WO2022264522A1 - 酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法 - Google Patents

酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法 Download PDF

Info

Publication number
WO2022264522A1
WO2022264522A1 PCT/JP2022/006771 JP2022006771W WO2022264522A1 WO 2022264522 A1 WO2022264522 A1 WO 2022264522A1 JP 2022006771 W JP2022006771 W JP 2022006771W WO 2022264522 A1 WO2022264522 A1 WO 2022264522A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
oxide
copper oxide
pitch
powder
Prior art date
Application number
PCT/JP2022/006771
Other languages
English (en)
French (fr)
Inventor
広典 折笠
正志 熊谷
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to DE112022003080.1T priority Critical patent/DE112022003080T5/de
Publication of WO2022264522A1 publication Critical patent/WO2022264522A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys

Definitions

  • This specification discloses techniques related to copper oxide-containing powders, conductive pastes, and methods for producing copper oxide-containing powders.
  • Metal powder is sometimes dispersed and included in a conductive paste and used to manufacture low temperature co-fired ceramic (LTCC) substrates and multilayer ceramic chip capacitors (MLCC).
  • LTCC substrates the metal powder is sintered by firing to form metal traces between the ceramic layers.
  • Copper is desirable as a material for metal wiring because it is cheaper than silver and platinum, and is said to have less migration. Copper, on the other hand, is more susceptible to oxidation than silver and platinum. In particular, since fine copper powder used for conductive paste has a large surface area, it is required to suppress its oxidation. Oxidation of copper powder may reduce not only the quality of the conductive paste itself containing the copper powder, but also the quality and yield of products manufactured using the conductive paste.
  • the copper powder may be surface-treated with an antioxidant.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-122252 (Patent Document 1) describes a surface-treated copper powder that can suppress the oxidation of copper powder and increase the sintering start temperature.
  • a copper oxide-containing powder, a conductive paste, and a copper oxide-containing powder that have excellent antioxidant ability and can effectively form a copper sintered body by heating in a non-reducing atmosphere.
  • a method of manufacture is disclosed.
  • One copper oxide-containing powder disclosed in this specification contains copper (I) oxide, and when subjected to heat treatment up to 400 ° C., the thermal decomposition residue derived from pitch is converted into copper oxide (I ), the mass ratio is 0.025 to 0.060.
  • copper oxide-containing powders disclosed in this specification contain copper (II) oxide, and when subjected to a heat treatment up to 400° C., the thermal decomposition residue derived from pitch is converted into copper oxide (II ), the mass ratio is 0.050 to 0.120.
  • the conductive paste disclosed in this specification contains any of the copper oxide-containing powders described above, a binder resin, and a solvent.
  • the method for producing a copper oxide-containing powder disclosed in this specification is a method for producing a copper oxide-containing powder containing pyrolysis residues derived from pitch, comprising: copper oxide powder, pitch, and an organic substance that produces pitch by heat treatment. mixing the copper oxide powder with at least one of the pitch and the organic matter to obtain a pre-heat treatment powder; subjecting the pre-heat treatment powder to a heat treatment up to 400° C. to obtain a pitch; and obtaining a copper oxide-containing powder containing pyrolysis residues derived therefrom.
  • the copper oxide-containing powder, the conductive paste, and the method for producing the copper oxide-containing powder described above it has excellent antioxidant ability and can effectively form a copper sintered body by heating in a non-reducing atmosphere. can be done.
  • FIG. 5 is a graph showing changes in mass with increasing temperature obtained by thermogravimetry in Comparative Example 1 and Examples 1 to 5.
  • FIG. 5 is a graph showing changes in linear shrinkage with increasing temperature obtained by thermomechanical analysis of Comparative Example 1 and Examples 1 to 5.
  • FIG. 4 is a photograph of pellets of Example 4.
  • FIG. 5 is a graph showing changes in mass with temperature rise obtained by thermogravimetric measurements of Reference Example and Examples 3 to 5.
  • FIG. 5 is a graph obtained by subtracting the mass of pitch volatiles from the graph of FIG. 4.
  • the copper oxide-containing powder of one embodiment contains copper (I) oxide, and when subjected to heat treatment up to 400 ° C., the thermal decomposition residue derived from pitch is reduced to copper (I) oxide and contains 0.025 to 0.060 in mass ratio. Further, the copper oxide-containing powder of another embodiment contains copper (II) oxide, and when heat treatment is performed up to 400 ° C., the thermal decomposition residue derived from pitch is converted into copper (II) oxide 0.050 to 0.120 in mass ratio.
  • the thermal decomposition residue used for the reduction of copper oxide is converted into carbon monoxide, carbon dioxide, or water and disappears as the conversion of copper oxide into metallic copper progresses.
  • the pitch-derived thermal decomposition residue contained when the copper oxide-containing powder is heat-treated at 400 ° C. is within a predetermined range described later with respect to copper oxide, copper oxide is sufficiently reduced to metallic copper.
  • the thermal decomposition residue is converted into gases such as carbon dioxide and carbon monoxide, and almost all of it disappears.
  • gases such as carbon dioxide and carbon monoxide
  • a sintered body of copper can be obtained, for example, even by heating in a non-reducing atmosphere using an inert gas.
  • carbonaceous components are sufficiently removed from such a copper sintered body, a sintered body with low electric resistance can be obtained.
  • the copper oxide-containing powder may contain copper (I) oxide (Cu 2 O, so-called cuprous oxide) and/or copper (II) oxide (CuO).
  • the copper oxide-containing powder contains at least one of copper (I) oxide and copper (II) oxide. If it contains copper (I) oxide and/or copper (II) oxide, as described above, the copper oxide is reduced to metallic copper by the reducing component contained in the pitch by heating, and the copper is baked. A body is obtained.
  • the copper oxide-containing powder may contain copper oxide powder substantially composed of copper oxide particles.
  • the powder containing copper (I) oxide is referred to as copper (I) oxide powder
  • the powder containing copper (II) oxide is referred to as copper (II) oxide powder.
  • the copper(I) oxide powder may further contain copper(II) oxide
  • the copper(II) oxide powder may further contain copper(I) oxide.
  • the copper oxide-containing powder may contain copper powder containing copper oxide, more specifically, copper powder composed of copper particles whose surfaces are coated with copper oxide such as copper (I) oxide. Whether or not the copper oxide-containing powder contains copper oxide powder or copper powder containing copper oxide can be confirmed by an X-ray diffraction method (XRD).
  • XRD X-ray diffraction method
  • the copper oxide-containing powder is obtained by mixing the above-described copper oxide powder or copper powder containing copper oxide with pitch or an organic substance that produces pitch by heat treatment.
  • a heat treatment up to 400° C. a pyrolysis residue derived from pitch is present on the surface.
  • the copper oxide-containing powder containing copper (I) oxide is such that the mass ratio of the thermal decomposition residue present after the heat treatment to copper (I) oxide is 0.025 to 0.060 It contains organic matter.
  • the copper oxide-containing powder containing copper (II) oxide has a pitch and / or It contains the above organic matter.
  • this heat treatment up to 400° C. the copper oxide-containing powder is heated to 400° C. in a nitrogen atmosphere at a starting temperature of 25° C. and a heating rate of 10° C./min.
  • Pitch is a mixture mainly composed of relatively heavy organic substances obtained by distilling tar obtained by the dry distillation of organic substances such as coal, petroleum, and wood. Specifically, coal tar pitch and petroleum pitch. Or a synthetic pitch etc. can be mentioned.
  • copper oxide is 0.00 to copper (I) oxide for the copper oxide-containing powder containing copper (I) oxide. It is preferably from 025 to 0.045, and in the case of a copper oxide-containing powder containing copper(II) oxide, it is preferably from 0.050 to 0.090 with respect to copper(II) oxide.
  • copper (II) oxide the valence of copper to be reduced is twice that of copper (I) oxide.
  • copper (II) oxide can be sufficiently reduced and the residue of pyrolysis of pitch can be suppressed. it is conceivable that.
  • the copper oxide-containing powder may contain pitch and be a mixture of pitch and copper oxide before being subjected to the heat treatment up to 400°C.
  • the mass ratio of pitch to copper (I) oxide contained in the copper oxide-containing powder is preferably 0.050 to 0.090, more preferably 0.050 to 0.070.
  • the mass ratio of pitch to copper (II) oxide contained in the copper oxide-containing powder is preferably 0.100 to 0.180, more preferably 0.100 to 0.140. If the mass ratio of pitch to copper oxide is too small, the reduction of copper oxide to copper will be insufficient, and if it is too large, thermal decomposition of excess pitch will occur even if all the copper oxide is reduced to copper A residue remains, and a highly conductive sintered body cannot be obtained.
  • the copper oxide-containing powder may contain no pitch before being subjected to the heat treatment up to 400° C., but may contain an organic matter that generates pitch by the heat treatment, and may be a mixture of the organic matter and copper oxide.
  • This pitch-generating heat treatment can be a condition of maintaining at 200° C. for 10 minutes or more in an inert atmosphere.
  • the organic substances include polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, naphthalene, and methylnaphthalene.
  • a sintered body of copper can be effectively formed by firing in a non-reducing atmosphere.
  • the copper oxide-containing powder contains pitch before heat treatment up to 400 ° C., as long as it contains a predetermined amount of thermal decomposition residue derived from pitch when subjected to heat treatment up to 400 ° C. good.
  • the copper oxide-containing powder contains pitch instead of the above organic matter before the heat treatment up to 400°C.
  • the cuprous oxide-containing powder of this embodiment has high antioxidant ability.
  • the copper oxide-containing powder is analyzed with a time-of-flight mass spectrometer (TOF-MS) before the heat treatment up to 400 ° C. described above, 50% by mass or more of the components detected are mixtures with a molecular weight of 100 to 10000. , it can be considered that the copper oxide-containing powder contains pitch. Typically, pitch often contains 95 mass % or more of a mixture of molecular weights of 100 to 10,000 when analyzed by TOF-MS.
  • TOF-MS time-of-flight mass spectrometer
  • the copper oxide-containing powder Before or after the heat treatment up to 400 ° C., in order to determine the mass ratio of the above-described pitch to copper oxide in the copper oxide-containing powder, the copper oxide-containing powder is measured by the above TOF-MS, and is also subjected to X-ray diffraction.
  • a method of determining the elemental composition by combining identification, X-ray fluorescence analysis, combustion method, ICP method, etc. is suitable.
  • the above pitch preferably has a softening point of 200°C or lower.
  • High softening point pitch with a softening point exceeding 200°C has high viscosity and requires mixing at high temperature, so there is a risk of deterioration of workability due to generation of toxic gas, oxidation and deterioration of pitch components, and ignition. .
  • the softening point of pitch conforms to JIS K2425 (2006) and can be measured using a commercially available testing machine.
  • the particle size calculated from the BET specific surface area of the copper oxide-containing powder is preferably 0.1 ⁇ m to 10.0 ⁇ m. This particle size is more preferably between 0.1 ⁇ m and 2.0 ⁇ m. If the particle size is large, it may be difficult to reduce the inside of the copper oxide-containing powder. If the particle size is small, there is a possibility that the mixed state of the powder containing copper oxide and a small amount of pitch or its thermal decomposition residue tends to be non-uniform.
  • D is the average particle size
  • is the true density
  • SSA is the BET specific surface area of the copper oxide-containing powder.
  • the BET specific surface area (SSA) is measured in accordance with JIS Z8830:2013 after degassing the copper oxide-containing powder in a vacuum at a temperature of 70°C for 5 hours. II.
  • the copper oxide-containing powder described above can be used in conductive pastes.
  • This conductive paste contains the above copper oxide-containing powder, a binder resin, and a solvent.
  • binder resins examples include cellulose resins, acrylic resins, alkyd resins, polyvinyl alcohol resins, polyvinyl acetals, ketone resins, urea resins, melamine resins, polyesters, polyamides, and polyurethanes.
  • solvents examples include alcohol solvents (e.g., one or more selected from the group consisting of terpineol, dihydroterpineol, isopropyl alcohol, butylcarbitol, terpineloxyethanol, dihydroterpineloxyethanol), glycol ether solvents (e.g., butylcarbyl Toll), acetate solvents (e.g., one or more selected from the group consisting of butyl carbitol acetate, dihydroterpineol acetate, dihydrocarbitol acetate, carbitol acetate, linaryl acetate, terpinyl acetate), ketone solvents (e.g., methyl ethyl ketone) , hydrocarbon solvents (e.g., one or more selected from the group consisting of toluene and cyclohexane), cellosolves (e.g., ethyl cellosolve, one or more
  • a conductive paste When such a conductive paste is used to manufacture a low temperature co-fired ceramic (LTCC) substrate or a multilayer ceramic chip capacitor (MLCC), the ceramic powder (green sheets) and the conductive paste are alternately laminated and then fired simultaneously. , a copper sintered body wiring may be formed between ceramic layers (cofire method). Also, after sintering the ceramic, a conductive paste may be applied and fired to form wiring of a sintered body of copper (post-fire method).
  • LTCC low temperature co-fired ceramic
  • MLCC multilayer ceramic chip capacitor
  • the pitch in the copper oxide-containing powder is thermally decomposed at the beginning of the firing process, and approximately half the mass of the pitch becomes a thermal decomposition residue.
  • the thermal decomposition residue disappears as carbon monoxide, carbon dioxide, etc. while reducing the copper oxide in the copper oxide-containing powder to copper.
  • sintering progresses and a highly conductive copper wiring can be effectively formed.
  • a blade type kneader or a roll type kneader For mixing (coating) with pitch and/or organic matter, it is preferable to use a blade type kneader or a roll type kneader.
  • the amount of the powder containing copper oxide and the pitch and/or the organic substance that produces pitch by heat treatment into the kneader is such that the mass ratio of the pyrolysis residue derived from pitch to the copper oxide after heat treatment up to 400 ° C. is the predetermined amount described above. Adjust accordingly so that it satisfies the range of
  • the pitch it is necessary to heat the pitch to a temperature higher than the softening point, preferably to a temperature of about 30 to 100 degrees Celsius higher than the softening point in order to lower the viscosity of the pitch.
  • a temperature higher than the softening point preferably to a temperature of about 30 to 100 degrees Celsius higher than the softening point in order to lower the viscosity of the pitch.
  • the mixed powder may be subjected to heat treatment up to 400°C.
  • the pitch and/or the organic matter are thermally decomposed by the heat treatment, and a copper oxide-containing powder containing a thermal decomposition residue derived from the pitch is obtained.
  • a copper oxide-containing powder is included in a conductive paste and sintered, the carbon disappears while reducing the copper oxide to copper, and sintering proceeds smoothly to form a copper sintered body. be done.
  • the powder containing copper oxide used for coating can be commercially available, but it can also be produced as described below.
  • Copper (I) oxide powder can be produced, for example, from a copper sulfate solution containing reducing sugar and alkali. Specifically, as one example, copper sulfate is added to a solvent such as pure water, and the mixture is heated to 50° C. to 90° C. and stirred at preferably 50 rpm to 1000 rpm to obtain a copper sulfate solution. Reducing sugars such as glucose, fructose, glyceraldehyde, lactose, arabinose and maltose are added thereto. Although sucrose itself is not a reducing sugar, invert sugar produced by hydrolysis of sucrose can also be used as a reducing sugar.
  • a solvent such as pure water
  • Reducing sugars such as glucose, fructose, glyceraldehyde, lactose, arabinose and maltose are added thereto.
  • sucrose itself is not a reducing sugar
  • invert sugar produced by hydrolysis of sucrose can also be
  • an anti-denaturation agent specifically, for example, gum arabic, dextrin, other polysaccharides, glue or collagen peptide may be added.
  • an alkali is added dropwise to the copper sulfate solution, and the pH of the copper sulfate solution is kept within the range of 8 to 11, for example, to cause the reaction.
  • the pH retention time is, for example, 0.1 hour to 10 hours. Thereafter, washing with pure water and solid-liquid separation by decantation or the like are performed to obtain copper (I) oxide powder.
  • a copper powder containing copper oxide can be produced, for example, by heating the copper powder dry or wet to oxidize the surface of the copper powder.
  • a copper (I) oxide powder having a BET specific surface area of 2.3 m 2 /g was prepared and coated with pitch. Specifically, coating is performed by putting 500 g of copper (I) oxide powder and a predetermined amount (25 g to 50 g) of pitch into a blade type kneader, and kneading for 1 hour after heating to 150 ° C. is completed. to produce a copper oxide-containing powder whose surface was coated with pitch.
  • the pitch PK-QL manufactured by JFE Chemical Co., Ltd.
  • the copper (I) oxide powder commercially available copper (I) oxide powder (50% particle size D50 by laser diffraction method is about 2.5 ⁇ m) ) were used, respectively. The softening point of this pitch is 74-80°C.
  • the BET specific surface area of the copper oxide-containing powder was 0.8 to 0.9 m 2 /g, and the particle size calculated from the BET specific surface area was 1.2 ⁇ m.
  • thermogravimetric measurement device manufactured by NETZSCH
  • STA2500 Regulus thermogravimetric measurement device
  • TMA Thermal mechanical analysis
  • a sample 300 ⁇ 20 mg was placed in a ⁇ 5 cylindrical mold and compressed with a hydraulic press (Minilab Press manufactured by Labnect) to prepare pellets. did.
  • the pellet weight, diameter and height were measured to calculate the pellet density.
  • the pellet weight was measured with a balance capable of displaying 0.1 mg, and the pellet diameter and height were measured with a digital caliper capable of displaying 1 ⁇ m.
  • a sample pellet having a density of 3.80 ⁇ 0.05 g/cm 3 was set in the sample chamber of a thermomechanical analyzer (TMA4000SE manufactured by NETZSCH).
  • TMA4000SE manufactured by NETZSCH
  • the atmospheric gas was caused to flow at a flow rate of 500 mL/min for 10 minutes or more to replace the gas, and the measurement was started.
  • the measurement conditions were as follows: measurement start temperature: 25° C. ⁇ 10° C., load: 98 mN, ultimate temperature: 1000° C., heating rate: 10° C./min, atmosphere gas used: nitrogen.
  • the graph shown in Figure 2 was obtained.
  • TMA the particles forming the pellet are sintered as the temperature rises, and the cylindrical pellet shrinks in the height direction. This shrinkage rate is sometimes called linear shrinkage rate.
  • the vertical axis represents linear expansion, and if this value is negative, it means linear contraction.
  • Comparative Example 1 had a low maximum density. In Comparative Example 1, due to too much pitch adhering to the surface of the copper oxide-containing powder, even if the copper (I) oxide was reduced to copper during firing, the carbon present around the copper particles did not come into contact with the copper particles. This is thought to be due to the fact that sintering did not proceed due to the inhibition of the
  • Example 4 the maximum density of the pellet after heating was close to 8.96 g/cm 3 which is the density of copper.
  • a photograph of the pellets after heating in Example 4 is shown in FIG. From FIG. 3, the pellet exhibits metallic luster and is recognized to be a sintered body of copper.
  • FIG. 5 shows the result obtained by subtracting the volatile matter of the pitch obtained by performing thermogravimetry (TG) only on the pitch from the graph of FIG.
  • the weights of the copper oxide-containing powders of Examples 3 to 5 are reduced in air even after the volatile matter of the pitch is subtracted. From this, it can be said that in the copper oxide-containing powders of Examples 3 to 5, the weight reduction due to reduction was preferentially performed over the weight increase due to oxidation even in the air.
  • the copper oxide-containing powder described above has excellent antioxidation ability and can effectively form a copper sintered body by heating in a non-reducing atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

酸化銅(I)を含む酸化銅含有粉末であって、400℃までの熱処理を行ったときに、ピッチに由来する熱分解残渣を、酸化銅(I)に対して、質量比で0.025~0.060含む。

Description

酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法
 この明細書は、酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法に関する技術を開示するものである。
 金属粉末は、導電性ペーストに分散させて含ませて、低温同時焼成セラミック(LTCC)基板や積層セラミックチップコンデンサ(MLCC)の製造に用いられることがある。LTCC基板では、金属粉末は焼成により焼結して、セラミック層間に金属配線を形成する。
 金属配線用の材料として、銅は、銀やプラチナに比して安価であり、しかもマイグレーションが少ないとされていることから望ましい。他方、銅は、銀やプラチナよりも酸化しやすい。特に導電性ペーストに用いる微細な銅粉は表面積が大きいので、その酸化を抑制することが求められる。銅粉の酸化は、その銅粉を含む導電性ペースト自体の品質のみならず、当該導電性ペーストを使用して製造される製品の品質及び歩留まりを低下させる懸念がある。
 銅粉の酸化を防止するため、銅粉に、酸化防止剤を用いた表面処理を施すことがある。特開2017-122252号公報(特許文献1)は、銅粉の酸化を抑制し且つ焼結開始温度を高くすることができる、表面処理銅粉として、「銅粉の表面に、ジルコニウム、ランタンおよびイットリウムからなる群から選ばれる1以上の元素が存在し、酸素含有量が1質量%以下である表面処理銅粉」を開示している。
特開2017-122252号公報
 しかしながら、酸化防止剤で表面処理が施された銅粉では、上述したような金属配線の用途等にて加熱して焼結させる際に、酸化防止剤の有機物の熱分解により固体の炭素が生じる場合がある。酸化防止剤に由来する炭素は、銅粒子の表面に存在し、銅粒子どうしの接触及び焼結を阻害する。
 これを回避するには、酸化性雰囲気で当該銅粉を加熱して炭素を酸化させて除去した後、還元性雰囲気に切り替えて銅粉を再度加熱することが考えられる。但し、このような雰囲気の切換えを要する加熱は、その切換えが可能であって、かつ水素等を用いる還元性雰囲気を安全に実現できる防爆設備が必要になる。
 この明細書では、優れた酸化防止能を有し、非還元性雰囲気下の加熱で銅の焼結体を有効に形成することができる酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法を開示する。
 この明細書で開示する一の酸化銅含有粉末は、酸化銅(I)を含むものであって、400℃までの熱処理を行ったときに、ピッチに由来する熱分解残渣を、酸化銅(I)に対して、質量比で0.025~0.060含むものである。
 この明細書で開示する他の酸化銅含有粉末は、酸化銅(II)を含むものであって、400℃までの熱処理を行ったときに、ピッチに由来する熱分解残渣を、酸化銅(II)に対して、質量比で0.050~0.120含むものである。
 この明細書で開示する導電性ペーストは、上記のいずれかの酸化銅含有粉末と、バインダー樹脂と、溶剤とを含むものである。
 この明細書で開示する酸化銅含有粉末の製造方法は、ピッチに由来する熱分解残渣を含む酸化銅含有粉末を製造する方法であって、酸化銅粉末と、ピッチ及び熱処理によりピッチを生じる有機物の少なくとも一方とを準備する工程と、前記酸化銅粉末と、ピッチ及び前記有機物の少なくとも一方とを混合して熱処理前粉末を得る工程と、前記熱処理前粉末に400℃までの熱処理を施し、ピッチに由来する熱分解残渣を含む酸化銅含有粉末を得る工程と、を含むものである。
 上述した酸化銅含有粉末、導電性ペースト、酸化銅含有粉末の製造方法によれば、優れた酸化防止能を有し、非還元性雰囲気下の加熱で銅の焼結体を有効に形成することができる。
比較例1並びに実施例1~5の熱重量測定で得られた温度上昇に伴う質量の変化を示すグラフである。 比較例1並びに実施例1~5の熱機械分析で得られた温度上昇に伴う線収縮率の変化を示すグラフである。 実施例4のペレットの写真である。 参考例及び実施例3~5の熱重量測定で得られた温度上昇に伴う質量の変化を示すグラフである。 図4のグラフからピッチの揮発分の質量を差し引いて得られるグラフである。
 以下に、上述した酸化銅含有粉末、導電性ペースト、酸化銅含有粉末の製造方法の実施の形態について詳細に説明する。
 一の実施形態の酸化銅含有粉末は、酸化銅(I)を含むものであって、400℃までの熱処理を行ったときに、ピッチに由来する熱分解残渣を、酸化銅(I)に対して、質量比で0.025~0.060含むものである。また、他の実施形態の酸化銅含有粉末は、酸化銅(II)を含むものであって、400℃までの熱処理を行ったときに、ピッチに由来する熱分解残渣を、酸化銅(II)に対して、質量比で0.050~0.120含むものである。
 酸化銅含有粉末に400℃までの熱処理を施したときに、ピッチに含まれる高沸点成分や、ピッチの熱分解等により生じる揮発分が飛散すると同時に、熱分解残渣が生じる。前記揮発分の一部や、前記残渣は炭素や水素といった還元性の成分を含み、これらが酸化銅と反応することによって、酸化銅は金属銅へ還元される。酸化銅の還元に利用された熱分解残渣は、酸化銅の金属銅への転換が進むとともに一酸化炭素や二酸化炭素、あるいは水に変換されて消失する。ここで、上記酸化銅含有粉末を400℃で熱処理したときに含まれるピッチ由来の熱分解残渣が、酸化銅に対して、後述する所定の範囲であれば、酸化銅が十分に金属銅に還元されるとともに、上記熱分解残渣は二酸化炭素や一酸化炭素などの気体に変換されて、そのほぼ全量が消失する。その結果として、たとえば不活性ガスによる非還元性雰囲気下の加熱でも、銅の焼結体を得ることができる。また、そのような銅の焼結体は、炭素質成分が十分に除去されるので、電気抵抗が低い焼結体を得られる。
(酸化銅)
 酸化銅含有粉末は、酸化銅(I)(Cu2O、いわゆる亜酸化銅)及び/又は酸化銅(II)(CuO)を含有するものであればよい。酸化銅含有粉末は、酸化銅(I)及び酸化銅(II)のうちの少なくとも一方を含むものである。酸化銅(I)及び/又は酸化銅(II)を含有するものであれば、上述したように、加熱によりピッチに含まれる還元性の成分により当該酸化銅が金属銅に還元され、銅の焼結体が得られる。
 酸化銅含有粉末は、実質的に酸化銅粒子で構成される酸化銅粉末を含むことがある。ここでは、酸化銅(I)を含有する粉末を酸化銅(I)粉末といい、酸化銅(II)を含有する粉末を酸化銅(II)粉末という。酸化銅(I)粉末はさらに酸化銅(II)を含有することがあり、酸化銅(II)粉末はさらに酸化銅(I)を含有することがある。なお、酸化銅(I)粉末と酸化銅(II)粉末、酸化銅(I)と酸化銅(II)を区別しないときは、単に酸化銅粉末、酸化銅とそれぞれ称することもある。また、酸化銅含有粉末は、酸化銅を含む銅粉末、より詳細には、表面が酸化銅(I)等の酸化銅で被覆された銅粒子で構成される銅粉末を含むことがある。酸化銅含有粉末が酸化銅粉末や、酸化銅を含む銅粉末を含有するか否かは、X線回折法(XRD)により確認可能である。
(ピッチ)
 酸化銅含有粉末は、上記の酸化銅粉末や酸化銅を含む銅粉末に、ピッチや、熱処理によりピッチを生じる有機物を混合したものである。このような酸化銅含有粉末は400℃までの熱処理を施したとき、表面にピッチ由来の熱分解残渣が存在する。酸化銅(I)を含む酸化銅含有粉末は、当該熱処理後に存在する熱分解残渣の、酸化銅(I)に対する質量比が0.025~0.060になるように、ピッチ及び/又は上記の有機物を含むものである。また、酸化銅(II)を含む酸化銅含有粉末は、当該熱処理後に存在する熱分解残渣の、酸化銅(II)に対する質量比が0.050~0.120になるように、ピッチ及び/又は上記の有機物を含むものである。この400℃までの熱処理では、酸化銅含有粉末を窒素雰囲気の下、開始温度を25℃とし、10℃/minの昇温速度で400℃まで昇温させる。
 ピッチは、石炭や石油、木材等の有機物質の乾留によって得られるタールを蒸留して得られる、比較的重質な有機物を主とした混合物であり、具体的には、コールタールピッチ、石油ピッチ又は合成ピッチ等を挙げることができる。
 400℃までの熱処理後に存在するピッチの熱分解残渣が少ない場合は、酸化銅に対してピッチが少なすぎることにより、400℃よりも高い温度で焼成しても、銅まで還元されない酸化銅が存在するため、銅の焼結体を得ることはできない。一方、400℃までの熱処理後に存在するピッチの熱分解残渣が多い場合は、酸化銅に対してピッチが多すぎることにより、酸化銅は銅へ還元されるものの、ピッチの熱分解残渣が残存する。この熱分解残渣は、主に炭素から成り、銅粒子どうしの接触及び焼結を阻害する。このような観点から、400℃までの熱処理後に存在するピッチの熱分解残渣の、酸化銅に対する質量比は、酸化銅(I)を含む酸化銅含有粉末では酸化銅(I)に対して0.025~0.045であることが好ましく、酸化銅(II)を含む酸化銅含有粉末では酸化銅(II)に対して0.050~0.090であることが好ましい。
 なお、酸化銅(II)は、還元するべき銅の価数が酸化銅(I)の2倍になるので、酸化銅(II)を含む酸化銅含有粉末の場合は、理論上、熱分解残渣やピッチの量を、酸化銅(I)を含む酸化銅含有粉末の場合の2倍にすることで、酸化銅(II)を十分に還元でき、かつ、ピッチの熱分解残渣の残存を抑えられると考えられる。
 酸化銅含有粉末は、上記の400℃までの熱処理を施す前に、ピッチが含まれ、ピッチと酸化銅の混合物である場合がある。この場合、酸化銅含有粉末に含まれるピッチの、酸化銅(I)に対する質量比は、好ましくは0.050~0.090、より好ましくは0.050~0.070である。また、酸化銅含有粉末に含まれるピッチの、酸化銅(II)に対する質量比は、好ましくは0.100~0.180、より好ましくは0.100~0.140である。ピッチの、酸化銅に対する質量比が小さすぎると、酸化銅から銅への還元が不十分になり、また大きすぎると、酸化銅がすべて銅へと還元されたとしても、余剰なピッチの熱分解残渣が残存し、導電性の高い焼結体を得られない。
 あるいは、上記の400℃までの熱処理を施す前に、酸化銅含有粉末にピッチが含まれず、熱処理によりピッチを生じる有機物が含まれ、当該有機物と酸化銅の混合物であることがある。このピッチを生じる熱処理は、不活性雰囲気で200℃に10分以上維持する条件とすることができる。上記の有機物としては、たとえば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリビニルアルコール、ナフタレン、メチルナフタレン等がある。そのような有機物が酸化銅含有粉末に含まれると、焼成の加熱時に、その途中でピッチを生じ、上述したように、酸化銅の銅への還元、一酸化炭素や二酸化炭素等への変化による熱分解残渣の消失が起こる。この場合も、非還元性雰囲気下の焼成によって銅の焼結体を有効に形成することができる。酸化銅含有粉末は、400℃までの熱処理前にピッチを含むか否かは問わず、400℃までの熱処理を施したときに、ピッチに由来する熱分解残渣を所定の量含むものであればよい。但し、焼成中のガスの発生量がより少なくなるとの観点では、上記の400℃までの熱処理を施す前から、酸化銅含有粉末に、上記の有機物ではなくピッチが含まれることが好ましい。
 400℃までの熱処理後に所定の量のピッチ由来の熱分解残渣が存在するように、ピッチや上記の有機物を含む酸化銅含有粉末は、ピッチや上記有機物により酸化が有効に抑制される。したがって、この実施形態の亜酸化銅含有粉末は、高い酸化防止能を有するものである。
 上述した400℃までの熱処理前に、酸化銅含有粉末を飛行時間型質量分析計(TOF-MS)で分析したとき、それにより検出される成分の50質量%以上が、分子量100~10000の混合物である場合、当該酸化銅含有粉末にピッチが含有されるとみなすことができる。典型的には、ピッチは、TOF-MSで分析したとき、分子量100~10000の混合物を95質量%以上含むことが多い。
 400℃までの熱処理前もしくは後に、酸化銅含有粉末中の酸化銅に対する上述したピッチの質量比を求めるには、酸化銅含有粉末を、上記TOF-MSでの測定に加えて、X線回折により同定することや、X線蛍光分析、燃焼法、ICP法などを組み合わせて、元素組成を求める方法が適している。
 上記のピッチとしては、軟化点が200℃以下であるものが好ましい。軟化点が200℃を超える高軟化点ピッチは粘度が高く、高温での混合が必要であるので、有毒ガスの発生による作業性の悪化や、ピッチ成分の酸化・変質や発火の危険性がある。
 ピッチの軟化点は、JIS K2425(2006)に準拠し、市販の試験機を用いて測定することができる。
(粒径)
 酸化銅含有粉末のBET比表面積から算出される粒径は、0.1μm~10.0μmであることが好適である。この粒径は、より好ましくは0.1μm~2.0μmである。粒径が大きいと酸化銅含有粉末の内部まで還元することが難しい場合がある。粒径が小さいと、酸化銅を含む粉末と少量のピッチ、あるいはその熱分解残渣の混合状態が不均一となりやすい可能性がある。
 酸化銅含有粉末の粒径は、BET比表面積の値から次式を用いて計算することができる。
 D=6/(ρ×SSA)
 ここで、Dは平均粒径、ρは真密度、SSAは酸化銅含有粉末のBET比表面積である。
 BET比表面積(SSA)の測定は、酸化銅含有粉末を真空中にて70℃の温度で5時間にわたって脱気した後、JIS Z8830:2013に準拠し、たとえばマイクロトラック・ベル社のBELSORP-mini IIを用いて実施することができる。
(導電性ペースト)
 上述した酸化銅含有粉末は、導電性ペーストに用いることができる。この導電性ペーストは、上記の酸化銅含有粉末と、バインダー樹脂と、溶剤とを含むものである。
 バインダー樹脂としては、たとえば、セルロース系樹脂、アクリル樹脂、アルキッド樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール、ケトン樹脂、尿素樹脂、メラミン樹脂、ポリエステル、ポリアミド、ポリウレタンを挙げることができる。溶剤としては、たとえば、アルコール溶剤(例えばテルピネオール、ジヒドロテルピネオール、イソプロピルアルコール、ブチルカルビトール、テルピネルオキシエタノール、ジヒドロテルピネルオキシエタノールからなる群から選択される一種以上)、グリコールエーテル溶剤(例えばブチルカルビトール)、アセテート溶剤(例えばブチルカルビトールアセテート、ジヒドロターピネオールアセテート、ジヒドロカルビトールアセテート、カルビトールアセテート、リナリールアセテート、ターピニルアセテートからなる群から選択される一種以上)、ケトン溶剤(例えばメチルエチルケトン)、炭化水素溶剤(例えばトルエン、シクロヘキサンからなる群から選択される一種以上)、セロソルブ類(例えばエチルセロソルブ、ブチルセロソルブからなる群から選択される一種以上)、ジエチルフタレート、又はプロピネオート系溶剤(例えばジヒドロターピニルプロピネオート、ジヒドロカルビルプロピネオート、イソボニルプロピネオートからなる群から選択される一種以上)等を用いることができる。
 このような導電性ペーストを、低温同時焼成セラミック(LTCC)基板や積層セラミックチップコンデンサ(MLCC)の製造に用いる場合、セラミック粉(グリーンシート)と導電性ペーストを交互に積層させてから同時に焼成し、セラミック層間に、銅の焼結体の配線を形成することがある(コファイア法)。また、セラミックを焼結させた後に導電性ペーストを塗布・焼成することで銅の焼結体の配線を形成することがある(ポストファイア法)。
 ここで、実施形態の導電性ペーストでは、焼成プロセスの初期に、酸化銅含有粉末中のピッチが熱分解し、ピッチの質量の約半分程度が熱分解残渣となる。さらに高温に加熱すると、熱分解残渣は、酸化銅含有粉末中の酸化銅を銅に還元しつつ、一酸化炭素や二酸化炭素等になって消失する。その結果、焼結が進行して、導電性の高い銅配線を有効に形成することができる。
 この焼成プロセスでは、水素などの還元剤を含まない非還元性雰囲気での焼成が可能である。これは、ピッチに由来する熱分解残渣と酸化銅の反応により酸化銅を銅へ還元することが可能であるからである。このため、防爆仕様の設備を要しない点において、コスト的に有利である。
(製造方法)
 以上に述べたような酸化銅含有粉末を得るには、酸化銅を含む粉末(酸化銅(II)粉末や酸化銅(I)粉末、酸化銅を含む銅粉末)を準備し、これを、ピッチ及び/又は、熱処理によりピッチを生じる有機物と混合し、必要に応じて加熱することで製造することができる。
 ピッチ及び/又は有機物との混合(コーティング)は、ブレードタイプのニーダーや、ロールタイプのニーダーを用いることが好適である。酸化銅を含む粉末とピッチ及び/又は熱処理によりピッチを生じる有機物のニーダーへの投入量は、400℃までの熱処理後の酸化銅に対するピッチ由来の熱分解残渣の質量比が、先に述べた所定の範囲を満たすものになるように適宜調整する。
 混合時は、ピッチの軟化点以上の温度に加熱することが必要であり、好ましくはピッチの粘度を下げるために、軟化点よりも30℃~100℃程度の高温に加熱することが好ましい。充分に高温で混合・混練することで、酸化銅を含む粉末とピッチ及び/又は加熱によりピッチを生じる有機物を均一に混合することができる。
 酸化銅粉末とピッチ及び/又は有機物とを混合した後、必要に応じて、その混合粉末(熱処理前粉末)に、400℃までの熱処理を施してもよい。この場合、ピッチ及び/又は有機物が当該熱処理で熱分解し、ピッチに由来する熱分解残渣を含む酸化銅含有粉末が得られる。そのような酸化銅含有粉末を、導電性ペーストに含ませて焼結させると、当該炭素が酸化銅を銅に還元しながら消失し、焼結が円滑に進行して銅の焼結体が形成される。
 コーティングに用いる酸化銅を含む粉末は、市販のものとすることも可能であるが、次に述べるようにして製造することもできる。
 酸化銅(I)粉末は、たとえば、還元糖及びアルカリを含む硫酸銅溶液から製造することができる。その一例として具体的には、純水等の溶媒に硫酸銅を添加し、これを50℃~90℃に加熱しながら、好ましくは50rpm~1000rpmで攪拌して、硫酸銅溶液を得る。そこに、グルコース、フルクトース、グリセルアルデヒド、ラクトース、アラビノース、マルトース等の還元糖を添加する。なお、スクロース自体は還元糖ではないが、スクロースが加水分解して生成される転化糖も還元糖として利用可能である。必要に応じて変性防止剤、具体的には、たとえば、アラビアゴム、デキストリンその他の多糖類、ニカワ又は、コラーゲンペプチド等を添加することもある。そして、当該硫酸銅溶液にアルカリを滴下し、硫酸銅溶液のpHを、たとえば8~11の範囲内に保持して反応させる。当該pHの保持時間は、たとえば0.1時間~10時間とする。その後、純水を用いた洗浄、デカンテーション等による固液分離等を行って、酸化銅(I)粉末が得られる。
 酸化銅を含む銅粉末は、例えば、銅粉を乾式または湿式で加熱することによって銅粉の表面を酸化させることで製造できる。
 次に、上述した酸化銅含有粉末を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。
(製造方法)
 BET比表面積2.3m2/gの酸化銅(I)粉末を準備し、これにピッチをコーティングした。コーティングは具体的には、酸化銅(I)粉末500gと所定量(25g~50g)のピッチをブレード型ニーダーに投入し、150℃への昇温が完了してから、1時間混錬を行って、表面がピッチで被覆された酸化銅含有粉末を製造した。ピッチとしては、JFEケミカル株式会社製のPK-QLを、また酸化銅(I)粉末としては、市販の酸化銅(I)粉末(レーザー回折法による50%粒子径D50が約2.5μmのもの)をそれぞれ用いた。このピッチの軟化点は、74~80℃である。酸化銅含有粉末のBET比表面積は0.8~0.9m2/gであり、そのBET比表面積から算出した粒径は1.2μmであった。
 比較例1並びに実施例1~5では、ブレード型ニーダーへのピッチの投入量を変化させ、表1に示すように、表面のピッチの付着量が異なる酸化銅含有粉末を得た。
(熱重量測定(TG))
 比較例1並びに実施例1~5の各酸化銅含有粉末について、試料(35±5mg)をアルミナパンに入れ、0.1mgまで表示できる天秤で試料重量を量り、熱重量測定装置(NETZSCH社製のSTA2500 Regulus)の天秤にセットした。その後、試料室を密閉して真空引き後、雰囲気ガスを500mL/minの流量で10分以上ガスフローすることでガス置換を行い、測定を開始した。測定条件は、測定開始温度:25℃±10℃、到達温度:1000℃、昇温速度:10℃/min、使用雰囲気ガス:窒素とした。
 その結果、図1に示すグラフが得られた。図1より、酸化銅含有粉末の質量は、400℃程度までは徐々に低下していることが解かる。これは、ピッチの炭素以外の成分が揮発したことによるものと考えられる。一方、400℃を超えると、質量が急激に減少しており、ここで酸化銅(I)から銅への還元が起こったと推測される。
(熱機械分析(TMA))
 比較例1並びに実施例1~5の各酸化銅含有粉末について、試料(300±20mg)をφ5円柱金型に入れ、油圧式プレス機(ラボネクト社製のミニラボプレス)で圧縮し、ペレットを作製した。ペレット重量、直径および高さを計測し、ペレットの密度を算出した。ペレット重量は、0.1mgまで表示できる天秤で行い、ペレット直径および高さは、1μmまで表示できるデジタルノギスで計測した。ペレット密度が3.80±0.05g/cm3の密度の試料ペレットを、熱機械分析装置(NETZSCH社製のTMA4000SE)の試料室にセットした。サンプルホルダー及び、検出棒は石英製を使用した。試料室を密閉して真空引き後、雰囲気ガスを500mL/minの流量で10分以上ガスフローすることでガス置換を行い、測定を開始した。測定条件は、測定開始温度:25℃±10℃、荷重:98mN、到達温度:1000℃、昇温速度:10℃/min、使用雰囲気ガス:窒素とした。
 その結果、図2に示すグラフを得た。なお、TMAでは、温度の上昇に伴ってペレットを構成する粒子が焼結し、円柱状のペレットが高さ方向に収縮する。この収縮率を線収縮率と称することがある。図2では、縦軸を線膨張率(Liniar expansion)としているが、この値が負である場合、線収縮率を意味する。
 また、上記のTMAにて最大収縮率を用いて、円柱状のペレットが高さ方向のみならず等方に収縮していると仮定し、その最大密度を算出した。その結果を表1に示す。
 比較例1は、最大密度が低かった。比較例1では、酸化銅含有粉末の表面に付着したピッチが多すぎたことにより、焼成時に酸化銅(I)が銅に還元されても、銅粒子の周囲に存在する炭素が銅粒子の接触を阻害し、焼結が進まなかったことによるものと考えられる。
一方、実施例1~5はいずれも、最大密度が高いことから、焼結が有効に行われたことが解かる。また、ペレットの焼結体の外観より、酸化銅(I)が有効に銅に還元されたと考えられる。特に実施例4では、昇温後のペレットの最大密度が銅の密度である8.96g/cm3に近い値となった。実施例4における昇温後のペレットの写真を、図3に示す。図3より当該ペレットは金属光沢を呈しており、銅の焼結体であると認められる。
Figure JPOXMLDOC01-appb-T000001
(耐酸化性)
 ピッチでコーティングしていない酸化銅(I)粉末の酸化銅含有粉末(参考例)と、実施例3~5の酸化銅含有粉末のそれぞれについて、上述した熱重量測定(TG)で使用雰囲気ガスを窒素から空気に変更したことを除いて同様にして、温度上昇に伴う重量の変化を測定した。これにより、図4に示すグラフが得られた。
 図4より、ピッチで被覆されていない参考例の酸化銅含有粉末は、加熱に従い空気中で重量が増えていることが解かり、これは酸化していると考えられる。これに対し、実施例3~5の酸化銅含有粉末は、加熱に伴い重量が減少している。但し、この結果だけでは、単にピッチの揮発分が減少している可能性もある。そのため、ピッチのみに対して熱重量測定(TG)を行って得られたピッチの揮発分を図4のグラフから差し引いたものを、図5に示す。
 図5から解かるように、実施例3~5の酸化銅含有粉末は、ピッチの揮発分を差し引いても、空気中で重量が減少している。このことから、実施例3~5の酸化銅含有粉末では、空気中でも酸化による重量増加よりも還元による重量減少が優先的に行われたといえる。
 以上より、先に述べた酸化銅含有粉末によれば、優れた酸化防止能を有し、非還元性雰囲気下の加熱で銅の焼結体を有効に形成できることが分かった。

Claims (12)

  1.  酸化銅(I)を含む酸化銅含有粉末であって、
     400℃までの熱処理を行ったときに、ピッチに由来する熱分解残渣を、酸化銅(I)に対して、質量比で0.025~0.060含む酸化銅含有粉末。
  2.  酸化銅(II)を含む酸化銅含有粉末であって、
     400℃までの熱処理を行ったときに、ピッチに由来する熱分解残渣を、酸化銅(II)に対して、質量比で0.050~0.120含む酸化銅含有粉末。
  3.  ピッチと酸化銅(I)の混合物であり、前記ピッチの、酸化銅(I)に対する質量比が0.050~0.090である請求項1に記載の酸化銅含有粉末。
  4.  ピッチと酸化銅(II)の混合物であり、前記ピッチの、酸化銅(II)に対する質量比が0.100~0.180である請求項2に記載の酸化銅含有粉末。
  5.  熱処理によりピッチを生じる有機物と、酸化銅の混合物である、請求項1又は2に記載の酸化銅含有粉末。
  6.  BET比表面積から算出される粒径が、0.1μm~2.0μmである請求項1~5のいずれか一項に記載の酸化銅含有粉末。
  7.  前記ピッチの軟化点が200℃以下である請求項1~6のいずれか一項に記載の酸化銅含有粉末。
  8.  酸化銅粉末を含む請求項1~7のいずれか一項に記載の酸化銅含有粉末。
  9.  酸化銅を含む銅粉末を含む請求項1~8のいずれか一項に記載の酸化銅含有粉末。
  10.  非還元性雰囲気での加熱を行う焼成プロセスに用いられる請求項1~9のいずれか一項に記載の酸化銅含有粉末。
  11.  請求項1~10のいずれか一項に記載の酸化銅含有粉末と、バインダー樹脂と、溶剤とを含む導電性ペースト。
  12.  ピッチに由来する熱分解残渣を含む酸化銅含有粉末を製造する方法であって、
     酸化銅粉末と、ピッチ及び熱処理によりピッチを生じる有機物の少なくとも一方とを準備する工程と、
     前記酸化銅粉末と、ピッチ及び前記有機物の少なくとも一方とを混合して熱処理前粉末を得る工程と、
     前記熱処理前粉末に400℃までの熱処理を施し、ピッチに由来する熱分解残渣を含む酸化銅含有粉末を得る工程と、
    を含む、酸化銅含有粉末の製造方法。
PCT/JP2022/006771 2021-06-15 2022-02-18 酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法 WO2022264522A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022003080.1T DE112022003080T5 (de) 2021-06-15 2022-02-18 Kupferoxidhaltiges pulver; leitfähige paste und verfahren zur herstellung von kupferoxidhaltigem pulver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021099723A JP7153769B1 (ja) 2021-06-15 2021-06-15 酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法
JP2021-099723 2021-06-15

Publications (1)

Publication Number Publication Date
WO2022264522A1 true WO2022264522A1 (ja) 2022-12-22

Family

ID=83600546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006771 WO2022264522A1 (ja) 2021-06-15 2022-02-18 酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法

Country Status (4)

Country Link
JP (1) JP7153769B1 (ja)
DE (1) DE112022003080T5 (ja)
TW (1) TW202300457A (ja)
WO (1) WO2022264522A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534186A (ja) * 2007-07-25 2010-11-04 エルジー・ケム・リミテッド 球形の酸化第一銅凝集体粒子組成物及びその製造方法
JP2013008907A (ja) * 2011-06-27 2013-01-10 Hitachi Chem Co Ltd 導電性ペースト用酸化銅粉末、導電性ペースト用酸化銅粉末の製造方法、導電性ペースト及びこれを用いて得られる銅配線層
JP2019067514A (ja) * 2017-09-28 2019-04-25 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
JP2020029392A (ja) * 2017-12-21 2020-02-27 国立大学法人北海道大学 銅酸化物粒子組成物、導電性ペースト及び導電性インク
JP2021017641A (ja) * 2019-07-23 2021-02-15 住友電気工業株式会社 銅ナノインク、プリント配線板用基板及び銅ナノインクの製造方法
JP2021055127A (ja) * 2019-09-27 2021-04-08 Dic株式会社 銅/酸化銅微粒子ペースト

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762718B2 (ja) 2016-01-05 2020-09-30 Dowaエレクトロニクス株式会社 表面処理銅粉およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534186A (ja) * 2007-07-25 2010-11-04 エルジー・ケム・リミテッド 球形の酸化第一銅凝集体粒子組成物及びその製造方法
JP2013008907A (ja) * 2011-06-27 2013-01-10 Hitachi Chem Co Ltd 導電性ペースト用酸化銅粉末、導電性ペースト用酸化銅粉末の製造方法、導電性ペースト及びこれを用いて得られる銅配線層
JP2019067514A (ja) * 2017-09-28 2019-04-25 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
JP2020029392A (ja) * 2017-12-21 2020-02-27 国立大学法人北海道大学 銅酸化物粒子組成物、導電性ペースト及び導電性インク
JP2021017641A (ja) * 2019-07-23 2021-02-15 住友電気工業株式会社 銅ナノインク、プリント配線板用基板及び銅ナノインクの製造方法
JP2021055127A (ja) * 2019-09-27 2021-04-08 Dic株式会社 銅/酸化銅微粒子ペースト

Also Published As

Publication number Publication date
DE112022003080T5 (de) 2024-04-04
TW202300457A (zh) 2023-01-01
JP2022191084A (ja) 2022-12-27
JP7153769B1 (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
KR100853599B1 (ko) 니켈분말, 도체 페이스트 및 그것을 이용한 적층 전자부품
EP0120243B1 (en) Process for the removal of carbon residues during sintering of ceramics
JP4807581B2 (ja) ニッケル粉末、その製造方法、導体ペーストおよびそれを用いた積層セラミック電子部品
JP3787032B2 (ja) 金属ニッケル粉末
EP1266386B1 (en) Anode comprising niobium oxide powder and method of forming it
KR102589697B1 (ko) 니켈 분말
WO2002087809A1 (fr) Poudre de cuivre pour pate electroconductrice a excellente resistance a l'oxydation et procede de preparation
CN108430671B (zh) 银合金粉末及其制造方法
JP2002356702A (ja) 低温焼成用銅粉または導電ペースト用銅粉
US8022001B2 (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
JP2010043339A (ja) ニッケル粉末とその製造方法
WO2022264522A1 (ja) 酸化銅含有粉末、導電性ペースト及び、酸化銅含有粉末の製造方法
JP2000045001A (ja) 導電ペースト用ニッケル粉末
JP2005129424A (ja) 導電ペースト
CN114521271A (zh) 氧化铜糊剂及电子部件的制造方法
WO2003047793A1 (fr) Poudre d'alliage de cuivre pour pate electro-conductrice
US5459113A (en) Aluminum nitride powder capable of forming colored sintered body and process for preparing same
JP4670164B2 (ja) 外部電極用銅ペースト組成物及びこれを用いた積層セラミックコンデンサー
JP2009024204A (ja) 炭化物被覆ニッケル粉末およびその製造方法
JP6303022B2 (ja) 銅粉
KR950006209B1 (ko) 질화알루미늄 소결체 및 그 제조방법
EP2078761B1 (en) Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
WO2017115462A1 (ja) 銀合金粉末およびその製造方法
JP4844589B2 (ja) 焼結性に優れたニッケル粉末
JP3146861B2 (ja) 脱バインダ方法及びセラミックス焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022003080

Country of ref document: DE