WO2002053486A1 - Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb - Google Patents

Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb Download PDF

Info

Publication number
WO2002053486A1
WO2002053486A1 PCT/EP2001/015380 EP0115380W WO02053486A1 WO 2002053486 A1 WO2002053486 A1 WO 2002053486A1 EP 0115380 W EP0115380 W EP 0115380W WO 02053486 A1 WO02053486 A1 WO 02053486A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction sheave
elevator according
car
gearless
gearless cable
Prior art date
Application number
PCT/EP2001/015380
Other languages
English (en)
French (fr)
Inventor
Horst Wittur
Dietmar KÜNTSCHER
Klaus Fichtner
Original Assignee
Wittur Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26008195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002053486(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wittur Ag filed Critical Wittur Ag
Priority to BRPI0116709-0A priority Critical patent/BR0116709B1/pt
Priority to EP01989626A priority patent/EP1347931B1/de
Priority to DE50107638T priority patent/DE50107638D1/de
Priority to KR1020037008817A priority patent/KR100725693B1/ko
Priority to JP2002554612A priority patent/JP2004520245A/ja
Priority to AU2002228028A priority patent/AU2002228028B2/en
Priority to AT01989626T priority patent/ATE305896T1/de
Priority to UA2003077244A priority patent/UA76442C2/uk
Publication of WO2002053486A1 publication Critical patent/WO2002053486A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0065Roping
    • B66B11/008Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/08Driving gear ; Details thereof, e.g. seals with hoisting rope or cable operated by frictional engagement with a winding drum or sheave

Definitions

  • the invention relates to a gearless cable elevator with a traction sheave drive double-wrapped by a plurality of parallel support cables with a counter pulley, a car, guide rails for the car and a counterweight, in particular for a machine room-less installation of the elevator machine.
  • the car and the counterweight are connected to each other via the rope suspension element.
  • the counterweight balances the dead weight of the car and a part, usually half, of the payload and half the dead weight of the hanging cables leading to the car.
  • at least two suspension ropes running in parallel are required.
  • cable lifts are equipped with traction sheave drives instead of the cable drum drives that were customary in the past, and the traction sheave can also be designed as a driving ring.
  • Electric motors are used as the drive unit. Traction sheave and drive motor including its energetic and control part are essential components of a gearless elevator machine. Gearless elevator machines are extremely quiet, small and inexpensive. They are more advantageous than geared elevator machines.
  • the elevator machine is installed in a separate machine room or directly in the vehicle shaft. In the latter case, it can be installed in the upper or lower part of the shaft, laterally in the counterweight space or directly on or under the car. Depending on the type of installation, the car payload and other conditions, such as head or speed, different suspension cable guides have developed.
  • the simple suspension the suspension cable coming from the car is guided to the counterweight via the traction sheave permanently installed in the shaft head or in the machine room above it.
  • suspension cables in multiple suspensions, which at the same time implement a specific transmission ratio of rope to car speed using loose rollers. If, for example, the rope drive is designed with a loose roller on the car and a loose roller on the counterweight, the torque of the drive motor is reduced to half at twice the speed. The machine becomes smaller and can be installed more easily in the elevator shaft.
  • FIG. 2 A machine room-less arrangement with double wrapping around the traction sheave is shown in WO 99/43595.
  • the suspension means coming from an upper rope stop, double around the traction sheave and counter pulley, both at the bottom of the Car are attached, further up again, where it deflects on a fixed roller and ultimately via a loose roller on the counterweight to a second upper rope stop.
  • the traction sheave and counter pulley are at such a distance from one another that a deflection roller on the car floor is unnecessary.
  • Two parallel flat strands are provided as suspension means, as specified in WO 99/43885, for example. Further flat strands are shown, for example, in WO 98/29327.
  • traction sheave diameter should correspond to at least 40 times the carrying rope diameter
  • traction sheave diameters of 100 mm and below result.
  • Small traction sheave diameters have a direct proportional effect on the torque to be applied and thus on the size of the drive motors. That is, the smaller the traction sheave diameter, the less torque has to be applied to the traction sheave and the more compact and inexpensive the drive motor can be designed.
  • small traction sheave diameters are particularly advantageous in elevator construction, since they enable the drive motor to be compact.
  • Small traction sheaves have the disadvantage that the suspension rope is used more and the rope life is reduced.
  • traction sheave diameters of at least 40 times the cable diameter are used, the reduction of the cable diameter being achieved by using the flat strands described above as cable cables with a particularly small diameter.
  • a disadvantage of the flat strands is the need to manufacture and keep special, very costly suspension elements for all load sizes.
  • incipient damage to the suspension element which can lead to a serious risk to elevator operation or even safety, can only be detected with considerable technological effort or not at all.
  • the invention has for its object to further develop a gearless cable elevator with double wrap so that the disadvantages of the flat strands are avoided and the elevator has a compact and inexpensive construction.
  • suspension ropes of the same thickness are always used in the elevator according to the invention, the ratio of the traction sheave diameter to the nominal diameter of the suspension ropes being ⁇ 40.
  • a ratio of essentially 30 has proven to be very advantageous. This enables small traction sheave diameters, which ensures a compact and inexpensive construction of the drive motor.
  • the reduced rope service life, which results from a reduced traction sheave diameter is avoided according to the invention through the use of semicircular traction grooves in which the support ropes run.
  • the driving ability of the drive pulley is reduced by the use of semicircular grooves, this is compensated for by the use of a double wrap.
  • the suspension cables run in undercut-free driving grooves, but driving grooves with a small undercut, preferably of 1-3 mm, can also be used. Such a small undercut can have a positive effect on the running properties.
  • the drive torque can be greatly reduced in the cable pull according to the invention, which also makes the drive machine smaller.
  • the suspension cables do not experience such an extreme bending radius and rolling speeds as the flat strands on traction sheaves with a diameter of ⁇ 100 mm.
  • the thin suspension cables lie very well in the semicircular grooves of the traction sheave, which are precisely adapted to the suspension cable diameter, which prevents deformation of the cable and transverse pressures and reduces the surface pressure.
  • the suspension ropes therefore have a long lay-on time. Due to the circular cross-section of the suspension ropes, the ropes are "always" found in the half-round len of the driving wheel. As a result, they have no tendency to move out of bed due to vibrations or uneven loads. In addition, noise reduction should not be underestimated.
  • the invention is therefore based on the knowledge that the combination of a double wrap of the drive cable with the guide in semicircular drive grooves can reduce the ratio of the drive pulley diameter to the nominal diameter of the support cables, as a result of which smaller support cable diameters and thus a more cost-effective construction of the cable elevator with an undiminished long cable service life are ensured becomes.
  • particularly thin suspension cables with a nominal diameter between 5 and 7 mm, in particular ⁇ 6 mm, are used.
  • adjustments to the car payload can be carried out more finely.
  • Lubrication and cleaning of thin ropes is also more effective than is the case with thicker ropes.
  • lifts plastic-coated flat strands or a few thick suspension ropes larger gradations to adapt to the load capacity of an elevator a necessary evil. Since undersizing is out of the question for lifts, the ropes will always be oversized, which makes the elevator system more expensive
  • Fig. La is a schematic representation of a cable drive with double wrap in the
  • Fig. 4 shows an example of a car floor installation and 2: 1 suspension and
  • Fig. 5 shows an example of a car roof installation and 2: 1 suspension.
  • a known rope drive with double wrap is shown in more detail.
  • a traction sheave with a nominal diameter of 240 mm those with a small nominal diameter can also be used.
  • the nominal diameter can only be 180 mm, which corresponds to a ratio of traction sheave diameter to nominal diameter of the support cables of 30.
  • Fig. La only one of the 8 suspension cables of the suspension cable set 1 is shown for a better overview.
  • Traction sheave 2 and counter pulley 3 are shown arranged horizontally to one another. They can also be arranged perpendicular to one another. The distance between the counter disc 3 and the traction sheave 2 is selected such that, with a horizontal disc arrangement in the shaft head, the suspension cable set 1 runs outside the car sides not shown in FIG. 1. This eliminates the need for an additional deflection plate.
  • the counter pulley 3 is offset to the traction sheave 2 by a certain amount, usually by half the center distance of the rope.
  • Traction sheave 2 and counter pulley 3 can be slightly twisted in addition to the perpendicular axes in order to do justice to the spiral-shaped wrap, with the supporting cables alternately resting in the area of the double guide. The cable deflection can be minimized in this way.
  • the support cables run in semicircular grooves of the traction sheave 2, which are adapted to the nominal diameter of the support cables and corresponding grooves of the counter pulley 3. This not only ensures exact cable guidance and a long service life, but also excellent driving ability due to the flat contact. With undercut seat grooves, the suspension ropes would only rest on part of the possible rope surface. This and the wedge effect in the rope seat would result in transverse pressures and deformations.
  • a load rope set of six 6 mm suspension ropes can achieve car payloads of up to 450 kg at car speeds of 1 m / s.
  • higher speeds of up to 2 ms or more are also conceivable.
  • higher payloads e.g. a 630 kg car payload and a car speed of 1 m / s
  • about 8 suspension ropes are placed, depending on the breaking strength of the suspension ropes, and for elevator payloads between 800 kg and 1,000 kg 9 to 12 suspension ropes, in turn depending on the breaking strength of the suspension cables.
  • the breaking strength of the suspension cables depends not only on the nominal diameter of the suspension cables, but also on the material and structure of the suspension cable.
  • the most important technical data, such as tensile strength of the wires, calculated breaking strength and determined breaking strength, are specified by the manufacturer in a factory certificate and are used by elevator manufacturers to calculate of the necessary number of suspension cables of the suspension cable set 1. The above information can therefore only be used as a guide, especially since a high safety factor, which depends on the nominal cable speed and the cable routing, has a significant influence on the result.
  • Fig. 2 an example of a machine room-less installation of the traction sheave drive in the shaft head is shown schematically.
  • the shaft wall 5 delimits the free shaft space. From above you can see the roof of the car 6. Above the car 6 the traction sheave drive with the drive motor 7, the traction sheave 2 with a corresponding nominal diameter of approximately 240 mm and the counter disc 3 with a nominal diameter of approximately 240 mm is installed in the shaft head in such a way that that the traction sheave 2 double wrap suspension cable set 1 with its 6 mm suspension cables runs past the side walls of the car 6 directly downwards, one end of the suspension cable set 1 wrapping two deflection pulleys 8, 9, which are fastened to the floor of the car as a "bottom block" and runs up to a first rope stop 10 and the other end of the suspension rope set 1 wraps around a deflection pulley 12 installed on the counterweight 11 and then runs up to a second rope stop 13.
  • the counterweight 11 and its deflection pulley 12 run laterally between the shaft wall 5 and a side wall of the car 6.
  • the cable guide with which a 2: 1 ratio of the cable speed on the traction sheave 2 to the car speed with halved driving torque, is used, uses a small one , faster running drive motor 7 with a small traction sheave 2 and thin support cables and is shown again schematically separately.
  • the fasteners for the traction sheave drive in the shaft head are omitted, as are the side guide rails for the car and other components of a conventional cable elevator.
  • traction sheave drive is installed in a shaft pit instead of in a shaft head, two additional deflection rollers are necessary, which increases the number of bending changes of the supporting cables and reduces their cable service life. In the case of reconstructions, however, you will hardly be able to do without such a solution due to the structural conditions.
  • 3 shows the installation of a traction sheave drive on a shaft wall 5.
  • the traction sheave 2 and the counter pulley 3 are arranged with one another in the extended space for the counterweight 11.
  • the set of suspension cables 1 runs from a first rope stop 10 over the deflection rollers 8, 9 to the traction sheave drive 3, 2, wraps around the traction sheave 2 driven by the drive motor 7, runs to the deflection roller 12, on which the counterweight 11 is suspended, and ultimately runs to the second Rope stop 13.
  • the deflection rollers 8, 9 can be fastened both on the roof of the car 6 and under the floor of the car 6. Both variants are shown schematically.
  • the suspension cable guide described implements a 2: 1 suspension.
  • the traction sheave drive is permanently installed in the shaft at the top, bottom or side, it is expedient to fasten it to the elevator frame.
  • Fig. 4 the traction sheave drive is installed on the floor of the car 6.
  • the set of suspension ropes 1 runs from the first rope stop 10 around the counter pulley 3 and the traction sheave 2, both of which are fastened to the bottom of the car 6, further upward, via a deflection roller 14, wraps around the deflection roller 12 on the counterweight and is ultimately with the second end attached to the second rope stop 13.
  • a 2: 1 suspension is implemented.
  • the traction sheave drive is installed on the roof of the car 6.
  • the cable guide corresponds to the cable guide according to Fig. 4. Decisive for the choice of the installation of the traction sheave drive on the car floor or on the car roof are ultimately the local conditions in the shaft and the possibilities for easy maintenance of the traction sheave drive.
  • the traction sheave drive is installed on the car 6, the car frame or the car main carrier is expediently supplemented by appropriate holding means.
  • the car can be suspended in a ratio of 1: 1, 2: 1 or 4: 1, depending on whether and how much loose rollers are used.
  • Single-layer round strand cables can be used as supporting cables, the individual round wires being drawn from unalloyed steel with a relatively large carbon content of 0.4% to 1%.
  • multi-layer round strand cables can also be used.
  • suspension ropes made of plastic wires or steel and plastic wires can be used.
  • the support cables have a nominal diameter of 6 mm, which enables traction sheave diameters of 240 mm and smaller.
  • the motor of the traction sheave drive itself is designed without a mechanical double emergency brake device and a double emergency brake device is arranged on the car 6 for this purpose, which has at least one guide rail on both sides for the car 6 acts.
  • the double emergency stop brake device is then preferably a two-disc caliper brake.
  • the electric motor is designed as a converter-controlled three-phase synchronous or three-phase asynchronous motor.

Abstract

Bei einem getriebelosen Seilaufzug mit einem von mehreren parallelen Tragseilen doppelt umschlungenen Treibscheibenantrieb, mit Gegenscheibe (3), einem Fahrkorb (6), Führungsschienen für den Fahrkorb (6) und einem Gegengewicht, insbesondere für eine maschinenraumlose Installation, laufen die Tragseile in Halbrund-Treibrillen und das Verhältnis Treibscheibendurchmesser zu Nenndurchmesser der Tragseile ist < 40.

Description

GETRIEBELOSER SEILAUFZUG MIT DOPPELT UMSCHLUNGENEN TREIBSCHEIBENANTRIEB
Die Erfindung betrifft einen getriebelosen Seilaufzug mit einem von mehreren parallelen Tragseilen doppelt umschlungenen Treibscheibenantrieb mit Gegenscheibe, einem Fahrkorb, Führungsschienen für den Fahrkorb und einem Gegengewicht, insbesondere für eine maschinenraumlose Installation der Aufzugsmaschine.
Bei Seilaufzügen sind Fahrkorb und Gegengewicht über das Tragmittel Seil miteinander verbunden. Das Gegengewicht gleicht die Eigenmasse des Fahrkorbs und einen Teil, meistens die Hälfte, der Nutzlast sowie die Hälfte der Eigenmasse der zum Fahrkorb führenden Hängekabel aus. Aus Sicherheitsgründen sind mindestens zwei parallel laufende Tragseile vorgeschrieben. Heutzutage werden Seilaufzüge anstelle der früher üblichen Seiltrommelantriebe mit Treibscheibenantrieben ausgerüstet, wobei die Treibscheibe auch als Treibkranz ausgeführt sein kann. Als Antriebsaggregat werden Elektromotoren verwendet. Treibscheibe und Antriebsmotor einschließlich seines energetischen und Steuer-Teils sind wesentliche Komponenten einer getriebelosen Aufzugsmaschine. Getriebelose Aufzugsmaschinen sind äußerst geräuscharm sowie klein und kostengünstig. Sie sind vorteilhafter als Aufzugsmaschinen mit Getriebe. Bei ihnen wird kein umweltgefährdendes Getriebeöl benötigt und durch den Wegfall des Getriebes verbessert sich der Wirkungsgrad. Die Aufzugsmaschine ist in einem separaten Maschinenraum oder auch direkt im Fahrzeugschacht installiert. Im letztgenannten Falle kann sie im oberen oder unteren Teil des Schachtes, seitlich im Raum für das Gegengewicht oder unmittelbar auf bzw. unter dem Fahrkorb installiert sein. Je nach der Installationsweise, der Fahrkorb-Nutzlast und weiterer Gegebenheiten, wie Förderhöhe oder Fördergeschwindigkeit, haben sich unterschiedliche Tragseilführungen herausgebildet.
Im einfachsten Fall, der Einfachaufhängung, ist das Tragseil vom Fahrkorb kommend über die im Schachtkopf oder im darüber befindlichen Maschinenraum fest installierte Treibscheibe zum Gegengewicht geführt. Es gibt aber auch andere Tragseilfϊihrungen in Mehrfachaufhängungen, die unter Verwendung von losen Rollen zugleich ein bestimmtes Übersetzungsverhältnis von Seil- zu Fahrkorbgeschwindigkeit realisieren. Wird beispielsweise der Seiltrieb mit einer losen Rolle auf dem Fahrkorb und einer losen Rolle auf dem Gegengewicht ausgeführt, verringert sich das Drehmoment des Antriebsmotors auf die Hälfte bei doppelter Drehzahl. Die Maschine wird kleiner und läßt sich problemloser im Aufzugsschacht installieren.
Zum Erhöhen oder Erzielen der erforderlichen Treib fähigkeit ist es bekannt, eine "doppelte Umschlingung" zu wählen, die dann in Verbindung mit geräusch- und verschleißgünstigeren Halbrundrillen ausgeführt wird.
Eine Anordnung mit doppelter Umschlingung durch zwei oder mehr parallele Tragseile ist beispielsweise in der DE 36 34 859 AI beschrieben. Die sich vom Fahrkorb zum Gegengewicht erstreckenden Tragseile sind zweimal um die Treibscheibe und zwischen diesen Schleifen einmal um eine Umlenkscheibe geschlungen, wobei der Berührungswinkel zwischen der Treibscheibe und den Tragseilen in beiden Schleifen um die Treibscheibe 180° übersteigt. Eine Variante mit doppelter Umschlingung und zwei Umlenkscheiben ist in Fig. 2c der EP 0 578 237 AI dargestellt.
Eine maschinenraumlose Anordnung mit doppelter Umschlingung der Treibscheibe ist in WO 99/43595 dargestellt. Gemäß Fig. 2 läuft das Tragmittel, von einem oberen Seilanschlag kommend, doppelt um Treibscheibe und Gegenscheibe, die beide am Boden des Fahrkorbes befestigt sind, im weiteren wieder nach oben, wo es an einer festen Rolle umlenkt und letztlich über eine lose Rolle am Gegengewicht zu einem zweiten oberen Seilanschlag. Treibscheibe und Gegenscheibe haben einen solchen Abstand zueinander, daß eine Umlenkrolle am Fahrkorbboden unnötig wird. Als Tragmittel sind zwei parallele Flachstränge vorgesehen, wie sie beispielsweise in der WO 99/43885 näher angegeben sind. Weitere Flachstränge sind beispielsweise in der WO 98/29327 gezeigt. Flachstränge bestehen im Gegensatz zu den gebräuchlichen Rundseilen aus mehreren kleinen, parallel laufenden, metallischen oder nichtmetallischen Litzen oder Seilen, die gemeinsam von einer flachbandartigen, nichtmetallischen Umhüllung eingeschlossen sind. Die Litzenstärke nach WO 99/43885 ermöglicht Flachstränge äußerst geringer Dicke. Nach einer gängigen Berechnungsvorschrift, wonach der Treibscheibendurchmesser mindestens dem 40-fachen Tragseildurchmesser entsprechen soll, ergeben sich Treibscheibendurchmesser von 100 mm und darunter. Kleine Treibscheibendurchmesser wirken sich direkt proportional auf das aufzubringende Drehmoment und damit auf die Baugröße der Antriebsmotoren aus. D. h., je kleiner der Treibscheibendurchmesser ist, desto weniger Drehmoment muß auf die Treibscheibe aufgebracht werden und desto kompakter und kostengünstiger kann der Antriebsmotor konstruiert sein.
Gemäß den vorangegangenen Ausführungen sind kleine Treibscheibendurchmesser im Aufzugsbau besonders vorteilhaft, da sie eine kompakte Bauweise des Antriebsmotors ermöglichen. Kleine Treibscheiben weisen jedoch den Nachteil auf, daß das Tragseil mehr beansprucht wird und die Seillebensdauer dadurch verringert wird. Um bei den Aufzügen nach dem Stand der Technik eine ausreichende Seillebensdauer zu gewährleisten, werden deshalb Treibscheibendurchmesser von mindestens dem 40fachen Tragseildurchmesser verwendet, wobei die Reduzierung des Tragseildurchmessers durch die Verwendung der oben beschriebenen Flachstränge als Treibseile mit besonders geringem Durchmesser erreicht wird.
Nachteilig an den Flachsträngen ist jedoch die Notwendigkeit des Hersteilens und Auf-Vorrat-Haltens spezieller, sehr kostenintensiver Tragmittel für alle Traglastgrößen. Außerdem sind beginnende Schäden am Tragmittel, die zu einer ernsthaften Gefährdung des Aufzugsbetriebes oder gar der Sicherheit führen können, nur mit erheblichem technologischem Aufwand oder gar nicht zu detektieren. Der Erfindung liegt die Aufgabe zugrunde, einen getriebelosen Seilaufzug mit doppelter Umschlingung so weiterzuentwickeln, daß die Nachteile der Flachstränge vermieden werden und der Aufzug eine kompakte und kostengünstige Bauweise aufweist.
Die Aufgabe wird erfindungsgemäß durch die im Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen 2 bis 21 angegeben.
Anstelle zwei oder drei extrem dünner Flachstränge werden bei dem erfindungsgemäßen Aufzug immer gleichdünne Tragseile verwendet, wobei das Verhältnis des Treibscheibendurchmessers zum Nenndurchmesser der Tragseile < 40 ist. Ein Verhältnis von im wesentlichen 30 hat sich dabei als sehr vorteilhaft erwiesen. Hierdurch werden geringe Treibscheibendurchmesser ermöglicht, wodurch eine kompakte und kostengünstige Bauweise des Antriebsmotors gewährleistet ist. Die verringerte Seillebensdauer, die sich durch einen verminderten Treibscheibendurchmesser ergibt, wird erfindungsgemäß durch die Verwendung von Halbrund-Treibrillen vermieden, in denen die Tragseile laufen. Zwar wird durch die Verwendung von Halbrundrillen die Treib fähigkeit der Antriebsscheibe vermindert, dies wird jedoch durch die Verwendung einer Doppelumschlingung kompensiert. Die Tragseile laufen in unterschnittlosen Treibrillen, jedoch können auch Treibrillen mit einem geringen Unterschnitt, vorzugsweise von 1-3 mm, verwendet werden. Ein solcher geringer Unterschnitt kann sich positiv auf die Laufeigenschaften auswirken.
Das Antriebsmoment kann bei dem erfindungsgemäßen Seilzug stark verkleinert werden, womit auch die Antriebsmaschine kleiner wird. Andererseits erfahren die Tragseile nicht einen so extremen Biegeradius und so extreme Abrollgeschwindigkeiten wie die Flachstränge auf Treibscheiben mit einem Durchmesser von < 100 mm.
Die dünnen Tragseile liegen in den dem Tragseildurchmesser exakt angepaßten Halbrundrillen der Treibscheibe sehr gut auf, wodurch Verformungen des Seils und Querpressungen vermieden werden und die Flächenpressung verringert wird. Die Tragseile erreichen dadurch eine hohe Aufliegezeit. Aufgrund des kreisrunden Querschnitts der Tragseile "finden" sich die Seile immer in den größenmäßig exakt angepaßten Halbrundril- len des Treibrades. Sie haben folglich keine Neigung, infolge Schwingungen oder ungleicher Belastung aus ihrem Bett zu wandern. Zusätzlich tritt eine nicht zu unterschätzende Geräuschminderung auf.
Der Erfindung liegt somit die Erkenntnis zugrunde, daß durch eine Kombination einer Doppelumschlingung des Treibseils mit der Führung in Halbrund-Treibrillen, das Verhältnis Treibscheibendurchmesser zu Nenndurchmesser der Tragseile reduziert werden kann, wodurch kleinere Tragseildurchmesser und somit eine kostengünstigere Bauweise des Seilaufzugs bei unvermindert langer Seillebensdauer gewährleistet wird.
Es müssen als weiterer Vorteil nicht unterschiedliche Seilstärken oder Flachstrangbreiten auf Lager gehalten werden. Man kommt mit Treibscheiben einer Rillengröße aus, wobei eine Treibscheibe zugleich über einen großen oder den gesamten Nutzlastbereich hinweg konzipiert sein kann.
Die visuelle Kontrolle der Tragseile auf Ermüdungsschäden, das manuelle Erfühlen von Drahtbrüchen mit Fühlwerkzeugen und die Wärmeabfuhr aus den Tragseilen ist gegenüber Kunststoff-Flachsträngen erheblich sicherer und einfacher. Der Bruch einer Litze, Aufdol- dungen, Quetschungen, starker Verschleiß oder Korrosion der Einzeldrähte können in kunststoffümmantelten Flachsträngen visuell gar nicht und mit magnetinduktiven Verfahren nur zum Teil festgestellt werden. Die Herstellungs- und Beschaffungskosten von Rundseilen im Vergleich zu Flachsträngen sind erheblich geringer. Es besteht keine Gefahr der Beschädigung durch Marderbisse, wie sie bei Kunststoffflachsträngen nicht auszuschließen sind. Bei unterschiedlichen Längen der Einzellitzen oder Einzelseile eines kunststoffummantelten Flachstranges verzieht sich der gesamte Flachstrang und seine Treibfähigkeit und Aufliegezeit verringert sich.
In einer besonders bevorzugten Ausfuhrungsform der Erfindung werden besonders dünne Tragseile mit einem Nenndurchmesser zwischen 5 bis 7 mm, insbesondere von < 6 mm verwendet. Mit einer Mehrzahl solcher dünner Tragseile lassen sich Anpassungen an die Fahrkorb-Nutzlast feinstufiger vornehmen. Auch ist die Schmierung und Säuberung dünner Seile effektiver als es bei dickeren Seilen der Fall ist. Demgegenüber sind bei Aufzügen mit kunststoffummantelten Flachsträngen oder wenigen dicken Tragseilen größere Abstufungen zur Anpassung an die Tragfähigkeit eines Aufzugs ein notwendiges Übel. Da eine Unterdi- mensionierung für Aufzüge nicht in Frage kommt, werden die Seile immer überdimensioniert sein, was die Aufzugsanlage verteuert
Die Erfindung soll anhand von Ausfuhrungsbeispielen näher erläutert werden. In der zugehörigen Zeichnung zeigen:
Fig. la eine prinzipielle Darstellung eines Seiltriebs mit doppelter Umschlingung in der
Seitenansicht und Fig. lb in der Draufsicht,
Fig. 2 ein Beispiel einer Schachtkopf-Installation und 2:1 -Aufhängung,
Fig. 3 ein Beispiel einer Schachtwand-Installation und 2: 1 -Aufhängung,
Fig. 4 ein Beispiel einer Fahrkorbboden-Installation und 2: 1 -Aufhängung und
Fig. 5 ein Beispiel einer Fahrkorbdach-Installation und 2:1 -Aufhängung.
In Fig. 1 ist ein an sich bekannter Seiltrieb mit doppelter Umschlingung näher dargestellt. Ein Satz Tragseile 1, bestehend im Beispiel aus 8 parallel laufenden Tragseilen mit einem Nenndurchmesser von 6 mm, wird von unten kommend über eine Treibscheibe 2 mit einem Nenndurchmesser von 240 mm und Halbrundrillen 4 zu einer Gegenscheibe 3 mit gleichfalls einem Nenndurchmesser von 240 mm geführt, umschlingt die Gegenscheibe 3, läuft zurück zur Treibscheibe 2, umschlingt die Treibscheibe 2, läuft zurück zur Gegenscheibe 3 und wird über diese wieder nach unten geführt. Statt Treibscheibe mit einem Nenndurchmesser von 240 mm können auch solche mit geringem Nenndurchmesser verwendet werden. Beispielsweise kann der Nenndurchmesser lediglich 180 mm betragen, was einem Verhältnis von Treibscheibendurchmesser zu Nenndurchmesser der Tragseile von 30 entspricht. In Fig. la ist zur besseren Übersicht nur eines der 8 Tragseile des Tragseilsatzes 1 eingezeichnet. Treibscheibe 2 und Gegenscheibe 3 sind waagerecht zueinander angeordnet dargestellt. Ebenso können sie auch senkrecht zueinander angeordnet sein. Der Abstand der Gegenscheibe 3 zur Treibscheibe 2 ist so gewählt, daß bei waagerechten Scheibenanordnung im Schachtkopf der Tragseilsatz 1 außen an den in Fig. 1 nicht dargestellten Fahrkorbseiten vorbeiläuft. Hierdurch entfällt eine ansonsten notwendige zusätzliche Umlenkscheibe.
Aus Fig. lb ist ersichtlich, daß die Gegenscheibe 3 zur Treibscheibe 2 um ein gewisses Stück versetzt ist, in der Regel um den halben Seilmittenabstand. Treibscheibe 2 und Gegenscheibe 3 können zusätzlich zu den Lotachsen leicht verdreht sein, um der spiralförmigen Umschlingung gerecht zu werden, wobei die Tragseile im Bereich der doppelten Führung wechselweise aufliegen. Die Seilablenkung läßt sich auf diese Weise minimieren. Die Tragseile laufen in Halbrundrillen der Treibscheibe 2, die dem Nenndurchmesser der Tragseile angepaßt sind und entsprechenden Rillen der Gegenscheibe 3. Dies gewährleistet nicht nur eine exakte Seilführung und hohe Lebensdauer, sondern auch infolge des flächigen Aufliegens eine ausgezeichnete Treibfähigkeit. Bei unterschnittenen Sitzrillen würden die Tragseile nur auf einem Teil der möglichen Seiloberfläche aufliegen. Dadurch und durch die Keilwirkung im Seilsitz würden sich Querpressungen und Verformungen einstellen.
Bei einer Aufhängung 2:1 und den üblichen Bedingungen für die Fahrkorbmasse und die Förderhöhe eines Personenaufzugs lassen sich mit einem Tragseilsatz von sechs 6 mm-Tragseilen Fahrkorb-Nutzlasten bis zu 450 kg bei Fahrkorbgeschwindigkeiten von 1 m/s realisieren. Es sind jedoch auch höhere Geschwindigkeiten von bis zu 2 m s oder mehr denkbar. Für höhere Nutzlasten, beispielsweise eine 630 kg Fahrkorb-Nutzlast und eine Fahrkorb geschwindigkeit von 1 m/s werden etwa 8 Tragseile aufgelegt, je nach der Bruchkraft der Tragseile, und für Fahrkorb-Nutzlasten zwischen 800 kg und 1.000 kg 9 bis 12 Tragseile, wiederum in Abhängigkeit von der Bruchkraft der Tragseile.
Die Bruchkraft der Tragseile hängt außer vom Nenndurchmesser der Tragseile entscheidend vom Material und Aufbau eines Tragseiles ab. Die wichtigsten technischen Daten wie Zugfestigkeit der Drähte, rechnerische Bruchkraft und ermittelte Bruchkraft, werden vom Hersteller in einer Werksbescheinigung angegeben und dienen dem Aufzugsbau zur Berech- nung der notwendigen Anzahl der Tragseile des Tragseilsatzes 1. Die vorgenannten Angaben können deshalb nur Anhaltswerte sein, zumal ein u.a. von der Seilnenngeschwindigkeit und der Seilführung abhängiger, hoher Sicherheitsfaktor das Ergebnis maßgeblich beeinflußt.
In Fig. 2 ist ein Beispiel für eine maschinenraumlose Installation des Treibscheibenantriebes im Schachtkopf schematisch dargestellt. Die Schachtwand 5 umgrenzt den freien Schachtraum. Von oben sieht man auf das Dach des Fahrkorbs 6. Über dem Fahrkorb 6 ist der Treibscheibenantrieb mit dem Antriebsmotor 7, der Treibscheibe 2 mit einem entsprechenden Nenndurchmesser von etwa 240 mm und der Gegenscheibe 3 mit einem Nenndurchmesser von etwa 240 mm im Schachtkopf so installiert, daß der die Treibscheibe 2 doppelt umschlingende Tragseilsatz 1 mit seinen 6 mm-Tragseilen an den Seitenwänden des Fahrkorbs 6 vorbei direkt nach unten läuft, wobei ein Ende des Tragseilsatzes 1 zwei Umlenkscheiben 8, 9, die als "Unterflasche" am Fahrkorbboden befestigt sind, umschlingt und nach oben zu einem ersten Seilanschlag 10 läuft und das andere Ende des Tragseilsatzes 1 eine am Gegengewicht 11 installierte Umlenkscheibe 12 umschlingt und dann zu einem zweiten Seilanschlag 13 nach oben läuft. Das Gegengewicht 11 und seine Umlenkscheibe 12 laufen seitlich zwischen der Schachtwand 5 und einer Seitenwand des Fahrkorbes 6. Die Seilführung, mit der ein 2:1 -Übersetzungsverhältnis der Seilgeschwindigkeit an der Treibscheibe 2 zur Fahrkorbgeschwindigkeit bei halbiertem Treibmoment erreicht wird, kommt dem Einsatz eines kleinen, schneller laufenden Antriebsmotors 7 mit kleiner Treibscheibe 2 und dünnen Tragseilen sehr entgegen und ist schematisch nochmals gesondert dargestellt. Die Befestigungsmittel für den Treibscheibenantrieb im Schachtkopf sind ebenso weggelassen wie die seitlichen Führungsschienen für den Fahrkorb und weitere Komponenten eines üblichen Seilaufzuges.
Wird der Treibscheibenantrieb anstatt in einem Schachtkopf in einer Schachtgrube installiert, werden zwei weitere Umlenkrollen notwendig, was die Anzahl der Biegewechsel der Tragseile erhöht und ihre Seillebensdauer verringert. Bei Rekonstruktionen wird man infolge der baulichen Gegebenheiten allerdings auf eine derartige Lösung kaum verzichten können. Fig. 3 zeigt die Installation eines Treibscheibenantriebes an einer Schachtwand 5. Bei diesem Beispiel sind die Treibscheibe 2 und die Gegenscheibe 3 untereinander im verlängerten Raum für das Gegengewicht 11 angeordnet. Der Satz Tragseile 1 läuft von einem ersten Seilanschlag 10 über die Umlenkrollen 8, 9 zum Treibscheibenantrieb 3, 2, umschlingt die vom Antriebsmotor 7 angetriebene Treibscheibe 2 doppelt, läuft zur Umlenkrolle 12, an der das Gegengewicht 11 hängt, und läuft letztlich zu dem zweiten Seilanschlag 13. Die Umlenkrollen 8, 9 können sowohl auf dem Dach des Fahrkorbes 6 als auch unter dem Boden des Fahrkorbes 6 befestigt sein. Beide Varianten sind schematisch dargestellt. Die beschriebenen Tragseilführung realisiert eine 2:1 -Aufhängung.
Ist der Treibscheibenantrieb oben, unten oder seitlich im Schacht fest installiert, so wird er zweckmäßigerweise am Aufzugsrahmen befestigt.
In Fig. 4 ist der Treibscheibenantrieb am Boden des Fahrkorbes 6 installiert. Der Satz Tragseile 1 läuft von dem ersten Seilanschlag 10 um die Gegenscheibe 3 und die Treibscheibe 2 herum, die beide am Boden des Fahrkorbes 6 befestigt sind, im weiteren nach oben, über eine Umlenkrolle 14, umschlingt die Umlenkrolle 12 am Gegengewicht und ist letztlich mit dem zweiten Ende am zweiten Seilanschlag 13 befestigt. Es wird wiederum eine 2:1 -Aufhängung realisiert.
Gemäß Fig. 5 ist der Treibscheibenantrieb auf dem Dach des Fahrkorbes 6 installiert. Die Seilführung entspricht der Seilführung nach Fig. 4. Entscheidend für die Wahl der Installation des Treibscheibenantriebes am Fahrkorbboden oder auf dem Fahrkorbdach sind letztendlich die örtlichen Gegebenheiten im Schacht und die Möglichkeiten für eine behinderungsarme Wartung des Treibscheibenantriebes.
Ist der Treibscheibenantrieb am Fahrkorb 6 installiert, so wird der Fahrkorbrahmen oder der Fahrkorbhauptträger zweckmäßigerweise um entsprechende Haltemittel ergänzt.
Die Fahrkorbaufhängung kann im Verhältnis 1 : 1, 2:1 oder auch 4:1 erfolgen, je nachdem, ob und wieviel lose Rollen eingesetzt werden. Als Tragseile können einlagige Rundlitzenseile eingesetzt werden, wobei die einzelnen Runddrähte aus unlegiertem Stahl mit einem relativ großen Gehalt an Kohlenstoff von 0,4 % bis 1 % gezogen sind. Es können aber auch mehrlagige Rundlitzenseile verwendet werden. Ferner sind Tragseile aus Kunststoffdrähten oder Stahl- und Kunststoffdrähten einsetzbar. Ein bevorzugter Kunststoff, weil hoch reißfest, ist beispielsweise Aramid.
Die Tragseile besitzen in einer bevorzugten Ausgestaltung der Erfindung einen Nenndurchmesser von 6 mm, was Treibscheibedurchmesser von 240 mm und kleiner ermöglicht.
Zur zusätzlichen Verkleinerung des Treibscheibenantriebes und zur Erhöhung seiner Lebensdauer trägt bei, wenn in einer weiteren Ausgestaltung der Motor des Treibscheibenantriebes selbst ohne mechanische Doppel-Nothaltebremsvorrichtung ausgeführt ist und dafür eine Doppel-Nothaltebremsvorrichtung am Fahrkorb 6 angeordnet ist, die auf beide Seiten mindestens einer Führungsschiene für den Fahrkorb 6 wirkt. Vorzugsweise ist dann die Doppel-Nothaltebremsvorrichtung eine Zweischeiben-Zangenbremse. Der Elektromotor ist nach einer weiteren bevorzugten Ausbildung als Umrichter- gesteuerter Drehstrom-Synchron- oder Drehstrom- Asynchronmotor ausgebildet.
Bezugszeichen
1 Satz Tragseile
2 Treibscheibe
3 Gegenscheibe
4 Halbrundrillen
5 Schachtwand
6 Fahrkorb
7 Antriebsmotor
8 Umlenkscheibe
9 Umlenkscheibe
10 Seilanschlag
11 Gegengewicht
12 Umlenkscheibe
13 Seilanschlag
14 Umlenkscheibe

Claims

Patentansprüche
1. Getriebeloser Seilaufzug mit einem von mehreren parallelen Tragseilen doppelt umschlungenen Treibscheibenantrieb mit Gegenscheibe (3), einem Fahrkorb (6), Führungsschienen für den Fahrkorb (6) und einem Gegengewicht (11), insbesondere für eine maschinenraumlose Installation, dadurch gekennzeichnet, daß die Tragseile in Halbrund-Treibrillen laufen und das Verhältnis Treibscheibendurchmesser zu Nenndurchmesser der Tragseile < 40 ist.
2. Getriebeloser Seilaufzug nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis Treibscheibendurchmesser zu Nenndurchmesser der Tragseile im wesentlichen 30 ist.
3. Getriebeloser Seilaufzug nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Treibrillen unterschnittlos sind.
4. Getriebeloser Seilaufzug nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Treibrillen einen geringen Unterschnitt, vorzugsweise einen Unterschnitt von 1 bis 3 mm, aufweisen.
5. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Tragseile einen Nenndurchmesser zwischen 5 bis 7 mm, insbesondere von < 6 mm aufweisen.
6. Getriebeloser Seilaufzug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er für Fahrkorb-Nutzlasten von bis zu 2.000 kg konfiguriert ist und Tragseile mit einem Nenndurchmesser von im wesentlichen 7 mm aufweist, wobei das Verhältnis Treibscheibendurchmesser zu Nenndurchmesser der Tragseile vorzugsweise ca. 34 ist.
7. Getriebeloser Seilaufzug nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß er für Fahrkorb-Nutzlasten bis zu 2.000 kg, insbesondere zwischen 300 kg und 1.000 kg konfiguriert ist.
8. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gegenscheibe (3) zugleich eine abstandsgebende Umlenkscheibe ist.
9. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Anpassung an die auftretenden Seilkräfte allein die Anzahl von aufgelegten Tragseilen im Treibscheibenantrieb veränderbar ist.
10. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Treibscheibe (2) und die Gegenscheibe (3) des Treibscheibenantriebes waagerecht zueinander und im Bereich des Schachtkopfes oder im Bereich der Schachtgrube angeordnet sind.
11. Getriebeloser Seilaufzug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Treibscheibe (2) und die Gegenscheibe (3) des Treibscheibenantriebs senkrecht zueinander und im Bereich des verlängerten Gegengewichtraumes im Schacht angeordnet sind.
12. Getriebeloser Seilaufzug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Treibscheibe (2) und die Gegenscheibe (3) des Treibscheibenantriebes am Boden oder Dach des Fahrkorbes (6) angebracht sind.
13. Getriebeloser Seilaufzug nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Treibscheibenantrieb am Aufzugsrahmen befestigt ist.
14. Getriebeloser Seilaufzug nach Anspruch 12, dadurch gekennzeichnet, daß die
Halteelemente für den Treibscheibenantrieb in den Fahrkorbrahmen oder Fahrkorb-Hauptträger integriert sind.
15. Getriebeloser Seilaufzug nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Fahrkorbaufhängung im Verhältnis 1:1 erfolgt.
16. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Lose-Rollen-Fahrkorbaufhängung im Verhältnis 2:1 oder 4:1 erfolgt.
17. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Tragseile stählerne Seile, vorzugsweise einlagige Rundlitzenseile sind.
18. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Motor des Treibscheibenantriebes ein Drehstromasynchronoder Drehstromsynchronmotor ist.
19. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Motor des Treibscheibenantriebes ohne mechanische Not- halte-Bremsvorrichtung ausgeführt ist.
20. Getriebeloser Seilaufzug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß am Fahrkorb (6) eine Doppelbremse als Nothalte-Brems- vorrichtung angeordnet ist, die auf beide Seiten mindestens einer Führungsschiene für den Fahrkorb (6) wirkt.
21. Getriebeloser Seilaufzug nach Anspruch 20, dadurch gekennzeichnet, daß die
Bremsvorrichtung eine Zweischeiben-Zangenbremse ist.
PCT/EP2001/015380 2001-01-04 2001-12-31 Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb WO2002053486A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0116709-0A BR0116709B1 (pt) 2001-01-04 2001-12-31 elevador operado a cabo de tração direta.
EP01989626A EP1347931B1 (de) 2001-01-04 2001-12-31 Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb
DE50107638T DE50107638D1 (de) 2001-01-04 2001-12-31 Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb
KR1020037008817A KR100725693B1 (ko) 2001-01-04 2001-12-31 이중 권선 드라이브 디스크 구조를 가지는 기어레스케이블 승강기
JP2002554612A JP2004520245A (ja) 2001-01-04 2001-12-31 ギア無しケーブル作動エレベータ
AU2002228028A AU2002228028B2 (en) 2001-01-04 2001-12-31 Gearless cable lift with a dual wind drive disk mechanism
AT01989626T ATE305896T1 (de) 2001-01-04 2001-12-31 Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb
UA2003077244A UA76442C2 (uk) 2001-01-04 2001-12-31 Безредукторний канатний підйомник з двічі обвитим ведучим шківом

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10100707 2001-01-04
DE10100707.8 2001-01-04
DE10139339 2001-08-10
DE10139339.3 2001-08-10

Publications (1)

Publication Number Publication Date
WO2002053486A1 true WO2002053486A1 (de) 2002-07-11

Family

ID=26008195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/015380 WO2002053486A1 (de) 2001-01-04 2001-12-31 Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb

Country Status (14)

Country Link
US (1) US20040129501A1 (de)
EP (1) EP1347931B1 (de)
JP (1) JP2004520245A (de)
KR (1) KR100725693B1 (de)
CN (1) CN1285499C (de)
AT (1) ATE305896T1 (de)
AU (1) AU2002228028B2 (de)
BR (1) BR0116709B1 (de)
CZ (1) CZ299209B6 (de)
DE (2) DE10164548A1 (de)
ES (1) ES2209675T3 (de)
RU (1) RU2278812C2 (de)
UA (1) UA76442C2 (de)
WO (1) WO2002053486A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1327598A1 (de) * 2002-01-09 2003-07-16 Kone Corporation Aufzug mit Antrieb mit kleiner Baugrösse
WO2003091143A1 (fr) 2002-04-26 2003-11-06 Toshiba Elevator Kabushiki Kaisha Ascenseur sans local de machinerie
WO2004028949A1 (en) * 2002-09-24 2004-04-08 Toshiba Elevator Kabushiki Kaisha Elevator system having no machineroom
EP1652809A2 (de) * 2004-10-28 2006-05-03 Wittenstein AG Verfahren zum Umrüsten eines maschinenraumlosen Aufzuges, insbesondere Treibscheibenaufzuges
US7040456B2 (en) * 2003-12-01 2006-05-09 Inventio Ag Elevator car drive and support belt having a twisted orientation
ES2268924A1 (es) * 2004-03-09 2007-03-16 Nork 2, S.L Elevador con sistema de traccion compacto.
CN1330553C (zh) * 2003-03-06 2007-08-08 因温特奥股份公司 电梯
KR100789518B1 (ko) * 2002-09-24 2007-12-28 도시바 엘리베이터 가부시키가이샤 기계실을 갖지 않는 엘리베이터 시스템
WO2008080632A1 (en) * 2006-12-29 2008-07-10 S.A.L.A. Consulting S.A.S. Di Sara Faletto & C. Arrangement of brake onto lift deflection pulley and improved rope wrappings
US7681692B2 (en) 2002-09-05 2010-03-23 Inventio Ag Drive motor for an elevator installation and method of mounting a drive motor
CN102295214A (zh) * 2011-08-10 2011-12-28 上海微频莱机电科技有限公司 一种塔筒升降机的升降机构
DE102012100791A1 (de) * 2012-01-31 2013-08-01 ThyssenKrupp Fördertechnik GmbH Zugmittel-Windenvorrichtung
EP2639194A1 (de) * 2012-03-15 2013-09-18 ThyssenKrupp Aufzugswerke GmbH Treibscheibenaufzug ohne Triebwerksraum
US9315363B2 (en) 2000-12-08 2016-04-19 Kone Corporation Elevator and elevator rope
US9315938B2 (en) 2001-06-21 2016-04-19 Kone Corporation Elevator with hoisting and governor ropes
US9573792B2 (en) 2001-06-21 2017-02-21 Kone Corporation Elevator

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20021959A (fi) * 2002-11-04 2004-05-05 Kone Corp Hissi
FI119237B (fi) * 2003-01-31 2008-09-15 Kone Corp Hissi, menetelmä hissin muodostamiseksi ja tasauslaitteiston käyttö
FI117433B (fi) 2000-12-08 2006-10-13 Kone Corp Hissi ja hissin vetopyörä
FI117434B (fi) * 2000-12-08 2006-10-13 Kone Corp Hissi ja hissin vetopyörä
PT1604939E (pt) * 2001-11-23 2008-04-10 Inventio Ag Ascensor, compreendendo um órgão de transmissão do género de uma correia, em particular uma correia com nervuras em v, servindo de órgão de suporte e/ou de órgão de tracção
DE10257564A1 (de) * 2002-12-10 2004-07-08 Ziehl-Abegg Ag Treibscheibenaufzug
DE10319731B4 (de) * 2003-04-30 2005-06-02 Wittur Ag Aufzug
DE10348151A1 (de) * 2003-10-13 2005-05-19 Wittur Ag Antriebssystem für enge Triebwerksräume
RU2300490C2 (ru) * 2003-10-13 2007-06-10 Виттур АГ Система привода для размещения в тесных помещениях
CN1875239B (zh) * 2003-10-29 2011-06-01 昭和电工株式会社 热交换器
US8172041B2 (en) * 2004-06-01 2012-05-08 Toshiba Elevator Kabushiki Kaisha Machine room-less elevator
ITBO20040396A1 (it) * 2004-06-24 2004-09-24 Sassi Alberto Spa Unita' di movimentazione per ascensori e montacarichi
RU2324636C2 (ru) * 2005-10-28 2008-05-20 Илья Борисович Извозчиков Устройство для укладывания предметных стекол в планшеты
CN101088901B (zh) * 2006-06-13 2012-05-02 上海三菱电梯有限公司 无机房电梯装置
RU2459762C2 (ru) * 2006-06-26 2012-08-27 Отис Элевейтэ Кампэни Грузоподъемная система (варианты)
CN102232047B (zh) * 2008-12-18 2016-04-20 托马电梯有限责任公司 用于电梯设备的井体
CN101955111B (zh) * 2009-07-14 2012-05-02 上海德圣米高电梯有限公司 一种改进的用于电梯的提升机构
EP2969877B1 (de) * 2013-03-15 2020-10-07 Otis Elevator Company Asymmetrische und gelenkte scheiben für aufzugsanlagen mit verdrillten riemen
ES2564378T3 (es) * 2013-08-26 2016-03-22 Kone Corporation Un ascensor
ES2817407T3 (es) * 2013-11-25 2021-04-07 Otis Elevator Co Bancada para sistema de ascensor
CN108163675A (zh) * 2017-12-28 2018-06-15 洛阳矿山机械工程设计研究院有限责任公司 一种改进型井塔式多绳摩擦式提升系统
DE102022001560A1 (de) 2022-05-04 2023-11-09 Meik Schröder Maschinenraumloses Aufzugssystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117957A (ja) * 1993-10-28 1995-05-09 Mitsubishi Electric Corp エレベーター装置
EP0672781A1 (de) * 1994-03-02 1995-09-20 Inventio Ag Seil als Tragmittel für Aufzüge
WO1999043595A2 (en) * 1998-02-26 1999-09-02 Otis Elevator Company Machine-roomless elevator system with an elevator machine mounted on an elevator car
WO2000027739A1 (en) * 1998-11-05 2000-05-18 Kone Corporation Traction sheave elevator

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838752A (en) * 1972-07-06 1974-10-01 Westinghouse Electric Corp Elevator system
US4030569A (en) * 1975-10-07 1977-06-21 Westinghouse Electric Corporation Traction elevator system having cable groove in drive sheave formed by spaced, elastically deflectable metallic ring members
US4158283A (en) * 1977-01-05 1979-06-19 Nation Milton A Cable stress and fatigue control
KR890002052B1 (ko) * 1983-09-21 1989-06-15 미쓰비시전기주식회사 트랙션(traction)식엘리베이터 장치
US4624097A (en) * 1984-03-23 1986-11-25 Greening Donald Co. Ltd. Rope
FI77207C (fi) * 1986-05-29 1989-02-10 Kone Oy Drivskivehiss.
FR2644765B2 (fr) * 1988-06-08 1991-07-05 Leroy Somer Frein electromagnetique a machoires de serrage
FI96302C (fi) * 1992-04-14 1996-06-10 Kone Oy Vetopyörähissi
FI92182C (fi) * 1992-07-07 1994-10-10 Kone Oy Vetopyörähissi
JPH06263369A (ja) * 1993-03-12 1994-09-20 Daiichi Shisetsu Kogyo Kk 昇降機
FI93340C (fi) * 1993-06-28 1995-03-27 Kone Oy Hissikoneisto
FI94123C (fi) * 1993-06-28 1995-07-25 Kone Oy Vetopyörähissi
FR2707309B1 (fr) * 1993-07-09 1995-08-11 Trefileurope France Sa Câble de levage.
JP2702074B2 (ja) * 1994-09-16 1998-01-21 東京製綱株式会社 難自転性ワイヤロープ
JPH08113888A (ja) * 1994-10-12 1996-05-07 Tokyo Seiko Co Ltd 高耐久性ケーブル
JPH0995879A (ja) * 1995-10-03 1997-04-08 Tokyo Seiko Co Ltd 高強度の難自転性ワイヤロープ
JPH107351A (ja) * 1996-06-20 1998-01-13 Hitachi Ltd エレベータ
US5975826A (en) * 1998-03-17 1999-11-02 Scholder; Perry L. Hand-truck with attachments
JPH11310372A (ja) * 1998-04-28 1999-11-09 Toshiba Elevator Co Ltd エレベータ装置
US7137483B2 (en) * 2000-03-15 2006-11-21 Hitachi, Ltd. Rope and elevator using the same
JP2002080178A (ja) * 2000-09-04 2002-03-19 Mitsubishi Electric Corp エレベータ装置
JP4726295B2 (ja) * 2000-12-19 2011-07-20 東芝エレベータ株式会社 エレベータ
FI109897B (fi) * 2001-03-19 2002-10-31 Kone Corp Hissi ja hissin vetopyörä
JP4350988B2 (ja) * 2003-07-14 2009-10-28 東芝エレベータ株式会社 マシンルームレスエレベータ
US8172041B2 (en) * 2004-06-01 2012-05-08 Toshiba Elevator Kabushiki Kaisha Machine room-less elevator
JP5046489B2 (ja) * 2005-03-01 2012-10-10 東芝エレベータ株式会社 エレベータ
WO2007127453A1 (en) * 2006-04-28 2007-11-08 Electronic Theater Controls, Inc. Lift assembly, system, and method
FI118534B (fi) * 2006-05-08 2007-12-14 Kone Corp Menetelmä hissin nostoköysistön vaihtamiseksi ja vaihtamisessa käytettävä vetolaitejärjestely

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117957A (ja) * 1993-10-28 1995-05-09 Mitsubishi Electric Corp エレベーター装置
EP0672781A1 (de) * 1994-03-02 1995-09-20 Inventio Ag Seil als Tragmittel für Aufzüge
WO1999043595A2 (en) * 1998-02-26 1999-09-02 Otis Elevator Company Machine-roomless elevator system with an elevator machine mounted on an elevator car
WO2000027739A1 (en) * 1998-11-05 2000-05-18 Kone Corporation Traction sheave elevator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08 29 September 1995 (1995-09-29) *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315363B2 (en) 2000-12-08 2016-04-19 Kone Corporation Elevator and elevator rope
US9573792B2 (en) 2001-06-21 2017-02-21 Kone Corporation Elevator
US9315938B2 (en) 2001-06-21 2016-04-19 Kone Corporation Elevator with hoisting and governor ropes
US8556041B2 (en) 2002-01-09 2013-10-15 Kone Corporation Elevator with traction sheave
AU2003201170B2 (en) * 2002-01-09 2008-01-10 Kone Corporation Elevator with small-sized driving gear
WO2003057611A3 (en) * 2002-01-09 2004-04-08 Kone Corp Elevator with small-sized driving gear
US9446931B2 (en) 2002-01-09 2016-09-20 Kone Corporation Elevator comprising traction sheave with specified diameter
EP1327598A1 (de) * 2002-01-09 2003-07-16 Kone Corporation Aufzug mit Antrieb mit kleiner Baugrösse
WO2003091143A1 (fr) 2002-04-26 2003-11-06 Toshiba Elevator Kabushiki Kaisha Ascenseur sans local de machinerie
EP1500622A1 (de) * 2002-04-26 2005-01-26 Toshiba Elevator Kabushiki Kaisha Aufzug ohne maschinenraum
EP1500622A4 (de) * 2002-04-26 2009-05-20 Toshiba Elevator Kk Aufzug ohne maschinenraum
US7681692B2 (en) 2002-09-05 2010-03-23 Inventio Ag Drive motor for an elevator installation and method of mounting a drive motor
US7757818B2 (en) 2002-09-05 2010-07-20 Inventio Ag Drive motor for an elevator installation and method of mounting a drive motor
CN100358793C (zh) * 2002-09-24 2008-01-02 东芝电梯株式会社 无机房的电梯系统
KR100789518B1 (ko) * 2002-09-24 2007-12-28 도시바 엘리베이터 가부시키가이샤 기계실을 갖지 않는 엘리베이터 시스템
WO2004028949A1 (en) * 2002-09-24 2004-04-08 Toshiba Elevator Kabushiki Kaisha Elevator system having no machineroom
AU2004200882B2 (en) * 2003-03-06 2008-11-13 Inventio Ag Lift
CN1330553C (zh) * 2003-03-06 2007-08-08 因温特奥股份公司 电梯
US7040456B2 (en) * 2003-12-01 2006-05-09 Inventio Ag Elevator car drive and support belt having a twisted orientation
ES2268924A1 (es) * 2004-03-09 2007-03-16 Nork 2, S.L Elevador con sistema de traccion compacto.
EP1652809A2 (de) * 2004-10-28 2006-05-03 Wittenstein AG Verfahren zum Umrüsten eines maschinenraumlosen Aufzuges, insbesondere Treibscheibenaufzuges
EP1652809A3 (de) * 2004-10-28 2009-12-30 Wittenstein AG Verfahren zum Umrüsten eines maschinenraumlosen Aufzuges, insbesondere Treibscheibenaufzuges
WO2008080632A1 (en) * 2006-12-29 2008-07-10 S.A.L.A. Consulting S.A.S. Di Sara Faletto & C. Arrangement of brake onto lift deflection pulley and improved rope wrappings
CN102295214A (zh) * 2011-08-10 2011-12-28 上海微频莱机电科技有限公司 一种塔筒升降机的升降机构
DE102012100791A1 (de) * 2012-01-31 2013-08-01 ThyssenKrupp Fördertechnik GmbH Zugmittel-Windenvorrichtung
EP2639194A1 (de) * 2012-03-15 2013-09-18 ThyssenKrupp Aufzugswerke GmbH Treibscheibenaufzug ohne Triebwerksraum

Also Published As

Publication number Publication date
JP2004520245A (ja) 2004-07-08
KR20030064890A (ko) 2003-08-02
CZ20031764A3 (cs) 2004-11-10
BR0116709A (pt) 2003-12-23
EP1347931A1 (de) 2003-10-01
US20040129501A1 (en) 2004-07-08
UA76442C2 (uk) 2006-08-15
EP1347931B1 (de) 2005-10-05
CN1484608A (zh) 2004-03-24
RU2003123506A (ru) 2005-02-10
DE50107638D1 (de) 2006-02-16
ATE305896T1 (de) 2005-10-15
ES2209675T1 (es) 2004-07-01
CZ299209B6 (cs) 2008-05-21
AU2002228028B2 (en) 2006-04-13
KR100725693B1 (ko) 2007-06-07
ES2209675T3 (es) 2006-02-16
CN1285499C (zh) 2006-11-22
BR0116709B1 (pt) 2011-11-01
RU2278812C2 (ru) 2006-06-27
DE10164548A1 (de) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1347931B1 (de) Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb
EP1446352B1 (de) Aufzugssystem
DE69933199T2 (de) Aufzugssystem mit einem zwischen der aufzugskabine und der schachtwand angeordneten antriebsmotor
DE19632850C2 (de) Treibscheibenaufzug ohne Gegengewicht
EP1700809B1 (de) Aufzuganlage
DE69908908T2 (de) Maschinenraumloses aufzugssystem mit aufzugsantrieb im aufzugskabine
DE69926988T2 (de) Aufzugsystem mit an der Schachttür anliegendem Antrieb
DE69936206T2 (de) Aufzugssystemmit am untererem teil des schachtes angeordnetem antrieb
DE102012100791A1 (de) Zugmittel-Windenvorrichtung
DE60315027T2 (de) Aufzug
DE102006037253A1 (de) Aufzugsanlage
DE20122517U1 (de) Getriebeloser Seilaufzug
DE60315873T2 (de) Antriebsscheibenaufzug ohne gegengewicht
DE10319731B4 (de) Aufzug
EP1867597B1 (de) Aufzug
DE10300992A1 (de) Aufzug mit getrennter Fahrkorbaufhängung
AT404826B (de) Winde mit parallel zum einlaufenden seil angeordneter seiltrommel
DE19860458C1 (de) Seiltrieb für Gebäudeaufzüge
EP3235770B1 (de) Verfahren zur nachrüstung eines aufzugs und korrespondierender aufzug
DE20321733U1 (de) Gegengewichtsloser Treibscheibenaufzug
DE20211540U1 (de) Getriebeloser Seilaufzug
DE102004048145A1 (de) Antriebseinheit für seilbetriebene Förderanlagen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PV2003-1764

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1020037008817

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018217281

Country of ref document: CN

Ref document number: 2002554612

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001989626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002228028

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1143/DELNP/2003

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020037008817

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001989626

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2003-1764

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2001989626

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002228028

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: PV2003-1764

Country of ref document: CZ