WO2001064322A1 - Neue blendpolymermembranen zum einsatz in brennstoffzellen - Google Patents

Neue blendpolymermembranen zum einsatz in brennstoffzellen Download PDF

Info

Publication number
WO2001064322A1
WO2001064322A1 PCT/EP2001/002311 EP0102311W WO0164322A1 WO 2001064322 A1 WO2001064322 A1 WO 2001064322A1 EP 0102311 W EP0102311 W EP 0102311W WO 0164322 A1 WO0164322 A1 WO 0164322A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
membrane
membrane according
polyether
sulfonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2001/002311
Other languages
German (de)
English (en)
French (fr)
Inventor
Wei Cui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Ventures GmbH
Original Assignee
Celanese Ventures GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures GmbH filed Critical Celanese Ventures GmbH
Priority to KR1020027011424A priority Critical patent/KR100734800B1/ko
Priority to AT01911711T priority patent/ATE270141T1/de
Priority to DK01911711T priority patent/DK1268045T3/da
Priority to US10/220,899 priority patent/US6869980B2/en
Priority to CA002401838A priority patent/CA2401838C/en
Priority to JP2001563213A priority patent/JP2003526716A/ja
Priority to EP01911711A priority patent/EP1268045B1/de
Priority to DE50102740T priority patent/DE50102740D1/de
Priority to MXPA02008584A priority patent/MXPA02008584A/es
Publication of WO2001064322A1 publication Critical patent/WO2001064322A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to new blend polymer membranes based on sulfonated aromatic aryl polymers and their use as a polymer electrolyte membrane in fuel cells, in particular in low-temperature fuel cells.
  • Fuel cell technology has great application potential in areas
  • a polymer electrolyte membrane fuel cell contains cell units consisting of current collectors, gas distributors, electrodes and
  • the electrodes usually contain platinum as a catalyst.
  • Such fuel cells work with gaseous hydrogen or with methanol (DMFC Direct Methanol Fuel Cell).
  • membranes With regard to use in fuel cells, membranes not only have to have sufficient chemical and mechanical stability and high proton conductivity, but also have to be inexpensive to produce. For this reason, inexpensive starting materials with excellent properties for functionalization and the inexpensive processes for membrane production are the decisive roles.
  • PBI polybenzimidazole
  • PES polyether sulfone
  • phosphoric acid Wang, J.-T .; Savinell, R.F .; Litt, M .; Moaddel, H .; Rogers, C: Acid Doped Polybenzimidazoles, A New Polymer Electrolyte; The Electrochemical Society, Spring Meeting, San Francisco, May 22-27, Extended Abstracts, Vol. 94-1, 982-983 (1994)].
  • Phosphoric acid molecules are attached to the polymer on the one hand through hydrogen bonds and on the other hand bound by protonation of the imidazole groups in the membrane. It is problematic, however, that the phosphoric acid is gradually eliminated from the PBI material with the water which is formed during the operation of the fuel cell. Furthermore, the PBI phosphoric acid membrane has a very low modulus of elasticity, which is why unsatisfactory membrane stability is to be expected in fuel cells.
  • Blended polymer membranes based on sulfonated aryl polymers are known from DE-A-4422158, DE-A-198 13 613, DE-A-198 17 376 and DE-A-198 17 374, which have improved mechanical stability.
  • An essential requirement for such blends is the compatibility of the selected materials. For this purpose, only those materials should be mixed whose chemical structure is similar and if specific interactions occur in polymers with mutually complementary groupings, for example the formation of polysalt from polyacid and polybase, hydrogen bonding, etc.
  • the main advantage of the blend polymer membrane development is that the membrane structure and the membrane properties can be optimized by varying the blend component and the mixing ratio.
  • DE-A-4422158 describes the blend polymer membranes made from sulfonated polyether ketone (PEK) and unmodified polyether sulfone (PES).
  • PEK sulfonated polyether ketone
  • PES unmodified polyether sulfone
  • the two components are completely miscible with each other, which is due to their very similar chemical structures and the polarity of PES (lon-dipole interaction).
  • this interaction which is caused by structural similarity, still appears to be inadequate, so that there is a risk that these membranes swell very strongly at an elevated temperature when the ion exchange capacity required for operation in fuel cells is used.
  • DE-A-4422158 describes three or four component blends made from sulfonated PEK, PES, polyvinylpyrrolidone (PVP) and polyglycol dimethyl ether (PG), which show better water absorption without, however, giving any quantitative information.
  • blends of sulfonated aryl polymer (PEEK and PSU) and polybenzimidazole PBI which have a covalent crosslinking through the proton transfer from sulfonated aryl polymer to PBI (eg PEEK-S0 2 -OHN-PBI).
  • This crosslinking takes place at room temperature in the solvent, for example N-methylpyrrolidone (NMP), which forms an insoluble polyelectrolyte complex.
  • NMP N-methylpyrrolidone
  • the sulfonated aryl polymer must be in a soluble salt form being transformed. This additional step makes the manufacture of the membrane complex.
  • Blended polymer membranes made from sulfonated aryl polymer PEEK or PSU with aminated polysulfone (PSU) are known from the prior art.
  • Cui, W describes in the development and characterization of cation exchange membranes made of aryl polymers (VDI-Veriag; ISBN 3-18-359603-2) that the aminated polysulfones are a weak polybase and consequently a polyacid-base mixture can be prepared in the solution , Both the ionic interaction and the are between the blend components
  • the object of the present invention is to provide an inexpensive polymer blend from which polymer electrolyte membranes for fuel cells can be produced, these having at least the same or an improved performance compared to the prior art.
  • the property profile of these membranes should be able to be specifically adapted to the operating conditions in fuel cells by varying the mixing ratio.
  • the above object is achieved by new blend polymer membranes crosslinked by ionic interaction based on modified polyether sulfone and polyether ether sulfone, for example aminated polyether sulfone as an enhancer and sulfonated aryl polymer as a functional polymer and a plasticizer.
  • the present invention relates to a blend polymer membrane containing
  • A) has at least one functional polymer based on one or more aryl polymers carrying sulfonic acid groups,
  • the functional polymer used according to the invention is sulfonated aryl polymers, for example such as sulfonated PEEK (SPEEK), sulfonated PEK (SPEK), sulfonated PEEKK (SPEEKK), sulfonated PES (SPES) sulfonated PEES (SPEES).
  • SPEEK sulfonated PEEK
  • SPEK sulfonated PEK
  • SPEEKK sulfonated PEEKK
  • SPES sulfonated PES
  • the blend polymer membrane can be made from PBI and modified polyether sulfone or modified polyether ether sulfone. Like PBI membrane, this blend polymer membrane is functionalized by phosphoric acid.
  • Aryl polymers of this type contain aromatic building blocks selected from the group
  • EP 0574791 describes the production of sulfonated PEEK.
  • the production of sulfonated PEK is known from EP-A-008895, EP-A-041780 and EP 0576807.
  • the production of sulfonated PEEKK is known from E. Müller in "Crosslinked PEEKK sulfonamides for the separation of aliphatic / aromatic mixtures" [diploma thesis, 1995, Hoechst AG, Frankfurt / Main].
  • EP-A-0008894 and EP-A- 0112724 describes the production of polyether sulfone.
  • the degree of sulfonation is preferably between 0.1 and 100%
  • the functional polymer according to the invention is used in amounts between 30 and 99.9% by weight, based on the total polymer.
  • the reinforcing polymer used according to the invention is aminated polyether sulfone and polyether ether sulfone containing the structural units
  • x is independently an integer 0, 1, 2, 3 or 4,
  • x is independently an integer 0, 1, 2, 3 or 4
  • Aminated polyether sulfones and polyether ether sulfones containing structural units of the types are particularly preferred
  • Nitrated polyether sulfones and polyether ether sulfones containing structural units of the types are particularly preferred
  • the reinforcing polymer according to the invention is used in amounts between 0.1 and 70% by weight, preferably 10 to 50% by weight, based on the total polymer.
  • polyacid-polybase blends or polyacid-polyacid blends can be represented as follows:
  • the sulfonated polyether sulfone (PES-S03H) and the nitrided PES (PES-N02) are both polyacid and therefore completely miscible with each other.
  • the compatibility between PES-S03H and aminated PES (PES-NH 2 ) is harmless due to the complete miscibility of the polyacid-polybase mixture.
  • PES-NH and PES-NO 2 serve as "macromolecular counterions" to reinforce the membrane. Although the ionic compound is dissolved in water at elevated temperature, the interaction is retained due to the location of the "macromolecular counterions" at the sites.
  • the membrane is reinforced at elevated temperature by these “macromolecular counterions” and, on the other hand, the ion transport is promoted because of this dissolution.
  • the membrane according to the invention thus has the favorable properties for use in fuel cells at elevated temperature.
  • Polyethersulfones (PES ) are commercially available and are characterized by high thermal, chemical resistance and mechanical stability
  • plasticizers are understood to be those which reduce the brittleness of the membrane produced from the polymer blend. Suitable plasticizers must be inert under the conditions prevailing in a fuel cell. Furthermore, the plasticizers must be miscible and compatible with the functional and reinforcing polymer and must be soluble in the same dipolar solvent, for example dimethylformamide (DMF), dimethyl oxide (DMSO), N-methylpyrrolidone (NMP) or N, N-dimethylacetamide (DMAC) his.
  • a linear polyvinylidene fluoride (PVDF) is particularly preferably used as the plasticizer.
  • the three-component blend polymer membrane made of functional polymer, reinforcer and plasticizer is miscible due to the hydrogen bond, acid-base interaction and ion-dipole interaction.
  • a physical cross-linking in the membrane also contributes to this.
  • the ion-dipole interaction between PVDF and modified aryl polymers is very weak. If the mixing part of PVDF is increased, a phase separation is created in the membrane. This makes the membrane optically cloudy.
  • the plasticizer content is up to 5% by weight, preferably between 0.001 and
  • PVDF is commercially available and is characterized by excellent chemical and thermal stability.
  • the chemical structure of PVDF can be described as follows
  • the three-component blend polymer membrane according to the invention is also produced by the process below.
  • the blend polymer membranes according to the invention are produced as follows: a solution of a homogeneous polymer mixture containing the sulfonated aryl polymer, the aminated PES or the nitrated PES and plasticizer is poured onto a support and then a uniformly thick film is drawn out with a doctor blade.
  • the solvent in the film is e.g. by
  • the membrane structure or the membrane properties such as conductivity, membrane swelling can be adjusted depending on the intended use, the blend polymer membranes according to the invention having improved mechanical and thermal properties compared to the membranes made from sulfonated aryl polymer.
  • the blend polymer membrane according to the invention can consist of one layer or of several identical or different layers (multilayer), for. B. from double layer of a) sulfonated aryl polymer and aminated polysulfone and b) sulfonated aryl polymer and nitrided polysulfone.
  • Multi-layer membranes according to the invention, the at least two different layers selected from the group SPEK and NH 2 -PES, SPEK and N0 2 -PES, SPEK and NH 2 -PES and plasticizers, SPEK and N0 2 -PES and plasticizers.
  • Ion exchange capacity (IEC, meq / g): The potentiometric titration was used to determine the ion exchange capacity of the membrane.
  • Measuring cell based on the temperature from 20 ° C to 90 ° C using the
  • the sample was pretreated for 4 hours in a climatic oven at 23 ° C. and 50% humidity, or the sample was
  • Membranes were determined using DSC and TGA (Mettler Toledo; 10 k / min).
  • Methanol permeability (32g methanol in 1000g H 2 O) was determined depending on the temperature at Fr. S. Pauly / A. Becker in Wiesbaden with the help of
  • the permeability of the comparison membrane is as follows:
  • the SPEEK has an ion exchange capacity of 1.73 meq / g.
  • the NH 2 -PES has a degree of substitution of 45% (1.9 meq / g).
  • the blend polymer membrane TE-4 consists of 90% by weight SPEEK and 10% by weight NH 2 -PES, TE-5 from 85
  • the material permeability in the membrane TE-5 is 2.35 [g.50 ⁇ m / (m 2 .d)] at 40 ° C.
  • FIG. 1 The permeability to hydrogen and oxygen as a function of temperature (TE-5) is shown by FIG. 1:
  • SPEEKK has an ion exchange capacity of 1.65 meq / g.
  • the NH -PES is the degree of substitution of 45% (1.9 meq / g).
  • the blend polymer membrane TE-8 consists of 90% by weight SPEEKK and 10% by weight NH 2 -PES, TE-9 consists of 85% by weight SPEEKK and 15% by weight NH 2 -PES.
  • the methanol permeability in the membrane TE-8 is 4.11 [g.50 ⁇ m / (m 2 .d)] at 40 ° C.
  • the SPEK has an ion exchange capacity of 2.13 meq / g.
  • the NO 2 -PES is the degree of substitution of 50% (1, 97meq / g).
  • the SPEK has an ion exchange capacity of 2.13 meq / g.
  • the NH 2 -PES has a degree of substitution of 45% (1.9 meq / g).
  • the blend polymer membrane TE-1 consists of 85% by weight SPEK and 15% by weight NH 2 -PES, TE-2 80
  • IEC 1.82 meq / g
  • Three-component blend polymer membranes made of SPEK, NH 2 -PES (IEC 1, 9 meq / g) and PVDF.
  • the measuring device is a dynamic mechanical analyzer DMA 242 (from Netzsch-
  • the foils shrink with increasing temperature.
  • the sample expands due to the further rise in temperature.
  • the module drops sharply from 200 ° C.
  • the sample expands enormously and the tan ⁇ curve experiences a maximum.
  • the maximum results in a glass transition temperature of 254 ° C for TE-31 and TE-28. The results are shown in the tab.
  • the membranes TE-31 and sulfonated, perfluorinated polymer, for example Nafion-115, are characterized by a high damping behavior.
  • the glass transition temperature was determined using DSC, and the
  • Decomposition temperature was determined using TGA.
  • Electrode 0.16 mg / cm 2 ;
  • Cathode 0.62 mg / cm 2 ;
  • Electrode 0.16 mg / cm 2 ;
  • Cathode 0.62 mg / cm 2 ;
  • hydrogen is introduced into the anode cells and oxygen into the cathode cells. There may be a reduction in membrane material
  • Such a membrane with the double layer consisting of a total of four components.
  • One of the double layers consists of sulfonated PEK, aminated PES and PVDF, the other of sulfonated PEK, nitrided PES and PVDF.
  • PES-NO 2 is very stable against oxidation under oxygen
  • PES-NH 2 is very stable against reduction under hydrogen or methanol.
  • the production of the multilayer membrane is carried out according to the following steps: • First, a membrane layer according to that described in section 1
  • PVDF 1 wt% lower side: SPEK (2.13 meq / g): 75 wt%; NO 2 -PES (1.97 meq / g): 24% by weight;
  • PVDF 1% by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)
PCT/EP2001/002311 2000-03-02 2001-03-01 Neue blendpolymermembranen zum einsatz in brennstoffzellen Ceased WO2001064322A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020027011424A KR100734800B1 (ko) 2000-03-02 2001-03-01 연료 전지에 사용하기 위한 신규한 블렌드 중합체 막
AT01911711T ATE270141T1 (de) 2000-03-02 2001-03-01 Neue blendpolymermembranen zum einsatz in brennstoffzellen
DK01911711T DK1268045T3 (da) 2001-03-01 2001-03-01 Nye blandingspolymermembraner til anvendelse i brændselsceller
US10/220,899 US6869980B2 (en) 2000-03-02 2001-03-01 Polymer blend membranes for use in fuel cells
CA002401838A CA2401838C (en) 2000-03-02 2001-03-01 Novel polymer blend membranes for use in fuel cells
JP2001563213A JP2003526716A (ja) 2000-03-02 2001-03-01 燃料電池に使用される新規ポリマーブレンド膜
EP01911711A EP1268045B1 (de) 2000-03-02 2001-03-01 Neue blendpolymermembranen zum einsatz in brennstoffzellen
DE50102740T DE50102740D1 (de) 2000-03-02 2001-03-01 Neue blendpolymermembranen zum einsatz in brennstoffzellen
MXPA02008584A MXPA02008584A (es) 2000-03-02 2001-03-01 Membranas novedosas de polimero de mezcla para utilizarse en compartimientos de un tanque de combustible.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010001A DE10010001A1 (de) 2000-03-02 2000-03-02 Neue Blendpolymermembranen zum Einsatz in Brennstoffzellen
DE10010001.5 2000-03-02

Publications (1)

Publication Number Publication Date
WO2001064322A1 true WO2001064322A1 (de) 2001-09-07

Family

ID=7633133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002311 Ceased WO2001064322A1 (de) 2000-03-02 2001-03-01 Neue blendpolymermembranen zum einsatz in brennstoffzellen

Country Status (11)

Country Link
US (1) US6869980B2 (enExample)
EP (1) EP1268045B1 (enExample)
JP (1) JP2003526716A (enExample)
KR (1) KR100734800B1 (enExample)
CN (1) CN1227056C (enExample)
AT (1) ATE270141T1 (enExample)
CA (1) CA2401838C (enExample)
DE (2) DE10010001A1 (enExample)
ES (1) ES2228818T3 (enExample)
MX (1) MXPA02008584A (enExample)
WO (1) WO2001064322A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201352A (ja) * 2002-01-08 2003-07-18 Honda Motor Co Ltd 高分子電解質膜、該高分子電解質膜を備える膜電極構造体及び該膜電極構造体を備える固体高分子型燃料電池
EP1517929A4 (en) * 2002-05-13 2005-07-20 Polyfuel Inc SULFONED COPOLYMER
WO2004066428A3 (de) * 2003-01-20 2005-08-18 Sartorius Gmbh Membran-elektroden-einheit, polymermembranen für eine membran-elektroden-einheit und polymerelektrolyt-brennstoffzellen sowie verfahren zur herstellung derselben
EP1296398A3 (en) * 2001-09-21 2008-12-17 Hitachi, Ltd. Solid polyelectrolyte, assembly of membrane and electrodes, and fuel cell
US7534515B2 (en) 2002-01-23 2009-05-19 Polyfuel, Inc. Acid-base proton conducting polymer blend membrane
KR100977234B1 (ko) 2002-05-13 2010-08-23 더 유니버시티 오브 노스 플로리다 보드 오브 트러스티즈 술폰화된 공중합체
KR100997003B1 (ko) * 2002-10-04 2010-11-25 바스프 푸엘 셀 게엠베하 폴리아졸 블렌드를 함유하는 양성자 전도성 고분자막과연료 전지에서 이들의 사용방법
WO2012080078A2 (en) 2010-12-18 2012-06-21 Umicore Galvanotechnik Gmbh Dire-contact membrane anode for use in electrolysis cells
US8222367B2 (en) 2005-09-30 2012-07-17 Battelle Memorial Institute Polymers for use in fuel cell components
US8815467B2 (en) 2010-12-02 2014-08-26 Basf Se Membrane electrode assembly and fuel cells with improved lifetime

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535940A (ja) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル 高分子組成物
DE10140147A1 (de) * 2001-08-16 2003-03-06 Celanese Ventures Gmbh Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle
JP4638220B2 (ja) * 2002-04-25 2011-02-23 ビーエーエスエフ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフツング 多層電解質膜
KR100968398B1 (ko) * 2002-06-28 2010-07-07 스미또모 가가꾸 가부시끼가이샤 고분자 적층막, 그 제조 방법 및 그 용도
US7019819B2 (en) 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7622523B2 (en) 2002-08-12 2009-11-24 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
WO2004014997A2 (en) 2002-08-12 2004-02-19 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7641840B2 (en) * 2002-11-13 2010-01-05 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
JP4852828B2 (ja) * 2003-07-31 2012-01-11 東洋紡績株式会社 電解質膜・電極構造体
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
JP2008500701A (ja) * 2004-05-22 2008-01-10 フオスター・ミラー・インコーポレイテツド 固体ポリマー電解質膜
JP5028736B2 (ja) * 2004-09-02 2012-09-19 東レ株式会社 高分子電解質材、ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
DE102005001599A1 (de) * 2005-01-12 2006-07-20 Basf Ag Funktionalisierte Polyarylether
FR2883293B1 (fr) * 2005-03-16 2007-05-25 Inst Nat Polytech Grenoble Extrusion de polymeres ioniques a groupements ioniques alcalins
FR2883292B1 (fr) * 2005-03-16 2008-01-04 Inst Nat Polytech Grenoble Extrusion de polymeres ioniques a groupements ioniques acides
US8513347B2 (en) 2005-07-15 2013-08-20 Exxonmobil Chemical Patents Inc. Elastomeric compositions
US7615300B2 (en) * 2005-08-30 2009-11-10 The Board of Regents University and Community College System of Nevada on Behalf of the University of Nevada Development of novel proton-conductive polymers for proton exchange membrane fuel cell (PEMFC) technology
US7670534B2 (en) * 2005-09-21 2010-03-02 Molecular Imprints, Inc. Method to control an atmosphere between a body and a substrate
US20070065700A1 (en) * 2005-09-22 2007-03-22 Sri International High temperature polymer electrolyte membranes
KR100707163B1 (ko) * 2005-10-12 2007-04-13 삼성에스디아이 주식회사 고체산, 이를 포함하는 고분자 전해질막 및 이를 채용한연료전지
KR101324413B1 (ko) * 2006-02-27 2013-11-01 삼성에스디아이 주식회사 고온 고분자 전해질 연료전지 스택의 기동 방법 및 이를이용하는 연료전지 시스템
JP4536148B2 (ja) * 2006-04-03 2010-09-01 モレキュラー・インプリンツ・インコーポレーテッド リソグラフィ・インプリント・システム
JP5151074B2 (ja) * 2006-06-08 2013-02-27 株式会社日立製作所 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池
KR100815117B1 (ko) 2006-06-30 2008-03-20 한국과학기술원 연료전지용 고분자 전해질 막의 제조방법
CA2671870C (en) * 2006-12-14 2017-05-16 Arkema Inc. High temperature stable polyelectrolytes having backbone aromatic groups
ITMI20071034A1 (it) 2007-05-23 2008-11-24 St Microelectronics Srl Sintesi e caratterizzazione di una nuova membrana a scambio protonico (pem) per applicazioni in celle a combustibile
KR100986493B1 (ko) * 2008-05-08 2010-10-08 주식회사 동진쎄미켐 연료전지용 고분자 전해질 막
US20100096764A1 (en) * 2008-10-20 2010-04-22 Molecular Imprints, Inc. Gas Environment for Imprint Lithography
KR101118202B1 (ko) 2009-10-01 2012-03-28 한국과학기술연구원 연료전지용 고분자 전해질막 및 이의 제조방법
AU2015278210B2 (en) 2014-06-16 2019-06-20 Core Energy Recovery Solutions Inc. Blended membranes for water vapor transport and methods for preparing same
JP6530630B2 (ja) * 2015-03-31 2019-06-12 株式会社Ihi 高分子アロイ電解質膜およびその製造方法
CN105789657B (zh) * 2016-04-27 2018-09-11 工业和信息化部电子第五研究所华东分所 一种用于钒电池的改性pes-pvp共混阴离子交换膜及其制备方法
CN106750436B (zh) * 2017-01-18 2019-07-23 吉林大学 一种表面磺化聚醚醚酮微纳米粒子/磺化聚醚醚酮复合膜及其制备方法
CN110197918A (zh) * 2018-02-27 2019-09-03 湖南省银峰新能源有限公司 一种全钒液流电池用全氟磺酸复合膜及其制备方法和用途
JPWO2019220845A1 (ja) * 2018-05-17 2021-04-22 パナソニックIpマネジメント株式会社 フロー電池
JP7355038B2 (ja) * 2018-12-07 2023-10-03 Agc株式会社 ペルフルオロポリマー、液状組成物、固体高分子電解質膜、膜電極接合体および固体高分子形燃料電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936997A1 (de) * 1989-11-07 1991-05-08 Hoechst Ag Semipermeable membran aus polyetherketonen
DE19813613A1 (de) * 1998-03-27 1999-09-30 Jochen Kerres Modifiziertes Polymer und modifizierte Polymermembran
DE19817376A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen
DE19817374A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936997A1 (de) * 1989-11-07 1991-05-08 Hoechst Ag Semipermeable membran aus polyetherketonen
DE19813613A1 (de) * 1998-03-27 1999-09-30 Jochen Kerres Modifiziertes Polymer und modifizierte Polymermembran
DE19817376A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen
DE19817374A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296398A3 (en) * 2001-09-21 2008-12-17 Hitachi, Ltd. Solid polyelectrolyte, assembly of membrane and electrodes, and fuel cell
US7541107B2 (en) 2001-09-21 2009-06-02 Hitachi, Ltd. Solid polyelectrolyte, assembly of membrane and electrodes, amd fuel cell
JP2003201352A (ja) * 2002-01-08 2003-07-18 Honda Motor Co Ltd 高分子電解質膜、該高分子電解質膜を備える膜電極構造体及び該膜電極構造体を備える固体高分子型燃料電池
US7534515B2 (en) 2002-01-23 2009-05-19 Polyfuel, Inc. Acid-base proton conducting polymer blend membrane
CN100509875C (zh) * 2002-05-13 2009-07-08 复合燃料公司 磺化共聚物
AU2003237849B2 (en) * 2002-05-13 2009-07-02 Polyfuel, Inc. Sulfonated copolymer
EP1517929A4 (en) * 2002-05-13 2005-07-20 Polyfuel Inc SULFONED COPOLYMER
KR100977234B1 (ko) 2002-05-13 2010-08-23 더 유니버시티 오브 노스 플로리다 보드 오브 트러스티즈 술폰화된 공중합체
KR100997003B1 (ko) * 2002-10-04 2010-11-25 바스프 푸엘 셀 게엠베하 폴리아졸 블렌드를 함유하는 양성자 전도성 고분자막과연료 전지에서 이들의 사용방법
EP1722435A1 (de) * 2003-01-20 2006-11-15 Sartorius Ag Polymermembran für eine Membran-Elektroden-Einheit und Verfahren zur Herstellung derselben
WO2004066428A3 (de) * 2003-01-20 2005-08-18 Sartorius Gmbh Membran-elektroden-einheit, polymermembranen für eine membran-elektroden-einheit und polymerelektrolyt-brennstoffzellen sowie verfahren zur herstellung derselben
US7682722B2 (en) 2003-01-20 2010-03-23 Elcomax Membranes Gmbh Membrane-electrode assembly, polymer membranes for a membrane-electrode assembly, polymer electrolyte fuel cells, and methods for the production thereof
US8222367B2 (en) 2005-09-30 2012-07-17 Battelle Memorial Institute Polymers for use in fuel cell components
US8815467B2 (en) 2010-12-02 2014-08-26 Basf Se Membrane electrode assembly and fuel cells with improved lifetime
WO2012080078A2 (en) 2010-12-18 2012-06-21 Umicore Galvanotechnik Gmbh Dire-contact membrane anode for use in electrolysis cells
DE102010055143A1 (de) 2010-12-18 2012-06-21 Umicore Galvanotechnik Gmbh Direktkontakt-Membrananode für die Verwendung in Elektrolysezellen
DE102010055143B4 (de) 2010-12-18 2022-12-01 Umicore Galvanotechnik Gmbh Direktkontakt-Membrananode für die Verwendung in Elektrolysezellen

Also Published As

Publication number Publication date
CA2401838A1 (en) 2001-09-07
KR20020084165A (ko) 2002-11-04
DE10010001A1 (de) 2001-09-06
EP1268045A1 (de) 2003-01-02
ES2228818T3 (es) 2005-04-16
CA2401838C (en) 2007-09-18
CN1406150A (zh) 2003-03-26
JP2003526716A (ja) 2003-09-09
CN1227056C (zh) 2005-11-16
EP1268045B1 (de) 2004-06-30
US20030187081A1 (en) 2003-10-02
ATE270141T1 (de) 2004-07-15
MXPA02008584A (es) 2003-02-24
DE50102740D1 (de) 2004-08-05
US6869980B2 (en) 2005-03-22
KR100734800B1 (ko) 2007-07-03

Similar Documents

Publication Publication Date Title
EP1268045B1 (de) Neue blendpolymermembranen zum einsatz in brennstoffzellen
EP1073690B1 (de) Säure-base-polymerblends und ihre verwendung in membranprozessen
EP1337319B1 (de) Neue membranen für den einsatz in brennstoffzellen mit einer verbesserten mechanik
DE60020915T2 (de) Polymere Kompositmembran und Verfahren zu ihrer Herstellung
DE60214166T2 (de) Polymerelektrolyt für eine brennstoffzelle des festpolymertyps und brennstoffzelle
DE60114776T2 (de) Verfahren zur herstellung einer polymerelektrolytmembran
EP1425336B1 (de) Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle
DE69711441T2 (de) Verfahren zur herstellung von polymerfolien für verwendung in brennstoffzellen
EP2009728B1 (de) Verfahren zur Herstellung eines sulfonierten Poly(1,3,4-oxadiazol)-Polymers
DE10201691A1 (de) Polymerelektrolytmembran, Verfahren zu deren Herstellung und Membranelektrodenanordnung und Polymerelektrolytbrennstoffzelle, die diese umfasst
EP1144100A2 (de) Polymerzusammensetzung, membran enthaltend diese, verfahren zu deren herstellung und deren verwendung
DE10296922T5 (de) Elektrodenstruktur für Polymerelektrolytbrennstoffzellen, Verfahren zum Herstellen derselben und Polymerelektrolytbrennstoffzelle
DE202004000365U1 (de) Membran-Elektroden-Einheit, Polymermembranen für eine Membran-Elektroden-Einheit und Polyelektrolyt-Brennstoffzellen
DE102008043936A1 (de) Verstärkte Verbundmembran für Polymerelektrolytbrennstoffzelle
DE102012212420A1 (de) Membran mit laminierter Struktur und orientierungsgesteuerten Nanofaser-Verstärkungszusatzstoffen für Brennstoffzellen
DE10155543C2 (de) Protonenleitende Elektrolytmembran, Verfahren zu ihrer Herstellung und deren Verwendung
DE102012224507A1 (de) Polymerelektrolytmembran, die chemisch mit einer ionischen Flüssigkeit verbunden ist, und Brennstoffzelle, in welcher die Polymerelektrolytmembran eingesetzt wird
EP1481027A1 (de) Funktionalisierte hauptkettenpolymere
EP1124625B1 (de) Membranen, enthaltend sulfoniertes polyetherketon und weiteres polymer, verfahren zu deren herstellung und deren verwendung
DE102020213449A1 (de) Membran-Elektrodeneinheit mit verbesserter Beständigkeit und Protonenleitfähigkeit und Verfahren zu deren Herstellung
DE10296977T5 (de) Elektrodenstruktur für Polymerelektrolytbrennstoffzellen
DE10134793A1 (de) Membranen für Ionentransport

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001911711

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 563213

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/008584

Country of ref document: MX

Ref document number: 2401838

Country of ref document: CA

Ref document number: 1020027011424

Country of ref document: KR

Ref document number: 018058868

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027011424

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001911711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10220899

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001911711

Country of ref document: EP