WO2002031192A1 - Procede de construction d"un autoassemblage de sondes et leur procede de detection - Google Patents

Procede de construction d"un autoassemblage de sondes et leur procede de detection Download PDF

Info

Publication number
WO2002031192A1
WO2002031192A1 PCT/JP2001/008806 JP0108806W WO0231192A1 WO 2002031192 A1 WO2002031192 A1 WO 2002031192A1 JP 0108806 W JP0108806 W JP 0108806W WO 0231192 A1 WO0231192 A1 WO 0231192A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
region
side region
dimer
self
Prior art date
Application number
PCT/JP2001/008806
Other languages
English (en)
French (fr)
Inventor
Mitsugu Usui
Mari Mitsuka
Chikako Hakii
Original Assignee
Sanko Junyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Junyaku Co., Ltd. filed Critical Sanko Junyaku Co., Ltd.
Priority to JP2002534557A priority Critical patent/JP3912595B2/ja
Priority to US10/149,187 priority patent/US7122310B2/en
Priority to EP01974720A priority patent/EP1304386B1/en
Priority to AU2001294199A priority patent/AU2001294199A1/en
Priority to DE60123626T priority patent/DE60123626T2/de
Publication of WO2002031192A1 publication Critical patent/WO2002031192A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a probe for forming a plurality of dimers comprising a pair of oligonucleotides, a method for producing a self-assembly using the probe for forming a dimer, a self-assembly formed, and a method for detecting a self-assembly formed .
  • the complementary parts intersect alternately using multiple pairs of a pair of probes (hereafter, sometimes referred to as HCP) consisting of n (n ⁇ 3) force points.
  • HCP a pair of probes
  • n n ⁇ 3 force points.
  • a method for producing a probe self-assembly that forms a double-stranded self-assembly by hybridization as described above US Pat. No. 6,261,846, Japanese Patent Application Laid-Open No. 2000-200168, And Japanese Patent Application No. 2000-978797, hereinafter referred to as the PALS AR (Probe alternation link self-assembly reaction) method).
  • the target gene was detected by the formation of a double-stranded self-assembly, but the oligonucleotide used to detect the target gene was detected because only two oligonucleotide probes were used. ⁇ The area of the lobe and the area where fluorescent dyes, enzymes, or antibodies are labeled were limited.
  • Hybridization was carried out so that only a pair of oligonucleotides and probes crossed alternately to form a double-stranded self-assembly.
  • each oligonucleotide ⁇ A probe is prepared as a plurality of dimer probes in advance, and by increasing the types thereof, the self-assembly is further improved than before.
  • the reaction time for body formation can be shortened, and the area of oligonucleotides and probes that can be used to detect target genes has been increased, and the area for labeling fluorescent dyes, enzymes, or antibodies has been increased. It is an object of the present invention to provide a new probe self-assembly preparation method and a method for detecting a self-assembly formed by the self-assembly preparation method.
  • EIA Enzym-Immno-Atsusei fluorescent labeling method
  • the oligonucleotides are self-assembled by hybridizing multiple pairs of dimer-forming probes up to the first system and the second system. It is characterized by forming a self-assembly of the main chain.
  • each oligonucleotide of a pair of oligonucleotides of No. 1 and No. 2 is used for the 3′-side region, the central region, and the 5′-side region.
  • the oligonucleotides are self-assembled by hybridizing multiple pairs of dimer-forming probes up to the first system and the second system. It is characterized by forming a self-assembly.
  • n-th system (n is an integer of 2 or more), form a plurality of
  • the oligonucleotides are self-assembled by hybridizing multiple pairs of dimer-forming probes from the first system to the n-th system. It is characterized by forming a body.
  • each oligonucleotide of a pair of oligonucleotides No. 1 and No. contains a pair of dimer-forming probes in which the central region of each oligonucleotide is a complementary nucleotide sequence and the 3'-side region and the 5'-side region are non-complementary nucleotide sequences.
  • a plurality of systems are formed in order from the first system to the n-th system (n is an integer of 2 or more), and (a) the 3 ′ side region of the No. 1_oligonucleotide of the (n ⁇ 1) th system and the 3 ′ side region of the No. 2-oligonucleotide of the nth system,
  • the oligonucleotides are self-assembled by hybridizing multiple pairs of dimer-forming probes from the first system to the n-th system. It is characterized by forming a body.
  • the nucleic acid constituting the dimer formation probe is usually composed of DNA or RNA, but may be a nucleic acid analog.
  • nucleic acid analogs for example, peptide nucleic acids (PNA, W092 / 20702) and Locked 'Nucleic Acid (LNA, Koshkin AA et al. Tetrahedron 1998.54, 3607-3630., Koshkin AA et al. J. Am. Chem. Soc. 1998.120, 13252-13253., Wahlestedt C et al. PNAS. 2000.97, 5633-5638.).
  • PNA peptide nucleic acids
  • LNA Locked 'Nucleic Acid
  • a pair of dimer forming probes is usually composed of the same kind of nucleic acid, but for example, a DNA probe and an RNA probe may be paired. That is, whether the type of nucleic acid of the probe is DNA, RNA, or a nucleic acid analog (for example, PNA or LNA) You can choose from.
  • the nucleic acid composition in one probe does not need to be composed of only one kind of DNA, for example, only DNA. If necessary, for example, a probe composed of DNA and RNA (chimeric probe) may be used. Both are possible and are included in the present invention.
  • Hybridization of a plurality of pairs of dimer preparation probes is performed by forming a dimer probe with a pair of dimer preparation probes in advance, and then dimerizing the dimer probes formed in each system. It is preferable to have them zealize.
  • the self-assembly of the present invention is formed by the method for producing a self-assembly described above.
  • the intensity of the ultraviolet absorption band at 260 nm is reduced because the bases have a regular high-order structure. It is possible to confirm the state of the self-assembly by developing a light-colored effect called “hypokalism”.
  • an inexpensive fluorescent substance is introduced during the stacking of bases of the self-assembly, and the state of the self-assembly can be confirmed from a change in the fluorescence intensity. It is a technology with excellent economic effect that allows easy gene detection.
  • the presence of the self-assembly is detected by utilizing a change in photochemical absorption of ultraviolet light of the self-assembly formed by the method for producing a self-assembly. It is characterized by doing.
  • a fluorescent substance having a property of binding to a nucleic acid is added to a base pair of the self-assembly formed by the method for producing a self-assembly.
  • the presence of the self-assembly is detected by a photochemical change of a fluorescent substance.
  • the oligonucleotide is divided into three regions: a central region and a 5'-side region.
  • the central region of each oligonucleotide is a complementary base sequence, and the 3'-side region and the 5'-side region are non-complementary bases.
  • the second aspect of the probe for forming a dimer of the present invention is characterized in that each oligonucleotide of a pair of oligonucleotides No. 1 and No. 2
  • the nucleotide is divided into three regions, a 3 'side region, a central region, and a 5' side region.
  • the central region of each oligonucleotide is a complementary nucleotide sequence, and the 3 'side region and the 5' side region are defined.
  • each oligonucleotide of the pair of oligonucleotides No. 1 and No. 2 is divided into three regions of a 3 ′ side region, a central region, and a 5 ′ side region.
  • a pair of dimer-forming probes in which the central region of each oligonucleotide is a complementary base sequence and the 3 ''-side region and the 5'-side region are non-complementary base sequences. From the first system to the n-th system (n is an integer of 2 or more), form a plurality of
  • the fourth aspect of the dimer one forming probes of t present invention characterized by having a base sequence complementary to the structure each other, each of N o. 1 and N o. 2 of the pair of oligonucleotides
  • the oligonucleotide is divided into three regions: a 3'-side region, a central region, and a 5'-side region.
  • the central region of each oligonucleotide is a complementary nucleotide sequence
  • the 3'-side region and the 5'-side region Are formed in order from the first system to the n-th system (where n is an integer of 2 or more), including a pair of dimer-forming probes having non-complementary nucleotide sequences to each other.
  • the dimer formation probe is composed of a base selected from DNA, RNA, PNA and LNA.
  • the dimer probe of the present invention is formed by hybridizing the pair of dimer forming probes.
  • FIG. 1 is a schematic diagram showing one example of the production of two sets of dimer probes in the method for producing a self-assembly of the present invention, wherein (a) shows a pair of dimer formation probes of the first system. (B) shows the formation of the dimer probe, and (b) shows the formation of the dimer probe by the pair of dimer formation probes of the second system, respectively.
  • FIGS. 2A and 2B are schematic diagrams showing an example of the formation of a self-assembly by the two sets of dimer probes shown in FIG. 1, wherein FIG. 2A shows two sets of dimer probes, and FIG. Show the body respectively.
  • FIG. 3 is a schematic diagram showing another example of the production of two sets of dimer probes in the method for producing a self-assembly of the present invention.
  • (B) shows the formation of a dimer probe by a pair of dimer formation probes of the second system, respectively.
  • FIG. 4 is a schematic diagram showing an example of the formation of a self-assembly by the two sets of dimer probes shown in FIG. 3, wherein (a) shows two sets of dimer probes and (b) shows the formed self-assembly. Show the body respectively.
  • FIG. 5 is a schematic view showing one example of the production of three sets of dimer probes in the method for producing a self-assembly of the present invention, wherein (a) shows the dimer probe formed by a pair of dimer formation probes of the first system. (B) shows the formation of a dimer probe by a pair of dimer-forming probes of the second system, and (c) shows the formation of a dimer probe by a pair of dimer-forming probes of the third system.
  • FIG. 6 is a schematic view showing an example of the formation of a self-assembly by the three sets of dimer probes shown in FIG. 5, (a) shows three sets of dimer probes, and (b) shows formed self-assemblies. Are respectively shown. '
  • FIG. 7 is a schematic diagram showing an example of the production of four sets of dimer probes in the method for producing a self-assembly of the present invention, wherein (a) is a dimer probe using a pair of dimer formation probes of the first system. (B) formation of a dimer probe by a pair of dimer formation probes of the second system, (c) formation of a dimer probe by a pair of dimer formation probes of the third system, and d) shows the formation of a dimer probe by a pair of dimer forming probes of the fourth system, respectively.
  • FIG. 8 is a schematic diagram showing an example of the formation of a self-assembly by the four sets of dimer probes shown in FIG. 7, (a) shows four sets of dimer probes, and (b) shows formed self-assemblies. Show the body respectively.
  • FIG. 9 shows three sets of dimer probes in the method for producing a self-assembly of the present invention.
  • FIG. 6 is a schematic view showing another example of the formation of a self-assembly by the method of (a), wherein a dimer-one probe is formed by a pair of dimer-forming probes formed from the first system to the third system, and b) indicates a self-assembly formed by three sets of dimer probes.
  • FIG. 10 is a schematic diagram showing another example of the production of four sets of dimer probes in the method for producing a self-assembly of the present invention, wherein (a) is a diagram for forming a pair of dimers of the first system. Formation of a dimer probe by a probe, (b) formation of a dimer probe by a pair of dimer formation probes of the second system, and (c): formation of a dimer probe by a pair of dimer formation probes of the third system. And (d) show the formation of a dimer probe by a pair of dimer forming probes of the fourth system, respectively.
  • Fig. 11 is a schematic diagram showing an example of the formation of a self-assembly by the four sets of dimer probes shown in Fig. 10; (a) shows four sets of dimer probes; and (b) shows the formation of self-assemblies. Each of the self-assemblies obtained is shown.
  • FIGS. 12A and 12B are schematic diagrams showing an example of the production of five sets of dimer probes in the method for producing a self-assembly of the present invention.
  • FIG. 12A shows a pair of dimer-forming probes of the first system.
  • B shows the formation of a dimer probe using a pair of dimer forming probes of the second system, and
  • (c) shows the formation of a dimer probe using a pair of dimer forming probes of the third system.
  • D shows the formation of a dimer probe by a pair of dimer-forming probes of the fourth system, and
  • (e) shows the formation of a dimer probe by a pair of dimer-forming probes of the fifth system. Show.
  • FIG. 13 is a schematic diagram showing an example of the formation of a self-assembly using the five sets of dimer probes shown in Fig. 12; (a) shows five sets of dimer probes; (C) shows an example of a combination of n sets of dimer-probe hybridizations composed of n systems, respectively. 2
  • FIG. 14 is a photograph showing the results of Example 1.
  • FIG. 15 is a photograph showing the result of Example 2.
  • FIG. 16 is a photograph showing the result of Example 3.
  • FIG. 17 is a photograph showing the results of Experimental Examples 1-4 (lanes 1, 2, 4, and 5) and Experimental Examples 5 and 6 (lanes 3 and 6).
  • a self-assembly is formed by using a plurality of pairs of a pair of dimer-forming probes and reacting both at isothermal conditions under the absence of an enzyme.
  • the number of dimer forming probes to be used is not particularly limited, used in the range of 1 0 2 to 1 0 1 five.
  • the composition and concentration of the reaction buffer are not particularly limited, and ordinary buffers commonly used for acid amplification can be suitably used.
  • the pH is also suitable in a usual range, and preferably a pH in the range of pH 7.0 to pH 9.0 can be used.
  • the reaction temperature is 40 to 90 ° C, preferably 55 to 65 ° C. These conditions are not particularly limited.
  • the length (number of bases) of each region of one dimer-forming probe may be the same or different.
  • the length of each region of the dimer formation probe is at least 5 bases in terms of the number of bases, preferably at least 8 bases, more preferably 10 bases to 100 bases, and still more preferably 1 base. 5 to 30 bases.
  • the first system has three oligonucleotides in the No. 1-oligonucleotide and No. 2-oligonucleotide of a pair of dimer-forming probes.
  • the 3'-side region, the 5'-side region and the 5'-side region are divided into three regions: the 3'-side region, the 5'-side region, and the 5'-side region. It is composed of oligonucleotides that form a dimer probe of the first system, which is a non-complementary nucleotide sequence.
  • a pair of dimer formation probes and the dimer probe (] 3) of the second system are configured as described above (FIG. 1 (b)).
  • the 3 ′ region of the No. 1-oligonucleotide of ⁇ is the 3 ′ region of the No.
  • the 5 'region of the No. 2 -oligonucleotide of ⁇ is: 5) the 5' region of the No. 1 -oligonucleotide of 3;
  • the 3 ′ region of the No. 2-oligonucleotide of a is the 3 ′ region of the No. 1-oligonucleotide of i3,
  • the 5 'region of No. 1-oligonucleotide of ⁇ is the 5' region of No. 2-oligonucleotide of i3,
  • the oligonucleotides self-assemble by hybridizing to form a double-stranded self-assembly (FIG. 2 (b)).
  • FIG. 3 shows a second example of self-assembly by two sets of dimer-forming probes
  • the 3'-side area or the 5'-side area can be exchanged.
  • the 3′-side region of the No. 1-oligonucleotide of j8 ′ is the 3′-side region of the No. 3-oligonucleotide of j8 ′.
  • the 5 ′ region of the No. 2 -oligonucleotide of ⁇ is the 5 ′ region of the No. 3 -oligonucleotide of ⁇ ,
  • the 5'-side region of the No. 1-oligonucleotide of a is the 5'-side region of the No. 4-oligonucleotide of ⁇ ,
  • the oligonucleotides self-assemble to form a double-stranded self-assembly by hybridizing each of them because they have complementary base sequences (Fig. 4 (b)).
  • the probe for dimer formation is a
  • the 3′-side region of the No. 1-oligonucleotide of the (n ⁇ 1) th system is the 3′-side region of the No. 2-oligonucleotide of the nth system
  • the 5 'region of the No. 2 -oligonucleotide of the (n-1) th system is the 5' region of the No. 1 -oligonucleotide of the nth system
  • the 3 ′ region of the No. 1-oligonucleotide of the last system is the 3 ′ region of the No. 1-oligonucleotide of the first system;
  • the 5 'region of the No. 2-oligonucleotide of the last system is the 5' region of the No. 1-oligonucleotide of the first system;
  • the oligonucleotides self-assemble to form a double-stranded self-assembly by hybridizing each of them since they are complementary base sequences.
  • each oligonucleotide in the 1_ oligonucleotide and No. 2 oligonucleotide is divided into three regions: a 3 'side region, a central region, and a 5' side region, and the central region of each oligonucleotide is mutually separated. Because of their complementary nucleotide sequences, the 3'-side region and the 5'-side region are composed of oligonucleotides forming the first dimer probe (), which are non-complementary to each other.
  • a pair of dimer forming probes of the second system and its dimer probe (), and a pair of dimer forming probes of the third system and its dimer probe (a) are also configured as described above. ( Figures 5 (b) and (c)).
  • the No. 1-oligonucleotide 3 ′ region is the jS No. 2-oligonucleotide 3 ′ region;
  • the No. 5-oligonucleotide of No. 2 oligonucleotide is the No. 1_ oligo of i8 The 5 'region of the nucleotide,
  • the No. 1-oligonucleotide 3 'region of j3 is the same as the No. 2-oligonucleotide 3' region.
  • the 5'-side region of No. 2-oligonucleotide of ⁇ is the same as the 5'-side region of No. 1-oligonucleotide of
  • the 3 'region of the No. 1-oligonucleotide is the same as the 3' region of the No. 2-oligonucleotide.
  • the 5 ′ region of the No. 1-oligonucleotide is the same as the 5 ′ region of the No. 1-oligonucleotide.
  • the oligonucleotides self-assemble to form a double-stranded self-assembly by hybridization, since each has a complementary base sequence (Fig. 6 (b)).
  • the first system consists of a pair of dimer-forming probes No.
  • Each oligonucleotide in 1-oligonucleotide and No. 2-oligonucleotide is divided into three regions: 3 'side region, central region, and 5' side region, and the central region of each oligonucleotide is complementary to each other.
  • the 3'-side region and the 5'-side region are oligonucleotides that form the first system dimer probe ( ⁇ ), which are non-complementary nucleotide sequences.
  • a pair of dimer formation probes and their dimer probes ( ⁇ ) of the second system a pair of dimer formation probes and their dimer probes (a) of the third system, and a pair of dimer probes of the fourth system
  • the pair of dimer forming probes and the dimer probe ( ⁇ ) are also configured as described above (FIGS. 7 (b) to (d)).
  • Dimer probe ( ⁇ ) of the first system dimer probe ( ⁇ ) of the second system, dimer probe (a) of the third system, and dimer probe of the fourth system 7 ( ⁇ ), as shown in Fig. 7 and Fig. 8 (a),
  • the 3 ′ region of the No. 1-oligonucleotide of ⁇ is the 3 ′ region of the No.
  • the No. 2_ oligonucleotide 5 'region is the No, 1-oligonucleotide 5' region
  • the 3 'region of the No. 1-oligonucleotide at / 3 is the 3' region of the No. 2-oligonucleotide at
  • the 5 'region of the No. 2-oligonucleotide of j3 is the same as the 5' region of the No. 1-oligonucleotide of
  • No. 1-oligonucleotide 3 'region is the same as ⁇ No. 2-oligonucleotide 3' region.
  • the 5′-side region of the No. 2 -oligonucleotide of ⁇ is the 5′-side region of the No. 1-oligonucleotide of ⁇ ,
  • the No. 1-oligonucleotide 3 'region of ⁇ is the same as the No. 2-oligonucleotide 3' region,
  • the 5 ′ region of the No. 2-oligonucleotide of ⁇ 5 is the same as the 5 ′ region of the No. 1-oligonucleotide of
  • the oligonucleotides self-assemble and hybridize to form a double-stranded self-assembly by hybridization (FIG. 8 (b)).
  • the dimer formation probe is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoe
  • the 3 ′ region of the No. 1-oligonucleotide of the (n ⁇ 1) th system is the 3 ′ region of the No. 2-oligonucleotide of the nth system;
  • the 5 'region of the N 0.1 -oligonucleotide of the (n-1) th system is the 5' region of the No. 2_ oligonucleotide of the nth system;
  • the 3 ′ region of the No. 1-oligonucleotide of the last system is the 3 ′ region of the No. 1-oligonucleotide of the first system;
  • the 5 'region of the No. 1-oligonucleotide of the last system is the 5' region of the No. 2_ oligonucleotide of the first system;
  • the oligonucleotides self-assemble and form a double-stranded self-assembly by hybridizing each of them because they are complementary base sequences.
  • the first system consists of a pair of dimer formation probes No.
  • Each oligonucleotide in 1-oligonucleotide and No. 2-oligonucleotide is divided into three regions: 3 'side region, central region, and 5' side region, and the central region of each oligonucleotide is complementary to each other. Since the 3'-side region and the 5'-side region are non-complementary to each other, they are composed of oligonucleotides forming the first system dimer probe (h). You.
  • the second system of paired dimer one form formation probe and its dimer probe () and the third system of a pair of dimer forming probes and its dimer probe ( ⁇ ) also as described above configured c
  • the 3 'region of the No. 1-oligonucleotide of the chicken is the 3' region of the N0.2-oligonucleotide of ⁇ 6,
  • the No. 1-oligonucleotide 5'-side region has a No. 2 oligonucleotide 5'-side region of / 3,
  • the 3'-side region of No. 1-oligonucleotide of i3 is the same as the 3'-side region of No. 2-oligonucleotide of
  • the 5 'region of the No. 1 oligonucleotide of No. 3 is the 5' region of the No. 2-oligonucleotide.
  • the No. 1-oligonucleotide 3 'region of r is composed of ⁇ No. 2-oligonucleotide 3'-side region,
  • the 5 'region of No. 1-oligonucleotide is the same as the 5' region of No. 2-oligonucleotide.
  • the oligonucleotides self-assemble and form a double-stranded self-assembly by hybridizing, since each has a complementary base sequence (Fig. 9 (b)).
  • the first system consists of a pair of dimer formation probes.
  • Each oligonucleotide in No. 1-oligonucleotide and No. 2-oligonucleotide is divided into three regions: 3 ′ side region, central region, and 5 ′ side region, and the central region of each oligonucleotide is Since the nucleotide sequences are complementary to each other, the 3′-side region and the 5′-side region are non-complementary nucleotide sequences to form a first-system dimer probe ( ⁇ ) oligonucleotide.
  • a pair of dimer-forming probes of the second system and its dimer probe ( ⁇ ), a pair of dimer-forming probes of the third system and its dimer probe (a), and a pair of dimer-forming probes (a) Pair of The dimer formation probe and the dimer probe ( ⁇ ) are also configured as described above (FIGS. 10 (b) to (d)).
  • the first dimer probe (hi), the second dimer probe ( ⁇ ), the third dimer probe (a), and the fourth dimer probe ( ⁇ 5) are shown in FIGS. 10 and 11 (a). As shown in
  • the 3 ′ region of No. 1-oligonucleotide of ⁇ is the 3 ′ region of No. 2-oligonucleotide of] 3,
  • the 5 'region of the No. 1_ oligonucleotide of ⁇ is: 5' region of the No. 2 oligonucleotide of 3;
  • the No. 1-oligonucleotide 3 'side region of ⁇ is the same as the No. 2-oligonucleotide 3' side region,
  • the 5'-side region of No. 1-oligonucleotide of 3 is the 5'-side region of No. 2-oligonucleotide of r;
  • the No. 1-oligonucleotide 3'-side region is the same as the ⁇ No. 2-oligonucleotide 3'-side region.
  • the 5 'region of No. 1-oligonucleotide of No. 1 is the 5' region of No. 2-oligonucleotide of ⁇ ,
  • the No. 1-oligonucleotide 3 side region of d is the No. 2-year old oligonucleotide 3 'side region
  • the 5-sided region of No. 1-oligonucleotide of ⁇ is the 5'-sided region of human No 2 -oligonucleotide
  • the oligonucleotides self-assemble to form a double-stranded self-assembly by hybridizing with each other (FIG. 11 (b)).
  • the first system is composed of a pair of dimer forming probes.
  • Each oligonucleotide in the 2-bead No. 1-oligonucleotide and No. 2-oligonucleotide is divided into three regions: a 3'-side region, a central region, and a 5'-side region. Since the central region of the nucleotides is complementary to each other, a first dimer probe ( ⁇ ) is formed in which the 3′-side region and the 5′-side region are non-complementary to each other. It is composed of oligonucleotides.
  • a pair of dimer-forming probes of the second system and its dimer probe ( ⁇ ), a pair of dimer-forming probes of the third system and its dimer probe (a), and a pair of fourth system of the dimer The dimer forming probe and its dimer probe ( ⁇ ) and the pair of dimer forming probes and its dimer probe (0) of the fifth system are also configured as described above (FIG. 12 (b) to FIG. (E)).
  • the first dimer probe (h), the second dimer probe (i3), the third dimer probe (a), the fourth dimer probe (6), and the fifth dimer probe ( ⁇ ) are shown in FIG.
  • the 3′-side region of the No. 1-oligonucleotide of ⁇ is the 3′-side region of the N 0.2_ oligonucleotide of] 3
  • the No. 1-oligonucleotide 5 side region has a / 3 No. 2 oligonucleotide 5 ′ side region
  • the 3 'side region of No. 1-oligonucleotide of j3 is the No. 3' side region of
  • the 3 'No. 1-oligonucleotide 5' side region is the same as the No. 2-oligonucleotide 5 'side region,
  • No. 1-oligonucleotide 3 'region is the same as ⁇ No. 2-oligonucleotide 3' region.
  • the 5′-side region of the No. 1_oligonucleotide of ⁇ is the 5′-side region of the No. 2-oligonucleotide of ⁇
  • the 3 'region of No. 1-oligonucleotide of ⁇ is the 3' region of No. 2-oligonucleotide of 0
  • the 5'-side region of No. 1-oligonucleotide of ⁇ is the 5'-side region of No. 2_ oligonucleotide of 0,
  • the 3 'region of No. 1-oligonucleotide of 0 is the 3' region of No. 2-oligonucleotide of ⁇ ,
  • the 5 'side region of No. 1-oligonucleotide of 0 is the 5' side region of No. 2-oligonucleotide of
  • oligonucleotides self-assemble to form a double-stranded self-assembly by hybridizing each of them because they have complementary nucleotide sequences (Fig. 13 (b)).
  • the dimer-forming probe is previously hybridized to form the dimer-probe, and then the dimer probe formed in each system is hybridized.
  • the method of forming a self-assembly by dicing is described above.
  • the method of forming a self-assembly according to the present invention is not limited to the above method.
  • the method also includes a method of forming a self-assembly by simultaneously reacting and hybridizing the probes.
  • the present invention provides at least one G (guanine) or C (cytosine) at the end of the three regions of the dimer-forming probe, and at least one G (G) is formed when the dimer-forming probe is hybridized.
  • G G
  • C A method of forming a stable double-stranded self-assembly by causing a special interaction of ⁇ electrons of bases by stacking of bases (stacking of bases) It is.
  • the number of C or G located at the end of the above region is at least one base, and may be plural. It can be appropriately selected in consideration of the base sequence of each region.
  • the order of C and G is not particularly limited and can be freely combined.
  • the present invention is directed to a ⁇ hypokalism '' in which the intensity of the ultraviolet absorption band at 260 nm is reduced because the stack of bases of the self-assembly formed in the present invention has a regular higher-order structure. This makes it possible to confirm the state of the self-assembly by expressing the light-color effect.
  • the present invention makes it possible to add a fluorescent substance having a property of binding to a nucleic acid, and to provide a method for confirming the state of the self-assembly from the change in the fluorescence intensity.
  • a self-assembly is added with a dye that emits fluorescence by inserting it into the oligonucleotide double strand, and the fluorescence emission state is determined using I-CORE TM (Smart Cycler TM) of SEPHADE. It can be detected by observation.
  • the formed self-assembly can be easily confirmed by a general agarose gel electrophoresis or the like.
  • No. 1 probe and No. 2—probe as a pair of dimer-forming probes of the first system
  • No. 1 probe for a pair of dimer-forming of the second system.
  • a 3-probe and a No. 4_probe were prepared. Each The lignonucleotide probe was prepared at 100 pmo 1 each.
  • the oligonucleotide probes l L, 2 0 XSSC the 1 2 L was added to H 2 0 7 L, to prepare a reaction solution for a total of 2 0 L.
  • the oligonucleotide probe was No. 1_ probe in Experimental Example 1, No. 2—probe in Experimental Example 2, and No. 3—probe in Experimental Example 3. In Experimental Example 4, No. 4—probe was used.
  • the dimer probe of the first system formed in Experimental Example 5 was used as the dimer probe ( ⁇ ) of the first system, and the dimer probe (i3) of the second system was used as the dimer probe (i3) in Experimental Example 6. A second dimer of the second system was used.
  • the above reaction solution was added at 52 ° (: 54 ° C, 56 ° C, 58 ° C, 60 ° 2 ° C, 64 ° C, 6 6 ° C, 6 8 ° C and 7 0 ° c
  • XI-probe and X2-probe are used as the first system for dimer formation, and Y1-probe and Y2-probe are used as the second system for dimer formation.
  • a Z1-probe and a Z2-probe were prepared as dimer formation probes of the third system. Each oligonucleotide probe was prepared at 100 pmo 1.
  • the reaction time for forming the self-assembly can be further reduced as compared with the conventional method. Further, according to the method for detecting a self-assembly of the present invention, a self-assembly formed by the method for producing a self-assembly can be easily detected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

明 細 書 プローブ自己集合体の作製方法及びその検出方法 技術分野
本発明は、 一対のオリゴヌクレオチドからなる複数のダイマ一形成用プ ローブ、 そのダイマー形成用プローブによる自己集合体の作製方法、 形成 された自己集合体、 及び形成させた自己集合体の検出方法に関する。 背景技術
お互いに相補的な部分が n (n≥ 3) 力所の数から構成される一対のプ ローブ (以下、 HoneyComb Probe: H C Pと称することがある。 ) の複数 対を用いて、 互い違いに交差するようにハイブリダイゼ一ションさせるこ とにより、 2本鎖の自己集合体を形成させるプローブ自己集合体の作製方 法 (USP6, 261, 846、 特開 2 0 0 0— 2 0 1 6 8 7号、 及び特願 2 0 0 0— 9 8 7 9 7号、 以下、 P A L S AR (Probe alternation link self- assembly reaction) 法と称する。 ) では、 一対のオリゴヌクレオチド · プロ一ブだけで互い違いに交差するようにハイプリダイゼーションさせて、 2本鎖の自己集合体形成によりタ一ゲット遺伝子を検出したが、 使用する オリゴヌクレオチド · プローブが 2本しかないために、 ターゲット遺伝子 を検出するために利用するオリゴヌクレオチド · プローブの領域、 及び蛍 光色素や酵素、 又は抗体を標識する領域に限界があった。
また、 2本のオリゴヌクレオチド · プローブが互い違いに反応すること から、 それぞれの領域が競合することになり、 自己集合体の形成に多少の 反応時間が必要であった。
PAL S AR法で使用する一対のオリゴヌクレオチド · プローブでは、 一対のオリゴヌクレオチド · プローブだけで互い違いに交差するようにハ イブリダィゼーションさせ、 2本鎖の自己集合体を形成させていた。
本発明では、 一対のオリゴヌクレオチド , プロ一ブだけでなく、 それぞ れのオリゴヌクレオチド ■ プローブをあらかじめ複数のダイマープローブ として作製しておき、 その種類を増やすことにより、 今までよりもさらに 自己集合体形成の反応時間を短縮することを可能にし、 且つ、 ターゲット 遺伝子を検出するために利用できるオリゴヌクレオチド · プローブの領域 を増やし、 蛍光色素や酵素、 又は抗体を標識する領域の増加を可能にした 新しいプローブ自己集合体作製方法及びその自己集合体作製方法によって 形成された自己集合体の検出方法を提供することを目的とする。
近年の遺伝子診断技術では、 目的の遺伝子を検出するために E I Aと呼 ばれるェンザィム ·ィムノ · アツセィゃ蛍光標識法に代表される様々な手 法が用いられているが、 いずれの方法においても高価な酵素や抗体、 及び 蛍光標識物質と煩雑な操作を必要としていた。 発明の開示
上記課題を解決するために、 本発明の自己集合体の作製方法の第一の態 様として、 N o . 1及び N o . 2の一対のオリゴヌクレオチドの各オリゴ ヌクレオチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分 け、 各オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側領域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダ イマ一形成用プローブを含む系を第 1の系及び第 2の系まで形成し、
( a ) 第 1の系の N o . 1 -オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o . 2 -オリゴヌクレオチドの 3, 側領域、
( b ) 第 1の系の N o . 2 -オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o . 1 -オリゴヌクレオチドの 5 ' 側領域、 ( c ) 第 2の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1-オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1の系及び第 2の系までの複 数対のダイマ一形成用プロ一ブをハイプリダイゼーションさせることによ り、 オリゴヌクレオチドが自己集合し、 2本鎖の自己集合体を形成させる ことを特徴とする。
本発明の自己集合体の作製方法の第二の態様として、 N o. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレオチドを 3 ' 側領域、 中 央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中 央領域を互いに相補的な塩基配列とし、 3 ' 側領域、 及び 5, 側領域を互 いに非相補的な塩基配列とした一対のダイマー形成用プローブを含む系を 第 1の系及び第 2の系まで形成し、
(a) 第 1の系の N o. 1 _オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o. 1 -オリゴヌクレオチドの 3 ' 側領域、
(b) 第 1の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o. 1 -オリゴヌクレオチドの 5 ' 側領域、
( c ) 第 2の系の N o. 2-オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o . 2 -オリゴヌクレオチドの 3 ' 側領域、
(d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o . 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1の系及び第 2の系までの複 数対のダイマー形成用プローブをハイプリダイゼーションさせることによ り、 オリゴヌクレオチドを自己集合させ、 2本鎖の自己集合体を形成させ ることを特徴とする。 本発明の自己集合体の作製方法の第三の態様として、 No. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレオチドを 3 ' 側領域、 中 央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中 央領域を互いに相補的な塩基配列とし、 3 ' 側領域、 及び 5 ' 側領域を互 いに非相補的な塩基配列とした一対のダイマー形成用プローブを含む系を 第 1番目の系から第 n番目 (nは 2以上の整数) の系まで順番に複数個形 成し、
(a) 第 (n— l ) 番目の系の N o. 1 _オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の N o. 2 -オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n— l ) 番目の系の N o. 2 -オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の No. 1 -オリゴヌクレオチドの 5 ' 側領域、
(c ) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2 _オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 2 -オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1 _オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1番目の系から第 n番目の系 までの複数対のダイマー形成用プローブをハイブリダイゼーションさせる ことにより、 オリゴヌクレオチドが自己集合し、 2本鎖の自己集合体を形 成させることを特徴とする。
本発明の自己集合体の作製方法の第四の態様として、 No. 1及び No. 2の一対のオリゴヌクレオチドの各オリゴヌクレオチドを 3 ' 側領域、 中 央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中 央領域を互いに相補的な塩基配列とし、 3 ' 側領域、 及び 5 ' 側領域を互 いに非相補的な塩基配列とした一対のダイマー形成用プローブを含む系を 第 1番目の系から第 n番目 (nは 2以上の整数) の系まで順番に複数個形 成し、 (a) 第 (n— 1 ) 番目の系の N o. 1 _オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n _ l ) 番目の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の No. 2-オリゴヌクレオチドの 5 ' 側領域、
(c ) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の No. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1番目の系から第 n番目の系 までの複数対のダイマー形成用プローブをハイブリダイゼーションさせる ことにより、 オリゴヌクレオチドが自己集合し、 2本鎖の自己集合体を形 成させることを特徴とする。
上記ダイマー形成用プローブの 3つの領域の端部に、 少なくとも 1つの
G (グァニン) または C (シトシン) を配置させ、 ダイマ一形成用プロ一 ブがハイブリダィズした際に少なくとも 1つの G— C結合を領域の端部に 形成させることにより、 安定した 2本鎖の自己集合体を形成させることが 可能となる。
上記ダイマ一形成用プローブを構成する核酸は、 通常 DNA又は RNA で構成されるが、 核酸類似体でも構わない。 核酸類似体として、 たとえば、 ペプチド核酸 (P NA、 W0 92/20702) や Locked' Nucleic Acid (LNA, Koshkin AA et al. Tetrahedron 1998.54, 3607-3630. , Koshkin AA et al. J. Am. Chem. Soc. 1998.120, 13252-13253. , Wahlestedt C et al. PNAS. 2000.97, 5633-5638. ) が挙げられる。 また、 一対のダイマー形成用プロ一 ブは、 通常、 同じ種類の核酸で構成されるが、 たとえば DNAプローブと RNAプローブが一対になっても差し支えない。 即ち、 プローブの核酸の 種類は DNA、 RNAまたは核酸類似体 (たとえば PNAや LNA等) か ら選択することができる。 又、 一つのプロ一ブ内での核酸組成は一種類、 たとえば D N Aのみから構成される必要はなく、 必要に応じて、 たとえば, D N Aと R N Aから構成されるプローブ (キメラプローブ) を使用するこ とも可能であり、 本発明に含まれる。
上記複数対のダイマー作製用プローブのハイブリダィゼーシヨンは、 あ らかじめ一対のダイマー作製用プローブによりダイマ一プロ一ブを形成さ せた後、 各系の形成されたダイマープローブをハイプリダイゼーションさ せることが好ましい。
本発明の自己集合体は、 上記自己集合体の作製方法によって形成される ものである。 本発明の自己集合体作製方法で形成される自己集合体は、 そ の塩基の積み重ねが規則的な高次構造をとることから、 2 6 0 n mにおけ る紫外部の吸収帯の強度が減じる 「ハイポク口ミズム」 という淡色効果を 発現させて自己集合体の状態を確認することが可能である。 さらには、 自 己集合体の塩基の積み重ねの間に安価な蛍光物質を揷入させて、 その蛍光 強度の変化から自己集合体の状態を確認できるために、 今までになく低コ ストでしかも簡便に遺伝子を検出することができる経済効果に優れた技術 である。
本発明の自己集合体の検出方法の第一の態様は、 上記自己集合体の作製 方法で形成した自己集合体の紫外線に対する光化学的な吸収の変化を利用 して上記自己集合体の存在を検出することを特徵とする。
本発明の自己集合体の検出方法の第二の態様は、 上記自己集合体の作製 方法で形成した自己集合体の塩基対に対して、 核酸と結合する性質を持つ た蛍光物質を加え、 その蛍光物質の光化学的な変化により前記自己集合体 の存在を検出することを特徴とする。
本発明のダイマー形成用プローブの第一の態様は、 N o . 1及び N o . 2の一対のオリゴヌクレオチドの各オリゴヌクレオチドを 3 ' 側領域、 中 央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中 央領域を互いに相補的な塩基配列とし、 3 ' 側領域、 及び 5 ' 側領域を互 いに非相補的な塩基配列とした一対のダイマ一形成用プローブを含む系を 第 1の系及び第 2の系まで形成し、
(a) 第 1の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(b) 第 1の系の N o. 2 -オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o . 1 -オリゴヌクレオチドの 5 ' 側領域、
( c ) 第 2の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o . 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする < 本発明のダイマ一形成用プローブの第二の態様は、 No. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレオチドを 3 ' 側領域、 中 央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中 央領域を互いに相補的な塩基配列とし、 3 ' 側領域、 及び 5 ' 側領域を互 いに非相補的な塩基配列とした一対のダイマ一形成用プローブを含む系を 第 1の系及び第 2の系まで形成し、
(a) 第 1の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o. 1 -オリゴヌクレオチドの 3 ' 側領域、
(b) 第 1の系の No. 2 -オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o. 1 -オリゴヌクレオチドの 5 ' 側領域、
( c ) 第 2の系の No. 2 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1-オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする。 本発明のダイマ一形成用プローブの第三の態様は、 No. 1及び No. 2の一対のオリゴヌクレオチドの各オリゴヌクレオチドを 3 ' 側領域、 中 央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中 央領域を互いに相補的な塩基配列とし、 3 ''側領域、 及び 5 ' 側領域を互 いに非相補的な塩基配列とした一対のダイマ一形成用プローブを含む系を 第 1番目の系から第 n番目 (nは 2以上の整数) の系まで順番に複数個形 成し、
(a) 第 (n— 1 ) 番目の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の No. 2-オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n _ l ) 番目の系の N o. 2-オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の No. 1 -オリゴヌクレオチドの 5 ' 側領域、
( c ) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 2 -オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする t 本発明のダイマ一形成用プローブの第四の態様は、 N o. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレオチドを 3 ' 側領域、 中 央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中 央領域を互いに相補的な塩基配列とし、 3 ' 側領域、 及び 5 ' 側領域を互 いに非相補的な塩基配列とした一対のダイマー形成用プローブを含む系を 第 1番目の系から第 n番目 (nは 2以上の整数) の系まで順番に複数個形 成し、
(a) 第 (n _ l ) 番目の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の No. 2-オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n _ l) 番目の系の N o. 1 _オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の No. 2 -オリゴヌクレオチドの 5 ' 側領域、
(c ) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする ( 上記ダイマ一形成用プローブの 3つの領域の端部に、 少なくとも 1つの G (グァニン) または C (シトシン) を配置させることが好ましい。
上記ダイマ一形成用プローブは、 DNA、 RNA、 PNAまたは LNA のいずれかから選ばれる塩基から構成されるものである。
本発明のダイマ一プローブは、 上記一対のダイマー形成用プローブをハ イブリダイゼ一ションさせることにより形成されるものである。 図面の簡単な説明
図 1は本発明の自己集合体の作製方法における二組のダイマ一プローブ の作製の 1例を示す模式図であり、 (a) は第 1の系の一対のダイマー形 成用プロ一ブによるダイマ一プローブの形成、 及び (b) は第 2の系の一 対のダイマ一形成用プローブによるダイマープローブの形成をそれぞれ示 す。
図 2は図 1に示した二組のダイマ一プローブによる自己集合体の形成の 1例を示す模式図であり、 (a) は二組のダイマープローブ、 及び (b) は形成された自己集合体をそれぞれ示す。
図 3は本発明の自己集合体の作製方法における二組のダイマ一プローブ の作製の別の例を示す模式図であり、 (a) は第 1の系の一対のダイマー 形成用プローブによるダイマ一プローブの形成、 及び (b ) は第 2の系の 一対のダイマ一形成用プローブによるダイマープローブの形成をそれぞれ 示す。
図 4は図 3に示した二組のダイマープローブによる自己集合体の形成の 1例を示す模式図であり、 (a ) は二組のダイマ一プローブ、 及び (b ) は形成された自己集合体をそれぞれ示す。
図 5は本発明の自己集合体の作製方法における三組のダイマープローブ の作製の 1例を示す模式図であり、 (a ) は第 1の系の一対のダイマー形 成用プローブによるダイマープローブの形成、 (b ) は第 2の系の一対の ダイマ一形成用プローブによるダイマープローブの形成、 及び (c ) は第 3の系の一対のダイマー形成用プローブによるダイマープローブの形成を それぞれ示す。
図 6は図 5に示した三組のダイマープローブによる自己集合体の形成の 1例を示す模式図であり、 (a ) は三組のダイマープローブ、 及び (b ) は形成された自己集合体をそれぞれ示す。 '
図 7は本発明の自己集合体の作製方法における四組のダイマープローブ の作製の 1例を示す模式図であり、 (a ) は第 1の系の一対のダイマ一形 成用プローブによるダイマープローブの形成、 (b ) は第 2の系の一対の ダイマ一形成用プローブによるダイマープローブの形成、 (c ) は第 3の 系の一対のダイマ一形成用プローブによるダイマ一プローブの形成、 及び ( d ) は第 4の系の一対のダイマー形成用プロ一ブによるダイマープロ一 ブの形成をそれぞれ示す。
図 8は図 7に示した四組のダイマ一プローブによる自己集合体の形成の 1例を示す模式図であり、 (a ) は四組のダイマープローブ、 及び (b ) は形成された自己集合体をそれぞれ示す。
図 9は本発明の自己集合体の作製方法における三組のダイマープローブ による自己集合体の形成の別の例を示す模式図であり、 (a ) は第 1の系 から第 3の系まで形成された一対のダイマ一形成用プローブによるダイマ 一プローブの形成、 及び (b ) は 3組のダイマープローブにより形成され る自己集合体をそれぞれ示す。
図 1 0は本発明の自己集合体の作製方法における四組のダイマ一プロ一 ブの作製の別の例を示す模式図であり、 (a ) は第 1の系の一対のダイマ 一形成用プローブによるダイマープローブの形成、 (b ) は第 2の系の一 対のダイマー形成用プローブによるダイマープローブの形成、 (c ) は第 3の系の一対のダイマ一形成用プローブによるダイマープロ一ブの形成、 及び (d ) は第 4の系の一対のダイマ一形成用プローブによるダイマ一プ ローブの形成をそれぞれ示す。
図 1 1は図 1 0に示した四組のダイマープロ一ブによる自己集合体の形 成の 1例を示す模式図であり、 (a ) は四組のダイマープローブ、 及び ( b ) は形成された自己集合体をそれぞれ示す。
図 1 2は本発明の自己集合体の作製方法における五組のダイマープロ一 ブの作製の 1例を示す模式図であり、 (a ) は第 1の系の一対のダイマー 形成用プロ一ブによるダイマープローブの形成、 (b ) は第 2の系の一対 のダイマ一形成用プローブによるダイマープローブの形成、 (c ) は第 3 の系の一対のダイマー形成用プローブによるダイマープロ一ブの形成、 ( d ) は第 4の系の一対のダイマー形成用プローブによるダイマープロ一 ブの形成、 及び (e ) は第 5の系の一対のダイマー形成用プロ一ブによる ダイマ一プローブの形成をそれぞれ示す。
図 1 3は図 1 2に示した五組のダイマープローブによる自己集合体の形 成の 1例を示す模式図であり、 (a ) は五組のダイマープロ一ブ、 (b ) は形成された自己集合体、 及び (c ) は n個の系からなる n組のダイマ一 プローブのハイプリダイゼーションの組み合わせの例をそれぞれ示す。 2 図 1 4は実施例 1の結果を示す写真である。
図 1 5は実施例 2の結果を示す写真である。
図 1 6は実施例 3の結果を示す写真である。
図 1 7は実験例 1〜4 (レーン 1、 2、 4及び 5 ) 及び実験例 5及び 6 (レーン 3及び 6 ) の結果を示す写真である。 発明を実施するための最良の形態
以下に本発明の実施の形態を添付図面に基づいて説明するが、 これらの 実施の形態は例示的に示されるもので、 本発明の技術の技術思想から逸脱 しない限り種種の変形が可能なことはいうまでもない。
本発明は、 一対のダイマー形成用プローブを複数組使用し、 両者を等温 で酵素不在の条件下で反応させることにより自己集合体を形成させるもの である。 使用するダイマー形成用プローブの本数は、 特に限定されないが、 1 0 2〜 1 0 1 5本の範囲で用いられる。 反応緩衝液の組成、 濃度は特に限 定されず、 ^酸増幅に常用される通常の緩衝液が好適に使用できる。 p H も常用の範囲で好適であり、 好ましくは P H 7 . 0〜p H 9 . 0の範囲の ものが使用できる。 反応温度は 4 0〜9 0 °C、 好ましくは 5 5〜6 5 °Cで ある。 これら条件は特に限定されない。
本発明の構成をさらに具体的な例でいえば、 一本のダイマー形成用プロ 一ブの各領域の長さ (塩基の数) は、 同一であっても異なってもよい。
また、 ダイマ一形成用プローブの各領域の長さは、 塩基数にして、 少な くとも 5塩基であり、 好ましくは少なくとも 8塩基、 さらに好ましくは 1 0塩基〜 1 0 0塩基、 さらに好ましくは 1 5〜 3 0塩基である。
以下に本発明に係るダイマー形成用プローブによる自己集合体の形成の 例を述べる。
1 . 2組のダイマー形成用プローブによる自己集合体の形成の第一の例 図 1 (a) に示したように、 第 1の系は、 一対のダイマー形成用プロ一 ブの N o. 1 -オリゴヌクレオチド、 及び N o . 2-オリゴヌクレオチドに おける各オリゴヌクレオチドが、 3 ' 側領域、 中央領域、 及び 5 ' 側領域 の 3つの領域に分けられ、 各オリゴヌクレオチドの中央領域が互いに相補 的な塩基配列であることから、 3 ' 側領域、 及び 5 ' 側領域が互いに非相 補的な塩基配列である第 1の系のダイマープローブ ( ひ) を形成するオリ ゴヌクレオチドから構成される。 同様にして第 2の系の一対のダイマー形 成用プローブとそのダイマープローブ (]3) も上記のように構成される (図 1 (b) ) 。
第 1のダイマープローブ ( ひ) と第 2のダイマープローブ ( β ) は、 図 1及び図 2 (a) に示したように、
αの N o . 1 -オリゴヌクレオチドの 3 ' 側領域は、 ]3の N o. 2 -オリゴ ヌクレオチドの 3 ' 側領域と、
αの N o. 2 -オリゴヌクレオチドの 5 ' 側領域は、 )3の N o. 1 -オリゴ ヌクレオチドの 5 ' 側領域と、
aの N o. 2-オリゴヌクレオチドの 3 ' 側領域は、 i3の N o. 1-オリゴ ヌクレオチドの 3 ' 側領域と、
αの No. 1 -オリゴヌクレオチドの 5 ' 側領域は、 i3の N o. 2 -オリゴ ヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイブリダィゼ ーシヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する (図 2 (b) ) 。
2. 2組のダイマ一形成用プローブによる自己集合体の形成の第二の例 < 2組のダイマー形成用プローブによる自己集合体の形成の第二の例とし て、 図 3 (b) に示したように、 第 2の系のダイマー形成用プローブの N o . 1 -オリゴヌクレオチドと N o . 2 -オリゴヌクレオチドにおいて、 4
3 ' 側領域もしくは 5 ' 側領域の入れ替えが可能である。
第 1の系のダイマープローブ (ひ) と第 2の系のダイマープローブ (iS ' ) は、 図 4 (a) に示したように、
の N o . 1 -オリゴヌクレオチドの 3 ' 側領域は、 j8 ' の N o. 3 - オリゴヌクレオチドの 3 ' 側領域と、
の N o . 2 -オリゴヌクレオチドの 5 ' 側領域は、 β , の N o. 3 - ォリゴヌクレオチドの 5 ' 側領域、
の N o . 2-オリゴヌクレオチドの 3 ' 側領域は、 β , の N o. 4 - オリゴヌクレオチドの 3 ' 側領域と、
a の N o . 1 -オリゴヌクレオチドの 5 ' 側領域は、 β , の N o. 4 - オリゴヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイプリダイゼ —シヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する (図 4 (b) ) 。
3. n組のダイマー形成用プローブによる自己集合体の形成の第 1の例 N o. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレオ チドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各ォ リゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側領域 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマ一形成用 プローブを含む系を第 1番目の系から第 n番目 (nは 2以上の整数) の系 まで順番に複数個形成する。
ダイマー形成用プロ一ブは、
( a) 第 (n— 1 ) 番目の系の N o . 1 -オリゴヌクレオチドの 3 ' 側領 域は、 第 n番目の系の N o. 2 -オリゴヌクレオチドの 3 ' 側領域と、 (b) 第 (n— 1 ) 番目の系の N o . 2 -オリゴヌクレオチドの 5 ' 側領 域は、 第 n番目の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領域と、 ( c ) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 第 1の 系の N o . 2 -オリゴヌクレオチドの 3 ' 側領域と、
(d) 最後の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域は第 1の系 の N o . 1 -オリゴヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイブリダィゼ —シヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する。
上記における n = 3の場合の例を、 図 5及び図 6に示し、 n = 4の例を、 図 7及び図 8に示す。
4. 3組のダイマー形成用プローブによる自己集合体の形成の第 1の例 £ 図 5 ( a) に示したように、 第 1の系は、 一対のダイマ一形成用プロ一 ブの N o. 1 _オリゴヌクレオチド、 及び N o . 2-オリゴヌクレオチドに おける各オリゴヌクレオチドが、 3 ' 側領域、 中央領域、 及び 5 ' 側領域 の 3つの領域に分けられ、 各オリゴヌクレオチドの中央領域が互いに相補 的な塩基配列であることから、 3 ' 側領域、 及び 5 ' 側領域が互いに非相 補的な塩基配列である第 1の系のダイマ一プローブ ( ) を形成するオリ ゴヌクレオチドから構成される。 同様にして第 2の系の一対のダイマ一形 成用プローブとそのダイマ一プローブ ( ) と第 3の系の一対のダイマ一 形成用プローブとそのダイマープローブ (ァ) も上記のように構成される (図 5 (b) 及び (c ) ) 。
第 1の系のダイマ一プローブ ( ひ) と第 2の系のダイマープローブ ( β ) と第 3の系のダイマープローブ (r) は、 図 5及び図 6 (a) に示 したように、
a;の N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 jSの N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
ひの N o. 2-オリゴヌクレオチドの 5, 側領域は、 i8の N o. 1_オリゴ ヌクレオチドの 5 ' 側領域と、
j3の N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ァの No. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
^の No. 2-オリゴヌクレオチドの 5 ' 側領域は、 ァの No. 1-オリゴ ヌクレオチドの 5 ' 側領域と、
ァの No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ひの No. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
ァの N o. 2 -オリゴヌクレオチドの 5 ' 側領域は、 の N o. 1-オリゴ ヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイブリダィゼ ーシヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する (図 6 (b) ) 。
5. 4組のダイマー形成用プローブによる自己集合体の形成の第 1の例 < 図 7 (a) に示したように、 第 1の系は、 一対のダイマ一形成用プロ一 ブの No. 1 -オリゴヌクレオチド、 及び N o . 2-オリゴヌクレオチドに おける各オリゴヌクレオチドが、 3 ' 側領域、 中央領域、 及び 5 ' 側領域 の 3つの領域に分けられ、 各オリゴヌクレオチドの中央領域が互いに相補 的な塩基配列であることから、 3 ' 側領域、 及び 5 ' 側領域が互いに非相 補的な塩基配列である第 1の系のダイマ一プローブ (α) を形成するオリ ゴヌクレオチドから構成される。 同様にして第 2の系の一対のダイマー形 成用プロ一ブとそのダイマ一プローブ (^) 、 第 3の系の一対のダイマー 形成用プローブとそのダイマープローブ (ァ) 及び第 4の系の一対のダイ マ一形成用プローブとそのダイマープローブ (δ) も上記のように構成さ れる (図 7 (b) 〜 (d) ) 。
第 1の系のダイマ一プローブ ( α ) 、 第 2の系のダイマ一プローブ ( β ) 、 第 3の系のダイマープローブ (ァ) 及び第 4の系のダイマ一プロ 7 ーブ (δ) は、 図 7及び図 8 (a) に示したように、
αの N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ]3の N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
ひの N o. 2 _オリゴヌクレオチドの 5 ' 側領域は、 の No, 1-オリゴ ヌクレオチドの 5 ' 側領域と、
/3の N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ァの N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
j3の N o. 2-オリゴヌクレオチドの 5 ' 側領域は、 ァの N o. 1-オリゴ ヌクレオチドの 5 ' 側領域と、
ァの N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 δの N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
ァの N o . 2 -オリゴヌクレオチドの 5 ' 側領域は、 δの N o . 1 -オリゴ ヌクレオチドの 5 ' 側領域と、
δの N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ひの N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
<5の N o. 2-オリゴヌクレオチドの 5 ' 側領域は、 の N o. 1-オリゴ ヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイプリダイゼ ーシヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する (図 8 (b) ) 。
6. n組のダイマー形成用プローブによる自己集合体の形成の第 2の例 t No. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレオ チドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各ォ リゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側領域, 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマ一形成用 プローブを含む系を第 1番目の系から第 n番目 (nは 2以上の整数) の系 まで順番に複数個形成する。
ダイマー形成用プローブは、
(a) 第 (n— 1 ) 番目の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領 域は、 第 n番目の系の N o. 2-オリゴヌクレオチドの 3 ' 側領域と、
(b) 第 (n— 1 ) 番目の系の N 0. 1 -オリゴヌクレオチドの 5 ' 側領 域は、 第 n番目の系の N o. 2_オリゴヌクレオチドの 5 ' 側領域と、
( c ) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 第 1の 系の N o . 2 -オリゴヌクレオチドの 3 ' 側領域と、
(d) 最後の系の N o. 1-オリゴヌクレオチドの 5 ' 側領域は、 第 1の 系の N o. 2_オリゴヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイプリダイゼ —シヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する。
上記における n = 3の場合の例を図 9に、 n = 4の例を図 1 0及び図 1 1に、 n= 5の場合の例を図 1 2及び図 1 3にそれぞれ示す。
7. 3組のダイマー形成用プローブによる自己集合体の形成の第 2の例 c 図 9 (a) に示したように、 第 1の系は、 一対のダイマ一形成用プロ一 ブの No. 1 -オリゴヌクレオチド、 及び N o . 2-オリゴヌクレオチドに おける各オリゴヌクレオチドが、 3 ' 側領域、 中央領域、 及び 5 ' 側領域 の 3つの領域に分けられ、 各オリゴヌクレオチドの中央領域が互いに相補 的な塩基配列であることから、 3 ' 側領域、 及び 5 ' 側領域が互いに非相 補的な塩基配列である第 1の系のダイマ一プローブ (ひ) を形成するオリ ゴヌクレオチドから構成される。 同様にして第 2の系の一対のダイマ一形 成用プローブとそのダイマープローブ ( ) と第 3の系の一対のダイマー 形成用プローブとそのダイマープローブ (ァ) も上記のように構成される c 第 1のダイマープローブ (ひ) 、 第 2のダイマープローブ (]3) 、 及び 第 3のダイマ一プローブ (ァ) は、 図 9 (a) に示したように、
ひの N o. 1-オリゴヌクレオチドの 3 ' 側領域は、 ^6の N 0. 2 -オリゴ ヌクレオチドの 3 ' 側領域と、
の N o. 1 -オリゴヌクレオチドの 5 ' 側領域は、 /3の No. 2オリゴ ヌクレオチドの 5 ' 側領域と、
i3の No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ァの No. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
/3の No. 1 オリゴヌクレオチドの 5 ' 側領域は、 ァの N o. 2-オリゴ ヌクレオチドの 5 ' 側領域と、
rの No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 αの N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
ァの No. 1 -オリゴヌクレオチドの 5 ' 側領域は、 ひの No. 2-オリゴ ヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイプリダイゼ —シヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する (図 9 (b) ) 。
8. 4組のダイマー形成用プローブによる自己集合体の形成の第 2の例, 図 1 0 (a) 'に示したように、 第 1の系は、 一対のダイマ一形成用プロ —ブの No. 1 -オリゴヌクレオチド、 及び N o . 2-オリゴヌクレオチド における各オリゴヌクレオチドが、 3 ' 側領域、 中央領域、 及び 5 ' 側領 域の 3つの領域に分けられ、 各オリゴヌクレオチドの中央領域が互いに相 補的な塩基配列であることから、 3 ' 側領域、 及び 5 ' 側領域が互いに非 相補的な塩基配列である第 1の系のダイマープロ一ブ (α) を形成するォ リゴヌクレオチドから構成される。 同様にして第 2の系の一対のダイマ一 形成用プローブとそのダイマープローブ (β ) 、 第 3の系の一対のダイマ 一形成用プローブとそのダイマ一プローブ (ァ) 、 及び第 4の系の一対の ダイマ一形成用プローブとそのダイマープローブ (δ) も上記のように構 成される (図 1 0 (b) 〜 (d) ) 。
第 1のダイマープローブ (ひ) 、 第 2のダイマ一プローブ (β ) 、 第 3 のダイマ一プローブ (ァ) 及び第 4のダイマープローブ (<5) は、 図 1 0 及び図 1 1 (a) に示したように、
αの No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ]3の N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
αの N o. 1 _オリゴヌクレオチドの 5 ' 側領域は、 ;3の N o. 2オリゴ ヌクレオチドの 5 ' 側領域と、
^の No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ァの No. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
;3の No. 1 -オリゴヌクレオチドの 5 ' 側領域は、 rの No. 2-オリゴ ヌクレオチドの 5 ' 側領域と、
了の No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 δの No. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
ァの No. 1 -オリゴヌクレオチドの 5 ' 側領域は、 δの No. 2-オリゴ ヌクレオチドの 5 ' 側領域と、
dの No. 1 -オリゴヌクレオチドの 3 側領域は、 ひの No 2 -才リゴ ヌクレオチドの 3 ' 側領域と、
δの No. 1 -オリゴヌクレオチドの 5 側領域は、 ひの N o 2 -ォリゴ ヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイブリダイゼ ーシヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する (図 1 1 (b) ) 。
9. 5組のダイマー形成用プロ一ブによる自己集合体の形成の第 2の例, 図 1 2 (a) に示したように、 第 1の系は、 一対のダイマ一形成用プロ 2 ーブの N o. 1 -オリゴヌクレオチド、 及び N o . 2-オリゴヌクレオチド における各オリゴヌクレオチドが、 3 ' 側領域、 中央領域、 及び 5 ' 側領 域の 3つの領域に分けられ、 各オリゴヌクレオチドの中央領域が互いに相 補的な塩基配列であることから、 3 ' 側領域、 及び 5 ' 側領域が互いに非 相補的な塩基配列である第 1の系のダイマープローブ (α) を形成するォ リゴヌクレオチドから構成され'る。 同様にして第 2の系の一対のダイマ一 形成用プローブとそのダイマープローブ ( β ) 、 第 3の系の一対のダイマ 一形成用プローブとそのダイマープローブ (ァ) 、 第 4の系の一対のダイ マ一形成用プローブとそのダイマ一プローブ (δ) 及び第 5の系の一対の ダイマー形成用プローブとそのダイマープローブ (0) も上記のように構 成される (図 1 2 (b) 〜 (e) ) 。
第 1のダイマープローブ (ひ) 、 第 2のダイマープローブ (i3) 、 第 3 のダイマ—プローブ (ァ) 、 第 4のダイマープローブ (6) 、 及び第 5の ダイマープローブ (Θ) は、 図 1 2及び図 1 3 (a) に示したように、 αの N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ]3の N 0. 2 _オリゴ ヌクレオチドの 3 ' 側領域と、
の N o. 1 -オリゴヌクレオチドの 5 側領域は、 /3の N o. 2オリゴ ヌクレオチドの 5 ' 側領域と、
j3の No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 ァの N o . 2 -オリゴ ヌクレオチドの 3 ' 側領域と、
/3の N o. 1 -オリゴヌクレオチドの 5 ' 側領域は、 ァの N o . 2 -オリゴ ヌクレオチドの 5 ' 側領域と、
ァの N o. 1 -オリゴヌクレオチドの 3 ' 側領域は、 δの N o. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
了の N o. 1 _オリゴヌクレオチドの 5 ' 側領域は、 δの N o . 2 -オリゴ ヌクレオチドの 5 ' 側領域と、 δの No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 0の No. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
δの No. 1 -オリゴヌクレオチドの 5 ' 側領域は、 0の N o. 2_オリゴ ヌクレオチドの 5 ' 側領域と、
0の No. 1 -オリゴヌクレオチドの 3 ' 側領域は、 αの No. 2-オリゴ ヌクレオチドの 3 ' 側領域と、
0の No. 1 -オリゴヌクレオチドの 5 ' 側領域は、 の No. 2-オリゴ ヌクレオチドの 5 ' 側領域と、
それぞれが相補的な塩基配列であることから、 それぞれがハイプリダイゼ —シヨンすることにより、 オリゴヌクレオチドが自己集合し、 二本鎖の自 己集合体を形成する (図 1 3 (b) ) 。
また、 上記において、 n個の系からなる n組のダイマー形成用プローブ による自己集合体の形成の例としては、 n組のダイマ一プローブのハイブ リダィゼーシヨンは、 図 i s ( c ) に示した如くの組み合わせにより、 自 己集合体を形成する。
ダイマ一形成用プロ一ブをハイプリダイゼーションさせる好適な方法と して、 あらかじめダイマ一形成用プローブをハイプリダイゼーションさせ てダイマ一プローブを形成させた後、 各系の形成されたダイマープローブ をハイブリダィゼーションさせることにより、 自己集合体を形成させる方 法を上述したが、 本発明に係る自己集合体の形成方法は、 上記方法に限定 されるものではなく、 例えば、 各系のダイマー形成用プローブを同時に反 応させ、 ハイブリダィゼ一シヨンさせることにより、 自己集合体を形成さ せる方法等も含まれるものである。
さらに本発明は、 ダイマー形成用プローブの 3つの領域の端部に、 少な くとも 1つの G (グァニン) または C (シトシン) を配置させ、 ダイマー 形成用プローブがハイブリダィズした際に、 少なくとも 1つの Gと Cの結 合を領域の端部に形成させて、 塩基の積み重ね (s t acking o f bas e) によ り塩基の π電子の特殊な相互作用を生じさせ、 安定した二本鎖の自己集合 体を形成させる方法である。
自己集合体の形成方法では、 各領域における分岐点の結合力が弱いとそ の分岐点にはさまれている領域のハイプリダイゼーションが不安定になる ことから、 領域全体の塩基の π電子による特殊な相互作用から生じる塩基 の積み重ね (s t acki ng o f base) 効果の強さを増すことにより、 各領域の ハイプリダイゼーション反応をより強固にさせることを考案したものであ る。
上記の領域端部に配置される Cまたは Gの数は少なくとも 1塩基であり, 複数個であっても差し支えない。 各領域の塩基配列を考慮し適宜選択する ことができる。 複数個の Cまたは Gを配置させる場合、 C、 Gの順序は特 に限定されず自由に組み合わせることができる。
本発明は、 本発明において形成される自己集合体の塩基の積み重ねが規 則的な高次構造をとることから、 2 6 0 n mにおける紫外部の吸収帯の強 度が減じる 「ハイポク口ミズム」 という淡色効果を発現させて自己集合体 の状態を確認する方法を可能にするものである。
さらには、 本発明は、 核酸と結合する性質を持った蛍光物質を加え、 そ の蛍光強度の変化から自己集合体の状態を確認する方法を可能にするもの である。 例えば、 自己集合体は、 オリゴヌクレオチドの二本鎖に挿入して 蛍光を発する色素を添加し、 セフエイ ド社の I 一 C O R E T M ( Smar t Cyc l er™) 等を用いて蛍光の発光状態を観察することにより検出可能であ る。
また、 一般的なァガロースゲル電気泳動法等によっても、 形成された自 己集合体を簡単に確認することができる。 実施例
以下に、 本発明の実施例を挙げて説明するが、 本発明がこれらの実施例 に限定されるものではないことは勿論である。
実施例において用いたオリゴヌクレオチド · プローブ
1 ) N o . 1一プローブ
5 ' -GTGC TGACTT AAC CGGATAC G AA C AG G A T C C T AG A C C T AG CATAGTACAG TC CGATGG TG— 3 '
2 ) No. 2—プローブ
5 ' — C C T C AAGAC G CATGTCTTTC CTAGGTCT AG G AT C C T GTT C CTAGAAC GGA C TGTAC TT
C G- 3 '
3) No. 3—プローブ
5 ' — GAAAGAC ATG CGTCTTGAGG CTATCCGT T C GACTTGCATG C GAAGT A C AG TCC GTTCT AG- 3 '
4) No. 4 _プローブ
5 ' — GT AT C C GGTT AAGT C AG C AC C ATGC AAG T C GAAC GGATAG C AC CAT C GGA CTGTACTA TG- 3 '
5 ) X 1—プローブ
5 ' —GTGC TGACTT AAC C GGAT AC GAAC AGGA T C CTAGAC C T AG CATAGTACAG TCC GATGG TG— 3 '
6 ) X 2—プローブ
5 ' — C CTC AAGACG CATGTCTTTC CTAGGTCT AG G AT C C T GTT C CTAGAAC GGA CTGTACTT C G— 3 '
7 ) Y 1—プローブ
5 ' — GAAAGAC ATG CGTCTTGAGG CTATC CGT T C GACTTGC ATG CTAGAC G C TT C TT G C GT A
AG— 3 '
8 ) Y 2—プローブ
5 ' - GT GT C G AATT GAC ACTC AGC C ATGC AAG T C GAAC GGATAG C AC CAT C GGA CTGTACTA TG— 3 '
9 ) Z 1—プローブ
5 ' — G C T G AGT GT C AATTCGACAC G C A C C C T A T C AGGC AGTATC C GAAGT A C AG TCCGTTCT
AG— 3 '
1 0) Z 2—プローブ
5 ' — GT AT C C GGTT AAGT C AG C AC GATACTGC
C T GATAGGGTGC CTTACGCAAG AAGCGTCT AG— 3 '
(実験例 1〜 6 )
1. 目的
第 1及び第 2の系からなる二組の一対のダイマ一形成用プローブによる ダイマープローブの形成を確認した。
2. 材料
( 1 ) 第 1の系の一対のダイマ一形成用プローブとして、 No. 1—プロ —ブ及び N o. 2—プローブを、 第 2の系の一対のダイマー形成用プロ一 ブとして、 No. 3—プローブ及び N o. 4 _プローブを作製した。 各ォ リゴヌクレオチド · プローブは、 それぞれ 1 0 0 pmo 1 に調製したもの を用いた。
( 2 ) 緩衝液として 2 0 X S S C ( 3 M— N a C 1 , 0. 3M— C 6H5 07N a 3 - 2 H20, p H 7. 0) を用いた。
3. 方法
(実験例 1〜4) ダイマ一形成用プローブの調製
0. 2 mLのマイクロチューブにそれぞれ、 オリゴヌクレオチド · プロ ーブを l L、 2 0 X S S Cを 1 2 L、 H20を 7 L加えて、 計 2 0 Lの反応溶液を調製した。 オリゴヌクレオチド · プローブは、 実験例 1 では、 N o. 1 _プロ一ブを、 実験例 2では、 N o. 2—プロ一ブを、 実 験例 3では、 N o. 3—プローブを、 実験例 4では、 N o. 4—プローブ をそれぞれ用いた。
上記の各反応溶液を、 94°C 3 0秒間加熱させた。
反応終了後、 氷上で急冷した後、 0. 5 %のァガロースゲルを用いて 1 0 0 V、 3 0分間電気泳動を行った。 ァガロースゲル電気泳動後、 ゲルを 臭化工チジゥムで染色した。
(実験例 5及び 6) ダイマープローブの調製
実験例 5では、 0. 2mLのマイクロチューブに N o. 1—プローブを 0. 5 L、 N O . 2—プローブを 0. 5 、 2 0 X S S Cを 1 2 L、 及び H2〇を 7 L加えて、 計 2 0 Lの反応溶液を調製した。
実験例 6では、 0. 2 mLのマイクロチューブに N o . 3—プローブを 0. 5 L、 N O . 4—プローブを 0. 5 L、 2 0 X S S Cを 1 2 L 及び H2〇を 7 L加えて、 計 20 μ Lの反応溶液を調製した。
上記各反応溶液を、 94°C 3 0秒加熱後、 64 で 3 0分間反応させた, 反応終了後、 氷上で急冷した後、 0. 5 %のァガロースゲルを用いて 1 00 V、 3 0分間電気泳動を行った。 ァガロースゲル電気泳動後、 ゲルを 臭化工チジゥムで染色した。
4. 結果
結果を図 1 7に示す。 図 1 7のァガロースゲル電気泳動の写真に示した ように、 実験例 1〜4では、 各ダイマー形成用プローブが、 モノマーの状 態であることが確認された (レ一ン 1、 2、 4及び 5) 。 実験例 5では、 図 1 7のァガロースゲル電気泳動の写真に示したように、 本発明による第 1の系の一対のダイマ一形成用プローブは、 PAL S AR法のオリゴヌク レオチド · プローブとは異なり自己集合体は形成せず、 ダイマーのみを形 成するオリゴヌクレオチド · プローブであった (レーン 3) 。 同様に、 実 験例 6では、 第 2の系の一対のダイマー形成用プローブは、 PAL SAR 法のオリゴヌクレオチド · プローブとは異なり自己集合体は形成せず、 ダ イマ一のみを形成した (レーン 6) 。
(実施例 1 )
1. 目的
あらかじめ二組のダイマープローブを形成させて自己集合体の形成を確 認した。
2. 材料
( 1 ) 第 1の系のダイマ一プローブ (α) として、 実験例 5にて形成させ た第 1の系のダイマ一を、 第 2の系のダイマープローブ (i3) として、 実 験例 6にて形成させた第 2の系のダイマ一を、 それぞれ用いた。
(2) 緩衝液として 2 0 X S S C ( 3 M- N a C 1 , 0. 3M— C6H5 07N a 3 · 2 H2〇, pH 7. 0) を用いた。
3. 方法
0. 2 Lのマイクロチューブに第 1の系のダイマ一プローブ (α) と 第 2の系のダイマープローブ (/3 ) を 0. 5 Lずつ加え、 2 0 XS S C を 1 2 L、 H2〇を 7 L加えて、 計 2 0 Lの反応溶液を調製した。 上記反応溶液を、 各々 5 2°C、 54 °C 5 6 °C, 5 8 °C 6 0 °C、 6 2°C、 64°C、 6 6°C、 6 8°C及び 7 0°Cにてそれぞれ 3 0分反応させた c 反応終了後、 氷上で急冷した後、 0. 5 %のァガロースゲルを用いて 1 0 0 V、 3 0分間電気泳動を行った。 ァガロースゲル電気泳動後、 ゲルを 臭化工チジゥムで染色した。
4. 結果
図 1 4の写真に示したように、 PAL S AR法に比べ、 同じ反応時間 であるにもかかわらず、 広い範囲の温度領域において自己集合体の形成が 確認された。 このことは、 反応時間の短縮も意味するものである。
(実施例 2)
1. 目的
4種のダイマ一形成用プローブを同時に反応させて、 自己集合体の形成 を確認した。
2. 材料
( 1 ) 第 1の系のダイマ一形成用プローブとして、 N o. 1—プローブ及 び N o. 2—プローブを、 第 2の系のダイマー形成用プローブとして、 N o . 3—プロ一ブ及び No. 4—プローブを用いた。 各オリゴヌクレオチ ド - プロ一ブは、 実験例 1〜4にて調製したものを用いた。
( 2 ) 緩衝液として 2 0 X S S C ( 3 M- N a C 1 , 0. 3M— C 6H5 07 N a 3 - 2 H20, p H 7. 0) を用いた。
3. 方法
0. 2 Lのマイクロチューブに N o . 1—プローブ、 No. 2—プロ ーブ、 No. 3—プローブ及び N o. 4—プローブを同時に 0. 5 しず つ加え、 2 0 X S S Cを 1 2 L、 H20を 6 L加えて、 計 2 0 Lの 反応溶液を調製した。
上記反応溶液を、 各々 5 2° (:、 54°C、 5 6 °C、 5 8 °C、 6 0で、 6 2°C、 64°C、 6 6°C、 6 8 °C及び 7 0 °Cにてそれぞれ 3 0分反応させた c 反応終了後、 氷上で急冷した後、 0. 5 %のァガロースゲルを用いて 1 00 V、 3 0分間電気泳動を行った。 ァガ口一スゲル電気泳動後、 ゲルを 臭化工チジゥムで染色した。
4. 結果
図 1 5の写真に示したように、 自己集合体の形成が観察されたが、 実施 例.1に比べ、 5 2°C〜 6 2°Cの反応温度において、 非特異的な反応が確認 された。
(実施例 3)
1. 目的
第 1、 第 2及び第 3の系からなる 3組の一対のダイマー形成用プロ一ブ を用いて、 自己集合体の形成を確認した。 実施例 1及び実施例 2において, プロ一ブをあらかじめダイマ一としておいた場合においても、 同時に添加 した場合においても同じ反応温度での自己集合体の形成が確認されたため, 本実施例においては、 プローブのダイマ一の種類を 3組に増やして、 同時 に添加し同じ反応温度における自己集合体の形成を調べた。
2. 材料
( 1 ) 第 1の系のダイマ一形成用プローブとして、 X I—プローブ及び X 2—プローブを、 第 2の系のダイマー形成用プローブとして、 Y 1—プロ ーブ及び Y 2—プロ一ブを、 第 3の系のダイマー形成用プローブとして、 Z 1—プローブ及び Z 2一プローブを作製した。 各オリゴヌクレオチド · プローブは、 それぞれ 1 00 pmo 1 に調製したものを用いた。
(2) 緩衝液として 2 0 X S S C ( 3 M- N a C 1 , 0. 3 M- C 6H 5 07N a 3 - 2 H20, p H 7. 0) を用いた。
3. 方法
0. 2 Lのマイクロチューブに X 1—プローブ、 X 2—プローブ、 Y 1一プローブ、 Y 2—プローブ、 Ζ 1—プロ一ブ及び Ζ 2—プローブを同 時に 0. 5 Lずつ加え、 2 0 X S S Cを 1 8 L、 H2〇を 9 L加え て、 計 3 0 Lの反応溶液を調製した。
上記の各反応溶液を、 9 4 °C 3 0秒間加熱させた。
加熱後、 上記反応溶液を、 各々 5 2 °C、 5 4 °C、 5 6 °C、 5 8 °C、 6 0 °C、 6 2 °C、 6 4°C、 6 6 °C, 6 8 °C、 7 0 °C, 7 2 及び7 4。(:にて それぞれ 3 0分反応させた。
反応終了後、 氷上で急冷した後、 0. 5 %のァガロースゲルを用いて 1 0 0 V、 3 0分間電気泳動を行った。 ァガロースゲル電気泳動後、 ゲルを 臭化工チジゥムで染色した。
4. 結果
図 1 6の写真に示したように、 3組のダイマープローブを形成する、 6 種のダイマー形成用プローブを用いた場合においても、 2組のダイマープ ローブを用いた実施例 1及び実施例 2の場合と同様、 自己集合体の形成が 観察された。 産業上の利用可能性
以上述べたごとく、 本発明の自己集合体の作製方法によれば、 従来の方 法よりもさらに自己集合体形成の反応時間を短縮することができる。 また. 本発明の自己集合体の検出方法によれば、 上記自己集合体の作製方法によ つて形成された自己集合体を容易に検出することが可能である。

Claims

請求の範囲
1. N o. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレ ォチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各 オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側領 域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマー形 成用プローブを含む系を第 1の系及び第 2の系まで形成し、
(a) 第 1の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o . 2 -オリゴヌクレオチドの 3 ' 側領域、
(b) 第 1の系の N o. 2_オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o. 1-オリゴヌクレオチドの 5 ' 側領域、
( c ) 第 2の系の N o. 1 _オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1の系及び第 2の系までの複 数対のダイマー形成用プローブをハイプリダイゼ一ションさせることによ り、 オリゴヌクレオチドが自己集合し、 2本鎖の自己集合体を形成させる ことを特徴とする自己集合体の作製方法。
2. N o. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌクレ ォチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各 オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側領 域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマ一形 成用プローブを含む系を第 1の系及び第 2の系まで形成し、
(a) 第 1の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o. 1 -オリゴヌクレオチドの 3 ' 側領域、 (b) 第 1の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o . 1 -オリゴヌクレオチドの 5 ' 側領域、
( c ) 第 2の系の N o. 2-オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o . 2 -オリゴヌクレオチドの 3 ' 側領域、
(d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1-オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1の系及び第 2の系までの複 数対のダイマ一形成用プローブをハイプリダイゼーションさせることによ り、 オリゴヌクレオチドが自己集合し、 2本鎖の自己集合体を形成させる ことを特徴とする自己集合体の作製方法。
3. N o. 1及び No. 2の一対のオリゴヌクレオチドの各オリゴヌクレ ォチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各 オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側領 域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマー形 成用プローブを含む系を第 1番目の系から第 n番目 (nは 2以上の整数) の系まで順番に複数個形成し、
(a) 第 (n— 1 ) 番目の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の No. 2 _オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n _ l ) 番目の系の N o. 2-オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の No. 1 -オリゴヌクレオチドの 5 ' 側領域、
(c ) 最後の系の No. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o . 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1番目の系から第 n番目の系 までの複数対のダイマー形成用プローブをハイブリダイゼ一ションさせる ことにより、 オリゴヌクレオチドが自己集合し、 2本鎖の自己集合体を形 成させることを特徴とする自己集合体の作製方法。
4. No. 1及び No. 2の一対のオリゴヌクレオチドの各オリゴヌクレ ォチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各 オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側領 域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマ一形 成用プローブを含む系を第 1番目の系から第 n番目 (nは 2以上の整数) の系まで順番に複数個形成し、
(a) 第 (n— 1 ) 番目の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の No. 2-オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n— 1) 番目の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域、
( c ) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2 -オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領域と第 1の系 の No. 2-オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とし、 第 1番目の系から第 n番目の系 までの複数対のダイマー形成用プローブをハイブリダイゼーションさせる ことにより、 オリゴヌクレオチドが自己集合し、 2本鎖の自己集合体を形 成させることを特徴とする自己集合体の作製方法。
5. 前記ダイマー形成用プローブの 3つの領域の端部に、 少なくとも 1つ の G (グァニン) または C (シトシン) を配置させ、 ダイマー形成用プロ 一ブがハイブリダィズした際に少なくとも 1つの G— C結合を領域の端部 に形成させることにより、 安定した 2本鎖の自己集合体を形成させること を特徴とする請求項 1〜4のいずれか 1項記載の方法。
6. 前記ダイマー形成用プローブが、 DNA、 RNA、 PNAまたは LN Aのいずれかから選ばれる塩基から構成されることを特徴とする請求項 1 〜 5のいずれか 1項記載の方法。
7. 前記複数対のダイマ一作製用プローブのハイプリダイゼーションが、 あらかじめ一対のダイマー作製用プロ一ブによりダイマ一プローブを形成 させた後、 各系の形成されたダイマ一プローブをハイブリダィゼ一シヨン させるものであることを特徴とする請求項 1〜 6のいずれか 1項記載の方 法。
8. 請求項 1〜 7のいずれか 1項記載の方法で形成された自己集合体。
9. 請求項 1〜 7のいずれか 1項記載の方法で形成した自己集合体の紫外 線に対する光化学的な吸収の変化を利用して前記自己集合体の存在を検出 することを特徴とする自己集合体の検出方法。
1 0. 請求項 1〜7のいずれか 1項記載の方法で形成した自己集合体の塩 基対に対して、 核酸と結合する性質を持った蛍光物質を加え、 その蛍光物 質の光化学的な変化により前記自己集合体の存在を検出することを特徴と する自己集合体の検出方法。
1 1. N o. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌク レオチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側 領域、 及び' 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマー 形成用プローブを含む系を第 1の系及び第 2の系まで形成し、
(a) 第 1の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(b) 第 1の系の N o. 2_オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o. 1-オリゴヌクレオチドの 5 ' 側領域、
(c) 第 2の系の N o. 1-オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2 _オリゴヌクレオチドの 3 ' 側領域、 (d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする 第 1の系及び第 2の系まで形成される一対のダイマ一形成用プローブ。
1 2. No. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌク レオチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側 領域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマ一 形成用プローブを含む系を第 1の系及び第 2の系まで形成し、
(a) 第 1の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 2の系 の N o. 1 -オリゴヌクレオチドの 3 ' 側領域、
(b) 第 1の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 2の系 の N o . 1 _オリゴヌクレオチドの 5 ' 側領域、
( c ) 第 2の系の N o. 2 -ォリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 第 2の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする 第 1の系及び第 2の系まで形成される一対のダイマ一形成用プローブ。
1 3. No. 1及び N o. 2の一対のオリゴヌクレオチドの各オリゴヌク レオチドを.3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側 領域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマ一 形成用プロ一ブを含む系を第 1番目の系から第 n番目 (nは 2以上の整 数) の系まで順番に複数個形成し、
(a) 第 (n— 1 ) 番目の系の N o . 1 -オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n— 1 ) 番目の系の N o. 2-オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の No. 1 -オリゴヌクレオチドの 5 ' 側領域、
(c) 最後の系の N o. 1 -オリゴヌクレオチドの 3 ' 側領域と第 1の系 の N o. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 2-オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N o. 1 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする 第 1番目の系から第 n番目の系まで形成される一対のダイマー形成用プロ ーブ。
14. N o. 1及び No. 2の一対のオリゴヌクレオチドの各オリゴヌク レオチドを 3 ' 側領域、 中央領域、 及び 5 ' 側領域の 3つの領域に分け、 各オリゴヌクレオチドの中央領域を互いに相補的な塩基配列とし、 3 ' 側 領域、 及び 5 ' 側領域を互いに非相補的な塩基配列とした一対のダイマー 形成用プローブを含む系を第 1番目の系から第 n番目 (nは 2以上の整 数) の系まで順番に複数個形成し、
( a) 第 (n _ 1 ) 番目の系の N o . 1 -オリゴヌクレオチドの 3 ' 側領 域と第 n番目の系の No. 2 _オリゴヌクレオチドの 3 ' 側領域、
(b) 第 (n— 1 ) 番目の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領 域と第 n番目の系の No. 2-オリゴヌクレオチドの 5 ' 側領域、
( c ) 最後の系の N o. 1 _オリゴヌクレオチドの 3 ' 側領域と第 1の系 の No. 2-オリゴヌクレオチドの 3 ' 側領域、
(d) 最後の系の N o. 1 -オリゴヌクレオチドの 5 ' 側領域と第 1の系 の N 0. 2 -オリゴヌクレオチドの 5 ' 側領域、
をそれぞれ互いに相補的な塩基配列とした構造を有することを特徴とする 第 1番目の系から第 n番目の系まで形成される一対のダイマー形成用プロ ーブ。
1 5. 前記ダイマー形成用プローブの 3つの領域の端部に、 少なくとも 1 つの G (グァニン) または C (シトシン) を配置させることを特徴とする 請求項 1 1〜 14のいずれか 1項記載のダイマー形成用プローブ。
1 6. 前記ダイマ一形成用プローブが、 DNA、 RNA、 PNAまたは L N Aのいずれかから選ばれる塩基から構成されることを特徴とする請求項 1 1〜 14のいずれか 1項記載のダイマー形成用プローブ。
1 7. 請求項 1 1〜 1 4のいずれか 1項記載の一対のダイマ一形成用プロ ーブをハイプリダイゼーションさせることにより形成されるダイマープロ ーブ。
PCT/JP2001/008806 2000-10-11 2001-10-05 Procede de construction d"un autoassemblage de sondes et leur procede de detection WO2002031192A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002534557A JP3912595B2 (ja) 2000-10-11 2001-10-05 プローブ自己集合体の作製方法
US10/149,187 US7122310B2 (en) 2000-10-11 2001-10-05 Methods of constructing self-assembly of probes and method of detecting the same
EP01974720A EP1304386B1 (en) 2000-10-11 2001-10-05 Method of constructing self-assembly probes and method of detecting the same
AU2001294199A AU2001294199A1 (en) 2000-10-11 2001-10-05 Method of constructing self-assembly of probes and method of detecting the same
DE60123626T DE60123626T2 (de) 2000-10-11 2001-10-05 Verfahren zur konstruktion von selbstassemlbierenden sonden und verfahren zu ihrer detektion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-311151 2000-10-11
JP2000311151 2000-10-11

Publications (1)

Publication Number Publication Date
WO2002031192A1 true WO2002031192A1 (fr) 2002-04-18

Family

ID=18790969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008806 WO2002031192A1 (fr) 2000-10-11 2001-10-05 Procede de construction d"un autoassemblage de sondes et leur procede de detection

Country Status (8)

Country Link
US (1) US7122310B2 (ja)
EP (1) EP1304386B1 (ja)
JP (1) JP3912595B2 (ja)
AT (1) ATE341647T1 (ja)
AU (1) AU2001294199A1 (ja)
DE (1) DE60123626T2 (ja)
ES (1) ES2273892T3 (ja)
WO (1) WO2002031192A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028162A1 (ja) * 2004-09-08 2006-03-16 Eisai R & D Management Co., Ltd. シグナルプローブポリマーの形成方法
WO2007108378A1 (ja) 2006-03-15 2007-09-27 Eisai R & D Management Co., Ltd. シグナルプローブポリマーの形成方法
WO2009022682A1 (ja) 2007-08-14 2009-02-19 Eisai R & D Management Co., Ltd. 標的物質の検出方法
WO2009054320A1 (ja) 2007-10-24 2009-04-30 Eisai R & D Management Co., Ltd. 核酸プローブ及びプローブポリマーの形成方法
WO2009057702A1 (ja) 2007-10-31 2009-05-07 Eisai R & D Management Co., Ltd. 標的物質検出用ポリマー及び標的物質の検出方法
US7745124B2 (en) 2004-04-28 2010-06-29 Eisai R&D Management Co., Ltd. Hybridization method
WO2010087409A1 (ja) * 2009-01-29 2010-08-05 エーザイ・アール・アンド・ディー・マネジメント株式会社 核酸の検出方法
WO2013085026A1 (ja) 2011-12-09 2013-06-13 エーザイ・アール・アンド・ディー・マネジメント株式会社 塩基変異の検出方法及び検出用キット
WO2013172305A1 (ja) 2012-05-15 2013-11-21 エーザイ・アール・アンド・ディー・マネジメント株式会社 Rnaの検出方法及び検出用キット

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446358B1 (ko) * 2000-03-31 2004-09-01 산코 준야쿠 가부시키가이샤 프로우브 중합체 제작용 프로우브, 프로우브 중합체의 제작방법 및 그 이용
US20030175689A1 (en) * 2000-08-30 2003-09-18 Mitsugu Usui Gene detecting method
US20060035235A1 (en) * 2003-02-14 2006-02-16 Mitsugu Usui Signal amplification method for detecting expressed gene
US9315536B2 (en) * 2006-08-29 2016-04-19 Creatrone, Inc. Self-assembling oligonucleotides and methods
WO2011125833A1 (ja) 2010-03-31 2011-10-13 学校法人 慶應義塾 生体分子相互作用解析ツールの構成とそれを用いた解析方法
WO2013177046A1 (en) 2012-05-21 2013-11-28 Solulink, Inc. Methods and/or use of oligonucleotide conjugates for suppressing background due to cross-hybridization
CA3118215A1 (en) * 2018-10-30 2020-05-07 Institut National De La Recherche Scientifique Self-assembling nucleic acid surfaces for biosensor applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450594A2 (en) * 1990-04-03 1991-10-09 David Segev DNA probe signal amplification
WO1995022625A1 (en) * 1994-02-17 1995-08-24 Affymax Technologies N.V. Dna mutagenesis by random fragmentation and reassembly
US5487973A (en) * 1986-09-10 1996-01-30 Polyprobe, Inc. Methods for detecting and assaying nucleic acid sequences
JP2000201687A (ja) * 1998-11-09 2000-07-25 Sanko Junyaku Kk 遺伝子増幅法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8601898A (en) * 1997-07-29 1999-02-22 Polyprobe, Inc. Dendritic nucleic acids exhibiting maximal self-assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487973A (en) * 1986-09-10 1996-01-30 Polyprobe, Inc. Methods for detecting and assaying nucleic acid sequences
EP0450594A2 (en) * 1990-04-03 1991-10-09 David Segev DNA probe signal amplification
WO1995022625A1 (en) * 1994-02-17 1995-08-24 Affymax Technologies N.V. Dna mutagenesis by random fragmentation and reassembly
JP2000201687A (ja) * 1998-11-09 2000-07-25 Sanko Junyaku Kk 遺伝子増幅法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745124B2 (en) 2004-04-28 2010-06-29 Eisai R&D Management Co., Ltd. Hybridization method
US7867708B2 (en) 2004-09-08 2011-01-11 Eisai R&D Management Co., Ltd. Method of forming signal probe-polymer
JPWO2006028162A1 (ja) * 2004-09-08 2008-05-08 エーザイ・アール・アンド・ディー・マネジメント株式会社 シグナルプローブポリマーの形成方法
WO2006028162A1 (ja) * 2004-09-08 2006-03-16 Eisai R & D Management Co., Ltd. シグナルプローブポリマーの形成方法
WO2007108378A1 (ja) 2006-03-15 2007-09-27 Eisai R & D Management Co., Ltd. シグナルプローブポリマーの形成方法
US7927804B2 (en) 2006-03-15 2011-04-19 Eisai & Managment Co., Ltd. Method of forming signal probe-polymer
WO2009022682A1 (ja) 2007-08-14 2009-02-19 Eisai R & D Management Co., Ltd. 標的物質の検出方法
US8450058B2 (en) 2007-08-14 2013-05-28 Eisai R&D Management Co., Ltd. Method of detecting target substance
WO2009054320A1 (ja) 2007-10-24 2009-04-30 Eisai R & D Management Co., Ltd. 核酸プローブ及びプローブポリマーの形成方法
EP2202319A4 (en) * 2007-10-24 2010-10-20 Eisai R&D Man Co Ltd NUCLEIC ACID PROBE AND PROCESS FOR PRODUCING POLYMER FOR PROBE
JPWO2009054320A1 (ja) * 2007-10-24 2011-03-03 エーザイ・アール・アンド・ディー・マネジメント株式会社 核酸プローブ及びプローブポリマーの形成方法
EP2202319A1 (en) * 2007-10-24 2010-06-30 Eisai R&D Management Co., Ltd. Nucleic acid probe, and method for production of probe polymer
WO2009057702A1 (ja) 2007-10-31 2009-05-07 Eisai R & D Management Co., Ltd. 標的物質検出用ポリマー及び標的物質の検出方法
WO2010087409A1 (ja) * 2009-01-29 2010-08-05 エーザイ・アール・アンド・ディー・マネジメント株式会社 核酸の検出方法
WO2013085026A1 (ja) 2011-12-09 2013-06-13 エーザイ・アール・アンド・ディー・マネジメント株式会社 塩基変異の検出方法及び検出用キット
WO2013172305A1 (ja) 2012-05-15 2013-11-21 エーザイ・アール・アンド・ディー・マネジメント株式会社 Rnaの検出方法及び検出用キット

Also Published As

Publication number Publication date
JPWO2002031192A1 (ja) 2004-02-19
DE60123626T2 (de) 2007-01-18
DE60123626D1 (de) 2006-11-16
ES2273892T3 (es) 2007-05-16
JP3912595B2 (ja) 2007-05-09
US20030087262A1 (en) 2003-05-08
ATE341647T1 (de) 2006-10-15
EP1304386B1 (en) 2006-10-04
EP1304386A1 (en) 2003-04-23
US7122310B2 (en) 2006-10-17
AU2001294199A1 (en) 2002-04-22
EP1304386A4 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
WO2002031192A1 (fr) Procede de construction d&#34;un autoassemblage de sondes et leur procede de detection
AU624601B2 (en) Amplification and detection of nucleic acid sequences
USRE39007E1 (en) Isothermal strand displacement nucleic acid amplification
EP0379559B1 (en) Method and reagents for detecting nucleic acid sequences
JP4756805B2 (ja) Dna断片の合成法
JPH02501532A (ja) 標的ポリヌクレオチド配列の選択的増幅
JP2001517068A (ja) 核酸捕獲成分
KR100446358B1 (ko) 프로우브 중합체 제작용 프로우브, 프로우브 중합체의 제작방법 및 그 이용
JPH11510709A (ja) 最適蛍光オリゴヌクレオチド
WO2013038534A1 (ja) 標的核酸の検出方法
EA006679B1 (ru) Способ стабилизации реагента для амплификации или детекции нуклеиновой кислоты и способ хранения
US20010007744A1 (en) Methods of assaying differential expression
JP4482557B2 (ja) ハイブリダイゼーション方法
US6566058B1 (en) Assay involving looped nucleic acid
KR20040041529A (ko) Dna 칩의 시그널 증폭방법
JP2013524841A (ja) 一本鎖オーバーハングを有する二本鎖核酸を生成するための方法
JP4121757B2 (ja) オリゴヌクレオチドによる自己集合体の作製方法及び遺伝子の検出方法
JPWO2003040367A1 (ja) 遺伝子増幅反応で合成されたオリゴヌクレオチドによる自己集合体の形成方法、自己集合体及び遺伝子の検出方法
JP4351210B2 (ja) 発現遺伝子検出のためのシグナル増幅方法
JP2003527866A5 (ja)
JP3084733B2 (ja) 標的核酸の増幅方法、検出方法およびそのためのキット
JPWO2006028162A1 (ja) シグナルプローブポリマーの形成方法
JP2003511660A (ja) 電気化学ルミネセンスヘリカーゼアッセイ
KR20160094113A (ko) 상보적 염기서열 내지는 미스-매치된 염기를 포함하는 상보적인 염기서열과 연결된 pcr 프라이머 및 이를 이용한 핵산 증폭 방법
US20050064441A1 (en) Method of detecting nucleic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 534557

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10149187

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001974720

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001974720

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001974720

Country of ref document: EP