WO2002087809A1 - Poudre de cuivre pour pate electroconductrice a excellente resistance a l'oxydation et procede de preparation - Google Patents

Poudre de cuivre pour pate electroconductrice a excellente resistance a l'oxydation et procede de preparation Download PDF

Info

Publication number
WO2002087809A1
WO2002087809A1 PCT/JP2002/004000 JP0204000W WO02087809A1 WO 2002087809 A1 WO2002087809 A1 WO 2002087809A1 JP 0204000 W JP0204000 W JP 0204000W WO 02087809 A1 WO02087809 A1 WO 02087809A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
coating film
gel coating
copper
sio
Prior art date
Application number
PCT/JP2002/004000
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Okada
Atsushi Ebara
Original Assignee
Dowa Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co., Ltd. filed Critical Dowa Mining Co., Ltd.
Priority to US10/311,884 priority Critical patent/US7393586B2/en
Publication of WO2002087809A1 publication Critical patent/WO2002087809A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to a copper powder having excellent oxidation resistance used as a conductive filler of a conductive paste.
  • Conventional technology
  • a conductive paste is often used as a means for forming a conductive circuit or an electrode on the surface of, inside, or outside of various substrates.
  • the term “conductive paste” generally refers to a fluid containing a conductive powder (referred to as conductive filler) dispersed in a vehicle composed of a resin binder and a solvent. When the temperature is raised to an appropriate temperature, the vehicle evaporates and decomposes, and the remaining conductive filler turns into a sintered body to form a good electric conductor.
  • the paste that forms a conductor when fired at high temperature is abbreviated as conductive paste.
  • Silver powder and copper powder are commonly used as conductive fillers (metal powders) for such conductive pastes.
  • the conductive paste using copper powder as the conductive filler (copper paste) has been compared with the conductive paste using silver powder as the conductive filler (silver paste). Due to the fact that migration is unlikely, solder resistance is excellent, and cost reduction is possible, it is becoming more and more popular.
  • a copper-based paste having such advantages can be obtained by dispersing a copper powder having a particle size of about 0.1 to 10 ⁇ in an appropriate vehicle (usually composed of a resin binder and a solvent).
  • the conductive paste is required depending on the shape of the electrodes and circuits, the method of forming them, and the material of the substrate. Because of the different physical and chemical properties of copper pastes, it is common practice to produce copper-based pastes with various properties for each application. The optimal ranges of the conditions will be different from each other.
  • the conductive circuit can be baked by heating at a low temperature on the surface or inside of the substrate, the heating temperature of the substrate that is heated together with the conductive paste can be reduced, reducing the thermal effect on the substrate and improving thermal energy and equipment. This is also advantageous, and furthermore, the occurrence of distortion due to the difference in thermal expansion between the ceramic substrate and the copper circuit can be reduced.
  • the heat treatment is performed using an inert gas (usually, an inert gas). (Nitrogen gas), but may be mixed with some oxygen, in which case the copper powder surface may be oxidized.
  • the debinding step first, the resin and solvent in the paste are vaporized (this step is called the debinding step), and the remaining copper powder is sintered on the surface and inside of the substrate (the copper powder). Sintering process), but if the decomposition products (carbonaceous components) of the resin and solvent in the base remain in the binder removal process, the sinterability of the copper powder in the subsequent sintering process will be impaired. Therefore, in the debinding process, a small amount of oxygen is mixed in the inert gas atmosphere, and this oxygen is used to burn off and remove carbonaceous components or to accelerate the decomposition reaction. Yes, that's it Unfortunately, some of the copper powder may also be oxidized.
  • the particle surface will be covered with copper oxide, affecting the sinterability and increasing the electrical resistance of the sintered conductor. Except for, oxidation of the copper powder during the debinding process is not very favorable. However, since the remaining carbonaceous components also have an adverse effect, mild oxidation due to oxygen contamination is unavoidable during the debinding process. For this reason, oxidized copper may be reduced by heating in a reducing gas atmosphere such as nitrogen and hydrogen after the debinding step.
  • An object of the present invention is to obtain a copper powder satisfying such requirements.
  • high-temperature copper powder with good oxidation resistance may have a high sintering start temperature at the same time. Therefore, another object of the present invention is to obtain a metal paste for a conductive paste having a low sintering start temperature even if it has good high-temperature oxidation resistance. Disclosure of the invention
  • a copper powder containing 5% by weight or less of Si, wherein substantially all of the Si is a SiO 2 -based gel coating film.
  • the present invention provides a copper powder for a conductive paste having excellent oxidation resistance characterized by being adhered to the surface of copper particles.
  • the copper powder for example, the fluctuation range of the average particle diameter of 1 0 m in particle table surface below the copper powder 2 0 0 nm following S i 0 2 based gel coating film thickness is uniform (Tatoebaso the thickness It is within ⁇ 30%).
  • the copper particles are spherical and may have a plate-like or flake-like shape.
  • the SiO 2 -based gel coating film covers metal oxides other than SiO 2 in an atomic ratio of MZ Si (M represents the metal component of the metal oxide) of 1.0 or less. May be contained. M is Na, K, B, Pb, Zn, Al, Zr, Bi, Ti, It can be one or more of Mg, Ca, Sr, Ba or Li. Further, the SiO 2 -based gel coating film may be a film coated on the surface of copper particles coated with an organic compound. Further, according to the present invention, oxidation resistance is obtained by blending glass frit in a proportion of 10 parts by weight or less with respect to 100 parts by weight of the oxidation-resistant copper powder having the SiO 2 -based gel coating film. Provide copper powder for conductive paste with excellent heat resistance and sinterability.
  • Copper powder having such a Si02-based gel coating film is obtained by reacting copper powder, an organosilane compound, and water in a water-soluble organic solvent to produce a hydrolysis product of organosilane.
  • a gelling agent is added to the suspension obtained, and a Si02-based gel coating film is formed on the surface of the copper powder particles, preferably while applying physical stirring and ultrasonic waves. It can be advantageously produced by a wet method of collecting copper particles having an i O2 -based gel coating film. Ammonia water can be advantageously used as the gelling agent.
  • Figure 1 is an SEM image (scanning electron micrograph image) of the test piece copper powder used to form the SiO 2 -based gel coating film.
  • Fig. 2 is an SE image of the copper powder obtained by forming an SiO 2 -based gel coating film on the copper powder of Fig. 1.
  • Figure 3 is a TEM image of the surface portion of one particle of S i 0 2 based gel coating film with copper powder of Figure 2 (transmission electron micrograph).
  • Figure 4 is an image of the surface of one particle of another copper powder with a SiO 2 -based gel coating film.
  • Figure 5 shows a comparison of the TMA curves measured for the copper powder with the SiO 2 -based gel coating film and the copper powder without the film.
  • Figure 6 compares the TMA curves of various powders obtained by mixing glass frit with copper powder with a SiO 2 -based gel coating film.
  • FIG. 7 is a SEM image of another test materials copper powder was used to form the S i 0 2 based gel coating (hexagonal plate-like copper powder).
  • 8 is a SEM image of copper powder to form S i 0 2 based gel coating the hexagonal plate-like copper powder of Figure 7.
  • Fig. 9 is an SEM image of the copper powder (flake-like copper powder) used for forming the SiO 2 -based gel coating film.
  • Fig. 10 is an SEM image of the copper powder obtained by forming an SiO 2 -based gel coating film on the flake copper powder of Fig. 9. Preferred embodiments of the invention
  • the present inventors focused on the sol-gel method and made various attempts to coat a metal oxide on the surface of copper powder.
  • a very thin layer of the hydrolysis product derived from the organosilane compound is applied to the surface of the copper particles with a siloxane bond and then subjected to a condensation reaction with a catalyst or the like, a uniform ultra-thin Si on the surface of the copper particles is obtained.
  • the sol-gel reaction of hydrolysis and condensation of the organosilane compound proceeds on the surface of the copper particles in an organic solvent, and the film thickness becomes 10%.
  • a uniform SiO 2 -based gel coating film having a thickness of 0 nm or less, preferably 10 to 60 nm, can be formed. Specifically, first, in order to hydrolyze the sol, copper powder, an organosilane compound and water are reacted in a water-soluble organic solvent such as isopropyl alcohol.
  • the organic solvent is preferably a solvent that dissolves water so as to function as a sol medium for promoting hydrolysis.
  • a solvent having a water solubility of 10% by weight or more at 20 ° C. is preferable.
  • examples of such an organic solvent include methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, tetrahydrofuran, dioxolan, and dioxane.
  • the organosilanes for example the general formula R 1 4 - a S i ( OR 2) alkoxysilane represented by a (R 1 is a monovalent hydrocarbon group, R 2 is hydrocarbon of monovalent 1 to 4 carbon atoms
  • R 1 is a monovalent hydrocarbon group
  • R 2 is hydrocarbon of monovalent 1 to 4 carbon atoms
  • the hydrogen group and a are preferably 3 to 4), and typical examples include tetraethoxysilane and methyltrimethoxysilane.
  • the copper powder is put in an organic solvent, stirred and suspended, and then alkoxysilane is added thereto.
  • an alkaline catalyst that promotes hydrolysis / condensation reaction, For example, it is better to add aqueous ammonia.
  • alkoxysilane adheres to the surface of the copper powder by siloxane bonds, and the alkoxysilane is hydrolyzed and condensed (gelated) on the surface of the copper powder. A uniform film is formed on the copper particle surface.
  • an acid or alkali is used as a catalyst for the sol-gel reaction.
  • an acid such as hydrochloric acid, sulfuric acid, or phosphoric acid cannot provide a gel coating film with sufficient oxidation resistance, and the use of sodium hydroxide or sodium hydroxide is desirable as a material for electronic components.
  • Sodium-potassium impurities remain in the copper powder and, consequently, in the conductive paste. It is not preferable to use an amine catalyst such as getylamine / triethylamine, since the addition operation is hindered.
  • the condensation reaction is desirably allowed to proceed by aging at a predetermined temperature for a predetermined time after addition of ammonia water.
  • the liquid temperature is preferably maintained at 20 to 60 ° C for a predetermined time. Since the thickness of the SiO 2 -based gel coating film generally depends on the amount of the alkoxysilane, the liquid temperature, the holding time, etc., by adjusting these, a thin SiO 2 -based gel coating film with a uniform thickness can be made of copper. It can be formed on the particle surface.
  • the particle shape of the copper powder has almost no effect on the film thickness, and even if the copper particles have any shape, such as spherical, plate-like, flake-like (foil-like), and square shapes, the Si film has a uniform film thickness. It was confirmed that an O 2 -based gel coating film could be formed. Also ammonia In use of the catalyst, by adding to the continuous reaction system, it was found that prevents aggregation of S i 0 2 system Geruko one coating film with copper powder. Even if it agglomerates, it can be dispersed well by applying ultrasonic waves to the reaction system, and can be dispersed at least to the same extent as the raw copper powder.
  • the amount of this film exceeds 10% by weight with respect to copper. Since such an amount greatly affects the conductivity, the amount is preferably less than that, and in terms of Si amount, the amount is preferably 5% by weight or less. That is, it is preferable that the copper powder contains 5% by weight or less of Si, and that substantially all of the Si be deposited on the surface of the copper particles as a SiO 2 -based gel coating film.
  • substantially all of Si means that a small amount of Si may inevitably remain in the coating in addition to S i O2. partially or inevitably remaining film in as a residue of the alkoxysilane, be present in small amounts as S i oxides other than S i 0 2, no particular adverse effect if the amount is small .
  • the oxidation resistance of the copper powder can be improved, and the sintering characteristics (particularly the sintering start temperature) of the copper powder can be improved by adjusting the amount of these metal oxides.
  • the content of such other metal oxides it is preferable that the content be in the range of 1.0 or less in the atomic ratio of M / Si (M is the metal component of the metal oxide). Uniformity may be lost or oxidation resistance may be impaired.
  • M is one of Pb, Zn, A1, Zr, Bi, Ti, Mg, Ca, Sr, Ba or Li, in addition to Na, K or B described above. There can be more than one.
  • the copper powder with the SiO 2 -based gel coating film is collected by solid-liquid separation. Then, it may be dried. If it has been agglomerated into a cake after drying, it may be crushed by a sample mill or the like, and as a result, the well dispersed Si Copper powder with an O 2 -based gel coating film can be obtained.
  • the copper powder applied to the gel coating film can be used as it is as a filler for the conductive paste. In other words, the copper paste containing the gel coating film can be kneaded with a resin binder or solvent without any heat treatment to form a conductive paste.
  • the copper powder coated with the SiO 2 -based gel coating film according to the present invention has improved oxidation resistance and a different sintering start temperature than those without the SiO 2 -based gel coating film. This fact was confirmed by a differential thermometer test and a sinterability test, as shown in the examples below.
  • the improvement in the oxidation resistance of the copper powder is extremely advantageous, as described above, when used as a conductive filler in a conductive paste, because oxidation in the debinding step can be prevented. Is higher in the case of a SiO 2 -based gel coating film containing no M element.
  • this problem can be solved by using a SiO 2 -based gel coating film in which oxides such as the above-mentioned M elements such as Na, K or B coexist, or by reducing an appropriate amount of glass frit to SiO 2. It was found that the problem could be solved by adding it to copper powder with a 2-system gel coating film.
  • the S i 0 2, N a 2 0, B 2 O 3 an appropriate amount to mix glass frit containing P b O metal oxide component such as, S i O 2 systems of these copper powder surface It is thought that it reacts with the gel coating film to form a glass material with a low melting point and promotes sintering of the particles, but the sintering start temperature can be lowered.
  • the glass frit is added to 100 parts by weight of the copper powder coated with the SiO 2 -based gel coating film.
  • the amount of the solution is 10 parts by weight or less, preferably 7 parts by weight, and the amount is necessary to react with the SiO 2 -based gel coating film.
  • the copper powder (copper powder to be treated) for forming the SiO 2 -based gel coating film on the surface according to the present invention may be a copper powder produced by a wet reduction method or a powder produced by an atomization method.
  • the method is not limited to the method of producing copper powder, and copper powder obtained by any method can be used, but the method is changed from copper hydroxide to copper oxide to metallic copper.
  • copper powder produced by the wet reduction method those having various particle size distributions can be obtained relatively easily, and spherical powder or plate-like powder can be obtained relatively easily.
  • JP 1 JP 1
  • a good shape retention function during the firing process is beneficial for conductive pastes.
  • diffusion and mass transfer between the fillers occur, resulting in a partial decrease in film thickness, generation of cavities, and sagging.
  • the three-dimensional shape of the formed conductor may be deformed. Such deformation of the three-dimensional shape is difficult to occur, that is, the deformation resistance of the three-dimensional shape of the conductive paste is called “steric hindrance”.
  • the hexagonal plate-shaped copper powder coated with a Si02-based gel coating film has a high shape-retaining function during the firing process, so a conductive paste with good steric hindrance can be produced.
  • the flake-shaped copper powder has a thickness of 10 to 10 or less, preferably 1/100 or less, and sometimes 1/100 or less of the long diameter of the wide surface side.
  • a copper powder consisting of copper particles with a major axis of about 4 O / zm or less.
  • a copper powder composed of foil-shaped copper particles having an average thickness of 100 nm or less and an average major axis of about 5 to 40.
  • Flake-shaped copper powder has a large specific surface area, and is more easily oxidized than spherical copper powder.
  • SiO 2 -based gel coating it has oxidation resistance.
  • a conductive base made into a filler by mixing an appropriate amount of flake-shaped copper powder coated with SiO 2 -based gel coating film and granular powder or plate-shaped powder coated with SiO 2 -based gel coating film.
  • the preferred mixing ratio is 100% by weight of spherical and / or plate-shaped copper powder coated with SiO 2 -based gel coating film, and 100% by weight of flaky copper powder coated with SiO 2 -based gel coating film. It is preferable that the weight of the mixture is in the range of 1 to 80 parts by weight.
  • the surface of those particles has a uniform Sio 2 -based gel of 200 nm or less. It was found that the coating film could be applied uniformly (see Figures? To 8 and Figures 9 to 10 described later). It became clear that there was a certain correlation between the amount of metal alkoxide and the film thickness of the SiO 2 -based gel coating film for each particle shape of the copper powder. By using this correlation, the film thickness can be precisely controlled within the range of 200 nm or less, more preferably in the range of 5 to 80 nm, by adjusting the amount of metal alkoxide added.
  • an organic coating for preventing oxidation In order to prevent the surface of the copper powder to be oxidized before applying the SiO 2 -based gel coating film to the copper powder to be treated, apply an organic coating for preventing oxidation. Is advantageous.
  • an organic acid-based coating such as oleic acid / stearic acid is applied to the surface of the copper powder to impart oxidation resistance at around room temperature to the copper powder to be treated and to ensure dispersibility in the processing solution. It is preferred to apply. Even if such an organic acid-based coating is used as the copper powder to be treated, a SiO 2 -based gel coating film can be formed by the same treatment as copper powder without this coating. It was expected that the interposition of the organic coating film would inhibit the reaction with the alkoxide, but contrary to the expectation, it was found that the SiO 2 -based gel coating film could be formed well with the coating.
  • the SiO 2 gel coating on the copper powder surface does not require any treatment to vitrify it.
  • the SiO 2 -based gel coating film can be vitrified by heating it to a certain temperature exceeding 200 ° C. However, even without such heat treatment for vitrification, the gel coating film can be used. As it is, it has sufficient oxidation resistance required for conductive paste. When heat treatment for vitrification is performed, cracks occur in the coating film, and the gel coating shrinks, exposing the surface of the copper particles, thereby impairing oxidation resistance and adversely affecting sintering characteristics. Will give Therefore, it is not preferable for the present invention.
  • Example 1 When heat treatment for vitrification is performed, cracks occur in the coating film, and the gel coating shrinks, exposing the surface of the copper particles, thereby impairing oxidation resistance and adversely affecting sintering characteristics. Will give Therefore, it is not preferable for the present invention.
  • the copper powder used in the test was produced by the wet reduction method, and as shown in the SEM image in Fig. 1, the particle shape was almost spherical.
  • This test material copper powder (equivalent to Cu: 3.15 mol) was added to isopropyl alcohol to form a slurry having a slurry concentration of 28.6% by weight, and the slurry was maintained at 40 ° C and continuously stirred in a nitrogen atmosphere.
  • the resulting suspension was filtered, and the filtered powder was placed in a drying oven without washing, and dried at 120 ° C for 11 hours in a nitrogen atmosphere.
  • the obtained dried product was examined by SEM as in Fig. 1, as shown in Fig. 2, it was determined that the product consisted of spherical particles with the same diameter as the test material. Observation of the surface with a TEM image confirmed that a uniform SiO 2 -based gel coating film with a thickness of about 5 nm was formed, as shown in Fig. 3.
  • the obtained powder was tested for chemical analysis and also measured for the oxidation start temperature and the sintering start temperature.
  • Table 1 shows the results.
  • the oxidation onset temperature was measured with a differential thermal analyzer (TG) in air.
  • the oxidation start temperature is defined as “the temperature at which the weight of the sample copper powder increases by 0.5% from the initial value in the differential thermal analyzer”. Also The measurement of the sintering start temperature was performed as follows.
  • the molded body was loaded into a heating furnace under the condition that the shaft was oriented vertically and a load of 10 g was applied in the axial direction, and the heating rate was 10 ° C / min in a nitrogen flow rate.
  • the temperature is continuously raised from room temperature to 100 ° C, and the height change (expansion / shrinkage change) of the compact is automatically recorded.
  • the temperature at which the height change (shrinkage) of the compact begins and the shrinkage reaches 0.5% is defined as the “sintering start temperature”.
  • the temperature at which the temperature rises (corresponding to the elapsed time if the heating rate is constant) is taken on the horizontal axis, and the height change rate ( The expansion or contraction rate is recorded as the TMA curve.
  • the copper powder on which the SiO 2 -based gel coating film of this example was formed had a SiO 2 -based gel coating film with 0.77% Si content.
  • the average particle size was the same level as in Comparative Example 1, but the particle size distribution was slightly biased on the D50 and D90 sides (partially agglomerated), but the oxidation onset temperature was It showed a significant improvement from 165 ° C to 308 ° C.
  • the sintering start temperature also increased from 716 to 973 ° C.
  • Example 1 was repeated except that the liquid was irradiated with ultrasonic waves from the stage of slurry formation until aging was completed.
  • the obtained copper powder with a SiO 2 -based gel coating film was subjected to the same test as in Example 1. The results are also shown in Table 2. As a result of the ultrasonic irradiation, a copper powder with a SiO 2 coating with the same particle size distribution as the original powder was obtained.
  • Example 4 was repeated except that the entire amount of aqueous ammonia was added all at once.
  • the obtained copper powder with a SiO 2 -based gel coating film was subjected to the same test as in Example 1. The results are also shown in Table 2. As shown in Table 2, even if ammonia water was added all at once, the irradiation was prevented from agglomeration by irradiation with ultrasonic waves. Thus, a copper powder with a Si 0 2 film having a particle size distribution closer to the original powder was obtained.
  • Example 1 was repeated, except that the average copper particle size was 3 as the test copper powder.
  • the obtained SiO 2 -based gel-coated film-coated copper powder was subjected to the same test as in Example 1. The results are also shown in Table 3, but the oxidation start temperature rose to 360 ° C.
  • Figure 4 is a TEM image of the obtained copper powder with a SiO 2 -based gel coating film. It can be seen that FIG. 4 is a thickness as seen in about 3 0 11 01 Hitoshi ⁇ of 8 i 0 2 system Geruko one coating film is formed.
  • Example 6 was repeated except that the dried product was placed in a sample mill and crushed.
  • the obtained copper powder with SiO 2 -based gel coating film was subjected to the same test as in Example 1.
  • the results are also shown in Table 3.
  • the particle size distribution was closer to that of the original powder than in Example 6.
  • a dispersion dispersed in individual particles was obtained. Even when dispersed in individual particles, the oxidation initiation temperature was as high as 35 ° C, confirming that a uniform SiO 2 -based gel coating film was formed on each particle.
  • Example 1 No coating ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 0.16 Remainder 1.5 1.7 2.5 3.8 165 716
  • Example 1 Si0 2 0.77 group 0.01 ⁇ 0.01 1.33 Remainder 1.5 4.0 6.8 10.3 308 973
  • Example 2 Si0 2 + B 2 0 3 0.51 0.19 ⁇ 0.01 1.52 Remainder 1.5 3.8 7.4 11.9 318 679
  • Example 3 Si0 2 + Na 2 0 0.48 ⁇ 0.01 0.28 0.99 Remainder 1.5 3.1 7.0 12.3 262 569
  • Example 6 Si0 2 alone 0.86 g 0.01 ⁇ 0.01 1.27 balance 3.5 7.7 12.2 17.0 360Example 7 Si0 2 alone 0.86 g 0.01 0.01 1.27 balance 3.5 3.0 3.6 4.5 352 Control 2 No film ⁇ 0.01 g 0.01 0.01 0.01 0.15 balance 3.5 3.0 3.6 4.3 192
  • FIG. 5 shows a TMA curve of a representative one of the above embodiments.
  • each of these TMA curves was prepared by using acryl resin as an organic vehicle for copper powder samples to prepare measurement samples.
  • the meaning of each curve in Fig. 5 is as follows.
  • TM TM of a mixed powder obtained by adding 5% by weight of SiO 2, B 2 O 3, and Pb 0 glass frit to the copper powder with the SiO 2 -based gel coating film obtained in Example 6. This is the A curve, and the sintering start temperature is about 823 ° C.
  • FIG. 7 shows the SEM image (scanning electron microscope image) of the test material copper powder.
  • FIG. 8 shows a TEM image (transmission electron microscope image) of one particle of the obtained SiO 2 -based gel-coated film-coated copper powder. As shown in Fig. 8, it can be seen that a gel coating film with a thickness of about 20 nm is uniformly deposited on the surface of the hexagonal plate-like particles.
  • Table 4 shows the particle size distribution, component composition, and oxidation initiation temperature of the obtained copper powder with SiO 2 gel coating film in comparison with those of the test material copper powder.
  • Oxidation start temperature of the hexagonal plate-like copper powder from the results of Table 4 to which the a 2 0 1 ° C, the oxidation initiation temperature of copper powder of this example is that this was subjected to S i 0 2 based gel coating It was 343 ° C, indicating that the oxidation resistance was good.
  • FIG. 9 shows an SEM image (scanning electron microscope image) of the test material copper powder.
  • FIG. 10 shows a TEM image (transmission electron microscope image) of one particle of the obtained SiO 2 -based gel coating film-coated copper powder.
  • the image in the center of Fig. 10 is the image on the wide surface side of the particles, and the image on the top is the image in the thickness direction (the side where the thickness of the flake-like particles can be seen).
  • a gel coating film with a thickness of about 20 nm is uniformly applied on the entire particle surface.
  • the oxidation resistance of copper powder can be remarkably increased, and as a result, when used for a conductive paste filler, the debinding step in the sintering process is a problem. Oxidation of copper powder can be prevented. This eliminates the step of reducing the oxidized copper powder and simplifies the firing step of the conductive paste. In addition, even if the sintering start temperature is too high to cause inconvenience, the sintering start temperature can be drastically reduced only by adding a small amount of glass frit that is familiar with the SiO 2 -based gel coating film.
  • the sintering start temperature can be lower than that of the copper powder itself without the SiO 2 -based gel coating film.
  • the firing temperature of the conductive paste can be lowered, and the occurrence of heat distortion and heat shock between the conductive paste and the ceramic substrate can be reduced.

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

明細書 耐酸化性に優れた導電ペースト用銅粉およびその製法 技術分野
本発明は, 導電ペース卜の導電フィラーに用いる耐酸化性に優れた銅粉に関す る。 従来技術
各種基板の表面や内部或いは外部に導電回路や電極を形成する手段として導電 ペーストが多く使用されている。 本明細書において 「導電ペースト」 という用語 は, 一般には樹脂系バインダーと溶媒からなるビヒクル中に, フイラ一として導 電性の粉体 (導電フィラーと呼ぶ) を分散させた流動性のある流体を指し, これ を適当な温度に昇温したときに, ビヒクルが蒸発 ·分解し, 残った導電フィラー が焼結体となって電気の良導体が形成されるものを言う。 つまり, 高温で焼成し たときに導体を形成するペーストを略して導電ペーストという。 実際の使用にあ たっては, 基板の表面や内部の孔に, このような導電ペーストを塗布または充塡 した状態で基板と共に適切な加熱処理が行なわれ, この加熱処理によってビヒク ルが蒸発 ·分解 ·燃焼して除去されると共に, 導電フィラーとしての金属粉が互 いに焼結して通電可能な回路が形成される。 積層セラミックスコンデンサーの場 合にも, 多数のセラミックス基板の間に内部電極用の導電ペーストを介在させ, またそれらの内部電極間を連結する外部電極用の導電ペーストを塗布し, 前記と 同様に加熱処理が行なわれ, これによつてビヒクルが蒸発 ·分解して除去され, 金属粉が焼結して内部電極および外部電極が形成される。 そのさい内部電極と外 部電極は別々に焼成されるのが一般的である。
このような導電ペーストの導電フイラ一 (金属粉) として, 銀粉と銅粉の使用 が一般化している。 最近では, 銅粉を導電フイラ一とした導電ペースト (銅系ぺ 一スト) は, 銀粉を導電フィラーとした導電ペースト (銀系ペースト) に比べて, マイグレーションが起き難い, 耐半田性に優る, 低コスト化が可能である, 等の 理由により, 一層汎用化されつつある。 このような利点をもつ銅系ペーストは, 粒径が 0 . 1〜1 0 ζ πι程度の銅粉を適切なビヒクル (通常は樹脂バインダーと 溶媒からなる) に分散させることによって得られる。
同じ銅系ペーストでも, 積層セラミックスコンデンサーの外部電極に用いるも のや, 基板に各種の回路を形成するものでは, 電極や回路の形態, その形成方法, 基板材料の違い等によって, 導電ペーストに要求される物理的および化学的性質 が異なるので, 各種の性能をもつ銅系ペーストを用途別に作製することが一般的 に行われており, これら各種タイプの銅系ペーストは, その塗布条件や焼結条件 の最適範囲が互いに相違することになる。
銅系ペーストの焼結性については, 特別の事例を除いては, 一般に低温で焼結 できるものが求められている。 基板の表面や内部において, 低温の加熱で導電回 路が焼成できれば, 導電ペーストと共に加熱される基板の加熱温度も低くでき, 基板に対する熱的影響が軽減されると共に, 熱エネルギー的, 設備的にも有利と なり, さらにはセラミック製基板と銅回路との間の熱膨張差に基づく歪み発生も 低減できるからである。 発明が解決しょうとする課題
セラミック積層コンデンサ一等のチップ部品に銅系ペーストを塗布したうえ, 加熱して該ペースト中の銅粉を焼結することによって電極を形成するさいに, 当 該加熱処理を不活性ガス (通常は窒素ガス) 中で実施されるが, 若干の酸素を混 入して行われることがあり, この場合には銅粉表面が酸化することがある。
すなわち, 焼結にさいしては, まずペースト中の樹脂や溶媒を気化させてから (この工程を脱バインダー工程と言う) , 残部の銅粉を基板の表面や内部で焼結 させる (銅粉の焼結工程) という段階を経るが, 脱バインダー工程においてべ一 スト中の樹脂や溶媒の分解生成物 (炭素質成分) が残留すると, 後続の焼結工程 での銅粉の焼結性を損なうので, 脱バインダー工程では不活性ガス雰囲気中に微 量の酸素を混入し, この酸素によつて炭素質成分を燃焼除去させるかまたは分解 反応を促進させるという酸化 ·脱バインダー処理が行われることがあり, そのさ いに, 銅粉の一部も酸化されることがある。
銅粉が酸化されると, 粒子表面が酸化銅で覆われることになり, 焼結性に影響 を与えると共に, 焼結後の導体の電気抵抗も高めることがあるので, 特別な事情 がある場合を除いて, 脱バインダー工程で銅粉が酸化されることはあまり好まし いことではない。 しかし, 炭素質成分の残存も悪影響があるので脱バインダーェ 程では酸素混入による軽度の酸化も止むを得ないところがある。 このようなこと から, 脱バインダー工程後に, 窒素一水素などの還元性ガス雰囲気中で加熱し, 酸化した銅を還元させることがある。
この還元処理工程が増設されることは, それだけ, 処理工数の増加と設備増加 につながり, 費用的にも設備的にも負担となることのほか, その還元処理により セラミッタスが一部還元されるおそれもあるので, 脱バインダー工程では銅粉が 酸化されないに越したことはなく, このために高温耐酸化性の優れた銅粉である ことが要求される。
本発明の課題は, このような要求を満たす銅粉を得ることにある。 他方, 高温 耐酸化性が良好な銅粉は同時に焼結開始温度が高くなることもある。 したがって, 本発明の他の課題は, 高温耐酸化性が良好なものであっても, 焼結開始温度の低 い導電ペースト用の金属フイラ一を得ることにある。 発明の開示
前記の課題を解決する銅粉として, 本発明によれば, 5重量%以下の S iを含 有した銅粉であって, その S iの実質上全てが S i O 2 系ゲルコ一ティング膜と して銅粒子表面に被着していることを特徴とする耐酸化性に優れた導電ペースト 用銅粉を提供する。 この銅粉は, 例えば平均粒径が 1 0 m以下の銅粉の粒子表 面に 2 0 0 n m以下の厚みの S i 02 系ゲルコーティング膜が均一に (例えばそ の厚みの変動幅が ± 3 0 %以内である) 形成されたものであり, 銅粒子は球状の ものであるほか, 板状またはフレーク状の形状を有することもできる。 そのさい, S i O 2 系ゲルコーティング膜は, S i O 2 以外の金属酸化物を, MZ S iの原 子比 (Mは金属酸化物の金属成分を表す) で 1 . 0以下の範囲で含有するもので あってもよい。 Mとしては N a, K, B , P b , Z n, A l, Z r , B i , T i , Mg, C a, S r, B aまたは L iの 1種または 2種以上であることができる。 さらに, S i O2 系ゲルコーティング膜は有機化合物からなる塗膜が施された銅 粒子の表面に被着したものであってもよい。 さらに本発明によれば, 前記の S i O2 系ゲルコーティング膜をもつ耐酸化性に優れた銅粉 100重量部に対し, ガ ラスフリッ トを 1 0重量部以下の割合で配合してなる耐酸化性および焼結性に優 れた導電ペースト用銅粉を提供する。
このような S i 02 系ゲルコーティング膜をもつ銅粉は, 水溶性の有機溶媒中 で, 銅粉, オルガノシラン化合物および水を反応させてオルガノシランの加水分 解生成物を生成させ, 得られた懸濁液にゲル化剤を添加し, 好ましくは物理的な 攪拌および超音波を印加しながら銅粉の粒子表面に S i 02 系ゲルコーティング 膜を形成させ, 次いで, 固液分離して S i O2 系ゲルコ一ティング膜を有する銅 粒子を採取するという湿式法によつて有利に製造できる。 ゲル化剤としてはアン モニァ水が有利に使用できる。 図面の簡単な説明
第 1図は, S i O2 系ゲルコーティング膜を形成するのに使用した供試材銅粉 の SEM像 (走査型電子顕微鏡写真像) である。
第 2図は, 図 1の銅粉に S i O2 系ゲルコーティング膜を形成した銅粉の SE Μ像である。
第 3図は, 図 2の S i 02 系ゲルコーティング膜付き銅粉の一つの粒子の表面 部の TEM像 (透過型電子顕微鏡写真像) である。
第 4図は, 他の S i O2 系ゲルコ一ティング膜付き銅粉の一つの粒子の表面部 の ΤΕΜ像である。
第 5図は, S i O2 系ゲルコーティング膜付き銅粉と該皮膜なし銅粉について 測定した T M A曲線を対比して示した図である。
第 6図は, S i 02 系ゲルコーティング膜付き銅粉にガラスフリットを混合し た各種の混合粉の TM A曲線を対比して示した図である。
第 7図は, S i 02 系ゲルコーティング膜を形成するのに使用した他の供試材 銅粉 (六角板状の銅粉) の SEM像である。 第 8図は, 第 7図の六角板状銅粉に S i 02 系ゲルコーティング膜を形成した 銅粉の S E M像である。
第 9図は, S i O 2 系ゲルコーティング膜を形成するのに使用した他の供試材 銅粉 (フレーク状銅粉) の S E M像である。
第 1 0図は, 第 9図のフレーク状銅粉に S i O 2 系ゲルコーティング膜を形成 した銅粉の S E M像である。 発明の好ましい態様
前記の課題を解決すべく, 本発明者らはゾル ·ゲル法に着目して銅粉表面に金 属酸化物をコーテングすることを種々試みた。 その結果, オルガノシラン化合物 由来の加水分解生成物の極薄層を銅粒子表面にシロキサン結合で被着させたあと 触媒などによって縮合反応を行わせると, 銅粒子表面に均一な極薄の S i 02 系 ゲルコーティング膜が湿式法で生成できることを知った。 そして, このようにし て得られた S i 02 系ゲルコーティング膜をもつ銅粉は, 当該皮膜なしの銅粉に 比べて, 酸化開始温度が 1 2 0〜2 0 0 °C程度高くなり, 焼結開始温度も変化す ることがわかった。
すなわち, 平均粒径が 1 0 / m以下の銅粉に対して, その銅粒子表面でオルガ ノシラン化合物の加水分解 ·縮合のゾル ·ゲル反応を有機溶媒中で進行させると, 膜厚が 1 0 0 n m以下, 好ましくは 1 0〜6 0 n mの均一な S i 02 系ゲルコー ティング膜が形成できる。 具体的には, まずゾルの加水分解を行うために, 水溶 性の有機溶媒例えばィソプロピルアルコール中で銅粉, オルガノシラン化合物お よび水を反応させる。
有機溶媒としては, 加水分解を進行させるゾル媒体として機能するために, 水 を溶解するものが好ましく, 例えば 2 0 °Cでの水の溶解度が 1 0重量%以上のも のがよい。 このような有機溶媒としては, メチルアルコール, エチルアルコール, イソプロピルアルコール, アセトン, メチルェチルケトン, テトラヒドロフラン, ジォキソラン, ジォキサンなどが使用可能である。
オルガノシランとしては, 例えば一般式 R 1 4 - a S i ( O R 2 ) a で表される アルコキシシラン (R 1 は 1価の炭化水素基, R 2 は炭素数 1〜 4の 1価の炭化 水素基, aは 3〜4 ) が好適であり, 代表的なものとして, テトラエトキシシラ ン, メチルトリメ トキシシランなどが挙げられる。
アルコキシシランの加水分解反応を該有機溶媒中の銅粉表面で行わせるために, 先ず, 銅粉を有機溶媒に入れて攪拌し懸濁させておき, そのなかにアルコキシシ ランを添加し, ついで加水分解に供される水 (純水) を添加する (或いは純水添 加したあとでアルコキシシランを添加する) という操作順序を経てから, 加水分 解 ·縮合反応を促進させるアル力リ触媒, 例えばアンモニア水を添加するのがよ い。 これによつて, まず, 銅粉表面にはシロキサン結合によってアルコキシシラ ンが付着し, そのアルコキシシランが銅粉表面で加水分解し, 縮合反応して (ゲ ル化して) S i O 2 系の均一な皮膜が銅粒子表面に形成される。
一般にゾル ·ゲル反応の触媒には酸またはアルカリが用いられるが, 銅粉表面 に S i O 2 系ゲルコーティング膜を形成する場合には, アンモモアが触媒として 最も適していることを本発明者らは知った。 塩酸, 硫酸または燐酸などの酸では 耐酸化性が十分なゲルコ一ティング膜が得られず, アル力リでも水酸化ナトリゥ ムゃ水酸化力リゥムも用いたのでは, 電子部品の材料としては好ましくないナト リウムゃカリウムの不純物が銅粉に残留し, ひいては導電ペースト中に残存する。 また, ジェチルアミンゃトリエチルァミン等のアミン系触媒を用いると, 添加操 作に支障を来すので好ましくない。 例えば添加用樹脂製チューブを腐食するなど の不都合がある。 これに対し, アンモニアを用いた場合には, 良好な耐酸化特性 をもつゲルコーティング膜が得られるとともに, 入手しやすく低コストで揮発除 去が簡単で不純物の残留がないなどのメリットがある。
該縮合反応はアンモニア水を添加したあと, 所定温度で所定時間熟成すること によって進行させるのが望ましく, 例えば液温を 2 0〜6 0 °Cに所定の時間保持 するのがよい。 S i O 2 系ゲルコーティング膜の膜厚は一般にアルコキシシラン 量, 液温, 保持時間などに依存するので, これらを調整することによって, 均一 厚みの S i O 2 系ゲルコーティング膜の薄膜を銅粒子表面に形成させることがで きる。 そのさい, 銅粉の粒子形状は膜厚に影響することは殆んどなく, 球状, 板 状, フレーク状 (箔片状) , 角形状などあらゆる形状の銅粒子でも均一な膜厚の S i O 2 系ゲルコ一ティング膜が形成できることが確認された。 またアンモニア 触媒の使用にあたっては, 連続的に反応系に添加することによって, S i 02 系 ゲルコ一ティング膜付き銅粉の凝集を防止できることがわかった。 仮に凝集した としても, 反応系に超音波を付与すると良好に分散して少なくとも原料銅粉と同 等程度にまでは分散させることができる。
このようにして, 銅粉表面に均一な膜厚の S i 02 系ゲルコーティング膜が形 成できるが, この皮膜の量については, 銅に対して S i O2 量が 10重量%を超 えるような量では導電性にも影響が大きくなるので, それ以下であるのがよく, S i量で言えば 5重量%以下であるのがよい。 すなわち, 5重量%以下の S iを 含有した銅粉であって, その S iの実質上全てが S i O2 系ゲルコーティング膜 として銅粒子表面に被着しているのがよい。 ここで, S iの 「実質上」全てとは, S i O2 以外にも少量の S iが皮膜中に不可避的に残存してもよいという意味で あり, 例えば製造上の理由により S iの一部がアルコキシシランの残留物として 皮膜中に不可避的に残存したり, S i 02 以外の S i酸化物として少量存在して も, その量が僅かであれば特に悪影響を与えることはない。
使用するアルコキシシランに加えて, 他の金属アルコキシド, 例えば Na, K または Bのアルコキシドを反応系に適量共存させると, S i 02 と共に N a 2O, K2O, B2O3 などが共存した合成ゲルコーティング皮膜を形成することができ: この場合にも銅粉の耐酸化性を向上させることができると共に, これらの金属酸 化物の量を調整することによって, 銅粉の焼結特性 (特に焼結開始温度) を制御 することができる。 このような他の金属酸化物の含有量については, M/S iの 原子比 (Mは金属酸化物の金属成分) で 1.0以下の範囲で含有するのがよく, これより多くなると, 皮膜の均一性が失われたり耐酸化特性が損なわれたりする ことがある。 Mとしては, 前記の N a, Kまたは Bのほか, さらに Pb, Z n, A 1 , Z r, B i, T i, Mg, C a, S r, B aまたは L iの 1種または 2種 以上であることができる。
このようなゾル.ゲル法を利用した湿式法で S i O2 系ゲルコ一ティング膜を 銅粉の表面に形成させたあとは, 固液分離で S i O2 系ゲルコ一ティング膜付き 銅粉を採取し, これを乾燥すればよい。 乾燥後にケーキ状に凝集していれば, こ れをサンプルミル等で解砕処理すればよく, これによつて, 良好に分散した S i O 2 系ゲルコーティング膜付き銅粉を得ることができる。 このゲルコーティング 膜が被着している銅粉をそのまま導電ペースト用のフィラーとして使用すること ができる。 すなわち, 特に熱処理などを施すことなく, ゲルコーティング膜を有 したままの銅粉を樹脂バインダーや溶媒と混練することによって導電ペーストと することができる。
本発明に従って S i 02 系ゲルコーティング膜を被着した銅粉は, S i 02 系 ゲルコーティング膜なしのものに比べると, 耐酸化性が向上し, 焼結開始温度も 変化する。 この事実は, 後述の実施例に示すように, 示差熱温度計試験と焼結性 試験によって確認された。 銅粉の耐酸化性が向上することは, 前述のように, 導 電ペース卜の導電フイラ一として使用する場合に, 脱バインダー工程での酸化を 防止できるので極めて有利となり, また焼結開始温度は前記の M元素を含有しな い S i 0 2 系ゲルコーティング膜の場合には高くなる。
しかし, 焼結温度があまり高くなるのは好ましいことではない。 本発明によれ ば, この問題は, 前記の M元素例えば N a, Kまたは B等な酸化物が共存した S i O 2 系ゲルコーティング膜とすることにより, 或いは適量のガラスフリッ トを S i O 2 系ゲルコーティング膜付き銅粉に添加することによって解決できること がわかった。 後者の場合, S i 02 , N a 2 0 , B 2 O 3 , P b O等の金属酸化 物成分を含有したガラスフリットを適量混在させると, これらが銅粉表面の S i O 2 系ゲルコーティング膜と反応して低融点のガラス質が生成し, 粒子同士の焼 結を促進するものと考えられるが, 焼結開始温度を低くすることができる。
このガラスフリッ トの配合量についてはあまり多くなると導電フイラ一として の導電性質に影響を与えるようになるので, S i O 2 系ゲルコーティング膜が被 着した銅粉 1 0 0重量部に対し, ガラスフリツ 卜が 1 0重量部以下, 好ましくは 7重量部の範囲であって, S i 02 系ゲルコーティング膜と反応するに必要な量 とするのがよい。
本発明に従って S i O 2 系ゲルコーティング膜をその表面に形成させるための 銅粉 (被処理銅粉) としては, 湿式還元法で製造された銅粉でもアトマイズ法で 製造されたものでもよい。 すなわち銅粉の製造法には限定されず, あらゆる製造 法で得られた銅粉が適用可能であるが, 水酸化銅—酸化銅→金属銅と変化させる 湿式還元法によって製造された銅粉の場合には各種の粒度分布のものが比較的容 易に得られ, また球状粉または板状粉も比較的容易に得られる。 例えば特開平 1
1 - 3 5 0 0 0 9号公報に開示された六角板状の銅粉を本発明の被処理銅粉に適 用し, これに S i 02 系ゲルコーティング膜を被着させると, 一層耐酸化性が良 好となり, 焼結温度も高くなることがわかった。 その理由としては, 六角板状の 銅粉は結晶性が良好であることが考えられる。 また焼成過程では形状保持機能が 高くなるという興味深い現象が顕れることもわかった。
焼成過程における形状保持機能が良好であることは, 導電ペーストにとって有 利に作用する。 すなわち, 塗布された導電べ一ストが焼成される過程で, フイラ 一同士の拡散や物質移動が起こつて, 部分的に膜厚が減少したり空洞が発生した り, ダレが発生したりして, 形成された導体の立体形状に変形を来すことがある このような立体形状の変形が生じ難いこと, すなわち導電ペーストの立体形状の 変形抵抗を 「立体障害性」 と呼んでいるが, 前記の六角板状の銅粉に S i 02 系 ゲルコーティング膜を施したものは, 焼成過程で形状保持機能が高いので, 立体 障害性のよい導電ペーストを作ることができる。
より一層立体障害性に優れた導電ペーストを得るためには, 球状粉や板状粉に S i O 2 系ゲルコーティング膜を施したものに, フレーク状の銅粉に S i O 2 系 ゲルコーティング膜を施したものを適量混合するのがよい。 ここで, フレーク状 の銅粉とは, 厚みが広面側の長径の 1ノ 1 0以下, 好ましくは 1 / 1 0 0以下, 場合によっては 1 Z 1 0 0 0以下であり, 広面側の平均長径が 4 O /z m以下程度 の銅粒子からなる銅粉を言う。 より具体的には平均厚さが 1 0 0 n m以下, 平均 長径が 5〜4 0 程度の箔片状の銅粒子からなる銅粉である。 フレーク状の銅 粉は比表面積が大きいので, 球状銅粉に較べて酸化し易くなるが, S i 02 系ゲ ルコーティングを施すことにより, 耐酸化性を具備するようになる。 フレーク状 の銅粉に S i O 2 系ゲルコーティング膜を施したものを, 粒状粉や板状粉に S i O 2 系ゲルコーティング膜を施したものに適量混ぜてフイラ一とした導電べ一ス トは, 焼成過程において粒状粉や板状粉が互いに物質移動するのを制限するバリ ャとして作用するものと考えられるが, 前述の立体障害性が著しく高くなること がわかった。 しかし, フレーク状の銅粉に S i O 2 系ゲルコ一ティング膜を施し たものだけをフィラーとすると, 樹脂バインダ一への充塡性が低下して必ずしも 良好な導電ペーストとはならない。 好ましい混合割合は, 球状および または板 状の銅粉に S i O 2 系ゲルコーティング膜を施したもの 1 0 0重量部に対し, フ レーク状銅粉に S i O 2 系ゲルコーティング膜を施したものを 1〜8 0重量部の 範囲とするのがよい。
六角板状の銅粉ゃフレーク状の銅粉を被処理銅粉に使用しても, 本発明によれ ば, それら粒子の表面には, 2 0 0 n m以下の均一な S i 02 系ゲルコーティン グ膜が一様に被着できることがわかった (後述する図?〜 8および図 9〜1 0参 照) 。 S i O 2 系ゲルコーティング膜の膜厚については, 銅粉の粒子形状ごとに, 金属アルコキシドの添加量と膜厚との間に一定の相関が存在することが明らかと なった。 この相関を用いると金属アルコキシドの添加量の調整によりその膜厚を 2 0 0 n m以下, より好ましくは 5〜 8 0 n mの範囲で精密に制御できる。 , 被処理銅粉に S i O 2 系ゲルコーティング膜を施すまでの間に, 被処理銅粉の 表面が酸化するのを防止するために, 酸化防止用の有機系コ一ティングを施すこ とが有利である。 すなわち, 被処理銅粉に対して室温付近での耐酸化性を付与し たり処理液中での分散性を確保するために, 銅粉表面にォレイン酸ゃステアリン 酸などの有機酸系のコーティングを施すのが好ましい。 このような有機酸系のコ 一ティングを施したものを被処理銅粉として使用しても, このコーティングをも たない銅粉と同様の処理によって S i O 2 系ゲルコーティング膜を形成できる。 有機系コーティング膜が介在するとアルコキシドとの反応を阻害すると予想され たが, 予想に反して, そのコーティングを有したまま S i 02 系ゲルコーティン グ膜を良好に形成できることがわかった。
なお, 銅粉表面の S i O 2 系ゲルコーティング膜はこれをガラス化するための 処理は必要ではない。 S i O 2 系ゲルコーティング膜はこれを 2 0 0 °Cを超える 或る温度に加熱するとガラス化することができるが, このようなガラス化のため の熱処理を行わなくても, ゲルコーティングのままにおいて導電ペース卜に要求 されるに十分な耐酸化性を具備する。 ガラス化のための熱処理を行うと, コーテ ィング膜に亀裂が発生したりゲルコーティングが収縮して銅粒子の表面が露出し たりして, かえって耐酸化性を阻害したり焼結特性に悪影響を与えることになる ので, 本発明にと όては好ましいことではない。 実施例
〔実施例 1:]
ベックマン ·コールター社製のレーザ散乱 ·回折式粒度分布測定装置を用いた 粒度分布測定において, D10=1.7 βχη, D 50=2.5 μ η, D 90=3.8 imの粒 度分布をもち, 平均粒径が 1.5 / mの銅粉を供試材とした。 平均粒径はフイツシ ヤー社のサブシーブサイザ一を用いて測定した値である。 D10, D50および D90 は, 横軸に粒径 D (j m) をとり, 縦軸に粒径 D m以下の粒子が存在する容積 (Q%) をとつた累積粒度曲線において, Q%が 1 0 %, 5 0 %および 9 0%に 対応するそれぞれの粒径 Dの値を言う。 供試材の銅粉は湿式還元法に製造された ものであり, 図 1の S EM像に見られるように, 粒子形状はほぼ球形である。 この供試材銅粉 (C u : 3.15モル相当量) をイソプロピルアルコールに添加し て, スラリー濃度が 28.6重量%のスラリーとし, 4 0°Cに維持し窒素雰囲気中で 攪拌を続けながら, このスラリーに, Cu/[Si(0C2H5)4] のモル比が 3 3となる量 のテトラエトキシシランを添加し, ついで H20/[Si(0C2H5)4]のモル比が 2 5とな る量の純水を添加し, 引き続いて [NH3]/[Si(0C2H5)4]のモル比が 7.0となる量の アンモニア水をローラーポンプで 3 5分かけて一定速度で添加したあと, 攪拌し たまま 4 0°Cで 6 0分間窒素雰囲気中で熟成した。
得られた懸濁液をろ過し, ろ別した粉体を洗浄することなく, そのまま乾燥炉 に入れ, 窒素雰囲気中 1 2 0 °Cで 1 1時間乾燥した。 得られた乾燥品を図 1と同 様に S EMで調べると, 図 2に示したように, 供試材とほぼ同径の球状の粒子か らなることが判別され, さらに, 高倍率の TEM像で表面部を観察したところ, 図 3に示したように, 厚みが約 5 nm程度の均一な S i 02 系ゲルコーティング 膜が形成されていることが確認された。
得られた粉体を化学分析に供試し, また, 酸化開始温度および焼結開始温度の 測定に供した。 それらの結果を表 1に示した。 酸化開始温度の測定は空気中での 示差熱分析計 (TG) で行った。 酸化開始温度とは 「示差熱分析計において, サ ンプル銅粉の重量が初期値から 0.5 %増加したときの温度」 と定義する。 また 焼結開始温度の測定は次のようにして行った。
〔焼結開始温度の測定〕 :測定用の銅 1 gを採取し, これに有機ビヒクル (ェチ ルセルロースまたはァクリル樹脂を溶剤で希釈したもの:本例ではェチルセル口 ースを使用) 0.03〜0.05gを加えてメノウ乳鉢で約 5分混合し, この混合物を直 径 5 mmの筒体に装填し, 上部からポンチを押し込んで 1 6 2 3 Nで 1 0秒保持 する加圧を付与し, 高さ約 1 Omm相当の円柱状に成形する。 この成形体を, 軸 を鉛直方向にして且つ軸方向に 1 0 gの荷重を付与した条件で, 昇温炉に装填し, 窒素流量中で昇温速度 1 0 °C /分, 測定範囲:常温〜 1 0 0 0 °Cに連続的に昇温 してゆき, 成形体の高さ変化 (膨張 ·収縮の変化) を自動記録する。 そして, 成 形体の高さ変化 (収縮) が始まり, その収縮率が 0. 5%に達したところの温度 を 「焼結開始温度」 とする。 なお, 前記の高さ変化の自動記録において, 横軸に 昇温してゆく温度 (昇温速度が一定である場合には経過時間に対応する) を採り, 縦軸に高さ変化の割合 (膨張率または収縮率) を記録したものを TMA曲線と呼 ふ。
比較のために, S i O2 系ゲルコーティング膜なしの供試材の銅粉についても, 同様の試験を行った結果を表 1に 「対照例 1」 として表示した。
表 1の結果に見られるように, 本例の S i 02 系ゲルコーティング膜を形成し た銅粉は, S i量が 0.77%の S i O2 系ゲルコーティング膜が形成されたもので あり, 平均粒径は対照例 1と同じレベルであるが粒径分布は D 50, D90側にやや 偏りを生じている (部分的に凝集が生じている) が, 酸化開始温度は対照例 1の 1 6 5°Cから 3 0 8 °Cまで大幅な向上を示した。 また焼結開始温度も 7 1 6でか ら 9 7 3 °Cに上昇した。
〔実施例 2〕
Cu/[Si(0C2H5)4 ]の単独添加に代えて, Cu/[Si(0C2H5)4] のモル比が 3 3とな る量のテトラエトキシシランおよび Cu/[B(0C3H7)3]のモル比が 5 5となる量のボ ロンアルコキシド (イソプロピルアルコールに B2O3 を溶解させたもの) を添 加した以外は, 実施例 1と同様に処理して, B203 含有 S i 02 系ゲルコ一テ ィング膜をもつ銅粉を得た。 処理途中の純水の添加量は 0/両アルコキシド合計 のモル比が 2 5となる量で添加した。 得られたゲルコーティング膜付き銅粉を実 施例 1と同様の試験に供した。 その結果を表 1に併記した。
表 1の結果にみられるように, 本例の B 2 03 含有 S i O 2 系ゲルコ一ティン グ膜を有する銅粉は, 酸化開始温度が 3 1 8 °Cまで一層向上したが, 焼結開始温 度は対照例の元粉より低い 6 7 9 °Cまで低下した。
〔実施例 3 〕
Cu/[Si (0C2H5 ) 4] の単独添加に代えて, Cu/[Si (0C2H5 ) 4 ] のモル比が 3 3とな る量のテトラエトキシシランおよび Cu/[Na(0C3H7 ) ]のモル比が 1 3 2となる量の ナトリウムアルコキシド (イソプロピルアルコールに N a O Hを溶解させたもの) を添加した以外は, 実施例 1と同様に処理して, Na2 0含有 S i O 2 系ゲルコ一 ティング膜をもつ銅粉を得た。 処理途中の純水の添加量は H20/[Si (0C2H5 ) 4 ]のモ ル比が 1 5となる量で添加した。 得られたゲルコーティング膜付き銅粉を実施例 1と同様の試験に供した。 その結果を表 1に併記した。
表 1の結果にみられるように, 本例の Na20含有 S i O 2 系ゲルコーティング 膜を有する銅粉は, 酸化開始温度が 2 6 2 °Cとなり, 焼結開始温度は対照例の元 粉より低い 5 6 9 °Cまで低下した。
〔実施例 4〕
スラリ一の形成段階から熟成が終えるまで超音波を液中に照射した以外は, 実 施例 1を繰り返した。 得られた S i O 2 系ゲルコーティング膜付きの銅粉を実施 例 1と同様の試験に供した。 その結果を表 2に併記したが, 超音波照射によって, 元粉と同等の粒度分布の S i 0 2 皮膜付き銅粉が得られた。
〔実施例 5〕
アンモニア水の全量を一挙に添加した以外は, 実施例 4を繰り返した。 得られ た S i 02 系ゲルコ一ティング膜付きの銅粉を実施例 1と同様の試験に供した。 その結果を表 2に併記したが, アンモニア水を一挙添加しても, 超音波を照射す ることによつて凝集が回避され, 実施例 4のものには達しないが実施例 1のもの よりも元粉に近い粒度分布の S i 0 2 皮膜付き銅粉が得られた。
〔実施例 6〕
供試銅粉として, 平均粒径が 3. のものを使用した以外は, 実施例 1を繰 り返した。 得られた S i O 2 系ゲルコ一ティング膜付き銅粉を実施例 1と同様の 試験に供した。 その結果を表 3に併記したが, 酸化開始温度は 3 6 0 °Cまで上昇 した。 図 4は, 得られた S i O 2 系ゲルコーティング膜付き銅粉についての T E M像である。 図 4に見られるように厚みが約 3 0 11 01の均ーな8 i 02 系ゲルコ 一ティング膜が形成されていることがわかる。
〔実施例 7〕
乾燥品をサンプルミルに入れて解砕処理した以外は, 実施例 6を繰り返した。 得られた S i O 2 系ゲルコ一ティング膜付き銅粉を実施例 1と同様の試験に供し, その結果を表 3に併記したが, 粒度分布が実施例 6よりも元粉側に近くなり, 個 々の粒子に分散されたものが得られた。 このように個々の粒子に分散されていて も, 酸化開始温度は 3 5 2 °Cと高く, 各粒子に均一な S i O 2 系ゲルコーティン グ膜が生じていることが確認された。
比較のために, 実施例 6と 7で供試材として使用した元粉 (S i O 2 系ゲルコ 一ティング膜なしの銅粉) についても 「対照例 2」 として同様の試験を行ない, その結果を表 3に表示した。
S i 02 系 粉体の化学分析値 (重量%) 平均粒径 粒度分布 (βτη) 酸化開始 焼結開始
No. 皮膜の形態 温度 V ί曰 ρό= ίΠΕ Χ, °しη
S i B N a 0 Cu D10 D50 D90
対照例 1 皮膜無し <0.01 <0.01 <0.01 0.16 残部 1.5 1.7 2.5 3.8 165 716 実施例 1 Si02単独 0.77 ぐ 0.01 <0.01 1.33 残部 1.5 4.0 6.8 10.3 308 973 実施例 2 Si02+B203 0.51 0.19 <0.01 1.52 残部 1.5 3.8 7.4 11.9 318 679 実施例 3 Si02+Na20 0.48 <0.01 0.28 0.99 残部 1.5 3.1 7.0 12.3 262 569
t
S i 02系 粉体の化学分析値 (重量%) 平均粒径 粒度分布 (urn) 酸化開始
No. 皮膜の形態 ¾mS し
S i B N a 0 C u m D10 D50 D90 実施例 4 Si02単独 0.54 <0.01 <0.01 0.99 残部 1.5 1.7 2.5 3.8 309
実施例 5 Si02単独 0.58 <0.01 <0.01 1.03 残部 1.5 1.9 3.0 4.4 307
Ού
S i 02 系 粉体の化学分析値(重量%) 平均粒径 粒度分布 (βτη) 酸化開始
No. 皮膜の形態 温度 。c
S i B N a 0 C u τα D10 D50 D90
実施例 6 Si02単独 0.86 ぐ 0.01 <0.01 1.27 残部 3.5 7.7 12.2 17.0 360 実施例 7 Si02単独 0.86 ぐ 0.01 ぐ 0.01 1.27 残部 3.5 3.0 3.6 4.5 352 対照例 2 皮膜無し <0.01 ぐ 0.01 ぐ 0.01 0.15 残部 3.5 3.0 3.6 4.3 192
図 5は, 前記の実施例のうち代表的なものの TMA曲線を示したものである。 ただし, これらの T MA曲線はいずれも銅粉試料に対して有機ビヒクルとしてァ クリル樹脂を使用して測定用試料を作成したものである。 図 5における各曲線の 意味するところは次のとおりである。
〔曲線 1〕 :実施例 1〜 3の供試材に使用した皮膜なしの銅粉 (対照例 1の平均 粒径 1.5 / mの銅粉) のものであり, 焼結開始温度は約 6 8 7 °Cである。
〔曲線 2〕 :実施例 6〜 7の供試材に使用した皮膜なしの銅粉 (対照例 2の平均 粒径 のの銅粉) のものであり, 焼結開始温度は約 8 5 7 °Cである。
〔曲線 3〕 :実施例 1の S i 02 系ゲルコーティング膜付き銅粉のものであり, 焼結開始温度は 9 7 3 °Cである。
〔曲線 4〕 :実施例 7の S i 02 系ゲルコーティング膜付き銅粉のものであり, 銅の融点である 1 0 8 3 °Cまでは焼結を開始しない。
〔実施例 8〕
実施例 6で得られた S i 02 系ゲルコ一ティング膜付き銅粉に対して, ガラス フリットを 5重量%添加して混合し, それらの混合粉の TMA曲線を測定した。 それらの結果を図 6に示した。 また, 比較のために実施例 6で得られた S i 0 2 系ゲルコ一ティング膜付き銅粉そのもの (ガラスフリッ ト無添加) と, 実施例 6 で供試材として使用した平均粒径が 3.5 mの皮膜なし銅粉そのもの (ガラスフ リット無添加) も図 6に併記した。 これらの T MA曲線はいずれも銅粉試料に対 して有機ビヒクルとしてァクリル樹脂を使用して測定用試料を作成したものであ る o
図 6の各曲線の意味するところは次のとおりである。
〔曲線 A〕 :実施例 6で供試材として使用した平均粒径が 3.5 / mの皮膜なし銅 粉そのもの (ガラスフリツ ト無添加) の TMA曲線であり, 焼結開始温度は約 8 5 7 °Cである。
〔曲線 B〕 :実施例 6で得られた平均粒径が 3.5 z mの S i 02 系ゲルコ一ティ ング膜付き銅粉 (ガラスフリット無添加) の TMA曲線であり, 銅の融点 1 0 8 3 °Cまで焼結しない。 〔曲線 C〕 :実施例 6で得られた S i 02 系ゲルコーティング膜付き銅粉に, B2
03 · Z n 0 · P b O系のガラスフリッ トを 5重量%添加した混合粉の TMA曲 線であり, 焼結開始温度は約 6 7 2 °Cである。
〔曲線 D〕 :実施例 6で得られた S i 02 系ゲルコーティング膜付き銅粉に, S
1 02 · B 2O 3 · Z n 0系のガラスフリッ トを 5重量%添加した混合粉の TM A曲線であり, 焼結開始温度は約 6 0 6 °Cである。
〔曲線 E〕 :実施例 6で得られた S i 02 系ゲルコーティング膜付き銅粉に, B2 O 3 · Z nO系のガラスフリッ トを 5重量%添加した混合粉の TMA曲線であり, 焼結開始温度は約 7 4 1 °Cである。
〔曲線 F〕 :実施例 6で得られた S i 02 系ゲルコーティング膜付き銅粉に, S i O 2 · B 2O3 · P b 0系のガラスフリッ トを 5重量%添加した混合粉の TM A曲線であり, 焼結開始温度は約 8 2 3 °Cである。
図 6の結果から, S i O2 系ゲルコ一ティング膜を有する銅粉は焼結開始温度 が高くなるが, これにガラスフリッ トを混合すると焼結開始温度は, S i 02 系 ゲルコーティング膜なしの銅粉のそれよりも低下するようになり, 耐酸化性を高 めながら焼結開始温度を低下できることがわかる。
〔実施例 9〕
D10=3.0 βχη, D50=4.1 〃m, D 90=5.5 〃mの粒度分布をもち, 平均粒 径が 3.5/ζπιの六角板状の銅粉を供試材とした以外は, 実施例 1を繰り返した。 その供試材銅粉の S EM像 (走査電子顕微鏡像) を図 7に示した。 得られた S i O2 系ゲルコーティング膜付銅粉の 1個の粒子についてその T EM像 (透過電子 顕微鏡像) を図 8に示した。 図 8に見られるように, 六角板状の粒子の表面に厚 み 2 0 nm程度のゲルコ一ティング膜が均一に被着していることがわかる。
また, 得られた S i O2 系ゲルコーティング膜付銅粉の粒度分布, 成分組成, 酸化開始温度を, 供試材銅粉のそれらと対比して表 4に示した。 表 4の結果から 6角板状銅粉の酸化開始温度は 2 0 1 °Cであるのに対し, これに S i 02 系ゲル コーティング膜を施した本例の銅粉の酸化開始温度は 3 4 3 °Cであり, 耐酸化性 が良好であることがわかる。 表 4
Figure imgf000022_0001
〔実施例 10〕
D10=8.0 〃m, D50=17.2^m, D 90=42..9 //mの粒度分布をもつ, 平均 粒径が 30 zm程度のフレーク状の銅粉を供試材とした以外は, 実施例 1を繰り 返した。 その供試材銅粉の SEM像 (走査電子顕微鏡像) を図 9に示した。 得ら れた S i O2 系ゲルコーティング膜付銅粉の 1個の粒子についてその TEM像 (透過電子顕微鏡像) を図 1 0に示した。 図 1 0の中央部の像は粒子の広面側の 像であり, 上部の像は厚み方向の面 (フレーク状粒子の厚みが見える側) の像で ある。 図 1 0に見られるように, 厚みが約 2 0 nmのゲルコーティング膜が粒子 表面の全体に均一に被着していることがわかる。
また, 得られた S i 02 系ゲルコーティング膜付銅粉の粒度分布, 成分組成, 酸化開始温度を, 供試材銅粉のそれらと対比して表 5に示した。 表 5の結果から フレーク状銅粉の酸化開始温度は 1 4 2°Cと低いが, これに S i O2 系ゲルコー ティング膜を施した本例の銅粉の酸化開始温度は 3 1 3°Cとなり, 耐酸化性が良 好であることがわかる。
表 5 化学分析値(重量%) 粒度分布( ) 酸化開始温度 フレーク状銅粉
S i 0 C Cu D10 D50 D90 (。C) 供試材(被膜なし) <0.01 0.59 0.43 残部 8.0 17.2 42.9 143
Si02系ゲル]-ティング有り 1.6 2.9 0.21 口 β 9.0 16.9 36.9 313 以上説明したように, 本発明によると, 銅粉の耐酸化性を著しく高めることが できるようになり, その結果, 導電ペーストのフイラ一に使用した場合, その焼 結過程での脱バインダー工程での銅粉の酸化を防止できるようになった。 これに より, 酸化した銅粉を還元する工程が不要となり, 導電ペーストの焼成工程が簡 略化できる。 また, 焼結開始温度が高くて不都合が生じる場合にも, S i 02 系 ゲルコーティング膜となじみのよいガラスフリットを少量配合するだけで, 焼結 開始温度を劇的に低下させることができ, 場合によっては, S i 02 系ゲルコー ティング膜なしの銅粉そのもののよりも焼結開始温度を低くすることができる。 これによつて, 導電ペーストの焼成温度を低することができ, セラミックス基板 との間の熱歪みの発生やヒートショックの発生を軽減することができる。

Claims

請求の範囲
1. 導電ペーストの導電フィラーに用いる銅粉において, 5重量%以下の S iを 含有し, その S iの実質上全てが S i O2 系ゲルコーティング膜として銅粒子表 面に被着していることを特徴とする耐酸化性に優れた導電ペースト用銅粉。
2. 平均粒径が 1 G m以下の銅粉の粒子表面に 200 nm以下の厚みの S i 0 2 系ゲルコーティング膜が形成されている請求の範囲 1に記載の耐酸化性に優れ た導電ペースト用銅粉。
3. S i O2 系ゲルコーティング膜の厚みの変動幅が ± 30%以内である請求の 範囲 2に記載の耐酸化性に優れた導電ペースト用銅粉。
4. 銅粒子は, 球状, 板状またはフレーク状の形状を有する請求の範囲 1または 2に記載の耐酸化性に優れた導電ペースト用銅粉。
5. S i O2 系ゲルコーティング膜は, 有機化合物からなる塗膜が施された銅粒 子の表面に被着している請求の範囲 1ないし 4のいずれかに記載の耐酸化性に優 れた導電ペース卜用銅粉。
6. S i O2 系ゲルコーティング膜は, S i 02 以外の金属酸化物を, M/S i の原子比 (Mは金属酸化物の金属成分を表す) で 1.0以下の範囲で含有する請 求の範囲 1ないし 5のいずれかに記載の耐酸化性に優れた導電ペースト用銅粉。
7. Mは, Na, K, B, Pb, Zn, A 1 , Z r, B i, T i, Mg, C a, S r, B aまたは L iの 1種または 2種以上である請求の範囲 6に記載の耐酸化 性に優れたペースト用銅粉。
8. 5重量%以下の S iを含有し, その S iの実質上全てが S i 02 系ゲルコー ティング膜として銅粒子表面に被着している銅粉 100重量部に対し, ガラスフ リットを 10重量部以下の割合で配合してなる耐酸化性および焼結性に優れた導 電ペースト用銅粉。
9. 樹脂系バインダーと溶媒とからなるビヒクルに, 請求の範囲 1ないし 8に記 載の銅粉を分散させてなる導電ペースト。
10. 水溶性の有機溶媒中で, 銅粉, オルガノシラン化合物および水を反応させ てオルガノシランの加水分解生成物を生成させ, 得られた懸濁液にゲル化剤を添 加して銅粉の粒子表面に S i 02 系ゲルコーティング膜を形成させ, 次いで, 固 液分離して S i 02 系ゲルコーティング膜を有する銅粒子を採取する, 耐酸化性 に優れた銅粉の製法。
1 1. ゲル化剤を添加して銅粉の粒子表面に S i 02 系ゲルコ一ティング膜を形 成させるさいに, 懸濁液に攪拌を付与し且つ超音波を付与する請求の範囲 10に 記載の耐酸化性に優れた銅粉の製法。
1 2. オルガノシラン化合物に加えて他の金属のアルコキシドを配合する請求の 範囲 1 0または 1 1に記載の耐酸化性に優れた銅粉の製法。
13. ゲル化剤としてアンモニア水を用いる請求の範囲 10, 1 1または 12に 記載の耐酸化性に優れた銅粉の製法。
PCT/JP2002/004000 2001-04-27 2002-04-22 Poudre de cuivre pour pate electroconductrice a excellente resistance a l'oxydation et procede de preparation WO2002087809A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/311,884 US7393586B2 (en) 2001-04-27 2002-04-22 Highly oxidation-resistant copper powder for conductive paste and process for producing the powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001132159 2001-04-27
JP2001-132159 2001-04-27

Publications (1)

Publication Number Publication Date
WO2002087809A1 true WO2002087809A1 (fr) 2002-11-07

Family

ID=18980210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004000 WO2002087809A1 (fr) 2001-04-27 2002-04-22 Poudre de cuivre pour pate electroconductrice a excellente resistance a l'oxydation et procede de preparation

Country Status (5)

Country Link
US (1) US7393586B2 (ja)
JP (1) JP3646259B2 (ja)
KR (1) KR100877115B1 (ja)
TW (1) TW567103B (ja)
WO (1) WO2002087809A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059148B2 (ja) 2003-06-02 2008-03-12 株式会社村田製作所 導電性ペーストおよびセラミック多層基板
JP3711992B2 (ja) * 2003-10-15 2005-11-02 住友電気工業株式会社 顆粒状の金属粉末
JP4586141B2 (ja) * 2003-10-27 2010-11-24 Dowaエレクトロニクス株式会社 導電ペースト
JP4647224B2 (ja) * 2004-03-30 2011-03-09 昭栄化学工業株式会社 積層セラミック電子部品端子電極用導体ペースト
US7558047B2 (en) * 2004-04-23 2009-07-07 Murata Manufacturing Co., Ltd. Electronic component and method for producing the same
JP4551750B2 (ja) * 2004-12-09 2010-09-29 大研化学工業株式会社 電極の製造方法
JP4613362B2 (ja) * 2005-01-31 2011-01-19 Dowaエレクトロニクス株式会社 導電ペースト用金属粉および導電ペースト
JP4224086B2 (ja) * 2006-07-06 2009-02-12 三井金属鉱業株式会社 耐折性に優れた配線基板および半導体装置
JP4970026B2 (ja) * 2006-12-26 2012-07-04 京セラ株式会社 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
CN101919005A (zh) 2007-09-13 2010-12-15 汉高股份两合公司 导电组合物
JP2009079269A (ja) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd 導電性ペースト用銅粉およびその製造方法、並びに、導電性ペースト
JP5405814B2 (ja) * 2007-12-28 2014-02-05 三井金属鉱業株式会社 導電性ペースト用銅粉及び導電性ペースト
JP2010065250A (ja) * 2008-09-09 2010-03-25 Hiroshima Univ 複合体の製造方法および複合体
WO2012052191A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Ausgangswerkstoff und verfahren zur herstellung einer sinterverbindung
KR101444613B1 (ko) * 2013-07-12 2014-09-26 삼성전기주식회사 복합 도전성 분말, 이를 포함하는 외부전극용 도전성 페이스트 및 적층 세라믹 커패시터의 제조방법
JP5843821B2 (ja) 2013-08-13 2016-01-13 Jx日鉱日石金属株式会社 金属粉ペースト、及びその製造方法
JP5882960B2 (ja) 2013-08-13 2016-03-09 Jx金属株式会社 表面処理された金属粉、及びその製造方法
JP5986046B2 (ja) * 2013-08-13 2016-09-06 Jx金属株式会社 表面処理された金属粉、及びその製造方法
JP6368925B2 (ja) * 2014-10-01 2018-08-08 協立化学産業株式会社 被覆銅粒子及びその製造方法
CN105834418B (zh) * 2016-03-17 2018-01-05 西安工程大学 一种电子浆料中铜粉的乙基纤维素微胶囊处理方法
TWI759279B (zh) * 2017-01-26 2022-04-01 日商昭和電工材料股份有限公司 無加壓接合用銅糊、接合體與其製造方法及半導體裝置
TWI671336B (zh) * 2017-11-23 2019-09-11 國立清華大學 粉體材料及其製造方法
WO2020138273A1 (ja) * 2018-12-27 2020-07-02 Jx金属株式会社 Siの被膜を有する純銅粉及びその製造方法並びに該純銅粉を用いた積層造形物
CN112885990B (zh) * 2019-11-29 2022-11-01 宁德时代新能源科技股份有限公司 一种二次电池
JP7192161B2 (ja) * 2020-06-26 2022-12-19 Jx金属株式会社 Si被膜を有する銅合金粉及びその製造方法
KR102389258B1 (ko) * 2020-12-07 2022-04-21 엘티메탈 주식회사 고온 안정성과 필렛특성이 개선된 접합 페이스트 및 그의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368702A (ja) * 1989-08-08 1991-03-25 Mitsui Mining & Smelting Co Ltd 銅粉の表面処理方法
US5332596A (en) * 1992-01-17 1994-07-26 Murata Mfg. Co., Ltd. Method for anti-oxidizing treatment of copper powder
US5981069A (en) * 1996-03-01 1999-11-09 Murata Manufacturing Co., Ltd. Copper powder coated with copper phosphate and copper paste containing the same
JP2000345201A (ja) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd 複合銅微粉末及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940432A (en) * 1973-06-19 1976-02-24 Union Carbide Corporation Process for making ethylene glycol
US4594181A (en) * 1984-09-17 1986-06-10 E. I. Du Pont De Nemours And Company Metal oxide-coated copper powder
JPH0641605B2 (ja) * 1985-11-08 1994-06-01 福田金属箔粉工業株式会社 Al▲下2▼O▲下3▼分散強化型銅合金粉末の製造方法
JPS63308803A (ja) * 1987-01-09 1988-12-16 Hitachi Ltd 導電ペーストおよびそれを用いた電子回路部品並びにその製法
CA1337545C (en) * 1988-02-01 1995-11-14 Yoshinobu Nakamura Copper powder for electroconductive paints and electroconductive paint compositions
JPH0214258A (ja) * 1988-06-30 1990-01-18 Mitsui Mining & Smelting Co Ltd 導電塗料用銅粉および導電塗料組成物
US5126915A (en) * 1989-07-28 1992-06-30 E. I. Du Pont De Nemours And Company Metal oxide-coated electrically conductive powders and compositions thereof
US5073409A (en) * 1990-06-28 1991-12-17 The United States Of America As Represented By The Secretary Of The Navy Environmentally stable metal powders
JPH04190502A (ja) * 1990-11-22 1992-07-08 Sumitomo Metal Ind Ltd 銅導体ペースト
JP2582034B2 (ja) * 1993-09-16 1997-02-19 日鉄鉱業株式会社 表面に多層膜を有する粉体およびその製造方法
DE19520964A1 (de) * 1995-06-08 1996-12-12 Inst Neue Mat Gemein Gmbh Beschichtete anorganische Pigmente, Verfahren zu deren Herstellung und deren Verwendung
JP3670395B2 (ja) * 1996-06-10 2005-07-13 日鉄鉱業株式会社 多層膜被覆粉体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368702A (ja) * 1989-08-08 1991-03-25 Mitsui Mining & Smelting Co Ltd 銅粉の表面処理方法
US5332596A (en) * 1992-01-17 1994-07-26 Murata Mfg. Co., Ltd. Method for anti-oxidizing treatment of copper powder
US5981069A (en) * 1996-03-01 1999-11-09 Murata Manufacturing Co., Ltd. Copper powder coated with copper phosphate and copper paste containing the same
JP2000345201A (ja) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd 複合銅微粉末及びその製造方法

Also Published As

Publication number Publication date
JP3646259B2 (ja) 2005-05-11
KR100877115B1 (ko) 2009-01-07
TW567103B (en) 2003-12-21
US7393586B2 (en) 2008-07-01
US20030178604A1 (en) 2003-09-25
JP2003016832A (ja) 2003-01-17
KR20030097629A (ko) 2003-12-31

Similar Documents

Publication Publication Date Title
WO2002087809A1 (fr) Poudre de cuivre pour pate electroconductrice a excellente resistance a l&#39;oxydation et procede de preparation
JP3206496B2 (ja) 金属粉末及びその製造方法
EP0517721A1 (en) Improved ceramic dielectric compositions and method for improving sinterability
JP5044857B2 (ja) 酸化膜付き銅粉の製造方法
JP4213921B2 (ja) 導電ペースト用銀粉の製造方法
JP4586141B2 (ja) 導電ペースト
JP4854705B2 (ja) 導電ペースト用銀粉及びその銀粉を用いた導電ペースト
JPH08259847A (ja) 被覆無機粉体およびその製造方法
JP4128424B2 (ja) 耐酸化性および焼結性に優れた導電ペースト用銅粉の製造法
JP4930915B2 (ja) 高純度SiC微粉末の製造方法
Zhang et al. Preparation and properties of antioxidative BaO–B 2 O 3–SiO 2 glass-coated Cu powder for copper conductive film on LTCC substrate
JP4977041B2 (ja) 耐酸化性および焼結性に優れた外部電極用導電ペースト用銅粉
JP2009079269A (ja) 導電性ペースト用銅粉およびその製造方法、並びに、導電性ペースト
WO1989001461A1 (en) Co-sinterable metal-ceramic packages and materials therefor
US20040248724A1 (en) Silicate-based sintering aid and method
JPS62191460A (ja) ガラス・セラミック電気回路積層板の形成方法
JP4081387B2 (ja) セラミック多層基板導電材用銀粉末とその製造方法
JP2004084069A (ja) 無機酸化物コート金属粉及びその無機酸化物コート金属粉の製造方法
JP4276031B2 (ja) チタン化合物被覆ニッケル粉末およびこれを用いた導電ペースト
WO2022264522A1 (ja) 酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法
WO2022071021A1 (ja) ホウ素含有非晶質シリカ粉体及びその製造方法
JP2548191B2 (ja) 非酸化物セラミックスの製造方法
JPH06172040A (ja) 窒化アルミニウム焼結体の製造方法
JPS6051522B2 (ja) 銀微粉末の製造方法
JPH06321615A (ja) 低温焼結性セラミックスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

WWE Wipo information: entry into national phase

Ref document number: 1020027017645

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10311884

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027017645

Country of ref document: KR