WO2003012956A1 - Machine electrique tournante - Google Patents

Machine electrique tournante Download PDF

Info

Publication number
WO2003012956A1
WO2003012956A1 PCT/JP2002/007797 JP0207797W WO03012956A1 WO 2003012956 A1 WO2003012956 A1 WO 2003012956A1 JP 0207797 W JP0207797 W JP 0207797W WO 03012956 A1 WO03012956 A1 WO 03012956A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
yoke
coil
rotor yoke
Prior art date
Application number
PCT/JP2002/007797
Other languages
English (en)
French (fr)
Inventor
Shinya Naito
Haruyoshi Hino
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to US10/476,501 priority Critical patent/US7145277B2/en
Priority to JP2003518014A priority patent/JP4249014B2/ja
Priority to EP02755714A priority patent/EP1418657B1/en
Priority to DE60237693T priority patent/DE60237693D1/de
Publication of WO2003012956A1 publication Critical patent/WO2003012956A1/ja
Priority to US11/496,647 priority patent/US7259488B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings

Definitions

  • the present invention relates to a rotating electric machine applied to an FM motor (permanent magnet type synchronous motor) used for an electric vehicle and the like.
  • This motor is arranged in a housing (frame) 1 as shown in FIG. 13 and has a rotating shaft 7 rotatably supported by bearings 2 and 3 fixed to the housing 1.
  • a rotor (rotor) 4 integrally attached to the rotating shaft 7, and a stator (stater) 5 that is arranged to face the rotor 4 and is fixed to the housing 1.
  • the rotor 4 is composed of a disk 6 made of a ferromagnetic material such as iron.
  • a rotating shaft 7 is attached to the center of the disk 6, and both ends of the rotating shaft 7 are rotatably supported by bearings 2 and 3. ing.
  • N-pole magnets 8 and S-pole magnets 9 are alternately arranged in the circumferential direction on the surface of the disk 6 facing the stator 5.
  • the stator 5 includes an annular stator yoke 10 fixed to the housing 1 and a plurality of teeth 11 press-fitted into a plurality of holes 1OA provided in a circumferential direction of the stator yoke 10.
  • a winding 12 is wound around each tooth 11 to form a coil.
  • a motor is installed inside the wheels.
  • An in-wheel motor that realizes independent driving of wheels is used. Since this in-wheel motor includes a reduction gear, flattening and thinning are required.
  • the PM motor as described above can be used as an in-wheel motor with a speed reducer due to its thinness.
  • the reluctance torque cannot be used.
  • the range of usable rotational speed range Is narrow.
  • the axial gap type PM motor described above can also be used as a generator.
  • the motor when used in a vehicle such as a motorcycle, it can be configured as a generator that uses the driving force of the engine after the engine is started, in addition to the cell motor for starting the engine.
  • this is referred to as a self-powered generator.
  • a cell motor / generator is used as a generator when the engine is started and as a generator after the engine is started.
  • an object of the present invention is to provide a rotating electric machine that can utilize a reluctance torque when used as a motor, for example, and can contribute to expanding the range of its rotation speed region.
  • Another object of the present invention is to provide a rotating electric machine that can prevent overcharge during high-speed rotation and does not require a step-down circuit when configured as a cell motor / generator for a vehicle such as a motorcycle. Disclosure of the invention
  • the present invention includes: a stage having a plurality of coils disposed in a substantially circular shape around an axis; and a rotor rotatable around the axis with respect to the stay, wherein the rotor is a coil.
  • the rotor yoke is made of a disk-shaped ferromagnetic material, and has a concave portion and a convex portion facing the coil in the circumferential direction.
  • the N-pole magnets and the S-pole magnets were alternately arranged in the recesses.
  • a protrusion is formed between the N-pole magnet and the S-pole magnet on the rotor yoke side, and the protrusion faces the coil on the stay side.
  • the mouth-to-yoke-side protruding portion can generate a reluctance torque between the stator-side teeth (coil) and the motor speed range can be expanded.
  • the amount of magnets used can be reduced by that much as compared with the past, and production costs can be reduced.
  • the magnetic force of the magnet can be made weaker than before, but the reluctance torque can be generated as described above. Therefore, when the present invention is configured as a cell motor / generator for a vehicle such as a motorcycle, the reluctance torque can be used to increase the torque during low rotation (starting), and the magnet can be increased during high rotation.
  • the weak magnetic force prevents overcharging and eliminates the need for a step-down circuit.
  • the present invention includes: a stator having a plurality of coils arranged in a substantially circular shape around an axis; and a rotor rotatable around the axis with respect to the stator.
  • the rotor yoke is made of a disc-shaped ferromagnetic material and has a wavy region whose cross section repeats a concave portion and a convex portion in a circumferential direction thereof. Then, a magnet was arranged in the recess, and an N-pole magnet and an S-pole magnet were alternately arranged in the recess of the recess facing the coil.
  • a protrusion is formed between the N-pole magnet and the S-pole magnet on the rotor yoke side, and the protrusion faces the coil on the stator side.
  • the magnetic force of the magnet can be made weaker than before, but the reluctance torque can be generated as described above. Therefore, when the present invention is configured as a cell motor / generator for a vehicle such as a motorcycle, the reluctance torque can be used to increase the torque during low rotation (starting), and the magnet can be increased during high rotation. Weak magnetic force prevents overcharge and reduces voltage No circuit is required.
  • the rotor yoke does not face the coil, and a ferromagnetic member is further attached to the surface side.
  • the mechanical strength of the mouth yoke can be improved, and the magnetic flux leakage of the magnet can be prevented.
  • the present invention includes: a stay having a plurality of coils arranged in a substantially circular shape around an axis; and a rotor rotatable around the axis with respect to the stay, wherein the rotor is attached to the coil.
  • the rotor yoke is made of a disk-shaped ferromagnetic material, and has a N-pole in a circumferential direction on a surface facing the coil. Magnets and S-pole magnets are alternately mounted, and projections facing the teeth of the coil are provided at predetermined intervals in a circumferential direction of the outer peripheral portion of the rotor yoke.
  • the protrusion is provided on the outer peripheral portion of the rotor yoke. For this reason, when the present invention is used in a short time, the protruding portion on the rotor yoke side can generate reluctance torque with the teeth on the stator side, and the rotation speed region of the motor can be expanded.
  • the magnetic force of the magnet can be made weaker than before, but the reluctance torque can be generated as described above. Therefore, when the present invention is configured as a cell motor / generator for a vehicle such as a motorcycle, the reluctance torque can be used to increase the torque during low rotation (starting), and the magnet can be increased during high rotation.
  • the weak magnetic force prevents overcharging and eliminates the need for a step-down circuit.
  • the protruding portion is bent toward the stator side to form a bent portion.
  • a bent portion is provided on the outer peripheral portion of the rotor yoke. Caught. Therefore, when this embodiment is used as a motor, the bent portion on the yoke side of the mouth can generate reluctance torque between the teeth on the stator side, and the rotation speed region of the motor can be expanded. I can do it.
  • the present invention includes: a stay having a plurality of coils disposed in a substantially circular shape around an axis; and a rotor rotatable around the axis with respect to the stator.
  • the rotor is made of a rotor yoke having a gap in the axial direction facing the coil.
  • the rotor yoke is made of a disc-shaped ferromagnetic material, and a hollow portion into which a rotation shaft is press-fitted is formed integrally with the center of the rotor yoke.
  • an arc surface was formed at the tip of the hollow part.
  • the arc surface formed at the tip of the hollow portion can be used as a thrust receiver, and the rotor and the thrust receiver can be formed as an integral structure. Therefore, the rigidity of the structure for rotating the rotor can be improved.
  • FIG. 1 is a cross-sectional view showing the entire configuration of a first embodiment in which the rotating electric machine of the present invention is applied to an axial gap type motor.
  • FIG. 2 is a plan view of the rotor of FIG. 1 as viewed from a surface facing the stator.
  • FIG. 3 is a partial cross-sectional view of a main part of the rotor of FIG. 2 in a circumferential direction.
  • FIG. 4 is a plan view of a second embodiment in which the rotating electric machine of the present invention is applied to an axial gap type motor, in which the structure of the rotor is viewed from a surface facing the stator side.
  • FIG. 5 is a partial cross-sectional view of a main part of the rotor of FIG. 4 in the circumferential direction.
  • FIG. 6 is a sectional view of a main part showing a modification of the rotor shown in FIG.
  • FIG. 7 is a cross-sectional view showing an overall configuration of a third embodiment in which the rotating electric machine of the present invention is applied to an axial gear-type motor.
  • Figure 8 is a plan view from the surface facing the rotor of Figure 7 to the stator side 0
  • FIG. 9 is a cross-sectional view showing the entire configuration of a fourth embodiment in which the rotating electric machine of the present invention is applied to an axial gap type motor.
  • FIG. 10 is a plan view of the rotor of FIG. 9 viewed from a surface facing the stator.
  • FIG. 11 is a sectional view showing the overall configuration of a fifth embodiment in which the rotating electric machine of the present invention is applied to an axial gap type motor.
  • FIG. 12 is a plan view of the rotor of FIG. 11 viewed from a surface facing the stator.
  • FIG. 13 is a cross-sectional view showing a configuration of an example of a conventional axial gap type motor.
  • FIG. 14 is a plan view of a conventional rotor viewed from a surface facing the stator.
  • the motor according to the first embodiment is arranged in a housing 1 as shown in FIG. 1, and a rotating shaft rotatably supported by bearings 2 and 3 fixed to the housing 1. 7, a rotor 23 integrally attached to the rotating shaft 7, and a rotor 23 that is arranged to face the rotor 23. And a stator 5 fixed to the housing 1.
  • the stator 5 has a plurality of coils arranged substantially circularly (annularly) around the rotation shaft 7. That is, the stator 5 has an annular stator yoke 10 fixed to the housing 1, and a plurality of holes 1 OA are provided at predetermined intervals in a circumferential direction of the stator yoke 10. Teeth 11 are pressed into hole 1 OA. A winding 12 is wound around each tooth 11, and the teeth 11 and the winding 12 form a coil.
  • the rotor 23 includes a disk-shaped rotor yoke 26 made of a ferromagnetic material such as iron.
  • a rotary shaft 7 is attached to the center of the yoke 26, and both ends of the rotary shaft 7 are bearings 2. It is rotatably supported by 3.
  • the portion of the surface of the yoke 26 facing the stator 5 other than the center has a concave portion 27 facing the circumferential direction, as shown in FIG.
  • the projections 28 are provided alternately.
  • N-pole magnets 29 and S-pole magnets 30 are alternately arranged and fixed in the respective recesses 27.
  • the N-pole magnets 29 and the S-pole magnets 30 are alternately arranged on the rotor yoke 26, and the protrusions 28 are provided between the magnets 29 and 30.
  • the projections 28 are formed so as to face the teeth 11 on the stator 5 side.
  • the protrusions 28 are provided on the rotor yoke 26, the amount of magnets used can be reduced by that much as compared with the conventional case, and the production cost can be reduced. .
  • the first embodiment is used for a vehicle such as a motorcycle.
  • it can be configured as a cell motor and generator.
  • it can be used as a starter motor when the engine is started, and as a generator after the start.
  • the magnetic force of the magnets 29 and 30 can be made weaker than before, but the reluctance torque can be generated as described above.
  • the first embodiment when configured as a cell motor / generator for a vehicle such as a two-wheeled vehicle, high torque can be achieved by using reluctance torque during low rotation (starting), and further during high rotation.
  • the weak magnetic force of the magnets 29 and 30 prevents overcharging and eliminates the need for a step-down circuit.
  • FIGS. 1-10 a configuration of a second embodiment in which the rotating electric machine of the present invention is applied to an axial gap type motor will be described with reference to FIGS.
  • the motor according to the second embodiment is obtained by replacing the rotor 23 of the motor according to the first embodiment with a rotor 33 as shown in FIGS. Since this is the same as the motor according to the first embodiment, the configuration of that part and its description are omitted.
  • the rotor 33 includes a circular rotor yoke 36 made of a ferromagnetic material such as iron, and a rotation shaft 7 is attached to the center of the rotor yoke 36.
  • the rotor yoke 36 has a corrugated region formed in the circumferential direction except for the center.
  • This waveform region has a waveform in which the cross section in the circumferential direction repeats a concave portion and a convex portion (see FIG. 5). Therefore, in the circumferential direction of the corrugated region, as shown in FIG. 5, concave portions 37 and convex portions 38 are alternately formed on the upper surface side, and the lower surface facing the stator (not shown). Concave portions 39 and convex portions 40 are alternately formed on the side.
  • magnets 41.42 are arranged and fixed in the concave portions 37, 39 on both sides of the corrugated region.
  • the lower side recess 3 9 Each of the magnets 42 arranged therein is configured to alternately form (magnetize) the N pole and the S pole.
  • the magnets 41 and 42 are preferably magnetized in a very anisotropic manner.
  • the convex portion 40 is arranged between the N-pole magnet and the S-pole magnet on the surface of the rotor yoke 36 facing the stator. Therefore, according to the second embodiment, in addition to the torque generated by the magnets 42, the protrusions 40 on the rotor yoke 36 side and the stator Since reluctance torque is generated between the teeth on the side, the motor speed range can be expanded.
  • the rotor yoke is inexpensively formed by pressing.
  • the magnetic force of the magnets 41 and 42 can be weakened, but the reluctance torque can be generated as described above.
  • the first embodiment when configured as a cell motor / generator for a vehicle such as a two-wheeled vehicle, high torque can be achieved by using reluctance torque during low rotation (starting), and further during high rotation. Since the magnets 41 and 42 have weak magnetic force, overcharge can be prevented, and a step-down circuit is not required.
  • the rotor 45 shown in FIG. 6 has a disk-shaped core 46 made of a ferromagnetic material integrally fixed on the upper surface side of the rotor 33 shown in FIGS. As a result, the mechanical strength of the rotor 3 3 can be improved and the magnet 3
  • the flux leakage of 4 4 2 can be prevented.
  • the motor according to the third embodiment is arranged in a housing 1 as shown in FIG. 7, and includes a rotating shaft 7 rotatably supported by bearings 2 and 3 fixed to the housing 1.
  • a rotor 53 is integrally mounted on the rotating shaft 7, and a stator 5 is disposed opposite the rotor 53 and is fixed to the housing 1.
  • the rotor 53 includes a disk-shaped rotor yoke 56 made of a ferromagnetic material such as iron.
  • a rotation shaft 7 is mounted at the center of the rotor yoke 56, and both ends of the rotation shaft 7 are supported by bearings 2 and 3. It is rotatably supported.
  • the portion of the surface of the rotor yoke 56 facing the stator 5 other than the central portion and the peripheral portion (the portion facing the coil of the stator 5) has a circumferential direction.
  • the N-pole magnets 59 and the S-pole magnets 60 are alternately arranged and mounted.
  • the outer periphery of the rotor yoke 56 and each position intersecting the extension line of the boundary between the N-pole magnet 59 and the S-pole magnet 60 are provided in the radial direction.
  • the protrusions 58 are provided integrally with the rotor yoke 56. Each of the protrusions 58 is for generating a reluctance torque with the stator 5.
  • the configuration of the stator 5 is basically the same as the configuration of the stator 5 shown in FIG. A protruding portion 11 A for generating reluctance torque is provided in opposition to portion 58.
  • the protrusions 58 are formed on the outer peripheral portion of the rotor yoke 56, and the protrusions 58 are opposed to the protrusions 11A of the teeth 11 on the stator 5 side. Become. Therefore, according to the third embodiment, the magnet 5 In addition to the torque generated by 9, 60, a reluctance torque is generated between the protrusions 58 of the rotor yoke 56 and the protrusions 11A of the teeth 11 on the stator 5 side. The area can be enlarged.
  • the protruding portion 58 is provided on the outer peripheral portion of the rotor yoke 56, the phase with the magnets 59, 60 can be optimized.
  • the magnetic force of the magnets 59 and 60 can be reduced, but the reluctance torque can be generated as described above.
  • the first embodiment when configured as a cell motor / generator for a vehicle such as a two-wheeled vehicle, high torque can be achieved by using reluctance torque during low rotation (starting), and further during high rotation.
  • the weak magnetic force of the magnets 59 and 60 prevents overcharging and eliminates the need for a step-down circuit.
  • the module according to the fourth embodiment is arranged in a housing 1 as shown in FIG. 9, and is rotatably supported by bearings 2 and 3 fixed to the housing 1. 7, a rotor 63 integrally attached to the rotating shaft 7, and a stator 5 arranged to face the rotor 63 and fixed to the housing 1.
  • the rotor 63 includes a disk-shaped rotor yoke 66 made of a ferromagnetic material such as iron.
  • a rotating shaft 7 is mounted at the center of the rotor yoke 66, and both ends of the rotating shaft 7 are supported by bearings 2 and 3. It is rotatably supported.
  • the portion of the surface of the rotor yoke 6 6 facing the stator 5 other than the central portion and the peripheral portion (the portion facing the coil of the stator 5) has a circumferential direction.
  • the N-pole magnet 69 and the S-pole magnet 70 are alternately arranged and attached. As shown in FIG. 9 and FIG.
  • bent portions 68 bent substantially at right angles toward the stator 5 side are provided integrally with the rotor yoke 66.
  • Each of the bent portions 68 is for generating reluctance torque with the teeth of the stator 5.
  • the stator 5 is basically the same as the configuration of the stator 5 shown in FIG. 1 except that the mouth-evening yoke 6 6 is provided with a bent portion 68 so that each tooth 11 1 It is formed so as to generate reluctance torque in opposition to the bent portion 68.
  • the bent portions 68 are formed in the rotor yoke 66, and each bent portion 68 faces the teeth 11 on the stator 5 side. For this reason, according to the fourth embodiment, in addition to the torque generated by the magnets 69, 70, the reluctance torque between the bent portion 68 of the rotor yoke 66 and the teeth 11 on the stator 5 side is set. , The motor speed range can be expanded.
  • the bent portion 68 is provided on the outer peripheral portion of the rotor yoke 66, the phase with the magnets 69, 70 can be optimized.
  • a bent portion 68 is formed in the rotor yoke 66 to generate reluctance torque, so that the diameter of the rotor 63 can be reduced as compared with the third embodiment. As a result, the diameter of the entire motor can be reduced.
  • the magnetic force of the magnets 69 and 70 can be reduced, but the reluctance torque can be generated as described above.
  • the first embodiment is also used as a cell motor for vehicles such as motorcycles.
  • high torque can be achieved by using reluctance torque at low rotations (starting), and at high rotations, the magnets 69 and 70 have weak magnetic force, which prevents overcharging.
  • the step-down circuit becomes unnecessary.
  • FIG. 11 a configuration of a fifth embodiment in which the rotating electric machine of the present invention is applied to an axial gap type motor will be described with reference to FIGS. 11 and 12.
  • the motor according to the fifth embodiment is shown in FIG.
  • the rotor 73 is rotatably supported by bearings 2 and 3 fixed to the housing 1 and is disposed inside the housing 1 as shown in FIG.
  • a stator 5 that is arranged and fixed to the housing 1.
  • the rotor 73 includes a mouth yoke 76 and a rotating shaft 7 as shown in FIGS. 11 and 12.
  • the rotor yoke 76 is made entirely of a ferromagnetic material such as iron and is formed in a disk shape, and a hollow portion 74 into which the rotating shaft 7 is press-fitted is provided at the center thereof.
  • a hemispherical portion (arc surface) 75 is formed in a body, and this hemispherical portion 75 is used for receiving a thrust of the rotor 73.
  • the hollow portion 74 and the hemispherical portion 75 are formed by drawing when, for example, the rotor yoke 76 is integrally formed. Further, the hemispherical portion 75 is quenched to increase the mechanical strength.
  • the rotating shaft 7 is integrally mounted on the center of the rotor yoke 76 by being pressed into the hollow portion 74.
  • One end of the rotating shaft 7 and one end of the hollow portion 7 4 are supported by bearings 2 and 3, respectively, and the hemispherical portion 75 is arranged to receive a thrust of the rotor yoke 76.
  • stator 5 As shown in Fig. 11 and Fig. 12, on the surface of the rotor yoke 76 facing the stator 5 except for the central part, as shown in Figs. 79 and S pole magnets 80 are alternately arranged and attached. Since the configuration of the stator 5 is the same as that of the stator 5 shown in FIG. 1, the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the hemispherical portion 75 integrally formed at the tip of the hollow portion 74 can be used as a thrust receiver, and the rotor yoke 7
  • the rotor 73 in the fifth embodiment is based on the conventional rotor 4 shown in FIG. 13 and further includes a hollow portion 74 and a hemispherical portion 75.
  • the rotor 23, 33, 45, 53, 63 of the first embodiment to the fourth embodiment is basically used, and the hollow portion 74 as in the fifth embodiment is further replaced with the hollow portion 74.
  • a configuration in which hemispherical portions 75 are added may be adopted.
  • the rotating electric machine of the present invention is applied to an axial gap type motor (electric motor) and the case where the rotating electric machine is configured as a cell motor / generator for a vehicle such as a motorcycle.
  • the rotating electric machine of the present invention can also be applied as a generator of the same type as described above, and the configuration of each generator in that case is substantially the same as the configuration of each of the above embodiments.
  • the convex portion on the one yoke side can generate a relaxation torque between the teeth (coil) on the stator side, and
  • the rotation speed region can be enlarged.
  • the reluctance torque is utilized during low rotation (starting).
  • the motor can be used to increase the torque, and at high rotations, the magnetic force of the magnet is weak, preventing overcharging and eliminating the need for a step-down circuit.

Description

技術分野
本発明は、 電気自動車などに使用される F Mモータ (永久磁石型同期 モータ) などに適用される回転電機に関するものである。
明 背景技術 田
従来、 アキシャルギャップ型の P Mモータの一例としては、 図 1 3に 示すようなものが知られている。
このモータは、 図 1 3に示すようにハウジング (フレーム) 1内に配 置されるようになっており、 ハウジング 1に固定される軸受け 2、 3に より回転自在に支持される回転軸 7と、 回転軸 7に一体に取り付けられ た回転子 (ロータ) 4と、 この回転子 4に対向して配置されるとともに ハウジング 1に固定される固定子 (ステ一タ) 5と、 を備えている。 回転子 4は、 鉄などの強磁性材料からなる円板 6からなり、 この円板 6の中心に回転軸 7が取り付けられ、 回転軸 7の両端が軸受け 2、 3に より回転自在に支持されている。 円板 6の固定子 5と対向する面には、 図 1 4に示すように、 円周方向に向けて N極の磁石 8と S極の磁石 9と が交互に配置されている。
固定子 5は、 ハウジング 1に固定される環状のステ一タヨーク 1 0と 、 このステータヨーク 1 0の円周方向に設けた複数の孔 1 O A内に圧入 されている複数のティース 1 1 とを備え、 各ティース 1 1には巻線 1 2 が卷かれてコイルを形成している。
ところで、 電気自動車では、 車輪の内部にモータを取付けることによ つて車輪の独立駆動を実現するィンホイールモータが使用されている。 このインホイールモー夕は、 減速機まで含まれるので、 偏平化、 薄型化 が求められている。 上記のような P Mモータは、 薄型のためにその減速 機付きのィンホイールモータとして利用可能である。
しかし、 上記のような従来のアキシャルギャップ型の F Mモ一夕では 、 リラクタンストルクを利用することができないので、 例えば電動自動 車のィンホイールモータとして使用した場合に、 使用できる回転数領域 の範囲が狭いという不具合がある。
ところで、 上記のアキシャルギャップ型の P Mモータは、 発電機とし ても使用可能である。
従って、 そのモータは、 二輪車などの乗り物に使用する場合に、 ェン ジンを始動させるためのセルモータの他に、 エンジンの始動後はェンジ ンの駆動力を利用した発電機として構成できる。 以下、 これをセルモー 夕兼発電機という。
つまり、 セルモータ兼発電機は、 エンジンの始動時にはセルモ一夕と して、 その始動後は発電機として使用するものをいう。
アキシャルギャップ型のモータを、 上記のようにセルモータ兼発電機 として使用する場合には、 エンジンの始動時は高トルクが必要である。 高トルクを実現するための方法として、 モータの磁石の磁力を強くする ことが一般的である。
従来のアキシャルギヤップ型のモータでは、 リラクタンストルクが期 待できないので、 始動時に高トルクを実現するには、 磁石の磁力を強く するしかなかった。
しかし、 この場合にセルモータ兼発電機として使用すると、 一旦ェン ジンがかかってしまうと発電機として使用するので、 高トルクである必 要はない。 むしろモー夕を高トルクとするために磁力を強くすると、 高 回転で発電した際に、 過充電の可能性があり、 バッテリを保護するため に降圧回路が必要となる。
つまり、 アキシャルギャップ型のモ一夕でセルモータ兼発電機 構成 しょうとすると、 低回転時 (始動時) に高トルクとしたいので磁石の磁 力を強く したい。 しかし、 高速回転時には過充電を抑えたいので、 むし ろ磁石の磁力を弱めたい、 という相反することになる。
そこで、 本発明の目的は、 例えばモータとして使用した場合に、 リラ クタンストルクを利用でき、 その回転数領域の範囲の拡大化を図ること に貢献できる、 回転電機を提供することにある。
また、 本発明の他の目的は、 二輪車などの乗り物のセルモータ兼発電 機として構成した場合に、 高速回転時における過充電を防止でき、 降圧 回路が不要となる回転電機を提供することにある。 発明の開示
本発明は、 軸周りに略円形に配設された複数のコイルを有するステ一 夕と、 前記ステ一夕に対して前記軸回りに回転可能な回転子とを備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有するロータョ ークからなり、 前記ロータヨークは、 円板状の強磁性材料からなるとと もに、 前記コイルと対向する面に円周方向に向けて凹部と凸部を交互に 設け、 前記凹部内に N極の磁石と S極の磁石を交互に配置した。
このような構成からなる本発明によれば、 ロータヨーク側には、 N極 の磁石と S極の磁石との間に凸部が形成され、 この凸部がステ一夕側の コイルと対向する。 このため、 本発明をモータとした場合には、 その口 —タヨーク側の凸部が固定子側のティース (コイル) との間でリラクタ ンストルクを発生でき、 モータの回転数領域の拡大化が図れる。
また、 本発明によれば、 ロータヨークに凸部を設けるようにしたので 、 従来に比べてその分だけ磁石の使用量を軽減でき、 制作費用の低減化 を実現できる。
また、 本発明によれば、 磁石の磁力を従来よりも弱くすることができ るが、 上記のようにリラクタンストルクを発生できる。 このため、 本発 明を二輪車などの乗り物のセルモータ兼発電機として構成した場合には 、 低回転時 (始動時) はリラクタンストルクを利用して高トルク化が図 れ、 さらに高回転時には磁石の磁力が弱いため過充電を防止でき、 降圧 回路が不要となる。
さらに、 本発明は、 軸周りに略円形に配設された複数のコイルを有す るステータと、 前記ステ一タに対して前記軸回りに回転可能な回転子と を備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有する ロータヨークからなり、 前記ロータヨークは、 円板状の強磁性材料から なるとともに、 その周方向には断面が凹部と凸部を繰り返す波型領域を 形成し、 前記凹部内に磁石を配置するとともに、 前記凹部のうち前記コ ィルと対向する面側の凹部内には、 N極の磁石と S極の磁石を交互に配 置した。
このような構成からなる本発明によれば、 ロータヨーク側には、 N極 の磁石と S極の磁石の間に凸部が形成され、 この凸部がステータ側のコ ィルと対向する。 このため、 本発明をモータとした場合には、 ロータョ 一ク側の凸部が固定子側のティ一スとの間でリラクタンストルクを発生 でき、 モータの回転数領域の拡大化が図れる。
また、 本発明によれば、 磁石の磁力を従来よりも弱くすることができ るが、 上記のようにリラクタンストルクを発生できる。 このため、 本発 明を二輪車などの乗り物のセルモータ兼発電機として構成した場合には 、 低回転時 (始動時) はリラクタンストルクを利用して高トルク化が図 れ、 さらに高回転時には磁石の磁力が弱いため過充電を防止でき、 降圧 回路が不要となる。
本発明の実施態様として、 前記ロータヨークは、 前記コイルと対向し なし、面側にさらに強磁性体部材を取り付けた。
このような構成からなる実施態様によれば、 口一夕ヨークの機械的な 強度の向上が図れるとともに、 磁石の磁束もれが防止できる。
本発明は、 軸周りに略円形に配設された複数のコイルを有するステー 夕と、 前記ステ一夕に対して前記軸回りに回転可能な回転子とを備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有するロータョ —クからなり、 前記ロータヨークは、 円板状の強磁性材料からなるとと もに、 前記コイルと対向する面には円周方向に向けて N極の磁石と S極 の磁石とを交互に取り付け、 かつ、 前記ロータヨークの外周部の周方向 の所定位置に、 前記コイルのティースと対向する突出部を所定間隔で設 けた。
このように本発明では、 ロータヨークの外周部に突出部を設けるよう にした。 このため、 本発明をモ一夕とした場合には、 そのロータヨーク 側の突出部が固定子側のティースとの間でリラクタンストルクを発生で き、 モータの回転数領域の拡大化が図れる。
また、 本発明によれば、 磁石の磁力を従来よりも弱くすることができ るが、 上記のようにリラクタンストルクを発生できる。 このため、 本発 明を二輪車などの乗り物のセルモータ兼発電機として構成した場合には 、 低回転時 (始動時) はリラクタンストルクを利用して高トルク化が図 れ、 さらに高回転時には磁石の磁力が弱いため過充電を防止でき、 降圧 回路が不要となる。
本発明の実施態様として、 前記突出部は、 前記ステ一タ側に向けて折 り曲げて折り曲げ部とした。
この実施態様によれば、 ロータヨークの外周部に折曲げ部を設けるよ うにした。 このため、 この実施態様をモータとした場合には、 その口一 夕ヨーク側の折曲げ部が固定子側のティースとの間でリラクタンストル クを発生でき、 モータの回転数領域の拡大化が図れる。
さらに、 本発明は、 軸周りに略円形に配設された複数のコイルを有す るステ一夕と、 前記ステ一タに対して前記軸回りに回転可能な回転子と を備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有する ロータヨークからなり、 前記ロータヨークは、 円板状の強磁性材料から なり、 その中央に回転軸が圧入される中空部をを一体に形成するととも に、 前記中空部の先端に円弧面を形成した。
このような構成からなる本発明によれば、 中空部の先端に形成した円 弧面をスラスト受けとして使用できる上に、 回転子とそのスラスト受け を一体の構造とすることができる。 このため、 回転子を回転するための 構造の剛性を向上できる。 図面の簡単な説明
図 1は、 本発明の回転電機をアキシャルギヤップ型のモータに適用し た第 1実施形態の全体の構成を示す断面図である。
図 2は、 図 1の回転子を固定子側に対向する面から見た平面図である 図 3は、 その図 2の回転子の要部の円周方向の部分的な断面図である 図 4は、 本発明の回転電機をアキシャルギヤップ型のモータに適用し た第 2実施形態であって、 そのうちの回転子の構造を固定子側に対向す る面から見た平面図である。
図 5は、 その図 4の回転子の要部の円周方向の部分的な断面図である 図 6は、 図 4に示す回転子の変形例を示す要部の断面図である。 図 7は、 本発明の回転電機をアキシャルギヤップ型のモータに適用し た第 3実施形態の全体の構成を示す断面図である。
図 8は、 図 7の回転子を固定子側に対向する面から見た平面図である 0
図 9は、 本発明の回転電機をアキシャルギヤップ型のモータに適用し た第 4実施形態の全体の構成を示す断面図である。
図 1 0は、 図 9の回転子を固定子側に対向する面から見た平面図であ る。
図 1 1は、 本発明の回転電機をアキシャルギャップ型のモータに適用 した第 5実施形態の全体の構成を示す断面図である。
図 1 2は、 図 1 1の回転子を固定子側に対向する面から見た平面図で ¾る。
図 1 3は、 従来のアキシャルギャップ型のモータの一例の構成を示す 断面図である。
図 1 4は、 従来の回転子を固定子側に対向する面から見た平面図であ る。 発明を実施するための最良の形態
以下、 本発明の実施形態について図面を参照して説明する。
本発明の回転電機をアキシャルギヤップ型のモータに適用した第 1実 施形態の構成について、 図 1〜図 3を参照して説明する。
この第 1実施形態に係るモ一タは、 図 1に示すようにハウジング 1内 に配置されるようになつており、 ハウジング 1に固定される軸受け 2、 3により回転自在に支持される回転軸 7と、 この回転軸 7に一体に取り 付けられた回転子 2 3と、 この回転子 2 3に対向して配置されるととも にハウジング 1に固定される固定子 5と、 を備えている。
固定子 5は、 回転軸 7の軸回り方向に略円形 (環状) 配設された複数 のコイルを有している。 すなわち、 固定子 5は、 ハウジング 1に固定さ れる環状のステ一タヨーク 1 0を有し、 このステ一夕ヨーク 1 0の円周 方向に所定間隔で複数の孔 1 O Aが設けられ、 この各孔 1 O A内にティ ース 1 1が圧入されている。 そして、 各ティース 1 1には卷線 1 2が卷 かれ、 ティース 1 1 と卷線 1 2によりコイルを形成している。
回転子 2 3は、 鉄などの強磁性材料からなる円板状のロータヨーク 2 6からなり、 この口一夕ヨーク 2 6の中心に回転軸 7が取り付けられ、 回転軸 7の両端が軸受け 2、 3により回転自在に支持されている。 口一 タヨーク 2 6の固定子 5と対向する面のうち、 中央を除く部分 (固定子 5のコイルと対向する部分) には、 図 3に示すように、 円周方向に向け て凹部 2 7と凸部 2 8とが交互に設けられている。 その各凹部 2 7内に は、 図 2および図 3に示すように、 N極の磁石 2 9と S極の磁石 3 0と が交互に配置され、 固定されている。
このように第 1実施形態では、 ロータヨーク 2 6に N極の磁石 2 9と S極の磁石 3 0とが交互に配置され、 その磁石 2 9と磁石 3 0との間に 凸部 2 8が形成され、 この各凸部 2 8が固定子 5側のティース 1 1 と対 向するようになる。 このため、 この第 1実施形態によれば、 磁石 2 9、 3 0により発生するトルクの他に、 ロータヨーク 2 6側の凸部 2 8と固 定子 5側のティース 1 1 (コイル) との間にリラクタンストルクが発生 するので、 モータの回転数領域の拡大化が図れる。
また、 この第 1実施形態によれば、 ロータヨーク 2 6に凸部 2 8を設 けるようにしたので、 従来に比べてその分だけ磁石の使用量を軽減でき 、 制作費用の低減化を実現できる。
ところで、 この第 1実施形態は、 二輪車などの乗り物に使用する場合 に、 セルモータ兼発電機として構成できる。 つまり、 エンジンの始動時 にはセルモータとして、 その始動後は発電機として使用できる。
一方、 この第 1実施形態は、 磁石 2 9、 3 0の磁力を従来よりも弱く することができるが、 上記のようにリラクタンストルクを発生すること ができる。
このため、 この第 1実施形態を二輪車などの乗り物のセルモータ兼発 電機として構成した場合には、 低回転時 (始動時) はリラクタンストル クを利用して高トルク化が図れ、 さらに高回転時には磁石 2 9、 3 0の 磁力が弱いため過充電を防止でき、 降圧回路が不要となる。
次に、 本発明の回転電機をアキシャルギャップ型のモ一夕に適用した 第 2実施形態の構成について、 図 4および図 5を参照して説明する。 この第 2実施形態に係るモータは、 第 1実施形態に係るモータの回転 子 2 3を図 4および図 5に示すような回転子 3 3に代えたものであり、 他の部分の構成は第 1実施形態に係るモータと同一であるので、 その部 分の構成とその説明は省略する。
この回転子 3 3は、 図 4に示すように、 鉄などの強磁性材料からなる 円形状のロータヨーク 3 6からなり、 このロータヨーク 3 6の中心に回 転軸 7が取付けられている。
ロータヨーク 3 6は、 中央を除く円周方向に、 波形領域が形成されて いる。 この波形領域は、 その円周方向の断面が凹部と凸部を繰り返す波 型からなっている (図 5参照) 。 従って、 波形領域の円周方向には、 図 5に示すように、 上面側に凹部 3 7と凸部 3 8とが交互に形成されると ともに、 固定子 (図示せず) と対向する下面側に凹部 3 9と凸部 4 0と が交互に形成される。
その波形領域の両面の凹部 3 7、 3 9内には、 図 5に示すように磁石 4 1 . 4 2が配置されて、 固定されている。 さらに、 下面側の凹部 3 9 内に配置した各磁石 4 2は、 N極と S極とを交互に形成 (着磁) するよ うにした。 ここで、 磁石 4 1、 4 2は、 極異方状に着磁するのが好まし い。
このように第 2実施形態によれば、 ロータヨーク 3 6の固定子と対向 する面側において、 N極の磁石と S極の磁石との間に凸部 4 0が配置さ れ、 この凸部 4 0が対応する固定子のティースと対向できるようになる このため、 この第 2実施形態によれば、 磁石 4 2により発生するトル クの他に、 ロータヨーク 3 6側の凸部 4 0と固定子側のティースとの間 にリラクタンストルクが発生するので、 モータの回転数領域の拡大化が 図れる。
また、 第 2実施形態によれば、 プレス加工により安価にロータヨーク
3 6を生産できる。
さらに、 この第 2実施形態は、 磁石 4 1、 4 2の磁力を弱くすること ができるが、 上記のようにリラクタンストルクを発生できる。
このため、 この第 1実施形態を二輪車などの乗り物のセルモータ兼発 電機として構成した場合には、 低回転時 (始動時) はリラクタンストル クを利用して高トルク化が図れ、 さらに高回転時には磁石 4 1、 4 2の 磁力が弱いため過充電を防止でき、 降圧回路が不要となる。
次に、 回転子 3 3の変形例について、 図 6を参照して説明する。 図 6に示す回転子 4 5は、 図 4および図 5に示す回転子 3 3の上面側 に、 強磁性体からなる円板状のコア 4 6を一体に固定したものである。 これにより、 回転子 3 3の機械的な強度の向上が図れるとともに、 磁石
4 4 2の磁束もれが防止できる。
なお、 回転子 4 5の他の部分の構成は回転子 3 3と同様であるので、 同一構成要素には同一符号を付してその説明は省略する。 次に、 本発明の回転電機をアキシャルギャップ型のモータに適用した 第 3実施形態の構成について、 図 7および図 8を参照して説明する。 この第 3実施形態に係るモータは、 図 7に示すようにハウジング 1内 に配置されるようになっており、 ハウジング 1に固定される軸受け 2、 3により回転自在に支持される回転軸 7と、 この回転軸 7に一体に取り 付けられた回転子 5 3と、 この回転子 5 3に対向して ffi置されるととも にハウジング 1に固定される固定子 5と、 を備えている。
回転子 5 3は、 鉄などの強磁性材料からなる円板状のロータヨーク 5 6からなり、 このロータヨーク 5 6の中心に回転軸 7が取付けられ、 回 転軸 7の両端が軸受け 2、 3により回転自在に支持されている。 ロータ ヨーク 5 6の固定子 5と対向する面のうち、 中央部と周縁部とを除く部 分 (固定子 5のコイルと対向する部分) には、 図 8に示すように、 円周 方向に向けて N極の磁石 5 9と S極の磁石 6 0とが交互に配置され、 取 り付けられている。
また、 図 7および図 8に示すように、 ロータヨーク 5 6の外周部であ つて、 N極の磁石 5 9と S極の磁石 6 0の境界部の延長線と交差する各 位置に、 半径方向に向けて突出部 5 8がロータヨーク 5 6と一体にそれ ぞれ設けられている。 その各突出部 5 8は、 固定子 5との間でリラクタ ンストルクを発生させるためのものである。
固定子 5は、 図 1に示す固定子 5の構成と基本的に同様であるが、 口 一夕ヨーク 5 6に突出部 5 8を設けたので、 これに伴い各ティース 1 1 に、 その突出部 5 8と対向してリラクタンストルクを生成するための突 部 1 1 Aがさらに追加されて設けられている。
このように第 3実施形態では、 ロータヨーク 5 6の外周部に突出部 5 8が形成され、 この各突出部 5 8が固定子 5側のティース 1 1の突部 1 1 Aと対向するようになる。 このため、 第 3実施形態によれば、 磁石 5 9、 6 0により発生するトルクの他に、 ロータヨーク 5 6の突出部 5 8 と固定子 5側のティース 1 1の突部 1 1 Aとの間にリラクタンストルク が発生するので、 モータの回転数領域の拡大化が図れる。
また、 この第 3実施形態では、 ロータヨーク 5 6の外周部に突出部 5 8を設けるようにしたので、 磁石 5 9、 6 0との位相を最適化すること ができる。
さらに、 この第 3実施形態は、 磁石 5 9、 6 0の磁力を弱くすること ができるが、 上記のようにリラクタンストルクを発生できる。
このため、 この第 1実施形態を二輪車などの乗り物のセルモータ兼発 電機として構成した場合には、 低回転時 (始動時) はリラクタンストル クを利用して高トルク化が図れ、 さらに高回転時には磁石 5 9、 6 0の 磁力が弱いため過充電を防止でき、 降圧回路が不要となる。
次に、 本発明の回転電機をアキシャルギヤップ型のモータに適用した 第 4実施形態の構成について、 図 9及び図 1 0を参照して説明する。
この第 4実施形態に係るモ一夕は、 図 9に示すようにハウジング 1内 に配置されるようになっており、 ハウジング 1に固定される軸受け 2、 3により回転自在に支持される回転軸 7と、 回転軸 7に一体に取り付け られた回転子 6 3と、 この回転子 6 3に対向して配置されるとともにハ ウジング 1に固定される固定子 5と、 を備えている。
回転子 6 3は、 鉄などの強磁性材料からなる円板状のロータヨーク 6 6からなり、 このロータヨーク 6 6の中心に回転軸 7が取付けられ、 回 転軸 7の両端が軸受け 2、 3により回転自在に支持されている。 ロータ ヨーク 6 6の固定子 5と対向する面のうち、 中央部と周縁部とを除く部 分 (固定子 5のコイルと対向する部分) には、 図 1 0に示すように、 円 周方向に向けて N極の磁石 6 9と S極の磁石 7 0とが交互に配置され、 取り付けられている。 また、 図 9および図 1 0に示すように、 口一夕ヨーク 6 6の外周部で あって、 N極の磁石 6 9と S極の磁石 7 0の境界部の延長線と交差する 各位置に、 固定子 5側に向けてほぼ直角に折り曲げた折曲げ部 6 8が、 ロータヨーク 6 6に一体にそれぞれ設けられている。 その各折曲げ部 6 8は、 固定子 5のティースとの間でリラクタンストルクを発生させるた めのものである。
固定子 5は、 図 1に示す固定子 5の構成と基本的に同様であるが、 口 —夕ヨーク 6 6に折曲げ部 6 8を設けたので、 これに伴い各ティース 1 1は、 その折曲げ部 6 8と対向してリラクタンストルクを発生するよう に形成されている。
このように第 4実施形態では、 ロータヨーク 6 6に折曲げ部 6 8が形 成され、 この各折曲げ部 6 8が固定子 5側のティース 1 1 と対向するよ うになつている。 このため、 第 4実施形態によれば、 磁石 6 9、 7 0に より発生するトルクの他に、 ロータヨーク 6 6の折曲げ部 6 8と固定子 5側のティース 1 1 との間にリラクタンストルクが発生するので、 モ一 夕の回転数領域の拡大化が図れる。
また、 この第 4実施形態では、 ロータヨーク 6 6の外周部に折曲げ部 6 8を設けるようにしたので、 磁石 6 9、 7 0との位相を最適化するこ とができる。
さらに、 第 4実施形態では、 ロータヨーク 6 6に折曲げ部 6 8を形成 してリラクタンストルクを発生するようにしたので、 第 3実施形態に比 ベて回転子 6 3の径を小さくでき、 これによりモータ全体の径を小さく することができる。
さらにまた、 この第 4実施形態は、 磁石 6 9、 7 0の磁力を弱くする ことができるが、 上記のようにリラクタンストルクを発生できる。
このため、 この第 1実施形態を二輪車などの乗り物のセルモータ兼発 電機として構成した場合には、 低回転時 (始動時) はリラクタンストル クを利用して高トルク化が図れ、 さらに高回転時には磁石 6 9、 7 0の 磁力が弱いため過充電を防止でき、 降圧回路が不要となる。
次に、 本発明の回転電機をアキシャルギャップ型のモータに適用した 第 5実施形態の構成について、 図 1 1および図 1 2を参照して説明する この第 5実施形態に係るモータは、 図 1 1に示すようにハウジング 1 内に配置されるようになっており、 ハウジング 1に固定される軸受け 2 、 3により回転自在に支持される回転子 7 3と、 この回転子 7 3に対向 して配置されるとともにハウジング 1に固定される固定子 5とを備えて いる。
回転子 7 3は、 図 1 1および図 1 2に示すように、 口一夕ヨーク 7 6 と回転軸 7とからなる。 ロータヨーク 7 6は、 全体が鉄などの強磁性材 料からなり円板状に形成され、 その中央に回転軸 7が圧入される中空部 7 4がー体に設けられている。 その中空部 7 4の先端には、 半球状部 ( 円弧面) 7 5がー体に形成され、 この半球状部 7 5を回転子 7 3のスラ スト受けに使用するようになっている。
ここで、 中空部 7 4と半球状部 7 5は、 例えばロータヨーク 7 6を一 体で成形する際に、 絞り加工により形成するものとする。 また、 半球状 部 7 5は機械的強度を増すために焼き入れを行う。
回転軸 7は、 その中空部 7 4内に圧入することにより、 ロータヨーク 7 6の中心に一体に取付けられている。 回転軸 7の一端側と中空部 7 4 の一端側とが軸受 2、 3によりそれぞれ支持されるとともに、 半球状部 7 5がロータヨーク 7 6のスラスト受けとなるように配置される。
ロー夕ヨーク 7 6の固定子 5と対向する面のうち、 中央部を除く部分 には、 図 1 1および図 1 2に示すように、 円周方向に向けて N極の磁石 7 9と S極の磁石 8 0とが交互に配置され、 取り付けられている。 固定子 5は、 図 1に示す固定子 5の構成と同様であるので、 同一の構 成要素には同一符号を付してその説明は省略する。
このように第 5実施形態によれば、 中空部 7 4の先端に一体に形成し た半球状部 7 5をスラスト受けとして使用できる上に、 ロータヨーク 7
6とそのスラスト受けを一体の構造とすることができる。 このため、 回 転子 7 3を回転するための構造の剛性を向上できる。
なお、 第 5実施形態における回転子 7 3は、 図 1 3に示す従来の回転 子 4を基本にし、 さらに中空部 7 4と半球状部 7 5を追加する構成とし た。
しかし、 これに代えて、 第 1実施形態〜第 4実施形態の回転子 2 3、 3 3、 4 5、 5 3、 6 3を基本にし、 さらに第 5実施形態のような中空 部 7 4と半球状部 7 5を追加するような構成にしても良い。
また、 上記の第 1〜第 5の各実施形態では、 本発明の回転電機をアキ シャルギャップ型のモータ (電動機) に適用した場合と、 二輪車などの 乗り物のセルモータ兼発電機として構成した場合について説明した。 し かし、 本発明の回転電機は上記と同様の型の発電機としても適用でき、 その場合の各発電機の構成は上記の各実施形態の構成と実質的に同一と なる。 産業上の利用可能性
本発明によれば、 本発明をモー夕とした場合には、 例えば、 その口一 タヨーク側の凸部が固定子側のティース (コイル) との間でリラク夕ン ストルクを発生でき、 モータの回転数領域の拡大化が図れる。
また、 本発明によれば、 二輪車などの乗り物のセルモータ兼発電機と して構成した場合には、 低回転時 (始動時) はリラクタンストルクを利 用して高トルク化が図れ、 さらに高回転時には磁石の磁力が弱いため過 充電を防止でき、 降圧回路が不要となる。

Claims

請 求 の 範 囲
1 . 軸周りに略円形に配設された複数のコイルを有するステ一夕と、 前記ステ一夕に対して前記軸回りに回転可能な回転子とを備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有するロー夕 ヨークからなり、
前記ロータヨークは、 円板状の強磁性材料からなるとともに、 前記コ ィルと対向する面に円周方向に向けて凹部と凸部を交互に設け、 前記凹部内に N極の磁石と S極の磁石を交互に配置したことを特徴と する回転電機。
2 . 軸周りに略円形に配設された複数のコイルを有するステ一タと、 前記ステ一夕に対して前記軸回りに回転可能な回転子とを備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有するロータ ヨークからなり、
前記ロータヨークは、 円板状の強磁性材料からなるとともに、 その周 方向には断面が凹部と凸部を繰り返す波型領域を形成し、
前記凹部内に磁石を配置するとともに、 前記凹部のうち前記コィルと 対向する面側の凹部内には、 N極の磁石と S極の磁石を交互に配置した ことを特徴とする回転電機。
3 . 前記口一夕ヨークは、 前記コイルと対向しない面側にさらに強磁性 体部材を取り付けたことを特徴とする請求の範囲第 2項に記載の回転電 機。
4 . 軸周りに略円形に配設された複数のコイルを有するステ一タと、 前記ステ一夕に対して前記軸回りに回転可能な回転子とを備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有するロータ ヨークからなり、 前記ロータヨークは、 円板状の強磁性材料からなるとともに、 前記コ ィルと対向する面には円周方向に向けて N極の磁石と S極の磁石とを交 互に取り付け、
かつ、 前記ロータヨークの外周部の周方向の所定位置に、 前記コイル のティースと対向する突出部を所定間隔で設けたことを特徴とする回転
5 . 前記突出部は、 前記ステ一夕側に向けて折り曲げて折り曲げ部とし たことを特徴とする請求の範囲第 4項に記載の回転電機。
6 . 軸周りに略円形に配設された複数のコィルを有するステ一夕と、 前記ステータに対して前記軸回りに回転可能な回転子とを備え、 前記回転子は前記コイルに対向して前記軸方向に間隙を有するロー夕 ヨークからなり、
前記ロータヨークは、 円板状の強磁性材料からなり、 その中央に回転 軸が圧入される中空部をを一体に形成するとともに、 前記中空部の先端 に円弧面を形成することを特徴とするモータの回転電機。
PCT/JP2002/007797 2001-07-31 2002-07-31 Machine electrique tournante WO2003012956A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/476,501 US7145277B2 (en) 2001-07-31 2002-07-31 Rotary electric machine for a permanent magnet synchronous motor
JP2003518014A JP4249014B2 (ja) 2001-07-31 2002-07-31 回転電機
EP02755714A EP1418657B1 (en) 2001-07-31 2002-07-31 Rotary electric machine
DE60237693T DE60237693D1 (de) 2001-07-31 2002-07-31 Elektrische drehmaschine
US11/496,647 US7259488B2 (en) 2001-07-31 2006-07-31 Rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001232630 2001-07-31
JP2001-232630 2001-07-31

Publications (1)

Publication Number Publication Date
WO2003012956A1 true WO2003012956A1 (fr) 2003-02-13

Family

ID=19064520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007797 WO2003012956A1 (fr) 2001-07-31 2002-07-31 Machine electrique tournante

Country Status (7)

Country Link
US (2) US7145277B2 (ja)
EP (2) EP1418657B1 (ja)
JP (1) JP4249014B2 (ja)
CN (1) CN100449908C (ja)
DE (2) DE60237728D1 (ja)
TW (1) TWI283506B (ja)
WO (1) WO2003012956A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741003B2 (en) 2000-08-31 2004-05-25 Yamaha Hatsudoki Kabushiki Kaisa Permanent magnet rotor
JP2005094955A (ja) * 2003-09-18 2005-04-07 Toyota Central Res & Dev Lab Inc アキシャル型永久磁石モータ
JP2005130692A (ja) * 2003-09-30 2005-05-19 Toyota Central Res & Dev Lab Inc アキシャル型永久磁石モータ
JP2005204439A (ja) * 2004-01-16 2005-07-28 Toyota Motor Corp 回転電機
JP2006050706A (ja) * 2004-08-02 2006-02-16 Nissan Motor Co Ltd アキシャルギャップモータのロータ構造
WO2006077812A1 (ja) * 2005-01-19 2006-07-27 Daikin Industries, Ltd. 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
JP2006524031A (ja) * 2003-04-15 2006-10-19 ホガナス アクチボラゲット 電気機械用コア・バック及びその製造方法
JP2006304474A (ja) * 2005-04-20 2006-11-02 Fujitsu General Ltd アキシャルエアギャップ型電動機
JP2006333579A (ja) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd 回転電機の固定子
WO2006131993A1 (ja) * 2005-06-10 2006-12-14 Toyota Jidosha Kabushiki Kaisha 回転電機
JP2007267599A (ja) * 2005-01-19 2007-10-11 Daikin Ind Ltd 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
JP2007267598A (ja) * 2005-01-19 2007-10-11 Daikin Ind Ltd 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
US7323799B2 (en) * 2001-11-29 2008-01-29 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type rotating electric machine
US8058762B2 (en) 2005-01-19 2011-11-15 Daikin Industries, Ltd. Rotor, axial gap type motor, method of driving motor, and compressor
KR101123434B1 (ko) * 2005-03-10 2012-03-26 플라제트 에스.알.엘. 영구 자석 회전자들을 가진 회전 전기 머신
JP2014173283A (ja) * 2013-03-07 2014-09-22 Fuji Heavy Ind Ltd タンピングランマー、およびタンピングランマー用エンジンユニット

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002355053A1 (en) * 2001-11-29 2003-06-10 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type dynamo-electric machine
US7233088B2 (en) * 2003-01-17 2007-06-19 Magnetic Torque International, Ltd. Torque converter and system using the same
US7268454B2 (en) 2003-01-17 2007-09-11 Magnetic Torque International, Ltd. Power generating systems
US20050035678A1 (en) * 2003-08-11 2005-02-17 Ward Terence G. Axial flux motor mass reduction with improved cooling
TWI283103B (en) * 2004-02-06 2007-06-21 Yamaha Motor Co Ltd Rotating electric machine and electrically driven vehicle
US7514833B2 (en) * 2004-09-03 2009-04-07 Ut-Battelle Llc Axial gap permanent-magnet machine with reluctance poles and PM element covers
US7808142B2 (en) * 2004-10-27 2010-10-05 E3 Solutions, Llc Multivariable generator and method of using the same
KR101120507B1 (ko) * 2005-12-21 2012-02-29 주식회사 동서전자 평편형 단상 bldc 모터
US20070210657A1 (en) * 2006-03-07 2007-09-13 Jian-Yeu Chen Brushless DC motors and systems using the same
CA2549882A1 (en) * 2006-06-12 2007-12-12 Msi Machineering Solutions Inc. Axial flux switched reluctance motor
ES2337812T5 (es) * 2006-09-11 2013-12-27 Astelco Systems Gmbh Montura de telescopio
DE102007002782A1 (de) * 2007-01-18 2008-07-31 Siemens Ag Drehantrieb mit geraden Primärteilsegmenten
US20080303355A1 (en) * 2007-03-16 2008-12-11 Orlo James Fiske Rail motor system and method
JP5130947B2 (ja) * 2007-09-11 2013-01-30 ダイキン工業株式会社 アキシャルギャップ型回転電機及び回転駆動装置
JP5092784B2 (ja) * 2007-09-11 2012-12-05 ダイキン工業株式会社 アキシャルギャップ型回転電機
GB0813032D0 (en) * 2008-07-16 2008-08-20 Cummins Generator Technologies Axial flux machine
US8552607B2 (en) 2010-10-10 2013-10-08 Hong Kong Applied Science and Technology Research Institute Company Limited Electric power generator with ferrofluid bearings
CN102005854B (zh) * 2010-11-02 2013-03-20 瑞声声学科技(深圳)有限公司 振动电机及其组装方法
JP2015019546A (ja) * 2013-07-12 2015-01-29 株式会社東芝 アキシャルギャップ型永久磁石回転電機およびその製造方法
JP6397571B2 (ja) * 2014-10-17 2018-09-26 コリア エレクトロニクス テクノロジ インスティチュート 平板型モーターの固定子及びこれを利用した平板型モーター
JP6459754B2 (ja) * 2015-04-28 2019-01-30 日本電産株式会社 モータ
JP6099215B2 (ja) * 2015-05-22 2017-03-22 株式会社Takayanagi 電気自動車用の回転電機
GB201616560D0 (en) * 2016-09-29 2016-11-16 Vastech Holdings Ltd Electric motor having a diametric coil
CN106487178B (zh) * 2016-11-02 2018-08-17 东南大学 一种盘式双定子混合励磁电动机
KR102622474B1 (ko) * 2016-12-22 2024-01-05 주식회사 아모텍 다층 기판을 이용한 적층형 스테이터, 이를 이용한 공기 정화 시스템용 모터와 블로워
WO2018162073A1 (en) * 2017-03-10 2018-09-13 Arcelik Anonim Sirketi Permanent magnet axial-flux electric machine stator and rotor assemblies
WO2018162072A1 (en) * 2017-03-10 2018-09-13 Arcelik Anonim Sirketi Permanent magnet axial-flux electric machine with auxiliary winding arrangement
CN109256926A (zh) * 2018-09-30 2019-01-22 王莉 一种分体式无导轨食物处理器电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268471U (ja) * 1985-10-16 1987-04-28
JPS63127259U (ja) * 1987-02-09 1988-08-19
JP2001136721A (ja) * 1999-08-26 2001-05-18 Toyota Motor Corp 軸方向間隙型永久磁石同期機

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401287A (en) * 1966-05-02 1968-09-10 Trw Inc Variable reluctance dynamoelectric machines
US3509390A (en) * 1967-05-29 1970-04-28 Data Technology Inc Variable reluctance disc,reciprocating,and rotary stepping motors and resolvers
US3678311A (en) * 1971-01-25 1972-07-18 Toolmasters Ltd Electric motor
US3867655A (en) * 1973-11-21 1975-02-18 Entropy Ltd Shaftless energy conversion device
JPS5816023B2 (ja) * 1977-03-18 1983-03-29 松下電器産業株式会社 周波数発電機を有する電動機
JPS5498905A (en) * 1978-01-20 1979-08-04 Matsushita Electric Ind Co Ltd Motor with frequency generator
JPS5953503B2 (ja) * 1978-07-25 1984-12-25 三菱電機株式会社 回転検出装置
JPS59103555A (ja) * 1982-12-03 1984-06-15 Japan Servo Co Ltd 周波数発電機
WO1985000704A1 (fr) * 1983-07-28 1985-02-14 Michel Grosjean Moteur polyphase a rotor aimante presentant n paires de poles a aimantation axiale
JPS6268471A (ja) * 1985-09-20 1987-03-28 日立機電工業株式会社 光ビ−ム位置計測装置を用いた球技練習器
US4835840A (en) * 1986-06-16 1989-06-06 General Electric Company Method of making an improved disc rotor assembly
JPS6312729A (ja) * 1986-06-30 1988-01-20 尾池工業株式会社 横切り引箔色糸
JPH07111027B2 (ja) 1986-07-01 1995-11-29 大塚化学株式会社 高導電性繊維の製造法
FR2606951A1 (fr) 1986-11-13 1988-05-20 Alsthom Cgee Moteur a aimants
JPS63127259A (ja) * 1986-11-17 1988-05-31 Canon Inc 電子黒板の制御装置
US4902924A (en) * 1986-12-19 1990-02-20 Canon Kabushiki Kaisha Brushless motor
US4918346A (en) * 1987-06-26 1990-04-17 Hitachi, Ltd. Low ripple-torque permanent magnet brushless motor
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
JPH06105522A (ja) * 1992-09-22 1994-04-15 Hitachi Ltd ブラシレスモータ
CN1115131A (zh) * 1993-07-09 1996-01-17 中国科健有限公司 一种单极交直流通用电机
US5736798A (en) * 1995-10-19 1998-04-07 Eastman Kodak Company Passive magnetic damper
US5962942A (en) * 1996-05-31 1999-10-05 The Turbo Genset Company Limited Rotary electrical machines
JPH10225033A (ja) * 1997-02-13 1998-08-21 Kokusan Denki Co Ltd フライホイール磁石回転子
JP3460938B2 (ja) * 1997-11-10 2003-10-27 ミネベア株式会社 ブラシレスdcモータ構造
US6727632B2 (en) * 2001-11-27 2004-04-27 Denso Corporation Flat rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268471U (ja) * 1985-10-16 1987-04-28
JPS63127259U (ja) * 1987-02-09 1988-08-19
JP2001136721A (ja) * 1999-08-26 2001-05-18 Toyota Motor Corp 軸方向間隙型永久磁石同期機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1418657A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741003B2 (en) 2000-08-31 2004-05-25 Yamaha Hatsudoki Kabushiki Kaisa Permanent magnet rotor
US7323799B2 (en) * 2001-11-29 2008-01-29 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type rotating electric machine
JP2006524031A (ja) * 2003-04-15 2006-10-19 ホガナス アクチボラゲット 電気機械用コア・バック及びその製造方法
JP2005094955A (ja) * 2003-09-18 2005-04-07 Toyota Central Res & Dev Lab Inc アキシャル型永久磁石モータ
JP2005130692A (ja) * 2003-09-30 2005-05-19 Toyota Central Res & Dev Lab Inc アキシャル型永久磁石モータ
JP4645130B2 (ja) * 2003-09-30 2011-03-09 株式会社豊田中央研究所 アキシャル型永久磁石モータ
JP2005204439A (ja) * 2004-01-16 2005-07-28 Toyota Motor Corp 回転電機
JP4622248B2 (ja) * 2004-01-16 2011-02-02 トヨタ自動車株式会社 回転電機
US7768170B2 (en) 2004-01-16 2010-08-03 Toyota Jidosha Kabushiki Kaisha Rotary electric machine
JP2006050706A (ja) * 2004-08-02 2006-02-16 Nissan Motor Co Ltd アキシャルギャップモータのロータ構造
WO2006077812A1 (ja) * 2005-01-19 2006-07-27 Daikin Industries, Ltd. 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
JP2007267598A (ja) * 2005-01-19 2007-10-11 Daikin Ind Ltd 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
JP2007267599A (ja) * 2005-01-19 2007-10-11 Daikin Ind Ltd 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
JPWO2006077812A1 (ja) * 2005-01-19 2008-06-19 ダイキン工業株式会社 回転子、モータの駆動方法、圧縮機
JP4702286B2 (ja) * 2005-01-19 2011-06-15 ダイキン工業株式会社 回転子、モータの駆動方法、圧縮機
US8058762B2 (en) 2005-01-19 2011-11-15 Daikin Industries, Ltd. Rotor, axial gap type motor, method of driving motor, and compressor
KR101123434B1 (ko) * 2005-03-10 2012-03-26 플라제트 에스.알.엘. 영구 자석 회전자들을 가진 회전 전기 머신
JP2006304474A (ja) * 2005-04-20 2006-11-02 Fujitsu General Ltd アキシャルエアギャップ型電動機
JP2006333579A (ja) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd 回転電機の固定子
JP4720288B2 (ja) * 2005-05-24 2011-07-13 日産自動車株式会社 回転電機の固定子
WO2006131993A1 (ja) * 2005-06-10 2006-12-14 Toyota Jidosha Kabushiki Kaisha 回転電機
JP2014173283A (ja) * 2013-03-07 2014-09-22 Fuji Heavy Ind Ltd タンピングランマー、およびタンピングランマー用エンジンユニット

Also Published As

Publication number Publication date
DE60237693D1 (de) 2010-10-28
EP1895638A2 (en) 2008-03-05
US20040135453A1 (en) 2004-07-15
DE60237728D1 (de) 2010-10-28
EP1418657A1 (en) 2004-05-12
EP1895638A3 (en) 2008-05-21
CN100449908C (zh) 2009-01-07
US7259488B2 (en) 2007-08-21
TWI283506B (en) 2007-07-01
JP4249014B2 (ja) 2009-04-02
EP1418657B1 (en) 2010-09-15
EP1418657A4 (en) 2006-10-04
EP1895638B1 (en) 2010-09-15
CN1516914A (zh) 2004-07-28
US7145277B2 (en) 2006-12-05
JPWO2003012956A1 (ja) 2004-11-25
US20060267437A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
WO2003012956A1 (fr) Machine electrique tournante
CN101779366B (zh) 轴向间隙型电动机
EP2200154B1 (en) Axial gap motor
JP3785982B2 (ja) 回転電機
JP5279691B2 (ja) 回転電機
JP2010022088A (ja) 磁石回転型回転電機
JP2012175773A (ja) 回転電機
WO2014061501A1 (ja) 二相回転電機
JP2002112521A (ja) ステップモータのロータ構造
JP4556408B2 (ja) クローポール形回転機
JP2002374642A (ja) ブラシレスモータ
JP2001359263A (ja) 磁石併用同期機
JP2010068605A (ja) 永久磁石回転電機
JP2008099446A (ja) アウタロータ型回転電機
JP4470072B2 (ja) アキシャルギャップ型モータ
JP7318556B2 (ja) ロータ
CN110417187A (zh) 旋转电机
JP2003299292A (ja) 回転機器及びその製造方法
US10923970B2 (en) Rotary electric machine having magnetic flux supplied from a field coil
JP4482900B2 (ja) アキシャルギャップ型モータ
JP6494827B1 (ja) 回転電機
JP4453051B2 (ja) アキシャルギャップ型モータ
JP3980869B2 (ja) スタータモータ
JP3709726B2 (ja) モータ
JP2010119197A (ja) アキシャルギャップ型モータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10476501

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 02812068X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003518014

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002755714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002755714

Country of ref document: EP