WO2001088237A1 - Fil teint - Google Patents

Fil teint Download PDF

Info

Publication number
WO2001088237A1
WO2001088237A1 PCT/JP2001/004173 JP0104173W WO0188237A1 WO 2001088237 A1 WO2001088237 A1 WO 2001088237A1 JP 0104173 W JP0104173 W JP 0104173W WO 0188237 A1 WO0188237 A1 WO 0188237A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
dyed
fiber
elongation
dyeing
Prior art date
Application number
PCT/JP2001/004173
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamazaki
Kazuto Oue
Mitsuyuki Yamamoto
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to EP01930210A priority Critical patent/EP1288356B1/en
Priority to DE60138186T priority patent/DE60138186D1/de
Priority to MXPA02011387A priority patent/MXPA02011387A/es
Priority to JP2001584617A priority patent/JP3500392B2/ja
Priority to AU2001256777A priority patent/AU2001256777A1/en
Priority to KR10-2002-7015477A priority patent/KR100471706B1/ko
Priority to US10/276,158 priority patent/US6926962B2/en
Publication of WO2001088237A1 publication Critical patent/WO2001088237A1/ja
Priority to HK03106520.3A priority patent/HK1054252A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention relates to a yarn-dyed yarn composed of polytrimethylene terephthalate fiber.
  • Polytrimethylene terephthalate fiber has the flexibility of nylon fiber and the mechanical properties of polyester fiber, and has excellent stretchability (easiness of stretching and recovery after stretching). It is a unique fiber and is used for clothing.
  • woven and knitted fabrics made of polytrimethylene terephthalate fiber are dyed after being made into woven and knitted fabrics, so-called anti-dyeing. Woven and knitted fabrics with excellent reticulation properties are obtained.
  • the anti-dying method has a problem in that it is not possible to obtain a luxurious and highly fashionable woven or knitted material in which a pattern is formed by changing the color scheme between yarns. For this reason, there has been an increasing demand for so-called yarn-dyed knitted fabrics that are dyed with yarns and then woven or knitted. However, the soft texture and stretch property inherent to polymethylene methylene terephthalate fibers are increasing. A yarn-dyed yarn suitable for woven and knitted fabrics that has been fully utilized and has excellent dimensional stability has not yet been obtained.
  • a woven or knitted fabric having excellent stretchability and swelling feeling can be obtained by using polytrimethylene terephthalate fibers crimped by yarn processing such as false twisting by anti-dyeing. ing.
  • false twisting In the case of yarn-dyed yarn obtained by the usual method of polytrimethylene terephthalate fiber which has been crimped by such yarn processing, the crimp elongation rate cannot be said to be sufficient. Only woven or knitted fabrics with inferior stretchability and swelling feeling are obtained compared to woven or knitted fabrics obtained by dyeing. For this reason, there is a demand for a yarn-dyed yarn having a high crimp elongation rate, which can provide a woven or knitted fabric excellent in stretchability and swelling feeling.
  • cellulosic fibers and wool fibers have excellent hygroscopicity and a unique texture, and are highly demanded as dyed yarns.
  • the use of a woven or knitted fabric using only cellulosic fibers or wool fibers has the disadvantage of poor dimensional stability and easy wrinkling.
  • Japanese Patent Application Laid-Open No. Hei 8-17038 proposes combining regenerated cellulose fibers and polyester fibers.
  • the texture becomes harder, and the texture of cellulose-based fiber and polyester fiber becomes the same as that of polyester fiber.
  • the present invention is as follows.
  • Dyed yarn made of dyed polytrimethylene terephthalate fiber, having an elastic recovery of 10% or more at 60% elongation and a boiling water shrinkage of 4% or less. Thread.
  • the yarn-dyed yarn according to the above 1 or 2 wherein the yarn is composed of polytrimethylene terephthalate fiber and fibers other than polytrimethylene terephthalate fiber.
  • the yarn has an elongation under a load of 0.8 8 2 6 c NZ dtex
  • the objects of the present invention are as follows (1), (2) and (3).
  • a yarn-dyed yarn capable of forming a woven or knitted fabric without impairing the feel of cellulosic fiber or wool fiber is provided.
  • the present inventors have conducted intensive studies on the above problems, and as a result, can solve the above problems by adopting a specific dyeing method when dyeing a yarn composed of polytrimethylene terephthalate fibers. Finding the thing, they arrived at the present invention.
  • polytrimethylene terephthalate fiber is Refers to polyester Le fibers whose main repeat unit re methylene terephthalate rate units, the Application Benefits terephthalate units to about 5 0 mole 0 I than on, preferably 7 0 mol% or more, more preferably 8 0 % Or more, more preferably 90% or more.
  • the total amount of the third component and to other acid component and / or Dali call component about 5 0 mol% or less, preferably 3 0 mol% or less, good RiYoshimi Mashiku 2 0 mole 0/0
  • polytrimethylene terephthalate contained in the range of 10 mol% or less is included.
  • Poly (methylenterephthalate) is obtained by combining terephthalic acid or a functional derivative thereof with trimethylenedalicol or a functional derivative thereof under appropriate reaction conditions in the presence of a catalyst. Combined. In this synthesis process, an appropriate one or two or more third components may be added to form a copolymerized polyester, or a non-polyethylene terephthalate such as polyethylene terephthalate may be used. Polyesterol or nylon may be blended with polytrimethylene terephthalate, or composite spinning (sheath core, side pieside, etc.) may be used.
  • a combination of poly (trimethylene terephthalate) and copolymerized poly (trimethylene terephthalate) and a combination of two kinds of poly (trimethylene terephthalate) having different intrinsic viscosities are preferred.
  • two types of polytrimethylene terephthalate having different intrinsic viscosities are used, and the joining surface is formed such that the low viscosity side encloses the high viscosity side.
  • Composite spinning into a side-and-side shape having a curved shape is particularly preferred because it has both high stretchability and bulkiness.
  • aliphatic dicarboxylic acids oxalic acid, adipic acid, etc.
  • alicyclic dicarboxylic acids cyclohexanedicarboxylic acid, etc.
  • aromatic dicarboxylic acids isophthalic acid, sodium sulfoisophtalic acid, etc.
  • Aliphatic glycols ethylene glycol, 1,2-propylene glycol, tetramethylene glycol, etc.
  • alicyclic dalicols cyclohexanedimethanol, etc.
  • Polyetherenoglycone polyethylene glycol, polypropylene blend, etc.
  • Aliphatic oxycarboxylic acid ⁇ _oxycaproic acid
  • aromatic oxycarboxylic acids ⁇ _oxybenzoic acid etc.
  • an anti-glazing agent such as titanium dioxide, a stabilizer such as phosphoric acid, a bluing agent such as cobalt acetate, an ultraviolet absorber such as a hydroxybenzophenone derivative, a crystallization nucleating agent such as talc, and aerosil And the like, an antioxidant such as a hindered phenol derivative, a flame retardant, an antistatic agent, a pigment, a fluorescent brightener, an infrared absorber, an antifoaming agent, and the like.
  • a method of spinning polytrimethylene terephthalate fiber is to obtain an undrawn yarn at a winding speed of about 150 QmZ, and then to twist about 2-3.5 times.
  • Spinning-Direct drawing method directly connected to the drawing and twisting process Spin draw method
  • high-speed spinning method with a winding speed of 500 m / min or more spin take-up method
  • after spinning, cooling in a water bath and stretching You may. ,
  • the fiber form may be long or short, and may be uniform or thick in the length direction.Cross section is round, triangular, L-shaped, T-shaped, ⁇ -shaped, W-shaped Polygons such as, yaba, flat, dogbone, etc., multi-leaf, hollow or irregular shapes may be used.
  • the form of the yarn includes a raw yarn, a false twisted yarn (including a drawn false twisted yarn of POY), a pretwisted false twisted yarn (for example, 600 to 100 in the S direction or the Z direction).
  • the polytrimethylene terephthalate fiber before dyeing used in the present invention has a breaking strength of 2.2 to 4. Oc NZ dtex, a breaking elongation of 30 to 55%, and a Young's modulus of 14 to 24. / (16-95% elastic recovery rate at elongation of 20%, boiling water shrinkage rate preferably 4-20%)
  • the total fineness is preferably from 20 to 55 dtex, more preferably from 30 to 220 dtex, and the single yarn fineness is from 0.1 to 12 dtex, particularly preferably from 0.5 to 5 dtex. dtex is preferable since a soft texture can be obtained.
  • the yarn of the present invention only needs to be configured to include a polytrimethylene terephthalate fiber. Therefore, the amount of the poly (trimethylene terephthalate) fiber is preferably at least 20 wt% or more, more preferably 30 wt% or more, and even more preferably 50 wt% or more. 20 wt% or more, good stretchability A woven or knitted fabric is obtained.
  • the fibers other than the polytrimethylene terephthalate fibers constituting the yarn of the present invention include natural fibers represented by wool, cotton, hemp, silk, etc., regenerated cellulose fibers such as viscose rayon, cupra, and acetate.
  • any fiber such as polyethylene terephthalate, polyamide, and synthetic fiber represented by acryl may be used.
  • the yarn-dyed yarn of the present invention has an elastic recovery at 10% elongation of 60% or more, preferably 60% or more and 95% or less, and more preferably 70% or more and 95% or less. Is more preferable.
  • the elastic recovery rate at 10% elongation is 60% or more, a woven or knitted fabric having good stretchability can be obtained. In general, it is difficult to actually obtain a yarn having an elastic recovery rate of more than 95% at 10% elongation.
  • the yarn-dyed yarn of the present invention has a boiling water shrinkage of 4% or less, more preferably 3% or less, and particularly preferably 2% or less.
  • the boiling water shrinkage is a value measured at a hot water temperature of 100 ° C. in accordance with the method B of measuring hot water shrinkage of JIS_L_1103. If the boiling water shrinkage rate is 4% or less, there is almost no change in the amount of greige and finish of the woven or knitted fabric, so processing is smooth, and there is almost no shrinkage or elongation due to washing of the woven or knitted fabric. Excellent product is obtained.
  • the yarn-dyed yarn referred to in the present invention is a yarn dyed in the form of, for example, casse cheese, and is particularly preferably used for a woven or knitted fabric, and is dyed in a fabric state after weaving or knitting. It does not include those that have been decomposed into yarns.
  • the yarn is preferably dyed by so-called cheese dyeing or force dyeing.
  • cheese dyeing The case of cheese dyeing is described below.
  • Winding density of the cheese is preferably 0. 1 ⁇ 0. S gZ cm 3, 0. More preferably, it is 25 to 0.4 g Z cm 3 .
  • wind-density 0. 1 g / cm 3 or more, the form of the cheese stable, when dyeing with set cheese stained machine, without form collapses, relaxation of the yarn is uniformly After that, a uniform dyeing solution is passed through and dyed uniformly.
  • the winding density is 0.5 g / cm 3 or less, the winding density of the cheese does not become too high even if the yarn is thermally shrunk during scouring and dyeing. Good properties, no staining spots on the inner and outer layers of cheese, and no high boiling water shrinkage.
  • the replacement ratio to the dyeing tube is preferably 5 to 30%, and more preferably 10 to 20%, and may be appropriately set in consideration of the yarn shrinkage ratio of the yarn.
  • the replacement rate (%) is a value obtained by the following equation, where A is the outer diameter of the wrapping tube and B is the outer diameter of the staining tube.
  • a commonly used cheese dyeing machine can be used.
  • the scouring may be carried out under conditions in which the raw oil and the like are washed as usual, for example, at 50 to 90 ° C in the presence of a nonionic surfactant, sodium carbonate, or the like. Perform 10-30 minutes.
  • a method of dyeing using a disperse dye which is generally performed in the case of poly (ethylene terephthalate) fiber, may be employed.
  • the dyeing temperature may be 90-130 ° C and the time may be 15-120 minutes, but polytrimethylene terephthalate fiber has a low glass transition point.
  • 9 0-1 2 0 be dyed at lower temperatures than the cormorants good in ° C of the conventional poly ethylene terephthalate rate fibers, certain features force s that excellent coloring property can be obtained.
  • the dyeing conditions for dyeing the fibers are adopted, and before or after dyeing the polytrimethylene terephthalate fibers. What is necessary is just to dye simultaneously.
  • a commercially available oiling oil or the like may be applied in a cheese form or in a yarn in order to improve the knitting property and flexibility of the yarn.
  • the scalpel dyeing may be performed by a commonly used process. In general, the process is performed in the following steps: scalpel removal ⁇ pretreatment ⁇ scrutiny—staining ⁇ dehydration ⁇ drying—corn winding.
  • a general skewer can be used, and it is preferable to create a skewer of 50 g to 2 kg with a skewer length of 1 to 3 m.
  • the casks are relaxed by using a hot air drier, a casse continuous heat treatment machine, or the like, preferably at 50 to 100 ° C, more preferably at 60 to 90 ° C.
  • the dry heat treatment may be performed for 5 to 30 minutes.
  • steam treatment is preferably performed at 60 to 130 ° C., more preferably at 80 to 110 ° C. for 5 to 30 minutes using an autoclave, a steam setter, a steam box, or the like. .
  • a rotary pack dyeing machine, jet dyeing machine, package dyeing machine, etc. may be appropriately selected and used.
  • the scouring may be carried out under conditions in which the raw oil and the like are washed as is usually performed. For example, scouring may be performed at 50 to 90 ° C in the presence of a nonionic surfactant, sodium carbonate, or the like. It should be done for 0 to 30 minutes.
  • a method of dyeing with a disperse dye which is generally used for polyethylene 'terephthalate fiber, may be employed.
  • the temperature may be in the range of 90 to 130 ° C, and the time may be in the range of 15 to 120 minutes.
  • the yarn is composed of fibers other than poly (trimethylene terephthalate)
  • the dyeing conditions for dyeing the fibers are adopted, and the yarns may be used before or after dyeing the poly (trimethylene terephthalate) fiber. Can be dyed at the same time.
  • the dehydration and drying steps may be performed according to a conventional method.
  • a commercially available oiling agent or the like may be applied in a mussel form or at the time of winding the cone.
  • Polytrimethylene terephthalate fibers have more oligomers than polyethylene terephthalate fibers, and the adhesion of the oligomers may reduce the gloss of the yarn-dyed yarn. (E.g., add 0.5-5 g Z liter of sodium carbonate or sodium hydroxide) or use an alkaline-resistant disperse dye on the alkaline side of PH 8-11. Adhesion of oligomers can also be reduced by employing a method such as dyeing. At this time, it is preferable that the wastewater is discharged at the same high temperature as the scouring and dyeing temperatures.
  • the yarn-dyed yarn of the present invention preferably has a crimp elongation of 10% or more. More preferably, it is preferably 15 to 500%, more preferably 20 to 3%.
  • Such a yarn is composed of a crimped yarn of polytrimethylene terephthalate fiber.
  • the crimped yarn examples include a composite fiber yarn having an apparent crimp and / or a latent crimp (a yarn spun into a sheath core or a side-by-side composite yarn), false twisting, indenting, and nitriding.
  • a crimp is provided by the above method.
  • the crimp elongation is preferably 10% or more, more preferably 20% or more, and still more preferably 50% or more.
  • a yarn having a crimp elongation within this range a yarn-dyed yarn having a crimp elongation of 10% or more can be obtained.
  • the crimp elongation referred to here is as follows: under a load of 2.6 X 10 ⁇ 4 cN / dte X, dry heat at 90 ° CXI for 5 minutes, leave it for 24 hours,
  • a false twisted yarn from which a high crimp elongation can be easily obtained is preferable.
  • the false twisting may be performed by any method such as a pin type, a flexion type, a nip belt type, and an air twist type which are generally used. Also, it may be either 1 heater false twist or 2 heater false twist. Furthermore, stretch false twist of POY may be used.
  • the temperature of the false twist heater can be arbitrarily set as long as the object of the present invention can be achieved.
  • the yarn temperature immediately after the outlet of the first heater is set to 100 ° C. or more and 200 ° C. or more.
  • the temperature is preferably 0 ° C or lower, more preferably 120 ° C or higher and 180 ° C or lower, particularly preferably 130 ° C or higher 17 It is in the range of 0 ° C or less.
  • the yarn may be heat-set by the second heater to form a two-heater false twisted yarn.
  • the temperature of the second heater is preferably 100 ° C. or more and 210 ° C. or less, more preferably 130 ° C. or more, and + 50 ° C. or more, with respect to the yarn temperature immediately after the outlet of the first heater.
  • the range is as follows. It is preferable that the overfeed rate (second overfeed rate) in the second heater is not less than + 3% and not more than + 30%.
  • the number of false twists T may be in the range normally used for false twisting of polyethylene terephthalate-based polyester fiber, and is calculated by the following equation.
  • the value of the coefficient K of the number of false twists is preferably in the range of 1760 to 350.000, and the preferred number of false twists T is determined by the false twisted yarn.
  • T (T / m) K / ⁇ Fineness of false twisted yarn (dt ex) ⁇ 0 ⁇ 5
  • conjugate fibers spun into a side-by-side type with a joint surface shape that is curved so as to envelop not only yields a yarn-dyed yarn having as high a crimp as a false twisted yarn, but also provides a temporary yarn. It is preferable because there is no residual torque peculiar to twisted yarn and the handleability of the force in the force dyeing process is facilitated.
  • the crimped yarn is usually 80% by weight or less, preferably 70% by weight, as long as the object of the present invention is not impaired.
  • Blended with other fibers such as wool at a content of not more than 50% by weight, more preferably not more than 50% by weight.
  • Silofil, etc. entangled mixed yarn (different shrink mixed yarn with high shrink yarn) Etc.), intertwist, composite false twist (elongation difference temporary rubbing, etc.), and two-feed fluid jetting.
  • one or two or more crimped yarns in the case of false twisted yarn, the false twist direction is the same direction. And may be in different directions), and the twisting (additional twisting) may be performed at 50 to 1001: 111, preferably at 50 to 300 T / m.
  • the twisting may be performed at 50 to 1001: 111, preferably at 50 to 300 T / m.
  • the twisting device is not particularly limited, and an Italian twisting machine, a ring twisting machine, a double twister, or the like can be used.
  • the polymethylene terephthalate fiber is characterized in that the torque is not easily reduced. This is because polytrimethylene terephthalate fiber has a high thermal shrinkage, and if a twist-set is performed in a tensioned state, the amorphous portion shrinks, and the shrinkage stress causes the crystal portion to expand. Even if this crystal part is twisted and set, torque is not reduced because it is almost completely elastic. Therefore, it is presumed that only yarn with high residual torque can be obtained as a result.
  • Polytrimethylene terephthalate fiber is flexible, so if a knives is made using a yarn with a high residual torque, the local concentration of torque will cause a snare (partly twisting) around the fulcrum. Phenomenon) occurred, and it became clear that there was a problem that the yarns became entangled by this snare and the yarn separation became worse.
  • the present inventors have found that, in the case of polytrimethylene terephthalate fiber, if the number of twisted yarns is less than 30 OT / m, even if a skein is prepared without performing a twisting set, the yarn is formed. Since the torque is absorbed by the filaments, it is found that the torque is not concentrated locally, and a scab that hardly generates snare can be obtained.
  • the twist-stopping set is performed. No problem. In such a case, it is preferable to adopt a method of performing the twist-stop setting while relaxing the yarn, since the twist-setting set of the polytrimethylene terephthalate fiber is difficult to be effective in a tension state. For example, there is a method in which a dummy cushion material made of corrugated cardboard is wound on an inner layer of a cylinder having an aluminum collar and then rewound, and a fire prevention set is performed while sufficiently relaxing the yarn.
  • the winding amount may be set to such an extent that the winding form is not collapsed by setting in the bobbin winding. In order to make the set sufficiently effective, it is preferable to wind with a winding tension of 0.1cN / dtex or less.
  • the processing temperature is preferably from 60 to 110 ° C, and the processing time is usually preferably from 10 to 60 minutes from the viewpoints of sufficient setting effect, crimp development, and energy efficiency.
  • the crimped yarn may be parked before and after the burning of the fired yarn in order to make latent crimp visible by the yarn and increase the crimp.
  • This method is effective because the crimped yarn may not be sufficiently relaxed during dyeing.
  • Examples of such a device for producing a palky include a bulone manufactured by Sakamoto Reizen Co., and a continuous palky output device manufactured by Superba.
  • an overfeed rate of 50 to 200% may be used, and dry heat, steam, or the like is used as a heat source for relaxation, preferably 60 to 200 °. C, and more preferably, at 90 to 190 ° C.
  • the bulked yarn thus obtained has a boiling water shrinkage of 4% or less and a crimp elongation of 50% or more. This is because the yarn shrinks only slightly at the time of dyeing the cheese, and the crimp does not expand with the shrinkage, so that a yarn-dyed yarn having a high crimp elongation rate can be obtained.
  • the scalpel dyeing method it may be carried out in accordance with the above-mentioned dyeing method.
  • To relax to develop crimp while minimizing tension).
  • the force when it is relaxed in the pretreatment, it is preferably 50 to 100 ° (:, more preferably 60 to 90 °) using a hot air drier, a casse continuous heat treatment machine or the like.
  • a dry heat treatment may be performed for 5 to 30 minutes at C.
  • 60 to 130 ° C., more preferably 80 to 30 ° C. using an auto crepe, steam setter, steam box, or the like.
  • Steam treatment should be performed at L 10 ° C for 5 to 30 minutes, but before fixing the case to the formwork or packing the force in a bag or the like at high density and restraining the case itself When the treatment is performed, crimps may not be sufficiently developed.
  • the case when the case is to be relaxed during the scouring and dyeing processes, the case must be prevented from adding tension, a rotating pack, a whirlpool dyeing machine, etc. It is preferable to perform the hot water treatment at 50 to 130 ° C. for 5 to 60 minutes.
  • some jet dyeing machines have fixed pars at the top and bottom to adjust the length of force, but with such a device, fix as much as possible so that the scalp can be relaxed during processing. It is preferable to reduce the interval between pars.
  • the dyeing may be performed in accordance with the above-described dyeing method. This is preferable since a dyed yarn can be obtained.
  • the yarns of the present invention include, in particular, natural cellulose fibers such as cotton and hemp, regenerated cenorellose fibers such as cupra, viscose rayon, and polynoc rayon, and lyocell (directly spun cellulose fibers). Threads mixed with wool fibers such as cellulosic fibers such as wool, alpaca, mohair, angora, camel, and cashmere make effective use of the feel of cellulosic fibers and wool fibers, and their dimensions. Yarn-dyed yarn excellent in stability and stretchability is obtained, which is preferable.
  • those mixed with a regenerated cellulose fiber multifilament such as cupra viscose rayon are preferable in the case of a woven or knitted fabric, since the glossiness of the regenerated cellulose fiber multifilament can be obtained. If a regenerated cellulose fiber multifilament having a boiling water shrinkage of 3 to 5% is mixed, the difference in shrinkage from the poly (trimethylene terephthalate) fiber during dyeing will increase, and the texture of the cellulose will not be lost. Is also preferred because it also easily develops.
  • the spinning method and the like of the regenerated cellulose fiber are not particularly limited, and fibers produced by any method such as a Hank method, a cake method, a net process method, and a continuous spinning method may be used.
  • a hank method, a cake method, a net process method or the like it is preferable to use a hank method, a cake method, a net process method or the like.
  • two or more of these yarns may be combined and tangled or entangled, and depending on the purpose, a yarn containing a matting agent such as titanium oxide or various known additives may be used. .
  • a cellulose fiber or wool fiber having a single fiber fineness of preferably 0.1 to 12 dtex, particularly preferably 1 to 5 dtex is mixed with polytrimethyl terephthalate fiber, the processability is excellent and the wind of the yarn is excellent. In this case, it is preferable because it becomes flexible.
  • the method of mixing the poly (trimethylene terephthalate) fiber and the other fiber is not particularly limited as long as each fiber can be integrated, and is not particularly limited. They can be mixed by means such as capping, false twisting, fluid jet processing, spinning and twisting.
  • the yarn has a sheath-core structure such as covering, false elongation false twist, and two-feed fluid jetting, stretchability can be obtained by using polyethylene methylene terephthalate fiber as the core yarn. It is preferable because it is easier to be used.
  • any of a belt nip, a flexion, and a pin may be used as a false twisting machine, but the false twisting temperature is determined by polytrimethylene terephthalate fiber. Considering the melting point of the above, it is preferable to carry out at 140 to 180 ° C.
  • the false-twisted yarn may be subjected to an additional twist of 50 to 100 TZm in order to improve the convergence. As the twisting direction, twisting in the opposite direction to the false twisting direction is preferable because the stretchability is improved.
  • the number of twisted yarns, the number of twists, and the direction of twisting in the case of ply twisting are not particularly limited. It is preferable to take a twist balance so that it does not remain.
  • the number of times of the upper twist is set to 0.6 to 0.8 times the number of times of the primary twist, and twist twist is generated as much as possible.
  • a ply-twisted yarn obtained by ply-twisting two more ply-twisted yarns obtained by ply-twisting polytrimethylene terephthalate fiber and other fibers is also exemplified.
  • the number of coverings, the number of coverings, and the direction of force paring in the case of covering are not particularly limited, but the calcined yarn of polymethylene terephthalate fiber is used as the force paring yarn.
  • the calcined yarn of polymethylene terephthalate fiber is used as the force paring yarn.
  • a method for obtaining a yarn in which cell mouth type fiber or wool fiber and polytrimethylene terephthalate fiber are mixed for example, polymethylene terephthalate fiber and cellulosic fiber or wool are used.
  • a method of twisting fibers a method of force-pulling such that a cellulosic fiber or a wool fiber is wound around a polytrimethylene terephthalate fiber as a core, a polytrimethylene terephthalate fiber around a core yarn, a sheath
  • a method in which the yarn is subjected to fluid injection processing as cellulosic fiber or wool fiber a method in which polymethylene terephthalate fiber and a cellulosic fiber or wool fiber are aligned and false-twisted.
  • later there is a method of interlacing using an interlace nozzle In the case of short fibers such as cotton and wool fibers, there is a method in which, at the time of spinning in the spinning process, a spun-twisted yarn is formed by mixing polymethylene methylene terephthalate fibers.
  • the polytrimethylene terephthalate fiber is combined with a cellulosic fiber or a wool fiber while being stretched by about 1 to 5% because the stretchability of the yarn is improved.
  • the composition ratio of the cellulosic fiber or wool fiber and the polytrimethylene terephthalate fiber is preferably 80:20 to 20:80, more preferably 70:80, by mass ratio. : 30 to 40: 60.
  • cellulose When the composition ratio of the system fiber or the wool fiber is within the above range, the dimensional stability and stretchability are excellent, and the feeling of the cellulosic fiber or the wool fiber is effectively exhibited.
  • the yarn-dyed yarn of the present invention has an elongation under a load of 0.8 8 2 6 c NZ dte X of preferably 5% or more and 50% or less, and more preferably 10% or more and 30% or less. % Or less.
  • the yarn is a yarn-dyed yarn having good stretchability, and does not break during knitting or weaving.
  • the yarn-dyed yarn composited with cellulosic fiber or wool fiber has a sheath-core structure in which the cellulosic fiber or wool fiber is the sheath and the polytrimethylene terephthalate fiber is the core.
  • the yarn is a dyed yarn in which the texture of fibers and the like is effectively utilized.
  • the mixed fiber becomes a loosely-integrated composite yarn with looseness.
  • the mass ratio of regenerated cellulose filament and polytrimethylene terephthalate filament is set to 30:70 to 60:40, and Trimethylene terephthalate filament False twisted yarn is used as the core yarn, and regenerated cellulose filament is wound into a coil, and force-paring is performed, or regenerated cellulose filament and polytrimethylene terephthalate filament are used.
  • the pull aligned with false twisting after processing Lee down interlaced, then the resulting yarn, Certificates-out density 0. 1 in the cheese 0. 5 g Z cm 3, the replacement rate to staining tubes There are a method of dyeing cheese at 10 to 20%, and a method of making moss and dyeing it with a jet dies.
  • the yarn-dyed yarn of the present invention has at least 500 m without knots or the like. It is preferably a continuous yarn, more preferably 100 Om or more. With such yarns, when weaving or knitting, there is no trouble such as thread breakage in weaving or knitting, and a fabric free from defects can be obtained.
  • the number of the clips having a radius of 2 mm or more is preferably 5 or less per 2.54 cm, and more preferably 1 or less. When the number of clips is within this range, a woven or knitted fabric having excellent surface quality can be obtained.
  • the woven or knitted fabric is dyed once, and then the woven or knitted fabric is disassembled and taken out.
  • the number of crimps was measured in accordance with the number of crimps in JIS-L-115, and the initial load was 0.18 mNZ dtex on the entire yarn-dyed yarn. Examine the clamps between cm and count the number of clamps with a radius of 2 mm or more. This is randomly measured at 10 points in the yarn length direction, and the average value is calculated.
  • the yarn-dyed yarn of the present invention can be used for woven fabrics (taffeta, twill, satin, and various kinds of changed structures) and knitted fabrics (warp knit, circular knit, flat knit, pan-stitch, etc.). It can also be used on the surface (upright part).
  • weft knitting yarn when used as a weft knitting yarn, there is an advantage that the weft knitted fabric can be easily set by Hoffman press finishing.
  • Examples of the structure of the knitted fabric include sheeting, sheeting, rubber, pearl, double-sided, punch roma, mirano rib, and these changed structures, and may be appropriately selected according to the purpose of the product.
  • the yarn-dyed yarn of the present invention includes flat knitting (sweaters, etc.), circular knitting and woven fabrics (outerwear, innerwear, etc.), laces, accessories for rubber caps and collars, cords, molding yarns, fine yarns It can be used for width tape, socks, supporters, pantyhose, tights, pile knitting (outer, car sheet, etc.), carpet, etc.
  • the measurement method, evaluation method, etc. are as follows.
  • the polymer was dissolved at 90 ° C in 0-chloro phenol at a concentration of 1 g desicrile, and the resulting solution was transferred to an Ostwald viscometer and measured at 35 ° C. Calculated.
  • T is the fall time of the sample solution (seconds)
  • TO is the fall time of the solvent (seconds)
  • c is the solution concentration (g / deciliter).
  • the measurement was carried out in accordance with the JIS-L-1 0 1 3 hot water shrinkage measurement method (Method B).
  • the temperature of the hot water was 100 ° C.
  • the fiber was attached to the tensile tester with an initial load of 0.029.4 cN / dteX at a distance between the chucks of 20 cm, and was stretched to an elongation rate of 20% at a tensile speed of 20 cmZ. Left for 1 minute. After that, it contracts again at the same speed and draws a stress-strain curve.
  • the elongation when the stress reaches 0.0294 cNZ dtex during shrinkage is defined as residual elongation (A).
  • the elastic recovery at 20% elongation was determined according to the following equation.
  • Elastic recovery at 20% elongation (%) [(20-A) / 20] XI 00
  • the elastic recovery at 10% elongation is defined as the initial load and the stress at which residual elongation is read. 0.888 cN / dtex, and the elongation rate was up to 10%.
  • the measurement was performed in accordance with the method of measuring the elongation modulus of JIS-L-118 (Method A: constant elongation method).
  • the stretchability was determined according to the following criteria. The ranking was performed.
  • Recovery rate is 85% or more and less than 90%
  • Recovery rate is 80% or more and less than 85%
  • a sensory test by touch was conducted by 10 inspectors engaged in fiber research, and the following ranking was performed.
  • the measurement was performed in accordance with the JIS-L-110-18 shrinkage ratio measurement method (D method), and the following ranking was performed.
  • The shrinkage of vertical and horizontal is within -3.0-5.0%.
  • Shrinkage rate of either vertical or horizontal is 3.0 to 5.0
  • the physical properties of the obtained yarn were as follows: strength 3.5 cN / dtex, elongation 45%, elasticity 22 cN / dtex, elastic recovery at 20% elongation 85%.
  • the obtained polytrimethylene terephthalate multifilament raw yarn of 16 7 dtex 72 f is twisted at 100 T / m by an Italy twisting machine to obtain a yarn (crimp elongation rate of 0%). %).
  • the obtained flat knitted fabric had excellent stretchability and dimensional stability, and had a soft texture.
  • the 16 7 dtex / 72 f polytrimethylene terephthalate multifilament raw yarn obtained in Example 1 was converted to a yarn speed of 19 using a pin false twister IVF 338 manufactured by Ishikawa Seisakusho Co., Ltd. 0 m / min, number of false twists 2280 TZm, false twisting temperature 170 ° C, 1st feed 0.0%, TU feed 4.1% A yarn having a crimp elongation of 200% was obtained.
  • the obtained yarn was directly wound on a dyeing tube having an outer diameter of 69 mm using a soft winder manufactured by Kozu Co., Ltd., to give lkg wound cheese with a winding density of 0.25 g Z cm 3 .
  • the obtained cheese was dyed and finished in the same manner as in Example 1.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • Example 1 Using this yarn-dyed yarn, a flat knitted fabric was obtained in the same manner as in Example 1. As shown in Table 1, the obtained flat knitted fabric had excellent stretchability and dimensional stability, and had a soft texture.
  • Example 2 In the same manner as in Example 1, an 84 dtex / 36 f polytrimethylene terephthalate multifilament raw yarn was obtained.
  • the physical properties of the obtained yarn were a strength of 3.2 cN / dtex, an elongation of 46%, an elasticity of 24 cNZdtex, and an elastic recovery of 85% upon elongation of 20%.
  • the obtained polytrimethylene terephthalate multifilament yarn of 84 dtex / 36 f was converted to a yarn speed of 190 using a pin false twisting machine IVF338 of Ishikawa Seisakusho Co., Ltd. mZ, false twist number SOO TZm, false twist direction Z, false twist temperature 170 ° C, 1st feed 0.0%, TU feed 4.1%
  • the yarn was twisted at 12 OT / m in the S direction by an Italian twisting machine to obtain a yarn.
  • the resulting yarn had a crimp elongation of 156%.
  • a skewer having a skein length of 180 cm and a winding amount of 250 g was prepared using a skewer raising machine manufactured by Ishikawa Seisakusho.
  • the moss was subjected to a dry heat relaxation treatment at 80 ° C for 20 minutes in a hot air drier, and then packed in a package dyeing machine (manufactured by Hisaka Seisakusho Co., Ltd.) and set.
  • the scouring was performed at 60 ° C for 10 minutes using a score roll FC-250 (lg / liter) manufactured by Sharp.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • the obtained flat knitted fabric was excellent in stretchability, dimensional stability, swelling feeling, and soft texture.
  • a dyed yarn was obtained in the same manner as in Example 3, except that the dyeing temperature was changed to 98 ° C.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • Example 1 Three obtained yarn-dyed yarns were drawn and aligned to obtain a flat knitted fabric in the same manner as in Example 1. As shown in Table 1, the obtained flat knitted fabric was excellent in stretchability, dimensional stability, swelling feeling, and soft texture.
  • Example 2 In the same manner as in Example 1, a poly (methylene terephthalate) multifilament yarn of 1667 dtex / 48 f was obtained.
  • the physical properties of the obtained yarn are: strength: 3.8 cN / dtex, elongation: 46%, elastic modulus: 23 cN / dtex, the elastic recovery at 20% elongation was 88%.
  • Two types of false twisted yarns in which the false twist direction is S and Z were obtained in the same manner as in Example 3 except that the number of false twists was changed to 280 OT / m using the obtained raw yarn. Obtained.
  • the obtained false twisted yarns (Z false twist and S false twist) are aligned, twisted at 10 OT / m in the S direction by an Italian twisting machine, then wound up into a crushed paper tube, and placed in an autoclave. Twist-stop steam setting was performed at 110 ° C for 20 minutes to obtain a twin yarn. The crimp elongation of this yarn was 78%.
  • Example 3 Using the obtained yarn, a scab was prepared in the same manner as in Example 3, and the scab was scoured with a jet dyeing machine under the same conditions as in Example 3 to perform scouring, dyeing, reduction washing, and oiling.
  • the yarn was dyed by winding and cone winding. Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • a flat knitted fabric was obtained in the same manner as in Example 4 using the obtained yarn-dyed yarn. As shown in Table 1, the obtained flat knitted fabric was excellent in stretchability, dimensional stability, slightly swelling, and soft texture.
  • Twisted yarn in the S direction with 12 O TZm was turned into a twin yarn using a continuous palky feeder manufactured by Superba, with a yarn speed of 50 O mZ, an overfeed rate of 160%, and a re-roll. box temperature 9 0 ° (:, Chizuwai down de performs machining conditions for wind-1 kg for dyeing tube wind-density 0. 1 5 ⁇ / 0 111 3 in size 6 9 mm, to obtain a cheese.
  • Example 1 The obtained cheese was subjected to cheese dyeing and finishing in the same manner as in Example 1 to obtain a yarn-dyed yarn.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn. Using this yarn-dyed yarn, a flat knitted fabric was obtained in the same manner as in Example 4. As shown in Table 1, the obtained flat knitted fabric was excellent in stretchability, dimensional stability, swelling feeling, and softness.
  • Example 1 a 167 dtex / 72 f polyethylene terephthalate yarn (manufactured by Asahi Kasei Corporation) was used in place of the 167 dtex / 72 f polytrimethylene terephthalate multifilament yarn.
  • the dyed yarn was obtained in the same manner as in Example 1 except that the dyeing temperature was changed to 130 ° C. Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • Example 1 155 dtex / 48 f nylon 66 yarn (Asahi Kasei Co., Ltd.) was used instead of the poly (ethylene methylene terephthalate) polypropylene filament of 167 dtex / 72 f. And strength 4.2 cN / dtex, elongation 36%, modulus 27 cN / dtex, elastic recovery at 20% elongation 65%, crimp elongation 0%) A yarn-dyed yarn was obtained in the same manner as in Example 1, except that the dyestuff used for dyeing was changed to an acid dye, and the dyeing temperature was changed to 110 ° C. Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • Example 1 Using this yarn-dyed yarn, a flat knitted fabric was obtained in the same manner as in Example 1. As shown in Table 1, the obtained flat knitted fabric was slightly inferior to Example 1 in both dimensional stability and stretchability.
  • Example 3 (Comparative Example 3)
  • 84 dtex / 36 f polyethylene terephthalate yarn manufactured by Asahi Kasei Corporation
  • 84 dtex / 36 f polyethylene terephthalate yarn manufactured by Asahi Kasei Corporation
  • 84 dte / 32 f polytrimethylene terephthalate manolethophila filament yarn was used in place of the 84 dte / 32 f polytrimethylene terephthalate manolethophila filament yarn.
  • the false twisting conditions were set to a yarn speed of 190.
  • Example 3 a false-twisted and twisted yarn was obtained.
  • the crimp elongation rate of the obtained yarn was 14.5%.
  • a dyed yarn was obtained in the same manner as in Example 3 except that the dyeing temperature was changed to 130 ° C.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • a flat knitted fabric was obtained in the same manner as in Example 3 using the obtained yarn-dyed yarn. As shown in Table 1, the obtained flat knitted fabric was excellent in dimensional stability and swelling feeling, but inferior in stretchability.
  • the obtained yarn is used for paper tube diameter 90 m.
  • the cheese was obtained by winding 1 kg at a winding density of 0.33 g / cm 3 on a paper tube of m.
  • This cheese was replaced with a staining tube having an outer diameter of 72 mm (replacement ratio: 20%), and scouring, disperse dye staining, and reduction washing were performed in the same manner as in Example 1.
  • dewatering and neutralized water washing are performed, and 50 g / liter of sodium sulfate is added with a reactive dye (Sumifix Supra Blue BRF), and dyeing is performed at an inflow rate of 40 liters / min.
  • the liquid is circulated and the temperature is raised to 60 ° C at a rate of 2 ° CZ, and sodium carbonate 1 at 60 ° C
  • Example 2 In the same manner as in Example 1, a polytrimethylene terephthalate multifilament yarn of 56 dtex / 24 f was obtained.
  • the physical properties of the obtained yarn were a strength of 3.7 cN / dtex, an elongation of 44%, an elasticity of 23 cNZdtex, and an elastic recovery of 86% at elongation of 20%.
  • the obtained false twisted yarn and 110 dtex / 40 f viscose rayon multifilament yarn (manufactured by Asahi Kasei Corporation, Silmax (registered trademark), boiling water shrinkage ratio 2.0%) were added to Italy. 800 T / m twisting was performed in the Z direction with a twisting machine to obtain a composite twisted yarn. Further, the two composite twisted yarns were twisted at 58 OT / m in the S direction by an Italian twisting machine to obtain a yarn. The obtained yarn had a crimp elongation of 35%.
  • the obtained yarn was subjected to scallop making and a relaxation treatment in the same manner as in Example 3, and then, using a jet scalpel dyeing machine (manufactured by Sink 0), in the same manner as in Example 1.
  • Dye at 95 ° C for 45 minutes with a disperse dye perform reduction washing and water washing, stain with the same reactive dye used in Example 7 at 60 ° C for 45 minutes, An oiling treatment was performed to obtain a yarn-dyed yarn.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn. Using this yarn-dyed yarn, a flat knitted fabric was obtained in the same manner as in Example 5. As shown in Table 1, the obtained flat knitted fabric was excellent in stretchability and dimensional stability, and had a unique soft and viscose rayon texture.
  • Example 5 Using a polytrimethylene terephthalate multifilament false twisted yarn of 16 7 dte X 48 f obtained in Example 5 as a core yarn, using a capparing machine, the 60th cotton (English cotton count) was used. The yarn was subjected to double covering (first covering: 800 T / m in S twist, second twisting in twist: 65 OT / m in Z twist) to obtain a yarn. The crimp elongation rate of the obtained yarn was 80%.
  • the obtained yarn was subjected to case dyeing in the same manner as in Example 8 to obtain a yarn dyed yarn.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • a flat knitted fabric was obtained in the same manner as in Example 5. As shown in Table 1, the obtained flat knitted fabric was excellent in stretchability and dimensional stability, and had the unique texture of cotton with softness.
  • Example 9 the core yarn was the wool fiber of No. 60 (hair count), and the coupling yarn was the polytrimethylene terephthalate multifilament false twisted yarn of 84 dtex Z36f obtained in Example 3. With the change, a double-capped yarn was obtained. The crimp elongation of the obtained yarn was 10%.
  • a flat knitted fabric was obtained in the same manner as in Example 5 using the obtained yarn. As shown in Table 1, the obtained flat knitted fabric was excellent in stretchability and dimensional stability, and had a unique soft and wool texture.
  • Example 7 instead of the polytrimethylene terephthalate multifilament filament of 167 dtex / 48 f, the same 167 dte / 48 f polyethylene terephthalate filament as used in Comparative Example 1 was used.
  • a yarn-dyed yarn was obtained in the same manner as in Example 7, except that the yarn was used. Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • Example 7 Using this yarn-dyed yarn, a flat knitted fabric was obtained in the same manner as in Example 7. As shown in Table 1, the obtained flat knitted fabric has good dimensional stability, but has poor stretchability, and has a hard texture, giving a unique feeling and texture to Bemberg. Was not.
  • Example 7 instead of the polytrimethylene terephthalate multifilament filament of 16 7 dtex / 48 f, the same 55 dtex / 48 f nylon 6 as used in Comparative Example 2 was used. Using 6 yarns, A yarn-dyed yarn was obtained in the same manner as in Example 7, except that the disperse dye was changed to an acid dye and the dyeing temperature was changed to 11 ° C. Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • Example 7 Using this yarn-dyed yarn, a flat knitted fabric was obtained in the same manner as in Example 7. As shown in Table 1, the obtained flat knitted fabric was inferior in dimensional stability and stretchability, and had a hard texture, and did not have the unique texture and glossiness of Bemberg.
  • Example 2 instead of the polytrimethylene terephthalate multifilament yarn of 167 dtex / 72 f, the viscose rayon multifilament yarn of 167 dte / 50 f (Asahi Kasei Corporation) A false-twisted yarn was obtained in the same manner as in Example 2, except that the product was changed to Silmax (registered trademark), boiling water shrinkage ratio 2.1%. The crimp elongation of this yarn was 7%.
  • Silmax registered trademark
  • a yarn-dyed yarn was obtained from the obtained yarn in the same manner as in Example 7, except that disperse dye dyeing and reduction washing were not performed.
  • Table 1 shows the physical properties of the obtained yarn-dyed yarn.
  • Example 1 the same procedure as in Example 1 was carried out except that the cheese wind conditions were changed to a dyeing tube having an outer diameter of 69 mm, the winding density was set to 0.55 g Z cm 3 , and the replacement was not performed. To obtain a yarn-dyed yarn. The obtained yarn-dyed yarn had spots on the inner and outer layers of the cheese. Table 1 shows the physical properties of this yarn.
  • Example 1 84 1.1 10.0 1.5 0 ⁇ ⁇ ⁇ X
  • Example 2 85 1.3 10.5 1.7 0 ⁇ ⁇ ⁇ X
  • Example 3 82 91 11.0 0.6 0 ⁇ ⁇ ⁇ ⁇ ⁇
  • Example 4 86 120 11.3 0.9 1 ⁇ ⁇ ⁇ ⁇ ⁇
  • Example 6 80 66 10.7 0.5 0 ⁇ ⁇ ⁇ ⁇
  • Comparative Example 1 30 0.5 4.5 0.6 0 X ⁇ X X Comparative Example 2 50 0.8 7.0 1.7 0 ⁇ ⁇ ⁇ X
  • Example 7 80 25 13.3 1.0 0 ⁇ ⁇ ⁇ ⁇ Example 8 82 30 19 1.3 0 ⁇ ⁇ ⁇ Example 9 73 19 23 1.9 0 ⁇ ⁇ ⁇ ⁇ Example 10 87 10 18 1.5 0 ⁇ ⁇ ⁇ ⁇ Comparative Example 4 45 12 6.5 1.0 0 X ⁇ XXX Comparative Example 5 55 15 6.8 2.5 0 ⁇ ⁇ ⁇ XX Comparative Example 6 13 3 6.2 3.7 0 XX ⁇ X ⁇ Comparative Example 7 85 0.5 7.2 4.5 0 ⁇ X ⁇ X
  • the yarn-dyed yarn of the present invention is a dyed yarn having excellent stretchability and dimensional stability, and a soft feel, and is useful for woven and knitted fabrics.
  • a crimped yarn has a high crimp elongation rate, a woven or knitted fabric excellent in swelling feeling can be formed.
  • the texture of cellulosic fiber or wool fiber is effectively utilized, so that a woven or knitted fabric with excellent stretchability and texture can be obtained. Can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)
  • Knitting Of Fabric (AREA)
  • Coloring (AREA)

Description

明 細 書 先染め糸条 技術分野
本発明は、 ポリ ト リ メチレンテレフタレー ト繊維で構成された先 染め糸条に関するものである。 背景技術
ポリ ト リ メチレンテレフタレー ト繊維は、 ナイ ロ ン繊維の持つ柔 軟性とポリエステル繊維の持つ機械的物性を有し、 ス ト レッチ性 ( 伸び易さと伸びた後の回復のしゃすさ) に優れた特徴ある繊維であ り、 衣料用途と して用いられている。
現在、 衣料用分野において、 ポリ ト リ メチレンテレフタレー ト繊 維で構成された織編物は、 織編物にした後に染色が施された、 いわ ゆる反染めがなされており、 柔軟な風合いゃス ト レツチ性に優れた 織編物が得られている。
しかしながら、 反染めでは、 糸一糸間で配色を変えて模様を形成 するという ような、 高級感のぁるファ ッショ ン性に優れた織編物は 得ることができないと云う問題があった。 その為、 糸条で染色した 後に織編物にする、 いわゆる先染め糸条による織編物に対する要望 が高まってきているが、 ポリ ト リ メチレンテレフタレート繊維が本 来有する柔軟な風合いゃス ト レツチ性を十分に生かし、 寸法安定性 に優れ、 織編物用途に適した先染め糸条はこれ迄得られていない。
また、 反染めによ り、 仮撚加工等の糸加工によって捲縮を付与し たポリ ト リ メチレンテレフタ レー ト繊維を用いて、 ス ト レッチ性、 膨らみ感に優れた織編物が得られている。 しかしながら、 仮撚加工 等の糸加工によって捲縮を付与したポリ ト リ メチレンテレフタレー ト繊維の通常の方法で得られた先染め糸条では、 捲縮伸長率が十分 とはいえず、 織編物にした場合、 反染めによって得られた織編物に 比べて、 ス ト レッチ性、 膨らみ感に劣る織編物しか得られていない 。 その為、 ス ト レッチ性、 膨らみ感に優れた織編物を得ることが出 来るような、 捲縮伸長率の高い先染め糸条が要望されている。
一方、 セルロース系繊維やウール繊維は優れた吸湿性、 独特の風 合いを有するので、 染色された糸条と して要望が高い。 しかしなが ら、 セルロース系繊維やウール繊維だけでは、 織編物にした場合、 寸法安定性に劣り、 皺になりやすいという欠点がある。
この様な欠点を解決するために、 特開平 8— 1 7 0 2 3 8号公報 などには、 再生セルロース繊維とポリエステル繊維とを組み合わせ る こ とが提案されている。 しかし、 ポリ エステル繊維と組み合わせ ることによ り寸法安定性や防皺性は改善されるものの、 風合いが硬 くなり、 また、 ポリ エステルの風合いになる等、 セルロース系繊維 やゥール繊維の持つ風合いを大きく損ねることになり 、 ス ト レッチ 性も不十分であった。
したがって、 セルロース系繊維やウール繊維の持つ風合を有し、 ス ト レッチ性、 寸法安定性に優れた先染め糸条が要望されている。 発明の開示
本発明は下記の通りである。
1 . 染色されたポリ ト リ メチレンテレフタレー ト繊維で構成され 、 1 0 %伸長時の弾性回復率が 6 0 %以上、 且つ、 沸水収縮率が 4 %以下であることを特徴とする先染め糸条。
2 . 該糸条が、 捲縮伸長率が 1 0 %以上の捲縮糸条であることを 特徴とする上記 1記載の先染め糸条。 3. 該糸条が、 ポリ ト リ メチレンテレフタレート繊維とポリ ト リ メチレンテレフタレート繊維以外の繊維で構成されていることを特 徴とする上記 1又は 2記載の先染め糸条。
4. ポリ ト リ メチレンテレフタレー ト繊維以外の繊維が、 セル口 ース系繊維、 ウール繊維であることを特徴とする上記 3記載の先染 め糸条。
5. 該糸条が、 0. 8 8 2 6 c NZ d t e xの荷重下での伸びが
5 %以上であることを特徴とする上記 1 〜 4のいずれかに記載の先 染め糸条。 発明を実施するための最良の形態 .
本発明の課題は下記 ( 1 ) 、 ( 2 ) 、 ( 3 ) の通りである。
( 1 ) ス ト レッチ性、 寸法安定性に優れ、 風合いがソフ トな織編 物を形成できるポリ ト リ メチレンテレフタレート繊維の先染め糸条 を提供すること。
( 2 ) 特に、 捲縮糸からなる先染め糸条においては、 さらに加え て捲縮伸長率が高く、 膨らみ感に優れた織編物を形成できる先染め 糸条を提供すること。
( 3 ) セル口ース系繊維やウール繊維との混用糸条においては、 セルロース系繊維やウール繊維の持つ風合を損なう ことがない織編 物を形成できる先染め糸条を提供すること。
本発明者らは上記課題について鋭意検討した結果、 ポリ ト リ メチ レンテレフタレート繊維で構成された糸条を糸染めするに際し、 特 定の染色方法を採用することによ り、 上記課題を解決できる事を見 出し、 本発明に到達した。
以下、 本発明を詳細に説明する。
本発明において、 ポリ ト リ メチレンテレフタレー ト繊維とは、 ト リメチレンテレフタ レー ト単位を主たる繰返単位とするポリエステ ル繊維をいい、 ト リ メチレンテレフタ レート単位を約 5 0モル0ん以 上、 好ましく は 7 0モル%以上、 より好ましく は 8 0モル%以上、 さらに好ましく は 9 0モル%以上含有するものをいう。
従って、 第三成分と して他の酸成分及び/又はダリ コール成分の 合計量が、 約 5 0モル%以下、 好ましくは 3 0モル%以下、 よ り好 ましく は 2 0モル0 /0以下、 さらに好ましくは 1 0モル%以下の範囲 で含有されたポリ ト リ メチレンテレフタレートを包含する。
ポリ ト リ メ チレンテ レフタ レー ト は、 テ レフタル酸又はその機能 的誘導体と、 ト リ メチレンダリ コール又はその機能的誘導体とを、 触媒の存在下で、 適当な反応条件下に結合せしめることによ り合成 される。 この合成過程において、 適当な一種又は二種以上の第三成 分を添加して共重合ポリエステルと してもよいし、 又、 ポリエチレ ンテ レフタ レー ト等のポリ ト リ メチレンテレフタ レー ト以外のポリ エステノレやナイ ロンと、 ポリ ト リ メチレンテレフタレー ト とをブレ ンドしたり、 複合紡糸 (鞘芯、 サイ ドパイサイ ド等) しても良い。 複合紡糸に関しては、 特公昭 4 3— 1 9 1 0 8号公報、 特開平 1 1 — 1 8 9 9 2 3号公報、 特開 2 0 0 0— 2 3 9 9 2 7号公報、 特 開 2 0 0 0— 2 5 6 9 1 8号公報等に例示されるように、 第一成分 と してポリ ト リ メチレンテレフタレートを用い、 第二成分と してポ リ ト リ メ チレンテ レフタ レー ト、 ポ リ エチレンテ レフタ レー ト、 ポ リブチレンテレフタレー ト等のポリエステルやナイ ロンを用いて、 第一成分と第二成分を並列的あるいは偏芯的に配置したサイ ドバイ サイ ド型又は偏芯シース · コア型に複合紡糸したものがある。
なかでも、 ポリ ト リ メチレンテレフタレートと共重合ポリ ト リ メ チレンテレフタレー トの組み合わせや、 極限粘度の異なる二種類の ポリ ト リ メチレンテレフタレー トの組み合わせが好ましい。 特に、 特開 2 0 0 0— 2 3 9 9 2 7号公報に例示されるように、 極限粘度 の異なる二種類のポリ ト リ メチレンテレフタレートを用い、 低粘虔 側が高粘度側を包み込むように接合面形状が湾曲しているサイ ドパ ィサイ ド型に複合紡糸したものは、 高度のス ト レツチ性と嵩高性を 兼備するものであり、 特に好ましい。
添加する第三成分としては、 脂肪族ジカルボン酸 (シユウ酸、 ァ ジピン酸等) 、 脂環族ジカルボン酸 (シクロへキサンジカルボン酸 等) 、 芳香族ジカルボン酸 (イ ソフタル酸、 ソジゥムスルホイ ソフ タル酸等) 、 脂肪族グリ コール (エチレングリ コール、 1, 2—プ ロピレンダリ コール、 テ トラメチレングリ コール等) 、 脂環族ダリ コール (シク ロへキサンジメ タ ノール等) 、 芳香族を含む脂肪族グ リ コール ( 1, 4 _ ビス ( j8 — ヒ ドロ キシエ トキシ) ベンゼン等) 、 ポリエーテノレグリ コーノレ (ポリエチレングリ コーノレ、 ポリ プロ ピ レンダリ コール等) 、 脂肪族ォキシカルボン酸 ( <υ _ォキシ力プロ ン酸等) 、 芳香族ォキシカルボン酸 ( Ρ _ォキシ安息香酸等) 等が ある。
また、 1個又は 3個以上のエステル形成性官能基を有する化合物 (安息香酸等又はグリセリ ン等) も、 重合体が実質的に線状である 範囲内で使用出来る。
更に、 二酸化チタン等の艷消剤、 リ ン酸等の安定剤、 酢酸コバル ト等の青味付け剤、 ヒ ドロキシベンゾフェノ ン誘導体等の紫外線吸 収剤、 タルク等の結晶化核剤、 ァエロジル等の易滑剤、 ヒ ンダー ド フ ノール誘導体等の抗酸化剤、 難燃剤、 制電剤、 顔料、 蛍光増白 剤、 赤外線吸収剤、 消泡剤等が含有されていてもよい。
本発明において、 ポリ ト リ メチレンテレフタレー ト繊維の紡糸に ついては、 1 5 0 Q m Z分程度の卷取速度で未延伸糸を得た後、 2 〜3 . 5倍程度で延撚する方法、 紡糸—延撚工程を直結した直延法 (ス ピンドロー法) 、 卷取速度 5 0 0 0 m/分以上の高速紡糸法 ( ス ピンテイクアップ法) 、 紡糸後にー且水浴で冷却してから延伸す る方法等、 いずれの方法を採用しても良い。 ,
繊維の形態は、 長繊維でも短繊維でもよく、 長さ方向に均一なも のや太細のあるものでもよく、 断面形状は、 丸型、 三角、 L型、 T 型、 γ型、 W型、 八葉型、 偏平、 ドッグボーン型等の多角形型、 多 葉型、 中空型や不定形なものでもよい。
さらに糸条の形態としては、 原糸、 仮撚糸 (P OYの延伸仮撚糸 を含む) 、 先撚仮撚糸 (例えば、 S方向又は Z方向に 6 0 0〜 1 0
0 0 TZm先撚し、 Z方向又は S方向に 3 0 0 0〜 4 0 0 0 T/m 仮燃したもの) 、 空気噴射加工糸、 リ ング紡績糸、 オープンエンド 紡績糸等の紡績糸やマルチフィラメント原糸 (極細糸を含む) 、 混 繊糸等が挙げられる。
本発明において使用する染色前のポリ ト リ メチレンテレフタレー ト繊維は、 破断強度 2. 2〜 4. O c NZ d t e x、 破断伸度 3 0 〜 5 5 %、 ャング率 1 4〜 2 4 。 / (1 6 、 2 0 %伸長時の弾 性回復率 6 0〜 9 5 %、 沸水収縮率 4〜 2 0 %であることが好まし レヽ
トータル繊度は 2 0〜 5 5 0 d t e xが好ましく、 よ り好ましく は 3 0〜 2 2 0 d t e xであり、 また、 単糸繊度は 0. 1〜; 1 2 d t e xが好ましく、 特に 0. 5 ~ 5 d t e xが柔軟な風合いが得ら れるので好ましい。
本発明の糸条は、 ポリ ト リ メチレンテレフタレート繊維を含んで 構成されていればよい。 したがって、 ポリ ト リ メチレンテレフタレ ート繊維が少なく とも 2 0 w t %以上であることが好ましく、 3 0 w t %以上で構成されていることがよ り好ましく、 5 0 w t %以上 が更に好ましい。 2 0 w t %以上.であると、 ス ト レッチ性の良好な 織編物が得られる。
本発明の糸条を構成するポリ ト リ メチレンテレフタレート繊維以 外の繊維と しては、 ウール、 綿、 麻、 絹等に代表される天然繊維、 ビス コースレーヨン、 キュプラ等の再生セルロース繊維、 ァセテ一 ト、 ポリ エチレンテレフタ レー ト、 ポリ アミ ド、 アク リルに代表さ れる合成繊維等のいかなる繊維であっても構わない。
本発明の先染め糸条は、 1 0 %伸長時の弾性回復率が 6 0 %以上 であり、 6 0 %以上 9 5 %以下であることが好ましく、 7 0 %以上 9 5 %以下であることがさらに好ましい。 1 0 %伸長時の弾性回復 率が 6 0 %以上であると、 ス ト レツチ性の良好な織編物が得られる 。 なお、 一般に、 1 0 %伸長時の弾性回復率が 9 5 %を超える糸条 を実際に得ることは困難である。
本発明の先染め糸条は、 沸水収縮率が 4 %以下であり、 よ り好ま しく は 3 %以下、 特に好ましく は 2 %以下である。 なお、 沸水収縮 率は、 J I S _ L _ 1 0 1 3の熱水収縮率測定 B法に準拠し、 熱水 温度を 1 0 0 °Cと して測定した値である。 沸水収縮率が 4 %以下で あれば、 織編物の生機性量と仕上げ性量の変化が殆どないので加工 管理がしゃすく、 織編物の洗濯による収縮や伸びが殆どないので寸 法安定性に優れた製品が得られる。
本発明で云う先染め糸条とは、 カセゃチーズ等の状態で染色され た糸条で、 特に織編物に好ましく用いられる糸条を言い、 製織や製 編等をした後に布帛の状態で染色してから糸条に分解したものは含 まれない。
本発明の先染め糸条を得るためには、 いわゆるチーズ染色又は力 セ染めによって糸染めすることが好ましい。 · チーズ染色の場合について以下に説明する。
チーズの巻き密度は 0. 1〜0. S gZ c m3が好ましく、 0. 2 5〜0. 4 g Z c m3 であることがさ らに好ましい。 卷き密度が 0. 1 g / c m3以上であると、 チーズの形態が安定で、 チーズ染 色機にセッ ト して染色する場合、 形態が崩れることがなく、 糸条の 弛緩が均一になり、 均一な染色液の通液が行われて均一に染色され る。 また、 卷き密度が 0. 5 g / c m3以下であると、 精練、 染色 中に糸条が熱収縮してもチーズの卷き密度が高くなりすぎることが ないので、 染色液の通液性が良好で、 チーズの内外層での染着斑が 生じず、 沸水収縮率が高くなりすぎることがない。
チーズ染色で均染性を得るためには、 チーズの巻き密度を 0. 1 〜0. 5 0 g Z c m3にする以外にも、 紙管にソフ トワインド後、 チーズ染色時に紙管よ り外径が小さい染色チューブに差し替えて、 染色時の糸収縮によりチーズの巻き密度が高くなるのを防ぐという 方法を適用することが更に好ましい。 染色チューブへの差し替え率 は 5〜 3 0 %が好ましく、 さらに好ましくは 1 0〜 2 0 %の範囲で 、 糸条の糸収縮率を考慮して適宜設定すればよい。 なお、 差し替え 率 (%) は、 巻き紙管の外径を A、 染色チューブの外径を Bと した 場合に、 下記式で求めた値である。
差し替え率 (o/o) = ( 1 一 B/A) X 1 0 0
チーズの染色は、 一般に使用されているチーズ染色機を使用する ことができる。 精練は、 通常行われている様に、 原糸油剤等が洗浄 される条件であれば良く、 例えば、 ノニオン系界面活性剤、 炭酸ソ 一ダ等の存在下で 5 0〜9 0 °Cで 1 0〜3 0分行う。
ポリ ト リ メチレンテレフタ レー ト繊維を染色するためには、 ポリ エチレンテレフタレート繊維の場合に一般に行われているような、 分散染料を用いて染色する方法を採用すれば良い。 例えば、 染色温 度は 9 0〜 1 3 0 °C、 時間は 1 5〜 1 2 0分の範囲であれば良いが 、 ポリ ト リ メチレンテレフタ レー ト繊維はガラス転移点が低いので 、 9 0 ~ 1 2 0 °Cのよ う に従来のポリ エチレンテレフタ レー ト繊維 の場合より低温で染色しても、 優れた発色性が得られるという特徴 力 sある。
また、 糸条がポリ ト リ メチレンテレフタレート以外の繊維を含ん で構成されている場合は、 その繊維を通常染色する際の染色条件を 採用し、 ポリ ト リ メチレンテレフタレート繊維の染色の前後もしく は同時に染色すれば良い。
本発明においては、 糸条の編立性、 柔軟性を向上させるために、 一般に市販されているオイ リ ング油剤等をチーズ形態や糸条で付与 してもよい。
次に、 カセ染色の場合について以下に説明する。
カセ染色は、 一般に行われている工程を採用すればよく、 一般的 には、 カセ取り→前処理→精練—染色→脱水→乾燥—コーン卷き、 の工程で行われる。
カセ敢り としては、 一般的なカセ取り機を使用することができ、 カセ長 1〜 3 mで 5 0 g〜2 k gのカセを作成するのが好ましい。 前処理と して、 カセをリ ラックスさせるには、 熱風乾燥機、 カセ 連続熱処理機等を用いて、 好ましくは 5 0〜 1 0 0 °C、 より好まし くは 6 0〜 9 0 °Cで 5〜 3 0分の乾熱処理を行えば良い。 また、 ォ 一トク レーブ、 スチームセッター、 スチームボックス等を用いて、 好ましくは 6 0〜 1 3 0 °C、 より好ましくは 8 0〜 1 1 0 で 5〜 3 0分の蒸気処理を行えば良い。 - 精練、 染色は、 回転パック染色機、 噴射式染色機、 パッケージ染 色機等を適宜選定して使用すればよい。 精練は、 通常行われている 様に、 原糸油剤等が洗浄される条件であれば良く、 例えば、 ノニォ ン系界面活性剤、 炭酸ソーダ等の存在下で 5 0〜9 0 °Cで 1 0〜3 0分行えば良い。 ポリ ト リ メチレンテレフタ レー ト繊維を染色するためには、 ポリ エチレン'テレフタレー ト繊維の場合に一般に行われているような、 分散染料を用いて染色する方法を採用すれば良く、 例えば、 染色温 度は 9 0〜 1 3 0 °C , 時間は 1 5〜 1 2 0分の範囲であれば良い。 また、 糸条がポリ ト リ メチレンテレフタレート以外の繊維を含んで 構成されている場合は、 その繊維を通常染色する際の染色条件を採 用し、 ポリ ト リ メチレンテレフタレート繊維の染色の前後もしく は 同時に染色すれば良い。
脱水、 乾燥工程は常法にしたがって行えばよい。
コーン卷きとしては、 一般的な卷き取り機を用いてワインドすれ ばよいが、 カセからの卷き取り張力が安定しないと、 織編物にした ときに経筋ゃ緯段が発生する場合があり、 カセからコーン巻きした 後に再度コーンにリ ワイ ンドしたり、 巻き取り張力のコント ロール ができる様に送り出しローラーのついた卷き取り機でコーンワイン ドすることが好ましい。
更に、 糸条の編立性、 柔軟性を向上させるために、 一般に市販さ れているオイ リ ング油剤等をカセ形態やコーン卷き時に付与しても 構わない。
ポリ ト リ メチレンテレフタ レー ト繊維は、 ポリエチレンテレフタ レート繊維に比べてオリ ゴマーが多く、 該オリ ゴマーの付着により 先染め糸の光沢が低下する場合があるので、 精練工程でアル力 リ剤 を使用 (例えば、 炭酸ナト リ ウム、 水酸化ナト リ ウムを 0 . 5〜 5 g Zリ ッ トル加える) したり、 アルカ リ耐性のある分散染料で P H 8〜 1 1 のアルカ リ性側で染色するという方法等を採用して、 オリ ゴマーの付着を軽減することも出来る。 このとき、 排水は、 精練、 染色温度と同じ高温で排水することが好ましい。
本発明の先染め糸条は、 捲縮伸長率が 1 0 %以上であることが好 ましく、 よ り好ましく は 1 5〜 5 0 0 %、 更に好ましくは 2 0〜 3
0 0 %、 特に好ましくは 5 0〜 1 5 0 %である。 捲縮伸長率がこの 範囲であると、 ス トレツチ性ゃ膨らみ感に優れた織編物が得られる このような糸条は、 ポリ ト リ メチレンテレフタレー ト繊維の捲縮 糸で構成されている。
捲縮糸と しては、 顕在捲縮及び又は潜在捲縮を有する複合繊維糸 条 (鞘芯やサイ ドバイサイ ド等に複合紡糸した糸条) や、 仮撚加工 、 押し込み加工、 ニッ トデニッ ト加工等で捲縮を付与したものが例 示される。
捲縮糸の物性と しては、 捲縮伸長率が 1 0 %以上であることが好 ましく、 より好ましくは 2 0 %以上、 更に好ましく は 5 0 %以上で ある。 捲縮伸長率がこの範囲である糸条を用いることによ り、 捲縮 伸長率が 1 0 %以上の先染め糸条を得ることが出来る。 なお、 ここ で云う捲縮伸長率は、 2. 6 X 1 0 Γ4 c N/ d t e Xの荷重下で、 乾熱 9 0 °C X I 5分処理を行い、 一昼夜放置した後、 J I S— L _
1 0 9 0 伸縮性試験方法 (A法) に準じて測定したものである。 特に、 捲縮糸と しては、 高い捲縮伸長率が得られやすい仮撚加工 糸が好ましい。 仮撚加工は、 一般に用いられているピンタイプ、 フ リ クシヨ ンタイプ、 ニップベルトタイプ、 エアー加撚タイプ等いか なる方法によるものでもよい。 また、 1 ヒーター仮撚、 2 ヒーター 仮撚のいずれであってもよレ、。 さらに P OYの延伸仮撚であっても よい。
仮撚ヒーター温度は、 本発明の目的が達成できる範囲で任意に設 定するこ とができ、 一般的には、 第 1 ヒーターの出口直後の糸条温 度を 1 0 0 °C以上 2 0 0 °C以下とすることが好ましく、 より好まし く は 1 2 0 °C以上 1 8 0 °C以下、 特に好ましく は 1 3 0 °C以上 1 7 0 °c以下の範囲である。
また、 必要に応じて、 第 2 ヒーターで熱セッ トして、 2 ヒーター 仮撚糸と しても良い。 第 2 ヒーター温度は、 1 0 0 °C以上 2 1 0 °C 以下が好ましく、 より好ましくは第 1 ヒーターの出口直後の糸条温 度に対して一 3 0 °C以上、 + 5 0 °C以下の範囲である。 第 2 ヒータ 一内のオーバーフィード率 (第 2.オーバーフィー ド率) は + 3 %以 上、 + 3 0 %以下とするのが好ましい。
仮撚数 Tは、 ポ リ エチレンテ レフタ レー ト系ポリエステル繊維の 仮撚加工で通常に用いられる範囲でよく、 下記式で計算される。 こ の場合、 仮撚数の係数 Kの値が 1 7 6 0 0〜3 5 0 0 0の範囲であ ることが好ましく、 仮撚加工糸によって好ましい仮撚数 Tが決定さ れる。
T ( T/m) = K / {仮撚加工糸の繊度 (dt ex) } 0 · 5
また、 別の好ましい捲縮糸と して、 顕在捲縮及び又は潜在捲縮を 有する複合繊維の中でも、 極限粘度の異なる二種類のポリ ト リ メチ レンテレフタ レートを用い、 低粘度側が高粘度側を包み込むように 接合面形状が湾曲しているサイ ドバイサイ ド型に複合紡糸した複合 繊維を用いる と、 仮撚加工糸と同程度の高い捲縮を有する先染め糸 条が得られるだけでなく、 仮撚加工糸特有の残留トルクが無く、 力 セ染色工程での力セの取り扱い性が容易となるので好ましい。 さ ら に、 捲縮付与工程が省略化できるのでコス トの合理化も可能となる なお、 捲縮糸は、 本発明の目的を損なわない範囲内で、 通常 8 0 w t %以下、 好ましくは 7 0 w t %以下、 更に好ましくは 5 0 w t %以下で、 ウールに代表される天然繊維等、 他の繊維 (ポリ ト リ メ チレンテレフタレー ト繊維のフィラメ ント原糸や短繊維も含む) を 、 混紡 (サイ ロフィル等) 、 交絡混繊 (高収縮糸との異収縮混繊糸 等) 、 交撚、 複合仮撚 (伸度差仮擦等) 、 2フィー ド流体噴射加工 等の手段で混用してもよい。
さ らに、 捲縮糸は、 チーズゃカセ染色工程での取り扱い性を向上 させる為に、 捲縮糸 1本もしく は 2本以上 (仮撚加工糸の場合は、 仮撚方向は同方向、 異方向のいずれでもよい) を合わせて、 更に撚 糸 (追撚) を 5 0 〜 1 0 0 0 1: 111、 好ましく は 5 0 〜 3 0 0 T / m行ってもよい。 追撚を上記の範囲で行う ことにより糸条同士の絡 み合いが殆ど無く、 特に、 カセ染色を行う場合には、 染色された力 セからコ ーン卷きする工程での糸切れが軽減されるので好ましい。
さ らに、 仮撚方向が片方向のみの仮撚加工糸を用いる場合には、 撚糸の方向と しては、 仮撚方向と逆方向に撚糸を行う と、 先染め糸 条の捲縮伸長率を高くすることができるので好ましい。 撚糸装置と しては特に限定されるものではなく、 イタ リー撚糸機、 リ ング撚糸 機、 ダブルツイスター等を使用することができる。
通常、 ポリエステル繊維ゃポリアミ ド繊維は、 撚糸を施すと撚糸 方向とは逆方向に トルクが発生するため、 トルクを軽減するために 、 撚糸後に撚り止めセッ トを行うのが一般的である。 しかし、 ポリ ト リ メチレンテレフタレート繊維は、 トルクが軽減されにくいとい う特徴がある。 これは、 ポリ ト リ メチレンテレフタレート繊維の熱 収縮が高い為、 緊張状態で撚り止めセッ トを行う と非結晶部分が縮 み、 この収縮応力によって結晶部が伸ばされる。 この結晶部は撚り 止めセッ トを行っても、 ほぼ完全弾性体であるのでトルクが軽減さ れない。 そのため、 結果的に残留トルクの高い糸条しか得られない ものと推定される。
ポリ ト リ メチレンテレフタレート繊維は柔軟であるので、 残留ト ルクが高い糸条を用いてカセを作成すると、 トルクが局部的に集中 することによってここを支点にスナール (部分的に糸条がよじれる 現象) が発生し、 このスナールによって糸条同士が絡まって、 糸離 れが悪くなると云う問題があることが明らかになった。
本発明者らは、 ポリ ト リ メチレンテレフタレー ト繊維の場合、 撚 糸数が 3 0 O T / m未満であれば、 撚り止めセッ トを行わずにカセ を作成しても、 糸条を構成しているフィ ラメ ン トで トルクが吸収さ れるので、 局部的にトルクが集中することなく、 スナールが殆ど発 生しないカセが得られることを見出した。
すなわち、 捲縮伸長率が 1 0 %以上の物性を有する先染め糸条を 得るためには、 撚り止めセッ トを行わないことが好ましい。
しかし、 撚糸数が多い場合等、 どう しても撚り止めセッ トを行つ て トルクを軽減する必要がある場合には、 本発明の目的が達成でき る限りにおいて、 撚り止めセッ トを行っても構わない。 その場合、 ポリ トリ メチレンテレフタレート繊維は、 緊張状態では撚り止めセ ッ トが効きにくいことから、 糸条を弛緩しながら撚り止めセッ トを 行う方法を採用することが好ましい。 例えば、 アルミニウム製つば 付きのシリ ンダー内層に段ボール製のダミークッショ ン材を卷いた 上に卷き返しを行って、 十分に糸条を弛緩させながら燃り止めセッ トを行う方法等がある。 その卷量と しては、 糸管卷きにおいてはセ ッ トをする事によって巻形態が崩れない程度にすればかまわない。 セッ トを十分に効かせるためには、 0 . l c N / d t e x以下の卷 張力で卷く こ とが好ましい。
セッ トを行う場合は、 通常、 真空セッター等の装置を用いること ができる。 充分なセッ ト効果と捲縮の発現、 およびエネルギー的な 効率の点から、 処理温度は 6 0〜 1 1 0 °Cが好ましく、 また、 処理 時間は通常 1 0〜 6 0分が好ましい。
なお、 捲縮糸条は、 糸条で潜在捲縮を顕在化させ捲縮を高めるた めに、 燃糸を行う前後でパルキー出しを行っても構わない。 特にチ ーズ染色では、 染色時に十分に捲縮糸をリ ラックスできない場合が あるので有効である。 この様なパルキー出し する装置としては、 例えば、 坂本連染社製の b u l o n eや、 S u p e r b a社製の連 続パルキー出し装置等が挙げられる。
加工条件としては、 オーバーフイー ド率を 5 0〜 2 0 0 %で行え ばよく、 リ ラックスの熱源と しては、 乾熱、 蒸気等を使用し、 好ま しく は 6 0〜 2 0 0 °C、 さ らに好ましく は 9 0〜 1 9 0 °Cで処理す れば良い。 この様にバルキー出しを行った糸条は、 沸水収縮率が 4 %以下となり、 捲縮伸長率も 5 0 %以上となる。 これは、 チーズ染 色時に糸条の収縮が僅かしか起こらず、 収縮に伴って捲縮が伸ばさ れないので、 高い捲縮伸長率の先染め糸条が得られるのである。
次に、 本発明の特定の捲縮伸長率を有する糸条を得る方法につい て説明する。
カセ染色方法の場合は、 前述の染色方法に準じて行えばよいが、 カセ状での前処理もしく はさ らに精練、 染色工程にて、 力セを乾熱 や湿熱 (蒸気、 熱水) でリ ラックスさせる (張力をできるだけ掛か らない様にして捲縮を発現させる) ことが好ましい。
例えば、 力セを前処理でリ ラックスさせる場合には、 熱風乾燥機 、 カセ連続熱処理機等を用いて、 好ましく は 5 0〜 1 0 0 ° (:、 よ り 好ましくは 6 0〜 9 0 °Cで 5〜 3 0分の乾熱処理を行えば良い。 ま た、 オー トク レープ、 スチームセッター、 スチームボックス等を用 いて、 好ましく は 6 0〜 1 3 0 °〇、 よ り好ましく は 8 0〜: L 1 0 °C で 5〜 3 0分の蒸気処理を行えば良い。 しかし、 カセを型枠に固定 したり、 力セを袋等に高密度で詰め込んでカセ自身を拘束した状態 で前処理を行う と、 捲縮が十分発現できない場合がある。
一方、 精練、 染色工程にてカセをリ ラックスする場合には、 カセ にテンシ ョ ンが加わりにくレ、、 回転パック、 嘖射式染色機等を用い て 5 0〜 1 3 0 °Cで 5〜 6 0分の熱水処理を行う ことが好ましい。 特に、 噴射式染色機は、 力セ長を調整する為に上下に固定パーがつ いたものもあるが、 この様な装置の場合には、 処理時にカセがリ ラ ックスできる様に、 できるだけ固定パーの間隔を狭めておく こ とが 好ましい。
チーズ染色の場合は、 前述の染色方法に準じて行えば良いが、 捲 縮糸の潜在捲縮を発現させる為にパルキー出しを行った捲縮糸を用 いると、 高い捲縮伸長率の先染糸条が得られるので好ましい。
本発明の糸条'は、'特に、 綿、 麻等の天然セルロース繊維、 キュプ ラ、 ビスコース レーヨ ン、 ポ リ ノ ジッ ク レーヨ ン等の再生セノレロー ス繊維、 リ ヨセル (直接紡糸セルロース繊維) 等のセルロース系繊 維、 羊毛、 アルパカ、 モヘア、 アンゴラ、 キャメル、 カシミア等の ウール繊維を混用した糸条が、 セルロース系繊維やウール繊維の持 つ風合が効果的に生かされ、 かつ、 寸法安定性、 ス ト レッチ性に優 れた先染め糸条が得られるので好ましい。
さ らには、 キュプラゃビスコース レーョ ン等の再生セルロース繊 維マルチフィラメント と混用したものは、 織編物にした場合、 再生 セルロース繊維マルチフィラメ ントの光沢感が得られるので好まし く、 特に、 沸水収縮率が— 3〜 5 %の再生セルロース繊維マルチフ イラメ ントを混用すると、 染色でポリ ト リ メチレンテレフタレー ト 繊維との収縮差が大きくなり 、 セルロースの風合が失われず、 ス ト レッチ性も発現し易くなるので好ましい。
再生セルロース繊維としては、 その紡糸方法等は特に限定される ものではなく、 ハンク法、 ケーク法、 ネッ トプロセス法、 連紡法等 いかなる方法によって製造された繊維でもよいが、 沸水収縮率が一 3〜 5 %の再生セルロース繊維マルチフィラメ ントを得るには、 ハ ンク法、 ケーク法、 ネッ トプロセス法等によるのが好ましい。 また、 これらの糸を 2種類以上組み合わせて引き揃え、 または交 絡させてもよく、 目的に応じて酸化チタン等の艷消し剤や公知の各 種添加剤を含有させたものを用いてもよい。
単糸繊度が好ましく は 0 . 1〜 1 2 d t e x、 特に好ましく は 1 〜 5 d t e xのセルロース系繊維やウール繊維を、 ポリ ト リ メチレ ンテレフタレート繊維と混用すると、 加工性に優れ、 糸条の風合も 柔軟になるので好ましい。
本発明において、 ポリ ト リ メチレンテレフタレート繊維と他の繊 維を混用する方法と しては、 各繊維が一体になり うる方法であれば 良く、 特に限定されるものではないが、 例えば、 合撚、 カパリ ング 、 仮撚、 流体噴射加工、 精紡交撚等の手段によ り混用することがで きる。 カバリ ング、 伸度差仮撚、 2 フィー ドでの流体噴射加工の様 に糸条が鞘芯構造を取る場合には、 芯糸にポリ ト リ メチレンテレフ タレート繊維を用いるとス トレツチ性が得られ易くなるので好まし い。
仮撚加工を行う場合は、 仮撚加工機としてベルト二ップ、 フリ ク シヨ ン、 ピンの何れのタイプを用いても良いが、 仮撚温度としては 、 ポリ ト リ メチレンテレフタ レー ト繊維の融点を考慮する と 1 4 0 〜 1 8 0 °Cで行う事が好ましい。 仮撚を行った糸条には、 集束性を 向上させるために 5 0〜 1 0 0 0 T Z mの追撚を行っても良い。 追 撚の方向と しては、 仮撚方向の逆方向に追撚を行う とス トレッチ性 が向上するので好ましい。
また、 合撚する場合の合糸数、 撚数、 撚糸方向については、 特に 限定されるものではないが、 諸撚糸の様に下撚り と上撚りを行う場 合には、 合撚糸の残留トルクが残らない様に撚パランスをとること が好ましく、 例えば、 2子撚糸の場合、 下撚り回数 1 に対して上撚 り回数を 0 . 6〜 0 . 8倍と して、 できるだけ撚り ビリが発生しな い様にするのが好ましい。 例えば、 ポリ ト リ メチレンテレフタレー ト繊維と他の繊維を下撚り した合撚糸を、 更に 2本'あわせて合撚し た諸撚糸等が挙げられる。
更に、 カバリ ングする場合のカバリ ング本数、 カパリ ング数、 力 パリ ング方向については、 特に限定されるものではないが、 ポリ ト リ メチレンテレフタレート繊維の仮燃加工糸を力パリ ング糸と し、 ダブルカバリ ングする場合には、 カバリ ング糸の残留トルクを軽減 する為に仮撚方向の異なる仮撚加工糸を用いることが好ましい。 特に、 セル口ース系繊維又はウール繊維とポリ ト リ メチレンテレ フタレー ト繊維が混用された糸条を得る方法と しては、 例えば、 ポ リ ト リ メチレンテレフタレー ト繊維とセルロース系繊維又はウール 繊維を合撚する方法、 ポリ ト リ メチレンテレフタ レー ト繊維を芯に して、 セルロース系繊維又はウール繊維を巻き付ける様に力パリ ン グする方法、 芯糸にポリ ト リ メチレンテレフタレート繊維、 鞘糸に セルロース系繊維又はウール繊維と して流体噴射加工する方法、 ポ リ ト リ メ チレンテレフタ レー ト繊維とセルロース系繊維又はウール 繊維を引き揃えて仮撚する方法、 更に、 仮撚加工の前もしくは後に インターレースノズルを用いて交絡させる方法がある。 また、 綿や ウール繊維等の短繊維の場合には、 紡績工程の中の精紡時点で、 ポ リ ト リ メチレンテ レフタ レート繊維を複合した精紡交撚糸とする方 法が挙げられる。
上記の様な混用方法においては、 ポリ ト リ メチレンテレフタレー ト繊維を 1〜 5 %程度伸長させながらセルロース系繊維又はウール 繊維と複合すると、 糸条のス ト レッチ性が向上するので好ましい。 セル口ース系繊維又はウール繊維とポリ ト リ メチレンテレフタレー ト系繊維の構成比率は、 質量比で 8 0 : 2 0〜 2 0 : 8 0が好まし く、 さ らに好ましく は 7 0 : 3 0〜 4 0 : 6 0である。 セルロース 系繊維やウール繊維の構成比率が上記の範囲であると、 寸法安定性 、 ス ト レッチ性が優れ、 セルロース系繊維やウール繊維の持つ風合 が効果的に発揮される。
本発明の先染め糸条は、 0. 8 8 2 6 c NZ d t e Xの荷重下で の伸びが 5 %以上 5 0 %以下であることが好ましく、 さらに好まし くは 1 0 %以上 3 0 %以下である。 この範囲であると、 ス トレッチ 性が良好な先染め糸条となり、 製編、 製織時にも糸切れの発生がな い。 特に、 セルロース系繊維やウール繊維等と複合した先染め糸条 では、 セルロース系繊維やウール繊維が鞘、 ポリ ト リ メチレンテレ フタレー ト繊維が芯となる鞘芯構造となって、 セルロース系繊維や ウール繊維等の持つ風合いが有効に生かされた先染め糸条となる。 なお、 0 . 8 8 2 6 c N/ d t e xの荷重下での伸びが 2 0 %以 上の場合には、 混用された繊維が弛みを持った一体性の低い複合糸 条形態となるので、 布帛の表面品位を向上させるためには、 染色さ れた複合糸条を更に 5 0〜 1 0 0 O TZmの追撚を行うのが好まし レゝ
本発明の好ましい態様の代表例と しては、 再生セルロース フイラ メ ン ト とポリ ト リ メチレンテレフタ レー トフィ ラメ ン トの質量混率 を 3 0 : 7 0〜 6 0 : 4 0 と し、 ポリ ト リ メチレンテレフタ レー ト フィ ラメ ン ト仮撚糸を芯糸として再生セルロースフィ ラメ ン トを卷 糸にして力パリ ングするか、 若しくは再生セルロースフィラメ ント とポリ ト リ メチレンテレフタレー ト フィ ラメ ントを引き揃えてイ ン ターレース加工した後に仮撚加工し、 次いで、 得られた糸条を、 卷 き密度 0 . 1〜 0. 5 g Z c m3のチーズにして、 染色チューブへ の差し替え率を 1 0〜 2 0 %にしてチーズ染色する方法や、 カセを 作成して噴射カセ染色機でカセ染色する方法がある。
本発明の先染め糸条は、 少なく とも結び目等がない 5 0 0 m以上 の連続した糸条であることが好ましく、 よ り好ましく は 1 0 0 O m 以上である。 このような糸条であると、 織編物にする場合に製織、 製編で糸切れ等の トラブルがなく、 欠点のない生地が得られる。 本発明の先染め糸条は、 半径 2 mm以上のク リ ンプが 2. 5 4 c m当りに 5個以下であることが好ましく、 1個以下であることがさ らに好ましい。 ク リ ンプ数がこの範囲であると、 表面品位の優れた 織編物が得られる。 本発明の先染め糸条ではなく、 一旦織編物にし てから染色し、 その後、 該織編物を分解して取り出した糸条では、 このク リ ンプ数が 5個を越える。
なお、 ク リ ンプ数は、 J I S— L— 1 0 1 5の捲縮数に準拠して 測定したものであり、 先染め糸条全体に初荷重を 0. 1 8 mNZ d t e x として 2. 5 4 c m間にあるク リ ンプを調べ、 半径 2 mm以 上のク リ ンプ数を数える。 これを糸長方向にランダムに 1 0点測定 し、 その平均値を算出する。
本発明の先染め糸条は、 織物 (タフタ、 ツイル、 サテン並びに各 種の変化組織) や編物 (経編、 丸編、 横編、 パンス ト編等) に使用 することができ、 また、 カーペッ トの表面 (立毛部) にも使用する ことができる。 特に、 横編み用の糸と して用いると、 横編地をホフ マンプレス仕上げでセッ トすることが容易になるという利点がある 。 編物の組織と しては、 天竺、 天竺かのこ、 ゴム、 パール、 両面、 ポンチローマ、 ミ ラノ リブ及びこれら変化組織等が挙げられ、 製品 の目的に応じて適宜選定すればよい。
また、 本発明の先染め糸条は、 横編 (セーター等) 、 丸編 · 織物 (アウター、 イ ンナ一等) 、 レース、 口ゴムや襟部用の付属品、 製 紐、 モール糸、 細幅テープ、 靴下、 サポーター、 パンス ト、 タイツ 、 パイル織編物 (アウター、 カーシー ト等) 、 カーペッ ト等に使用 することが出来る。 以下、 実施例を挙げて本発明をさらに説明するが、 本発明は実施 例のみに限定されるものではない。
なお、 測定方法、 評価方法等は下記の通りである。
( 1 )還元粘度 ^ η S P Z C )
ポリマーを、 9 0 °Cで 0 _クロ口フエノールに 1 g デシリ ッ ト ルの濃度で溶解し、 得られた溶液をォス トワルド粘度管に移して 3 5 °Cで測定し、 下記式より算出した。
77 s p / c = C (T/TO) - l ] /C
(式中、 Tは試料溶液の落下時間 (秒) 、 TO は溶剤の落下時間 (秒) 、 cは溶液濃度 (g/デシリ ッ トル) を表す。 )
( 2 )強伸度特性
東洋ポールドウイ ン社製テンシロンを用い、 試料長 2 0 c m、 引 張速度 2 0 c m/ /分の条件で、 引張強度 ( c NZ d t e X ) 、 引張 伸度 (%) 、 初期弾性率 ( c NZ d t e x ) を測定した。 また、 応 力—歪み曲線から 0. 8 8 2 6 c N/ d t e x荷重下での伸び (% ) を測定した。
( 3 )沸水収縮率
J I S— L一 1 0 1 3 熱水収縮率測定法 (B法) に準拠して測 定を行った。 なお、 熱水の温度は 1 0 0 °Cと した。
( 4) 捲縮伸長率
繊維に 2. 6 X 1 0— 4 c N Z d t e Xの荷重を加えた状態で、 タ パイ社製パーフェク トオーブンにて乾熱 9 0 °C X 1 5分処理を行い 、 一昼夜放置した後、 J I S— L— 1 0 9 0 伸縮性試験方法 ( A 法) に準じて測定した。
( 5 ) ク リ ンプ数
J I S— L一 1 0 1 5の捲縮数測定法に準拠して測定した。
先染め糸条全体に初荷重を 0. 1 8 mN/ d t e X と して、 2. 5 4 c m間にあるク リ ンプを調べ、 半径 2 mm以上のク リ ンプ数を 数える。 これを糸長方向にランダムに 1 0点測定し、 その平均値を 算出した。
( 6 ) 弾性回復率
繊維を、 チャック間距離 2 0 c mで 0. 0 2 9 4 c N / d t e X の初荷重をかけて引張試験機に取り付け、 引張速度 2 0 c mZ分で 伸長率 2 0 %まで伸長し、 1分間放置した。 その後、 再び同じ速度 で収縮させ、 応力—歪み曲線を描く。 収縮中に応力が 0. 0 2 9 4 c N Z d t e xになった時の伸びを残留伸び ( A ) とする。
2 0 %伸長時の弾性回復率は下記の式に従って求めた。
20%伸長時の弾性回復率 (%) = 〔 ( 2 0— A ) / 2 0 ] X I 0 0 また、 1 0 %伸長時の弾性回復率は、 初荷重及び残留伸びを読み 取る応力を 0. 0 8 8 2 6 c N/ d t e x と し、 伸長率を 1 0 %ま でと して、 上記と同様に行い、 下記の式に従って求めた。
10%伸長時の弾性回復率 (%) = 〔 ( 1 0 - A) 1 0〕 X I 0 0 ( 7 ) 横編地のス ト レツチ性
J I S— L— 1 0 1 8の伸長弾性率測定法 (A法 : 定伸長法) に 準拠して行った。
自記装置付定速引張試験機を用い、 1 0 c m幅 X I 5 c m長さの 試験片を用い、 初荷重 2. 9 4 2 c Nをかけた後、 つかみ幅 2. 5 c m、 つかみ間距離 1 0 c mで、 速度 1 0 c m/分で伸長率 1 0 0 %になるまで伸長し、 1分間放置する。 その後、 再び同じ速度で収 縮させ、 応力一歪み曲線を描き、 収縮中に応力が初荷重と同じ応力 になった時の残留伸びを L (mm) と して、 下記の式に従って回復 率を求めた。
回復率 (%) = 〔 ( 1 0 0 - L ) / 1 0 0 ) X 1 0 0
得られた横編地の回復率から、 ス ト レツチ性を下記の基準に従い ランク付けを行った。
◎ : 回復率が 9 0 %を越える。
〇 : 回復率が 8 5 %以上 9 0 %未満
△ : 回復率が 8 0 %以上 8 5 %未満
X : 回復率が 7 0 %未満
( 8 ) 横編地の柔軟性、 膨らみ感、 風合い
繊維の研究に従事する 1 0人の検査員によって手触りによる官能 検査を行い、 下記のランク付けを行った。
<柔軟性 >
〇 : ソフ ト と感じる。
△ : ややソフ ト と感じる。
X : 硬いと感じる。
<横編地の膨らみ感>
〇 : 膨らみ感がある。
△ : やや膨らみ感がある。
X : 膨らみ感がない。
<風合い >
〇 : セル口ース系繊維又はウール繊維ライクな風合いと感じる 。 (ドライ感、 吸湿性、 ドレープ性がある。 )
△ : ややセル口ース系繊維又はウール繊維ライクな風合いと感 じる。
X : ほとんどセル口ース系繊維ライクな風合いは感じられない ( 9 ) 横編地の寸法安定性
J I S— L一 1 0 1 8収縮率測定法 (D法) に準拠して測定を行 い、 下記ランク付けを行った。
〇 : タテ、 ョコの収縮率が— 3 . 0〜 5 . 0 %以内である。 △ : タテ若しく はョコのどちらかが収縮率が一 3 . 0〜 5 . 0
%を越える。
X : タテ、 ョコ共に収縮率が一 3 . 0〜 5 . 0 %を越える。 〔実施例 1〕
η s p / c = 0 . ' 8のポリ ト リ メチレンテレフタレー トチップを 用い、 紡糸温度 2 6 5 °C、 紡糸速度 1 2 0 O m/分で未延伸糸を得 た。 次いで、 ホッ ト口ール温度 6 0 °C、 ホッ トプレー ト温度 1 4 0 °C、 延伸倍率 3倍、 延伸速度 8 0 0 mZ分で延燃して、 1 6 7 d t e x / 7 2 f の原糸を得た。
得られた原糸の物性は、 強度 3 . 5 c N / d t e X、 伸度 4 5 % 、 弾性率 2 2 c N/ d t e x、 2 0 %伸長時の弾性回復率 8 5 %で めった。
得られた 1 6 7 d t e x 7 2 f のポリ ト リ メチレンテレフタ レ ートマルチフィ ラメント原糸を、 イタリー撚糸機にて 1 0 0 0 T / mの加撚を施して糸条 (捲縮伸長率 0 %) を得た。
得られた糸条を、 神津社製のソフ トワイ ンダーを用い紙管径 8 1 mmの紙管に、 卷き密度 0 . 4 0 g / c m3で l k g卷きした。 こ のチーズを外径 6 9 mmの染色チューブに差し替え (差し替え率 1 4 . 8 %) 、 チーズ染色機 (日阪製作所 (株) 製、 小型チーズ染色 機) にセッ ト し、 花王社製スコア口ール F C— 2 5 0 ( l g /リ ツ トル) を添加して、 流量 4 0 リ ッ トル/分で常温から 2 °CZ分の昇 温速度で 6 0 °Cまで昇温し、 6 0 °Cで 1 0分間精練を行った。
精練後、 脱水、 水洗を行い, 分散染料 (D i a n i X B l u e
A C — E ) 1 % o m f 、 分散剤 (デイスパー T L ) 0 . 5 g /リ ッ トルを加え、 更に酢酸にて p H 5に調整した後、 流量 4 0 リ ッ ト ル Z分でイ ンーァゥ トで染液を循環し、 昇温速度 2 °C/分で 1 2 0 °Cまで昇温し, 1 2 0 °Cで 3 0分染色を行った。 染色後、 脱水、 水 洗を行い水酸化ナト リ ウム 1 g /リ ッ トル、 ハイ ドロサルフアイ ト l g /リ ッ トル、 サンモール R C— 7 0 0 (日華化学社製) l g / リ ッ トルにて、 流量 4 0 リ ツ トル Z分で、 昇温速度 2 °C /分で 8 0 °Cまで昇温し、 8 0 °Cで 2 0分間還元洗浄を行った。
還元洗浄後、 脱液、 中和水洗を行い、 シリ コーン系柔軟剤 (ロ ン サイズ K一 2 2、 一方社 (株) 製) を 5 % 0 m f 添加し、 5 0でで 2 0分オイ リ ング処理を行った。 脱水後、 乾燥を行って先染め糸条 を得た。 得られた先染め糸条は、 チーズの内外層での均染性に優れ ており、 表 1 に示すような物性であった。
横編機 (コッポ (株) 製、 1 4ゲージ) を用いて、 上記で得た先 染め糸条を 3本引き揃え、 2 4コース、 2 0 ゥエルの天竺組織の横 編地を作成し、 ホフマンプレス機 (神戸電気工業 (株) 製、 神戸プ レス) にてスチーム仕上げを行って横編地を得た。
得られた横編地は、 表 1 に示す通り、 ス ト レッチ性、 寸法安定性 に優れ、 風合いもソフ トであった。
〔実施例 2〕
実施例 1で得た 1 6 7 d t e x / 7 2 f のポリ ト リ メチレンテレ フタレートマルチフィラメ ント原糸を、 石川製作所 (株) 社製ピン 仮撚機 I V F 3 3 8を用いて、 糸速 1 9 0 m/分、 仮撚数 2 2 8 0 T Z m、 仮撚加工温度 1 7 0 °C、 1 s t フィー ド 0. 0 %、 TUフ イード 4. 1 %の条件で仮撚加工を施し、 捲縮伸長率 2 0 0 %の糸 条を得た。
得られた糸条を神津社製のソフ トワインダ一にて外径 6 9 mmの 染色チューブに直接卷き、 卷き密度 0. 2 5 g Z c m3で l k g卷 きのチーズと した。 得られたチーズを実施例 1 と同様にしてチーズ 染色、 仕上げを行った。 得られた先染め糸条の物性を表 1 に示す。
この先染め糸条を用いて、 実施例 1 と同様にして横編地を得た。 得られた横編地は、 表 1 に示す通り、 ス ト レッチ性、 寸法安定性に 優れ、 風合いもソフ トであった。
〔実施例 3〕
実施例 1 と同様にして 8 4 d t e x / 3 6 f のポリ ト リ メチレン テレフタレー トマルチフィラメ ント原糸を得た。 得られた原糸の物 性は、 強度 3. 2 c N/ d t e x、 伸度 4 6 %、 弾性率 2 4 c N Z d t e x、 2 0 %伸長時の弾性回復率 8 5 %であった。
得られた 8 4 d t e x / 3 6 f のポリ ト リ メ チレンテレフタ レー トマルチフィ ラメ ン ト原糸を、 石川製作所 (株) 社製のピン仮撚機 I V F 3 3 8を用いて、 糸速 1 9 0 mZ分、 仮撚数 S O O TZm 、 仮撚方向 Z、 仮撚加工温度 1 7 0 °C、 1 s t フィー ド 0. 0 %、 TUフィー ド 4. 1 %の条件で仮撚加工を施した後、 イタリー撚糸 機にて S方向に 1 2 O T/mの加撚を施して糸条を得た。 得られた 糸条の捲縮伸長率は 1 5 6 %であった。
得られた糸条を、 石川製作所社製のカセ上げ機を用い、 カセ長 1 8 0 c m, 卷き量 2 5 0 gのカセを作成した。 このカセを熱風乾燥 機にて 8 0 °Cで 2 0分間の乾熱リ ラ ッ クス処理を行った後、 パッケ ージ染色機 (日阪製作所 (株) 製) に詰め込みセッ ト し、 花王社製 スコアロール F C— 2 5 0 ( l g /リ ッ トル) で 6 0 °Cで 1 0分間 精練を行つた。
精練後、 脱水、 水洗を行い、 分散染料 (D i a n i X B l u e A C— E ) 1 % o m f 、 分散剤 (デイ スパー T L ) 0. 5 g /リ ッ トルを加え、 更に酢酸にて P H 5に調整した浴にて 1 1 0 °Cで 3 0分染色を行った。 染色後、 脱水、 水洗を行い、 水酸化ナト リ ウム 1 g /リ ッ トノレ、 ハイ ドロサルフアイ ト 1 g /リ ッ トル、 サンモー ル R C— 7 0 0 (日華化学社製) l g /リ ッ トルにて、 8 0 °Cで 2 0分間還元洗浄を行った。 還元洗浄後、 脱液、 中和水洗を行い、 シ リ コーン系柔軟剤 (ロ ンサイズ K— 2 2、 一方社 (株) 製) を 5 % 0 m f 添加し、 5 0 で 2 0分オイ リ ング処理を行った。
脱水後、 乾燥したカセを、 ワイ ンダ一にてコーンに卷き上げて先 染め糸条を得た。 得られた先染め糸条の物性を表 1に示す。
横編機 (コッポ (株) 製、 1 4ゲージ) を用いて、 上記で得た先 染め糸条を 6本引き揃え、 天竺組織の横編地を作成し、 ホフマンプ レス機 (神戸電気工業 (株) 製、 神戸プレス) にてスチーム仕上げ を行って横編地を得た。
得られた横編地は、 表 1 に示すように、 ス ト レツチ性、 寸法安定 性、 膨らみ感に優れ、 風合いもソフ トなものであった。
〔実施例 4〕
実施例 3 と同様にして、 仮撚方向が Z方向と S方向である 2種類 の、 8 4 d t e x 3 6 f のポ リ ト リ メ チレンテ レフタ レー トマル チフィ ラメ ン ト仮撚加工糸を得た。 得られた 2種類の仮撚加工糸 ( Z仮撚と S仮撚) を引き揃えて、 イタ リー撚糸機にて S方向に 1 2 O TZmの加撚を施して双糸の糸条を得た。 この糸条の捲縮伸長率 は 1 8 4 %であった。 '
得られた糸条を用いて、 染色温度を 9 8 °Cに変更した以外は実施 例 3 と同様にして、 先染め糸条を得た。 得られた先染め糸条の物性 を表 1に示す。
得られた先染め糸条を 3本引き揃えて、 実施例 1 と同様にして横 編地を得た。 得られた横編地は、 表 1 に示すように、 ス ト レッチ性 、 寸法安定性、 膨らみ感に優れ、 風合いもソフ トなものであった。
〔実施例 5〕
実施例 1 と同様にして 1 6 7 d t e x / 4 8 f のポリ ト リ メチレ ンテレフタレ一トマルチフィラメ ント原糸を得た。 得られた原糸の 物性は、 強度 3. 8 c N/ d t e x、 伸度 4 6 %、 弾性率 2 3 c N / d t e x、 2 0 %伸長時の弾性回復率 8 8 %であった。
得られた原糸を用いて、 仮撚数を 2 8 0 O T/mに変更した以外 は実施例 3 と同様にして、 仮撚方向が S方向と Z方向の 2種類の仮 撚加工糸を得た。 得られた仮撚加工糸 ( Z仮撚と S仮撚) を引き揃 えて、 イタリー撚糸機にて S方向に 1 0 O T/mの加撚を施した後 、 つぶれ紙管に巻き上げ、 ォートクレーブにて 1 1 0 °Cで 2 0分の 撚り止め蒸気セッ トを行って双糸の糸条を得た。 この糸条の捲縮伸 長率は 7 8 %であった。
得られた糸条を用いて、 実施例 3 と同様にしてカセを作成し、 こ のカセを噴射式染色機にて、 実施例 3 と同様の条件にて精練、 染色 、 還元洗浄、 オイ リ ング処理、 コーン巻き上げを行って先染め糸条 を得た。 得られた先染め糸条の物性を表 1 に示す。
得られた先染め糸条を用いて、 実施例 4 と同様にして横編地を得 た。 得られた横編地は、 表 1 に示すよ うに、 ス ト レッチ性、 寸法安 定性に優れ、 やや膨らみ感があり、 風合いもソフ トなものであった
〔実施例 6〕
実施例 4で得た、 仮撚方向が Z方向と S方向の 2種類の、 8 4 d t e x / 3 6 f のポ リ ト リ メ チレンテレフタ レー トマルチフィ ラメ ントの仮撚加工糸を 2本引き揃えて S方向に 1 2 O TZm加撚し、 双糸と した糸条を、 S u p e r b a社製の連続パルキー出し装置で 、 糸速 5 0 O mZ分、 オーバーフィー ド率 1 6 0 %、 リ ラ ッ クス温 度 9 0 ° (:、 チーズワイ ン ドは卷き密度 0. 1 5 § / 0 1113で径 6 9 mmの染色チューブに 1 k g卷きする条件で加工を行い、 チーズを 得た。
得られたチーズを、 実施例 1 と同様にしてチーズ染色、 仕上げを 行い先染め糸条を得た。 得られた先染め糸条の物性を表 1に示す。 この先染め糸条を用いて、 実施例 4 と同様にして横編地を得た。 得られた横編地は、 表 1 に示す通り、 ス トレッチ性、 寸法安定性、 膨らみ感に優れ、 風合いもソフ トであった。
〔比較例 1〕
実施例 1 において 1 6 7 d t e x / 7 2 f のポリ ト リ メチレンテ レフタ レー トマルチフィ ラメ ント原糸の代わり に、 1 6 7 d t e x / 7 2 f ポリエチレンテレフタレー ト原糸 (旭化成 (株) 社製、 強 度 3. 9 c NZ d t e X、 伸度 3 5 %、 弾性率 9 7 c N/ d t e x 、 2 0 %伸長時の弾性回復率 2 5 %、 捲縮伸長率 0 %) を用い、 チ ーズ染色温度を 1 3 0 °Cに変更した以外は、 実施例 1 と同様にして 先染め糸条を得た。 得られた先染め糸条の物性を表 1 に示す。
この先染め糸条を用いて、 実施例 1 と同様にして横編地を得た。 得られた横編地は、 表 1に示す通り、 ス ト レッチ性に劣り、 風合い も硬い物であった。
〔比較例 2〕
実施例 1 において 1 6 7 d t e x / 7 2 f のポリ ト リ メチレンテ レフタレ一トマノレチフィ ラメ ン ト原糸の代わり に、 1 5 5 d t e x / 4 8 f ナイ ロ ン 6 6原糸 (旭化成 (株) 社製、 強度 4. 2 c N/ d t e x、 伸度 3 6 %、 弾性率 2 7 c N / d t e x、 2 0 %伸長時 の弾性回復率 6 5 %、 捲縮伸長率 0 %) を用い、 チーズ染色での染 料を酸性染料、 染色温度を 1 1 0 °Cに変更した以外は、 実施例 1 と 同様にして先染め糸条を得た。 得られた先染め糸条の物性を表 1 に 示す。
この先染め糸条を用いて、 実施例 1 と同様にして横編地を得た。 得られた横編地は、 表 1 に示す通り、 寸法安定性、 ス ト レッチ性と もに実施例 1 に比べてやや劣る物であった。
〔比較例 3〕 実施例 3において 8 4 d t e / 3 2 f のポリ ト リ メチレンテレ フタ レー トマノレチフィ ラメ ン ト原糸の代わりに、 8 4 d t e x / 3 6 f ポリ エチレンテレフタレー ト原糸 (旭化成 (株) 社製、 強度 3 . 9 c N/ d t e x、 伸度 3 5 %、 弾性率 9 7 c N/ d t e x、 2 0 %伸長時の弾性回復率 2 5 %) を用い、 仮撚条件を、 糸速 1 9 0 m/分、 仮撚数 3 2 0 0 T/m、 仮撚方向 Z、 仮撚加工温度 2 2 0 °C、 1 s t フィー ド 0. 0 %、 T Uフィード 4. 1 %に変更した以 外は、 実施例 3 と同様にして仮撚加工と加撚を施した糸条を得た。 得られた糸条の捲縮伸長率は 1 4 5 %であった。
得られた糸条を用いて、 染色温度を 1 3 0 °Cに変更した以外は実 施例 3 と同様にして、 先染め糸条を得た。 得られた先染め糸条の物 性を表 1に示す。
得られた先染め糸条を用いて実施例 3 と同様にして横編地を得た 。 得られた横編地は、 表 1 に示すように、 寸法安定性と膨らみ感は 優れているものの、 ス ト レツチ†生に劣るものであった。
〔実施例 7〕
実施例 5で得た 1 6 7 d t e / 4 8 f のポリ ト リ メチレンテレ フタ レー トマルチフィ ラメ ン トの原糸と、 l l O d t e x / 7 5 f のキュブラマルチフィ ラメ ン ト原糸 (旭化成 (株) 製、 ベンベルグ (登録商標)、 沸水収縮率 0. 9 %) とを、 石川製作所 (株) 社製ピ ン仮撚機 I V F 3 3 8を用いて、 イ ンターレースをエアー圧 1. 6 k g f / c m3でエアー交絡させた後、 糸速 1 0 0 m/分、 仮撚数 1 4 0 0 T / m、 仮撚加工温度 1 7 0 °C、 1 s t フィード 0. 0 % 、 TUフィー ド 4. 0 %の条件で仮撚加工を施した。 この仮撚糸を イタリー撚糸機にて、 仮撚方向とは逆の S方向に 3 0 O T/mの追 撚を行った。 この糸条の捲縮伸長率は 5 2 %であった。
得られた糸条を神津社製のソフ トワインダーを用い紙管径 9 0 m mの紙管に、 卷き密度 0. 3 3 g / c m3で 1 k g卷き してチーズ を得た。
このチーズを外径 7 2 mmの染色チューブに差し替え (差し替え 率 2 0 %) 、 実施例 1 と同様にして精練、 分散染料染色、 還元洗浄 を行った。 還元洗浄後、 脱液、 中和水洗を行い反応染料 (S u m i f i x S u p r a B l u e B R F ) で、 芒硝 5 0 g /リ ッ ト ルを加え、 流量 4 0 リ ツ トル/分でィンーァゥ トで染液を循環し、 昇温速度 2 °CZ分で 6 0 °Cまで昇温し、 6 0 °Cで炭酸ナト リ ウム 1
5 gノリ ツ トルを分割添加しながら、 4 5分染色を行った。
染色後、 脱液、 水洗、 ソービング、 フィ ックス、 水洗を行った後 に高融点ワ ックス系柔軟剤 (ロ ンサイズ N— 7 0 0、 一方社 (株) 製) を 5 % o m f 添加し、 5 0 °Cで 2 0分オイ リ ング処理を行った 。 脱水後、 乾燥を行って先染め糸条を得た。 得られた先染め糸条の 物性を表 1に示す。
横編機 (コッポ (株) 製、 1 4ゲージ) を用いて、 上記で得られ た先染め糸条を 2本引き揃え、 2 4コース、 2 0 ゥエルの天竺組織 の横編地を作成し、 ホフマンプレス機 (神戸電気工業 (株) 製、 神 戸プレス) にてスチーム仕上げを行って横編地を得た。 得られた横 編地は、 表 1に示す通り、 ス ト レツチ性、 寸法安定性に優れ、 ソフ トでキュブラの持つ独特の風合いを有した素晴らしいものであった
〔実施例 8〕
実施例 1 と同様にして 5 6 d t e x / 2 4 f のポリ ト リ メチレン テレフタレートマルチフィラメント原糸を得た。 得られた原糸の物 性は、 強度 3. 7 c N / d t e X、 伸度 4 4 %、 弾性率 2 3 c N Z d t e x、 2 0 %伸長時の弾性回復率 8 6 %であった。
得られた原糸を用いて、 仮撚数を 3 7 8 O TZmに変更した以外 は実施例 2 と同様にして仮撚糸を得た。
得られた仮撚糸と 1 1 0 d t e x / 4 0 f のビスコース レーョ ン マルチフィ ラメ ン ト糸 (旭化成 (株) 製、 シルマックス(登録商標) 、 沸水収縮率 2. 0 %) を、 イタ リー撚糸機にて Z方向に 8 0 0 T /m加撚を行い複合加撚糸を得た。 更に、 この複合加撚糸 2本をィ タリー撚糸機にて S方向に 5 8 O T/m加撚を行って糸条を得た。 得られた糸条の捲縮伸長率は 3 5 %であった。
得られた糸条を、 実施例 3 と同様にしてカセ作成、 リ ラックス処 理を行った後、 噴射カセ染色機 ( S i n k 0社製) を用い、 実施例 1で用いたのと同様の分散染料で 9 5 °C X 4 5分間染色し、 還元洗 浄、 水洗を行い、 実施例 7で用いたのと同様の反応染料にて 6 0 °C X 4 5分間染色し、 ソービング、 フィ ックス、 オイ リ ング処理を行 つて先染め糸条を得た。 得られた先染め糸条の物性を表 1に示す。 この先染め糸条を用い、 実施例 5 と同様にして横編地を得た。 得 られた横編地は、 表 1 に示す通り、 ス ト レッチ性、 寸法安定性に優 れ、 ソフ トでビス コース レーヨ ンの持つ独特の風合いを有した素晴 らしいものであった。
〔実施例 9〕
実施例 5で得た 1 6 7 d t e X 4 8 f のポリ ト リ メチレンテレ フタレートマルチフィラメ ント仮撚加工糸を芯糸と し、 カパリ ング 機を用いて 6 0番手 (英式綿番手) の綿原糸でダブルカバリ ング ( 第一カパリ ング : S撚 8 0 0 T/m、 第二カパリ ング加撚 : Z撚 6 5 O T/m) を行って糸条を得た。 得られた糸条の捲縮伸長率は 8 0 %であった。
得られた糸条を、 実施例 8 と同様にしてカセ染色を行って先染め 糸条を得た。 得られた先染め糸条の物性を表 1に示す。
この先染め糸条を用いて、 実施例 5 と同様にして横編地を得た。 得られた横編地は、 表 1に示す通り、 ス ト レッチ性、 寸法安定性に 優れ、 ソフ トで綿の持つ独特の風合いを有した素晴らしいものであ つた。
〔実施例 1 0〕
実施例 9において、 芯糸を 6 0番 (毛番手) のウール繊維、 カパ リ ング糸を実施例 3で得た 8 4 d t e x Z 3 6 f のポリ トリ メチレ ンテレフタレートマルチフィラメント仮撚加工糸に変更して、 ダブ ルカパリ ングを行った糸条を得た。 得られた糸条の捲縮伸長率は 1 0 %であった。
得られた糸条を用いて、 実施例 5 と同様にして横編地を得た。 得 られた横編地は、 表 1 に示す通り、 ス ト レッチ性、 寸法安定性に優 れ、 ソフ トでウールの持つ独特の風合いを有した素晴らしいもので めった。
〔比較例 4〕
実施例 7において、 1 6 7 d t e x / 4 8 f のポリ トリ メチレン テレフタレートマルチフィラメ ント原糸の代わりに、 比較例 1で用 いたのと同様の 1 6 7 d t e / 4 8 f ポリエチレンテレフタレー ト原糸を用いた以外は、 実施例 7 と同様にして先染め糸条を得た。 得られた先染め糸条の物性を表 1に示す。
この先染め糸条を用いて、 実施例 7 と同様にして横編地を得た。 得られた横編地は、 表 1に示す通り、 寸法安定性は良好であるが、 ス ト レッチ性が悪く、 また、 風合いも硬く、 ベンベルグの持つ独特 の風合や光沢感が感じられるものではなかった。
〔比較例 5〕
実施例 7において、 1 6 7 d t e x / 4 8 f のポリ ト リ メチレン テレフタレートマルチフイ ラメ ント原糸の代わりに、 比較例 2で用 いたのと同様の 1 5 5 d t e x / 4 8 f ナイ ロン 6 6原糸を用い、 分散染料を酸性染料に、 染色温度を 1 1 o °cに変更した以外は、 実 施例 7 と同様にして先染め糸条を得た。 得られた先染め糸条の物性 を表 1 に示す。
この先染め糸条を用いて、 実施例 7 と同様にして横編地を得た。 得られた横編地は、 表 1 に示す通り、 寸法安定性とス ト レッチ性が 劣り、 また、 風合いも硬く、 ベンベルグの持つ独特の風合や光沢感 が感じられるものではなかった。
〔比較例 6〕
実施例 2において、 1 6 7 d t e x / 7 2 f のポリ ト リ メチレン テレフタ レー トマルチフィ ラメ ン ト原糸の代わり に、 1 6 7 d t e / 5 0 f のビスコースレ一ヨ ンマルチフィ ラメ ン ト原糸 (旭化成 (株) 製、 シルマックス(登録商標)、 沸水収縮率 2 . 1 % ) に変更 した以外は、 実施例 2 と同様にして仮撚した糸条を得た。 この糸条 の捲縮伸長率は 7 %であった。
得られた糸条を、 分散染料染色、 還元洗浄を行わなかった以外は 、 実施例 7 と同様にして先染め糸条を得た。 得られた先染め糸条の 物性を表 1に示す。
この先染め糸条を用いて、 実施例 2 と同様にして横編地を得た。 得られた横編地は、 表 1に示す通り、 ス ト レッチ性、 寸法安定性に 劣るものであった。
〔比較例 7〕
実施例 1において、 チーズワイ ン ド条件を、 外径 6 9 m mの染色 チューブに、 卷き密度 0 . 5 5 g Z c m 3と し、 差し替えを行わな かったこと以外は、 実施例 1 と同様にして先染め糸条を得た。 得ら れた先染め糸条は、 チーズの内外層で染色斑が発生していた。 この 糸条の物性を表 1 に示す。
この先染め糸条を用いて、 実施例 1 と同様にして横編地を得た。 得られた横編地は、 表 1に示す通り、 先染め糸条の沸水収縮率が 4 . 5 %であり、 横編地の寸法安定性に劣るものであった
先染め糸条の物' '生 横糸 ΐ地の物性
0%袖番 B 捲縮 C; ?g 黄下 y¾ Jk、: ク リ ンプ ス 卜 レ 寸法 軟 ¾Λ.件 H 膨 らみ咸 ノ雨 5¾("口い ν 弾性冏復率 τ 伸 IT畏-^-率 *" ^ の伸び 収縮率 ッチ性 性
( % ) ( %) ( % ) ( %)
実施例 1 84 1.1 10.0 1.5 0 ◎ 〇 〇 X
実施例 2 85 1.3 10.5 1.7 0 ◎ 〇 〇 X , 実施例 3 82 91 11.0 0.6 0 ◎ 〇 〇 〇
実施例 4 86 120 11.3 0.9 1 ◎ 〇 〇 〇
実施例 5 84 24 10.1 0.7 0 〇 〇 〇 Δ
実施例 6 80 66 10.7 0.5 0 〇 〇 〇 〇
比較例 1 30 0.5 4.5 0.6 0 X 〇 X X 一 比較例 2 50 0.8 7.0 1.7 0 Δ △ Δ X
比較例 3 29 75 8.5 0.5 1 Δ 〇 X 〇
実施例 7 80 25 13.3 1.0 0 〇 〇 〇 Δ 〇 実施例 8 82 30 19 1.3 0 ◎ 〇 〇 Δ 〇 実施例 9 73 19 23 1.9 0 〇 〇 〇 〇 〇 実施例 10 87 10 18 1.5 0 〇 〇 〇 Δ 〇 比較例 4 45 12 6.5 1.0 0 X 〇 X X X 比較例 5 55 15 6.8 2.5 0 Δ △ Δ X X 比較例 6 13 3 6.2 3.7 0 X X Δ X 〇 比較例 7 85 0.5 7.2 4.5 0 〇 X 〇 X
(注) 定荷重下の伸びとは、 0.8826cN/dtex荷重下での伸びである
産業上の利用の可能性
本発明の先染め糸条は、 ス ト レッチ性、 寸法安定性に優れ、 風合 いがソフ トな染色された糸条であり、 織編物に有用である。 特に、 捲縮糸からなる糸条においては捲縮伸長率が高いので、 膨らみ感に 優れた織編物を形成することができる。 更に、 セルロース系繊維や ウール繊維との混用糸条においてはセル口ース系繊維やウール繊維 の持つ風合が効果的に生かされているので、 ス ト レッチ性、 風合い に優れた織編物を形成することができる。

Claims

請 求 の 範 囲
1. 染色され ポリ ト リ メチレンテレフタ レー ト繊維で構成され 、 1 0 %伸長時の弾性回復率が 6 0 %以上、 且つ、 沸水収縮率が 4 %以下であることを特徴とする先染め糸条。
2. 該糸条が、 捲縮伸長率が 1 0 %以上の捲縮糸条であることを 特徴とする請求項 1記載の先染め糸条。
3. 該糸条が、 ポ リ ト リ メ チレンテレフタ レー ト繊維とポリ ト リ メチレンテレフタレー ト繊維以外の繊維で構成されていることを特 徴とする請求項 1又は 2記載の先染め糸条。
4. ポ リ ト リ メ チレンテレフタ レー ト繊維以外の繊維が、 セル口 ース系繊維、 ウール繊維であることを特徴とする請求項 3記載の先 染め糸条。
5. 該糸条が、 0. 8 8 2 6 c NZ d t e xの荷重下での伸びが
5 %以上であることを特徴とする請求項 1 〜 4のいずれかに記載の 先染め糸条。
PCT/JP2001/004173 2000-05-18 2001-05-17 Fil teint WO2001088237A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP01930210A EP1288356B1 (en) 2000-05-18 2001-05-17 Dyed yarn
DE60138186T DE60138186D1 (de) 2000-05-18 2001-05-17 Eingefärbtes garn
MXPA02011387A MXPA02011387A (es) 2000-05-18 2001-05-17 Hilo tenido.
JP2001584617A JP3500392B2 (ja) 2000-05-18 2001-05-17 先染め糸条
AU2001256777A AU2001256777A1 (en) 2000-05-18 2001-05-17 Dyed yarn
KR10-2002-7015477A KR100471706B1 (ko) 2000-05-18 2001-05-17 선염사
US10/276,158 US6926962B2 (en) 2000-05-18 2001-05-17 Dyed yarn
HK03106520.3A HK1054252A1 (zh) 2000-05-18 2003-09-11 原絲染色絲條

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000146184 2000-05-18
JP2000-146184 2000-05-18
JP2001-25879 2001-02-01
JP2001025879 2001-02-01

Publications (1)

Publication Number Publication Date
WO2001088237A1 true WO2001088237A1 (fr) 2001-11-22

Family

ID=26592111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004173 WO2001088237A1 (fr) 2000-05-18 2001-05-17 Fil teint

Country Status (12)

Country Link
US (1) US6926962B2 (ja)
EP (1) EP1288356B1 (ja)
JP (1) JP3500392B2 (ja)
KR (1) KR100471706B1 (ja)
CN (1) CN1224742C (ja)
AU (1) AU2001256777A1 (ja)
DE (1) DE60138186D1 (ja)
ES (1) ES2322125T3 (ja)
HK (1) HK1054252A1 (ja)
MX (1) MXPA02011387A (ja)
TW (1) TW522180B (ja)
WO (1) WO2001088237A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487755A (ja) * 1990-07-31 1992-03-19 Makino Milling Mach Co Ltd 多頭の主軸頭を有する工作機械の送り制御方法
WO2002086211A1 (fr) 2001-04-17 2002-10-31 Asahi Kasei Kabushiki Kaisha Fil texture par fausse torsion en fibre de polyester composite et procede de production
JP2003020530A (ja) * 2001-07-05 2003-01-24 Asahi Kasei Corp 先染糸の製造方法
JP2005082908A (ja) * 2003-09-05 2005-03-31 Toray Ind Inc 先染め糸およびその製造方法
US6926962B2 (en) * 2000-05-18 2005-08-09 Asahi Kasei Kabushiki Kaisha Dyed yarn
JP2005226170A (ja) * 2004-02-10 2005-08-25 Toray Ind Inc 先染め糸の製造方法
JP2012214969A (ja) * 2005-06-29 2012-11-08 Albany International Corp シリコーン処理されたマイクロデニール・ポリエステル繊維を含んだヤーン
JP7080380B1 (ja) 2021-05-31 2022-06-03 株式会社ファーストリテイリング 織物

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1518012A4 (en) * 2002-05-27 2006-12-06 Huvis Corp POLYTRIMETHYLENEEPHTHALATE CONJUGATE FIBER AND METHOD FOR THE PRODUCTION THEREOF
KR101259861B1 (ko) * 2004-12-17 2013-05-03 존슨 컨트롤스 테크놀러지 컴퍼니 복수의 장식용 특징부를 갖는 차량 트림 패널
US7310932B2 (en) * 2005-02-11 2007-12-25 Invista North America S.A.R.L. Stretch woven fabrics
KR100687032B1 (ko) * 2006-04-14 2007-02-26 주식회사 효성 카펫용 3차원 크림프 폴리에틸렌테레프탈레이트멀티필라멘트
US20070297730A1 (en) * 2006-06-21 2007-12-27 Bringuier Anne G Optical fiber assemblies having one or more water-swellable members
US8408766B2 (en) * 2006-11-07 2013-04-02 International Automotive Components Group North America, Inc Luminous interior trim material
KR100895513B1 (ko) * 2007-03-29 2009-04-30 코오롱글로텍주식회사 고신율 사염사를 이용한 원단 및 이의 제조방법
US20090146338A1 (en) * 2007-09-26 2009-06-11 Hoe Hin Chuah Process for preparing polymer fibers
FR2943690B1 (fr) * 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme un situ
FR2943691B1 (fr) * 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ
CN101994195B (zh) * 2009-08-21 2013-06-12 东丽纤维研究所(中国)有限公司 一种弹性织物及其生产方法
WO2011090848A1 (en) * 2010-01-19 2011-07-28 Mmi-Ipco, Llc Wool blend velour fabric
US8729399B2 (en) * 2010-05-31 2014-05-20 Hitachi Metals, Ltd. Flat cable and method for fabricating the same
KR101316481B1 (ko) * 2012-04-18 2013-10-08 윤진혁 기능성 원사의 편직방법
US20130287990A1 (en) * 2012-04-25 2013-10-31 Marusho Shoten Co., Ltd. Elastic composite twisted yarn, method for preparing elastic composite twisted yarn, and pile fiber product using the same
CN114402099B (zh) * 2019-10-16 2023-09-12 东丽纤维研究所(中国)有限公司 一种复合纱线及由其制得的面料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107038A (ja) * 1997-09-29 1999-04-20 Asahi Chem Ind Co Ltd 高熱応力ポリエステル繊維
WO1999027168A1 (fr) * 1997-11-26 1999-06-03 Asahi Kasei Kogyo Kabushiki Kaisha Fibre de polyester ayant une excellente aptitude au traitement et procede de production de cette fibre

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355721B1 (ko) 1994-02-21 2003-01-06 이.아이,듀우판드네모아앤드캄파니 폴리트리메틸렌테레프탈레이트섬유의염색방법및이렇게염색된섬유의용도
JP3439553B2 (ja) 1994-12-15 2003-08-25 旭化成株式会社 複合捲縮糸
JPH1112902A (ja) 1997-06-23 1999-01-19 Asahi Chem Ind Co Ltd 交編物
US6284370B1 (en) * 1997-11-26 2001-09-04 Asahi Kasei Kabushiki Kaisha Polyester fiber with excellent processability and process for producing the same
WO1999037837A1 (fr) * 1998-01-27 1999-07-29 Asahi Kasei Kogyo Kabushiki Kaisha Fil frise composite
US6109015A (en) * 1998-04-09 2000-08-29 Prisma Fibers, Inc. Process for making poly(trimethylene terephthalate) yarn
JP3441069B2 (ja) 1999-05-27 2003-08-25 旭化成株式会社 ミシン糸
KR100629813B1 (ko) * 1999-06-08 2006-09-29 도레이 가부시끼가이샤 소프트 스트레치사 및 제조 방법
TW522179B (en) * 1999-07-12 2003-03-01 Asahi Chemical Ind Polyester yarn and producing method thereof
ATE487817T1 (de) * 1999-09-28 2010-11-15 Toray Industries Gezwirnter faden aus polypropylenterephthalat sowie verfahren zu dessen herstellung
JP3902007B2 (ja) 1999-09-30 2007-04-04 旭化成せんい株式会社 緯編地
TW572927B (en) * 1999-12-15 2004-01-21 Asahi Chemical Corp Trimethyleneterephthalate copolymer
TW507027B (en) * 2000-03-17 2002-10-21 Asahi Chemical Ind Pirn of stretched yarn
MXPA02011387A (es) * 2000-05-18 2003-04-25 Asahi Chemical Ind Hilo tenido.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107038A (ja) * 1997-09-29 1999-04-20 Asahi Chem Ind Co Ltd 高熱応力ポリエステル繊維
WO1999027168A1 (fr) * 1997-11-26 1999-06-03 Asahi Kasei Kogyo Kabushiki Kaisha Fibre de polyester ayant une excellente aptitude au traitement et procede de production de cette fibre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1288356A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487755A (ja) * 1990-07-31 1992-03-19 Makino Milling Mach Co Ltd 多頭の主軸頭を有する工作機械の送り制御方法
US6926962B2 (en) * 2000-05-18 2005-08-09 Asahi Kasei Kabushiki Kaisha Dyed yarn
EP1394296A4 (en) * 2001-04-17 2006-05-10 Asahi Chemical Ind FLEXIBLE WIRE YARN OF POLYESTER COMPOSITE FIBER AND METHOD FOR THE PRODUCTION THEREOF
WO2002086211A1 (fr) 2001-04-17 2002-10-31 Asahi Kasei Kabushiki Kaisha Fil texture par fausse torsion en fibre de polyester composite et procede de production
JP2003020530A (ja) * 2001-07-05 2003-01-24 Asahi Kasei Corp 先染糸の製造方法
JP2005082908A (ja) * 2003-09-05 2005-03-31 Toray Ind Inc 先染め糸およびその製造方法
JP4506130B2 (ja) * 2003-09-05 2010-07-21 東レ株式会社 先染め糸およびその製造方法
JP2005226170A (ja) * 2004-02-10 2005-08-25 Toray Ind Inc 先染め糸の製造方法
JP4691885B2 (ja) * 2004-02-10 2011-06-01 東レ株式会社 先染め糸の製造方法
JP2012214969A (ja) * 2005-06-29 2012-11-08 Albany International Corp シリコーン処理されたマイクロデニール・ポリエステル繊維を含んだヤーン
JP2016014212A (ja) * 2005-06-29 2016-01-28 プリマロフト,インコーポレイテッド シリコーン処理されたマイクロデニール・ポリエステル繊維を含んだヤーン
US9340907B2 (en) 2005-06-29 2016-05-17 Primaloft, Inc. Yarns containing siliconized microdenier polyester fibers
JP7080380B1 (ja) 2021-05-31 2022-06-03 株式会社ファーストリテイリング 織物
JP2022183574A (ja) * 2021-05-31 2022-12-13 株式会社ファーストリテイリング 織物

Also Published As

Publication number Publication date
US20030167581A1 (en) 2003-09-11
ES2322125T3 (es) 2009-06-17
TW522180B (en) 2003-03-01
KR100471706B1 (ko) 2005-03-10
CN1224742C (zh) 2005-10-26
MXPA02011387A (es) 2003-04-25
DE60138186D1 (de) 2009-05-14
JP3500392B2 (ja) 2004-02-23
EP1288356A4 (en) 2006-05-17
AU2001256777A1 (en) 2001-11-26
US6926962B2 (en) 2005-08-09
CN1429291A (zh) 2003-07-09
KR20030004408A (ko) 2003-01-14
EP1288356A1 (en) 2003-03-05
EP1288356B1 (en) 2009-04-01
HK1054252A1 (zh) 2003-11-21

Similar Documents

Publication Publication Date Title
WO2001088237A1 (fr) Fil teint
JP4292763B2 (ja) 複合布帛およびその製造方法
JP2007009395A (ja) ポリトリメチレンテレフタレート系極細仮撚糸およびその製造方法
JP2003213578A (ja) 先染め糸条
JP2002180332A (ja) ポリエステル系複合糸およびその製造方法ならびに布帛
JP2003201634A (ja) 先染糸およびその製造方法
JP4073273B2 (ja) 交撚糸及び編み織物
JP3988422B2 (ja) 複合布帛の製造方法
JP2003239151A (ja) 複合糸およびその糸を用いた布帛
JP2002013034A (ja) 伸縮性複合糸および伸縮性織物
JP2001081639A (ja) 混繊糸
JPH1112902A (ja) 交編物
TW495570B (en) Pretwist-imparted false-twisted yarn
JP2002194634A (ja) ポリエステル複合糸の製造方法および布帛の製造方法
JP2005089892A (ja) 複合糸
JP2003336142A (ja) 織 物
JP2005009015A (ja) 混用品
JP2006257632A (ja) 複合布帛
JP4049574B2 (ja) 複合先染糸
JP2003155632A (ja) 先染糸の製造方法
JP2004003042A (ja) カバリング糸及びその織編物
JP2003020530A (ja) 先染糸の製造方法
JP4660882B2 (ja) 複合仮撚加工糸およびその製造方法
JP2001279562A (ja) 交編編地
JP2004256932A (ja) 複合糸

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200201048

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 584617

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001930210

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10276158

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027015477

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/011387

Country of ref document: MX

Ref document number: 018097162

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027015477

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001930210

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027015477

Country of ref document: KR