に初期反応評価及び過酷テス ト を実施した。 表 2 に初期反応評価の結果を、 表 3 に過酷テス ト後に初期反 応評価条件で評価した結果を示した。 また、 実施例 1 と同様. に直メタ法でメ タ ク リ ル酸メチルモノマーを製造し、 製造し たメ夕 ク リル酸メチルモノ マーを用いてメ 夕 ク リ ル酸メチル ポ リ マ一を製造した。 メ タ ク リ ル酸メチルモノ マーの A P H A値と メタク リ ル酸メチルポ リ マーの黄色度 Y I は表 4 に示 した。 比較例 2 〜比較例 1 6
表 1 に示した組成の酸化物触媒組成物が得られるよう に原 料の仕込み量を調整し、 酸化物触媒組成物を製造した。 なお アンチモンが含まれない場合には比較例 1 と同様の方法で酸 化物触媒組成物を製造し、 アンチモンが含まれるが夕 ングス テンが含まれない場合には実施例 1 と同様の方法で酸化物触 媒組成物を製造し、 アンチモンとタ ングステンが含まれる場 合には実施例 3 と同様の方法で酸化物触媒組成物を製造した また、 触媒の焼成は表 1 に示した温度で行っ た。 表 2 に初期 反応評価の結果を示した。
初期反応評価でメタク ロ レイ ンの選択率が 8 6 . 5 %以上 であっ た比較例 3 、 6 、 7 、 8 の酸化物触媒組成物について は、 実施例 1 と同様に過酷テス トを実施した。 表 3 には過酷 テス ト後に初期反応評価条件で評価した結果を示した。 また 実施例 1 と同様に直メタ法でメ タク リル酸メチルモノ マーを 製造し、 製造したメ タク リ ル酸メチルモノ マ一を用いてメタ ク リ ル酸メチルポリ マーを製造した。 メタ ク リ ル酸メチルモ ノ マーの A P H A値とメ タク リ ル酸メチルポリ マーの黄色度 Y I は表 4 に示した。 表 1 角 滅比と ¾¾¾
Figure imgf000054_0001
表 l ^比と (つづき)
cn
CO
Figure imgf000055_0001
表 2 wMKm
on
Figure imgf000056_0001
*: ジァセチルのピーク面積を 1 0 0とした時の R 1と R 2のそれぞれのピ一ク面 ¾¾Sである S 1と S 2を求め、 R 1と R 2の
生 «とした。
表 2 wm^ りづき)
n en
Figure imgf000057_0001
*: ジァセチルのピーク面積を 1 0 0とした時の R 1と R 2のそれぞれのピーク面衝 である S 1と S 2を求め、 R 1と R 2の
fe¾量とした。
表 3 過酷テスト後の性能瞧結果
C35
Figure imgf000058_0001
ジァセチルのピーク面積を 1 0 0とした時の R 1と R 2のそれぞれのピーク面 である S 1と S 2を求め、 R 1と R 2の生成量と
した。
表 4
メタクリル酸メチルモノマーの AP HAと メタクリル酸メチルポリマ一の Y Iの測 果 メタクリノレ酸メナリレ タクリル ナル 一 リ ^ ~~ CJ Υ丄 例 o
1 o . 0
o
¾0S例 o ο ο . Ζ ο
¾5i例 3 ό Ο . 0 旲眉列 4 b ο . U 例 5 4 4. b 例 6 4 4. 4
¾5¾例 o
7 . 1 実施例 o n 8 I
実施例 9 4 4. 4 難例 10 o
難例 11 o o o 麵例 1 o o
2
飾例 o
1 3 6 6. ( 雄例 14
難例 15 o
o . ム 難例 o
1 6 Δ
難例 1 7
難例 1 o
8 ό . 乙 麵例 o
1 9
麵例 20
比糊 1 Q . o o Q · u 比車細 3 7 1 1 8 比棚 4 7 1 1. 5
1;咖 5 7 1 1. 7 比翻 6 7 1 1. 7 比翻 7 8 1 2. 0 比較例 8 8 1 2. 2 比較 J 9 8 1 2. 3 比翻 1 0 9 1 3. 4 比糊 1 1 7 1 1. 3 比細 1 2 6 1 0. 5 比翻 1 3 7 1 1. 0 比翻 14 8 1 2. 0 比翻 1 5 8 1 2. 0 比較 1 6 8 1 2. 2 上記の表 2 〜表 4 に示す結果か ら明らかなよう に、 実施例 において製造したメタク ロ レイ ンは、 ジァセチルの生成量と 共に R 1 及び R 2 の相対生成量も少なく 、 本願の酸化物触媒 組成物を前段触媒として用いて直メタ法でメ夕ク リル酸メチ ルを製造する と、 メタク リル酸メチルにはほとんど着色が見 られなかった。 また、 直メタ法で製造したメタク リル酸メチ ルを重合して得られたポリ マーにもほとんど着色は見られな かった。 更に表 3から明 らかなよう に、 実施例で製造した酸 化物触媒組成物は、 高温でメタク ロ レイ ンの製造を行う過酷 条件テス トにおいても通常の反応と変わらずに高いメタク ロ レイ ン選択率を示し、 ジァセチル、 1 1 及び1 2 の生成量も 低かった。 従って、 本発明の酸化物触媒組成物は、 従来の酸 化物触媒組成物と比べて、 不純物の生成量が少なく 、 また、 優れた耐熱性及び耐還元性を有する ことが判明した。
産業上の利用可能性
本発明の酸化物触媒組成物は熱安定性及び耐還元性に優れ、 触媒寿命が長く 、 目的生成物の選択率が高いので、 酸化物触 媒組成物を用いてメタク ロ レイ ンまたはメタクロ レイ ンとメ タク リル酸との混合物を製造する と、 ジァセチル等の副生成 不純物の量を低減しながら、 長期間安定に目的生成物の製造 を行なう ことができる。 ジァセチル等の副生成不純物の含有 量の少ないメタクロ レイ ンや、 メタク ロ レイ ンとメ夕ク リル 酸との混合物は、 透明性に優れたメタク リル酸メチルモノマ 一の原料として非常に有用である。 該透明性に優れたメ夕ク リル酸メチルモノマーを重合して得られる透明性の優れたメ タク リル酸メチルポリマーは、 ガラスや石英の代替として、 光ファイバ一や導光板などの高い透明性が求められる用途に 非常に有利に用いる ことができるので、 商業的価値が極めて 高い。

Claims

請 求 の 範 囲
1 . イ ソブチレン及び t 一ブチルアルコールからなる群よ り 選ばれる少なく とも 1種を分子状酸素含有ガスと反応させて メタク ロ レイ ンまたはメタク ロ レイ ンとメタク リル酸との混 合物を製造するための、 下記式 ( I ) で表される酸化物触媒 組成物。
(Mo +W)12B i aAbBcFedXeSbfOg ( I )
(式中、
Aはランタン、 セリ ウム、 プラセォジゥム、 ネオジゥム、 サマリ ウム、 ユウ口 ピウム、 ガ ド リ ウム、 テルビウム、 ジス プロシゥム、 ホルミニゥム、 エルビウム、 ツリ ウム、 イ ツテ ルビゥム、 ルテチウム及びィ ッ ト リ ウムからなる群よ り選ば れる少なく とも 1種の元素であ り ;
Bはカ リ ウム、 ルビジウム及びセシウムからなる群よ り選 ばれる少なく とも 1 種の元素であ り ;
Xはコバルト単独、 またはコバル トを必須成分として、 更 にマグネシウム及びニッケルからなる群よ り選ばれる少なく とも 1 種を含む混合物であり ;
モリ ブデン (Mo) とタングステン ( W ) の合計 1 2原子 に対するモリ ブデン (Mo) の原子数の範囲は 9 を超え 1 2 以下であ り、 タ ングステン ( W) の原子数の範囲は 0 以上 3 未満であ り ; そして a 、 b 、 c 、 d 、 e 、 f 及び gは、 それぞれ、 モリ ブデン (M o ) とタングステン ( W) の合計 1 2原子に対する ビス マス ( B i ) 、 A、 B、 鉄 ( F e ) 、 X、 アンチモン ( S b ) 及び酸素 (〇) の原子比率を表し、
0 < a≤ 8 、
0 < b≤ 8 、
0 < c < 3 、
0 . 2 < d < 5 、
≤ e ≤ 1 2 ,
0 . < f < 3 ,
g は存在する他の元素の原子価状態を満足さ せるのに必要な酸素の原子数であ り ; そして
a 、 b 、 c , d及び f は以下の式
0 0 2 < b ( a + b + c ) く 0 6
0 < c / ( a + b + c ) ≤ 0 . 9
0 . 0 1 < d / ( a + b + d )
0 1 < d - f < 2 . 5
の条件を満足する。 )
2 . 式 ( I ) における該混合物 Xにおいて、 コバル ト、 マグ ネシゥム及びニッケルの合計に対するコバル トの原子比率は 0 . 5以上であ り、
式 ( I ) における該混合物 Xがマグネシウムを含む場合に は、 該混合物 X中のコバル ト、 マグネシウム及びニッケルの 合計に対するマグネシウムの原子比率は 0 . 5 以下であ り 、 そして
式 ( I ) における該混合物 Xがニッケルを含む場合には、 該混合物 X中のコバルト、 マグネシウム及びニッケルの合計 に対するニッケルの原子比率は 0 . 3 3未満である、 請求項 1 に記載の酸化物触媒組成物。
3 . 式 ( I ) における a、 b、 c が式 0 . 0 5 < b / ( a + b + c ) < 0 . 5 の条件を満足する、 請求項 1 又は 2 に記載 の酸化物触媒組成物。
4. 式 ( I ) における a、 b、 c が式 0 . 1 < c / ( a + b + c ) < 0 . 8 の条件を満足する、 請求項 1 〜 3 のいずれか に記載の酸化物触媒組成物。
5 · 式 ( I ) における a、 b、 d、 f が、 式 0 . 2 < d / ( a + b + d ) < 0 . 9 の条件と式 0 . 3 ≤ d — ; f ≤ 2 . 3 の条件を同時に満足する、 請求項 1 〜 4 のいずれかに記載の 酸化物触媒組成物。
PCT/JP2002/013369 2001-12-21 2002-12-20 Composition catalytique d'oxyde WO2003053570A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60239222T DE60239222D1 (de) 2001-12-21 2002-12-20 Oxidkatalysatorzusammensetzung
EP02786173A EP1459803B1 (en) 2001-12-21 2002-12-20 Oxide catalyst composition
US10/494,935 US7012039B2 (en) 2001-12-21 2002-12-20 Oxide catalyst composition
AU2002354236A AU2002354236A1 (en) 2001-12-21 2002-12-20 Oxide catalyst composition
KR1020047008253A KR100579678B1 (ko) 2001-12-21 2002-12-20 산화물 촉매 조성물
JP2003554323A JP4076227B2 (ja) 2001-12-21 2002-12-20 酸化物触媒組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-388656 2001-12-21
JP2001388656 2001-12-21

Publications (1)

Publication Number Publication Date
WO2003053570A1 true WO2003053570A1 (fr) 2003-07-03

Family

ID=19188194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013369 WO2003053570A1 (fr) 2001-12-21 2002-12-20 Composition catalytique d'oxyde

Country Status (9)

Country Link
US (1) US7012039B2 (ja)
EP (1) EP1459803B1 (ja)
JP (1) JP4076227B2 (ja)
KR (1) KR100579678B1 (ja)
CN (1) CN1308074C (ja)
AU (1) AU2002354236A1 (ja)
DE (1) DE60239222D1 (ja)
TW (1) TWI257925B (ja)
WO (1) WO2003053570A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373012B2 (en) 2010-05-07 2013-02-12 Gevo, Inc. Renewable jet fuel blendstock from isobutanol
US8378160B2 (en) 2007-12-03 2013-02-19 Gevo, Inc. Renewable compositions
WO2013069630A1 (ja) * 2011-11-07 2013-05-16 三菱レイヨン株式会社 イソブタノールからt-ブタノールを製造する方法、イソブタノールからメタクロレイン及びメタクリル酸を製造する方法、並びにそれらの製造装置
US8450543B2 (en) 2010-01-08 2013-05-28 Gevo, Inc. Integrated methods of preparing renewable chemicals
US8742187B2 (en) 2011-04-19 2014-06-03 Gevo, Inc. Variations on prins-like chemistry to produce 2,5-dimethylhexadiene from isobutanol
WO2016061262A1 (en) 2014-10-14 2016-04-21 Gevo, Inc. Methods for conversion of ethanol to functionalized lower hydrocarbons and downstream hydrocarbons
US10633320B2 (en) 2018-01-04 2020-04-28 Gevo, Inc. Upgrading fusel oil mixtures over heterogeneous catalysts to higher value renewable chemicals
JP2020531673A (ja) * 2017-08-29 2020-11-05 レーム・ゲーエムベーハーRoehm GmbH 光学成形材料の製造方法
CN112292369A (zh) * 2018-06-26 2021-01-29 罗姆化学有限责任公司 以高收率制备mma的方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314487C (zh) * 2004-11-26 2007-05-09 上海华谊丙烯酸有限公司 叔丁醇或异丁烯选择氧化合成甲基丙烯醛的催化剂及其应用
KR100751943B1 (ko) * 2006-03-28 2007-08-24 엘지전자 주식회사 외장 케이스 및 이를 갖는 휴대 단말기
CN101385978B (zh) * 2007-09-12 2011-04-20 上海华谊丙烯酸有限公司 一种合成甲基丙烯醛的催化剂及其制备方法
EP2210664A4 (en) * 2007-10-26 2011-12-21 Asahi Kasei Chemicals Corp COMPOSITE-LOADED ARTICLE, METHOD FOR PRODUCING THE COMPOSITE-RELATED ARTICLE, AND METHOD FOR PRODUCING THE COMPOUND FROM THE COMPOSITE-RELATED ARTICLE AS A CHEMICAL SYNTHETIC CATALYST
JP5163273B2 (ja) 2008-05-16 2013-03-13 住友化学株式会社 不飽和アルデヒド及び/又は不飽和カルボン酸製造用触媒の製造方法、並びに不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
KR101271915B1 (ko) 2008-09-17 2013-06-05 아사히 가세이 케미칼즈 가부시키가이샤 올레핀의 제조 방법 및 그 제조 장치
CN101445358B (zh) * 2008-12-23 2011-07-20 合肥学院 一种NiO-SDC金属氧化物复合粉体的制备方法
CN102371159B (zh) * 2010-08-23 2013-04-10 中国石油化工股份有限公司 异丁烯或叔丁醇氧化制甲基丙烯醛催化剂及其制备方法
JP5778770B2 (ja) * 2011-06-28 2015-09-16 旭化成ケミカルズ株式会社 酸化物触媒
MY177749A (en) * 2012-09-28 2020-09-23 Asahi Kasei Chemicals Corp Oxide catalyst and method for producing the same, and methods for producing unsaturated aldehyde, diolefin, and unsaturated nitrile
CN103721722B (zh) * 2012-10-10 2017-03-08 上海华谊丙烯酸有限公司 复合氧化物催化剂及其制备方法
CN103739468A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 制造甲基丙烯醛方法
CN103772171B (zh) * 2012-10-17 2016-08-17 中国石油化工股份有限公司 异丁烯或叔丁醇氧化制甲基丙烯醛方法
CN103934001B (zh) * 2013-01-23 2016-07-13 中国石油化工股份有限公司 合成甲基丙烯醛和甲基丙烯酸的催化剂
EP2886528A1 (de) 2013-12-20 2015-06-24 Evonik Industries AG Verfahren zur Herstellung von ungesättigten Estern ausgehend von Aldehyden durch Direkte Oxidative Veresterung
EP2886529A1 (en) 2013-12-20 2015-06-24 Evonik Industries AG Process for producing methyl methacrylate
RU2017127194A (ru) 2015-01-16 2019-02-20 Эвоник Рём ГмбХ Катализатор на основе золота для окислительной этерификации альдегидов для получения сложных эфиров карбоновых кислот
TWI715627B (zh) 2015-09-16 2021-01-11 德商羅伊姆公司 含鈉鹽之mma-甲醇混合物的萃取後處理
EP3170558A1 (de) 2015-11-19 2017-05-24 Evonik Röhm GmbH Gold-basierten katalysator für die oxidative veresterung von aldehyden zu carbonsäureestern
EP3456704A1 (de) 2017-09-19 2019-03-20 Evonik Röhm GmbH Katalysator für die oxidative veresterung von aldehyden zu carbonsäureestern
CN108479792B (zh) * 2018-03-23 2020-10-13 安徽理工大学 一种以氧化铝为载体的微波辅助制备高碳烯烃用催化剂及催化工艺
JP6968182B2 (ja) * 2018-03-30 2021-11-17 旭化成株式会社 触媒、触媒の製造方法、アクリロニトリルの製造方法
JP6522213B1 (ja) * 2018-08-03 2019-05-29 住友化学株式会社 メタクロレイン及び/又はメタクリル酸の製造方法
EP3608305A1 (en) 2018-08-10 2020-02-12 Röhm GmbH Process for producing methacrylic acid or methacrylic acid esters
EP3613726A1 (en) 2018-08-21 2020-02-26 Röhm GmbH Continuous process for preparing methacrolein
KR20220027726A (ko) * 2019-06-28 2022-03-08 아사히 가세이 가부시키가이샤 메타크릴산메틸의 제조 방법
EP3760608A1 (de) 2019-07-05 2021-01-06 Röhm GmbH Verfahren zur herstellung von alkylmethacrylaten und optional methacrylsäure
CN110420643A (zh) * 2019-08-16 2019-11-08 中国科学院过程工程研究所 一种蛋壳型复合金属催化剂的制备方法及其应用
EP3786148A1 (de) 2019-08-28 2021-03-03 Röhm GmbH Vereinfachte aufarbeitung des reaktoraustrags einer oxidativen veresterung
EP3798202A1 (de) 2019-09-25 2021-03-31 Röhm GmbH Verfahren zur aufreinigung von methylmethacrylat von leichtsiedenden komponenten
EP3798206A1 (de) 2019-09-25 2021-03-31 Röhm GmbH Verfahren zur herstellung von alkylmethacrylaten mit verbesserter wasser- und säureführung
EP3943189A1 (de) 2020-07-24 2022-01-26 Röhm GmbH Verfahren zur herstellung eines mischoxidträgers sowie dessen weitere veredlung zu einem katalysator zur herstellung von alkylmethacrylaten
EP3945086B1 (de) 2020-07-30 2022-10-26 Röhm GmbH C-4 basiertes verfahren zur herstellung von mma unter rückführung und recyclierung von methacrolein
CN117043132A (zh) 2021-03-15 2023-11-10 罗姆化学有限责任公司 通过甲基丙烯酸甲酯的催化水解连续制备甲基丙烯酸的新方法
BR112023023281A2 (pt) 2021-05-10 2024-01-23 Roehm Gmbh Ésteres insaturados contendo um aditivo para reduzir e estabilizar o índice de amarelamento
JP2024520503A (ja) 2021-05-28 2024-05-24 レーム・ゲーエムベーハー アルキルメタクリレートを製造するための反応器および方法
WO2023083869A1 (de) 2021-11-12 2023-05-19 Röhm Gmbh Verfahren zur eliminierung störender nebenprodukte in der direkten oxidativen veresterung von methacrolein
WO2024099859A1 (de) 2022-11-09 2024-05-16 Röhm Gmbh Verfahren zur herstellung von c4- bis c12- (meth)acrylaten

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735859A (en) 1980-08-13 1982-02-26 Toshiba Corp Formation of mask
US4349019A (en) 1981-07-14 1982-09-14 Kimberly-Clark Corporation Surgical leggings
US4518796A (en) 1979-05-17 1985-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Method for preparing carboxylic esters
US5264627A (en) * 1991-07-09 1993-11-23 Nippon Shokubai Co., Ltd. Method for production of methacrylic acid
WO1995035273A1 (fr) 1994-06-22 1995-12-28 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production de methacroleine
JPH08309192A (ja) 1995-05-19 1996-11-26 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸合成用触媒の製造法
JPH10216523A (ja) 1997-01-31 1998-08-18 Asahi Chem Ind Co Ltd メタクロレイン製造用触媒およびメタクロレインの製造方法
EP1055455A2 (en) * 1999-05-25 2000-11-29 Nippon Shokubai Co., Ltd. Molybdenum-based complex oxide catalysts; use thereof for producing (meth)acrolein and (meth)acrylic acid

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928462A (en) * 1970-07-08 1975-12-23 Sumitomo Chemical Co Catalytic process for the preparation of methacrolein
JPS5761011B2 (ja) 1973-12-28 1982-12-22 Nippon Shokubai Kagaku Kogyo Kk
JPS5112605A (ja) 1974-07-22 1976-01-31 Canon Kk Mootaa
US4001317A (en) * 1974-07-22 1977-01-04 Standard Oil Company Process for the oxidation of olefins using catalysts containing various promoter elements
JPS5113125A (en) 1974-07-24 1976-02-02 Hokuto Biso Kk Domano hoshuhoho
JPS5836642B2 (ja) 1976-08-19 1983-08-10 株式会社井上ジャパックス研究所 通電焼結装置
GB2008430B (en) * 1977-11-17 1982-04-28 Asahi Chemical Ind Process for producing carboxylic esters
JPS5473717A (en) 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of carboxylic ester
US4479013A (en) * 1981-12-07 1984-10-23 The Halcon Sd Group, Inc. Catalyst and process for unsaturated aldehydes
US4743706A (en) * 1982-09-27 1988-05-10 The Standard Oil Company Preparation of unsaturated acids and esters by oxidative condensation
US4537874A (en) * 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
JPH0662463B2 (ja) 1984-02-03 1994-08-17 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造法
JPS6366141A (ja) 1986-04-25 1988-03-24 Nippon Kayaku Co Ltd メタクロレインの製造方法
JPS63122641A (ja) 1986-11-11 1988-05-26 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造法
JP2657693B2 (ja) 1989-03-01 1997-09-24 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造用触媒の調製法
JP2974826B2 (ja) * 1991-07-17 1999-11-10 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸製造用触媒の調製法
DE4220859A1 (de) * 1992-06-25 1994-01-05 Basf Ag Multimetalloxidmassen
JP3214975B2 (ja) * 1994-04-25 2001-10-02 旭化成株式会社 アンモ酸化触媒組成物および製造方法
SG71815A1 (en) * 1997-07-08 2000-04-18 Asahi Chemical Ind Method of producing methyl methacrylate
JP4204097B2 (ja) * 1998-06-12 2009-01-07 三菱レイヨン株式会社 メタクリル酸メチルの製造方法
JP2001029788A (ja) * 1999-07-21 2001-02-06 Mitsubishi Rayon Co Ltd モリブデン−ビスマス−鉄含有金属酸化物流動層触媒の製法
JP2003026633A (ja) * 2001-05-02 2003-01-29 Sumitomo Chem Co Ltd メタクリル酸エステルの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518796A (en) 1979-05-17 1985-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Method for preparing carboxylic esters
JPS5735859A (en) 1980-08-13 1982-02-26 Toshiba Corp Formation of mask
US4349019A (en) 1981-07-14 1982-09-14 Kimberly-Clark Corporation Surgical leggings
US5264627A (en) * 1991-07-09 1993-11-23 Nippon Shokubai Co., Ltd. Method for production of methacrylic acid
WO1995035273A1 (fr) 1994-06-22 1995-12-28 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production de methacroleine
JPH08309192A (ja) 1995-05-19 1996-11-26 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸合成用触媒の製造法
JPH10216523A (ja) 1997-01-31 1998-08-18 Asahi Chem Ind Co Ltd メタクロレイン製造用触媒およびメタクロレインの製造方法
EP1055455A2 (en) * 1999-05-25 2000-11-29 Nippon Shokubai Co., Ltd. Molybdenum-based complex oxide catalysts; use thereof for producing (meth)acrolein and (meth)acrylic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1459803A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378160B2 (en) 2007-12-03 2013-02-19 Gevo, Inc. Renewable compositions
US8487149B2 (en) 2007-12-03 2013-07-16 Gevo, Inc. Renewable compositions
US8546627B2 (en) 2007-12-03 2013-10-01 Gevo, Inc. Renewable compositions
US8450543B2 (en) 2010-01-08 2013-05-28 Gevo, Inc. Integrated methods of preparing renewable chemicals
US8975461B2 (en) 2010-05-07 2015-03-10 Gevo, Inc. Renewable jet fuel blendstock from isobutanol
US8373012B2 (en) 2010-05-07 2013-02-12 Gevo, Inc. Renewable jet fuel blendstock from isobutanol
US8742187B2 (en) 2011-04-19 2014-06-03 Gevo, Inc. Variations on prins-like chemistry to produce 2,5-dimethylhexadiene from isobutanol
JPWO2013069630A1 (ja) * 2011-11-07 2015-04-02 三菱レイヨン株式会社 イソブタノールからt−ブタノールを製造する方法、イソブタノールからメタクロレイン及びメタクリル酸を製造する方法、並びにそれらの製造装置
WO2013069630A1 (ja) * 2011-11-07 2013-05-16 三菱レイヨン株式会社 イソブタノールからt-ブタノールを製造する方法、イソブタノールからメタクロレイン及びメタクリル酸を製造する方法、並びにそれらの製造装置
US9346735B2 (en) 2011-11-07 2016-05-24 Mitsubishi Rayon Co., Ltd. Method for producing t-butanol from isobutanol, method for producing methacrolein and methacrylic acid from isobutanol, and apparatus for producing them
WO2016061262A1 (en) 2014-10-14 2016-04-21 Gevo, Inc. Methods for conversion of ethanol to functionalized lower hydrocarbons and downstream hydrocarbons
US10351487B2 (en) 2014-10-14 2019-07-16 Gevo, Inc Methods for conversion of ethanol to functionalized lower hydrocarbons and downstream hydrocarbons
JP2020531673A (ja) * 2017-08-29 2020-11-05 レーム・ゲーエムベーハーRoehm GmbH 光学成形材料の製造方法
JP7197568B2 (ja) 2017-08-29 2022-12-27 レーム・ゲーエムベーハー 光学成形材料の製造方法
US10633320B2 (en) 2018-01-04 2020-04-28 Gevo, Inc. Upgrading fusel oil mixtures over heterogeneous catalysts to higher value renewable chemicals
CN112292369A (zh) * 2018-06-26 2021-01-29 罗姆化学有限责任公司 以高收率制备mma的方法
CN112292369B (zh) * 2018-06-26 2023-08-15 罗姆化学有限责任公司 以高收率制备mma的方法

Also Published As

Publication number Publication date
TW200301246A (en) 2003-07-01
EP1459803A1 (en) 2004-09-22
US7012039B2 (en) 2006-03-14
AU2002354236A1 (en) 2003-07-09
EP1459803A4 (en) 2006-05-31
CN1596149A (zh) 2005-03-16
EP1459803B1 (en) 2011-02-16
KR100579678B1 (ko) 2006-05-15
TWI257925B (en) 2006-07-11
DE60239222D1 (de) 2011-03-31
US20050032639A1 (en) 2005-02-10
KR20040061010A (ko) 2004-07-06
CN1308074C (zh) 2007-04-04
JP4076227B2 (ja) 2008-04-16
JPWO2003053570A1 (ja) 2005-09-02

Similar Documents

Publication Publication Date Title
WO2003053570A1 (fr) Composition catalytique d&#39;oxyde
KR101507616B1 (ko) 프로필렌의 불균질 촉매화 부분 기상 산화에 의한아크릴산의 형성 방법
US7414008B2 (en) Catalyst for synthesis of unsaturated aldehyde, production process for said catalyst, and production process for unsaturated aldehyde using said catalyst
KR101876599B1 (ko) 아크롤레인/아크릴산의 개선된 제조 방법
JP5889313B2 (ja) プロペンからアクロレインへの不均一系接触部分気相酸化の長期運転法
EP1125911B1 (en) Process for producing acrolein and acrylic acid
SU1032999A3 (ru) Способ получени акриловой кислоты
EP0043100A1 (en) Oxidation catalyst and process for preparation thereof
KR20090030212A (ko) (메타)아크릴산 생성물 스트림으로부터의 프로피온산의 개선된 선택적 환원 방법
JPH0523596A (ja) メタクロレイン及びメタクリル酸製造用触媒の調製法
KR100553515B1 (ko) 아크릴산의 제조방법
JPH0686399B2 (ja) アクリル酸の製造方法
US6919478B2 (en) Reaction tube, process for producing catalyst and process for producing unsaturated aldehyde and unsaturated carboxylic acid
US6960684B2 (en) Production process for unsaturated aldehyde
JP5501221B2 (ja) アクロレインおよび/またはアクリル酸の製造方法
JPH11244702A (ja) アクリロニトリルまたはメタクリロニトリル製造用触媒
JP3268900B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造法
JP3523455B2 (ja) 固定床反応器および不飽和カルボン酸の製造方法
US3660480A (en) Catalyst for the oxidation of olefins to unsaturated aldehydes and unsaturated acids
JP3036948B2 (ja) α,β−不飽和化合物の製造方法
US20020193632A1 (en) Process for producing (meth)acrylic acid
WO2005049536A1 (ja) 不飽和アルデヒド及び不飽和カルボン酸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002786173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10494935

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003554323

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047008253

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028238966

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002786173

Country of ref document: EP