WO2003000779A1 - Film de protection contre le rayonnement infrarouge proche - Google Patents

Film de protection contre le rayonnement infrarouge proche Download PDF

Info

Publication number
WO2003000779A1
WO2003000779A1 PCT/JP2002/006055 JP0206055W WO03000779A1 WO 2003000779 A1 WO2003000779 A1 WO 2003000779A1 JP 0206055 W JP0206055 W JP 0206055W WO 03000779 A1 WO03000779 A1 WO 03000779A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
infrared
weight
layer
adhesive layer
Prior art date
Application number
PCT/JP2002/006055
Other languages
English (en)
French (fr)
Inventor
Taro Oya
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001187872A external-priority patent/JP2003002985A/ja
Priority claimed from JP2001288623A external-priority patent/JP2003096215A/ja
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE60232603T priority Critical patent/DE60232603D1/de
Priority to EP20020738747 priority patent/EP1452556B1/en
Priority to KR10-2003-7001954A priority patent/KR20030022890A/ko
Priority to US10/362,229 priority patent/US6991849B2/en
Publication of WO2003000779A1 publication Critical patent/WO2003000779A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/08Vessels; Containers; Shields associated therewith; Vacuum locks provided with coatings on the walls thereof; Selection of materials for the coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/448Near infrared shielding means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24835Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including developable image or soluble portion in coating or impregnation [e.g., safety paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2843Web or sheet containing structurally defined element or component and having an adhesive outermost layer including a primer layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2848Three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31794Of cross-linked polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a near-infrared shielding film and a laminated film using the same, and more particularly, to an excellent handleability, low cost, high transmittance of visible light, and wavelength.
  • the present invention relates to a near-infrared shielding film having excellent characteristics of shielding near-infrared light having a wavelength of 820 to 980 nm, which can be suitably used for an image display panel surface of a plasma display or the like, and a laminated film using the same.
  • Conventional technology a near-infrared shielding film having excellent characteristics of shielding near-infrared light having a wavelength of 820 to 980 nm, which can be suitably used for an image display panel surface of a plasma display or the like, and a laminated film using the same.
  • the wavelength bands of the three primary colors (red, green, and blue) of the power line S3 ⁇ 4 image depend on the structural factors of each pixel constituting the light source or the discharge part.
  • Other types of light are also emitted.
  • strong radiation is measured in the near-infrared region, for example, at a wavelength of around 82 nm, 880 nm, or 980 nm. Therefore, there is a concern that this near-infrared radiation may cause problems such as malfunction of peripheral devices.
  • Japanese Patent Application Laid-Open No. H10-1566991 has a function to prevent malfunctions of peripheral devices due to near infrared rays as described above, as well as a function to prevent external light reflection.
  • An external light antireflection film that can be suitably used for the front panel has been proposed. Have been.
  • the anti-reflection film for external light has a function of preventing malfunction of peripheral devices due to near-infrared rays by adding an expensive near-infrared absorber to the adhesive layer. And to achieve sufficient near infrared absorption performance, for example, the adhesive layer
  • the thickness of _ is 40 jLi m.
  • the thickness of the pressure-sensitive adhesive layer of a display such as a plasma display (PDP) is preferably in a range of 5 to 40 m from the viewpoint of preventing color spots due to thickness spots, for example.
  • a layer having the above thickness does not function as an adhesive, but rather reduces the handleability in the processing and laminating steps.
  • the thickness of the pressure-sensitive adhesive layer coated in the specific example of the above publication is 40 m, which is close to the upper limit.
  • Still another method is to provide a shielding layer containing a near-infrared absorbing agent separately from the adhesive layer.
  • the shielding layer does not require a laminating function, so that there is no problem such as a decrease in adhesiveness as in the case of the adhesive layer. There is a difficult point that is very difficult.
  • Japanese Patent Application Laid-Open No. H10-188882 discloses a method using near infrared rays.
  • a panel filter has been proposed which has a function of preventing malfunction of peripheral devices and a function of heat radiation, and which can be suitably used for a front panel of a display device of a central image device.
  • a metal reflective layer for cutting heat rays on a transparent polyester film substrate and a transparent coat layer are provided thereon, and a transparent adhesive layer having a thickness of 25 m containing a near-infrared absorbing agent is further coated with the transparent coat.
  • a panel filter provided on a layer or on the surface of a pond of the film substrate is described. In this filter, the thickness of the transparent adhesive layer containing the near-infrared absorbing agent may be thin because the metal reflection layer cuts off near infrared rays together with heat rays. There is no difficulty in increasing the number of processes, and the cost is high.
  • An object of the present invention is to provide a plasma that has good handling properties, is inexpensive, has high transmittance of visible light, and has a function of preventing malfunction of peripheral devices due to near infrared rays emitted from the display surface of the plasma display.
  • An object of the present invention is to provide a near-infrared shielding film that can be suitably used for a front panel of a display.
  • An object of the present invention is to provide a near-infrared shielding film which can be suitably used for a light-emitting panel type display, particularly a plasma display panel front surface by being laminated with an electromagnetic wave shielding thin film laminated film, and a laminated film using the same.
  • ⁇ (450), ⁇ (540), ⁇ (620), ⁇ (850) and ⁇ (950) are the success rates at wavelengths of 450 nm, 540 nm, 620 nm, 850 nm and 950 nm, respectively. (%)
  • a near-infrared shielding film (hereinafter, may be referred to as a first monolayer film of the present invention).
  • a near-infrared shielding film hereinafter, sometimes referred to as a second monolayer film of the present invention.
  • the above objects and advantages of the present invention are: ( ⁇ ′) a biaxially oriented film comprising a polyester containing a near-infrared absorbing agent having a weight loss onset temperature of at least 280, and an electromagnetic wave shielding film provided on at least one side of the biaxially oriented film Consisting of
  • FIG. 1 is a diagram showing the transmittance of the near-infrared film used in Example 2.
  • FIG. 2 is a diagram showing the transmittance of the near-infrared laminated film used in Example 6.
  • FIG. 3 is a diagram showing the transmittance of the near-infrared shielding film obtained in Example 9.
  • FIG. 4 is a diagram showing the transmittance of the near-infrared shielding film obtained in Example 11 c .
  • first and second monolayer films of the present invention will be described.
  • the description is common to the first and second monolayer films.
  • the first monolayer film will be described.
  • the near-infrared shielding film of the present invention has a function of preventing, when used for a front panel of a plasma display, a problem such as malfunction of peripheral devices caused by near-infrared rays emitted from the display. For this reason, the film contains a near-infrared absorbing agent, and has the property that the transmittance (%) of near-infrared rays, particularly near-infrared rays with wavelengths of 850 and 950 nm, is 1 (%) or more and 20 () or less.
  • the transmittance (%) of the near-infrared light of 850 and 95 Onm is more than 20 (), the near-infrared light emitted from the plasma display cannot be blocked sufficiently, and the peripheral devices of the plasma display cannot be blocked. There is a risk of malfunction.
  • the transmittance (%) is less than 1), the transmittance of visible light also decreases due to the properties of the near-infrared absorbing agent, and the brightness of the plasma display decreases.
  • the near-infrared shielding film further has a property that the total light transmittance in the visible light region is 40% or more, preferably 40% or more and 80% or less. If the total light transmittance is less than 40%, the brightness of the PDP is significantly reduced, and the visibility is reduced. on the other hand,
  • the lowering of the total light transmittance at which the contrast is reduced due to the intermediate color of the emission color of the PDP is more preferably 50%, particularly preferably 60%, and the upper limit is more preferably 70%.
  • a film containing a near-infrared absorbing agent tends to have a bias in color development due to the properties of the near-infrared absorbing agent.
  • the near-infrared shielding film of the present invention minimizes this hue (saturation) shift. In order to suppress the hue shift, it is effective to make the transmittance of the PDP at the emission wavelengths of red, green and blue almost equal.
  • the difference in the transmittance (%) of the film at 450 nm, 540 nm, and 620 nm, which are the peaks of the emission wavelengths of blue, green, and red, (T (450) — T (540)) and (T ( 620) -T (540)) must be in the range of -10 to L 0%, respectively. If the difference in the transmittance (%) is out of the above range, the degree of coloring of the light emitted from the CRT becomes large, and the visibility is reduced.
  • the preferred upper limit of the difference in transmittance (%) is 8%, and the preferred lower limit is 18%. A more preferred upper limit is 5%. A more preferred lower limit is 15%.
  • the near-infrared shielding film in the present invention is made of a biaxially oriented polyester film containing a near-infrared absorbing agent, and the transmittance of the film at a wavelength of 85 Onm needs to be 0.05 or more and 0.57 or less.
  • the transmittance at a wavelength of 85 Onm is 0.10 or more and 0.27 or less.
  • the transmittance at a wavelength of 95 Onm is 0.20 or more, preferably 0.20 or more and 0.55 or less. If the transmittance at a wavelength of 85 Onm is greater than 0.57, it is difficult to reduce the transmittance after bonding to the electromagnetic wave shielding thin film laminated film to 0.20 or less, and the near-red shielding ability becomes insufficient.
  • the transmittance at a wavelength of 850 nm is less than 0.05 or the transmittance at a wavelength of 950 nm is less than 0.20, the near-infrared absorber is used more than necessary, and the cost increases. Therefore, there is no merit of bonding with the electromagnetic wave shielding thin film laminated film.
  • the near-infrared shielding film of the present invention further has a haze value of 5% or less and an optical property in a visible light region represented by the following formulas (5) to (6).
  • ⁇ (450), ⁇ (540), and ⁇ (620) in the equation are transmittances at wavelengths of 450 nm, 540 nm, and 620 nm, respectively).
  • This haze value is more preferably 3% or less, particularly preferably 2% or less. If the haze value is greater than 5%, the hue of the central image becomes cloudy, and the visibility is reduced due to lack of sharpness.
  • T (620) / ⁇ (540) and T (450) / T (540) are less than 0.7. If it is more than 1.3, the RGB light emission luminance will be out of balance and hue cannot be displayed correctly.
  • the total light transmittance of visible light (wavelength: 400 to 650 nm) is preferably 60% or more, more preferably 70% or more. If the total light transmittance is less than 60%, the entire screen will be dark, and the power consumption will be more than necessary to obtain sufficient brightness. It becomes.
  • the haze value of the film is not increased when a near-infrared absorbing agent is contained in the film to increase the absorbance in the infrared wavelength region of the film. It is necessary to keep the dose value to 5% or less.
  • the content of the near-infrared absorbing agent is preferably in the range of 0.10 to 1.0 Og / m 2 with respect to the plane perpendicular to the thickness direction of the biaxially oriented polyester film. If the haze value is more than 5%, the hue of the image becomes cloudy, and the visibility is reduced due to lack of sharpness.
  • Means for keeping the transmittance at 850 nm and 950 nm at 20% or less, respectively, while maintaining the haze value of the biaxially oriented film at 5% or less include, for example, using a near-infrared absorber with the film substrate.
  • Preferred is a method of dissolving in a polyester or a dispersion having a particle size of 500 nm or less without dissolving.
  • the haze value of the biaxially oriented film is preferably 3% or less, particularly preferably 2% or less.
  • Near-infrared absorbers generally have poorer thermal stability than inorganic pigments and the like, but the near-infrared absorbers of the present invention do not cause degradation or decompose in the molten state of the polyester, or if so, the proportion is small. It is necessary to be '. Specifically, it is necessary that the temperature at which the near-infrared absorber starts to lose weight is at least 280 ° C. Further, from the viewpoint of collecting and reusing a polyester film, particularly a polyethylene terephthalate (PET) film, the weight loss rate after holding at 280 and 30 minutes is preferably 10% or less.
  • PET polyethylene terephthalate
  • the weight loss rate is 10% or less, the portion that did not become a film product can be recovered and reused as a film-forming material. If the weight loss rate is greater than 10%, the degradation of the near-infrared absorber at the time of film recovery proceeds, and it becomes difficult to maintain optical properties substantially equivalent to those of the virgin polymer. Further, from the viewpoint of the productivity of the film, it is preferable to use a near-infrared absorber which does not decrease the melt viscosity of the polyester during melt extrusion of the polyester.
  • a compound having a phthalocyanine skeleton and a nickel complex compound are preferable.
  • These can be used alone, but two or more of them are preferably used in combination.
  • Near-infrared absorbers have poor weather resistance, but in the present invention, polyester, which is a film substrate, has a characteristic of absorbing most of ultraviolet rays unlike a acryl-based substrate, so that it is relatively weather-resistant. The use of near-infrared absorbers is possible without concern. If necessary, a UV absorber may be added to the polyester to further improve the weather resistance.
  • a predetermined amount of the near-infrared absorbing agent is dispersed and dissolved in the same glycol as the glycol component of the polyester, for example, ethylene glycol, and added at the polyester production stage.
  • polyester pellets (master pellets) or near-infrared absorbers to which a near-infrared absorber with a higher concentration than the film concentration is separately added are added. It is preferable to prepare a pellet in which the agent itself is melt-solidified, and to mix and add it in the film production process.
  • a binder When melting and solidifying the near-infrared absorbing agent, a binder may be appropriately used. As a method of addition, particularly for a pellet obtained by melting and solidifying a near-infrared absorbing agent, mechanical properties are different from polyester pellets of a film raw material. Therefore, a film forming process using a small feeder, particularly an extruder for the polyester pellet is used. Is preferable.
  • the amount supplied by the feeder varies depending on the capacity of the extruder and the amount added, but is preferably 0.2 to 20 kgZh in terms of equipment.
  • the residence time is preferably set to 20 to 4,000 seconds at a shear deformation rate of 70 (1 / second) of the extruder. If the value is less than 20 seconds, the kneading of the near-infrared absorbing agent is not sufficient, and the transmittance of the film is uneven, while if the value is more than 4,000 seconds, cutting due to a decrease in viscosity is liable to occur. A decrease in the viscosity of the resin causes the thermal decomposition of the near-red absorbent to occur simultaneously.
  • the near-infrared shielding film of the present invention can reduce the concentration of the near-infrared absorbing agent added as compared with the case where the near-infrared absorbing agent is contained in a coating layer such as an adhesive layer. It is characterized in that it is difficult to change the hue due to bleed-out of the agent and the like.
  • the polyester constituting the biaxially oriented film includes an aromatic dibasic acid or an ester-forming derivative thereof (eg, lower alkyl ester) and a diol or an ester-forming derivative thereof (eg, lower fatty acid ester, cyclic ether, etc.)
  • a linear saturated polyester synthesized from Specific examples of such polyesters include polyethylene terephthalate, polyethylene isophthalate, polypropylene terephthalate, polybutylene terephthalate, poly (1,4-cyclohexylene dimethylene terephthalate), polyethylene terephthalate, Examples thereof include 6-naphthalene dicarboxylate and the like, including copolymerized or blended products thereof.
  • those containing at least 70% by weight of ethylene terephthalate component or ethylene-1,6-naphthalenediyl propyloxylate component based on the weight of polyester are preferred.
  • polyethylene terephthalate having ethylene terephthalate as a main repeating unit is preferred.
  • the copolymerization component to the polyethylene terephthalate includes, as dicarboxylic acid components, aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid; adipic acid, azelaic acid, sebacic acid, decanedicarboxylic acid Examples thereof include aliphatic dicarboxylic acids such as acids, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acids.
  • diol component examples include aliphatic diols such as 1,4-butanediol, 1,6-hexanediol, and diethylene glycol; alicyclic diols such as 1,4-cyclohexanedimethanol; and aromatic compounds such as bisphenol.
  • Group diols can be exemplified.
  • These copolymer components may be used alone or in combination of two or more. Of these copolymer components, isophthalic is preferred from the viewpoint of processability and transparency. Acids are particularly preferred.
  • the proportion of the copolymer component depends on the type thereof, but is preferably such that the resulting polymer melting point does not fall below 230 ° C, more preferably below 240 ° C. If the poly melting point is lower than 230 ° C, heat resistance and mechanical strength may be poor.
  • the proportion of the isophthalic acid component is 12 mol% or less based on the total number of moles of the acid component.
  • the melting point of the polyester is measured by a method of obtaining a melting peak at a heating rate of 20 ° C / min using DuPont Instrument s91 ODSC. The sample volume is 20 mg.
  • the polyester can be produced by a method known per se.
  • terephthalic acid and ethylene glycol if necessary, a copolymerization component (for example, isophthalic acid) are subjected to an esterification reaction, and then the obtained reaction product is subjected to a polycondensation reaction until the desired degree of polymerization is attained.
  • a copolymerization component eg, dimethyl isophthalate
  • 2,6-naphthalenedicarboxylic acid can be used as the main acid component or 1,4-cyclohexanedimethanol can be used as the main dalicol component.
  • the polyester obtained by the above method (melt polymerization) can be converted into a polymer having a higher degree of polymerization, if necessary, by a polymerization method in a solid state (solid state polymerization).
  • the polyester thus obtained is melt-formed by a method known per se, that is, after the polyester is melted, extruded from a linear die to obtain an unstretched film, which is biaxially stretched. It can be made into a biaxially oriented film by a method of stretching and heat treatment.
  • the stretching temperature is (Tg (glass transition temperature of polyester) -1 10) to (Tg + 70) ° C, and the stretching ratio is 2.5 to 8 times in each stretching direction.
  • the heat treatment temperature is 180-250 ° C and the treatment time is Is preferably 1 to 60 seconds.
  • the intrinsic viscosity (orthochlorophenol, 35V) of the polyester constituting the biaxially oriented film is preferably 0.45 to 1.50, more preferably _ is 0.48 to: L.00, and particularly preferably. It is 0.50 to 0.80. If the intrinsic viscosity is less than 0.45, the film-forming properties may be poor, which is not preferable. On the other hand, if the intrinsic viscosity exceeds 1.50, the molding processability may be impaired, the extruder may be overloaded, or the intrinsic viscosity may be significantly reduced due to an excessive rise in the resin temperature.
  • an antioxidant such as an antioxidant, a heat stabilizer, a viscosity modifier, a plasticizer, a hue improver, a lubricant, a nucleating agent, and the like may be used as needed during the polyester production process or the subsequent process of extruding from a die.
  • Additives such as ultraviolet absorbers, antistatic agents, antioxidants, and catalysts can be added.
  • a substance (filament; lubricant) for roughening the film surface in the polyester from the viewpoint of improving the running properties and the slipperiness of the biaxially oriented film.
  • the filler include those conventionally known as a slipperiness imparting agent for polyester films. Specific examples include calcium carbonate, calcium oxide, aluminum oxide, kaolin, silicon oxide, zinc oxide, carbon black, silicon carbide, tin oxide, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, melamine resin particles, Crosslinked silicone resin particles and the like can be mentioned. Among these, porous silica is preferred because it is easy to impart slipperiness while maintaining transparency.
  • the average particle size of the filler is preferably 1 to 3 m, more preferably 1.2 to 2.4 m.
  • the amount of addition is preferably 0.01 to 0.005% by weight, and more preferably 0.008 to 0.006% by weight, from the viewpoint of the transparency and the slipperiness of the film.
  • the effect of the near-infrared absorbing agent can be maximized by including the ultraviolet absorbing agent in the biaxially oriented film.
  • the near-infrared ray absorbing agent is further coated on the coating of the ultraviolet ray absorbent, so that the near-infrared ray shielding ability is improved by mixing and reacting the two absorbents.
  • biaxially oriented films are much thicker than their coating layers, the inclusion of an ultraviolet absorber in the biaxially oriented film causes the admixture and reaction of both absorbers. Can be prevented.
  • an ultraviolet absorber that can be contained in the biaxially oriented film is preferable, and an ultraviolet absorber that does not easily react with the near infrared absorber is preferable.
  • the ultraviolet absorber satisfying these requirements will be described in more detail.
  • ultraviolet absorber for example, the following formula (I)
  • R 2 and R 3 are the same or different and are monovalent hydrocarbon residues; and X 2 is a tetravalent aromatic residue, which may further contain a heteroatom. Good,
  • cyclic iminoester selected from the group consisting of the compounds represented by the following formulas in an unreacted form.
  • Such cyclic iminoesters are
  • cyclic imino esters represented by the above formulas (I) and ⁇ ) include, for example, the following compounds.
  • the compound of the above formula (I), more preferably the compound of the above formula (I) when n 2, particularly preferably the following formula (I) -1
  • R 11 is a divalent aromatic hydrocarbon residue
  • the compound represented by is advantageously used.
  • the compounds of the formula (I) -1 are, among others, 2,2, -p-phenylenebis (3,11-benzoxazine-41-one), 2,2 '-(4,4, diphenylene) bis (3,1-Benzoxazine) and 2,2 ′-(2,6-naphthylene) bis (3,1-benzoxazine) are preferred.
  • the amount of the ultraviolet absorber added is preferably 0.1 to 5% by weight, more preferably 0.2 to 3% by weight, based on the polyester. If this amount is less than 0.1%, ultraviolet rays are inferior. If the effect of preventing the formation of the polyester is small, on the other hand, if it exceeds 5% by weight, the film-forming properties of the polyester deteriorate, which is not preferable.
  • the UV absorber is preferably added at the time of polymerization of the polyester or at the time of melt extrusion. At that time, the ultraviolet absorber can be added in the form of a master pellet, which is also preferable.
  • the thickness of the biaxially oriented film of the present invention is preferably 50 m or more because scattering of glass can be easily suppressed in the event that the PDP is damaged.
  • the upper limit of the thickness of the biaxially oriented film is preferably 250 m or less from the viewpoint of ease of keeping the haze value at 5% or less and the productivity of the film.
  • This adhesive layer can be provided, for example, by applying and drying an aqueous coating liquid in which a wax or the like is mixed with an aqueous polyester resin / acrylic resin or a mixture thereof during the manufacturing process of the biaxially oriented film.
  • aqueous polyester resin include the following aqueous polyester resins comprising a polybasic acid component and a polyol component.
  • polybasic acid component examples include terephthalic acid, isophthalic acid, fluoric acid, fluoric anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, Sebacic acid, trimellitic acid, pyromellitic acid, dimer acid, 5-sodium sulfoisophtalic acid, and the like. It is preferable to synthesize a copolymerized polyester resin using two or more of these acid components. In addition, a small amount of an unsaturated polybasic acid component such as maleic acid, itaconic acid, and hydroxycarboxylic acid such as P-hydroxybenzoic acid can be used.
  • an unsaturated polybasic acid component such as maleic acid, itaconic acid, and hydroxycarboxylic acid such as P-hydroxybenzoic acid can be used.
  • polyol component for example, ethylene daryl, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, dimethylolpropane And poly (ethylene oxide) glycol, poly (tetramethylene oxide) glycol and the like.
  • these monomers are exemplified, but not limited thereto.
  • Such an aqueous polyester resin is prepared by using a polybasic acid or an ester-forming derivative thereof (eg, dimethyl ester, acid anhydride, etc.) and a polyol or an ester-forming derivative thereof (eg, lower fatty acid ester, cyclic anhydride, etc.) It can be produced by a conventionally known polymerization method.
  • a polybasic acid or an ester-forming derivative thereof eg, dimethyl ester, acid anhydride, etc.
  • a polyol or an ester-forming derivative thereof eg, lower fatty acid ester, cyclic anhydride, etc.
  • the aqueous acrylic resin can be copolymerized from the following acrylic monomers.
  • the acrylic monomer include alkyl acrylate, alkyl methacrylate (alkyl groups include methyl group, ethyl group, n-propyl group, isoprene pill group, n-butyl group, isopitol J-group, t-butyl acrylate) Group, 2-ethylhexyl group, cyclohexyl group, etc.); 2-hydroxyethyl acrylate, 2-hydroxyethyl methyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate Hydroxy-containing monomers; epoxy-containing monomers such as glycidyl acrylate, glycidyl methacrylate, and aryl glycidyl ether; acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, oxalic acid, styrene sul
  • Salt sodium salt, potassium salt, Monomers containing a carboxy group or a salt thereof, such as monium salts and tertiary amine salts
  • N-alkoxyacrylamide, N-alkoxymethacrylamide, N, N-dialkoxyacrylamide, N, N-dialkoxymethacrylamide (alkoxy groups include methoxy, ethoxy, butoxy, isobutoxy, etc.), Cryloylmorpholine, N-methylacrylamide, Monomers containing an amide group such as N-methylmethacrylamide, N-phenylacrylamide and N-phenylmethacrylamide; monomers of acid anhydrides such as maleic anhydride and itaconic anhydride; Acrylate, aryl isocyanate, styrene, 0!
  • wax examples include plant systems such as carnapa wax, candelilla wax, rice wax, wood wax, jojoba oil, palm wax, rosin-modified wax, polycury wax, sugarcane wax, esparto wax, and bark wax.
  • Animal waxes such as wax, beeswax, lanolin, whale wax, Ibota wax, and wax, mineral waxes such as montan wax, ozokerite, and ceresin wax; Synthetic hydrocarbon waxes such as push-packs, polyethylene waxes, oxidized polyethylene waxes, polypropylene packs and oxidized polypropylene waxesFurther, carnauba wax, paraffin wax, and polyethylene wax are more preferred because they have good adhesion and lubricity to hard coats and pressure-sensitive adhesives. Further, an aqueous dispersion is more preferable in view of environmental problems and easy handling.
  • the polyester resin forming the coating layer is contained in the coating layer in an amount of 50 to 95% by weight, and more preferably 60 to 90% by weight.
  • Another resin (for example, an acrylic resin) forming the coating layer is contained in the coating layer in an amount of 5 to 30% by weight, and more preferably 10 to 25% by weight. If the polyester resin content exceeds 95% by weight or the acrylic resin content is less than 5% by weight, the adhesion may be insufficient. If the acrylic resin content exceeds 30% by weight, the acryl resin is incompatible with the polyester resin, so that the transparency may be deteriorated.
  • the wax is preferably contained in the coating layer in the range of 0.5 to 20% by weight. More preferably, it is in the range of 1% to 10% by weight.
  • the amount of the wax is less than 0.5% by weight, lubricity of the film surface may not be obtained. On the other hand, if it exceeds 20% by weight, the adhesion to the polyester base material and the adhesion to the hard coat and the adhesive may be insufficient.
  • the above composition is used for forming a coating film, such as an aqueous solution, an aqueous dispersion or an emulsion.
  • a coating film such as an aqueous solution, an aqueous dispersion or an emulsion.
  • a resin other than the above-mentioned composition for example, a polymer having an oxazoline group, a cross-linking agent such as melamine, epoxy, and aziridine, an antistatic agent, a coloring agent, and an interface Activators, UV absorbers, lubricants, etc. can be added.
  • a lubricant lubricity and blocking resistance can be further improved.
  • the solid content concentration of the seven-component coating solution is preferably 20% by weight or less, more preferably 1 to 10% by weight. If the proportion is less than 1% by weight, the coatability to the polyester film is insufficient, while if it exceeds 20% by weight, the stability of the coating and the appearance of the coating may be degraded.
  • the application of the aqueous coating solution to the polyester film can be carried out at any stage, but is preferably carried out during the polyester film production process, and further applied to the polyester film before the directional crystallization is completed. Is preferred.
  • the polyester film before the completion of the crystal orientation refers to an unstretched film, a uniaxially oriented film in which the unstretched film is oriented in either the longitudinal direction or the transverse direction, Orientation-oriented low-magnification stretching (biaxially stretched film before the orientation crystallization is completed by finally re-stretching in the longitudinal or transverse direction).
  • an aqueous coating solution of the above composition to an unstretched film or a uniaxially oriented film that has been unidirectionally oriented, and then directly perform longitudinal stretching and / or transverse stretching and heat fixing.
  • the film surface When applying the coating liquid to the film, the film surface should be subjected to physical treatment such as corona surface treatment, flame treatment, plasma treatment, etc. as a preliminary treatment to improve coatability, or chemically together with the composition. It is preferable to use an inert surfactant in combination.
  • Such surfactants promote the wetting of the aqueous coating liquid on the polyester film, and include, for example, polyoxyethylene alkylphenol, polyoxyethylene monofatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, and fatty acid.
  • Metal stone, alkyl sulfate, alkyl sulfonate, alkyl sulf Anionic and nonionic surfactants such as succinate can be mentioned.
  • the surfactant is preferably contained in the composition for forming a coating film in an amount of 1 to 10% by weight.
  • the coating amount of the coating liquid is such that the thickness of the coating liquid is preferably in the range of 0.02 to 0.3 mm, and more preferably 0.07 to 0.25 m. If the coating thickness is too thin, the adhesive strength will be insufficient. Conversely, if the coating thickness is too large, blocking may occur or the haze value may increase.
  • any known coating method can be applied.
  • a roll coating method, a gravure coating method, a roll brushing method, a spray coating method, an air knife coating method, an impregnation method, a curtain coating method, or the like can be used alone or in combination.
  • the coating film may be formed on only one side of the film or on both sides as necessary.
  • the near-infrared shielding film of the present invention is provided with the above-mentioned adhesive layer on both sides thereof, and a hard coat layer laminated on the surface of one adhesive layer, and the second adhesive layer on the surface of the other adhesive layer.
  • the near-infrared shielding film laminate can be formed by laminating the conductive layers.
  • the material of the hard coat layer is not particularly limited as long as it has a practically usable hardness, such as an ionizing radiation curable resin, a thermosetting resin, and a thermoplastic resin.
  • the resin is an ionizing radiation-curable resin that can easily form a film and easily increase the pencil hardness to a desired value with respect to the base film.
  • polyester acrylate or perylene acrylate is particularly preferable.
  • the polyester acrylate is composed of an acrylate and / or methacrylate of a polyester-polyol oligomer (hereinafter, may be referred to as (meth) acrylate including acrylate and methacrylate).
  • the urethane acrylate is formed by acrylate of an oligomer comprising a polyol compound and a diisocyanate compound.
  • acrylate for example, methyl (Meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyshethyl (meth) acrylate, phenyl (meth) acrylate _ No.
  • polyfunctional monomers include trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, propylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and pentaerythritol tri (meth) acrylate.
  • Preferred examples thereof include acrylate, dipentyl erythritol hexyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyldarichol di (meth) acrylate.
  • polyester oligomer used for forming the hard coat layer examples include an acid component of adipic acid or sebacic acid and a glycol (for example, ethylene glycol, polyethylene glycol, propylene glycol, butylene glycol, or polybutylene glycol) or a triol (for example, Glycerin, trimethylolpropane, etc.) and condensation products obtained by further condensing a triol component therewith, such as polyadipate triol and polysebacate polyol.
  • a glycol for example, ethylene glycol, polyethylene glycol, propylene glycol, butylene glycol, or polybutylene glycol
  • a triol for example, Glycerin, trimethylolpropane, etc.
  • condensation products obtained by further condensing a triol component therewith such as polyadipate triol and polysebacate polyol.
  • some or all of the aliphatic dicarboxylic acids may be substituted with another organic acid.
  • the polyurethane-based oligomer used for forming the hard coat layer can be obtained from a condensation product of a polyisocyanate and a polyol.
  • polyisocyanates include methylene'bis (P-phenylenediisocyanate), hexamethylene diisocyanate and an adduct of hexanetriol, hexamethylene diisocyanate, and tolylene diisocyanate.
  • polystyrene resin 4-phenylisocyanate Tiophosphate and the like can be exemplified.
  • Specific polyols include polyether polyols such as polyoxytetramethylene glycol, polyadipate polyols, polyester polyols such as polycarbonate polyols, and copolymers of acrylates and hydroxyethyl methacrylate. Can be illustrated.
  • an ultraviolet-curable resin as the ionizing radiation-curable gist
  • acetophenones benzophenones, mihira-benzoylbenzoate, ⁇ -amixoxime esters or thioxanthones
  • the urethane acrylate is rich in elasticity and flexibility and excellent in workability (bendability), but hardly lacks surface hardness and hardly has a pencil hardness of 2 mm or more.
  • polyester acrylate can form a hard coat layer having extremely high hardness by selecting the constituent components of polyester. Therefore, since it is easy to achieve both high hardness and flexibility, a hard coat in which 40 to 10 parts by weight of polyester acrylate is blended with 60 to 90 parts by weight of urethane acrylate. Layers are preferred.
  • the coating liquid used to form the hard coat layer contains inactive fine particles with a secondary particle size of 20 m or less for the purpose of adjusting the gloss and imparting surface slip (not release). Is preferably added in an amount of 0.3 to 3 parts by weight based on 100 parts by weight of the resin component. If the amount of the fine particles is less than 0.3 part by weight, the effect of improving the slipperiness is poor. On the other hand, if the amount exceeds 3 parts by weight, the pencil hardness of the obtained eighteenth layer may decrease.
  • Inert fine particles added to the coating solution include inorganic fine particles such as silica, magnesium carbonate, aluminum hydroxide, and barium sulfate, and organic fine particles such as polycarbonate, acrylic resin, polyimide, polyamide, polyethylene naphthalate, and melamine resin. Preferred examples include polymer fine particles.
  • the coating method for forming the hard coat layer may be appropriately selected from methods conventionally known per se, such as a roll coat, a gravure coat, a vacuum coat, and an extrusion coat, according to the characteristics and the amount of the coating liquid to be applied. Good.
  • the hard coat layer is not particularly limited, but is preferably in the range of 1 to 15 m.
  • the anti-reflection layer of the near-infrared shielding film laminate in the present invention is provided on the surface of the hard coat layer.
  • a plurality of layers having different refractive indices are alternately laminated, and the configuration is generally well known.
  • the antireflection layer is not particularly limited as long as it does not impair the aforementioned optical characteristics of the near-infrared shielding film laminate.
  • Specific anti-reflection layer (1) Thickness 0.1 antireflective layer composed of extremely thin film, such as m the order of M g F 2, (2) anti-reflection layer formed by metal deposition film, (3) An anti-reflection layer in which a layer made of a material whose light refractive index is lower than that of the hard coat layer is provided on the hard coat layer, and (4) a high refractive index layer having a high refractive index is provided on the hard coat layer.
  • An antireflection layer in which a low refractive index layer having a lower refractive index than the high refractive index layer is provided on the high refractive index layer (for example, a portion of the antireflection layer in contact with the hard coat layer has a high refractive index; (5) a multilayer antireflection layer in which the layer configuration of (4) is repeatedly laminated, and (6) a high refractive index having a high refractive index.
  • a middle refractive index layer having a lower refractive index than the high refractive index layer is provided on the inner side of the refractive index layer (the display surface side when bonded to the display surface),
  • An example is an antireflection layer in which a low refractive index layer having a lower refractive index than the middle refractive index layer is provided outside the high refractive index layer having a high refractive index (on the side different from the display surface when bonded to the display surface). it can.
  • the medium refractive index layer, the high refractive index layer, and the low refractive index layer are formed with this material through the hard coat layer on the base film 1. Those having a layer are preferred. Further, the low refractive index layer, the medium refractive index layer, and the high refractive index layer are made of Si ⁇ x, and the refractive index of the low refractive index layer is greater than 1.4, and the refractive index of the high refractive index layer is 2.
  • the near-infrared shielding film laminate of the present invention can suppress the reflection of extraneous light that hinders the visibility of the display.
  • the antireflection layer is a single-layer film that mainly prevents yellow light from being reflected at the center, but a multilayer antireflection film is more suitable for preventing reflection of a display.
  • the second adhesive layer is laminated on a surface different from the side on which the hard coat layer is formed. In the case of lamination of the second adhesive layer, biaxial orientation is also used. In order to improve the adhesiveness with the film, it is preferable to laminate via the adhesive layer.
  • the second adhesive layer has removability, no adhesive residue at the time of peeling, and no peeling or foaming in a forced aging test under high temperature and high humidity.
  • the second adhesive having such properties can be selected from acrylic, rubber, polyvinyl alcohol, silicone, and the like. Most preferred is an acrylic adhesive.
  • Acrylic adhesives consist of an alkyl (meth) acrylate ester and a polymerizable unsaturated carboxylic acid or a hydroxyl group-containing ethylenically unsaturated monomer, or a copolymerizable vinyl monomer in an organic solvent or an aqueous medium. Obtained by polymerization.
  • a polymerization method by radical polymerization is preferably employed. Preferred are a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the copolymer preferably has a number average molecular weight of 9,500 to 950,000, preferably 50,000 to 500,000, as determined by gel permeation chromatography. 0, more preferably 95,000 to 400,000.
  • the alkyl (meth) acrylate ester preferably has an alkyl group having 1 to 12 carbon atoms, and is preferably (meth) methyl acrylate, (meth) butyl acrylate, (methyl) octyl acrylate, or the like. Is exemplified.
  • the methacrylate component includes, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-hexyl methacrylate, cyclohexyl Methacrylate, 2-ethylhexyl methacrylate, n-butyl methacrylate, isooctyl methacrylate, lauryl methacrylate and the like.
  • acrylate component examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, and n-methyl acrylate. Rate, lauryl acrylate and the like. These can be used alone or in combination of two or more.
  • a crosslinking agent can also be blended with the second adhesive.
  • the compounding amount is usually 0.01 to 10 parts by weight based on 100 parts by weight of the acrylic adhesive.
  • examples of the crosslinking agent include isocyanate-based compounds, aluminum chelates, aziridinyl-based compounds, and epoxy-based compounds.
  • the second adhesive is used as an organic solvent solution, and is applied to the base material film by a coating machine such as a roll coater, a reverse coater, a comma coater, a lip coater, a die coater, or the like. By laminating a peeled film or paper on the adhesive layer side of the base film, convenience in handling can be achieved.
  • the near-infrared shielding film laminated in the above-described configuration with respect to the first single-layer film can be used by directly attaching it to a glass substrate of a plasma display.
  • the plasma display device to which the near-infrared shielding film is adhered has excellent visibility and abrasion resistance, and absorbs near-infrared rays emitted from the inside of the PDP, so that there is no fear of causing a malfunction of a surrounding remote control device.
  • the second monolayer film is laminated with the electromagnetic wave shielding thin film laminated film to prevent peripheral devices from malfunctioning due to near-infrared radiation from the plasma display panel.
  • a laminated film It is preferably used for the front panel of a plasma display panel. At that time, it is necessary that the transmittance of the laminated film at 850 nm and 950 nm in the near infrared wavelength region is 0.01 or more and 0.20 or less, respectively. Preferably it is 0.1 or less.
  • the transmittance of near-infrared light with wavelengths of 850 nm and 950 nm is greater than 0.20, the near-infrared light emitted from the plasma display panel cannot be blocked sufficiently, which may cause malfunctions of devices around the plasma display. There is. On the other hand, if it is smaller than 0.01, the transmittance of visible light decreases due to the properties of the near-infrared absorbing agent, and the brightness of the plasma display decreases.
  • the electromagnetic wave shielding thin film laminated film a film in which an electromagnetic wave shielding transparent conductive layer is provided on at least one surface of a transparent film serving as a substrate is preferable.
  • the metal material constituting the transparent conductive layer a semiconductor thin film having a large optical Pando gap and high freedom electron density, such as I n 2 0 3 doped with Sn0 2 and Sn doped with Sb (I TO) or, Examples include metals such as Au, Ag, Cu, and A1. Of these, Ag, which hardly absorbs visible light, is particularly preferred. In addition, two or more metal substances may be used in combination as needed.
  • a method for forming such a metal layer a vapor phase growth method is preferable, and further, a sputtering method, a vacuum deposition method, or a plasma method.
  • the CVD method is preferred.
  • the thickness of such a metal layer should be set so as to satisfy the range of visible light transmittance of 70% or more and near infrared ray shielding rate of 40% or more.
  • the thickness of the metal layer is preferably in the range of 5 to 1,000 nm. If the thickness is less than 5 nm, the surface resistance increases, and a sufficient electromagnetic shielding effect is not exhibited.
  • indium oxide-tin oxide can be applied as a dielectric layer in a single layer or in multiple layers. As a method for forming such a dielectric layer, a vapor phase growth method is preferable.
  • the dielectric layer is more preferably formed by sandwiching the above-mentioned metal layer in a sandwich manner, since the effect of transparency is increased. It is necessary to set the thickness of such a dielectric layer together with the above-mentioned metal layer so as to satisfy the optical characteristic range of the structure of the present invention.
  • the thickness of the dielectric layer is preferably in the range of 0 to 75 nm, more preferably in the range of 10 to 500 nm.
  • a biaxially oriented polyester film having a thickness of 25 to 250 mm, preferably 25 to 175 can be preferably used.
  • the polyester constituting the biaxially oriented film the same polyester as the biaxially oriented film constituting the near infrared shielding film can be used. The same conditions can be adopted for the biaxial orientation heat treatment.
  • the laminated film is provided with a metal mesh or the like between the second single layer film and the electromagnetic wave shielding thin film laminated film for strengthening the electromagnetic wave shielding. They may be stacked.
  • the laminated film of the present invention comprises a biaxially oriented film made of a polyester containing a near-infrared absorber having a weight loss start degree of at least 280 and at least one surface of the biaxially oriented film. It is made of an electromagnetic shielding film provided.
  • the near-infrared absorber having a weight-loss initiation temperature of at least 280 ° C., and a biaxially oriented film made of a polyester containing the same are as described above for the monolayer film, and at least The electromagnetic wave shielding film provided on one side is as described above for the second monolayer film.
  • the biaxially oriented film in the laminated film has a haze value of 5% or less and has an optical property in a visible light region and a near infrared region in the following formulas (5), (6), (7) and (8): 5 ⁇ T (850) ⁇ 57
  • optical characteristics of the above biaxially oriented film in the visible light region and the near infrared region are represented by the following formulas (7) -1 and (8) -1:
  • the biaxially oriented film has a total light transmittance of 60% or more of visible light having a wavelength of 400 to 650 nm.
  • the laminated film of the present invention further has a haze value of 5% or less, a total light transmittance of visible light having a wavelength of 400 to 650 nm of 40% or more, and
  • optical characteristics in the visible light region and the near infrared region satisfy the following expressions (5), (6), (7), and (8).
  • the electromagnetic wave shielding film of the laminated film of the present invention the same film as described for the second single-layer film is used.
  • the laminated film of the present invention may be, like the single-layer film, a film composed of the laminated film and an adhesive layer provided on at least one surface of the laminated film, or the laminated film, an adhesive layer provided on both surfaces thereof, As a film comprising a hard coat layer provided on the surface of one adhesive layer and a second adhesive layer provided on the surface of the other adhesive layer, preferably on the surface of the hard coat layer, it is advantageously used as a film further provided with an antireflection layer comprising at least two thin film layers having different refractive indices.
  • the total light transmittance Tt (%) and the scattered light transmittance Td (%) were measured using a haze measuring device (NDH-20) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K6714-1958.
  • the obtained total light transmittance was evaluated according to the following criteria. Evaluation 2 or higher is practically no problem, and evaluation 3 is extremely excellent.
  • Haze (%) was calculated from the following equation from the measured total light transmittance Tt (%) and scattered light transmittance Td (%).
  • the obtained haze value was evaluated according to the following criteria.
  • Haze value ⁇ 2.0% ?? Haze value is quite small and can be used very practically.
  • the light transmittance at 00 nm was measured.
  • the L *, a *, and b * in the L * a * b * color system are determined from the transmission spectrum of the test film for the standard light A according to JIS standard Z8729, and the ab chroma ( C * ab) was calculated. From the obtained C * ab, the deviation of the saturation from the achromatic color was evaluated according to the following criteria.
  • C b is 10 or more and less than 20
  • Rum: R (%) is more than 5% and less than 10%.
  • the sample was mounted on a square pad (area 6.25 cm 2 ) with steel wool # 000, and the difference in haze before and after the abrasion test (load lkg, 50 reciprocations) using a reciprocating abrasion tester ( ⁇ haze ) was evaluated as follows.
  • Mm haze (haze value after abrasion test)-(haze value before abrasion test)
  • ⁇ : ⁇ haze is less than 10
  • Mm: ⁇ Haze is 10 or more and less than 20
  • ⁇ : ⁇ haze is 20 or more ''
  • test sample was held in a thermo-hygrostat at 60 ° C and 80% RH for 24 hours, the surface of the adhesive layer of the Sangare was stuck on a glass plate, and a peel test was performed to evaluate it according to the following criteria. .
  • a cross cut (100 1-mm squares) is made on the surface of the hard coat layer of the test sample on which the anti-reflection layer is not laminated, and a 24-mm cellophane tape (Nichipan Co., Ltd.) is placed on it. After affixing and abruptly peeling at a peel angle of 180 degrees, the peeled surface was observed and evaluated according to the following criteria.
  • the remote controller sent remote control signals (signal wavelengths 950 nm and 850 nm) from a distance of 2 m to test whether or not the home television responded.
  • the near-infrared rays emitted from the PDP display are weaker than the near-infrared rays emitted from the remote controller, if there is no response in this test, it is possible to prevent the occurrence of a remote control failure.
  • an aqueous liquid of the following coating composition concentration of 8% is applied uniformly on both sides by a mouth-coater, and subsequently dried at 95 ° C and stretched by a factor of 3.8 at 120 in the horizontal direction. Then, it was heat-set at 230 to obtain a near-infrared shielding film having a thickness of 188 m. Incidentally, the thickness of the adhesive coating film was 0.15 m. Table 1 shows the evaluation results of the obtained films.
  • the acid component is terephthalic acid (90 mol%), isophthalic acid (6 mol%) and potassium 5-sulfoisophthalate (4 mol%), and the glycol component is ethylene glycol (95 mol%) and neopentyldaricol (5 mol%) 80% by weight of Tg 68 ° C copolymerized polyester synthesized from
  • Example 2 The same operation as in Example 1 was repeated except that the near-infrared absorbing agent was changed as shown in Table 1.
  • Table 1 shows the evaluation results of the obtained films.
  • FIG. 1 shows the transmittance of the film used in Example 2.
  • an aqueous liquid having a concentration of 8% of a coating composition having the following composition was uniformly applied to both surfaces thereof with a roll coater, and subsequently dried at 145 ° C while laterally at 120 ° C.
  • the film was stretched 8 times and heat-set at 230 ° C. to obtain a near infrared shielding film having a thickness of 18.
  • the thickness of the adhesiveness was 0.15 m. Table 1 shows the evaluation results of the obtained films.
  • the acid component is terephthalic acid (90 mol%), isophthalic acid (6 mol%) and potassium 5-sulfoisophthalate (4 mol%), and the glycol component is ethylene glycol (95 mol%) and neopentyl glycol (5 mol%).
  • N, N, monoethylene bis-forced prillamide 5% by weight Acrylic resin fine particles (average particle size 0.03 m) 10% by weight
  • Example 1 The same operation as in Example 1 was repeated except that no near-infrared absorbing agent was used. Table 1 shows the evaluation results of the obtained films. No near infrared absorption performance.
  • Example 2 The same operation as in Example 1 was repeated except that the near-infrared absorber was changed as shown in Table 1. I returned. Table 1 shows the evaluation results of the obtained films. Comparative Example 2 has no problem with near-red absorption performance, but has low total light transmittance.
  • Example 5 Using a roll coater, a UV curable composition having the following composition was uniformly applied on the adhesive coating film on one side of the near-infrared shielding film of Example 1 so that the cured film thickness was 5 m. Was applied.
  • ultraviolet light was irradiated for 30 seconds with a high-pressure mercury lamp having an intensity of 8 OWZ cm to cure, thereby forming a hard coat layer.
  • a low refractive index layer (S i0 2, 30 nm), a high refraction index layer (Ti_ ⁇ 2, 30 nm), a low refractive index layer (S i 0 2, 30nm) , high refractive the rate layer (T I_ ⁇ 2, 100 nm) and a low refractive index layer (S i 0 2, 100 nm ) is anti-reflection layer are laminated in this order was formed by sputtering.
  • the adhesive coating liquid a (adhesive concentration: 20% by weight) prepared by the method described below was stirred so as to be uniform, and then a 38 m-thick PET film subjected to a peeling treatment was dried. Coating was performed so that the thickness of the adhesive layer was 25 m, and the coating was dried. The surface of the adhesive layer was adhered to the untreated surface of a 188 m-thick transparent PET film that had been subjected to the above antireflection treatment, to obtain a near-infrared shielding film (laminated film) of the present invention.
  • the thus obtained laminated film was adhered to an electromagnetic shielding thin film laminated film (manufactured by Teijin Shoji Co., Ltd., trade name: Leftel XI R-70) having one surface subjected to an adhesive treatment.
  • Table 2 shows the optical characteristics of the obtained laminate and the evaluation results of the display device.
  • a solution having the following composition was prepared in a flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube.
  • Example 5 The same operation as in Example 5 was repeated using the films used in Examples 2 to 4.
  • Table 2 shows the evaluation results of the obtained laminated films.
  • FIG. 2 shows the transmittance of the laminated film used in Example 6 (before bonding with the electromagnetic wave shielding thin film laminated film).
  • Example 2 shows the evaluation results of the obtained laminated film. It did not show sufficient near-infrared blocking performance at a wavelength of 850 nm.
  • Example 2 shows the evaluation results of the obtained laminated film. It did not show sufficient near-infrared blocking performance at a wavelength of 850 nm.
  • a UV curable composition having the following composition was uniformly applied using a roll coater such that the film thickness after curing was 5 m.
  • UV curable composition Pentaerythritol acrylate 45% by weight
  • ultraviolet rays were irradiated for 30 seconds with a high-pressure mercury lamp having an intensity of 8 OW / cm to cure, thereby forming a hard coat layer.
  • a low refractive index layer (S i 0 2, 30 nm ), a high refraction index layer (T I_ ⁇ 2, 30 nm), a low refractive index layer (S i 0 2, 30 nm), a high refractive index layer (T I_ ⁇ 2, 1 00 nm) and a low refractive index layer (S i 0 2, 100 nm ) was formed by sputtering an anti-reflection layer are laminated in this order.
  • the above-mentioned adhesive coating liquid a (adhesive concentration: 20% by weight) prepared by the following method was uniformly stirred, and then dried to a 38 m-thick PET film subjected to a peeling treatment. The coating was applied so that the thickness of the subsequent adhesive layer was 25 m, and dried. The surface of the adhesive layer was adhered to the untreated surface of a 188 im transparent PET film that had been subjected to the above antireflection treatment to obtain a laminated film.
  • Table 2 shows the evaluation results of the laminated film and the display device thus obtained. Demonstrated sufficient near-infrared ray blocking performance, but a lot of near-infrared ray absorbers were expensive, and the adhesion between the adhesive layer and the film was poor.
  • a solution having the following composition was prepared in a flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube.
  • n-Butyl acrylate 47.0% by weight Acrylic acid 3.0% by weight Benzyl peroxide 0.2% by weight Ethyl acetate 20.0% by weight Toluene 29.6% by weight Near infrared absorption manufactured by Dainippon Ink and Chemicals, Inc. Agent IR-Additive 200 0.4% by weight
  • nitrogen was introduced from the nitrogen inlet tube to make the inside of the flask nitrogen atmosphere. The mixture was heated at 5, and the polymerization reaction was carried out for 10 hours to obtain an acrylic polymer solution having a weight average molecular weight of about 1.2 million (number average molecular weight of about 300,000) and Tg of about -49 ° C. .
  • Ethyl acetate was added to the acrylic polymer solution so as to have a solid content of 20% by weight to obtain an acrylic polymer solution for master batch.
  • 0.1 part by weight of ⁇ , ⁇ , ⁇ ′, ⁇ , -tetraglycidyl-m-xylenediamine was added to obtain an adhesive coating liquid b.
  • Example 1 there 25 (0.030) 13 11 12
  • Example 6 Example 2 There 25 (0.024) 9 7 9
  • Example 7 Example 3 Yes 25 (0.015) 17 22 18
  • Example 8 Example 4 Yes 25 (0.015) 12 11 12 Comparative Example 4 Comparative Example 1 Yes 25 0. 000 35 25 18 Comparative Example 5 Comparative Example 3 Yes 25 (0.006) 29 22 14 Comparative Example 6 Comparative Example 1 None 45 C (0.4) 0.029 12 14 40 Comparative Example 7 Comparative Example 1 None 45 A ( 0.4) D (0.4) 0.058 11 13 18
  • [??] 0.65) is extruded from a die, cooled on a cooling drum by a conventional method to give an unstretched film, and then stretched at a stretching ratio of 3.5 at 90 ° C in the machine direction.
  • An aqueous liquid having a concentration of 8% of a coating composition having the following composition was uniformly applied to both surfaces thereof all at once over a roll, and then dried at 95 ° C and then laterally at 120 ° C. 3.
  • the film was stretched 8 times and heat-set at 23 O to obtain a near infrared shielding biaxially oriented film with a thickness of 75 m.
  • the thickness of the adhesiveness ⁇ E was 0.
  • Table 3 shows the evaluation results of the obtained films.
  • Figure 3 shows the transmittance.
  • the acid component is terephthalic acid (90 mol%), isofluoric acid (6 mol%) and potassium 5-sulfoisophthalate (4 mol%), and the glycol component is ethylene glycol (95 mol%) and neopentyldaricol. 80% by weight of copolyester resin with Tg of 68 ° C synthesized from (5 mol%)
  • Example 9 The same operation as in Example 9 was repeated, except that the near-infrared absorbing agent was changed as shown in Table 3.
  • Table 3 shows the evaluation results of the obtained near-infrared shielding film.
  • FIG. 4 shows the transmittance of the film obtained in Example 11.
  • the acid component is terephthalic acid (90 mol%), isophthalic acid (6 mol%) and potassium 5-sulfoisophthalate (4 mol%), and the glycol component is ethylene glycol (95 mol%) and neopentyl glycol ( 5 mol%) T g 68 Synthesized from 8 ° C copolymer polyester resin 80% by weight
  • Example 9 The same operation as in Example 9 was repeated except that no near-infrared absorbing agent was used. Table 3 shows the evaluation results of the obtained biaxially oriented film. No near infrared absorption performance. '
  • Example 9 The same operation as in Example 9 was repeated, except that the near-infrared absorbing agent was changed as shown in Table 3.
  • Table 3 shows the evaluation results of the obtained near-infrared shielding film. Comparative Example 9 has no problem in near-red absorption performance, but has low total light transmittance. Comparative Example 10 has insufficient near-red absorption performance.
  • Table 3 Power ⁇ ⁇ T ("fi (4 ⁇ 0)
  • E Near infrared absorber EX 814K (0.40wt) manufactured by Nippon Shokubai Co., Ltd. and near infrared absorber S13 (0.20wt%) manufactured by Mitsui Chemicals, Inc.
  • G Near infrared absorber EX812K (0.13wt%), EX814K (0.27wt%) manufactured by Nippon Shokubai Co., Ltd. and near infrared absorber EX900B (0.27wt%) manufactured by Nippon Shokubai Co., Ltd.
  • Example 9 On one surface of the near-infrared shielding film obtained in Example 9, the same UV-curable composition as used in Example 5 was rolled all over the same UV-curable composition to give a cured film thickness of 5 m. Was applied uniformly.
  • a low refractive index layer (S i0 2, 30 nm), a high refraction index layer (T I_ ⁇ 2, 30 nm), a low refractive index layer (S I_ ⁇ 2, 30 nm), high refractive index layer (T i 0 2, 100 nm ) and a low refractive index layer (S I_ ⁇ 2, 100 nm) is have been conducted under a reflection preventing layer are laminated in this order sputtering evening ring.
  • the adhesive coating liquid c (adhesive concentration: 20% by weight) prepared by the method shown below was stirred uniformly, and then a 38 m-thick polyethylene terephthalate (PET) film that had been subjected to a peeling treatment was applied. Then, coating was performed so that the thickness of the adhesive layer after drying was 25 m, and the coating was dried. The surface of the adhesive layer was adhered to the untreated surface of the near-infrared shielding film having a thickness of 75 Hm subjected to the antireflection treatment to obtain a near-infrared shielding laminated film of the present invention. Table 4 shows the evaluation results of the laminated film and the display device thus obtained.
  • a solution having the following composition was prepared in a flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube.
  • Example 15 Using the near-infrared shielding films obtained in Examples 10 to 14, the same operation as in Example 15 was repeated. Table 4 shows the evaluation results of the obtained laminated films.
  • ultraviolet light was irradiated for 30 seconds with a high-pressure mercury lamp having an intensity of 8 OWZ cm to cure, thereby forming a hard coat layer.
  • a low refractive index layer (S I_ ⁇ 2, 30 nm), a high refraction index layer (T I_ ⁇ 2, 30 nm), a low refractive index layer (S I_ ⁇ 2, 3 onm) , the high refractive index layer (T I_ ⁇ 2, 100 nm) and a low refractive index layer (S i 0 2, 100 nm ) was formed by sputtering an anti-reflection layer are laminated in this order.
  • the above-mentioned adhesive coating liquid d (adhesive concentration: 20% by weight) prepared by the following method was stirred uniformly, and then dried to a 38 m-thick PET film subjected to a peeling treatment. Coating was performed so that the thickness of the subsequent adhesive layer was 25 m, and the coating was dried. The surface of the adhesive layer was adhered to the untreated surface of the near-infrared shielding film having a thickness of 75 m which had been subjected to the antireflection treatment, to obtain a near-infrared shielding laminate film. Table 4 shows the evaluation results of the laminated film and the display device thus obtained. It did not exhibit sufficient near-infrared ray blocking performance.
  • a solution having the following composition was prepared in a flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube.
  • Example 9 Coat Example 15
  • Example 9 25 ⁇ 5 5
  • Example 16 Example 10 25 ⁇ 5 5
  • Example 17 Example 11 25 ⁇ 5 5
  • Example 18 Example 12 25 ⁇ 5 5
  • Example 19 Example 13 25 ⁇ ⁇ 5
  • Example 20 Example 14 25 ⁇ ⁇ 5 Comparative example 13 Comparative example 8 25 N (l.80) 2.16 X 0 5 Comparative example 14 Comparative example 9 45 0 (0.78) 0.92 ⁇ X 5 Comparative example 15 Comparative example 9 45 ⁇ (0.88) 1.06 ⁇ X 5 Comparative example 16 Comparative example 9 45 Q (0.35) 0.42 ⁇ X 5 Table 4 (continued)
  • N Near infrared absorber EX 814K (1.2 Owt%) manufactured by Nippon Shokubai Co., Ltd. and near infrared absorber S13 (0.60 wt%) manufactured by Mitsui Chemicals, Inc.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

明 細 書 近赤外線遮蔽フィルム 技術分野
本発明は近赤外線遮蔽フィルムおよびそれを用いた積層フィルムに関し、 さら に詳しくは取り扱い性に優れ、 安価で、 可視光線の光線透過率が高く、 かつ波長
8 2 0〜9 8 0 nmの近赤外線を遮蔽する特性に優れ、 プラズマディスプレイ等 の映像表示パネル面に好適に使用できる近赤外線遮蔽フィルムおよびそれを用い た積層フィルムに関する。 従来の技術
近年、 カラーテレビジョンに代表される映像機器においては、 大画面化と映像 の高精細化という市場要求により、 従来の C R Tを用いた直視型テレビジョンに 加えて、 プラズマディスプレイ等を用いた発光型パネル方式、 液晶ディスプレイ 等を用いた非発光型パネル方式、 映像プロジェクターが内蔵されたリアブロジェ クション方式等のテレビジョンの実用化が進められている。
ところが、 発光型パネル方式のプラズマディスプレイ (P D P) においては、 光源あるいは放電部を構成する各々の画素部分の構造的要因により、 力ラー S¾像 の 3原色 '(赤、 緑、 青色) の波長帯以外の光線をも放射し、 例えば波長が 8 2 0 nm、 8 8 0 nm、 9 8 0 nm近辺等の近赤外線領域に強い放射が測定される。 そこで、 この近赤外線放射により、 周辺機器に誤作動等の問題が生じることが危 惧される。 それは、 放射される近赤外線の波長が、 例えば、 テレビ、 ビデオやク 一ラーのリモートコントローラー、 携帯通信、 パソコン等の近赤外線通信機器等 に使用されている近赤外線の作動波長と重複または合致しているためである。 特開平 1 0— 1 5 6 9 9 1号公報には、 上述のような近赤外線による周辺機器 の誤作動を防止する機能と同時に外光反射防止機能を併せ持ち、 B央像機器表示装 置の前面パネルに好適に使用することのできる外光反射防止性フィルムが提案さ れている。 この外光反射防止性フィルムでは、 近赤外線による周辺機器の誤作動 を防止する機能を、 高価な近赤外線吸収剤を粘着剤層に含有させることで付与し ている。 そして、 十分な近赤外線吸収性能を達成するために、 例えば、 粘着剤層
_の厚みを 4 0 jLi mとしている。
ところで、 プラズマディスプレイ (P D P) をはじめとするディスプレイなど の粘着剤層の厚みは、 例えば厚み斑による色斑の発生を防止する点から、 5〜4 0 mの範囲内とするのが好ましく、 これ以上の厚みの層は粘着剤としては機能 せず、 むしろ、 加工や貼合せの工程における取り扱い性を低下させる。 前記公報 の具体例でコーティングされてた粘着剤層の厚みは、 上限に近い 4 0 mの厚み である。
遮蔽効果を高める他の方法としては近赤外吸収剤の添加濃度を増やす方法があ るが、 この方法では、 粘着剤層の接合力の低下や取り扱い性の低下を引き起こす。 また、 高価な近赤外吸収剤を粘着層に配合する場合、 溶剤に溶かした状態でロー ルコ一夕やグラビアコ一夕などで塗布するため、 膜厚管理および生産性などから ロスが多く生じ、 コストが非常に高くなるといった欠点がある。
さらに他の方法としては、 粘着層とは別に、 近赤外吸収剤を含有する遮蔽層を 設ける方法がある。 この方法では、 遮蔽層に貼合せ機能が求められないために、 粘着層のような接着性の低下といった問題は発生しないが、 層の厚みが厚くなる ことには変わりなく、 その膜厚管理が非常に難しいといつた難点がある。
また、 プラズマディスプレイ (P D P) においては、 熱線の放射が多く、 パネ ル前面が高温になることから、 これを防止する方法として、 特開平 1 0—1 8 8 8 2 2公報に、 近赤外線による周辺機器の誤作動を防止する機能と同時に熱線力 ット機能を併せ持ち、 日央像機器表示装置の前面パネルに好適に使用することので きるパネル用フィル夕が提案されている。 この具体例として、 透明ポリエステル フィルム基材上に熱線をカツトする金属反射層とこの上に透明コート層を設け、 さらに近赤外線吸収剤を含有させた厚み 2 5 mの透明粘着層を該透明コート層 の上に設けるか、 該フィルム基材の池の表面上に設けたパネル用フィル夕が記載 されている。 このフィルタでは、 金属反射層が熱線と共に近赤外線をカットするため、 近赤 外線吸収剤を含有させた透明粘着層の厚みは薄くてもよいが、 金属反射層を設け ることによる厚み増加や、 工程増加には何ら変わりなく、 コストが高くなるとい .つた難点がある。
そこで、 上記のような近赤外線吸収剤を添加した粘着剤加工や溶剤を用いたコ —ティング加工に頼らずにすむ、 フィルム厚みが十分に厚く、 膜厚精度の高い近 赤外線遮蔽フィルムが望まれていた。 発明の開示
本発明の目的は、 取り扱い性がよく、 安価で、 可視光線の光線透過率が高くそ してプラズマディスプレイの表示面から放射される近赤外線による周辺機器への 誤作動の防止機能を持つ、 プラズマディスプレイの前面パネル用に好適に使用す ることのできる近赤外線遮蔽フィルムを提供することにある。
本発明の他の目的は、 取扱い性がよく、 安価で、 光線透過率が高く、 プラズマ ディスプレイパネルの表示面から放射される近赤外線による周辺機器への誤作動 の防止機能を持ち、 のみならず電磁波シールド薄膜積層フィルムと貼合せて発光 型パネル方式ディスプレイ、 特にプラズマディスプレイのパネル前面に好適に使 用することのできる近赤外線遮蔽フィルムおよびそれを用いた積層フィルムを提 供することにある。
本発明の他の目的および利点は、 以下の説明から明らかになろう。
本発明によれば、 本発明の上記目的および利点は、 第 1に、
(A) 重量減少開始温度が少なくとも 2 8 0 °Cである近赤外線吸収剤を含有する ポリエステルからなる二軸配向フィルムからなり、
(B) ヘーズ値が 5 %以下であり、
(C) 波長 4 0 0〜 6 5 0 nmの可視光線の全光線透過率が 4 0 %以上であり、 そして
(D ) 可視光領域および近赤外線領域における光学特性が下記式 (1 ) 〜 KT (850) く 20 · · · (1)
1<Τ (950) く 20 · · · (2)
- 10<Τ (620) -Τ (540) く 10 · · - (3)
. - 10 <Τ (450) -Τ (540) <10 · · · (4)
ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) はそれぞれ、 波長 450 nm、 540 nm、 620 nm、 850 nmおよび 950 nmにおける光遂過率 (%) である、
を満足する、
ことを特徴とする近赤外線遮蔽フィルム (以下、 本発明の第 1単層フィルムとい うことがある) によって達成される。
本発明によれば、 本発明の上記目的および利点は、 第 2に、
(A) 重量減少開始温度が少なくとも 280でである近赤外線吸収剤を含有する ポリエステルからなる二軸配向フイルムからなり、
(B) へ一ズ値が 5%以下であり、
(C) 波長 400〜 650 nmの可視光線の全光線透過率が 60 %以上であり、 そして
(D) 可視光領域および近赤外線領域における光学特性が下記式 (5)、 (6)、 (7) および (8):
5≤T (850) ≤57 · · · (7)
20≤Τ (950) · · · (8)
0. 7≤Τ (620) /Τ (540) ≤1. 3 · · · (5)
0. 7≤Ύ (450) /Τ (540) ≤1. 3 · · · (6) ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) の定義は上記と同じである、
を満足する、
ことを特徴とする近赤外線遮蔽フィルム (以下、 本発明の第 2単層フィルムとい うことがある) によって達成される。
本発明によれば、 本発明の上記目的および利点は、 第 3に、 (Α') 重量減少開始温度が少なくとも 280でである近赤外線吸収剤を含有す るポリエステルからなる二軸配向フィルムおよび該ニ軸配向フィルムの少なくと も片面上に設けられている電磁波シールド性フィルムからなり、
.(B) ヘーズ値が 5%以下であり、
(C) 波長 400〜 650 nmの可視光線の全光線透過率が 40 %以上であり、 そして
(D') 可視光領域および近赤外線領域における光学特性が下記式 (1)、 (2)、 (5) および (6):
KT (850) <20 · · · (1)
KT (950) <20 · · · (2)
0. 7≤T (620) /Ύ (540) ≤1. 3 · · - (5)
0. 7≤Τ (450) /Ύ (540) ≤ 1. 3 · · · (6)
ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) の定義は上記と同じである、
を満足する、
ことを特徴とする近赤外線遮蔽積層フィルム (以下、 本発明の積層フィルムとい うことがある) によって達成される。 図面の簡単な説明
図 1は、 実施例 2で用いた近赤外線フィルムの透過率を示す図である。
図 2は、 実施例 6で用いた近赤外線積層フィルムの透過率を示す図である。 図 3は、 実施例 9で得られた近赤外線遮蔽フィルムの透過率を示す図である。 図 4は、 実施例 1 1で得られた近赤外線遮蔽フィルムの透過率を示す図である c 発明の好ましい実施形態
以下、 本発明の第 1および第 2の単層フィルムについて説明する。 なお、 以下 の説明において、 特に断りのない限り、 第 1および第 2の単層フィルムに共通の 説明であると理解すべきである。 先ず、 第 1単層フィルムについて説明する。
本発明における近赤外線遮蔽フィルムは、 プラズマディスプレイの前面板に使 用したとき、 該ディスプレイから放射される近赤外線により周辺機器が誤作動す る等の問題が発生するのを防ぐ機能を有する。 この為フィルム中に近赤外線吸収 剤を含有し、 近赤外線、 特に波長 850および 950 nmの近赤外線の透過率 (%) がそれぞれ 1 (%) 以上 20 ( ) 以下である特性を有する。 850およ び 95 Onmの近赤外線の透過率 (%) がぞれぞれ 20 ( ) より大きいと、 プ ラズマディスプレイから放射される近赤外線が十分に遮断できなくなり、 プラズ マディスプレイ周辺の機器の誤作動を招く虞れがある。 一方、 この透過率 (%) が 1 ) 未満であると、 近赤外線吸収剤の特性上、 可視光線の透過率も低下し、 プラズマディスプレイの輝度が低下する。
前記近赤外線遮蔽フィルムは、 さらに、 可視光域の全光線透過率が 40%以上、 好ましくは 40%以上 80%以下である特性を有する。 この全光線透過率が 4 0%未満になると、 PDPの輝度の低下が著しくなり、 視認性が低下する。 一方、
80%より大きいと、 PDPの発光色の中間色によりコントラストが低下するこ の全光線透過率の下限はより好ましくは 50%、 特に好ましくは 60%であり、 また上限はより好ましくは 70%である。
近赤外線吸収剤を含有するフィルムは該近赤外線吸収剤の特性上発色に偏りが 生じ易いが、 本発明における近赤外線遮蔽フィルムはこの色相 (彩度) のずれを 極力抑えたものである。 色相のずれを抑えるためには、 PDPにおける赤、 緑、 青の発光波長における透過率をほぼ同等にすることが有効である。 従って、 青、 緑および赤の発光波長のピークである 450 nm、 540 nm、 620 nmにお けるフィルムの透過率 (%) の差、 (T (450) — T (540)) および (T (620) -T (540)) が、 それぞれ— 10〜: L 0 %の範囲になければなら ない。 この透過率 (%) の差が前記範囲を外れると、 ブラウン管からの発光の着 色度合いが大きくなり視認性が低下する。 透過率 (%) の差の好ましい上限は 8%であり、 好ましい下限は一 8%である。 さらに好ましい上限は 5%であり、 さらに好ましい下限は一 5 %である。
次に、 第 2の単層フィルムについて説明する。
本発明における近赤外線遮蔽フィルムは、 近赤外線吸収剤を含有する二軸配向 ポリエステルフィルムからなるが、 該フィルムの波長 85 Onmの透過率が 0. 05以上 0. 57以下である必要がある。 好ましくは、 波長 85 Onmの透過率 は 0. 10以上 0. 27以下である。 同時に、 波長 95 Onmの透過率が 0. 2 0以上であり、 好ましくは 0. 20以上 0. 55以下である。 波長 85 Onmの 透過率が 0. 57より大きいと、 電磁波シールド性薄膜積層フィルムと貼合せた 後の透過率を 0. 20以下にするのが難しく、 近赤遮蔽能が不十分となる。 一方、 波長 850 nmの透過率が 0. 05未満であったり、 波長 950 nmの透過率が 0. 20未満であると、 近赤外線吸収剤を必要以上に使用することになり、 コス トが上昇するので、 電磁波シールド性薄膜積層フィルムと貼合せるメリットがな い。
本発明における近赤外線遮蔽フィルムは、 さらに、 ヘーズ値が 5%以下で、 か つ可視光領域における光学特性が下記式 (5) 〜 (6)
0. 7≤Ύ (620) /Ύ (540) ≤ 1. 3 ···· (5)
0. 7≤Τ (450) /Τ (540) ≤1. 3 ···· (6)
(ただし、 式中の Τ (450)、 Τ (540) および Τ (620) は、 それぞれ 波長 450 nm、 540 nmおよび 620 nmにおける透過率である。) を満足する必要がある。 このヘーズ値は、 さらに 3%以下、 特に 2%以下である ことが好ましい。 このヘーズ値が 5%より大きいと、 B央像の色相が白濁し、 鮮映 性を欠いて視認性が低下する。 また、 プラズマディスプレイの発光は RGBがそ れぞれ 620、 540、 450 nm付近であるから、 T (620) /Ύ (54 0) や T (450) /T (540) が 0. 7以下であったり、 1. 3以上である と RGBの発光輝度のバランスがずれてしまい、 色相が正しく表示できない。 さ らにまた、 可視光線 (波長 400〜 650n m) の全光線透過率が 60 %以上、 さらには 70 %以上であることが好ましい。 この全光線透過率が 60 %未満であ ると、 画面全体が暗くなり、 十分な輝度を得るために必要以上に消費電力が大き くなる。
近赤外線吸収剤
本発明においては、 フィルム中に近赤外線吸収剤を含有させて該フィルムの赤 外線波長領域の吸光度を上げる際、 フィルムのヘーズ値を大きくしないことが肝 要であり、 二軸配向フィルムのへ一ズ値を 5 %以下にすることが必要である。 近 赤外線吸収剤の含有量は、 二軸配向ポリエステルフィルムの厚み方向に垂直な面 に対して、 0. 1 0〜1 . 0 O g/m2の範囲であることが好ましい。 このへ一 ズ値が 5 %より大きいと、 映像の色相が白濁し、 鮮映性を欠いて視認性が低下す る。 二軸配向フィルムのヘーズ値を 5 %以下に維持しつつ、 8 5 0および 9 5 0 nmの透過率をそれぞれ 2 0 %以下にする手段としては、 例えば、 近赤外線吸収 剤をフィルム基材となるポリエステルに溶解させるか、 溶解せずとも粒径が 5 0 0 nm以下の分散体にする方法が好ましく挙げられる。 二軸配向フィルムのへ一 ズ値は好ましくは 3 %以下、 特に好ましくは 2 %以下である。
近赤外線吸収剤は一般的に熱安定性が無機顔料などに比べて乏しいが、 本発明 における近赤外線吸収剤はポリエステルの溶融状態において劣化分解を生じない か、 生じたとしてもその割合の小さいものであることが必要で'ある。 具体的には、 近赤外線吸収剤の重量減少開始温度が少なくとも 2 8 0 °Cであることが必要であ る。 さらには、 ポリエステルフィルム、 殊にポリエチレンテレフ夕レート (P E T) フィルムの回収再利用の観点から、 2 8 0 、 3 0分保持したときの減量率 が 1 0 %以下であることが好ましい。 この減量率が 1 0 %以下であれば、 フィル ム製品とならなかった部分について回収し、 再び製膜原料として使用することが できる。 この減量率が 1 0 %より大きいと、 フィルム回収時に近赤外線吸収剤の 劣化分解などが進み、 バ一ジンポリマ一と実質的に同等の光学特性を維持するこ とが難しくなる。 さらに近赤外線吸収剤としては、 フィルムの生産性の観点から、 ポリエステルの溶融押出し時に該ポリエステルの溶融粘度低下の少ない近赤外線 吸収剤を用いるのが好ましい。
かかる耐熱特性を有する近赤外線吸収剤としては、 フタ口シァニン骨格を持つ 化合物およびニッケル錯体化合物が好ましい。 例えば日本触媒 (株) 製の近赤外 線吸収剤 E X 8 1 2 K、 E X 8 1 4 K、 E X 9 0 6 B、 三井化学 (株) 製の近赤 外線吸収剤 R 1 2、 S 1 3、 大日本インキ化学工業 (株) 製の近赤外線吸収剤 I R -AD D I T I VE 2 0 0、 有本化学 (株) 製の近赤外線吸収剤 S D 0— 1 _0 0 0 B、 日本化薬 (株) 製の近赤外線吸収剤 I R G- 0 2 3等を挙げることが できる。 これらは単独で使用することができるが、 2種以上を併用するのが好ま しい。
また、 近赤外線吸収剤は耐候性に乏しいが、 本発明においてはフィルム基材と なるポリエステルがァクリルな の基材と異なり、 大部分の紫外線を吸収する特 性を有することから、 比較的耐候性の懸念なく近赤外線吸収剤の使用が可能であ る。 ポリエステルには、 必要に応じて、 さらなる耐候性の向上に紫外線吸収剤を 添加してもよい。
添加方法
前記近赤外線吸収剤の添加方法としては、 所定量の近赤外線吸収剤をポリエス テルのグリコール成分と同じグりコ一ル、 例 ばエチレングリコールに分散、 溶 解させポリエステルの製造段階で添加してもよいが、 フィルムの生産性や異物の 混入防止および工程の簡素化といった観点から、 別にフィルム添加濃度よりも高 濃度の近赤外線吸収剤を添加したポリエステルのペレツト (マスターペレツト) もしくは近赤外線吸収剤自体を溶融固化したペレツトを作成し、 これをフィルム 製造工程で配合添加する方法が好ましい。 近赤外線吸収剤を溶融固化する際には、 適宜バインダーを使用してもよい。 添加方法として、 特に近赤外線吸収剤を溶融 固化したペレツ卜については、 フィルム原料のポリエステルペレットと機械的物 性が異なるので、 小型のフィーダを用いて製膜工程、 特に該ポリエステルペレツ 卜の押出機に供給する方法が好ましい。 フィーダによる供給量は、 押出機の容量 および添加量によって変化するが、 設備上 0 . 2〜2 0 k gZhが好ましい。 ま た、 溶融ポリエステルの粘度低下を抑える目的で、 押出機のせん断変形速度 7 0 ( 1 /秒) において滞留時間を 2 0〜4, 0 0 0秒とすることが好ましい。 この 値が 2 0秒未満では近赤外線吸収剤の混練が十分でなくフィルムの透過率に斑が みられ、 一方 4 , 0 0 0秒以上では粘度の低下による切断を招きやすく、 同時に 樹脂の粘度低下が近赤吸収剤の熱分解を併発しゃすくなる。
本発明における近赤外線遮蔽フィルムは、 粘着剤層などのコ一ティング層に含 有させる場合と比較して近赤外線吸収剤の添加濃度を低減することができるため、 フィルム面内の色相斑が生じ難く、 また剤のブリードアウトなどによる色相の変 ί匕も生じ難い、 という特徴を有する。
ポリエステル
本発明における二軸配向フィルムを構成するポリエステルは、 芳香族二塩基酸 またはそのエステル形成性誘導体 (例えば、 低級アルキルエステル) とジオール またはそのエステル形成性誘導体 (例えば、 低級脂肪酸エステル、 環状エーテル など) とから合成される線状飽和ポリエステルである。 かかるポリエステルの具 体例として、 ポリエチレンテレフ夕レート、 ポリエチレンイソフタレ一ト、 ポリ プロピレンテレフタレート、 ポリブチレンテレフタレー卜、 ポリ ( 1 , 4—シク 口へキシレンジメチレンテレフタレ一ト)、 ポリエチレン一 2 , 6—ナフタレン ジカルポキシレート等が例示でき、 これらの共重合あるいはブレンドしたものも 含まれる。 これらのなかでも、 ポリエステルの重量を基準として、 7 0重量%以 上がエチレンテレフタレート成分またはエチレン一 2, 6—ナフタレンジ力ルポ キシレート成分からなるものが好ましく、 特に二軸配向フィルムとした際の加工 性や透明性からエチレンテレフ夕レートを主たる繰返し単位とするポリエチレン テレフ夕レートが好ましい。
前記ポリエチレンテレフ夕レートへの共重合成分は、 ジカルボン酸成分として はイソフタル酸、 フタル酸、 2 , 6—ナフタレンジカルボン酸等の如き芳香族ジ カルボン酸;アジピン酸、 ァゼライン酸、 セバシン酸、 デカンジカルボン酸等の 如き脂肪族ジカルボン酸、 シクロへキサンジカルボン酸の如き脂環族ジカルボン 酸等が例示できる。 また、 ジオール成分としては 1, 4一ブタンジオール、 1, 6—へキサンジオール、 ジエチレングリコール等の如き脂肪族ジオール; 1, 4 ーシクロへキサンジメタノールの如き脂環族ジオール;ビスフエノール Αの如き 芳香族ジオールが例示できる。 これらの共重合成分は単独でも二種以上併用して もよい。 これらの共重合成分のうち、 加工性や透明性などの観点からイソフタル 酸が特に好ましい。
前記共重合成分の割合は、 その種類にもよるが、 結果としてポリマー融点が 2 30°C未満、 さらには 240°C未満にならない割合であることが好ましい。 ポリ ヌー融点が 230°C未満では耐熱性や機械的強度が劣ることがある。 このような コポリエステルとしては、 主たる繰返し単位がエチレンテレフタレートからなり、 共重合成分がィソフタル酸成分からなる場合、 全酸成分のモル数を基準として、 イソフ夕ル酸成分の割合を 12モル%以下にしたものが挙げられる。 ここで、 ポ リエステルの融点測定は、 DuP on t I n s t rumen t s 91 ODSC を用い、 昇温速度 20°C/mi nで融解ピークを求める方法による。 なお、 サン プル量は 20 m gとする。
前記ポリエステルは、 それ自体公知の方法によって製造することができる。 こ の方法としては、 テレフタル酸とエチレングリコール、 要すれば共重合成分 (例 えばイソフタル酸) をエステル化反応させ、 ついで得られた反応生成物を目的と する重合度になるまで重縮合反応させてポリエステルとする方法、 またはテレフ タル酸ジメチルエステルとエチレングリコール、 要すれば共重合成分 (例えば、 イソフタル酸ジメチルエステル) をエステル交換反応させ、 ついで得られた反応 生成物を目的とする重合度になるまで重縮合反応させてポリエステルとする方法 を好ましく挙げることができる。 勿論、 要すれば、 主たる酸成分に 2, 6—ナフ タレンジカルボン酸または主たるダリコール成分に 1, 4—シク口へキサンジメ タノ一ルを用いることができる。 上記の方法 (溶融重合) により得られたポリエ ステルは、 必要に応じて固相状態での重合方法 (固相重合) により、 さらに重合 度の高いポリマ一とすることができる。
そして、 このようにして得られたポリエステルは、 それ自体公知の溶融製膜方 法、 すなわち、 ポリエステルを溶融状態にしてから線状のダイより押出して未延 伸フィルムとし、 これを二軸方向に延伸し、 熱処理する方法で二軸配向フィルム とすることができる。 通常、 延伸温度としては (Tg (ポリエステルのガラス転 移温度) 一 10) 〜 (Tg+70) °C、 延伸倍率としては各延伸方向に 2. 5〜 8倍が採用される。 また、 熱処理温度としては 180〜250°C、 処理時間とし ては 1〜60秒が好ましい。
前記二軸配向フィルムを構成するポリエステルの固有粘度 (オルトクロロフエ ノール、 35V) は 0. 45〜1. 50であることが好ましく、 さらに好ましく _は 0. 48〜: L. 00、 特に好ましくは 0. 50〜0. 80である。 この固有粘 度が 0. 45未満の場合、 製膜性が不良であることがあり、 好ましくない。 他方、 固有粘度が 1. 50を超えると、 成形加工性が損なわれたり、 押出機に過負荷を かけたり、 さらには樹脂温度の過上昇によって固有粘度が著しく低下する場合が あるので好ましくない。
本発明においては、 ポリエステルの製造過程またはその後のダイより押出すま での過程で、 必要に応じて、 酸化防止剤、 熱安定剤、 粘度調整剤、 可塑剤、 色相 改良剤、 滑剤、 核剤、 紫外線吸収剤、 帯電防止剤、 酸化防止剤、 触媒などの添加 剤を加えることができる。
本発明においては、 二軸配向フィルムの走行性、 滑り性等を向上させる点から、 ポリエステルにフィルム表面を粗面化する物質 (フイラ一;滑剤) を含有させる ことが好ましい。 このフイラ一としては、 従来からポリエステルフィルムの滑り 性付与剤として知られているものが挙げられる。 この具体例として、 炭酸カルシ ゥム、 酸化カルシウム、.酸化アルミニウム、 カオリン、 酸化珪素、 酸化亜鉛、 力 一ボンブラック、 炭化珪素、 酸化錫、 架橋アクリル樹脂粒子、 架橋ポリスチレン 樹脂粒子、 メラミン樹脂粒子、 架橋シリコーン樹脂粒子等が挙げられる。 これら の中でも、 透明性を保持しながら滑り性を付与し易いことから、 多孔質シリカが 好ましい。 フィラーの平均粒径は好ましくは 1~ 3 m、 さらに好ましくは 1. 2〜2. 4 mである。 また添加量は、 フィルムの透明性と滑り性の観点から、 好ましくは 0. 01〜0. 005重量%、 さらに好ましくは 0. 008〜0. 0 06重量%である。
また、 本発明においては、 二軸配向フィルムに紫外線吸収剤を含有させること によって、 近赤外線吸収剤の効果を最大限に発揮できる。 すなわち、 従来近赤外 線遮蔽フィルムでは紫外線吸収剤のコ一ティングの上にさらに近赤外線吸収剤の コーティングを施しているため、 両吸収剤の混和と反応により近赤外線遮蔽能が 低下するという欠点があつたが、 二軸配向フィルムはそれらのコーティング層に 比べて厚さが非常に厚いことから、 二軸配向フィルムに紫外線吸収剤を含有させ ると両吸収剤の混和と反応を防止することができる。 そのため、 本発明では、 二 軸配向フィルムに含有させることができる紫外線吸収剤が好ましく、 さらに近赤 外線吸収剤との反応が起きにくい紫外線吸収剤が好ましい。 これらの要件を具備 する紫外線吸収剤について、 さらに詳述する。
前記紫外線吸収剤としては、 例えば下記式 ( I )
Figure imgf000015_0001
式中、 X 1は上記式に表わされた X 1からの 2本の結合手が 1位、 2位の位置関 係にある、 2価の芳香族残基であり ; nは 1、 2または 3であり; R 1は n価の 炭化水素残基で、 これはさらにへテロ原子を含有していてもよい、 または R 1は n = 2のとき直接結合であることができる、
で表される化合物および下記式 (II)
Figure imgf000015_0002
式中、 Aは下記式 (II) - a
Figure imgf000016_0001
で表わされる基であるかまたは
下記式 (II) - b
Figure imgf000016_0002
で表わされる基であり ; R 2および R 3は同一もしくは異なり 1価の炭化水素残 基であり ; X2は 4価の芳香族残基で、 これはさらにへテロ原子を含有していて もよい、
で表わされる化合物よりなる群から選ばれる少なくとも 1種の環状ィミノエステ ルを、 未反応の形態で用いるのが好ましい。 かかる環状ィミノエステルは紫外線
.吸収剤として公知の化合物であり、 例えば特開昭 5 9— 1 2 9 5 2号公報に記載 されている。
上記式 (I ) および αι) で表わされる環状ィミノエステルの具体例としては、 例えば下記の化合物を挙げることができる。
上記式 ( I ) の化合物
η = 1の場合の化合物
2—メチル一3, 1一べンゾォキサジン一 4一オン、 2—ブチルー 3 , 1—ベ ンゾォキサジン一 4一オン、 2—フエニル一 3 , 1一べンゾォキサジン一 4—ォ ン、 2— (1—または 2—ナフチル) 一 3, 1—ベンゾォキサジン一 4一オン、 2— (4—ビフエ二ル) 一3, 1—ベンゾォキサジン一 4—オン、 2— ρ—二ト 口フエニル— 3, 1—ベンゾォキサジン一 4—オン、 2— m—ニトロフエ二ルー 3, 1—ベンゾォキサジン一 4—オン、 2— p—ベンゾィルフエニル— 3, 1一 ベンゾォキサジン一 4一オン、 2— p—メトキシフエ二ルー 3, 1—ベンゾォキ サジン— 4—オン、 2— 0—メトキシフエ二ル— 3, 1一べンゾォキサジン一 4 オン、 2—シクロへキシルー 3, 1—ベンゾォキサジン— 4—オン、 2— p— (または m— ) フタルイミドフエニル一 3, 1—ベンゾォキサジン一 4—オン、 N—フエ二ルー 4— (3, 1—ベンゾォキサジン一 4—オン一 2—ィル) フタル イミド、 N—ベンゾィルー 4— (3, 1一べンゾォキサジン一 4—オン一 2—ィ ル) ァニリン、 N—ベンゾィル一N—メチルー 4— (3, 1—ベンゾォキサジン —4一オン一 2—ィル) ァニリン、 2— (p— (N—メチルカルポニル) フエ二 ル) —3, 1—ベンゾォキサジン— 4一オン。
n= 2の場合の化合物
2, 2, —ビス (3, 1—ベンゾォキサジン— 4—オン)、 2, 2, —ェチレ ンビス (3, 1—ベンゾォキサジン一 4—オン)、 2, 2, 一テトラメチレンビ ス (3, 1—ベンゾォキサジン一 4一オン)、 2, 2, ーデカメチレンビス (3, 1—ベンゾォキサジン一 4一オン)、 2, 2, 一 p—フエ二レンビス (3, 1一 ベンゾォキサジン一 4—オン)、 2, 2 ' —m—フエ二レンビス (3, 1—ベン ゾォキサジン一 4—オン)、 2, 2, 一 (4, 4, 一ジフエ二レン) ビス (3, 1—ベンゾォキサジン— 4—オン)、 2, 2, - (2, 6—または 1, 5—ナフ チレン) ビス (3, 1—ベンゾォキサジン一 4—オン)、 2, 2' 一 (2—メチ ル一p—フエ二レン) ビス (3, 1—ベンゾォキサジン一 4一オン)、 2, 2, - (2—ニトロ一 p—フエ二レン) ビス (3, 1—ベンゾォキサジン一 4ーォ ン)、 2, 2, 一 (2—クロロー p—フエ二レン) ビス (3, 1—ベンゾォキサ ジン一 4—オン)、 2, 2, 一 (1, 4ーシクロへキシレン) ビス (3, 1—ベ ンゾォキサジン一 4—オン)、 N-P- (3, 1—ベンゾォキサジン一 4一オン 一 2—ィル) フエニル、 4— (3, 1—ベンゾォキサジン一 4—オン一 2—ィ ル) フタルイミド、 N— p_ (3, 1—ベンゾォキサジン一 4一オン一 2—^ Γ ル) ベンゾィル、 4一 (3, 1—ベンゾォキサジン— 4一オン一 2—ィル) ァニ リン。 n= 3の場合の化合物
1, 3, 5—トリ (3, 1一べンゾォキサジン一 4—オン一 2—ィル) ベンゼ ン、 1, 3, 5—トリ (3, 1—べンゾォキサジン一 4—オン一 2—ィル) ナフ タレン、 2, 4, 6—トリ (3, 1一べンゾォキサジン一 4一オン一 2—ィル) ナフタレン。
上記式 (I I) の化合物
2, 8—ジメチルー 4H, 6H—ベンゾ (1, 2— d ; 5, 4— d,) ビス (1, 3) 一ォキサジン— 4, 6—ジオン、 2, 7—ジメチルー 4H, 9H—ベ ンゾ (1, 2— d ; 4, 5— d') ビス (1, 3) —ォキサジン— 4, 9—ジォ ン、 2, 8—ジフエニル一 4H, 8H—ベンゾ (1, 2— d ; 5, 4-d') ビ ス (1, 3) —ォキサジン— 4, 6—ジオン、 2, 7—ジフエ二ルー 4 H, 9H —ベンゾ (1, 2— d ; 4, 5— d,) ビス (1, 3) —ォキサジン— 4, 6— ジオン、 6, 6, 一ビス (2—メチル— 4H, 3, 1一べンゾォキサジン— 4一 オン)、 6, 6, 一ビス (2—ェチル—4 H, 3, 1—ベンゾォキサジン一 4一 オン)、 6, 6, 一ビス (2—フエ二ルー 4H, 3, 1一べンゾォキサジン一 4 一オン)、 6, 6' —メチレンビス (2—メチルー 4H, 3, 1—ベンゾォキサ ジン一 4—オン)、 6, 6, 一メチレンビス (2—フエニル一 4H, 3, 1—ベ ンゾォキサジン一 4—オン)、 6, 6' 一エチレンビス (2—メチル一 4H, 3, 1—ベンゾォキサジン一 4—オン)、 6, 6, 一エチレンビス (2—フエ二ルー 4H, 3, 1—ベンゾォキサジン— 4—オン)、 6, 6' ーブチレンビス (2— メチル一 4H, 3, 1—ベンゾォキサジン一 4一オン)、 6, 6, —ブチレンビ ス (2—フエニル一 4H, '3, 1—べンゾォキサジン一 4一オン)、 6, 6, ― ォキシビス (2—メチルー 4H, 3, 1—ベンゾォキサジン一 4一オン)、 6, 6, 一ォキシビス (2—フエニル— 4 H, 3, 1一べンゾォキサジン— 4ーォ ン)、 6, 6, ースルホニルビス (2—メチル—4 H, 3, 1一べンゾォキサジ ンー 4一オン)、 6, 6, ースルホニルビス (2—フエ二ルー 4H, 3, 1—ベ ンゾォキサジン一 4—オン)、 6, 6, 一力ルポニルビス (2—メチルー 4H, 3, 1—べンゾォキサジン一 4一オン)、 6, 6 ' —カルポニルビス (2—フエ 二ルー 4H, 3, 1—ベンゾォキサジン— 4—オン)、 7, 7' ーメチレンビス (2—メチル— 4H, 3, 1一べンゾォキサジン一 4一オン)、 7, 7' —メチ レンビス (2—フエニル一 4 H, 3, 1—ベンゾォキサジン一 4—オン)、 7, 7' —ビス (2—メチルー 4 H, 3, 1—べンゾォキサジン— 4—オン)、 7, 7 ' —エチレンビス (2—メチルー 4 H, 3, 1—ベンゾォキサジン一 4ーォ ン)、 7, 7, 一ォキシビス (2—メチル— 4H, 3, 1—ベンゾォキサジン一 4一オン)、 7, 7, ースルホニルビス (2—メチルー 4H, 3, 1一べンゾォ キサジン一 4—オン)、 7, 7, 一力ルポニルビス (2—メチル— 4H, 3, 1 —ベンゾォキサジン一 4—オン)、 6, 7, 一ビス (2—メチルー 4 H, 3, 1 —ベンゾォキサジン一 4一オン)、 6, 7 ' 一ビス (2—フエ二ルー 4H, 3, 1一べンゾォキサジン— 4一オン)、 6, 7 ' —メチレンビス (2—メチル一4 H, 3, 1一べンゾォキサジン— 4一オン)、 6, 7, ーメチレンビス (2—フ ェニル— 4H, 3, 1一べンゾォキサジン— 4一オン)。
上記例示化合物のうち、 上記式 (I) の化合物、 より好ましくは n=2の場合 の上記式 (I) の化合物、 特に好ましくは下記式 (I) -1
Figure imgf000019_0001
式中、 R11は 2価の芳香族炭化水素残基である、
で表わされる化合物が有利に用いられる。
式 (I) -1の化合物としては、 就中 2, 2, —p—フエ二レンビス (3, 1 一ベンゾォキサジン— 4一オン)、 2, 2 ' ― (4, 4, ージフエ二レン) ビス (3, 1一べンゾォキサジン一 4一オン) および 2, 2' 一 (2, 6—ナフチレ ン) ビス (3, 1—べンゾォキサジン一 4一オン) が好ましい。
前記紫外 ϋ吸収剤の添加量は、 ポリエステルに対し、 0. 1〜5重量%が好ま しく、 0. 2〜 3重量%がさらに好ましい。 この量が 0. 1%未満では紫外線劣 化防止効果が小さく、 一方 5重量%を超えるとポリエステルの製膜特性が低下し、 好ましくない。 該紫外線吸収剤の添加は、 ポリエステルの重合時、 または溶融押 出し時が好ましい。 その際、 紫外線吸収剤はマスターペレットにして添加するこ .とができ、 また好ましい。
なお、 本発明の二軸配向フィルムの厚みは、 万一 P D Pが破損した場合にガラ スの飛散を抑制できやすいことから 5 0 m以上であることが好ましい。 二軸配 向フィルムの厚みの上限は、 ヘーズ値を 5 %以下に保つ保ち易さおよびフィルム の生産性から 2 5 0 m以下が好ましい。 本発明における二軸配向ポリエステルフィルムは、 後述するハードコート層や 粘着層との接着性向上および加工性の向上のために、 少なくともその片面上に接 着性層を設けることが好ましい。 この接着性層は、 例えば、 水性のポリエステル 樹脂ゃァクリル樹脂、 またはこれらの混合物にワックスなどを配合した水性塗液 を二軸配向フィルムの製造過程中で塗布乾燥することで、 設けることができる。 前記水性ポリエステル樹脂としては、 以下のような多塩基酸成分とポリオール 成分から成る水性ポリエステル樹脂が挙げられる。 この多塩基酸成分としては、 例えばテレフタル酸、 イソフ夕ル酸、 フ夕ル酸、 無水フ夕ル酸、 2 , 6—ナフタ レンジカルボン酸、 1, 4—シクロへキサンジカルボン酸、 アジピン酸、 セバシ ン酸、 トリメリット酸、 ピロメリット酸、 ダイマー酸、 5—ナトリウムスルホイ ソフタル酸等が挙げられる。 これら酸成分を 2種以上用いて共重合ポリエステル 樹脂を合成するのが好ましい。 また、 若干量ながら不飽和多塩基酸成分のマレイ ン酸、 イタコン酸等および P—ヒドロキシ安息香酸等の如きヒドロキシカルボン 酸を用いることができる。 また、 ポリオール成分としては、 例えばエチレンダリ コール、 1, 4—ブタンジオール、 ジエチレングリコール、 ジプロピレングリコ ール、 1, 6一へキサンジオール、 1 , 4ーシクロへキサンジメタノール、 キシ レングリコール、 ジメチロールプロパン、 ポリ (エチレンォキシド) グリコール、 ポリ (テトラメチレンォキシド) グリコール等が挙げられる。 また、 これらモノ マーが挙げられるが、 これらに限定されるものではない。 かかる水性ポリエステル樹脂は多塩基酸またはそのエステル形成性誘導体 (例 えば、 ジメチルエステル、 酸無水物等) とポリオールまたはそのエステル形成性 誘導体 (例えば、 低級脂肪酸エステル、 環状無水物等) を用いて、 従来から知ら _れている重合法で製造することができる。
前記水性アクリル樹脂は、 以下のようなアクリルモノマーから共重合できる。 このアクリルモノマーとしては、 例えばアルキルァクリレー卜、 アルキルメタク リレート (アルキル基としては、 メチル基、 ェチル基、 n—プロピル基、 イソプ 口ピル基、 n—プチレ基、 イソプチ Jレ基、 t一プチリレ基、 2—ェチルへキシル基、 シクロへキシル基等) ; 2—ヒドロキシェチルァクリレート、 2—ヒドロキシェ チルメ夕クリレート、 2—ヒドロキシプロピルァクリレート、 2—ヒドロキシプ 口ピルメタクリレートの如きヒドロキシ含有モノマ一;グリシジルァクリレート、 グリシジルメタクリレート、 ァリルグリシジルエーテルの如きエポキシ基含有モ ノマー;アクリル酸、 メタクリル酸、 ィタコン酸、 マレイン酸、 フマール酸、 ク 口トン酸、 スチレンスルホン酸およびその塩 (ナトリウム塩、 カリウム塩、 アン モニゥム塩、 第三級ァミン塩等) の如きカルボキシ基またはその塩を含有するモ ノマー;アクリルアミド、 メタクリルアミド、 N—アルキルアクリルアミド、 N 一アルキルメタクリルアミド、 N, N—ジアルキルアクリルアミド、 N, N—ジ アルキルメタクリレート (アルキル基としては、 メチル基、 ェチル基、 n—プロ ピル基、 イソプロピル基、 n—ブチル基、 イソブチル基、 t一ブチル基、 2—ェ チルへキシル基、 シクロへキシル基等)、 N—アルコキシアクリルアミド、 N— アルコキシメタクリルアミド、 N, N—ジアルコキシアクリルアミド、 N, N— ジアルコキシメタクリルアミド (アルコキシ基としては、 メトキシ基、 エトキシ 基、 ブトキシ基、 イソブトキシ基等)、 ァクリロイルモルホリン、 N—メチ口一 ルアクリルアミド、 N—メチ口一ルメタクリルアミド、 N—フエニルアクリルァ ミド、 N—フエニルメタクリルアミドの如きアミド基を含有するモノマー;無水 マレイン酸、 無水ィタコン酸の如き酸無水物のモノマー;ビエルイソシァネート、 ァリルイソシァネ一ト、 スチレン、 0!—メチルスチレン、 ビニルメチルエーテル、 ビニルェチルエーテル、 ビニルトリアルコキシシラン、 アルキルマレイン酸モノ エステル、 アルキルフマール酸モノエステル、 アルキルィタコン酸モノエステル、 アクリロニトリル、 メ夕クリロ二トリル、 塩化ビニリデン、 エチレン、 プロピレ ン、 塩化ビニル、 酢酸ビュル、 ブタジエン等のモノマーが挙げられる。 また、 こ れらモノマーを挙げられるがこれらに限定されるものではない。
前記ワックスとしては、 例えば、 カルナパワックス、 キャンデリラワックス、 ライスワックス、 木ロウ、 ホホパ油、 パームワックス、 ロジン変性ワックス、 ォ ゥリキュリーワックス、 サトウキビワックス、 エスパルトワックス、 バークヮッ クスの如き植物系ワックス、 ミツロウ、 ラノリン、 鯨ロウ、 イボタロウ、 セラッ クワックスの如き動物系ワックス、 モンタンワックス、 ォゾケライト、 セレシン ワックスの如き鉱物系ワックス、 パラフィンワックス、 マイクロクリスタリンヮ ックス、 ペトロラクタムの如き石油系ワックス、 フィッシャートロプッシュヮッ クス、 ポリエチレンワックス、 酸化ポリエチレンワックス、 ポリプロピレンヮッ クス、 酸化ポリプロピレンワックスの如き合成炭化水素系ワックス等である。 さ らに、 ハードコートや粘着剤等に対する易接着性と滑性が良好なことから、 カル ナバワックス、 パラフィンワックス、 ポリエチレンワックスがより好ましい。 さ らには環境問題や取り扱いのし易さから水分散体がより好ましい。
塗布層を形成するポリエステル樹脂は塗布層中に 5 0〜9 5重量%含有し、 さ らに好ましくは 6 0〜9 0重量%である。 塗布層を形成する他の樹脂 (例えばァ クリル樹脂) は塗布層中に 5〜3 0重量%含有し、 さらに好ましくは 1 0〜2 5 重量%である。 ポリエステル樹脂が 9 5重量%を超え、 もしくはアクリル樹脂が 5重量%未満になると、 接着性が不十分となる場合がある。 アクリル樹脂が 3 0 重量%を超えると、 ァクリル樹脂はポリエステル樹脂と相溶しないため透明性が 悪くなる場合がある。 また、 ワックスは塗布層中に 0 . 5〜2 0重量%の範囲で 含有することが好ましい。 より好ましくは 1重量%〜1 0重量%の範囲である。 このワックス量が 0 . 5重量%未満であると、 フィルム表面の滑性が得られない ことがある。 一方、 2 0重量%を超えると、 ポリエステル基材への密着やハード コートや粘着剤等に対する接着性が不足する場合がある。
上記組成物は、 塗膜を形成させるために、 水溶液、 水分散液あるいは乳化液等 の水性塗液の形態で使用されるのが好ましい。 塗膜を形成するために、 必要に応 じて、 前記組成物以外の他の樹脂、 例えばォキサゾリン基を有する重合体、 メラ ミン、 エポキシ、 アジリジン等の架橋剤、 帯電防止剤、 着色剤、 界面活性剤、 紫 外線吸収剤、 滑剤 (フイラ一) などを添加することができる。 特に、 滑剤を添加 することで滑性、 耐ブロッキング性がさらに良化することができる。
7性塗液の固形分濃度は、 好ましくは 2 0重量%以下であり、 さらに好ましく は 1〜1 0重量%である。 この割合が 1重量%未満であると、 ポリエステルフィ ルムへの塗れ性が不足し、 一方 2 0重量%を超えると、 塗剤の安定性や塗布外観 が悪ィ匕することがある。
水性塗液のポリエステルフィルムへの塗布は、 任意の段階で実施することがで きるが、 ポリエステルフィルムの製造過程で実施するのが好ましく、 さらには配 向結晶化が完了する前のポリエステルフィルムに塗布するのが好ましい。
ここで、 結晶配向が完了する前のポリエステルフィルムとは、 未延伸フィルム、 未延伸フィルムを縦方向または横方向の何れか一方に配向せしめた一軸配向フィ ルム、 さらには縦方向および横方向の二方向に低倍率延伸配向せしめたもの (最 終的に縦方向また横方向に再延伸せしめて配向結晶化を完了せしめる前のニ軸延 伸フィルム) 等を含むものである。
なかでも、 未延伸フィルムまたは一方向 配向せしめた一軸延伸フィルムに、 上記組成物の水性塗液を塗布し、 そのまま縦延伸および/または横延伸と熱固定 とを施すのが好ましい。
塗液をフィルムに塗布する際には、 塗布性を向上させるための予備処理として フィルム表面にコロナ表面処理、 火炎処理、 プラズマ処理等の物理処理を施すか、 あるいは組成物と共にこれと化学的に不活性な界面活性剤を併用することが好ま しい。
かかる界面活性剤は、 ポリエステルフィルムへの水性塗液の濡れを促進するも のであり、 例えば、 ポリオキシエチレンアルキルフエ二ルェ一テル、 ポリオキシ エチレン一脂肪酸エステル、 ソルビタン脂肪酸エステル、 グリセリン脂肪酸エス テル、 脂肪酸金属石鹼、 アルキル硫酸塩、 アルキルスルホン酸塩、 アルキルスル ホコハク酸塩の如きァニオン型、 ノニオン型界面活性剤を挙げることができる。. 界面活性剤は、 塗膜を形成する組成物中に、 1〜1 0重量%含まれていることが 好ましい。
塗液の塗布量は、 の厚さが好ましくは 0 . 0 2〜0. 3 ΠΙ、 より好まし くは 0 . 0 7〜0 . 2 5 mの範囲となるような量である。 塗膜の厚さが薄過ぎ ると、 接着力が不足し、 逆に厚過ぎると、 ブロッキングを起こしたり、 ヘーズ値 が高くなつたりする可能性がある。
塗布方法としては、 公知の任意の塗工法が適用できる。 例えばロールコート法、 グラビアコート法、 ロールブラッシュ法、 スプレーコート法、 エアーナイフコ一 ト法、 含浸法、 カーテンコート法などを単独または組合せて用いることができる。 なお、 塗膜は、 必要に応じ、 フィルムの片面のみに形成してもよいし、 両面に形 成してもよい。
ハードコー卜層
本発明における近赤外線遮蔽フィルムは、 その両面に前記した接着性層を設け、 かつ一方の接着性層の表面上にハードコート層を積層し、 他方の接着性層の表面 上に第 2の接着性層を積層して近赤外線遮蔽フィルム積層体とすることができる。 前記ハードコート層の材料には、 電離放射線硬化型樹脂、 熱硬化型樹脂、 熱可 塑性樹脂など、 実用に耐えうる硬度を発現するものなら特に限定はされない。 好 ましくは、 基材フィルムに対して、 膜形成作業が容易でかつ鉛筆硬度を所望の値 に容易に高めやすい電離放射線硬化型樹脂である。
ハ一ドコート層の形成に用いる電離放射線硬化型樹脂としては、 ァクリレート 系官能基を持つものが好ましく、 特にポリエステルァクリレートまたはゥレ夕ン ァクリレートが好ましい。 前記ポリエステルァクリレートは、 ポリエステル系ポ リオールのオリゴマーのァクリレートおよび/またはメタァクリレー卜 (以下、 アタリレートとメタァクリレートとを含めて (メタ) ァクリレートと称すること がある。) から構成される。 また、 前記ウレタンァクリレ一トは、 ポリオール化 合物とジイソシァネート化合物からなるオリゴマーをァクリレート化したものか ら構成される。 なお、 ァクリレートを構成する単量体としては、 例えばメチル (メタ) ァクリレート、 ェチル (メタ) ァクリレート、 プチル (メタ) ァクリレ ート、 2ェチルへキシル (メタ) ァクリレー卜、 メトキシェチル (メタ) ァクリ レート、 ブトキシェチル (メタ) ァクリレート、 フエニル (メタ) ァクリレート _などが挙げられる。
ハードコート層の硬度をさらに高めたい場合は、 多官能モノマーを併用するこ とが好ましい。 具体的な多官能モノマーとしては、 トリメチロールプロパントリ (メタ) ァクリレート、 へキサンジオール (メタ) ァクリレート、 トリプロピレ ングリコ一ルジ (メタ) ァクリレート、 ジエチレングリコールジ (メタ) ァクリ レート、 ペン夕エリスリトールトリ (メタ) ァクリレート、 ジペン夕エリスリト ールへキサ (メタ) ァクリレート、 1, 6へキサンジオールジ (メタ) ァクリレ. ート、 ネオペンチルダリコールジ (メタ) ァクリレートなどが好ましく例示でき る。
ハードコート層の形成に使用するポリエステル系オリゴマーとしては、 アジピ ン酸またはセバシン酸の酸成分とグリコール (例えば、 エチレングリコール、 ポ リエチレングリコール、 プロピレングリコール、 ブチレングリコール、 ポリプチ レングリコールなど) やトリオール (例えば、 グリセリン、 トリメチロールプロ パンなど) 成分の縮合生成物やこれらにさらにトリオール成分を縮合させた縮合 生成物、 例えばポリアジペートトリオ一ルゃ、 ポリセバシェートポリオールなど が例示できる。 なお、 上記脂肪族のジカルボン酸の一部または全てを他の有機酸 で置換してもよい。 この場合、 他の有機酸としては、 イソフタル酸、 テレフタル 酸または無水フタル酸などが、 ハードコ一ト層に高度の硬度を発現することから 好ましい。
ハ一ドコ一ト層の形成に使用するポリウレタン系オリゴマ一は、 ポリイソシァ ネ一トとポリオールとの縮合生成物から得ることができる。 具?本的なポリィソシ ァネートとしては、 メチレン 'ビス (P—フエ二レンジイソシァネート)、 へキ サメチレンジイソシァネート ·へキサントリオールの付加体、 へキサメチレンジ ィソシァネート、 トリレンジィソシァネート、 トリレンジィソシァネート卜リメ チロールプロパンのァダクト体、 1 , 5—ナフチレンジイソシァネート、 チォプ 口ピルジイソシァネート、 ェチルベンゼン— 2 , 4—ジイソシァネート、 2 , 4 —卜リレンジィソシァネートニ量体、 水添キシリレンジィソシァネ一卜、 卜リス
( 4—フエ二ルイソシァネート) チォフォスフェートなどが例示できる。 また、 具体的なポリオールとしては、 ポリオキシテトラメチレングリコールなどのポリ エーテル系ポリオール、 ポリアジペートポリオール、 ポリカーボネ一トポリオ一 ルなどのポリエステル系ポリオール、 ァクリル酸エステル類とヒドロキシェチル メタァクリレートとのコポリマーなどが例示できる。
さらに、 前記電離放射線硬化型測旨として、 紫外線硬化型樹脂を使用するとき は、 これらの樹脂中に、 ァセトフエノン類、 ベンゾフエノン類、 ミヒラ一ベンゾ ィルベンゾェ一ト、 α—アミ口キシムエステルまたはチォキサントン類などを光 重合開始剤として混合し、 また η—プチルァミン、 トリェチルァミン、 トリ η— ブチルホスフィンなどを光増感剤として混合して使用するのが好ましい。
なお、 前記ウレタンァクリレートは、 弾性や可撓性に富み、 加工性 (折り曲げ 性) に優れる反面、 表面硬度が不足し難く、 2 Η以上の鉛筆硬度のものが得難い。 これに対して、 ポリエステルァクリレートは、 ポリエステルの構成成分の選択に より、 極めて高い硬度のハードコート層を形成することができる。 そこで、 高硬 度と可撓性とを両立させやすいことから、 ウレタンァクリレート 6 0〜9 0重量 部に対して、 ポリエステルァクリレート 4 0〜1 0重量部を配合させたハードコ ート層が好ましい。
ハードコート層を形成するのに使用する塗布液には、 光沢を調整するとともに、 (離型性ではなく) 表面の滑りを付与する目的で二次粒径が 2 0 m以下の不活 性微粒子を、 樹脂成分 1 0 0重量部に対して 0 . 3〜 3重量部加えることが好ま しい。 微粒子の量が 0. 3重量部未満では滑り性の向上効果が乏しく、 他方 3重 量部を超えると得られる八一ドコ一ト層の鉛筆硬度力低下することがある。 塗布 液に加える不活性微粒子としては、 シリカ、 炭酸マグネシウム、 水酸化アルミ二 ゥム、 硫酸バリウムなどの無機微粒子の他に、 ポリカーボネート、 アクリル樹脂、 ポリイミド、 ポリアミド、 ポリエチレンナフタレート、 メラミン樹脂などの有機 ポリマーの微粒子が好ましく例示できる。 ハードコート層を形成するための塗布方法は、 ロールコート、 グラビアコート、 バ一コート、 押出しコートなど、 塗液の特性や塗布量に応じて、 従来よりそれ自 体公知の方法を適宜選択すればよい。 ハードコート層は特に限定されないが、 1 _〜1 5 mの範囲が好ましい。
反射防止層
本発明における近赤外線遮蔽フィルム積層体の反射防止層は、 ハードコート層 の表面上に設けられる。 好ましくは屈折率の異なる複数の層を交互に積層したも ので、 その構成は一般によく知られている。 例えば、 ゾルゲル法ウエットコート による 2層反射防止層、 スパッタリングによる 3層反射防止層など、 コストと性 能の兼ね合いから両者の組合せなどが挙げられる。
前記反射防止層は、 近赤外線遮蔽フィルム積層体の前述の光学特性を損なわな いものであれば特に限定はされない。 具体的な反射防止層としては、 (1 ) 厚み 0 . 1 m程度の M g F 2などの極薄膜からなる反射防止層、 (2 ) 金属蒸着膜 によって形成された反射防止層、 (3 ) 光の屈折率がハードコート層の屈折率よ りも低い材料からなる層をハードコート層の上に設けた反射防止層、 (4) 屈折 率の高い高屈折率層をハードコート層の上に設け、 該高屈折率層の上に該高屈折 率層よりも屈折率の低い低屈折率層を設けた反射防止層 (例えば、 反射防止層に おけるハードコ一ト層に接する部位に高屈折率を有する金属酸ィ匕物の超微粒子層 を偏在させたもの)、 ( 5 ) 前記 (4) の層構成を繰返し積層した多層積層形の反 射防止層、 (6 ) 屈折率の高い高屈折率層の内側 (表示面に貼合せた際の表示面 側) に該高屈折率層よりも屈折率の低い中屈折率層を設け、 該屈折率の高い高屈 折率層の外側 (表示面に貼合せた際の表示面とは異なる側) に中屈折率層よりも 屈折率の低い低屈折率層を設けた反射防止層が例示できる。
これらの中でも、 より効果的に反射防止を行うことができることから、 基材フ イルム 1上のハードコート層を介して、 中屈折率層、 高屈折率層、 低屈折率層を この I貭で層を形成したものが好ましい。 さらには、 低屈折率層、 中屈折率層およ び高屈折率層が S i〇xからなり、 低屈折率層の屈折率が 1 . 4よりも大きく、 高屈折率層の屈折率が 2. 2未満で、 低屈折率層が 8 0〜1 1 O nmの厚み、 高 屈折率層が 3 0〜 1 1 0 nmの厚みおよび中屈折率層が 5 0〜 1 0 0 nmの厚み を有し、 かつ、 それぞれの層の光学的膜厚 D (D = n · d、 ただし、 n:中屈折 率層の屈折率、 d =中屈折率層の厚み) が可視光の波長以下である反射防止層が 好ましい。
前記反射防止層によって、 本発明の近赤外線遮蔽フィルム積層体はディスプレ ィの視認性を妨げる外来光の反射を抑制できる。 反射防止層は、 これらの他にも、 単層膜で主として黄色光を中心に反射防止するものがあるが、 ディスプレイの反 射防止には、 多層反射防止膜の方が適している。 本発明における近赤外線遮蔽フィルム積層体は、 ハードコ一ト層を形成した側 とは異なる面に第 2接着性層を積層しているが、 この第 2接着性層の積層の場合 も二軸配向フィルムとの接着性を向上させるために、 前記接着性層を介して積層 するのが好ましい。
第 2接着性層としては、 再剥離性があり、 剥離時に糊残りがないこと、 高温、 高湿下での強制老化試験で剥がれや泡の発生がないことが望まれる。 このような 特性を有する第 2接着剤としては、 アクリル系、 ゴム系、 ポリビエルェ一テル系、 シリコーン系等から 31 :選択使用できる。 最も好ましいのはアクリル系接着剤で ある。 アクリル系接着剤は、 アルキル (メタ) アクリル酸エステルと重合性不飽 和カルボン酸または水酸基含有エチレン性不飽和モノマー、 またさらには共重合 性ビニル系モノマーとを有機溶剤中または水媒体中で共重合させて得られる。 重 合は、 ラジカル重合による重合方法が好ましく採用される。 好ましくは、 溶液重 合法、 懸濁重合法、 乳化重合法等である。
前記共重合体の好ましい分子量は、 ゲルパ一ミユエ一シヨンクロマトグラフィ 一による数平均分子量が 9, 5 0 0〜9 5 0 , 0 0 0、 好ましくは 5 0, 0 0 0 〜5 0 0, 0 0 0、 さらに好ましくは 9 5 , 0 0 0〜4 0 0, 0 0 0である。 数 平均分子量が 9 , 5 0 0未満であると、 樹脂組成物層の均一形成が困難となり、 また 9 5 0, 0 0 0を超えると、 弾性が高くなり、 塗布量の調整が困難となる等 の問題を生じる。 前記アルキル (メタ) アクリル酸エステルとしては、 炭素原子数 1〜1 2のァ ルキル基を有し、 (メタ) アクリル酸メチル、 (メタ) アクリル酸プチル、 (メ 夕) アクリル酸ォクチル等が好ましく例示される。 さらに具体的に述べると、 メ タクリレート系成分としては、 例えばメチルメタァクリレート、 ェチレメタァク リレート、 n—プロピルメタァクリレート、 イソプロピルメタァクリレート、 n 一へキシルメタァクリレート、 シクロへキシルメタァクリレート、 2—ェチルへ キシルメタァクリレ一ト、 n—才クチルメタァクリレート、 イソォクチルメタァ クリレート、 ラウリルメタァクリレート等が挙げられる。 ァクリレート成分とし ては、 例えばメチルァクリレート、 ェチルァクリレート、 プロピルァクリレート、 ブチルァクリレート、 n—へキシルァクリレート、 2—ェチルへキシルァクリレ —ト、 n—才クチルァクリレート、 ラウリルァクリレート等が挙げられる。 こら れは単独または 2種以上混合して用いることもできる。
第 2接着剤には架橋剤を配合することもできる。 配合量は通常、 アクリル系接 着剤 1 0 0重量部に対し 0. 0 1〜1 0重量部である。 この架橋剤としては、 例 えばィソシァネート系化合物、 アルミキレート、 アジリジニル系化合物、 ェポキ シ系化合物等が挙げられる。 第 2接着剤は、 有機溶剤溶液とし、 ロールコーター、 リバ一スコ一夕一、 コンマコ一ター、 リップコ一夕一、 ダイコ一タ一等の塗布機 により基材フィルムに塗布される。 基材フィルムの接着剤層側には剥離処理を施 したフィルムあるいは紙等を積層することにより、 取り扱い上の便宣を図ること ができる。
第 1単層フィルムに対して、 上記のような構成に積層した近赤外線遮蔽フィル ムは、 プラズマディスプレイのガラス基板上に直接貼り付けて使用することがで きる。 この近赤外線遮蔽フィルムを貼り付けたプラズマディスプレイ表示装置は、 視認性、 耐擦傷性に優れ、 P D P内部より放出される近赤外線を吸収するため周 囲のリモコン装置の誤作動を引き起こす心配がない。
また、 第 2の単層フィルムは、 プラズマディスプレイパネルからの近赤外線放 射により周辺機器に誤作動等の問題を防ぐために、 第 2単層フィルムと電磁波シ —ルド性薄膜積層フィルムとを貼合せて積層フィルムとし、 該積層フィルムをプ ラズマディスプレイパネルの前面板に使用するのが好ましい。 その際、 該積層フ イルムの近赤外線波長領域内の、 850 nmおよび 950 nmの透過率をそれぞ れ 0. 01以上、 0. 20以下にすることが必要である。 好ましくは 0. 1以下 である。 波長 850 nmおよび 950 nmの近赤外線の透過率がそれぞれ 0. 2 0より大きくなると、 プラズマディスプレイパネルから放射される近赤外線を十 分に遮断できなくなり、 プラズマディスプレイ周辺の機器の誤作動を招くおそれ がある。 一方、 0. 01より小さいと、 近赤外線吸収剤の特性上、 可視光線の透 過率が低下し、 プラズマディスプレイの輝度が低下する。
前記電磁波シールド性薄膜積層フィルムとしては、 基材となる透明フィルムの 少なくとも片面に電磁波シールド性の透明導電層が設けられているものが好まし い。 この透明導電層を構成する金属物質としては、 Sbをドープした Sn02や Snをドープした I n 203 (I TO) などの広い光学パンドギャップと高い自 由電子密度を有する半導体薄膜、 または Au、 Ag、 Cu、 A 1などの金属が例 示される。 これらの中、 可視光線の吸収が殆どない A gが特に好ましい。 なお、 必要に応じて金属物質を 2種以上併用してもよい。 かかる金属層の形成方法とし ては、 気相成長法が好ましく、 さらにスパッター法、 真空蒸着法またはプラズマ
CVD法が好ましい。 かかる金属層の厚みは、 可視光線透過率が 70%以上およ び近赤外線遮蔽率が 40%以上の範囲を満足するように設定すべきである。 金属 層の厚みは 5〜1, 000 nmの範囲が好ましい。 この厚みが 5 nm未満である と、 表面抵抗が高くなり、 十分な電磁波シ一ルド効果が発揮されず、 他方 1, 0
O Onmを超えると、 可視光線透過率が低下し、 透明性が悪くなる。
前記電磁波シールド性薄膜積層フィルムには可視光線の反射を抑制し、 透明性 を高める為に、 透明で高屈折率である誘電体層を設けることが好ましい。 このよ うな誘電体としては、 T i〇2、 Z r〇2、 Sn〇2、 I n 203等が挙げられる。 アルキルチタネートまたはアルキルジルコニウムの加水分解により得られる有機 化合物由来の T i 02または Z r02が加工性に優れるためさらに好ましい。 加 えて、 誘電体層として酸化インジユウムゃ酸化錫も単一層または多層にて適用で きる。 かかる誘電体層の形成方法としては、 気相成長法が好ましく、 さらにスパ ッタ一法、 真空蒸着法またはプラズマ C VD法が好ましい。 また、 誘電体層は、 前述の金属層をサンドィッチ状に挟む積層構成をとることにより、 透明性の効果 が増すのでより好ましい。 かかる誘電体層の厚みは、 本発明の構造体の光学特性 範囲を満足するように前述の金属層と併せて設定することが必要である。 誘電体 層の厚みは 0〜7 5 0 nm、 さらに 1 0〜 5 0 0 nmの範囲が好ましい。
前記基材の透明フィルムとしては、 厚みが 2 5〜2 5 0 ΠΙ、 好ましくは 2 5 〜1 7 5 の二軸配向ポリエステルフィルムを好ましく用いることができる。 この二軸配向フィルムを構成するポリエステルは、 近赤外線遮蔽フィルムを構成 する二軸配向フィルムのポリエステルと同じものを用いることができる。 また、 二軸配向熱処理条件も同じ条件を採用することができる。
本発明における第 2単層フィルムと電磁波シールド性薄膜積層フィルムとを貼 合せて積層フィルムは、 第 2単層フィルムと電磁波シールド性薄膜積層フィルム の間に電磁波シールドの強化のために金属メッシュなどを積層してもよい。
次に、 本発明の積層フィルムについて説明する。
本発明の積層フィルムについてここに記載のない事項は、 上記単層フィルムに ついての説明がそのままあるいは当業者に自明の変更を施して適用されると理解 すべきである。
本発明の積層フィルムは、 上記のとおり、 重量減少開始^度が少なくとも 2 8 0でである近赤外線吸収剤を含有するポリエステルからなる二軸配向フィルムぉ よびこの二軸配向フィルムの少なくとも片面上に設けられている電磁波シ一ルド 性フィルムからなる。
重量減少開始温度が少なくとも 2 8 0 °Cである近赤外線吸収剤、 それを含有す るポリエステルからなる二軸配向フィルムは単層フィルムについて前記したとお りであり、 またこの二軸配向フィルムの少なくとも片面上に設けられている電磁 波シールド性フィルムは第 2単層フィルムについて前記したとおりである。
積層フィルムにおける上記二軸配向フィルムとしては、 ヘーズ値が 5 %以下で ありそして可視光領域および近赤外線領域における光学特性が下記式 (5 )、 ( 6 )、 ( 7 ) および (8 ): 5≤T (850) ≤57 · · · (7)
20≤T (950) . . . (8)
0. 7≤T (620) /Τ (540) ≤1. 3 · . . (5)
. 0. 7≤Τ (450) /Τ (540) ≤1. 3 · · - (6)
ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) の定義は上記と同じである、
を満足するものが好ましい。
上記二軸配向フィルムの可視光領域および近赤外線領域における光学特性は下 記式 (7) — 1および(8) ― 1 :
10≤Τ (850) ≤28 · · . (7) — 1
20≤Τ (950) ≤55 · · · (8) — 1 ここで、 Τ (850) および Τ (950) の定義は上記に同じである、 を満足するのが好ましい。
また、 上記二軸配向フィルムの波長 400〜650 nmの可視光線の全光線透 過率は 60%以上であるのが特に好ましい。
本発明の上記積層フィルムは、 さらにへ一ズ値が 5 %以下であり、 波長 400 〜 650 nmの可視光線の全光線透過率が 40 %以上でありそして
可視光領域および近赤外線領域における光学特性が下記式 (5)、 (6)、 (7) および (8) を満足する。
5≤T (850) ≤57 · · · (7)
20≤Τ (950) · · · (8)
0. 7≤T (620) /Τ (540) ≤1. 3 · · · (5)
0. 7≤Τ (450) /Τ (540) ≤1. 3 · · · (6) ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) の定義は上記と同じである。
本発明の積層フィルムの電磁波シールド性フイルムとしては、 第 2の単層フィ ル厶について記載したと同じものが用いられる。 そのうち、 特に、 透明フィルム 基材およびその少なくとも片面上に設けられた電磁波シールド性透明導電性フィ ルムからなるものが好ましい。
本発明の積層フィルムは、 前記単層フィルムと同様に、 該積層フィルムおよび 少なくともその片面上に設けられた接着性層からなるフィルムとして、 あるいは 該積層フィルム、 その両面上設けられた接着性層、 一方の接着性層の表面上に設 けられたハ一ドコート層および他方の接着性層の表面上に設けられた第 2の接着 性層からなるフィルムとして、 好ましくはそのハードコート層の表面上に、 屈折 率の異なる少なくとも 2層の薄膜層からなる反射防止層をさらに備えたフィルム として、 有利に用いられる。 実施例
以下、 実施例を挙げて本発明をさらに詳細に説明する。 なお、 例中の各特性値 は以下の方法により評価した。
(1) 全光線透過率およびヘーズ値
J I S K6714-1958に準じて、 日本電色工業社製のヘーズ測定器 (NDH-20) を使用して全光線透過率 Tt (%) と散乱光透過率 Td (%) とを測定した。
得られた全光線透過率は次の基準で評価し、 評価 2以上が実用上問題ないもの で、 評価 3が極めて優れたものである。
3 :全光線透過率 60 %以上
2 :全光線透過率 40 %以上 60 %未満
1 :全光線透過率 40 %未満
また、 測定された全光線透過率 T t (%) と散乱光透過率 Td (%) とから、 以下の式よりヘーズ (%) を算出した。
ヘーズ (%) = (TdZT t) X 100
得られたへ一ズ値は次の基準で評価した。
4 :ヘーズ値≤ 2. 0% ……ヘーズ値がかなり小さく実用上 極めて良好に使用できる 3 : 2. 0 %<ヘーズ値≤ 3. 0% ……ヘーズ値が小さく実用上良好に 使用できる
2 : 3. 0 %<へ一ズ値≤ 5. 0% ……ヘーズ値がやや小さく実用上は 問題ない
1 : 5. 0%くヘーズ値 ……ヘーズ値が大きく、 実用上問題 がある
(2) 波長 400〜1, 500 nmの範囲における光線透過率および光学濃度 (株) 島津製作所製 分光光度計 MP C 3100を用い、 波長 400〜 1, 5
00 nmの光線透過率を測定した。
(3) 色相ずれ
標準光 Aに対する供試フィルムの透過スぺクトルから J I S規格 Z 8729に 準じて L*a*b*表色系における L*、 a *および b*を求め、 以下の式より求め られる abクロマ (C*ab) を算出した。 得られた C*abより、 以下の基準 で無彩色との彩度のずれを評価した。
◎: C*ab^l 0未満
〇: C bが 10以上 20未満
X: C*abが 20以下
C*ab= ((a*) 2+ (b*) 2) 1/2
(4) 色むらの評価
(株) 島津製作所製 分光光度計 MP C 3100を用い、 供試サンプル lm2 よりランダムに 20点、 550 nmにおける透過率を測定した。 このときの透過 率の最大値と最小値の差を平均値で割った値 (R: %) を計算し、 以下のように 評価した。
O: R ( ) が 5%以下 …… PDP使用上、 全く問題なく、 色 斑として判断されない
厶: R (%) が 5%超 10%以下 ……接近して観察すると色斑として判 断される
X: R (%) が 10%超 …… P DP使用時に色斑として認識 でき、 単一色の像が部分的に色づ いて見える。
(5) 近赤外線遮蔽フィルムとしての耐摩耗性
試料を、 スチールウール # 000を角型パッド (面積 6. 25 cm2) に装着 -し、 往復式摩耗試験機による摩耗試験 (荷重 l kg、 50回往復) 前後のヘーズ 値の差 (△ヘーズ) から以下のように評価した。
厶ヘーズ = (摩耗試験後のヘーズ値) - (摩耗試験前のヘーズ値)
〇: Δヘーズが 10未満
厶: Δヘーズが 10以上 20未満
Χ : Δヘーズが 20以上 '
(6) 接着力
a. 対接着剤
供試サンプルを 60°C、 80 %RHの恒温恒湿槽中に 24時間保持し、 該サン カレの粘着剤層の面をガラス板に貼合せ、 引き剥がし試験により、 以下の基準で 評価した。
◎:基材フィルムが破断する程度に接着力が強い
〇:剥離はするが、 実用性はある
X:たやすく剥離し、 実用性無し
b. 対ハードコート
反射防止層を積層していない供試サンプルのハードコート層の面に碁盤目のク ロスカット (1mmのマス目を 100個) を施し、 その上に 24mm幅のセロハ ンテ一プ (ニチパン社製) を貼り付け、 180度の剥離角度で急激に剥がした後、 剥離面を観察し、 以下の基準で評価した。
5 :剥離面積が 10 %未満……接着力極めて良好
4:剥離面積が 10 %以上 20 %未満……接着力良好
3 :剥離面積が 20 %以上 30 %未満……接着力やや良好
2 :剥離面積が 3.0 %以上 40 %未満……接着力不良
1 :剥離面積が 40 %を超えるもの……接着力極めて不良
(7) 近赤外線遮断性能 家庭用テレビのリモートコント口一ラ受光部に得られた多層フィルムを設置し、
2 m離れた位置からリモートコントローラでリモートコント口一ル信号 (信号波 長 950 nmおよび 850 nm) を送って家庭用テレビが反応するか否かをテス した。
PDPディスプレイから発する近赤外線はリモ一トコントローラより発する近 赤外線より弱いので、 このテストにおいて反応が見られなければリモートコント 口ール障害の発生防止が可能である。
リモ一トコントローラに反応しないものを 「〇」、 反応するものを 「X」 とし た。
実施例 1
日本触媒 (株) 製近赤外線吸収剤 EX8 14Kを 0. 05重量%、 日本触媒 (株) 製近赤外線吸収剤 EX812Kを 0. 05重量%、 平均粒径1. 7 mの 多孔質シリカを 0. 007重量%含有した溶融ポリエチレンテレフ夕レート (P ET、 [77] =0. 65) をダイより押出し、 常法により冷却ドラム上で冷却し て未延伸フィルムとし、 次いで縦方向に 90 の温度で延伸倍率 3. 5倍で延伸 した。 その後、 その両面に以下の塗膜用組成物の濃度 8%の水性液を口一ルコ一 ターで均一に塗布し、 引き続いて 95 °Cで乾燥しながら横方向に 120 で 3. 8倍延伸し、 230でで熱固定して、 厚さ 188 mの近赤外線遮蔽フィルムを 得た。 なお、 接着性塗膜の厚さは 0. 15 mであった。 得られたフィルムの評 価結果を表 1に示す。
塗膜用組成物
酸成分がテレフタル酸 (90モル%)、 イソフタル酸 (6モル%) および 5—ス ルホイソフタル酸カリウム (4モル%)、 グリコール成分がエチレングリコール (95モル%) およびネオペンチルダリコール (5モル%) から合成される Tg 68 °Cの共重合ポリエステル 80重量%
N, N' —エチレンビス力プリル酸アミド 5重量%
ァクリル系樹脂微粒子 (平均粒径 0. 03 ^m) 10重量%
ポリオキシエチレンノニルフエ二ルェ一テル 5重量% 実施例 2および 3
近赤外線吸収剤を表 1のように変更した以外は実施例 1と同様な操作を繰返し た。 得られたフィルムの評価結果を表 1に示す。 実施例 2で用いたフィルムの透 過率を図 1に示す。
実施例 4
日本触媒 (株)製近赤外線吸収剤 EX814Kを 0. 05重量%、 日本触媒 (株) 製近赤外線吸収剤 EX812Kを 0. 05重量%、 平均粒径 1. 7 mの多孔質 シリカを 0. 007重量%含有した溶融ポリエチレン一 2, 6—ナフタレンジ力 ルポキシレート (PEN、 [77] =0. 65) をダイより押出し、 常法により冷 却ドラム上で冷却して未延伸フィルムとし、 次いで縦方向に 130°Cの温度で延 伸倍率 3. 5倍で延伸した。 その後、 その両面に以下の組成からなる塗膜用組成 物の濃度 8%の水性液をロールコ一ターで均一に塗布し、 引き続いて 145°Cで 乾燥しながら横方向に 120°Cで 3. 8倍に延伸し、 230°Cで熱固定して、 厚 さ 18 の近赤外線遮蔽フィルムを得た。 なお、 接着性 の厚さは 0. 1 5 mであった。 得られたフィルムの評価結果を表 1に示す。
塗膜用組成物
酸成分がテレフタル酸 (90モル%)、 イソフタル酸 (6モル%) および 5— スルホイソフ夕ル酸カリウム (4モル%)、 グリコール成分がエチレングリコ一 ル (95モル%) およびネオペンチルグリコール (5モル%) から合成される T g 68での共重合ポリエステル 80重量%
N, N, 一エチレンビス力プリル酸アミド 5重量% ァクリル系樹脂微粒子 (平均粒径 0. 03 m) 10重量% ポリオキシエチレンノニルフエ二ルェ一テル 5重量%
比較例 1
近赤外線吸収剤を用いない以外は実施例 1と同様な操作を繰返した。 得られた フィルムの評価結果を表 1に示す。 近赤外線吸収性能はない。
比較例 2および 3
近赤外線吸収剤を表 1に示すように変更した以外は実施例 1と同様な操作を繰 返した。 得られたフィルムの評価結果を表 1に示す。 比較例 2は近赤吸収性能は 問題ないが、 全光線透過率が低い。
Figure imgf000038_0001
表 1 (つづき)
Figure imgf000038_0002
表 1中の記号の意味は次のとおりである (以下の表 2でも同じ)。
Α: 日本触媒 (株) 製近赤外線吸収剤 EX 814K
B: 日本触媒 (株) 製近赤外線吸収剤 EX 812K
C:大日本インキ化学工業 (株) 製近赤外線吸収剤 I R— ADD I T I VE 200
D:日本化薬 (株) 製 KAY A SORB I RG-023
実施例 5 実施例 1の近赤外線遮蔽フィルムの片面の接着性塗膜上に、 以下の組成からな る UV硬化系組成物をロールコ一ターを用いて、 硬化後の膜厚が 5 mとなるよ うに均一に塗布した。
. UV硬化組成物
ペン夕エリスリ! ルァクリレート 45重量%
N—メチロールアクリルアミド 40重量%
N—ビニルピロリドン 10重量%
1—ヒドロキシシクロへキシルフェニルケトン 5重量%
その後、 8 OWZ cmの強度を有する高圧水銀灯で 30秒間紫外線を照射して 硬化させ、 ハードコート層を形成した。
そして、 該ハードコート層の上に、 低屈折率層 (S i02、 30nm)、 高屈 折率層 (Ti〇2、 30nm)、 低屈折率層 (S i 02、 30nm)、 高屈折率層 (T i〇2、 100 nm) および低屈折率層 (S i 02、 100 nm) がこの順 で積層されてなる反射防止層をスパッタリングによって形成した。 引き続き、 以 下に示す方法により作成した接着剤塗工液 a (接着剤濃度 20重量%) を均一に なるよう攪拌した後、 厚さ 38 mの剥離処理を施した PETフィルムに、 乾燥 後の接着剤層の厚さが 25 mとなるように塗工し、 乾燥した。 該接着剤層面を 上記反射防止処理を施した厚さ 188 mの透明 PETフィルムの未処理面に貼 着し、 本発明の近赤外線遮蔽フィルム (積層フィルム) を得た。
このようにして得られた積層フィルムを片面に接着剤処理の施された電磁波シ 一ルド性薄膜積層フィルム (帝人商事 (株) 製、 商品名:レフテル XI R-7 0) に貼着した。 得られた積層体の光学特性および表示装置の評価結果を表 2に 示す。
接着剤塗工液 aの調製方法
温度計、 攪拌機、 '還流冷却管、 窒素導入管を備えたフラスコ中に下記組成から なる溶液を調製した。
アクリル溶液の組成
n—ブチルァクリレート 47. 0重量% アクリル酸 3 . 0重量%
過酸化ベンゾィル 0 . 2重量%
酢酸ェチル 2 0 . 0重量%
. トルエン 2 9 . 8重量%
ついで、 窒素導入管から窒素を導入してフラスコ内を窒素雰囲気とした後、 6 5でに加温して 1 0時間重合反応を行い、 重量平均分子量約 1 2 0万 (数平均分 子量約 3 0万)、 T g約— 4 9 °Cのアクリルポリマー溶液を得た。 このアクリル ポリマー溶液に固形分が 2 0重量%となるように酢酸ェチルを加え、 マスターパ ツチ用アクリルポリマ一溶液を得た。 この溶液の 1 0 0重量部 (固形分として) に、 N, N, N ', N, —テトラグリシジル一 m—キシレンジァミン 0 . 1重量 部を加え、 接着剤塗工液 aを得た。
実施例 6〜8
実施例 2〜4で用いたフィルムを使用し、 実施例 5と同様な操作を繰返した。 得られた積層フィルムの評価結果を表 2に示す。 実施例 6で用いた積層フィルム (電磁波シールド性薄膜積層フィルムと貼着する前) の透過率を図 2に示す。
比較例 4
実施例 1で得られたフィルムを比較例 1で得られたフィルムに変更する以外は、 実施例 5と同様な操作を繰返した。 得られた積層フィルムの評価結果を表 2に示 す。 波長 8 5 0 nmについて、 十分な近赤外線遮断性能を示さなかった。
比較例 5
実施例 1で得られたフィルムを比較例 3で得られたフィルムに変更する以外は、 実施例 5と同様な操作を繰返した。 得られた積層フィルムの評価結果を表 2に示 す。 波長 8 5 0 nmについて、 十分な近赤外線遮断性能を示さなかった。
比較例 6
比較例 1のポリエステルフィルムの片面の 上に、 以下の組成からなる UV 硬化系組成物をロールコ一夕一を用いて、 硬化後の膜厚が 5 mとなるように均 一に塗布した。
UV硬化組成物 ペンタエリスリト一ルァクリレート 45重量%
N—メチロールアクリルアミド 40重量%
N—ビニルピロリドン 10重量%
. 1—ヒドロキシシクロへキシルフェニルケトン 5重量%
その後、 8 OW/ cmの強度を有する高圧水銀灯で 30秒間紫外線を照射して 硬化させ、 ハードコート層を形成した。
そして、 該ハードコート層の上に、 低屈折率層 (S i 02、 30 nm)、 高屈 折率層 (T i〇2、 30 nm)、 低屈折率層 (S i 02、 30 nm)、 高屈折率層 (T i〇2、 1 00 nm) および低屈折率層 (S i 02、 100 nm) がこの順 で積層されてなる反射防止層をスパッタリングによって形成した。 引き続き、 以 下に示す方法により作成した前記接着剤塗工液 a (接着剤濃度 20重量%) を均 一になるよう攪拌した後、 厚さ 38 mの剥離処理を施した PETフィルムに、 乾燥後の接着剤層の厚さが 25 mとなるよう〖こ塗工し、 乾燥した。 該接着剤層 面を上記反射防止処理を施した厚さ 188 imの透明 PETフィルムの未処理面 に貼着し、 積層フィルムを得た。 このようにして得られた積層フィルムおよび表 示装置の評価結果を表 2に示す。 十分な近赤外線遮断性能を示したが、 近赤外線 吸収剤が多く高価になり、 さらに接着層とフィルムとの接着がわるい。
粘着剤塗工液 bの調製方法
温度計、 攪拌機、 還流冷却管、 窒素導入管を備えたフラスコ中に下記の組成の 溶液を調製した。
アクリル溶液の組成
n—ブチルアタリレート 47. 0重量% アクリル酸 3. 0重量% 過酸化ベンゾィル 0. 2重量% 酢酸ェチル 20. 0重量% トルエン 29. 6重量% 大日本インキ化学工業 (株)製近赤外線吸収剤 IR-Addi t ive200 0. 4重量% ついで、 窒素導入管から窒素を導入してフラスコ内を窒素雰囲気とした後、 6 5でに加温して 1 0時間重合反応を行い、 重量平均分子量約 1 2 0万 (数平均分 子量約 3 0万)、 T g約— 4 9 °Cのアクリルポリマー溶液を得た。 このアクリル ポリマ一溶液に固形分が 2 0重量%となるように酢酸ェチルを加え、 マスタ一バ ツチ用アクリルポリマ一溶液を得た。 この溶液の 1 0 0重量部 (固形分として) に、 Ν, Ν, Ν' , Ν, —テトラグリシジル— m—キシレンジァミン 0 . 1重量 部を加え、 接着剤塗工液 bを得た。
比較例 7
接着剤塗工液 bに添加する近赤外線吸収剤を表 2に示すように変更し、 接着剤 層厚みを 4 5 / mに変更する以外は比較例 2と同様な操作を繰返した。 得られた 積層フィルムの評価結果を表 2に示す。 近赤外線遮断性能は十分であるが、 近赤 外線吸収剤が多く高価になり、 さらに、 接着層と透明基材の接着力が弱い。
表 2 接着剤層 吸光剤 積層体の近赤外線光;麵過率 ベース 帯電防止
金属膜 接着剤厚み 吸光剤 1 吸光剤 2 使用量 T(850) Τ (900) Τ(950) フィルム
多層積層体 ( μ τη) (重量0 /0) (gZm2) (%) (%) (%) 実施例 5 実施例 1 有り 25 (0. 030) 13 11 12 実施例 6 実施例 2 有り 25 (0. 024) 9 7 9 実施例 7 実施例 3 有り 25 (0. 015) 17 22 18 実施例 8 実施例 4 有り 25 (0. 015) 12 11 12 比較例 4 比較例 1 有り 25 0. 000 35 25 18 比較例 5 比較例 3 有り 25 (0. 006) 29 22 14 比較例 6 比較例 1 なし 45 C (0. 4) 0. 029 12 14 40 比較例 7 比較例 1 なし 45 A(0. 4) D (0. 4) 0. 058 11 13 18
表 2 (つづき) 近赤吸収遮断 !■生能 全光線
耐摩耗性 対接着剤 対ハードコート 850 950 ^一ズ 色相ずれ 表面反射
透過率
実施例 5 ◎ 5 〇 〇 4 4 〇 © 良好 実施例 6 ◎ 5 〇 〇 4 3 ◎ ◎ 良好 実施例 7 ◎ 5 〇 〇 4 3 ◎ ◎ 良好 実施例 8 ◎ 5 〇 〇 4 4 〇 良好 比較例 4 〇 5 X 〇 4 3 ◎ ◎ 良好 比較例 5 X 5 X 〇 3 2 〇 ◎ 良好 比較例 6 X 5 〇 X 4 2 X ◎ 良好 比較例 7 X 5 〇 〇 4 2 〇 ◎ 良好
実施例 9
日本触媒 (株) 製近赤外線吸収剤 EX814Kを 0. 40重量%、 三井化学 (株) 製近赤外線吸収剤 S 13を 0. 20重量%、 平均粒径1. 7^mの多孔質 シリカを 0. 007重量%含有した溶融ポリエチレンテレフ夕レート (PET;
[??] =0. 65) をダイより押出し、 常法により冷却ドラム上で冷却して未延 伸フィルムとし、 次いで縦方向に 90°Cの温度で延伸倍率 3. 5倍で延伸した後、 その両面に以下の組成の塗膜用組成物の濃度 8%の水性液をロールコ一夕一で均 一に塗布し、 その後、 引き続いて 95 °Cで乾燥しながら横方向に 120°Cで 3. 8倍に延伸し、 23 O で熱固定して、 厚さ 75 mの近赤外線遮蔽二軸配向フ イルムを得た。 なお、 接着性^ Eの厚さは 0. であった。 得られたフィ ルムの評価結果を表 3に示す。 図 3にその透過率を示す。
讓用組成物
酸成分がテレフタル酸 (90モル%)、 イソフ夕ル酸 (6モル%) および 5— スルホイソフ夕ル酸カリウム (4モル%)、 グリコール成分がエチレングリコー ル (95モル%) およびネオペンチルダリコール (5モル%) から合成される T g 68°Cの共重合ポリエステル樹脂 80重量%
N, N' —エチレンビス力プリル酸アミド 5重量%
ァクリル系榭脂微粒子 (平均粒径 0. 03^m) 10重量%
ポリオキシエチレンノニルフエニルエーテレ 5重量%
実施例 10〜 13
近赤外線吸収剤を表 3のように変更した以外は、 実施例 9と同様な操作を繰返 した。 得られた近赤外線遮蔽フィルムの評価結果を表 3に示す。 図 4に実施例 1 1で得られたフィルムの透過率を示す。
実施例 14
日本触媒 (株) 製近赤外線吸収剤 EX814Kを 0. 40重量%、 三井化学' (株) 製近赤外線吸収剤 S 13を 0. 20重量%、 平均粒径1. 7 πιの多孔質 シリカを 0. 007重量%含有した溶融ポリエチレン一 2, 6—ナフタレンジ力 ルポキシレート (PEN ; [77] =0. 65) をダイより押出し、 常法により冷 却ドラム上で冷却して未延伸フィルムとし、 次いで縦方向に 1 3 0 °Cの温度で延 伸倍率 3 . 5倍で延伸した後、 その両面に以下の塗膜用組成物の濃度 8 %の水性. 液を口一ルコーターで均一に塗布し、 その後、 弓 Iき続いて 1 4 5 °Cで乾燥しなが 横方向に 1 2 0 で 3 . 8倍に延伸し、 2 3 0 °Cで熱固定して、 厚さ 7 5 ΠΙ の近赤外線遮蔽フィルムを得た。 なお、 接着性塗膜の厚さは 0 . 1 5 mであつ た。 得られたフィルムの評価結果を表 3に示す。
薩用組成物
酸成分がテレフタリレ酸 (9 0モル%)、 イソフタル酸 (6モル%) および 5— スルホイソフタル酸カリウム (4モル%)、 グリコール成分がエチレングリコ一 ル (9 5モル%) およびネオペンチルグリコール (5モル%) から合成される T g 6 8 °Cの共重合ポリエステル樹脂 8 0重量%
N, N' —エチレンビス力プリル酸アミド 5重量% ァクリル系樹脂微粒子 (平均粒径 0. 0 3 m) ' 1 0重量% ポリオキシエチレンノニルフエニルエーテル 5重量%
比較例 8
近赤外線吸収剤を用いない以外は実施例 9と同様な操作を繰返した。 得られた 二軸配向フィルムの評価結果を表 3に示す。 近赤外線吸収性能はない。 '
比較例 9〜 1 2
近赤外線吸収剤を表 3に示すように変更した以外は実施例 9と同様な操作を繰 返した。 得られた近赤外線遮蔽フィルムの評価結果を表 3に示す。 比較例 9は近 赤吸収性能は問題ないが、 全光線透過率が低い。 比較例 1 0は近赤吸収性能が不 十分である。 表 3 吝 ii 力 π畺 T("fi (4^0)
ポリエステル 近赤外線吸収剤 ;斤 sfe外總咖 ^ヮ Ω υ)
(重量) 減量開始温度 (g/m2) 一 Τ(540) -T(540) (%) 実施例 9 PET E 0. 60% >300°C 0. 70 -0. 6 一 9. 0 11. 2 実施例 10 PET F 0. 47% >300°C 0. 56 一 0. 7 一 6. 6 5. 6 実施例 11 PET G 0. 67% 282°C 0. 80 一 1. 1 1. 5 12. 7 実施例 12 PEN H 0. 47% >300°C 0. 56 一 3. 4 一 6. 2 12. 4 実施例 13 PET I 0. 40% 280°C 0. 48 一 0. 9 一 8. 8 12. 7 実施例 14 PEN E 0. 60% >300°C 0. 72 一 0. 6 -9. 0 11. 2 比較例 8 PET なし 0. 00% 0. 00 0. 2 一 0. 7 91. 0 比較例 9 PET J 0. 33% 230°C 0. 40 1. 0 3. 3 18. 4 比較例 10 PET K 0. 35% >300°C 0. 42 0. 6 1. 1 32. 3 比較例 11 PET L 1. 00% 280 C 1. 20 一 4. 5 -12. 5 0. 4 比較例 12 PET M 0. 40% 220°C 0. 48 一 1. 3 一 4. 5 6. 3
表 3 (つづき)
T(90 ο0) Τ(950) 全光線透 ーズ 色相 原料回収時の 近赤吸収遮断性能
Ο 色むら
(%) (%) 過率 (%) (%) ずれ 色相耐熱性 850 950 実施例 9 4. 2 7. 8 52 4 〇 〇 ◎ 〇 〇
実施例 10 3. 1 rH
6 00 61 4 〇 〇 ◎ 〇 〇
実施例 11 17. 4 18. o CJ 7) 51 4 ◎ 〇 〇 〇 〇
実施例 12 52 4 〇 〇 〇 〇 Ο
実施例 13 17. 4 51 4 〇 Ο 〇 〇 〇
実施例 5
14 4. 2 7. 8 52 4 〇 〇 ◎ 〇 〇
比較例 8 90 4 ◎ X X
比較例 9 68. 6 85. 0 72 4 ◎ 〇 ◎ 〇 X
比較例 10 35. 3 43. 2 73 4 ◎ 〇 X X X
比較例 11 1. 0 34 3 X 〇 X 〇 〇
比較例 12 4. 2 4. 1 34 3 X 〇 X Ο 〇
表 3中に示す E〜Mの記号は、 以下の近赤外線吸収剤の種類および使用量 (ポ リエステルに配合後の重量%) を示す。
E:日本触媒 (株) 製の近赤外線吸収剤 EX 814K (0. 40wt ) およ び三井化学 (株) 製の近赤外線吸収剤 S 13 (0. 20wt%)
F: 日本触媒 (株) 製の近赤外線吸収剤 EX812K (0. 07wt%)、 E X814K (0. 27wt%) および三井化学 (株) 製の近赤外線吸収剤 S 13 (0. 27wt %).
G: 日本触媒 (株) 製の近赤外線吸収剤 EX812K (0. 13wt%), E X814K (0. 27wt%) および日本触媒 (株) 製の近赤外線吸収剤 EX 9 06B (0. 27wt%)
H:日本触媒 (株) 製の近赤外線吸収剤 EX 906B (0. 27wt%) およ び三井化学 (株) 製の近赤外線吸収剤 R 12 (0. 20wt%)
I :日本触媒 (株) 製の近赤外線吸収剤 EX814K (0. 20wt%) およ び三井化学 (株) 製の近赤外線吸収剤 S 13 (0. 13wt%)
J :日本触媒 (株) 製の近赤外線吸収剤 EX814K (0. 33wt )
K:日本化薬 (株) 製の近赤外線吸収剤 I RG— 023 (0. 15wt%) お よび日本触媒 (株) 製の近赤外線吸収剤 EX814K (0. 20wt%)
L:大日本インキ化学工業 (株) 製の近赤外線吸収剤 I R— ADD ITI VE 200 (1. 00wt )
M:有本化学 (株) 製の近赤外線吸収剤 SDO— 1000 B (0. 20w t %) および大日本インキ化学工業 (株) 製の近赤外線吸収剤 IR— ADD IT I VE200 (0. 2 Owt %)
実施例 15
実施例 9で得られた近赤外線遮蔽フィルムの片面の塗膜上に、 実施例 5で用い たと同じ UV硬化系組成物をロールコ一夕一を用いて、 硬化後の膜厚が 5 mと なるように均一に塗布した。
その後、 8 OWZ cmの強度を有する高圧水銀灯で 30秒間紫外線を照射して 硬化させ、 ハードコート層を形成した。 そして、 該ハードコ一ト層の上に、 低屈折率層 (S i02、 30nm)、 高屈 折率層 (T i〇2、 30nm)、 低屈折率層 (S i〇2、 30nm)、 高屈折率層 (T i 02、 100 nm) および低屈折率層 (S i〇2、 100 nm) がこの順 で積層されてなる反射防止層をスパッ夕リングによつて形成した。
引き続き、 以下に示す方法により作成した接着剤塗布液 c (接着剤濃度 20重 量%) を均一になるよう攪拌した後、 厚さ 38 mの剥離処理を施したポリェチ レンテレフタレート (PET) フィルムに、 乾燥後の接着層の厚さが 25 mと なるように塗工し、 乾燥した。 該接着層面を上記反射防止処理を施した厚さ 75 H mの近赤外線遮蔽フィルムの未処理面に貼着し、 本発明の近赤外線遮蔽積層フ イルムを得た。 このようにして得られた積層フィルムおよび表示装置の評価結果 を表 4に示す。
接着剤塗工液 cの調整方法
温度計、 攪拌機、 還流冷却管、 窒素導入管を備えたフラスコ中に下記の組成の 溶液を調整した。
アクリル溶液の組成
n—プチルァクリレ一ト 47. 0重量%
アクリル酸 3. 0重量%
過酸化ベンゾィル 0. 2重量%
酢酸ェチル 20. 0重量%
トルエン 29. 8重量%
日本触媒 (株)製近赤外線吸収剤 EX814K 0. 1重量%
日本触媒 (株)製近赤外線吸収剤 EX907B 0. 1重量%
ついで、 窒素導入管から窒素を導入してフラスコ内を窒素雰囲気とした後、 6 5 °Cに加温して 10時間重合反応を行い、 重量平均分子量約 120万 (数平均分 子量約 30万)、 Tgが約一 49 °Cのアクリルポリマー溶液を得た。 このァクリ ルポリマ一溶液に固形分が 20重量%となるように酢酸ェチルを加え、 マスター バッチ用アクリルポリマ一溶液を得た。 この溶液の 100重量部 (固形分とし て) に、 N, N, N'、 N, 一テトラグリシジル一 m—キシレンジァミン 0. 1 重量部を加え、 接着剤塗工液 Cを得た。
実施例 16〜 20
実施例 10〜14で得られた近赤外線遮蔽フィルムを使用し、 実施例 15と同 捧な操作を繰返した。 得られた積層フィルムの評価結果を表 4に示す。
比較例 13
比較例 8の二軸配向ポリエステルフィルムの片面の塗膜上に、 比較例 6で用い たと同じ UV硬化系組成物をロールコ一夕一を用いて、 硬化後の膜厚が 5 mと なるように均一に塗布した。
その後、 8 OWZ cmの強度を有する高圧水銀灯で 30秒間紫外線を照射して 硬化させ、 ハードコート層を形成した。
そして、 該ハードコート層の上に、 低屈折率層 (S i〇2、 30nm)、 高屈 折率層 (T i〇2、 30nm)、 低屈折率層 (S i〇2、 3 Onm), 高屈折率層 (T i〇2、 100 nm) および低屈折率層 (S i 02、 100 nm) がこの順 で積層されてなる反射防止層をスパッタリングによって形成した。 引き続き、 以 下に示す方法により作成した前記接着剤塗工液 d (接着剤濃度 20重量%) を均 一になるよう攪拌した後、 厚さ 38 mの剥離処理を施した PETフィルムに、 乾燥後の接着層の厚さが 25 mとなるように塗工し、 乾燥した。 該接着層面を 上記反射防止処理を施した厚さ 75 mの近赤外線遮断フィルムの未処理面に貼 着し、 近赤外線遮断積層フィルムを得た。 このようにして得られた積層フィルム および表示装置の評価結果を表 4に示す。 十分な近赤外線遮断性能を示さなかつ た。
接着剤塗工液 dの調整方法
温度計、 攪拌機、 還流冷却管、 窒素導入管を備えたフラスコ中に下記の組成の 溶液を調製した。
アクリル溶液の組成
n—ブチルァクリレート 47. 0重量%
アクリル酸 3. 0重量%
過酸化ベンゾィル 0. 2重量% 酢酸ェチル 20. 0重量%
トルエン 29. 6重量%
日本触媒 (株)製近赤外線吸収剤 EX814K 0. 1重量%
- 日本触媒 (株)製近赤外線吸収剤 EX907B 0. 1重量%
ついで、 窒素導入管から窒素を導入してフラスコ内を窒素雰囲気とした後、 6 5°Cに加温して 10時間重合反応を行い、 重量平均分子量約 120万 (数平均分 子量約 30万)、 Tg約— 49°Cのアクリルポリマー溶液を得た。 このアクリル ポリマー溶液に固形分が 20重量%となるように酢酸ェチルを加え、 マスターパ ツチ用アクリルポリマー溶液を得た。 この溶液の 100重量部 (固形分として) に、 N, N, N',. N, —テトラグリシジル— m—キシレンジァミン 0. 1重量 部を加え、 接着剤塗工液 dを得た。
比較例 14〜16
接着剤塗工液 dに添加する近赤外線吸収剤を表 4に示すように変更し、 接着層 厚みを 45 mに変更する以外は比較例 9と同様な操作を繰返した。 得られた近 赤外線遮断積層フィルムの評価結果を表 4に示す。 接着層と基材フィルムの接着 力が弱い。
表 4
ベース 近赤外線吸収剤 色むら
フィルム 層厚み
(g/m 評価
( πι) 対ハード 対接着剤
2) コート 実施例 15 実施例 9 25 〇 ◎ 5 実施例 16 実施例 10 25 〇 ◎ 5 実施例 17 実施例 11 25 〇 ◎ 5 実施例 18 実施例 12 25 〇 ◎ 5 実施例 19 実施例 13 25 〇 ◎ 5 実施例 20 実施例 14 25 〇 ◎ 5 比較例 13 比較例 8 25 N(l.80) 2.16 X 0 5 比較例 14 比較例 9 45 0(0.78) 0.92 Δ X 5 比較例 15 比較例 9 45 Ρ(0.88) 1.06 Δ X 5 比較例 16 比較例 9 45 Q(0.35) 0.42 Δ X 5 表 4 (つづき)
Figure imgf000053_0001
表 4中の記号 N Qの意味は次のとおりである。
N: 日本触媒 (株) 製の近赤外線吸収剤 EX 814K (1. 2 Owt%) およ び三井化学 (株) 製の近赤外線吸収剤 S 13 (0. 60wt%)
O: 日本触媒 (株) 製の近赤外線吸収剤 EX812K (0. 1 lwt%)、 E X814K (0. 44wt%) および三井化学 (株) 製の近赤外線吸収剤 S 13 (0. 22wt %)
P :有本化学 (株) 製の近赤外線吸収剤 SDO— 1000 B (0. 44w t ) および大日本インキ化学工業 (株) 製の近赤外線吸収剤 IR— ADD IT I VE200 (0. 44wt%)
Q: 日本化薬 (株) 製の近赤外線吸収剤 I RG— 023 (0. 44wt%) お よび日本触媒 (株) 製の近赤外線吸収剤 EX814K (0. 33wt%)

Claims

請 求 の 範 囲
1. (A) 重量減少開始温度が少なくとも 280 である近赤外線吸収剤を含有 するポリエステルからなる二軸配向フィルムからなり、
(B) ヘーズ値が 5%以下であり、
(C) 長 400〜 650 nmの可視光線の全光線透過率が 40 %以上であり、 そして
(D) 可視光領域および近赤外線領域における光学特性が下記式 (1) 〜 (4):
KT (850) <20 · · · (1)
KT (950) <20 · · · (2)
-10 <T (620) -Τ (540) <10 · · · (3)
—10く Τ (450) — Τ (540) く 10 · · · (4) ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) はそれぞれ、 波長 450 nm、 540 nm, 620 nm, 850 nmおよび 950 nmにおける光透過率 (%) である、
を満足する、
ことを特徴とする近赤外線遮蔽フィルム。
2. 近赤外線吸収剤を 280°Cで 30分間保持したときの重量変化率が 10重 量%以下である請求項 1に記載のフィルム。
3. 近赤外線吸収剤が二軸配向フィルムの厚み方向に垂直な面 lm2当り 0. 1 0〜1. 00g配合されている請求項 1に記載のフィルム。
4. 近赤外線吸収剤がフ夕口シァニン骨格を持つ化合物または二ッケル錯体化合 物である請求項 1に記載のフィルム。
5. (Α') 重量減少開始温度が少なくとも 280°Cである近赤外線吸収剤を含有 するポリエステルからなる二軸配向フィルムおよび'該ニ軸配向フィルムの少なく とも片面上に設けられている電磁波シ一ルド性フィルムからなり、
(B) ヘーズ値が 5%以下であり、
(C) 波長 400〜 650 nmの可視光線の全光線透過率が 40 %以上であり、 そして
(D') 可視光領域および近赤外線領域における光学特性が下記式 (1 (2 (5) および (6):
1く T (850) <20 · · · (1)
KT (950) <20 · · · (2)
0. 7≤T (620) /Τ (540) ≤1. 3 · · .· (5)
0. 7≤Τ (450) /Ί (540) ≤1. 3 · · · (6) ここで、 Τ (450 Τ (540 Τ (620 Τ (850) および Τ (950) の定義は上記と同じである、
を満足する、
ことを特徴とする近赤外線遮蔽積層フィルム。
6. 二軸配向フィルムがヘーズ値が 5 %以下でありそして可視光領域および近赤 外線領域における光学特性が下記式 (5)、 (6)、 (7) および (8):
5≤Τ (850) ≤57 · · · (7)
20≤Τ (950) · · · (8)
0. 7≤Τ (620) /Τ (540) ≤1. 3 · · · (5)
0, 7≤Τ (450) /Τ (540) ≤1. 3 · · · (6) ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) の定義は上記と同じである、
を満足する請求項 5に記載の積層フィルム。
7. 二軸配向フィルムの可視光領域および近赤外線領域における光学特性が下記 式 (7) — 1および (8) — 1 :
10≤Ύ (850) ≤28 · · · (7) — 1
20≤Τ (950) ≤55 · · · (8) — 1 ここで、 Τ (850) および Τ (950) の定義は上記に同じである、 を満足する請求項 5に記載の積層フィルム。
8. 二軸配向フィルムの波長 400〜650 nmの可視光線の全光線透過率が 6 0 %以上である請求項 5に記載の積層フィルム。
9. 近赤外線吸収剤がフタロシアニン骨格を持つ化合物またはニッケル錯体化合 物である請求項 5に記載の積層フィルム。
10. 近赤外線吸収剤が二軸配向フィルムの厚み方向に垂直な面 1 m2当り 0. 05〜: L. 0g配合されている請求項 5に記載の積層フィルム。
11. 電磁波シールド性フィルムが透明フィルム基材およびその少なくとも片面 上に設けられた電磁波シールド性透明導電性フィルムからなる請求項 5に記載の 積層フィルム。
12. 請求項 1に記載の近赤外線遮蔽フィルムおよび少なくともその片面上に設 けられた接着性層からなるフィルム。
13. 請求項 1に記載の近赤外線遮蔽フィルム、 その両面上に設けられた接着性 層、 一方の接着性層の表面上に設けられたハードコート層および他方の接着 '1生層 の表面上に設けられた第 2の接着性層からなるフィルム。
14. ハードコート層の表面上に、 屈折率の異なる少なくとも 2層の薄膜層から なる反射防止層をさらに備えた請求項 13に記載のフィルム。
15. 請求項 5に記載の近赤外線遮蔽積層フィルムおよび少なくともその片面上 に設けられた接着性層からなるフィルム。
16. 請求項 5に記載の近赤外線遮蔽積層フィルム、 その両面上に設けられた接 着性層、 一方の接着性層の表面上に設けられたハードコ一ト層および他方の接着 性層の表面上に設けられた第 2の接着性層からなるフィルム。
17. ハードコート層の表面上に、 屈折率の異なる少なくとも 2層の薄膜層から なる反射防止層をさらに備えた請求項 16に記載のフィルム。
18. 発光型パネル方式ディスプレイの近赤外線遮蔽のため、 該ディスプレイの 前面に貼合せて使用するための請求項 1または 5のフィルムの用途。
19. (A) 重量減少開始温度が少なくとも 280でである近赤外線吸収剤を含 有するポリエステルからなる二軸配向フィルムからなり、
(B) ヘーズ値が 5%以下であり、
(C) 波長 400〜 650 nmの可視光線の全光線透過率が 60 %以上であり、 そして
(D) 可視光領域および近赤外線領域における光学特性が下記式 (5)、 (6)、 (7) および (8):
5≤T (850) ≤57 · · · (7)
20≤Τ (950) · · · (8)
0. 7≤Τ (620) /Τ (540) ≤1. 3 · · · (5)
0. 7≤Ύ (450) /Ύ (540) ≤1. 3 · · · (6) ここで、 Τ (450)、 Τ (540)、 Τ (620)、 Τ (850) および Τ (950) の定義は上記と同じである、
を満足する、 ことを特徴とする近赤外線遮蔽フィルム。
PCT/JP2002/006055 2001-06-21 2002-06-18 Film de protection contre le rayonnement infrarouge proche WO2003000779A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60232603T DE60232603D1 (de) 2001-06-21 2002-06-18 Nahinfrarot-schutzfolie
EP20020738747 EP1452556B1 (en) 2001-06-21 2002-06-18 Near infrared ray shielding film
KR10-2003-7001954A KR20030022890A (ko) 2001-06-21 2002-06-18 근적외선 차폐 필름
US10/362,229 US6991849B2 (en) 2001-06-21 2002-06-18 Near infrared ray shielding film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001187872A JP2003002985A (ja) 2001-06-21 2001-06-21 近赤外線遮蔽フィルム及びそれを用いた積層体
JP2001-187872 2001-06-21
JP2001288623A JP2003096215A (ja) 2001-09-21 2001-09-21 近赤外線遮蔽フィルム及びそれを用いた積層体
JP2001-288623 2001-09-21

Publications (1)

Publication Number Publication Date
WO2003000779A1 true WO2003000779A1 (fr) 2003-01-03

Family

ID=26617319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006055 WO2003000779A1 (fr) 2001-06-21 2002-06-18 Film de protection contre le rayonnement infrarouge proche

Country Status (6)

Country Link
US (1) US6991849B2 (ja)
EP (1) EP1452556B1 (ja)
KR (1) KR20030022890A (ja)
DE (1) DE60232603D1 (ja)
TW (1) TW591061B (ja)
WO (1) WO2003000779A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494702B2 (en) * 2003-10-27 2009-02-24 Teijin Dupont Films Japan Limited Near-infrared ray shielding film
US8003200B2 (en) 2004-10-06 2011-08-23 Nitto Denko Corporation Transparent electrically-conductive film
US8048512B2 (en) 2006-08-03 2011-11-01 Nitto Denko Corporation Transparent conductive laminate and touch panel equipped with it
US10736948B2 (en) 2013-03-15 2020-08-11 In3Bio Ltd. Epidermal growth factor fusion proteins with mutant cholera toxin B subunits

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149265A1 (de) * 2001-10-05 2003-04-17 Giesecke & Devrient Gmbh Gegenstand mit Sicherheitsmarkierung
KR100764761B1 (ko) * 2003-02-12 2007-10-11 엘지전자 주식회사 전면필터
JP4431336B2 (ja) * 2003-04-09 2010-03-10 株式会社日本触媒 樹脂組成物、光学フィルターおよびプラズマディスプレー
US7245079B2 (en) * 2003-05-28 2007-07-17 Solutia Incorporated Plasma display panel filters comprising multiple layers
US20040239251A1 (en) * 2003-05-28 2004-12-02 D'haene Pol Plasma display panel filters
US20060257760A1 (en) * 2003-08-11 2006-11-16 Kenichi Mori Near-infrared absorbing film, and process for production the same, near-infrared absorbing film roll, process for producing the same and near-infrared absorbing filter
JP4463272B2 (ja) * 2004-03-10 2010-05-19 住友大阪セメント株式会社 透明積層体
KR100665026B1 (ko) * 2004-05-17 2007-01-09 삼성코닝 주식회사 디스플레이 필터, 이를 포함한 디스플레이 장치 및디스플레이 필터의 제조 방법
US7763265B2 (en) * 2004-06-30 2010-07-27 Dak Americas, Llc UV barrier formulation for polyesters
JPWO2006057276A1 (ja) * 2004-11-26 2008-06-05 三井化学株式会社 ディスプレイ用窓材
JP2006169467A (ja) * 2004-12-20 2006-06-29 Mitsubishi Polyester Film Copp 光学用ポリエステルフィルム
KR100696482B1 (ko) * 2004-12-30 2007-03-19 삼성에스디아이 주식회사 블랙 매트릭스, 이를 포함하는 광학 필터, 그 제조방법 및이를 채용한 플라즈마 디스플레이 패널
WO2006088056A1 (ja) * 2005-02-16 2006-08-24 Mitsubishi Polyester Film Corporation 近赤外線吸収フィルター、プラズマディスプレイ用光学フィルター及びプラズマディスプレイパネル
CN1869108B (zh) * 2005-05-26 2010-06-09 东丽株式会社 层合聚酯膜、使用了该层合聚酯膜的阻燃性聚酯膜、覆铜层合板以及电路基板
US20060286395A1 (en) * 2005-06-15 2006-12-21 Konica Minolta Medical & Graphic, Inc. Optical film and support thereof
US20070001566A1 (en) * 2005-06-30 2007-01-04 D Haene Pol Impact resistant, direct contact plasma display panel filters
US7510456B2 (en) * 2005-06-30 2009-03-31 Solutia Incorporated Method of making impact resistant, direct contact plasma display panel filters
KR100768200B1 (ko) * 2006-02-01 2007-10-17 삼성에스디아이 주식회사 광학 필터 및 이를 채용한 플라즈마 디스플레이 패널
CN102222765B (zh) * 2006-03-10 2012-12-12 株式会社半导体能源研究所 存储元件以及半导体器件
KR100719852B1 (ko) * 2006-07-19 2007-05-18 엘지전자 주식회사 플라즈마 디스플레이 장치
EP1883109B1 (en) * 2006-07-28 2013-05-15 Semiconductor Energy Laboratory Co., Ltd. Memory element and method of manufacturing thereof
JP2008139839A (ja) * 2006-11-02 2008-06-19 Bridgestone Corp ディスプレイ用光学フィルタ、これを備えたディスプレイ及びプラズマディスプレイパネル
KR100953556B1 (ko) * 2007-02-08 2010-04-21 주식회사 엘지화학 근적외선 흡수용 pdp 필터
TWI418603B (zh) * 2007-03-16 2013-12-11 Mitsubishi Gas Chemical Co 光穿透型電磁波屏蔽積層體及其製造方法、光穿透型電波吸收體,以及接著劑組成物
TW200934889A (en) * 2007-10-12 2009-08-16 Nihon Parkerizing Light-absorbing member and method of manufacturing same
US8558106B2 (en) * 2009-10-20 2013-10-15 Industrial Technology Research Institute Solar cell device and method for fabricating the same
JP5570289B2 (ja) * 2010-04-29 2014-08-13 三菱樹脂株式会社 積層ポリエステルフィルム
EP2711747A4 (en) * 2011-05-17 2014-12-17 Konica Minolta Inc INFRARED PROTECTION FILM, PROCESS FOR THE PRODUCTION OF THE INFRARED PROTECTION FILM AND INFRARED SHIELDING THEREWITH
US9149955B2 (en) * 2011-12-29 2015-10-06 Toray Plastics (America), Inc. Process for recycling immiscibles in PET film
JP5942466B2 (ja) * 2012-02-22 2016-06-29 住友金属鉱山株式会社 複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体
CN103489493A (zh) * 2012-06-11 2014-01-01 鸿富锦精密工业(深圳)有限公司 防辐射服
US10642087B2 (en) 2014-05-23 2020-05-05 Eyesafe, Llc Light emission reducing compounds for electronic devices
US10901125B2 (en) 2014-05-23 2021-01-26 Eyesafe, Llc Light emission reducing compounds for electronic devices
WO2015179761A1 (en) * 2014-05-23 2015-11-26 Digihealth LLC Light emission reducing film for electronic devices
TWI503346B (zh) * 2014-06-11 2015-10-11 Zirco Applied Materials Co Ltd 近紅外光屏蔽膜及近紅外光屏蔽膜之製造方法
KR101603562B1 (ko) 2015-07-03 2016-03-15 이재희 자기장 차폐 시트
KR101616787B1 (ko) 2015-07-03 2016-04-29 이재희 자기장 차폐 시트 및 그의 제조방법
CN107429128B (zh) * 2016-03-09 2024-08-02 三菱化学株式会社 粘接膜及其制造方法
CN106814417B (zh) * 2017-03-14 2023-05-09 浙江博达光电有限公司 日夜两用型的光学低通滤波器及其制造方法
JP2021501918A (ja) * 2017-11-07 2021-01-21 スリーエム イノベイティブ プロパティズ カンパニー 光学フィルム及びそれを含むシステム
US11810532B2 (en) 2018-11-28 2023-11-07 Eyesafe Inc. Systems for monitoring and regulating harmful blue light exposure from digital devices
US11347099B2 (en) 2018-11-28 2022-05-31 Eyesafe Inc. Light management filter and related software
US11592701B2 (en) 2018-11-28 2023-02-28 Eyesafe Inc. Backlight unit with emission modification
US11126033B2 (en) 2018-11-28 2021-09-21 Eyesafe Inc. Backlight unit with emission modification
WO2020196051A1 (ja) * 2019-03-28 2020-10-01 Agc株式会社 光学フィルタ
US10971660B2 (en) 2019-08-09 2021-04-06 Eyesafe Inc. White LED light source and method of making same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186128A (ja) * 1996-12-26 1998-07-14 Sumitomo Chem Co Ltd プラズマディスプレイ用前面板
JPH11199683A (ja) * 1998-01-16 1999-07-27 Nippon Polyester Co Ltd ポリカーボネート板および赤外線カットフィルター
JP2000025181A (ja) * 1998-07-10 2000-01-25 Teijin Ltd 易接着性フィルムおよびそれを用いた積層体
JP2000275432A (ja) * 1999-01-22 2000-10-06 Mitsui Chemicals Inc ディスプレイ用フィルター
JP2001066419A (ja) * 1999-08-24 2001-03-16 Fuji Photo Film Co Ltd 光学フィルターおよび反射防止膜
EP1087243A1 (en) * 1998-05-15 2001-03-28 Toyo Boseki Kabushiki Kaisha Infrared absorption filter
JP2001247526A (ja) * 2000-03-06 2001-09-11 Toyobo Co Ltd 近赤外線吸収化合組成物および近赤外線吸収フィルター

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721458A (en) * 1980-07-11 1982-02-04 Mitsubishi Electric Corp Near infrared absorbing plastic film
JPS5720509A (en) 1980-07-12 1982-02-03 Toyota Motor Corp Locker arm of steel plate
JPS57198413A (en) 1981-05-30 1982-12-06 Mitsui Toatsu Chem Inc Optical filter having spectral characteristic close to visibility
JPS58168526A (ja) 1982-03-31 1983-10-04 Teijin Ltd 近赤外線吸収性ポリエステルフイルム
JPS5912952A (ja) 1982-07-15 1984-01-23 Teijin Ltd 新規な紫外線吸収剤を用いる紫外線からの保護
JPH06214113A (ja) * 1993-01-20 1994-08-05 Mitsui Toatsu Chem Inc 近赤外線吸収フィルム及びそれを用いた熱線遮断シート
JPH10156991A (ja) 1996-11-28 1998-06-16 Asahi Chem Ind Co Ltd 近赤外線吸収特性を備えた反射防止性フィルム
JP4163268B2 (ja) 1996-12-25 2008-10-08 日東電工株式会社 プラズマデイスプレイパネル用フイルタとこれを用いたプラズマデイスプレイ表示装置
US6391400B1 (en) * 1998-04-08 2002-05-21 Thomas A. Russell Thermal control films suitable for use in glazing
JP3298505B2 (ja) * 1998-04-30 2002-07-02 東洋紡績株式会社 赤外線吸収フィルタ
SG81995A1 (en) * 1998-08-10 2001-07-24 Sumitomo Bakelite Co Transparent electromagnetic wave shield
JP3898357B2 (ja) * 1998-09-28 2007-03-28 日東電工株式会社 プラズマディスプレイパネル用フィルター
JP2000119356A (ja) 1998-10-20 2000-04-25 Polyplastics Co 安定化ポリオキシメチレン共重合体製造用原料とそれを使用する該共重合体の製造方法
US6157504A (en) * 1998-10-20 2000-12-05 Fuji Photo Film Co., Ltd. Optical filter comprising transparent support and filter layer having two absorption maximums
JP2001034177A (ja) * 1999-07-16 2001-02-09 Nitto Denko Corp 透明電磁波シ―ルドフイルムの貼り合わせ方法
KR100444332B1 (ko) * 1999-12-20 2004-08-16 도요 보세키 가부시키가이샤 적외선 흡수필터
JP2002175020A (ja) * 2000-09-29 2002-06-21 Fuji Photo Film Co Ltd 光学フィルターおよび画像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186128A (ja) * 1996-12-26 1998-07-14 Sumitomo Chem Co Ltd プラズマディスプレイ用前面板
JPH11199683A (ja) * 1998-01-16 1999-07-27 Nippon Polyester Co Ltd ポリカーボネート板および赤外線カットフィルター
EP1087243A1 (en) * 1998-05-15 2001-03-28 Toyo Boseki Kabushiki Kaisha Infrared absorption filter
JP2000025181A (ja) * 1998-07-10 2000-01-25 Teijin Ltd 易接着性フィルムおよびそれを用いた積層体
JP2000275432A (ja) * 1999-01-22 2000-10-06 Mitsui Chemicals Inc ディスプレイ用フィルター
JP2001066419A (ja) * 1999-08-24 2001-03-16 Fuji Photo Film Co Ltd 光学フィルターおよび反射防止膜
JP2001247526A (ja) * 2000-03-06 2001-09-11 Toyobo Co Ltd 近赤外線吸収化合組成物および近赤外線吸収フィルター

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1452556A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494702B2 (en) * 2003-10-27 2009-02-24 Teijin Dupont Films Japan Limited Near-infrared ray shielding film
US8003200B2 (en) 2004-10-06 2011-08-23 Nitto Denko Corporation Transparent electrically-conductive film
US8048512B2 (en) 2006-08-03 2011-11-01 Nitto Denko Corporation Transparent conductive laminate and touch panel equipped with it
US8173246B2 (en) 2006-08-03 2012-05-08 Nitto Denko Corporation Transparent conductive laminate and touch panel equipped with it
US10736948B2 (en) 2013-03-15 2020-08-11 In3Bio Ltd. Epidermal growth factor fusion proteins with mutant cholera toxin B subunits
US11419923B2 (en) 2013-03-15 2022-08-23 In3Bio Ltd. Self-assembling synthetic proteins

Also Published As

Publication number Publication date
EP1452556A4 (en) 2005-02-16
EP1452556B1 (en) 2009-06-10
US20030186040A1 (en) 2003-10-02
EP1452556A1 (en) 2004-09-01
US6991849B2 (en) 2006-01-31
DE60232603D1 (de) 2009-07-23
KR20030022890A (ko) 2003-03-17
TW591061B (en) 2004-06-11

Similar Documents

Publication Publication Date Title
WO2003000779A1 (fr) Film de protection contre le rayonnement infrarouge proche
WO2002016497A1 (fr) Film polyester a orientation biaxiale, film adhesif et film de revetement dur colore
JP2003096215A (ja) 近赤外線遮蔽フィルム及びそれを用いた積層体
WO2003049943A1 (fr) Film en polyester adhesif pour utilisation optique
JP2009251511A (ja) 色補正フィルター
JP5119478B2 (ja) 光学用積層フィルム、およびそれを得るための密着性改質基材フィルム
JP5052716B2 (ja) 赤外線フィルター
JP2003082127A (ja) 光学用二軸配向ポリエステルフィルムおよびその積層体
KR100964707B1 (ko) 광학용 폴리에스테르 필름
JP2008151996A (ja) 光学フィルター用積層プラスチックフィルム
JP2003236969A (ja) 着色ハードコートフィルム
JP2002258760A (ja) 着色ハードコートフィルム
JP2004054160A (ja) 光学用易接着性ポリエステルフィルム
JP2003002985A (ja) 近赤外線遮蔽フィルム及びそれを用いた積層体
JP5397391B2 (ja) セパレータ付き衝撃吸収透明粘着材
JP2003001703A (ja) 光学用二軸配向ポリエステルフィルム
JP2003237006A (ja) 光学用積層ポリエステルフィルム
JP2004050405A (ja) 積層ポリエステルフィルム
JP5271474B2 (ja) ディスプレー用フィルター
US9984602B2 (en) Decorative illumination recording sheet, method of preparing the same, decorative illumination image sheet, method of preparing the same, and decorative illumination signboard
JP2003191366A (ja) 着色ハードコートフィルム
WO2002000772A1 (fr) Film polyester a double orientation, film adhesif et film lamelle
JP2014173014A (ja) 光学基材用粘着シート
JP2002137290A (ja) 光学用2軸配向ポリエステルフィルム及び光学用易接着フィルム
KR20180087958A (ko) 감응성 발광 조성물

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020037001954

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10362229

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002738747

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037001954

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002738747

Country of ref document: EP