WO2003025246A1 - Materiau de monoxyde de silicium pour depot par evaporation sous vide et procede de preparation de celui-ci - Google Patents

Materiau de monoxyde de silicium pour depot par evaporation sous vide et procede de preparation de celui-ci Download PDF

Info

Publication number
WO2003025246A1
WO2003025246A1 PCT/JP2002/009472 JP0209472W WO03025246A1 WO 2003025246 A1 WO2003025246 A1 WO 2003025246A1 JP 0209472 W JP0209472 W JP 0209472W WO 03025246 A1 WO03025246 A1 WO 03025246A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon monoxide
vapor deposition
substrate
deposited
silicon
Prior art date
Application number
PCT/JP2002/009472
Other languages
English (en)
French (fr)
Inventor
Kazuo Nishioka
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to JP2003530015A priority Critical patent/JP4252452B2/ja
Priority to DE60226478T priority patent/DE60226478D1/de
Priority to EP02765557A priority patent/EP1443126B1/en
Priority to US10/489,074 priority patent/US20040241075A1/en
Priority to KR1020047003038A priority patent/KR100583795B1/ko
Publication of WO2003025246A1 publication Critical patent/WO2003025246A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate

Definitions

  • the present invention relates to a silicon monoxide vapor-deposition material used as a material for packaging foods, medical products, pharmaceuticals, etc., which has excellent gas barrier properties and is used for producing a vapor-deposited silicon oxide film, and its production. About the method. Background art
  • packaging materials for foods, medical products, pharmaceuticals, etc. are required to have a high gas barrier property against permeation of oxygen, water vapor, aromatic gas, etc., which deteriorate the quality of the contents.
  • a packaging material having such a high gas barrier property there is a vapor deposition film in which silicon oxide is vapor-deposited on a polymer film.
  • silicon monoxide vapor-deposited films having excellent gas barrier properties against oxygen, water vapor, aromatic gas and the like have been attracting attention.
  • the silicon monoxide which is a raw material for forming a silicon vapor deposition film, is a raw material for mixing silicon powder and silicon dioxide powder, which is sublimated in a high-temperature vacuum atmosphere.
  • the deposition material is produced by depositing and condensing silicon monoxide gas generated by the reaction on the deposition substrate. This manufacturing method is called a vacuum condensation method. Vapor deposition materials for silicon monoxide, which are manufactured by the vacuum condensation method, are expensive because they are manufactured through a large number of steps, and have a problem that the structure in the thickness direction is not uniform.
  • the first portion deposited on the deposition substrate has a needle-like structure, and this portion is formed on the film as the deposition material.
  • a splash phenomenon occurs frequently, and a defect such as a pinhole is generated in the obtained silicon monoxide vapor-deposited film, thereby causing a problem of deterioration in permeation resistance. Disclosure of the invention
  • the present invention is directed to a method for producing a mono-oxide, an element-deposited material and a vapor-deposited material, which are less likely to cause a splash phenomenon when forming a film on a film in a vapor-deposited material for element produced by a vacuum condensation method.
  • the purpose is to provide a manufacturing method.
  • the inventor made various studies on the properties and composition of a silicon monoxide vapor deposition material that can suppress the occurrence of a splash phenomenon when forming a silicon monoxide vapor deposition film.
  • the brittleness of the material itself greatly affects the splash phenomenon.
  • the inventor conducted intensive studies on the criterion for the brittleness of the material, in which the splash phenomenon is unlikely to occur, and applied the rattra test used for evaluation of the compact to silicon monoxide vapor deposition material.
  • the occurrence of the splash phenomenon can be suppressed in the case where the weight loss rate (Rattler value) is specific.
  • the rattra value was measured according to the method described in the standard of the Japan Powder Metallurgy Association (JPMA), “Method for measuring rattra value of JPMA P11-1992 metal compacts”.
  • JPMA Japan Powder Metallurgy Association
  • Circle as a deposition substrate used as The inner peripheral surface of the cylinder is formed as a required inclined inner peripheral surface formed by making the inner diameter of the upper part of the cylinder smaller than the inner diameter of the lower part, and has the specific rattle value by depositing and condensing the sublimation material here.
  • the inventors of the present invention have found that a monoxide can be stably obtained from the elementary vapor deposition material, and the object of the invention can be achieved.
  • the present invention is a silicon monoxide and elemental vapor deposition material obtained by a vacuum condensation method, which has a property of a weight loss rate (Ratra value) of 1.0% or less in a Ratra test.
  • an evaporation raw material obtained by heating and sublimating a required raw material is condensed on a cylindrical inner peripheral surface as a deposition substrate to obtain a silicon monoxide vapor deposition material
  • the upper side of the cylindrical body is reduced in diameter.
  • FIG. 1 is an explanatory view showing one example of a production apparatus used in the method for producing a silicon monoxide vapor deposition material according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION is an explanatory view showing one example of a production apparatus used in the method for producing a silicon monoxide vapor deposition material according to the present invention.
  • the method for producing a silicon monoxide and elemental vapor deposition material according to the present invention will be described in detail based on an example of a production apparatus shown in FIG.
  • the apparatus has a configuration in which a deposition chamber 2 is mounted on a raw material chamber 1 and is installed in a vacuum chamber 3.
  • a cylindrical raw material container 4 is inserted and arranged in the center of the cylindrical body, and a heating source 5 composed of, for example, an electric heater is disposed around the raw material chamber 1, and a sublimation reaction is performed by the heating source 5.
  • the released silicon monoxide gas rises from the open upper end.
  • the deposition chamber 2 is provided for depositing the silicon monoxide gas sublimated in the raw material chamber 1;
  • the gas component sublimated inside the precipitation substrate 6 disposed on the raw material container 4 in communication with the open upper end port passes upward.
  • the deposition substrate 6 is formed of a truncated cone or truncated pyramid made of stainless steel. That is, the deposition substrate 6 has a shape in which the upper end side of a normal cylinder or square tube is smaller than the lower end inside diameter and the upper end side is narrowed, and is used for depositing sublimated red monoxide gas.
  • the inner peripheral surface forms an inclined surface inclined by a required angle with respect to the perpendicular, and a lid 7 which is detachable and has a hole in the center is provided at the upper end of the base.
  • the deposition substrate 6 has been described as an example of an integral cylindrical body, the deposition substrate 6 is not necessarily an integral type, and may be an arbitrary number of divided types. Further, all of the inner peripheral surface is necessarily a required inclined surface and There is no need to be continuous in the circumferential direction. For example, in the case of a polygonal cylinder, there may be a gap between adjacent inclined surfaces at corners. Further, the split-type cylindrical body having the inclined inner peripheral surface according to the present invention may be arranged and supported in another ordinary cylindrical body.
  • the inner peripheral surface of the precipitation substrate 6 is made to have the required inclined surface because a high-quality silicon monoxide vapor deposition material that suppresses the occurrence of the splash phenomenon, that is, the weight loss rate (Ratla value ) Is to obtain a silicon monoxide vapor deposition material of 1.0% or less.
  • the inventor has confirmed that the rattle value is satisfied and the occurrence of the splash phenomenon is suppressed by at least one degree of inclination. Even if the inclination is only 1 degree, the radiant heat from the raw material chamber to the deposition substrate changes, which also changes the gas convection in the deposition chamber and the temperature distribution of the deposition substrate. It is speculated that the occurrence of the splash phenomenon is suppressed by satisfying the La value, but the detailed reason is unknown.
  • the inclination of the deposition substrate be in the range of 1 to 45 degrees. More preferably, it is in the range of 2 degrees or more and 2 to 20 degrees.
  • the pressure in the deposition chamber 2 installed in the vacuum chamber 3 exceeds 40 Pa, the surface of the deposited silicon monoxide deposition layer becomes uneven, which is not preferable.
  • the pressure is less than 7 Pa, the denseness of the deposited layer is undesirably reduced. It is unknown why the pressure changes the state of the deposited layer significantly, but at pressures outside the range of 7 to 40 Pa, the Ratra value does not fall below 1.0, and a splash phenomenon occurs during the formation of silicon monoxide deposited film. Cannot be sufficiently suppressed.
  • the pressure control means in the deposition chamber 2 may be any of known control means such as simple control of performing valve control of a vacuum pump to a required range by a vacuum gauge in the chamber to mass flow control, and the like. Equipment can be employed.
  • the configuration of the apparatus other than the deposition substrate having the shape of a truncated cone or a truncated pyramid for example, any known means can be adopted as a heating source,
  • a well-known configuration of misalignment can be adopted.
  • the mixed raw material 11 was packed in the raw material container 4 of the raw material chamber 1, the exhaust valve 8 of the vacuum chamber 3 was opened, the pressure was evacuated to a vacuum atmosphere of 40 Pa, 25 Pa, lOPa and 7 Pa, and the predetermined pressure was confirmed by the pressure gauge 9. Thereafter, the heating source 5 of the raw material chamber 1 is energized to heat the raw material chamber 1 and to react at a predetermined temperature in the range of 1100 to 1350 ° C for about one hour or more for silicon monoxide gas. Generated.
  • the generated silicon monoxide gas ascends from the raw material chamber 1 and enters the deposition chamber 2, where it is deposited on the inner peripheral wall of the deposition substrate 6, which has been previously heated to 300 to 800 ° C and has a tilt force of ⁇ ° to 45 °. did.
  • the silicon monoxide deposition layer 12 deposited on the deposition substrate 6 was uniformly deposited on the entire substrate 6 with the same thickness.
  • the same mixed raw material as in the above-mentioned embodiment of the present invention was used, and the inclination of the deposition substrate was 60 °, 10 °, 0 ° (vacuum atmosphere at a pressure of 60 Pa, 40 Pa, 25 Pa, and 5 Pa). ), Silicon monoxide gas was deposited on the deposition substrate.
  • the weight loss rate was measured by a rattra test.
  • a silicon oxide vapor deposition film was manufactured by a resistance heating vapor deposition apparatus. Then, the state of occurrence of a splash phenomenon during the formation of a silicon monoxide vapor-deposited film was observed. Table 1 shows the rattle value and the state of occurrence of the splash.
  • Comparative Example 1 which is a conventional example using a deposition substrate with no inclination by the vacuum evaporation method, has a high Ratra value of 2.0% and causes a splash phenomenon when forming a silicon monoxide evaporated film. There are many.
  • a film is formed on a film by giving a property such that the weight loss rate (Ratra value) in the Ratra test is 1.0% or less, using a monoxide produced by the vacuum condensation method.
  • a splash phenomenon is unlikely to occur, and a silicon monoxide vapor-deposited film having excellent permeation resistance can be obtained.
  • an integrated truncated cone or truncated pyramid, or a split truncated cone or truncated pyramid is used.
  • a deposition substrate By using such a deposition substrate, it is possible to stably mass-produce an elementary vapor deposition material having a Ratra value of 1.0% or less.
  • the pressure inside the deposition substrate is reduced during the production by the vacuum condensation method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Silicon Compounds (AREA)

Description

明細書 一酸化け 、素蒸着材料とその製造方法 技術分野
この発明は、 食品や医療品、 医薬品等の包装用材料として、 優れたガスバリ ァ性を有するけレ、素酸化物蒸着膜を製造するために使用される一酸化けい素蒸 着材料及びその製造方法に関する。 背景技術
食品の包装の分野では、 含まれる油脂やたんぱく質の劣化防止、 すなわち包 装材料を透過する酸素や水蒸気、 芳香性ガス等に起因する酸化による品質の劣 化を抑制することが求められている。
また、 医療品、 医薬品においては、 さらに高い基準での内容物の変質や劣化 の抑制が求められている。
従って、 食品や医療品、 医薬品等の包装用材料には、 内容物の品質を劣化さ せる酸素や水蒸気、 芳香性ガス等の透過に対するガスバリァ性の高い材料が要 求される。
このように高いガスバリァ性を有する包装材料として、 けい素酸化物を高分 子フィルム上に蒸着した蒸着フィルムがある。 特に、 酸素や水蒸気、 芳香性ガ ス等に対し優れたガスバリア性を有する一酸化けい素蒸着膜が注目されてい る。
この一酸化けレ、素蒸着膜を形成するための原料である一酸化け 、素用蒸着材 料は、 けい素粉末と二酸化けい素粉末を混合した原料を、 高温の真空雰囲気下 で昇華させて反応生成した一酸化けい素ガスを、 析出基板上に析出、 凝縮させ ることにより、 前記蒸着材料を製造している。 この製造法を真空凝縮法と呼 ぶ。 真空凝縮法によリ製造される一酸化けい素用蒸着材料は、 多大の工程を経て 製造されるため高価であるほか、 その厚み方向の組織が不均一であるという問 題がある。
詳述すると、 析出基板上に最後に析出した蒸着材料の表面付近は問題ない が、 析出基板に最初に析出した部分は針状組織を有しており、 この部分を蒸着 材料としてフィルム上に成膜する時、 スプラッシュ現象が多発し、 得られた一 酸化けい素蒸着膜にピンホールなどの欠陥を生じて耐透過性が劣化するという 問題を生じる。 発明の開示
この発明は、 真空凝縮法により製造される一酸化けレ、素用蒸着材料におい て、 フィルム上へ成膜する際にスブラッシュ現象が生じ難 、構成からなる一酸 化け 、素蒸着材料とその製造方法の提供を目的としている。
発明者は、 一酸化けい素蒸着膜形成時のスプラッシュ現象の発生を抑制でき る一酸化けい素蒸着材料の性状や構成について、 種々検討したところ、 材料自 体の脆さがスプラッシュ現象に大きく影響していることを知見した。 さらに発 明者は、 スプラッシュ現象が生じ難くなる当該材料の脆さの基準について、 鋭 意検討した結果、 圧粉体の評価に使用されるラトラ試験を、 一酸化けい素蒸着 材料に適用して、 特定の耐重量減少率 (ラトラ値)を有する場合に、 スプラッ シュ現象の発生を抑制できることを知見した。
なお、 この発明において、 ラトラ値は、 日本粉末冶金工業会 (JPMA)の規格 「JPMA P11-1992金属圧粉体のラトラ値測定方法」 に記載の方法で測定し た。
また、 発明者は、 特定のラトラ値を有する一酸化けい素蒸着材料の製造方法 について、 種々検討した結果、 従来の真空凝縮法において、 加熱昇華した蒸発 材料が上昇中に、 析出、 凝縮する基板として利用されていた析出基体となる円 筒内周面を、 円筒上部の内径を下部の内径よリ小さくして形成した所要の傾斜 内周面となし、 ここに昇華材料を析出、 凝縮させることにより、 前記特定のラ トラ値を有する一酸化け 、素蒸着材料が安定的に得られ、 発明の目的を達成で きることを知見し、 この発明を完成した。
すなわち、 この発明は、 ラトラ試験の重量減少率 (ラトラ値)が 1.0%以下であ る性状を有することを特徴とする真空凝縮法による一酸化けレ、素蒸着材料であ る。
また、 この発明は、 所要の原料を加熱昇華させた蒸発原料を析出基体として の筒状内周面に凝縮させて一酸化けい素蒸着材料を得るに際し、 該筒体の上部 側を小径化して筒内周壁を、 例えば垂線に対し 1~45度傾斜させた傾斜内周面 となした析出基体を使用することを特徴とする一酸化けレ、素蒸着材料の製造方 法である。 図面の説明
図 1は、 この発明による一酸化けい素蒸着材料の製造方法に使用する、 製造 装置の一例を示す説明図である。 発明を実施するための最良の形態
この発明による一酸化けレ、素蒸着材料の製造方法を図 1の製造装置例に基づ いて詳述する。 装置は原料室 1の上に析出室 2を載置した構成からなり、 真空室 3内に設置される。
原料室 1は、 ここでは円筒体からリ、 その中央に有底円筒の原料容器 4を挿入 配置し、 その周囲に例えば電熱ヒータからなる加熱源 5を配置してあり、 加熱 源 5で昇華反応した一酸化けい素ガスが解放上端より上昇する。 析出室 2は、 原 料室 1で昇華した一酸化けい素ガスを析出させるために設けられ、 上記原料室 1 の原料容器 4上に解放上端口と連通して配置される析出基体 6内部を昇華したガ ス成分が上昇通過する。
析出基体 6は、 ステンレス鋼製の断頭円錐筒や断頭角錐筒からなる。 すなわ ち、 析出基体 6は、 通常の円筒あるいは角筒の上端内径が下端内径より小さく して上端側が絞られた形状となしてあり、 昇華した一酸化けレヽ秦ガスを析出さ せるための内周面が垂線に対して所要角度だけ傾斜した傾斜面を構成してお リ、 また基体上端には着脱自在で中央に孔を空けた蓋 7を設けてある。
前記析出基体 6は、 一体型の筒体の例を説明したが、 必ずしも一体型でなく とも任意数の分割型であってもよく、 さらには、 必ずしも内周面の全てが所要 傾斜面でかつ周方向に連続している必要もなく、 例えば多角筒の場合に角部で 隣接する傾斜面間に隙間があってもよい。 また、 この発明による傾斜内周面を 有する分割型の筒体を、 他の通常の筒体内に配置支持させる構成であってもよ い。
この発明において、 析出基体 6の内周面を所要の傾斜面とするのは、 スプ ラッシュ現象の発生を抑制した高品質の一酸化けい素蒸着材料、 すなわちラト ラ試験の重量減少率 (ラトラ値)が 1.0%以下の一酸化けい素蒸着材料を得るため である。
発明者は種々試験した結果、 少なくとも 1度の傾きにより、 前記ラトラ値を 満足してスプラッシュ現象の発生が抑制されることを確認した。 僅か 1度の傾 斜であっても、 原料室からの析出基体への放射熱が変化し、 それにより析出室 中のガス対流及び析出基板の温度分布などにも変化が生じることで、 前記ラト ラ値を満足してスプラッシュ現象の発生が抑制されるものと推測しているが、 詳細な理由は不明である。
また、 この傾斜角度は、 45度を超えると析出した一酸化けい素析出層が析出 基体から剥離する頻度が大きくなるため、 全体の厚みが均一で、 かつ均質な一 酸化けレ、素蒸着材料を得るには、 析出基体の傾きを 1度〜 45度の範囲とするこ とが好ましい。 さらに好ましくは、 2度以上、 2~20度の範囲である。
真空室 3内に設置される析出室 2内の圧力は、 40Paを超えると析出した一酸 化けい素析出層の表面が凹凸面となるため好ましくない。 また、 該圧力が 7Pa 未満であると、 析出層の織密性が低下するため好ましくない。 圧力によって析 出層の状態が顕著に変化する理由は不明であるが、 7Pa~40Paの範囲外の圧力 ではラトラ値が 1.0以下とならず、 一酸化けい素蒸着膜形成時のスプラッシュ 現象の発生を十分に抑制することができない。
この発明において、 析出室 2内の圧力制御手段は、 室内の真空計により所要 範囲となるよう真空ポンプのバルブ制御を行う簡易的な制御からマスフローコ ントロールを行うなどの公知のいずれの制御手段、 装置を採用することができ る。
この発明の真空凝縮法による製造装置において、 特徴とする断頭円錐筒や断 頭角錐筒の形状を有する析出基体以外の装置の構成、 例えば加熱源には公知の いずれの手段をも採用でき、 また、 真空室に関する構成などについても公知の 、ずれの構成も採用できる。
実 施 例
図 1に示す製造装置の原料容器 4に投入する原料として、 ここでは半導体用シ リコンウェハ一を機械的に破砕したけい素粉末 (平均粒度 ΙΟμπι以下)と、 市販 の二酸化け 、素粉末 (平均粒度 ΙΟμπι以下)を所定割合で配合し、 純水を用いて 湿式造粒を行ったのち、 造粒した原料を乾燥して混合原料となした。
混合原料 11を原料室 1の原料容器 4に詰め、 真空室 3の排気弁 8を開いて、 圧 力 40Pa、 25Pa、 lOPa及び 7Paの真空雰囲気まで排気し、 圧力計 9により所定 圧力を確認したのち、 原料室 1の加熱源 5に通電して原料室 1内を加熱し、 1100~1350°Cの範囲の所定温度に約 1時間以上の所定時間保持して反応させ、 一酸化けい素ガスを発生させた。 生成した一酸化けい素ガスは、 原料室 1から上昇して析出室 2に入り、 予め 300~800°Cに加熱してある、 傾き力 ^度〜 45度の析出基体 6の内周壁に析出し た。 析出基体 6に析出する一酸化けい素析出層 12は、 該基体 6全体に同じ厚さ で均一に析出した。
また、 比較のため、 上記本発明の実施例と同じ混合原料を使用し、 圧力 60Pa、 40Pa、 25Pa及び 5Paの真空雰囲気で析出基体の傾きを 60度、 10度、 0 度 (従来の析出基体)として一酸化けい素ガスを析出基体に析出させた。
上記の条件により製造した各一酸化けい素蒸着材料について、 ラトラ試験に より重量減少率を測定した。
また、 得られた一酸化けい素蒸着材料を使って、 抵抗加熱蒸着装置によリー 酸化けい素蒸着膜を製造した。 そして、 一酸化けい素蒸着膜形成時のスプラッ シュ現象の発生状況を観察した。 前記ラトラ値とスプラッシュの発生状況を表 1に示す。
表 1の結果より、 この発明による実施例 1〜13は、 いずれもラトラ値が 1.0以 下で、 一酸化けい素蒸着膜形成時のスプラッシュ現象の発生が少ない。 特に圧 力を 10~25Paに下げ、 かつ析出基体の傾きが 2度以上の実施例では、 さらに低 ぃラトラ値が得られ、 一酸化けい素蒸着膜形成時のスプラッシュ現象の発生が 極めて少なくなる。
一方、 比較例 1は、 真空蒸着法により、 傾きのない析出基体を使用した従来 の実施例であるが、 ラトラ値が 2.0%と高く、 一酸化けい素蒸着膜形成時のス ブラッシュ現象の発生が多い。
また、 傾きのある析出基体を使っても圧力が 60Paの比較例 2の場合も、 スプ ラッシュ現象の発生が多い。 圧力が 40Pa以下の条件を満足している力 傾き が 60度の析出基体を使用した比較例 4、 6の場合には、 析出した一酸化けい素 析出層が剥離したので試験することができなかった。 さらに、 圧力が 25Paと 低い状態でも、 傾きのない析出基体を使用した比較例 5の場合には、 スプラッ シュ現象の発生が多く、 傾きが 10度の析出基体を用いても圧力を 5Paまで下げ た比較例 7では、 析出層が脆くなリ、 スプラッシュ現象の発生が多い。
これらの比較例の試験結果より、 析出基体の傾きが 1~45度であること、 さ らに好ましくは析出室内の圧力が 7~40Paを満足していると、 一酸化けい素蒸 着膜形成時のスプラッシュ現象の発生を抑制できることがわかる。
表 1
析出の条件
*— 、, ノ— フ 卜フ ίί スノフッソュ 圧力 傾き角
Λ J ΤO八. (Pa) ι )
(度) 丄 40 1 u.y ナ ' ヽ、 実
厶 9 40 2 U.o
3 40 10 0.8 少なレヽ
4 40 20 0.8 少ない
5 40 45 0.8 少ない 施 6 25 1 0.8 少ない
7 25 2 0.6 極めて少ない
8 25 10 0.5 極めて少ない
9 25 20 0.5 極めて少ない 例 10 25 45 0.5 極めて少ない
11 20 8 0.5 極めて少ない
12 10 10 0.6 極めて少ない
13 7 10 0.8 少ない
1 60 0 2.0 多い 比 2 60 10 1.6 多い
3 40 0 1.3 多い
4 40 60
5 25 0 1.1 多い 例 6 25 60
7 5 10 1.2 多い 産業上の利用可能性
この発明によると、 真空凝縮法により製造される一酸化け 、素用蒸着材料 を、 ラトラ試験の重量減少率 (ラトラ値)が 1.0%以下となる性状を与えること で、 フィルム上へ成膜する際にスプラッシュ現象が生じ難く、 耐透過性にすぐ れた一酸化けい素蒸着膜を得ることができる。
この発明によると、 一酸化けい素用蒸着材料を真空凝縮法により製造する際 に、 一体型の断頭円錐筒や断頭角錐筒、 あるいは分割型の断頭円錐筒状体や断 頭角錐筒状体からなる析出基体を用いることで、 前記ラトラ値が 1.0%以下の 一酸化け 、素用蒸着材料を安定的に量産することができる。
この発明によると、 上記真空凝縮法による製造時に、 析出基体内の圧力を
7Pa~40Paに制御することで、 さらに前記ラトラ値が小さく、 成膜時のスプ ラッシュ現象が著しく低減した一酸化け 、素用蒸着材料を製造できる。

Claims

請求の範囲
1. ラトラ試験の重量減少率 (ラトラ値)が 1.0%以下である性状を有する 真空凝縮法による一酸化け 、素蒸着材料。
2. 原料を加熱昇華させた蒸発原料を析出基体の表面に析出、 凝縮させ て一酸化けい素蒸着材料を得るに際し、 筒体の上部側内径を下部側よリ小 径化して筒内周壁を傾斜面となした析出基体を使用し、 前記傾斜内周面に 析出、 凝縮させる一酸化けい素蒸着材料の製造方法。
3. 筒内周壁を傾斜面となした析出基体の前記筒内周壁が分割されてい る請求項 2に記載の一酸化けい素蒸着材料の製造方法。
4. 析出基体内の雰囲気が、 7Pa~40Paの真空雰囲気である請求項 2に記 載の一酸化けい素蒸着材料の製造方法。
5. 析出基体の傾斜内周面が、 垂線に対し 1~45度傾けた傾斜面である請 求項 2に記載の一酸化けい素蒸着材料の製造方法。
PCT/JP2002/009472 2001-09-17 2002-09-13 Materiau de monoxyde de silicium pour depot par evaporation sous vide et procede de preparation de celui-ci WO2003025246A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003530015A JP4252452B2 (ja) 2001-09-17 2002-09-13 一酸化けい素蒸着材料とその製造方法
DE60226478T DE60226478D1 (de) 2001-09-17 2002-09-13 Material zur dampfabscheidung von siliciummonoxid und herstellungsverfahren dafür
EP02765557A EP1443126B1 (en) 2001-09-17 2002-09-13 Silicon monoxide vapor deposition material and method for preparation thereof
US10/489,074 US20040241075A1 (en) 2001-09-17 2002-09-13 Silicon monoxide vapor deposition material and method for preparation thereof
KR1020047003038A KR100583795B1 (ko) 2001-09-17 2002-09-13 일산화 규소 증착 재료 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-281524 2001-09-17
JP2001281524 2001-09-17

Publications (1)

Publication Number Publication Date
WO2003025246A1 true WO2003025246A1 (fr) 2003-03-27

Family

ID=19105336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009472 WO2003025246A1 (fr) 2001-09-17 2002-09-13 Materiau de monoxyde de silicium pour depot par evaporation sous vide et procede de preparation de celui-ci

Country Status (7)

Country Link
US (1) US20040241075A1 (ja)
EP (1) EP1443126B1 (ja)
JP (1) JP4252452B2 (ja)
KR (1) KR100583795B1 (ja)
CN (1) CN100516283C (ja)
DE (1) DE60226478D1 (ja)
WO (1) WO2003025246A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1622215A1 (en) * 2003-04-28 2006-02-01 Sumitomo Titanium Corporation Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
JP2008255465A (ja) * 2007-03-15 2008-10-23 Nippon Steel Materials Co Ltd 一酸化珪素蒸着材料の製造方法およびその製造装置
US20170297917A1 (en) * 2015-07-08 2017-10-19 Shenzhen Btr New Energy Materials Inc. Equipment And Process For Preparing Silicon Oxides

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1318207A4 (en) * 2000-08-31 2006-08-16 Sumitomo Titanium Corp SILICON MONOXIDE-GAS PHASE SEPARATING MATERIAL, METHOD OF MANUFACTURING THEREOF, RAW MATERIAL FOR THE PRODUCTION AND DEVICE FOR THE PRODUCTION THEREOF
US20040182700A1 (en) * 2001-07-26 2004-09-23 Yoshitake Natsume Silicon monoxide sintered prroduct and method for production thereof
JP3828434B2 (ja) * 2002-02-22 2006-10-04 住友チタニウム株式会社 一酸化ケイ素の焼結体およびその製造方法
JP4374330B2 (ja) * 2005-06-16 2009-12-02 株式会社大阪チタニウムテクノロジーズ 一酸化珪素系蒸着材料及びその製造方法
JP4900573B2 (ja) * 2006-04-24 2012-03-21 信越化学工業株式会社 酸化珪素粉末の製造方法
CN106966398B (zh) * 2017-04-19 2023-08-08 合肥科晶材料技术有限公司 一种两源可控的SiO生产系统和生产方法
CN109210930B (zh) * 2018-09-26 2024-05-17 溧阳天目先导电池材料科技有限公司 一种生产一氧化硅的多室卧式真空炉及一氧化硅制备方法
CN110359024A (zh) * 2019-07-23 2019-10-22 清华大学 一种大批量制备表面增强拉曼基底的基片台
CN113501527B (zh) * 2021-09-06 2021-11-16 北京壹金新能源科技有限公司 一种制备一氧化硅的方法
CN114180585A (zh) * 2021-11-30 2022-03-15 长沙矿冶研究院有限责任公司 一种批量制备高纯一氧化硅的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4022050B1 (ja) * 1962-06-22 1965-09-30
JPH05171412A (ja) * 1991-12-18 1993-07-09 Mitsubishi Heavy Ind Ltd 一酸化ケイ素蒸着用材料の製造方法
JPH09110412A (ja) * 1995-10-11 1997-04-28 Sumitomo Sitix Corp 酸化珪素の製造方法
JP2001220122A (ja) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd 酸化珪素粉末の製造方法
JP4081524B2 (ja) * 1998-03-31 2008-04-30 株式会社マーレ フィルターシステムズ 薬剤供給シャワー用カートリッジへの薬剤充填方法及びカートリッジ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227318A (ja) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Sio微粉末の製造方法およびその装置
GB2357497A (en) * 1999-12-22 2001-06-27 Degussa Hydrophobic silica

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4022050B1 (ja) * 1962-06-22 1965-09-30
JPH05171412A (ja) * 1991-12-18 1993-07-09 Mitsubishi Heavy Ind Ltd 一酸化ケイ素蒸着用材料の製造方法
JPH09110412A (ja) * 1995-10-11 1997-04-28 Sumitomo Sitix Corp 酸化珪素の製造方法
JP4081524B2 (ja) * 1998-03-31 2008-04-30 株式会社マーレ フィルターシステムズ 薬剤供給シャワー用カートリッジへの薬剤充填方法及びカートリッジ
JP2001220122A (ja) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd 酸化珪素粉末の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1443126A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1622215A1 (en) * 2003-04-28 2006-02-01 Sumitomo Titanium Corporation Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
EP1622215A4 (en) * 2003-04-28 2009-07-22 Osaka Titanium Technologies Co NEGATIVE ELECTRODE FOR LITHIUM ACCUMULATOR, LITHIUM ACCUMULATOR HAVING THIS NEGATIVE ELECTRODE, FILM DEPOSITION MATERIAL FOR MAKING A NEGATIVE ELECTRODE, AND METHOD FOR MANUFACTURING NEGATIVE ELECTRODE
KR101118933B1 (ko) * 2003-04-28 2012-03-13 오사카 티타늄 테크놀로지스 캄파니 리미티드 리튬 2차 전지용 음극, 당해 음극을 사용하는 리튬 2차 전지, 당해 음극 형성에 사용하는 막 형성용 재료 및 당해 음극의 제조방법
JP2008255465A (ja) * 2007-03-15 2008-10-23 Nippon Steel Materials Co Ltd 一酸化珪素蒸着材料の製造方法およびその製造装置
US20170297917A1 (en) * 2015-07-08 2017-10-19 Shenzhen Btr New Energy Materials Inc. Equipment And Process For Preparing Silicon Oxides
JP2017535506A (ja) * 2015-07-08 2017-11-30 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 シリコン酸化物の製造装置及び調製方法
US10611644B2 (en) 2015-07-08 2020-04-07 Btr New Material Group Co., Ltd. Equipment and process for preparing silicon oxides

Also Published As

Publication number Publication date
US20040241075A1 (en) 2004-12-02
JP4252452B2 (ja) 2009-04-08
CN100516283C (zh) 2009-07-22
KR100583795B1 (ko) 2006-05-26
KR20040035743A (ko) 2004-04-29
JPWO2003025246A1 (ja) 2004-12-24
EP1443126A4 (en) 2007-05-02
DE60226478D1 (de) 2008-06-19
EP1443126A1 (en) 2004-08-04
EP1443126B1 (en) 2008-05-07
CN1547622A (zh) 2004-11-17

Similar Documents

Publication Publication Date Title
WO2003025246A1 (fr) Materiau de monoxyde de silicium pour depot par evaporation sous vide et procede de preparation de celui-ci
US5320729A (en) Sputtering target
US6254983B1 (en) Process for forming silicon oxide coating on plastic material
Choukourov et al. Structured Ti/hydrocarbon plasma polymer nanocomposites produced by magnetron sputtering with glancing angle deposition
WO2002018669A1 (fr) Materiau de depot par evaporation sous vide de monoxyde de silicium, son procede de production, la matiere premiere pour sa production et appareil de production
Kylián et al. Core@ shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by in‐flight plasma polymer coating
JP3516819B2 (ja) モノマーの蒸発システム、同蒸発システムを備えた真空処理室、および有機化合物膜の成膜方法
Spassova Vacuum deposited polyimide thin films
Chamorro‐Coral et al. The role of oxygen on the growth of palladium clusters synthesized by gas aggregation source
US8142751B2 (en) Silicon monoxide vapor deposition material and process for producing the same
JP3488423B2 (ja) 一酸化けい素蒸着材料及びその製造方法
US4587179A (en) Magnetic recording medium and manufacturing process thereof
JPH05171415A (ja) 合成樹脂被膜の形成装置及び形成方法
CN112342501B (zh) Pd/Ti双层吸气剂薄膜的制备方法和Pd/Ti双层吸气剂薄膜
JPH0428858A (ja) 蒸着用材料の製造方法
JPH05125520A (ja) 多層膜の形成装置
RU2677354C1 (ru) Испаритель для нанесения покрытий в вакууме
JP2006182847A (ja) 全芳香族ポリエステル膜およびその製造方法
JP4196438B2 (ja) 蒸着材料及びその製造方法
JP2002285320A (ja) 有機高分子薄膜の形成方法
JP4051749B2 (ja) 複合セラミックス薄膜の製造方法
JPH03232530A (ja) 内部拡散薄膜型ゲッター材料
HANSEN Production, general properties and gas absorption of oxide films produced by electron beam
JP2022078714A (ja) 複合粒子及びその製造方法並びに複合粒子の前駆体粒子
JPH05132763A (ja) 全方向同時蒸着重合装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003530015

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028166213

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047003038

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10489074

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002765557

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002765557

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002765557

Country of ref document: EP