WO2001054143A1 - Resistance et son procede de fabrication - Google Patents

Resistance et son procede de fabrication Download PDF

Info

Publication number
WO2001054143A1
WO2001054143A1 PCT/JP2001/000251 JP0100251W WO0154143A1 WO 2001054143 A1 WO2001054143 A1 WO 2001054143A1 JP 0100251 W JP0100251 W JP 0100251W WO 0154143 A1 WO0154143 A1 WO 0154143A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
forming
sheet
insulating substrate
slit
Prior art date
Application number
PCT/JP2001/000251
Other languages
English (en)
French (fr)
Inventor
Masato Hashimoto
Yoshiro Morimoto
Akio Fukuoka
Hiroaki Kaito
Hiroyuki Saikawa
Toshiki Matsukawa
Junichi Hayase
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000043913A external-priority patent/JP2001237112A/ja
Priority claimed from JP2000045507A external-priority patent/JP2001274002A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/181,306 priority Critical patent/US6935016B2/en
Priority to EP01901377A priority patent/EP1255256B1/en
Priority to DE60139855T priority patent/DE60139855D1/de
Publication of WO2001054143A1 publication Critical patent/WO2001054143A1/ja
Priority to US11/037,935 priority patent/US7334318B2/en
Priority to US11/037,533 priority patent/US7165315B2/en
Priority to US11/037,963 priority patent/US7188404B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/075Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/288Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thin film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/001Mass resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • H01C17/283Precursor compositions therefor, e.g. pastes, inks, glass frits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • Y10T29/49098Applying terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49101Applying terminal

Definitions

  • the present invention relates to a resistor and a method for manufacturing the same, and more particularly, to a fine resistor and a method for manufacturing the same.
  • FIG. 53 is a cross-sectional view of a conventional resistor.
  • reference numeral 1 denotes an insulating individual substrate made of porcelain such as alumina.
  • Reference numeral 2 denotes a pair of first upper electrode layers provided on both right and left ends of the upper surface of the individual substrate 1.
  • Reference numeral 3 denotes a resistance layer provided on the upper surface of the individual substrate 1 so as to partially overlap the pair of first upper electrode layers 2.
  • Reference numeral 4 denotes a first protective layer provided so as to cover only the entire resistive layer 3.
  • Reference numeral 5 denotes a trimming groove provided in the resistance layer 3 and the first protective layer 4 for correcting the resistance value.
  • Reference numeral 6 denotes a second protective layer provided only on the upper surface of the first protective layer 4.
  • Reference numeral 7 denotes a pair of second upper electrode layers provided on the upper surfaces of the pair of first upper electrode layers 2 so as to extend to the full width of the individual substrate 1.
  • Reference numeral 8 denotes a pair of side electrode layers provided on both side surfaces of the individual substrate 1.
  • Reference numerals 9 and 10 denote a pair of nickel plating layers and a pair of solders provided on the surfaces of the pair of second upper electrode layers 7 and the pair of side electrode layers 8, respectively. It is a spoiled layer. In this case, the soldering layer 10 is provided lower than the second protective layer 6.
  • FIGS. 54 (a) to (f) are process diagrams showing a conventional method for manufacturing a resistor.
  • a pair of first upper electrode layers 2 is formed by coating on the left and right ends of the upper surface of the individual substrate 1 having insulating properties.
  • a resistive layer 3 is formed on the upper surface of the individual substrate 1 by coating so as to partially overlap the pair of first upper electrode layers 2.
  • the total resistance value of the resistive layer 3 is set to a predetermined resistance value.
  • the trimming groove 5 is formed in the resistance layer 3 and the first protection layer 4 by using a laser or the like so as to fall within the range.
  • the second protective layer 6 is formed by coating only on the upper surface of the first protective layer 4.
  • the pair of second upper surfaces is positioned on the upper surfaces of the pair of first upper electrode layers 2 so as to extend to the full width of the individual substrate 1.
  • the upper electrode layer 7 is formed by coating.
  • a pair of first upper electrode layers 2 and a pair of first and second upper electrode layers are provided on the left and right side surfaces of the individual substrate 1.
  • a pair of side electrode layers 8 are formed by coating so as to be electrically connected to 2 and 7.
  • the surfaces of the pair of second upper electrode layers 7 and the pair of side electrode layers 8 are plated with nickel and then soldered to form a pair of nickel plating layers 9 and a pair of solders.
  • a conventional layer is formed by forming Manufacture armaments
  • a conventional sheet-shaped insulating substrate made of porcelain such as alumina is manufactured by forming a substrate dividing groove in advance before firing the sheet-shaped insulating substrate, and firing the insulating substrate.
  • the substrate dividing grooves formed in advance on the sheet-shaped insulating substrate may have dimensional variations due to delicate compositional variations of the sheet-shaped insulating substrate and delicate temperature variations during firing of the sheet-shaped insulating substrate. (This dimensional variation reaches about 0.5 mm with a sheet-like insulating substrate of about 100 mm x 100 mm.)
  • the dimensions of the individual substrate are required to be very fine in both the vertical and horizontal directions. It is necessary to classify into the dimensional ranks and prepare the screen printing masks such as the upper electrode layer 2, the resistive layer 3, the first protective layer 4, etc. corresponding to the respective dimensional ranks. It is necessary to change the mask according to the ink, and as a result, there is a problem that the process becomes very complicated (when the dimensional rank is classified in 0.05 mm increments, A total of about 600 ranks is required for the dimension classification, with a total of about 25 ranks, each with 25 ranks in the horizontal direction.)
  • An object of the present invention is to provide an inexpensive and fine resistor while eliminating the need to replace a mask according to the dimensional rank of an individual substrate, which becomes unnecessary. Things. Disclosure of the invention
  • a resistor according to the present invention is provided by dividing a sheet-shaped insulating substrate into a slit-shaped first divided portion and a second divided portion orthogonal to the first divided portion.
  • the sheet-shaped insulating substrate is divided into individual pieces by dividing the sheet-shaped insulating substrate into the first slit-shaped divided part and the second divided part orthogonal to the first divided part. Since individual substrates are used, ⁇ Classification of the dimensions of the individual substrates is not required, thereby eliminating the step of replacing the mask according to the dimensional rank of individual substrates as in the past. At the same time, it is possible to provide an inexpensive and fine resistor.
  • FIG. 1 is a sectional view of a resistor according to a first embodiment of the present invention
  • FIG. 2 is a top view showing a state in which an unnecessary region is formed at the entire peripheral edge of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • FIGS. 3 (a) to 3 (e) are cross-sectional views showing the manufacturing process of the resistor.
  • FIGS. 4 (a) and (e) are plan views showing the manufacturing process of the resistor
  • FIGS. 5 (a) and (d) are cross-sectional views showing the manufacturing process of the resistor
  • FIGS. 6 (a) and (d). ) Is a plan view showing the manufacturing process of the resistor
  • FIGS. 7A and 7C are cross-sectional views showing the manufacturing process of the resistor
  • FIGS. 8A and 8C are manufacturing processes of the resistor.
  • FIG. 9 is a top view showing a state where an unnecessary region is formed at one end of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • FIG. 10 is a top view showing a state in which unnecessary regions are formed at both ends of a sheet-like insulating substrate used in manufacturing the resistor.
  • FIG. 11 is a top view showing a state in which unnecessary regions are formed at three ends of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • FIG. 12 is a top view showing a state in which an unnecessary region is formed at the entire peripheral edge of a sheet-like insulating substrate used for manufacturing the resistor according to the second embodiment of the present invention.
  • FIGS. 1133 (a) to (e) are cross-sectional views showing the manufacturing process of the resistor.
  • FIGS. 14 (a) and (e) are plan views showing the manufacturing process of the resistor.
  • 15 (a) and (d) are cross-sectional views showing the manufacturing process of the resistor.
  • FIGS. 16 (a) and (d) are plan views showing the manufacturing process of the resistor.
  • (c) is a cross-sectional view showing the manufacturing process of the resistor
  • FIGS. 1188 ((aa)) to (c) are plan views showing the manufacturing process of the resistor
  • FIG. 20 is a top view showing a state in which unnecessary regions are formed at both ends of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • Fig. 21 shows a sheet-shaped insulating substrate used to manufacture the resistor.
  • a top view showing a state where unnecessary regions are formed at the three ends of
  • FIG. 22 is a top view showing a state in which an unnecessary region is formed at the entire peripheral edge of a sheet-like insulating substrate used for manufacturing the resistor according to the third embodiment of the present invention.
  • FIGS. 23 (a) and (e) are cross-sectional views showing the manufacturing process of the resistor
  • FIGS. 24 (a) and (e) are plan views showing the manufacturing process of the resistor
  • FIGS. (d) is a cross-sectional view showing the manufacturing process of the resistor
  • FIGS. 26 (a) and (d) are plan views showing the manufacturing process of the resistor
  • FIGS. 27 (a) and (c) are the same resistors.
  • FIG. 2288 ((aa)) to (c) are plan views showing the manufacturing process of the resistor
  • FIG. 29 is used for manufacturing the resistor.
  • a top view showing a state in which an unnecessary region is formed at one end of a sheet-shaped insulating substrate to be formed;
  • FIG. 30 is a top view showing a state in which unnecessary regions are formed at both ends of a sheet-like insulating substrate used in manufacturing the resistor.
  • FIG. 31 is a top view showing a state in which unnecessary regions are formed at three ends of a sheet-shaped insulating substrate used for manufacturing the resistor.
  • FIG. 32 is a top view showing a state in which an unnecessary region is formed at the entire peripheral edge of a sheet-like insulating substrate used for manufacturing the resistor according to the fourth embodiment of the present invention.
  • FIG. 33 (33) FIGS. ((Aa)) to (e) are cross-sectional views showing the manufacturing process of the resistor, and FIGS. 34 (a) and (e) are plan views showing the manufacturing process of the resistor. 5 (a) and (c) are cross-sectional views showing the manufacturing process of the resistor, FIGS. 36 (a) and (c) are plan views showing the manufacturing process of the resistor, and FIGS. c) is a cross-sectional view showing the manufacturing process of the resistor, and FIGS. 3388 ((aa)) to (c) are plan views showing the manufacturing process of the resistor.
  • FIG. 39 is a top view showing a state in which an unnecessary region is formed at one end of a sheet-shaped insulating substrate used for manufacturing the resistor.
  • FIG. 40 is a top view showing a state where unnecessary regions are formed at both ends of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • FIG. 41 is a top view showing a state in which unnecessary regions are formed at three ends of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • FIG. 42 is a cross-sectional view of a resistor obtained by the method for manufacturing a resistor according to the fifth embodiment of the present invention.
  • FIG. 43 is a top view showing a state in which an unnecessary region is formed at the entire periphery of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • FIGS. 44 (a) to (f) are cross-sectional views showing the manufacturing process of the resistor
  • FIGS. 45 (a) and (f) are plan views showing the manufacturing process of the resistor
  • d) is a cross-sectional view showing the manufacturing process of the resistor
  • FIGS. 47 (a) and (d) are plan views showing the manufacturing process of the resistor
  • FIGS. 4488 ((aa)) to (c) are Sectional view showing the manufacturing process of the resistor.
  • Figs. 49 (a) and (c) are plan views showing the manufacturing process of the resistor.
  • Fig. 50 is a sheet-like sheet used in manufacturing the resistor. A top view showing a state in which an unnecessary region is formed at one end of the insulating substrate;
  • FIG. 51 is a top view showing a state in which unnecessary regions are formed at both ends of a sheet-shaped insulating substrate used in manufacturing the resistor.
  • FIG. 52 is a top view showing a state in which unnecessary regions are formed at three ends of a sheet-like insulating substrate used in manufacturing the resistor.
  • Fig. 53 is a sectional view of a conventional resistor.
  • 54 (a) to 54 (f) are perspective views showing the steps of manufacturing a conventional resistor.
  • FIG. 1 is a sectional view of a resistor according to a first embodiment of the present invention.
  • reference numeral 11 denotes a sheet-like insulating substrate made of baked alumina having a purity of 96%, and a slit-shaped first divided portion and a second divided portion which is orthogonal to the first divided portion. This is a singulated substrate that has been singulated by being divided at the dividing portion.
  • Reference numeral 12 denotes a pair of upper electrode layers mainly formed of silver and formed on the upper surface of the individual substrate 11.
  • Reference numeral 13 denotes a ruthenium oxide-based resistance layer formed on the upper surface of the individual substrate 11 so as to partially overlap the pair of upper electrode layers 12.
  • Reference numeral 14 denotes a first protective layer formed of a pre-coated glass layer formed on the upper surface of the resistance layer 13.
  • Reference numeral 15 denotes a trimming groove provided for correcting the resistance value of the resistance layer 13 between the pair of upper electrode layers 12.
  • Reference numeral 16 denotes a second protective layer mainly composed of a resin formed so as to cover the first protective layer 14 made of a brittle glass layer.
  • Reference numeral 17 denotes a pair of side electrode layers made of nickel, which overlap with a part of the pair of upper electrode layers 12 and cover both side surfaces of the individual substrate 11 and both end portions of the back surface.
  • Reference numeral 18 denotes a tin solder layer formed so as to cover a part of the pair of side electrode layers 17 and a part of the pair of upper electrode layers 12.
  • FIG. 2 shows a state in which an unnecessary area is formed at the entire peripheral edge of a sheet-like insulating substrate used in manufacturing the resistor according to the first embodiment of the present invention.
  • 3 (a)-(e), 4 (a)-(e), 5 (a)-(d), 6 (a)-(d), FIGS. 7 (a) to (c) and FIGS. 8 (a) to (c) are process diagrams showing a method of manufacturing a resistor according to the first embodiment of the present invention.
  • a 0.2 mm thick insulating sheet made of 96% pure alumina is used.
  • An insulating substrate 21 is prepared.
  • the sheet-shaped insulating base plate 21 has an unnecessary area 21a that is not a final product at all peripheral ends. .
  • the unnecessary area portion 21a is formed in a substantially square shape.
  • a plurality of pairs of upper electrode layers mainly composed of silver are formed on the upper surface of the sheet-shaped insulating substrate 21 by screen printing.
  • the upper electrode layer 22 was made a stable film.
  • a plurality of ruthenium oxide based resistors are screen-printed so as to straddle a plurality of pairs of upper electrode layers 22.
  • Layer 23 was formed and fired with a firing profile at a peak temperature of 850 ° C., thereby making resistive layer 23 a stable film.
  • a first protective layer 24 composed of a plurality of pre-coated glass layers is formed by a screen printing method so as to cover the plurality of resistance layers 23, By firing with a firing profile at a peak temperature of 600 ° C., the first protective layer 24 made of a precoated glass layer was made a stable film.
  • a laser is used to adjust the resistance value of the resistance layer 23 between the plural pairs of upper electrode layers 22 to a constant value. Trimming was performed by the trimming method to form a plurality of trimming grooves 25.
  • a screen printing method is used to cover the first protective layer 24 composed of a plurality of pre-coated glass layers arranged in the vertical direction on the drawing.
  • the first protective layer 24 composed of a plurality of pre-coated glass layers arranged in the vertical direction on the drawing.
  • second protective layers 26 containing a resin as a main component, and by curing with a curing profile at a peak temperature of 200 ° C., the second protective layers 26 are formed into a stable film. did.
  • a plurality of first resist layers 27 are formed by a screen printing method so as to cover the plurality of second protective layers 26. Then, the first resist layer 27 was made into a stable film by ultraviolet curing. Further, a plurality of second resist layers 28 were formed on the back surface of the sheet-like insulating substrate 21 by a screen printing method, and the second resist layer 28 was made into a stable film by ultraviolet curing.
  • the sheet-shaped insulating substrate 21 on which the first resist layer 27 and the second resist layer 28 are formed is formed. Except for the unnecessary area 21 a formed at the end of the entire circumference, a slit-like shape for separating a plurality of pairs of upper electrode layers 22 and dividing them into a plurality of strip-shaped substrates 21 b.
  • a plurality of first divisions 29 are formed by a dicing method. In this case, the plurality of slit-shaped first divided portions 29 are formed at a pitch of 700 zm, and the width of the bracket-shaped first divided portion 29 is 120 xm width. ing.
  • the plurality of slit-shaped first divided portions 29 are formed by through holes vertically penetrating the sheet-shaped insulating substrate 21. Further, since the sheet-shaped insulating substrate 21 has a plurality of slit-shaped first divided portions 29 formed by a dicing method except for the unnecessary region portion 21a, the slit-shaped first divided portion 29 is formed. After forming part 2 9 Since a number of the strip-shaped substrates 21b are connected to the unnecessary area portion 21a, they are in a sheet state.
  • the entire surface of the sheet-shaped insulating substrate 21 is formed by using an electroless plating method of immersing in a plating bath and performing plating.
  • Nickel plating is performed to form a side electrode layer 30 having a thickness of about 4 to 6 zm.
  • the sheet-shaped insulating substrate 21 When the side surface electrode layer 30 is formed by applying nickel plating to the entire surface by an electroless plating method, the side surface electrode layer 30 is formed in a slit shape having a through hole from the upper surface side of the sheet-shaped insulating substrate 21.
  • the side surface electrode layer 30 is formed so as to cover a part of the upper surface electrode layer 22 exposed on the upper surface side of the sheet-shaped insulating substrate 21 and the first resist layer 27, On the back side of the insulating substrate 21, it is formed so as to cover the second resist layer 28.
  • a plurality of first resist layers (not shown) and a plurality of second resist layers (not shown) are peeled off.
  • the paired side electrode layers 30 are patterned.
  • a plurality of pairs of exposed side surface electrode layers ⁇ 30 and a plurality of first resist layers are formed by using an electroplating method. (Not shown).
  • a plurality of pairs of solder layers 3 1 of about 4 to 6 m thick are covered so as to cover a part of the pairs of upper electrode layers 2 2 exposed by peeling off.
  • the thickness of the side electrode layer 30 is about 4 to 6 but is not limited to this range, and the thickness is 1 to 15 zm.
  • this side electrode layer 30 is formed by nickel plating using an electroless plating method, the side electrode layer 30 has no magnetism. It provides a product with extremely high dimensional accuracy, and when mounting a resistor by suction using the suction pins of an automatic beautifying machine, improves the stability during suction and ensures a high mounting rate.
  • the solder layer 31 is made of tin, the present invention is not limited to this. For example, a tin alloy-based material may be used. When these materials are used, stable soldering is performed during reflow soldering. Can be done.
  • the upper electrode layer 22 is made of a silver-based material and the resistive layer 23 is made of a ruthenium oxide-based material, it is possible to secure resistance characteristics excellent in heat resistance and durability. It is.
  • the protective layer covering the resistive layer 23 and the like includes a first protective layer 24 made of a brittle glass layer covering the resistive layer 23, the first protective layer 24, and a trimming groove 25.
  • the first protective layer 24 prevents the occurrence of cracks during laser trimming and reduces the current noise because the second protective layer 26 is mainly composed of a resin covering resin.
  • the second protective layer 26 since the entire resistance layer 23 is covered with the second protective layer 26 containing the resin as a main component, resistance characteristics with excellent moisture resistance can be secured.
  • the first strip-shaped substrate 21 b of the sheet-shaped insulating substrate 21 has a first slit-like shape so that the plurality of resistance layers 23 are individually separated and divided into individual substrates 21 c.
  • a plurality of second divided portions 32 are formed in a direction orthogonal to the divided portions 29 by using a dicing method. In this case, the plurality of second divisions 32 are formed at a pitch of 400, and the second divisions 32 Has a width of 100 xm.
  • the plurality of second divisions 3 2 are formed on a plurality of strip-shaped substrates 2 lb by a dicing method except for the unnecessary area 21 a, so that the plurality of second divisions 3 2 Each time the device is formed, it is cut and divided into individual substrates 21c, and the individualized products are separated from the unnecessary region 21a.
  • the resistor according to the first embodiment of the present invention is manufactured.
  • the interval between the slit-shaped first divided portion 29 and the second divided portion 32 formed by the dicing method is accurate ( ⁇ 0.005). mm) and the thickness of the side electrode layer 30 and the solder layer 31 are also accurate, so the total length and width of the product resistor are exactly 0.6 mm long and 0.3 mm wide. mm.
  • the pattern accuracy of the upper electrode layer 22 and the resistance layer 23 does not need to be classified into dimensional ranks of individual substrates, and it is not necessary to consider dimensional variations within the dimensional rank of the same individual substrate.
  • the effective area of the resistance layer 23 can be made larger than that of the conventional product.
  • the resistance layer in the conventional product had a length of about 0.20 mm and a width of 0.19 mm
  • the resistance layer 23 of the resistor according to the first embodiment of the present invention had a length of about 0.20 mm. 0.25 111 111
  • the width is 0.24 mm, which is about 1.6 times or more in area.
  • the plurality of slit-shaped first divided portions 29 and the plurality of second divided portions 32 are formed by using a dicing method, a sheet-like substrate which does not require dimensional classification of the individual substrate is required. Since the insulating substrate 21 can be used, it is not necessary to classify the size of the individual substrate as in the conventional case. Daishi The dicing can be easily performed using a semiconductor or the like and using a general dicing equipment.
  • the sheet-shaped insulating substrate 21 has an unnecessary area 21 a that is not finally formed as a product at the entire peripheral edge, and has a plurality of slit-shaped first divided parts 29 and a plurality of slits. Since the second divided portion 32 is not formed in the unnecessary region portion 21a, even after forming the plurality of slit-shaped first divided portions 29, the plurality of strip-shaped substrates 2 lb are formed.
  • the post-process can be performed in the state of the sheet-shaped insulating substrate 21 having the unnecessary region 21a, so that the design of the method can be simplified.
  • the product is cut and divided into a flake substrate 21c, and the individualized product is Since the unnecessary area portion 21a is separated from the unnecessary area portion 21a, the step of separating the unnecessary area portion 21a from the product later becomes unnecessary.
  • the side surface electrode layer 30 is formed of a sheet-like insulating substrate. 21 can be formed, and the potential difference can be reduced when the solder layer 31 is formed by the electric heating method, whereby a stable solder layer 31 can be formed. .
  • the unnecessary region 21a that does not eventually become a product is formed on the entire peripheral edge of the sheet-shaped insulating substrate 21 to form a substantially square shape.
  • the unnecessary part 2 1 a need not necessarily be formed at the entire peripheral edge of the sheet-shaped insulating substrate 21; for example, as shown in FIG. 9, an unnecessary area 21 d is formed at one end of the sheet-shaped insulating substrate 21.
  • FIG. 10 when the unnecessary regions 21 e are formed at both ends of the sheet-shaped insulating substrate 21, as shown in FIG. Even when the unnecessary region 21 f is formed at the three ends of the substrate 21, the same operation and effect as those of the first embodiment of the present invention can be obtained.
  • the plurality of second divided portions 32 may be formed.
  • the upper surface, the lower surface, or the center of the sheet-shaped insulating substrate 21 is laser-processed or dicing, leaving a thin portion on any of the back, upper, or center of the sheet-shaped insulating substrate 21. It may be formed by cutting by a method or the like, and in these cases, it is not divided into pieces each time the second divided portion 32 is formed, but is divided into pieces in two stages. is there.
  • the slit-shaped first divided portion 29 was formed.
  • the layer 27 and the second resist layer 28 may be formed after forming the slit-shaped first division 29.
  • the strength of the sheet-shaped insulating substrate 21 is reduced. Therefore, it is necessary to reduce the printing pressure during screen printing.
  • the same effect as in the first embodiment of the present invention can be obtained. Is obtained.
  • the first resist layer 27 and the second resist layer 28 were peeled off before the formation of the solder layer 31. It is also possible after formation.
  • a silver-based material is used as the upper electrode layer 22 and a ruthenium oxide-based material is used as the resistance layer 23.
  • these materials may be used in other material systems. An effect similar to that of the first embodiment of the invention can be obtained.
  • the slit-shaped first divided part 29 and the second divided part 32 are formed by using the dicing method.
  • the slit-shaped first divided portion 29 and the second divided portion 32 are formed by using a divided portion forming means such as a laser inkjet, etc.
  • the present invention The same operation and effect as those of the first embodiment are obtained.
  • a pair of upper electrode layers 12 is formed on the upper surface of the individual substrate 11, and thereafter, a part of the pair of upper electrode layers 12 is overlapped with the pair of upper electrode layers 12.
  • the resistive layer 13 is formed on the upper surface of the individual substrate 11, and then the resistive layer 13 is partially overlapped with the resistive layer 13. Even when a pair of upper electrode layers 12 are formed, the same operation and effect as those of the first embodiment of the present invention can be obtained.
  • a plurality of slit-shaped first divisions 29 for dividing into a plurality of strip-shaped substrates 21b are formed, a plurality of pairs of upper surface electrode layers 2 are formed. 2, plural resistive layers 23, plural first protective layers 24, plural trimming grooves 25, plural second protective layers 26, plural (1)
  • the present invention is not limited to this.
  • the slit-shaped when a plurality of slit-shaped first divided portions 29 are first formed on the sheet-shaped insulating substrate 21, the slit-shaped When a sheet-shaped insulating substrate 21 in which a plurality of first divisions 29 are formed in advance is used, after forming a plurality of pairs of upper electrode layers 22 on the sheet-shaped insulating substrate 21, When a plurality of slit-shaped first divided portions 29 are formed on the sheet-shaped insulating substrate 21, after forming a plurality of resistance layers 23 on the sheet-shaped insulating substrate 21, When a plurality of slit-shaped first divided portions 29 are formed on the sheet-shaped insulating substrate 21, a sheet-shaped After forming a plurality of pairs of upper electrode layers 22 on the edge substrate 21 and forming a plurality of resistance layers 23 so as to partially overlap the plurality of upper electrode layers 22 of the brackets, When a plurality of slit-shaped first divided portions 29 are formed on the insulating substrate 21, a plurality of resistance layers 23 are
  • a plurality of slit-like first divisions 29 are formed on the sheet-like insulating substrate 21.
  • a plurality of pairs of upper surface electrode layers 22 and a plurality of resistance layers 23 are formed on a sheet-shaped insulating substrate 21, and the plurality of pairs of upper surface electrode layers 2 After trimming to adjust the resistance value between the two, a slit-shaped first division 29 is formed on the sheet-shaped insulating substrate 21.
  • the same effects as those of the first embodiment of the present invention can be obtained.
  • FIG. 12 is a top view showing a state in which an unnecessary region is formed at the entire peripheral edge of a sheet-like insulating substrate used for manufacturing a resistor according to the second embodiment of the present invention.
  • 13 (a) to (e), Fig. 14 (a) to (e), Fig. 15 (a) to (d), Fig. 16 (a) to (d), Fig. 17 (A) to (c) and FIGS. 18 (a) to (c) are process diagrams showing a method of manufacturing a resistor according to the second embodiment of the present invention.
  • a 0.2 mm thick insulating material made of calcined 96% pure alumina.
  • a sheet-shaped insulating substrate 41 is prepared.
  • the sheet-shaped insulating substrate 41 has an unnecessary area portion 41a that is not a final product at all peripheral edges.
  • the unnecessary area portion 41a is formed in a substantially square shape.
  • a plurality of layers each containing silver as a main component are formed on the upper surface of the sheet-like insulating substrate 41 by a screen printing method.
  • a pair of upper electrode layers 42 was formed and fired with a firing profile at a peak temperature of 850 ° C., thereby making the upper electrode layers 42 stable.
  • a plurality of ruthenium oxide-based materials are screen-printed so as to straddle a plurality of pairs of upper electrode layers 42.
  • the resistive layer 43 was formed, and the resistive layer 43 was made to be a stable film by baking with a baking opening having a peak temperature of 850 ° C.
  • a first protective layer 44 composed of a plurality of pre-coated glass layers is formed by a screen printing method so as to cover the plurality of resistance layers 43. Is formed and baked with a baking profile having a peak temperature of 600 ° C. to form a first protective layer made of a pre-coated glass layer.
  • the protective layer 4 was a stable film.
  • the first protective layer 44 consisting of a plurality of pre-coated glass layers arranged vertically in the drawing is covered.
  • a plurality of second protective layers 46 mainly composed of resin are formed by a screen printing method, and the second protective layer 46 is stabilized by curing with a curing profile at a peak temperature of 200 ° C. Film.
  • a plurality of resist layers 47 are formed on the back surface of the sheet-shaped insulating substrate 41 by a screen printing method.
  • the resist layer 47 was made into a stable film by ultraviolet curing.
  • the plurality of slit-shaped first divided portions 48 are formed as through holes vertically penetrating the sheet-shaped insulating substrate 41. Further, since the sheet-shaped insulating substrate 41 has a plurality of slit-shaped first divided portions 48 formed by a dicing method except for the unnecessary region portion 41a, the slit-shaped first divided portion 48 is formed. Even after forming the divided portion 48 of the plurality of strip-shaped substrates 4 1 b Since it is connected to the unnecessary area portion 41a, it shows a sheet state.
  • the back surface of the sheet-shaped insulating substrate 41 and the plurality of slit-shaped first divided portions 4 are formed by sputtering.
  • a side surface electrode layer 49 having a thickness of about 0.1 to 1 m made of nickel or a nickel-based alloy, for example, a nickel chromium alloy is formed on the inner surface of 8.
  • the side surface electrode layer 49 formed on the inner surface of the plurality of slit-shaped first divided portions 48 is in contact with the upper surface electrode layer 42 formed on the upper surface of the sheet-shaped insulating substrate 41. And are electrically connected.
  • a plurality of resist layers (not shown) are peeled off, and a plurality of pairs of side electrode layers 49 are patterned.
  • a plurality of pairs of exposed side electrode layers 49 and a plurality of resist layers are exposed by using an electroplating method.
  • a plurality of pairs of nickel layers 50 made of nickel having a thickness of about 4 to 6 m and a thickness of about A plurality of pairs of solder layers 51 of tin of 4 to 6 Aim are formed.
  • the thickness of the side electrode layer 49 formed by the above-mentioned sputtering method is about 0.1 to 1 m, but is not limited to this range. It is appropriate that the thickness including the layer 51 is 1 to 15 m.
  • solder layer 51 is made of tin
  • the present invention is not limited to this.
  • a tin alloy-based material may be used. When these materials are used, stable soldering is performed during reflow soldering. Can be done.
  • the upper electrode layer 42 is made of a silver-based material and the resistive layer 43 is made of a ruthenium oxide-based material, it is possible to secure resistance characteristics excellent in heat resistance and durability. It is.
  • the protective layer covering the resistance layer 43 and the like includes a first protective layer 44 made of a brittle glass layer covering the resistance layer 43, and a first trimming groove while covering the first protective layer 44. Since the second protective layer 46 mainly composed of resin covering the layer 45 is composed of two layers, the first protective layer 44 prevents generation of cracks at the time of laser trimming and current noise. In addition, since the entire resistance layer 43 is covered with the second protective layer 46 mainly composed of the resin, resistance characteristics excellent in moisture resistance can be secured.
  • the unnecessary area portion 4 1 formed on the entire peripheral edge of the sheet-shaped insulating substrate 41 is formed. Except for a, the slit-shaped substrate 41 is divided into a plurality of strip-shaped substrates 41 in the sheet-shaped insulating substrate 41 so that the plurality of resistive layers 43 are individually separated and divided into strip-shaped substrates 41c.
  • a plurality of second divided portions 52 are formed using a dicing method in a direction orthogonal to the first divided portions 48. In this case, the plurality of second divided portions 52 are formed at a pitch of 400 m, and the width of the second divided portion 52 of the parentheses is 100.
  • the plurality of second divided portions 5 2 are formed on the plurality of strip-shaped substrates 41 b by a dicing method except for the unnecessary region portion 41 a. Each time 2 is formed, the product is cut and divided into individual substrates 41c, and the individualized products are separated from the unnecessary area portions 41a.
  • the resistor according to the second embodiment of the present invention is manufactured.
  • the length and width dimensions of the resistor manufactured by the above process are dicing
  • the distance between the slit-shaped first divided part 48 and the second divided part 52 formed by the method is accurate (within ⁇ 0.05 mm), and the side electrode layer 49, nickel Since the thicknesses of the layer 50 and the solder layer 51 are also accurate, the total length and the total width of the product resistor are exactly 0.6 111111 in length and 0.3 mm in width.
  • the pattern accuracy of the upper electrode layer 42 and the resistance layer 43 does not require the dimensional rung classification of the individual substrates, and it is necessary to consider the dimensional variation within the dimensional rank of the same individual substrate. Therefore, the effective area of the resistance layer 43 can be made larger than that of the conventional product.
  • the resistance layer of the conventional product had a length of about 0.20 mm and a width of 0.19 mm
  • the resistance layer 43 of the resistor according to the second embodiment of the present invention had a length of Approximately 0.25 01] 11
  • the width is 0.24 mm, and the area is about 1.6 times or more.
  • the plurality of slit-shaped first divided portions 48 and the plurality of second divided portions 52 are formed by using a dicing method, a sheet-like shape which does not require dimensional classification of the individual substrate is required. Since the insulating substrate 41 can be used, it is not necessary to classify the size of the individual substrate as in the conventional case. Also, dicing can be easily performed using a general dicing facility for semiconductors and the like.
  • the sheet-shaped insulating substrate 41 has an unnecessary region 41 a that is not finally formed as a product at the entire peripheral edge, and has a plurality of slit-shaped first divided portions 48 and a plurality of slits. Since the second divided portion 52 is not formed in the unnecessary area portion 41a, even after the plurality of slit-shaped first divided portions 48 are formed, the plurality of strip-shaped substrates 41 are not formed. b is connected to the unnecessary area portion 41a, so that the sheet-shaped insulating substrate 41 becomes a plurality of strip-shaped substrates 41b.
  • the sheet-shaped insulating substrate 41 having the unnecessary region portions 41a is still in a state of being separated. Since the process can be performed, the design of the construction method can be simplified.
  • a plurality of second divisions 52 are formed, each time the plurality of second divisions 52 are formed, they are cut and divided into individual substrates 41c, and the individualized products are Since the unnecessary area portion 41a is separated from the unnecessary area portion 41a, the step of separating the unnecessary area portion 41a from the product later becomes unnecessary.
  • the side electrode layers 49 are formed in the state of a sheet-shaped insulating substrate 41, the side electrode layers 49 are formed in a sheet shape. And the potential difference can be reduced when the nickel layer 50 and the solder layer 51 are formed by the electroplating method. Thus, a nickel layer 50 and a solder layer 51 can be formed.
  • the unnecessary area portion 41 a that is not finally formed as a product is formed at the entire peripheral edge of the sheet-shaped insulating substrate 41 to form a substantially square shape.
  • the unnecessary area portion 41a does not necessarily need to be formed on the entire periphery of the sheet-shaped insulating substrate 41, for example, as shown in FIG.
  • an unnecessary area portion 4 1d is formed at one end of the insulating substrate 41, as shown in FIG. 20, when an unnecessary area portion 4 1e is formed at both ends of the sheet-shaped insulating substrate 41, As shown in FIG. 21, even when the unnecessary region portions 41 f are formed at the three ends of the sheet-shaped insulating substrate 41, the same operation and effect as those of the second embodiment of the present invention are obtained.
  • the upper surface, the lower surface, or the center of the sheet-shaped insulating substrate 41 is left with a thin portion on any of the rear surface, the upper surface, and the center of the sheet-shaped insulating substrate 41, and the laser is used. It may be formed by cutting with a dicing method or the like.In these cases, the second divided portion 52 is not divided into pieces each time it is formed, but is divided into two pieces. It is.
  • the slit-shaped first divided portion 48 is formed after forming the resist layer 47, but the resist layer 47 is formed in the slit-shaped first portion. It may be formed after forming the divided portion 48.
  • the resist layer 47 is screen-printed after forming the slit-shaped first divisional portion 48 in this manner, the strength of the sheet-shaped insulating substrate 41 is reduced, so that the screen printing is performed. It is necessary to reduce the printing pressure of
  • the resist layer 47 is formed immediately after the formation of the first protective layer 44 made of a precoated glass layer, the same effect as that of the second embodiment of the present invention can be obtained.
  • the resist layer 47 was peeled off before the nickel layer 50 and the solder layer 51 were formed. It is also possible after the formation of.
  • a silver-based material is used for the upper electrode layer 42 and a ruthenium oxide-based material is used for the resistance layer 43.
  • a ruthenium oxide-based material is used for the resistance layer 43.
  • the slit-shaped first divided portion 48 and the second divided portion 52 are formed using the dicing method.
  • a divided portion forming means such as a laser beam inkjet, etc. The same operation and effect as those of the second embodiment can be obtained.
  • a plurality of slit-shaped first divided portions 48 for dividing into a plurality of strip-shaped substrates 41b, a plurality of pairs of upper surface electrode layers 42 , A plurality of resistive layers 43, a plurality of first protective layers 4, a plurality of trimming grooves 45, a plurality of second protective layers 46, a sheet-shaped insulating substrate 41 on which a plurality of resist layers 47 are formed
  • a plurality of slit-shaped first divided portions 48 are formed in the above description, the present invention is not limited to this.
  • the sheet-shaped insulating substrate 41 may have When a plurality of slit-shaped first divided portions 48 are formed first, when a sheet-shaped insulating substrate 41 in which a plurality of slit-shaped first divided portions 48 are formed in advance is used, After a plurality of pairs of upper electrode layers 42 are formed on the sheet-like insulating substrate 41, the sheet-like insulating substrate In the case where a plurality of slit-shaped first divided portions 48 are formed in 41, a plurality of resistance layers 43 are formed on the sheet-shaped insulating substrate 41, and then the sheet-shaped insulating substrate 41 is formed.
  • a plurality of slit-shaped first divided portions 48 When a plurality of slit-shaped first divided portions 48 are formed, a plurality of pairs of upper surface electrode layers 42 are formed on a sheet-shaped insulating substrate 41, and a plurality of pairs of upper surface electrode layers 4 of parentheses are formed. After forming a plurality of resistance layers 43 so that a part thereof overlaps with 2, a plurality of slit-shaped first divided portions 48 are formed on the sheet-shaped insulating substrate 41. A plurality of resistive layers 43 are formed on the insulating substrate 41 of a plurality of pairs, and a plurality of pairs of upper surface electrodes are formed so as to partially overlap the plurality of resistive layers 43 of the bracket.
  • the layer 42 After the layer 42 is formed, when a plurality of slit-shaped first divided portions 48 are formed on the sheet-shaped insulating substrate 41, a plurality of pairs of upper surface electrodes are formed on the sheet-shaped insulating substrate 41. After forming a layer 42 and a plurality of resistance layers 43 and performing trimming to adjust a resistance value between the plurality of pairs of upper electrode layers 42 in the plurality of resistance layers 43 of the brackets, the sheet shape is obtained. Even when the slit-shaped first divided portion 48 is formed on the insulating substrate 41, the same effects as those of the second embodiment of the present invention can be obtained.
  • FIG. 22 is a top view showing a state in which an unnecessary area is formed at the entire peripheral edge of a sheet-shaped insulating substrate used for manufacturing the resistor according to the third embodiment of the present invention.
  • 23 Fig. (A) to (e), Fig. 24 (a) to (e), Fig. 25 (a) to (d), Fig. 26 (a) to (d), Fig. 27 (A) to (c) and FIGS. 28 (a) to (c) are process diagrams showing a method for manufacturing a resistor according to the third embodiment of the present invention.
  • Fig. 22 First, as shown in Fig. 22, Fig. 23 (a), and Fig. 24 (a), it has a 0.2 mm thick insulation made of calcined 96% pure alumina.
  • a sheet-shaped insulating substrate .61 is prepared.
  • the sheet-shaped insulating substrate 61 has an unnecessary area portion 61 a that is not a final product at the end of the entire periphery. .
  • the unnecessary area portion 61a is configured in a substantially square shape.
  • a plurality of sheets mainly composed of silver are formed on the upper surface of the sheet-like insulating substrate 61 by a screen printing method.
  • a pair of upper electrode layers 62 are formed, and a firing profile at a peak temperature of 850 ° C is formed. By firing in an aisle, the upper electrode layer 62 was made a stable film.
  • the ruthenium oxide-based material is screen-printed so as to straddle a plurality of pairs of upper electrode layers 62.
  • a plurality of resistive layers 63 were formed, and baked with a firing port at a peak temperature of 850 ° C., to make the resistive layers 63 stable.
  • the first protective layer 64 composed of a plurality of pre-coated glass layers is screen-printed so as to cover the plurality of resistive layers 63.
  • the resistance of the resistance layer 63 between the plural pairs of upper electrode layers 62 is adjusted to a constant value. Trimming was performed by the one-to-one trimming method to form a plurality of trimming grooves 65.
  • a screen is formed so as to cover the first protective layer 64 composed of a plurality of pre-coated glass layers arranged vertically in the drawing.
  • the second protective layers 66 are formed.
  • the second protective layers 66 are formed.
  • a plurality of slit-shaped first divisions 67 for separating a plurality of pairs of upper electrode layers 62 and dividing into a plurality of strip substrates 61 are formed by a dicing method.
  • the plurality of slit-shaped first divisions 67 are formed at a pitch of 70,0 xm, and the bracket-shaped first divisions 6 7 The width of 7 is 120 m wide.
  • the plurality of slit-shaped first divided portions 67 are formed by through holes vertically penetrating the sheet-shaped insulating substrate 61.
  • the sheet-shaped insulating substrate 61 has a plurality of slit-shaped first divided portions 67 formed by a dicing method except for the unnecessary region portion 61a, the slit-shaped first divided portion 67 is formed. Even after the division 67 is formed, the plurality of strip-shaped substrates 6 lb are connected to the unnecessary area 61 a, so that they are in a sheet state.
  • the side surface electrode layer 70 formed on the inner surface of the plurality of slit-shaped first divided portions 67 contacts the upper surface electrode layer 62 formed on the upper surface of the sheet-shaped insulating substrate 61. And are electrically connected.
  • a plurality of pairs of exposed side surface electrode layers 70 and a plurality of pairs of upper surfaces are formed by using an electric plating method.
  • a plurality of pairs of nickel layers 71 made of nickel having a thickness of about 4 to 6 Aim and a plurality of pairs made of tin having a thickness of about 4 to 6 cover a part of the pole layer 62.
  • a solder layer 72 is formed.
  • the thickness of the side electrode layer 70 formed by the above-mentioned sputtering method is about 0.1 to 1 m, but is not limited to this range.
  • the nickel layer 71 and the solder layer 72 are not limited to this range.
  • a thickness of 1 to 15 m is appropriate for adding the thickness.
  • solder layer 72 is made of tin
  • the present invention is not limited to this.
  • a tin alloy-based material may be used. When these materials are used, stable soldering is performed during reflow soldering. Can be done.
  • the upper electrode layer 62 is made of a silver-based material and the resistive layer 63 is made of a ruthenium oxide-based material, resistance characteristics excellent in heat resistance and durability can be ensured. It is.
  • the protective layer covering the resistance layer 63 and the like includes a first protective layer 64 made of a brittle glass layer covering the resistance layer 63, a first protective layer 64, and a trimming groove. Since the second protective layer 66 is mainly composed of a resin covering the second protective layer 66, the first protective layer 64 prevents generation of cracks at the time of laser trimming and current noise. In addition, since the entire resistance layer 63 is covered with the second protective layer 66 mainly composed of the resin, resistance characteristics excellent in moisture resistance can be secured.
  • the slits are formed such that the plurality of resistive layers 63 are individually separated into the plurality of strip-shaped substrates 61b in the sheet-shaped insulating substrate 61 and divided into individual substrates 61c.
  • a plurality of second divided portions 73 are formed in a direction orthogonal to the first divided portions 67 using a dicing method. In this case, the plurality of second divided portions 73 are formed at a pitch of 400 m, and the second divided portion of the parentheses is formed.
  • the width of 73 is 100 m wide.
  • the plurality of second divided portions 73 are formed on the plurality of strip-shaped substrates 61b by a dicing method except for the unnecessary region portion 61a, the plurality of second divided portions 73 are formed. Each time 3 is formed, the product is cut and divided into individual substrates 61c, and the individualized products are separated from the unnecessary area portions 61a.
  • the resistor according to the third embodiment of the present invention is manufactured.
  • the interval between the slit-shaped first divided portion 67 and the second divided portion 73 formed by the dicing method is accurate ( ⁇ 0.000).
  • the thickness of the side electrode layer ⁇ 0, nickel layer 71 and solder layer 72 are also accurate, so the total length and width of the product resistor is exactly 0. 6 111111
  • the width is 0.3 mm.
  • the pattern accuracy of the upper electrode layer 62 and the resistance layer 63 is not required because the dimensional rank of the singular substrate is not required and the dimensional variation within the dimensional rank of the same individual substrate needs to be considered. Therefore, the effective area of the resistance layer 63 can be made larger than that of the conventional product.
  • the resistance layer in the conventional product had a length of about 0.20 mm and a width of 0.19 mm, whereas the resistance layer 63 of the resistor in the third embodiment of the present invention had a length.
  • the width is about 0.25 111 11 and 0.24 mm, which is about 1.6 times or more in area.
  • the plurality of slit-shaped first divided portions 67 and the plurality of second divided portions 73 are formed by using a dicing method, a dimensional classification of the individual substrate is not required.
  • Insulated substrate 61 can be used, which eliminates the need for conventional dimensional classification of individual substrates, thus eliminating the need for conventional mask replacement process. With, Daishi Also, the dicing can be easily performed using a general dicing equipment such as a semiconductor.
  • the sheet-shaped insulating substrate 61 has an unnecessary area 61 a that is not finally formed as a product at the entire peripheral edge, and has a plurality of slit-shaped first divided sections 67 and a plurality of slit-shaped first divided sections 67.
  • the second divided portion 73 is not formed in the unnecessary area portion 61a, even after the plurality of slit-shaped first divided portions 67 are formed, the plurality of strip-shaped substrates 6 lb is connected to the unnecessary area portion 61a, so that the sheet-shaped insulating substrate 61 is not finely separated into a plurality of strip-shaped substrates 61, and therefore, a plurality of slit-shaped first Even after the formation of the divided portion 67, the post-process can be performed in the state of the sheet-shaped insulating substrate 61 having the unnecessary region portion 61a, so that the design of the method can be simplified.
  • each time the plurality of second divisions 73 are formed they are cut and divided into individual substrates 61c, and the individualized products are Since the unnecessary area section 61a is separated from the unnecessary area section 61a, the step of separating the unnecessary area section 61a from the product later becomes unnecessary.
  • the side electrode layers 70 can be formed at necessary places on the sheet-shaped insulating substrate 61, and the potential difference can be reduced when the nickel layer 71 and the solder layer 72 are formed by the electroplating method. As a result, a stable nickel layer 71 and a stable solder layer 72 can be formed.
  • the unnecessary region 6a that is not finally formed as a product is formed on the entire peripheral edge of the sheet-shaped insulating substrate 61.
  • the unnecessary region portion 61a is not necessarily formed at the entire peripheral edge of the sheet-shaped insulating substrate 61.
  • the unnecessary region portion 61a is not necessarily formed.
  • an unnecessary area 61 d is formed at one end of the sheet-shaped insulating substrate 61 as shown in FIG. 9, the unnecessary area is formed at both ends of the sheet-shaped insulating substrate 61 as shown in FIG. 30.
  • 6 e is formed, as shown in FIG. 31, even when the unnecessary region portions 6 1 f are formed at the three ends of the sheet-shaped insulating substrate 61, the third embodiment of the present invention is performed. It has the same effect as the example. ,
  • the plurality of second divided portions 73 may be formed. Any one of the upper surface, the lower surface, and the center of the sheet-shaped insulating substrate 61 is laser-processed while leaving a thin portion on any of the back surface, the upper surface, and the center of the sheet-shaped insulating substrate 61. It may be formed by cutting with a dicing method or the like.In these cases, the pieces are not divided into pieces each time the second divided portion 73 is formed, but are divided into pieces in two stages. It is.
  • a silver-based material was used for the upper electrode layer 62 and a ruthenium oxide-based material was used for the resistance layer 63. An effect similar to that of the third embodiment of the present invention can be obtained.
  • the slit-shaped first divided portion 67 and the second divided portion 73 are formed using the dicing method.
  • a divided portion forming means such as a laser inkjet, etc.
  • the third embodiment of the invention has the same functions and effects as the third embodiment.
  • a plurality of slit-shaped first divisions 67 for dividing into a plurality of strip-shaped substrates 6 1b are formed.
  • a plurality of pairs of upper electrode layers 6 2 , A plurality of resistive layers 63, a plurality of first protective layers 64, a plurality of trimming grooves 65, a plurality of second protective layers 66 formed in a sheet-like shape, and a slit-like A description has been given of a case in which a plurality of divided portions 67 are formed.
  • the present invention is not limited to this.
  • a slit-shaped first In the case where a plurality of divisions 67 of 1 are formed, in the case of using a sheet-like insulating substrate 61 in which a plurality of slit-like first divisions 67 are formed in advance, sheet-like insulation is provided. After forming a plurality of pairs of upper electrode layers 62 on the substrate 61, the slit-shaped first substrate is formed on the sheet-shaped insulating substrate 61. When a plurality of divided portions 67 are formed, a plurality of resistive layers 63 are formed on the sheet-shaped insulating substrate 61, and then a slit-shaped first divided portion is formed on the sheet-shaped insulating substrate 61.
  • a plurality of pairs of upper electrode layers 62 are formed on a sheet-shaped insulating substrate 61, and a plurality of pairs are formed so as to partially overlap the plurality of pairs of upper electrode layers 62.
  • a plurality of slit-shaped first divided portions 67 are formed on the sheet-shaped insulating substrate 61 after forming the resistive layer 63 of the same type, a plurality of resistors are formed on the sheet-shaped insulating substrate 61.
  • a slit-shaped insulating substrate 61 is formed.
  • FIG. 32 is a top view showing a state in which an unnecessary region is formed at the entire periphery of a sheet-shaped insulating substrate used for manufacturing a resistor according to the fourth embodiment of the present invention.
  • 33 (a) to (e), Fig. 34 (a) to (e), Fig. 35 (a) to (c), Fig. 36 (a) to (c), Fig. 37 (A) to (c) and FIG. 38 (a) to (c) are process diagrams showing a method for manufacturing a resistor in the fourth embodiment of the present invention.
  • -First as shown in Fig. 32, Fig. 33 (a), and Fig. 34 (a), it has a 0.2 mm thick insulation made of calcined 96% pure alumina.
  • a sheet-shaped insulating substrate 81 is prepared.
  • the sheet-shaped insulating substrate 81 has an unnecessary area portion 81a that is not finally formed as a product at all peripheral ends.
  • the unnecessary area portion 81a is formed in a substantially square shape.
  • silver is used as a main component on the upper surface of the sheet-like insulating substrate 81 by a screen printing method.
  • a plurality of pairs of upper electrode layers 82 were formed and baked with a firing profile at a peak temperature of 850 ° C., whereby the upper electrode layers 82 were made into stable films.
  • a plurality of ruthenium oxide-based materials are screen-printed so as to straddle a plurality of pairs of upper electrode layers 82.
  • the resistive layer 83 was formed, and baked with a firing port at a peak temperature of 850 ° C., thereby making the resistive layer 83 a stable film.
  • a first protective layer composed of a plurality of pre-coated glass layers is formed by a screen printing method so as to cover the plurality of resistive layers 83.
  • the first protective layer 84 consisting of a pre-coated glass layer was made a stable film by forming the layer 84 and firing it with a firing profile at a peak temperature of 600 ° C.
  • a plurality of trimming grooves 85 were formed by laser trimming.
  • the first protective layer 84 composed of a plurality of pre-coated glass layers arranged vertically in the drawing is covered.
  • a plurality of second protective layers 86 containing a resin as a main component are formed by a screen printing method, and the second protective layer 86 is stably formed by curing with a curing profile at a peak temperature of 200 ° C. It was a membrane.
  • a plurality of slit-shaped first divided portions 87 for separating a plurality of pairs of upper electrode layers 82 and dividing into a plurality of strip-shaped substrates 81b are formed by a dicing method.
  • the plurality of slit-shaped first divided portions 87 are formed at a pitch of 700, and the width of the bracket-shaped slit-shaped first divided portions 87 is 120; I have.
  • the plurality of slit-shaped first divided portions 87 are formed by through holes vertically penetrating the sheet-shaped insulating substrate 81. Further, since the sheet-shaped insulating substrate 81 has a plurality of slit-shaped first divided portions 87 formed by a dicing method except for the unnecessary region portions 81a, the slit-shaped first divided portions are formed. Part 8 Even after the formation of 7, the plurality of strip-shaped substrates 81b are connected to the unnecessary area portions 81a, so that they exhibit a sheet state.
  • the entire back surface of the sheet-shaped insulating substrate 81 in which a plurality of slit-shaped first divided portions 87 are formed is formed.
  • a metal film 88 made of nickel or a nickel-based alloy is formed by a sputtering method, an electroless plating method or the like, and a plurality of pairs of side surfaces made of nickel or a nickel-based alloy are formed on the inner surface of the slit-shaped first divided portion 87.
  • the electrode layer 8.9 is formed by a sputtering method, an electroless plating method, or the like.
  • the side electrode layer 89 formed on the inner surface of the plurality of slit-shaped first divided portions 87 contacts the upper electrode layer 82 formed on the upper surface of the sheet-shaped insulating substrate 81. They are electrically connected.
  • an unnecessary portion of the metal film 88 formed on the entire back surface of the sheet-like insulating substrate 81 is subjected to laser irradiation.
  • a plurality of pairs of exposed side electrode layers 89 and a plurality of pairs of top electrode layers are exposed by using an electroplating method.
  • a plurality of pairs of nickel layers 91 made of about 4 to 6 / m Nigel and a plurality of pairs of solder layers 92 made of tin having a thickness of about 4 to 6 m are formed so as to partially cover 82.
  • the thickness of the side electrode layers 89 is about 0.1 to lm, so that the nickel layer 91 and the solder layer 92 are formed.
  • the plurality of pairs of side electrode layers 89 are formed by an electroless plating method, since the thickness of the side electrode layers 89 is about 4 to 6 m, the solder layer It is sufficient to form only 9 2.
  • the solder layer 92 is made of tin, but is not limited to this. Instead, tin alloy-based materials may be used. When these materials are used, stable soldering can be performed during reflow soldering.
  • the upper electrode layer 82 is made of a silver-based material and the resistive layer 83 is made of a ruthenium oxide-based material, resistance characteristics excellent in heat resistance and durability can be ensured. It is.
  • the protective layer covering the resistance layer 83 and the like includes a first protective layer 84 made of a brittle glass layer that covers the resistance layer 83, a first protective layer 84, and a trimming groove 85.
  • the first protective layer 84 prevents the occurrence of cracks during laser trimming and current noise by forming the second protective layer 86 mainly composed of a resin that covers
  • the second protective layer 86 containing the resin as a main component covers the entire resistive layer 83 so that resistance characteristics with excellent moisture resistance can be secured.
  • the unnecessary area portion 81 formed on the entire peripheral edge of the sheet-like insulating substrate 81 is formed.
  • the slits are formed such that the plurality of resistive layers 83 are separated individually into a plurality of strip-shaped substrates 8 1 b in the sheet-shaped insulating substrate 81 and divided into individual substrates 8 1 c.
  • a plurality of second divided portions 93 are formed in a direction orthogonal to the first divided portions 87 by using a dicing method. In this case, the plurality of second divided portions 93 are formed at a pitch of 400 m, and the width of the second divided portion 93 in parentheses is 100.
  • the plurality of second divided portions 93 are formed on the plurality of strip-shaped substrates 81b by a dicing method except for the unnecessary region portion 81a, the plurality of second divided portions 93 are formed. Each time 3 is formed, the product is cut and divided into individual substrates 81c, and the individualized products are separated from the unnecessary area portions 81a.
  • the resistor according to the fourth embodiment of the present invention is manufactured. It is made. .
  • the interval between the slit-shaped first divided portion 87 and the second 'divided portion 93 formed by the dicing method is accurate ( ⁇ 0.000). (Within 5 mm) and the thickness of the side electrode layer 89, nickel layer 91, and solder layer 92 are accurate, so that the total length and width of the product resistor is exactly 0.6 mm. 1! 1111 The width is 0.3 mm. Also, regarding the pattern accuracy of the upper electrode layer 82 and the resistance layer 83, it is not necessary to classify the dimensional rank of the individual substrate and it is necessary to consider the dimensional variation within the dimensional rank of the same individual substrate.
  • the effective area of the resistance layer 83 can be made larger than that of the conventional product. That is, the resistance layer in the conventional product had a length of about 0.20] 11111 and a width of 0.19 mm, whereas the resistance layer 83 of the resistor in the fourth embodiment of the present invention had a length of The width is about 0.25 1! 1111 and the width is 0.24 mm, which is about 1.6 times or more in area.
  • the plurality of slit-shaped first divided portions 87 and the plurality of second divided portions 93 are formed by using a dicing method, a sheet-like shape that does not require dimensional classification of the individual substrate is required. Insulating substrate 81 of this type can be used, which eliminates the need to classify the size of individual pieces as in the conventional case. Also, dicing can be easily performed using a general dicing facility for semiconductors and the like.
  • the sheet-shaped insulating substrate 81 has an unnecessary area portion 81a that is not finally formed as a product at the entire peripheral edge, and has a plurality of slit-shaped first split portions 87 and a plurality of slit-shaped first split portions 87. Since the second divided portion 93 is not formed in the unnecessary area portion 81a, a plurality of slit-shaped first divided portions 87 are formed. Even after formation, the plurality of strip-shaped substrates 8 1 b are connected to the unnecessary area portion 8 1 a, so that the sheet-shaped insulating substrate 81 is finely separated into the plurality of strip-shaped substrates 8 1 b.
  • the post-process can be performed in a state of the sheet-shaped insulating substrate 81 having the unnecessary region portion 81a, so that the method The design can be simplified. Further, when a plurality of second divided portions 93 are formed, each time the plurality of second divided portions 93 are formed, the product is cut and divided into individual substrates 81c, and the individualized product is Since the unnecessary region portion 81a is separated from the unnecessary region portion 81a, a step of separating the unnecessary region portion 81a from the product later becomes unnecessary.
  • the side electrode layer 89 is formed.
  • the potential difference can be reduced when the nickel layer 91 and the solder layer 92 are formed by the electroplating method. In this way, a stable nickel layer 91 and a solder layer 92 can be formed.
  • the unnecessary area portion 81a that is not finally formed as a product is formed at the entire peripheral edge of the sheet-shaped insulating substrate 81 to form a substantially square shape.
  • the unnecessary area portion 81a is not necessarily formed at the entire peripheral edge of the sheet-shaped insulating substrate 81, for example, as shown in FIG.
  • unnecessary areas 8 1 f are formed at the three ends of the sheet-shaped insulating substrate 81. Even in the case where four lines are formed, the same operation and effect as those of the fourth embodiment of the present invention are exerted.
  • the plurality of second divided portions 93 are formed by the dicing method.
  • the plurality of second divided portions 93 may be formed.
  • the upper surface, the rear surface, and the center of the sheet-shaped insulating substrate 81 are left with a thin portion on any of the rear surface, the upper surface, and the center of the sheet-shaped insulating substrate 81, using a laser method. It may be formed by cutting with a dicing method or the like.In these cases, the pieces are not divided into pieces each time the second divided portion 93 is formed, but are divided into pieces in two stages. It is.
  • a silver-based material was used for the upper electrode layer 82 and a ruthenium oxide-based material was used for the resistance layer 83, but these materials may be used in other material systems. An effect similar to that of the fourth embodiment of the present invention can be obtained.
  • the slit-shaped first divided part 87 and the second divided part 93 are formed by using the dicing method.
  • the present invention is not limited thereto. The same operation and effect as those of the fourth embodiment can be obtained.
  • a plurality of slit-shaped first divided portions 87 for dividing into a plurality of strip-shaped substrates 81b when forming a plurality of slit-shaped first divided portions 87 for dividing into a plurality of strip-shaped substrates 81b, a plurality of pairs of upper surface electrode layers 82 are formed.
  • a plurality of resistance layers 83, a plurality of first protection layers 84, a plurality of trimming grooves 85, a plurality of second protection layers 86, and a sheet-like insulating substrate 81 formed with slit-like first To form multiple divisions 8 7
  • the present invention is not limited to this.
  • a plurality of slit-shaped first divided portions 87 may be formed first on the sheet-shaped insulating substrate 81.
  • a plurality of pairs of upper surface electrode layers 82 are formed on the sheet-shaped insulating substrate 81.
  • a plurality of resistance layers 83 are formed on the sheet-shaped insulating substrate 81.
  • a plurality of resistive layers 83 After forming a plurality of resistive layers 83 so that a part thereof overlaps a plurality of pairs of upper surface electrode layers 82 of the brackets
  • a plurality of resistance layers 83 are formed on the sheet-shaped insulating substrate ′ 81, and a plurality of brackets are formed.
  • a plurality of pairs of upper electrode layers 82 are formed so as to partially overlap with the resistive layer 83, a plurality of slit-shaped first divided portions 87 are formed on the sheet-shaped insulating substrate 81.
  • a plurality of pairs of upper electrode layers 8 2 and a plurality of resistance layers 8 3 are formed on a sheet-shaped insulating substrate 8 1, and the plurality of pairs of upper electrode layers 8 2 After the trimming is performed to adjust the resistance value between the two, the first split portion 87 having a slit shape is formed on the insulating substrate 81 in the form of a sheet. This has the same effect as the fourth embodiment.
  • FIG. 42 is a sectional view of a resistor according to a fifth embodiment of the present invention.
  • reference numeral 101 denotes a sheet-like insulating substrate made of fired 96% -purity alumina, which is orthogonal to the slit-shaped first division and the first division.
  • the individual substrate is divided into individual substrates by being divided at the second division.
  • 102 is a pair of metal layers mainly composed of gold formed on the upper surface of the individual substrate 101.
  • Reference numeral 103 denotes a pair of upper electrode layers mainly composed of silver formed on the upper surface of the individual substrate 101 so as to partially overlap the pair of metal layers 102.
  • Reference numeral 104 denotes a ruthenium oxide-based resistance layer formed on the upper surface of the individual substrate 101 so as to partially overlap the pair of upper electrode layers 103.
  • 105 is a first protective layer formed of a pre-coated glass layer formed on the upper surface of the resistance layer 104.
  • Reference numeral 106 denotes a trimming groove provided for correcting the resistance value of the resistance layer 104 between the pair of upper electrode layers 103.
  • Reference numeral 107 denotes a second protective layer mainly composed of a resin formed so as to cover the first protective layer 105 made of a precoated glass layer.
  • Reference numeral 108 denotes a pair of nickel side surfaces formed so as to overlap a part of the pair of upper electrode layers 103 and to cover both side surfaces of the individual substrate 101 and both end portions of the back surface. It is an electrode layer.
  • Reference numeral 109 denotes a solder layer made of tin formed so as to cover a part of the pair of side electrode layers 108 and a part of the pair of upper electrode layers 103.
  • FIG. 43 is a top view showing a state in which an unnecessary region is formed at the entire peripheral edge of a sheet-like insulating substrate used for manufacturing the resistor according to the fifth embodiment of the present invention.
  • Figures (a)-(f), Figures 45 (a)-(f), Figures 46 (a)-(d), Figures 47 (a)-(d), Figures 48 (a)- (C) and FIGS. 49 (a) to (c) are process diagrams showing a method for manufacturing a resistor according to the fifth embodiment of the present invention.
  • a sheet made of fired 96% pure alumina and having a thickness of 0.2 is insulative.
  • the sheet-shaped insulating substrate 1 1 1 has an unnecessary area 1 1 1 a that is not a final product at the entire peripheral end. is there.
  • the unnecessary area portion 111a is configured in a substantially square shape.
  • a plurality of first divided portions are straddled on the upper surface of the sheet-shaped insulating substrate 111.
  • Pairs of metal layers 112 mainly composed of gold are formed by a screen printing method and baked with a firing profile at a peak temperature of 850 ° C to form a stable film of metal layers 112.
  • the plurality of pairs of metal layers 112 are electrically connected to the upper surface of the sheet-like insulating substrate 111.
  • the upper electrode layer 113 was a stable film.
  • the ruthenium oxide-based material is screen-printed over a plurality of pairs of upper electrode layers 113.
  • the resistance layers 114 were made into stable films.
  • a first protective layer 1 15 comprising a plurality of pre-coated glass layers is formed by a screen printing method so as to cover the plurality of resistance layers 114.
  • the first protective layer 115 made of a pre-coated glass layer was formed into a stable film by firing with a firing port having a peak temperature of 600 ° C.
  • a firing port having a peak temperature of 600 ° C. in order to adjust the resistance value of the resistance layer 114 between the plural pairs of upper electrode layers 113 to a constant value.
  • trimming was performed by a laser trimming method to form a plurality of trimming grooves # 16.
  • a screen is formed so as to cover the first protective layers 11 and 5 composed of a plurality of pre-coated glass layers arranged vertically in the drawing.
  • a plurality of second protective layers 117 mainly composed of resin are formed by a printing method, and the second protective layer 117 is stabilized by curing with a curing profile at a peak temperature of 200 ° C. It was a membrane.
  • a plurality of first resist layers 111 are screen-printed so as to cover the plurality of second protective layers 117. 8 was formed, and the first resist layer 118 was made into a stable film by ultraviolet curing. Further, a plurality of second resist layers 119 were formed on the back surface of the sheet-shaped insulating substrate 111 by a screen printing method, and the second resist layers 119 were made into stable films by ultraviolet curing.
  • a sheet-like insulating layer having a first resist layer 118 and a second resist layer 119 formed thereon Except for the unnecessary area portion 1 1 1 a formed on the entire periphery of the edge substrate 1 1 1, only a plurality of pairs of metal layers 1 1 2 are separated and divided into a plurality of strip-shaped substrates 1 1 1 b.
  • a plurality of slit-shaped first divided portions 120 for forming the same are formed by a dicing method. In this case, the plurality of slit-shaped first divided portions 120 are formed at a pitch of 700 m, and the width of the first slit-shaped divided portion 120 of the bracket is 120 width. ing.
  • the plurality of slit-shaped first divided portions 120 are formed by through holes vertically penetrating the sheet-shaped insulating substrate 111. And the sheet-like insulating substrate Since the plate 111 has a plurality of slit-shaped first divided portions 120 formed by dicing except for the unnecessary region portion 111a, the slit-shaped first divided portions 120 are formed. After the formation, the plurality of strip-shaped substrates 1 1 1b are still in a sheet state because they are connected to the unnecessary area portions 1 1 1a. Next, as shown in Fig. 46 (d) and Fig. 47 (d), the sheet-shaped insulating substrate 1 1 1 was immersed in a plating bath and used for electroless plating.
  • Nickel plating is applied to the entire surface of the substrate to form a side electrode layer 121 having a thickness of about 4 to 6 m.
  • the sheet-shaped insulating substrate 111 is formed.
  • the side electrode layer 121 is formed by nickel plating on the entire surface by the electroless plating method, the side electrode layer 121 is a through hole from the top side of the sheet-shaped insulating substrate 111. It is formed up to the back side of the sheet-shaped insulating substrate 111 through the entire inner surface of the slit-shaped first divided portion 120.
  • the side electrode layer 121 is formed so as to cover a part of the upper electrode layer 113 exposed on the upper surface side of the sheet-shaped insulating substrate 111 and the first resist layer 118, Further, the back surface of the sheet-shaped insulating substrate 111 is formed so as to cover the second resist layer 119.
  • FIGS. 4 (a) and 49 (a) a plurality of first resist layers (not shown) and a plurality of second resist layers (not shown) are peeled off, A plurality of pairs of side electrode layers 1 2 1 are patterned.
  • a plurality of pairs of exposed side electrode layers 121 and a plurality of first electrodes are formed by using an electroplating method.
  • a plurality of pairs of tin having a thickness of about 4 to 6 m are formed so as to cover a part of the upper electrode layer 113 exposed by removing the resist layer (not shown).
  • a layer 1 2 2 is formed.
  • the thickness of the side electrode layer 121 is about 4 to 6 / zm, but is not limited to this range, and the thickness is appropriately 1 to 15 im. In the configuration, one with extremely high dimensional accuracy can be obtained.
  • solder layer 122 is made of tin
  • the present invention is not limited to this.
  • a tin alloy-based material may be used. When these materials are used, the solder layer becomes stable during reflow soldering. It can be soldered.
  • the metal layer 112 is made of a gold-based material
  • the upper electrode layer 113 is made of a silver-based material
  • the resistance layer 114 is made of a ruthenium oxide-based material. As a result, it is possible to secure resistance characteristics with excellent heat resistance and durability.
  • the protective layer covering the resistive layer 114 and the like includes a first protective layer 115 made of a pre-coated glass layer covering the resistive layer 114 and the first protective layer 115 while covering the first protective layer 115. Since it is composed of two layers of the second protective layer 1 17 mainly composed of resin that covers the trimming groove 1 16, the first protective layer 1 15 prevents cracks during laser trimming. Current noise can be reduced, and the second protective layer 117 composed mainly of the resin can cover the entire resistive layer 114 to secure resistance characteristics with excellent moisture resistance. .
  • a plurality of resistive layers 1 1 4 are individually separated into a plurality of strip-shaped substrates 1 1 1b of the sheet-shaped insulating substrate 1 1 1 In the direction orthogonal to the slit-shaped first divided section 120 so that it is divided into A plurality of second divided portions 123 are formed by using the ising method.
  • the plurality of second divided portions 123 are formed at a pitch of 400 m, and the width of the second divided portion 123 is 100 m wide.
  • the plurality of second divided portions 123 are formed on the plurality of strip-shaped substrates 111b by a dicing method except for the unnecessary region portion 111a, the plurality of second divided portions 123 are formed. Each time the divided portion 123 is formed, the product is cut and divided into individual substrates 111c, and the individualized products are separated from the unnecessary region portions 111a.
  • the resistor according to the fifth embodiment of the present invention is manufactured.
  • the length dimension and width dimension of the resistor manufactured by the above-described process are accurate when the interval between the slit-shaped first divided section 120 and the second divided section 123 formed by the dicing method is accurate ( ⁇ (Less than 0.05 mm) and the thickness of the side electrode layer 121 and the solder layer 122 are also accurate, so that the total length and width of the product resistor is exactly
  • the 6MIX width is 0.3 mm.
  • the pattern accuracy of the metal layer 112, the upper electrode layer 113, and the resistance layer 114 does not require the dimensional rank classification of individual substrates, and the dimensional variation within the dimensional rank of the same individual substrate is not required. Therefore, the effective area of the resistance layer 114 can be made larger than that of the conventional product.
  • the resistance layer in the conventional product had a length of about 0.20 X width 0.19 nun
  • the resistance layer 114 of the resistor in the fifth embodiment of the present invention had a length of Approximately 0.25111111
  • the width is approximately 0.24 mm, and the area is about 1.6 times or more.
  • the plurality of slit-shaped first divided portions 120 and the plurality of second divided portions 123 are formed using a dicing method, the dimensions of the individual substrate are reduced.
  • a sheet-like insulating substrate 1 1 1 that does not require legal classification can be used, which eliminates the need for conventional dimensional classification of individual substrate, thus complicating the process due to conventional mask replacement.
  • dicing can be easily performed using semiconductors and other general dicing equipment.
  • the sheet-shaped insulating substrate 111 has an unnecessary area portion 111a that is not finally formed as a product at the entire peripheral edge, and a plurality of slit-shaped first divided portions 120a. And the plurality of second divided portions 1 2 3 are not formed in the unnecessary area portion 1 1 1 a, so that even after the plurality of slit-shaped first divided portions 120 are formed,
  • the strip-shaped substrate 1 1 1b is connected to the unnecessary area portion 1 1 1a, so that the sheet-shaped insulating substrate 1 1 1 is not separated into a plurality of strip-shaped substrates 1 1 1b.
  • a post-process can be performed in a state of the sheet-shaped insulating substrate 111 having the unnecessary region portion 111a. Therefore, the design of the construction method can be simplified. Further, when a plurality of second divisions 123 are formed, each time the plurality of second divisions 123 are formed, the substrate is cut and divided into individual substrates 1 1 1 c, and then individualized. Since the product is separated from the unnecessary area portion 1 1 1a, the step of separating the unnecessary area portion 1 1;! A from the product later becomes unnecessary.
  • the side electrode layers 1 2 1 and the plurality of pairs of solder layers 1 2 2 are formed in the state of a sheet-shaped insulating substrate 1.11, the side electrode layers 1 2 1 are formed.
  • the potential difference can be reduced when forming the solder layer 1 2 2 by the electroplating method. 2 can be formed.
  • the unnecessary area portion 111a that does not become a final product is formed on the entire peripheral edge of the sheet-shaped insulating substrate 111.
  • the unnecessary area portion 111a does not necessarily need to be formed at the entire peripheral edge of the sheet-like insulating substrate 111.
  • Fig. 1 when the unnecessary area portion 1 1 1 d is formed at one end of the sheet-shaped insulating substrate 1 1 1, as shown in FIG.
  • the unnecessary area portion 111 e is formed, as shown in Fig. 52, even when the unnecessary area portion 111 f is formed at three ends of the sheet-like insulating substrate 111,
  • the fifth embodiment of the present invention has the same functions and effects as the fifth embodiment.
  • the plurality of second divided portions 123 are formed by the dicing method.
  • the plurality of second divided portions 1 2 3 is a sheet-shaped insulating substrate 1 1 1 leaving any thin part on the back side, top side, or center of the sheet-shaped insulating substrate 1 1 1 1. Any of the top side, back side, or center May be formed by cutting with a laser method, a dicing method, or the like.In these cases, instead of being divided into pieces each time the second divided portion 123 is formed, it is formed in two steps. It is to be singulated.
  • the slit-shaped first divided portion 120 is formed after the first resist layer 118 and the second resist layer 119 are formed.
  • the first resist layer 118 and the second resist layer 119 may be formed after forming the slit-shaped first divided portion 120.
  • the sheet-shaped insulating substrate 1 1 The strength of 1 is weak Therefore, it is necessary to reduce the printing pressure during screen printing.
  • the peeling of the 18 and the second resist layer 1 19 was performed before the formation of the solder layer 122, but this can be performed even after the formation of the solder layer 122.
  • a gold-based material is used for the metal layer 112
  • a silver-based material is used for the upper electrode layer 113
  • ruthenium oxide is used for the resistance layer 114.
  • the slit-shaped first divided portion 120 and the second divided portion 123 are formed by the dicing method.
  • a divided portion forming means such as a laser or a warhead jet
  • the plurality of pairs of upper electrode layers 113 are formed.
  • a plurality of resistance layers 114 are formed so as to straddle, after forming the plurality of resistance layers 114 on the upper surface of the sheet-shaped insulating substrate 111, the plurality of resistance layers 114 are formed. Even when a plurality of pairs of upper electrode layers 113 are formed so as to partially overlap the same, the same operation and effect as those of the fifth embodiment of the present invention can be obtained.
  • a plurality of slit-shaped first divided portions 120 for dividing into a plurality of strip-shaped substrates 111 b are formed, a plurality of pairs of metal layers are formed.
  • 1 1 2 multiple pairs of top electrode layers 1 1 3, multiple resistive layers 1 1 4, multiple first protective layers 1 1 5, multiple trimming grooves 1 1 6, multiple second protective layers 1 17, the plurality of first resist layers 1 18, and the plurality of second resist layers 1 1 9.
  • the present invention is not limited to this.
  • a plurality of pairs of metal layers 1 1 1 2 and a plurality of The upper electrode layer 113 and the plurality of resistance layers 114 are formed, and trimming is performed to adjust the resistance between the plurality of pairs of upper electrode layers 113 in the plurality of resistance layers 114.
  • the plurality of pairs of metal layers 1 1 2 are separated only into the plurality of pairs of metal layers 1 1 2 in the sheet-shaped insulating substrate 1 1 1 1 to form a plurality of sheet-shaped insulating substrates 1 1 1 2.
  • the same effect as in the fifth embodiment of the present invention described above can be obtained by forming a plurality of slit-shaped first divided portions 120 for dividing the substrate into strip-shaped substrates 111b. Is played.
  • the step of forming a plurality of pairs of metal layers 112 on the upper surface of the sheet-like insulating substrate 111 includes the steps of: Forming a plurality of pairs of upper electrode layers 1 13 and a plurality of resistance layers 1 1 4 electrically connected to the metal layer 1 1 2 on the upper surface thereof so that both are electrically connected to each other; Performing trimming to adjust a resistance value between the plurality of pairs of upper electrode layers 113 in the plurality of resistance layers 114; and a plurality of trimming steps so as to cover at least the plurality of resistance layers 114.
  • the plurality of pairs of metal layers 112 are separated into only the plurality of pairs of metal layers 112 in the sheet-like insulating substrate 111 which has been subjected to the forming step.
  • a plurality of strip-shaped first divided portions 120 for dividing into a plurality of strip-shaped substrates 11 into 1 lb are formed on a substrate 1.
  • a sheet-shaped insulating substrate 1 1 Since a plurality of pairs of metal layers 1 1 2 formed on the upper surface of 1 and a plurality of pairs of upper electrode layers 1 1 3 are configured to be electrically connected to each other, between the pair of upper electrode layers 1 1 3
  • the adjacent metal layer 112 can be used in addition to the upper electrode layer 113, so that particularly in the case of a fine resistor,
  • a trimming meter can be easily brought into contact with the upper electrode, and a sheet-like insulating substrate 1 1 1 1 1
  • the divided portion 120 only the metal layer 112 is cut and the upper electrode layer 113 is not cut, so that no burrs are generated, and thus the upper surface of the resistor is made smooth. Therefore, there is an effect that mounting efficiency can be improved.
  • the resistor of the present invention is divided into individual pieces by dividing the sheet-shaped insulating substrate into the slit-shaped first divided portion and the second divided portion orthogonal to the first divided portion.
  • the sheet-shaped insulating substrate is divided into the first slit-shaped portions.
  • the singulated substrate is divided by using the singulated substrate and the second divided portion which is orthogonal to the first divided portion, the dimensional classification of the singulated substrate becomes unnecessary. As a result, it is possible to eliminate the step of replacing the mask according to the dimensional rank of the individual substrate as in the conventional case, and to provide an inexpensive and fine resistor. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

明, 書 抵抗器およびその製造方法
技術分野
本発明は抵抗器およびその製造方法に関するものであり、特に微細な抵 抗器およびその製造方法に関するものである。 背景技術
従来のこの種の抵抗器としては、 特開平 4— 1 0 2 3 0 2号公報に開 示されたものが知られている。
以下、 従来の抵抗器およびその製造方法について、 図面を参照しなが ら説明する。 ' 第 5 3図は従来の抵抗器の断面図である。
第 5 3図において、 1はアルミナ等の磁器からなる絶縁性を有する個 片状基板である。 2は前記個片状基板 1の上面の左右両端部に設けられ た一対の第 1の上面電極層である。 3は一対の第 1の上面電極層 2に一 部が重なるように前記個片状基板 1の上面に設けられた抵抗層である。 4は抵抗層 3の全体のみを覆うように設けられた第 1の保護層である。 5は抵抗値を修正するために抵抗層 3および第 1の保護層 4に設けられ たトリミング溝である。 6は第 1の保護層 4の上面のみに設けられた第 2の保護層である。 7は一対の第 1の上面電極層 2の上面に位置して前 記個片状基板 1の幅一杯まで延びるように設けられた一対の第 2の上面 電極層である。 8は前記個片状基板 1の両側面に設けられた一対の側 ® 電極層である。 9 , 1 0は一対の第 2の上面電極層 7および一対の側面 電極層 8の表面に設けられた一対のニッケルめっき層および一対のはん だめつき層である。 この場合、 はんだめつき層 1 0は第 2の保護層 6よ りも低く設けられているものである。
以上のように構成された従来の抵抗器について、 次にその製造方法を 図面を参照しながら説明する。
第 5 4図 (a ) 〜 ( f ) は従来の抵抗器の製造方法を示す工程図であ る。
まず、 第 5 4図 (a ) に示すように、 絶縁性を有する個片状基板 1の 上面の左右両端部に、 一対の第 1の上面電極層 2を塗着形成する。
次に、 第 5 4図 (b ) に示すように、 一対の第 1の上面電極層 2に一 部が重なるように前記個片状基板 1の上面に抵抗層 3を塗着形成する。 次に、 第 5 4図 (c ) に示すように、 抵抗層 3の全体のみを覆うよう に第 1の保護層 4を塗着形成した後、 抵抗層 3における全抵抗値が所定 の抵抗値の範囲内に入るようにレーザ等により抵抗層 3および第 1の保 護層 4にトリミング溝 5を施す。
次に、 第 5 4図 (d ) に示すように、 第 1の保護層 4の上面のみに第 2の保護層 6を塗着形成する。 - 次に、 第 5 4図 (e ) に示すように、 一対の第 1の上面電極層 2の上 面に位置して前記個片状基板 1の幅一杯まで延びるように一対の第 2の 上面電極層 7を塗着形成する。
次に、 第 5 4図 ( f ) に示すように、 一対の第 1の上面電極層 2およ び前記個片状基板 1の左右両端の側面に一対の第 1, 第 2の上面電極層 2 , 7と電気的に接続されるように一対の側面電極層 8を塗着形成する。 最後に、 一対の第 2の上面電極層 7および一対の側面電極層 8の表面 にニッケルめっきを施した後、 はんだめつきを施すことにより、 一対の ニッケルめっき層 9と、 一対のはんだめつき層 1 0を形成して従来の抵 抗器を製造
' また、 上記した抵抗器も非常に小形化されてきており、 近年では長さ
0. 6mmx幅 0. 3mmX厚み 0. 2 5 mmという非常に小形の抵抗
' 器も製造されるようになってきた。
上記した従来の構成および製造方法で長さ 0. 6]111¾ 幅0. 3 mm X厚み 0. 2 5 mmという非常に小形の抵抗器を製造しょうとした場合 の課題について説明する。
従来におけるアルミナ等の磁器からなるシート状の絶縁基板は、 基板 分割溝をシート状の絶縁基板の焼成前にあらかじめ形成し、 そしてこの 絶縁基板を焼成することにより製造している。 このため、 シート状の絶' 縁基板にあらかじめ形成された基板分割溝は、 シート状の絶縁基板の微 妙な組成バラツキや、 シート状の絶縁基板の焼成時の微妙な温度バラッ キにより寸法パラツキが発生するものである (この寸法バラツキは、 約 1 0 0 mmx 1 0 0 mmのシ一ト状の絶縁基板では約 0. 5 mm程度に も達する。 ) 。
このような寸法バラツキを有するシ一ト状の絶縁基板を用いて、 非常 に微細な抵抗器を製造する場合には、 個片状基板の寸法を縦方向と横方 向のそれぞれに非常に細かい寸法ランクに分類し、 そしてそれぞれの寸 法ランクに相当する上面電極層 2、 抵抗層 3、 第 1の保護層 4等のスク リーン印刷マスクをそろえる必要があるとともに、 個片状基板の寸法ラ ンクに応じてマスクを交換する必要があるもので、 その結果、 非常にェ 程が煩雑になるという課題を有していた (寸法ランクを 0. 0 5mm刻 みで分類する場合には縦方向、 横方向合わせて、 それぞれ 2 5ランクで 縦横合計約 6 0 0ランク以上の寸法分類が必要となる。 ) 。
本発明は上記従来の課題を解決するもので、 個片状基板の寸法分類が 不要となって、 従来のような個片状基板の寸法ランクに応じてマスクを 交換するという工程をなくすることができるとともに、 安価で、 かつ微 細な抵抗器を提供することを目的とするものである。 発明の開示
上記目的を達成するために本発明の抵抗器は、 シート状の絶縁基板を スリット状の第 1の分割部とこの第 1の分割部と直交関係にある第 2の 分割部で分割することにより個片化された個片状基板と、 前記個片状基 板の上面に形成された一対の上面電極層と、 前記一対の上面電極層に一 部が重なるように形成された抵抗層と、 前記抵抗層を覆うように形成さ れた保護層と、 前記一対の上面電極層と電気的に接続されるように前記 個片状基板の側面に形成されたニッケル系電極による一対の側面電極層 とを備えたものである。
上記した抵抗器によれば、 シート状の絶縁基板をスリット状の第 1の 分割部とこの第 1の分割部と直交関係にある第 2の分割部で分割するこ とにより個片化された個片状基板を用いているため、 偭片状基板の寸法 分類が不要となり、 これにより、 従来のような個片状基板の寸法ランク に応じてマスクを交換するという工程をなくすることができるとともに、 安価で、 かつ微細な抵抗器を提供することができるものである。 図面の簡単な説明
第 1図は本発明の第 1の実施例における抵抗器の断面図、
第 2図は同抵抗器を製造する場合に用いられるシート状の絶縁基板の 全周囲の端部に不要領域部を形成した状態を示す上面図、
第 3図 (a ) 〜 (e ) は同抵抗器の製造工程を示す断面図、 第 4図 (a) (e) は同抵抗器の製造工程を示す平面図、 第 5図 ( a) (d) は同抵抗器の製造工程を示す断面図、 第 6図 ( a) (d) は同抵抗器の製造工程を示す平面図、 第 7図 (a) (c) は同抵抗器の製造工程を示す断面図、 第 8図 ( a) (c ) は同抵抗器の製造工程を示す平面図、 第 9図は同抵抗器を製造する場合に用いられるシート状の絶縁基板の 一端部に不要領域部を形成した状態を示す上面図、
第 1 0図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の両端部に不要領域部を形成した状態を示す上面図、
第 1 1図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の 3つの端部に不要領域部を形成した状態を示す上面図、
第 1 2図は本発明の第 2の実施例における抵抗器を製造する場合に用 いられるシー卜状の絶縁基板の全周囲の端部に不要領域部を形成した状 態を示す上面図、
第第 11 33図図 ((aa)) 〜 (e) は同抵抗器の製造工程を示す断面図、 第 1 4図 (a) (e) は同抵抗器の製造工程を示す平面図、 第 1 5図 (a) (d) は同抵抗器の製造工程を示す断面図、 第 1 6図 (a) (d) は同抵抗器の製造工程を示す平面図、 , 第 1 7図 (a) (c ) は同抵抗器の製造工程を示す断面図、 第第 11 88図図 ((aa)) 〜 (c ) は同抵抗器の製造工程を示す平面図、 . 第 1 9図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の一端部に不要領域部を形成した状態を示す上面図、
第 2 0図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の両端部に不要領域部を形成した状態を示す上面図、
第 2 1図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の 3つの端部に不要領域部を形成した状態を示す上面図、
第 2 2図は本発明の第 3の実施例における抵抗器を製造する場合に用 いられるシート状の絶縁基板の全周囲の端部に不要領塽部を形成した状 態を示す上面図、
第 2 3図 (a) (e) は同抵抗器の製萆工程を示す断面図、 第 24図 (a) (e) は同抵抗器の製造工程を示す平面図、 第 2 5図 (a) (d) は同抵抗器の製造工程を示す断面図、 第 26図 (a) (d) は同抵抗器の製造工程を示す平面図、 第 2 7図 (a) (c ) は同抵抗器の製造工程を示す断面図、 第第 22 88図図 ((aa)) 〜 (c) は同抵抗器の製造工程を示す平面図、 第 2 9図は同抵抗器を製造する場合に用いられるシ一ト状の絶縁基板 の一端部に不要領域部を形成した状態を示す上面図、
第 3 0図は同抵抗器を製造する場合に用いられるシ一ト状の絶縁基板 の両端部に不要領域部を形成した状態を示す上面図、
第 3 1図は同抵抗器を製造する場合に用いられるシ一ト状の絶縁基板 の 3つの端部に不要領域部を形成した状態を示す上面図、
第 3 2図は本発明の第 4の実施例における抵抗器を製造する場合に用 いられるシート状の絶縁基板の全周囲の端部に不要領域部を形成した状 態を示す上面図、
第第 33 33図図 ((aa)) 〜 (e) は同抵抗器の製造工程を示す断面図、 第 34図 ( a) (e) は同抵抗器の製造工程を示す平面図、 第 3 5図 (a) (c ) は同抵抗器の製造工程を示す断面図、 第 3 6図 ( a ) (c ) は同抵抗器の製造工程を示す平面図、 第 3 7図 (a) (c) は同抵抗器の製造工程を示す断面図、 第第 33 88図図 ((aa)) 〜 (c) は同抵抗器の製造工程を示す平面図、 第 3 9図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の一端部に不要領域部を形成した状態を示す上面図、
第' 40図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の両端部に不要領域部を形成した状態を示す上面図、
第 4 1図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の 3つの端部に不要領域部を形成した状態を示す上面図、
第 42図は本発明の第 5の実施例における抵抗器の製造方法により得 られた抵抗器の断面図、
第 43図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の全周囲の端部に不要領域部を形成した状態を示す上面図、
第 44図 (a) 〜 ( f ) は同抵抗器の製造工程を示す断面図、 第 45図 (a) ( f ) は同抵抗器の製造工程を示す平面図、 第 46図 (a) (d) は同抵抗器の製造工程を示す断面図、 第 47図 (a) (d) は同抵抗器の製造工程を示す平面図、 第第 4488図図 ((aa)) 〜 (c) は同抵抗器の製造工程を示す断面図、 第 49図 (a) (c ) は同抵抗器の製造工程を示す平面図、 第 5 0図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の一端部に不要領域部を形成した状態を示す上面図、
第 5 1図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の両端部に不要領域部を形成した状態を示す上面図、
第 5 2図は同抵抗器を製造する場合に用いられるシート状の絶縁基板 の 3つの端部に不要領域部を形成した状態を示す上面図、
第 5 3図は従来の抵抗器の断面図、
第 54図 (a) 〜 ( f ) は従来の抵抗器の製造工程を示す斜視図であ る。 発明を実施するための最良の形態
(第 1の実施例)
以下、 本発明の第 1の実施例における抵抗器およびその製造方法につ いて、 図面を参照しながら説明する。
第 1図は本発明の第 1の実施例における抵抗器の断面図である。 第 1図において、 1 1は焼成済みの 9 6 %純度のアルミナからなるシ —ト状の絶縁基板をスリット状の第 1の分割部とこの第 1の分割部と直 交関係にある第 2の分割部で分割することにより個片化された個片状基 板である。 1 2は個片状基板 1 1の上面に形成された銀を主成分とする 一対の上面電極層である。 1 3は一対の上面電極層 1 2に一部が重なる ように個片状基板 1 1の上面に形成された酸化ルテニウム系の抵抗層で ある。 1 4は抵抗層 1 3の上面に形成されたプリコートガラス層からな る第 1の保護層である。 1 5は一対の上面電極層 1 2間の抵抗層 1 3の 抵抗値を修正するために設けられたトリミング溝である。 1 6はブリコ —トガラス層からなる第 1の保護層 1 4を覆うように形成された樹脂を 主成分とする第 2の保護層である。 1 7は一対の上面電極層 1 2の一部 に重なるとともに、 個片状基板 1 1の両側面および裏面の両端部を覆う ように形成されたニッケルからなる一対の側面電極層である。 1 8は一 対の側面電極層 1 7および一対の上面電極層 1 2の一部を覆うように形 成されたスズからなるはんだ層である。
以上のように構成された本発明の第 1の実施例における抵抗器につい て、 次にその製造方法を図面を参照しながら説明する。
第 2図は本発明の第 1の実施例における抵抗器を製造する場合に用い られるシート状の絶縁基板の全周囲の端部に不要領域部を形成した状態 を示す上面図、 第 3図 (a) 〜 (e) 、 第 4図 (a) 〜 (e) 、 第 5図 (a) 〜 (d) 、 第 6図 ( a) 〜 (d) 、 第 7図 (a) 〜 (c) および 第 8図 (a) 〜 (c) は本発明の第 1の実施例における抵抗器の製造方 法を示す工程図である。
まず、 第 2図、 第 3図 (a) 、 第 4図 (a) に示すように、 ^成済み の 9 6 %純度のアルミナからなる厚み 0. 2 mmの絶縁性を有するシ一 ト状の絶縁基板 2 1を準備する。 この場合、 シート状の絶縁基、板 2 1は、 第 2図に示すように、 全周囲の端部に最終的には製品とならない不要領 域部 2 1 aを有しているものである。 そしてこの不要領域部 2 1 aは略 口字状に構成されているものである。
次に第 2図、 第 3図 (b) 、 第 4図 (b) に示すように、 シート状の 絶縁基板 2 1の上面にスクリーン印刷工法により銀を主成分とする複数 対の上面電極層 2 2を形成し、 ピーク温度 8 5 0 °Cの焼成プロファイル で焼成することにより、 上面電極層 2 2を安定な膜とした。
次に、 第 2図、 第 3図 (c) 、 第 4図 (c ) に示すように、 複数対の 上面電極層 2 2を跨ぐように、 スクリーン印刷工法により酸化ルテニゥ ム系の複数の抵抗層 2 3を形成し、 ピーク温度 8 5 0 °Cの焼成プロファ ィルで焼成することにより、 抵抗層 2 3を安定な膜とした。
次に、 第 3図、 第 4図 (d) に示すように、 複数の抵抗層 2 3を覆う ように、 スクリーン印刷工法により複数のプリコートガラス層からなる 第 1の保護層 24を形成し、 ピーク温度 6 0 0 °Cの焼成プロファイルで 焼成することにより、 プリコートガラス層からなる第 1の保護層 24を 安定な膜とした。
次に、 第 3図 (e) 、 第 4図 (e) に示すように、 複数対の上面電極 層 2 2間の抵抗層 2 3の抵抗値を一定の値に調整するために、 レーザー トリミング工法により トリミングを行い、 複数のトリミング溝 2 5を形 成した。
次ヒ、 第 5図 (a ) 、 第 6図 (a ) に示すように、 図面上の縦方向に 並ぶ複数のプリコートガラス層からなる第 1の保護層 2 4を覆うように, スクリーン印刷工法により樹脂を主成分とする複数の第 2の保護層 2 6 を形成し、 ピーク温度 2 0 0 °Cの硬化プロファイルで硬化することによ り、 第 2の保護層 2 6を安定な膜とした。
次に、 第 5図 (b ) 、 第 6図 (b ) に示すように、 複数の第 2の保護 層 2 6を覆うように、 スクリーン印刷工法により複数の第 1レジスト層 2 7を形成し、紫外線硬化により第 1 レジスト層 2 7を安定な膜とした。 さらにスクリーン印刷工法により、 シ一ト状の絶縁基板 2 1の裏面上に 複数の第 2レジスト層 2 8を形成し、 紫外線硬化により第 2レジスト層 2 8を安定な膜とした。
次に、 第 2図、 第 5図 (c ) 、 第 6図 (c ) に示すように、 第 1レジ スト層 2 7および第 2レジスト層 2 8を形成したシート状の絶縁基板 2 1の全周囲の端部に形成された不要領域部 2 1 aを除いて、 複数対の上 面電極層 2 2を分離して複数の短冊状基板 2 1 bに分割するためのスリ ット状の第 1の分割部 2 9をダイシング工法により複数形成する。 この 場合、 複数のスリッ ト状の第 1の分割部 2 9は 7 0 0 z mピッチで形成 されており、 かっこのスリット状の第 1の分割部 2 9の幅は 1 2 0 x m 幅となっている。 また前記複数のスリッ ト状の第 1の分割部 2 9は、 シ ート状の絶縁基板 2 1を上下方向に貫通する貫通孔で形成されているも のである。 そしてまた前記シート状の絶縁基板 2 1は、 不要領域部 2 1 aを除いてダイシング工法により複数のスリット状の第 1の分割部 2 9 を形成しているため、 スリット状の第 1の分割部 2 9を形成した後も複 数の短冊状基板 2 1 bは不要領域部 2 1 aにつながっているため、 シー ト状態を呈しているものである。
次に、 第 5図 (d ) 、 第 6図 (d ) に示すように、 めっき浴に浸漬し てめつきを行う無電解めつき工法を用いて、 シート状の絶縁基板 2 1の 全面にニッケルめっきを施し、 厚みが約 4〜 6 z mの側面電極層 3 0を 形成する。 この場合、 複数のスリッ ト状の第 1の分割部 2 9が、 シ一卜 状の絶縁基板 2 1を上下方向に貫通する貫通孔で形成されているため、 シート状の絶縁基板 2 1の全面に無電解めつき工法でニッケルめっきを 施すことにより側面電極層 3 0を形成した場合、 側面電極層 3 0はシー ト状の絶縁基板 2 1の上面側から貫通孔となっているスリット状の第 1 の分割部 2 9の内面全体を経てシート状の絶縁基板 2 1の裏面側まで形 成されるものである。 またこの側面電極層 3 0は、 シート状の絶縁基板 2 1の上面側では露出している上面電極層 2 2の一部と第 1レジスト層 2 7を覆うように形成され、 かつシート状の絶縁基板 2 1の裏面側では 第 2レジスト層 2 8を覆うように形成されるものである。
次に、 第 7図 (a ) 、 第 8図 (a ) に示すように、 複数の第 1 レジス ト層 (図示せず) および複数の第 2レジスト層 (図示せず) を剥離し、 複数対の側面電極層 3 0をパターンニングする。
次に、 第 7図 (b ) 、 第 8図 (b ) に示すように、 電気めつき工法を 用いて、 露出している複数対の側面電極層 ·3 0と、 複数の第 1レジスト 層 (図示せず). を剥離したことにより露出した複数対の上面電極層 2 2 の一部とを覆うように、 厚みが約 4〜 6 mのスズからなる複数対のは んだ層 3 1を形成する。
上記側面電極層 3 0の厚みは約 4〜 6 の厚みとなっているが、 こ の範囲に限定されるものではなく、 その厚みは 1〜 1 5 z mの厚みが妥 当であり、 またこの側面電極層 3 0は無電解めつき工法を用いてニッケ ルめっきを施すことにより構成しているため、 磁性を有しない形となる もので、 このような構成においては、 非常に寸法精度の高いものが得ら れるとともに、 自動美装機の吸着ピンで抵抗器を吸着して実装する場合 に、 吸着時の安定性が向上して高い実装率を確保できるものである。 また上記はんだ層 3 1はスズで構成しているが、 これに限定されるも のではなく、 スズ合金系の材料でもよく、 これらの材料で構成した場合 は、 リフローはんだ付け時に安定したはんだ付けができるものである。 そしてまた上記上面電極層 2 2は銀系の材料で構成するとともに、 抵 抗層 2 3は酸化ルテニウム系の材料で構成しているため、 耐熱性および 耐久性に優れた抵抗特性を確保できるものである。
さらに上記抵抗層 2 3等を覆う保護層は、 抵抗層 2 3を覆うブリコ一 トガラス層からなる第 1の保護層 2 4と、 この第 1の保護層 2 4を覆う とともに、 トリミング溝 2 5を覆う樹脂を主成分とする第 2の保護層 2 6の 2層で構成しているため、 前記第 1の保護層 2 4でレーザートリミ ング時のクラックの発生を防止して電流雑音を小さくできるとともに、 前記樹脂を主成分とする第 2の保護層 2 6で抵抗層 2 3全体が覆われる ことにより耐湿性に優れた抵抗特性を確保できるものである。
最後に、 第 2図、 第 7図 (c ) 第 8図 (c ) に示すように、 シート 状の絶縁基板 2 1の全周囲の端部に形成された不要領域部 2 1 aを除い て、 シート状の絶縁基板 2 1における複数の短冊状基板 2 1 bに、 複数 の抵抗層 2 3が個々に分離されて個片状基板 2 1 cに分割されるように スリット状の第 1の分割部 2 9と直交する方向にダイシング工法を用い て複数の第 2の分割部 3 2を形成する。 この場合、 複数の第 2の分割部 3 2は 4 0 0 ピッチで形成されており、 かっこの第 2の分割部 3 2 の幅は 1 0 0 x m幅となっている。 そしてこの複数の第 2の分割部 3 2 は不要領域部 2 1 aを除いて複数の短冊状基板 2 l bにダイシング工法 により形成するようにしているため、 この複数の第 2の分割部 3 2を形 成する毎に個片状基板 2 1 cに切断分割され、 そして個片化された製品 は不要領域部 2 1 aから分離されるものである。
以上のような工程により、 本発明の第 1の実施例における抵抗器は製 造されるものである。
上記工程により製造した抵抗器の長さ寸法および幅寸法はダイシング 工法により形成されたスリット状の第 1の分割部 2 9および第 2の分割 部 3 2の間隔が正確 (± 0 . 0 0 5 mm以内) であるとともに、 側面電 極層 3 0およびはんだ層 3 1の厚みも正確であるため、 製品である抵抗 器の全長および全幅は、 正確に長さ 0 . 6 mm X幅 0 . 3 mmとなるも のである。 また上面電極層 2 2および抵抗層 2 3のパターン精度も個片 状基板の寸法ランク分類が不要であるとともに同一の個片状基板の寸法 ランク内での寸法ばらつきを考慮する必要がないため、 抵抗層 2 3の有 効面積も従来品に比べて大きくとることができるものである。すなわち、 従来品における抵抗層は長さ約 0 . 2 0 mm X幅 0 . 1 9 mmであった のに対し、 本発明の第 1の実施例における抵抗器の抵抗層 2 3は長さ約 0 . 2 5 111 111 幅0 . 2 4 mmとなって面積では約 1 . 6倍以上となる ものである。
上記複数のスリッ卜状の第 1の分割部 2 9および複数の第 2の分割部 3 2はダイシング工法を用いて形成しているため、 個片状基板の寸法分 類が不要なシート状の絶縁基板 2 1を用いることができ、 これにより、 従来のような個片状基板の寸法分類は不要となるため、 従来のようなマ スク交換による工程の煩雑さをなくすることができるとともに、 ダイシ ングも半導体等で一般的なダイシング設備を用いて容易に行うことがで きるものである。
また上記シート状の絶縁基板 2 1は全周囲の端部に最終的には製品と ならない不要領域部 2 1 aを形成し、 かつ複数のスリット状の第 1の分 割部 2 9および複数の第 2の分割部 3 2は前記不要領域部 2 1 aには形 成しないようにしているため、 複数のスリット状の第 1の分割部 2 9を 形成した後も複数の短冊状基板 2 l bは不要領域部 2 1 aにつながって おり、 そのため、 シート状の絶縁基板 2 1が複数の短冊状基板 2 1 bに 細かく分離されるということはなく、 したがって、 複数のスリット状の 第 1の分割部 2 9を形成した後も、 不要領域部 2 1 aを有するシ一卜状 'の絶縁基板 2 1の状態で後工程を行うことができるため、 工法設計が簡 略化できるものである。 また複数の第 2の分割部 3 2を形成すると、 こ の複数の第 2の分割部 3 2を形成する毎に偭片状基板 2 1 cに切断分割 され、そして個片化された製品は不要領域部 2 1 aから分離されるため、 不要領域部 2 1 aと製品とを後で選別するという工程は不要となるもの である。
そしてまた複数対の側面電極層 3 0および複数対のはんだ層 3 1はシ ート状の絶縁基板 2 1の状態で形成するようにしているため、 側面電極 層 3 0をシート状の絶縁基板 2 1に形成することができるとともに、 電 気めつき工法によりはんだ層 3 1を形成する際には電位差を小さくする ことができ、 これにより、 安定したはんだ層 3 1を形成できるものであ る。
なお、 上記本発明の第 1の実施例においては、 最終的には製品となら ない不要領域部 2 1 aをシート状の絶縁基板 2 1の全周囲の端部に形成 して略口字状に構成したものについて説明したが、 この不要領域部 2 1 aはシート状の絶縁基板 2 1の全周囲の端部に必ずしも形成する必要は なく、 例えば、 第 9図に示すようにシート状の絶縁基板 2 1の一端部に 不要領域部 2 1 dを形成した場合、 第 1 0図に示すようにシート状の絶 縁基板 2 1の両端部に不要領域部 2 1 eを形成した場合、 第 1 1図に示 すようにシ一ト状の絶縁基板 2 1の 3つの端部に不要領域部 2 1 f を形 成した場合においても、 上記本発明の第 1の実施例と同様の作用効果を 奏するものである。
また上記本発明の第 1の実施例においては、 複数の第 2の分割部 3 2 をダイシング工法により形成したものについて説明したが、これ以外に、 例えば、 この複数の第 2の分割部 3 2をシート状の絶縁基板 2 1の裏面 側、 上面側、 中央部のいずれかに薄肉部を残してシート状の絶縁基板 2 1の上面側、 裏面側、 中央部のいずれかをレーザー工法、 ダイシングェ 法等で切断することにより形成してもよく、 これらの場合は、 第 2の分 割部 3 2を形成する毎に個片化されるのではなく、 2段階で個片化され るものである。
そしてまた上記本発明の第 1の実施例においては、 第 1レジスト層 2 7および第 2レジスト層 2 8を形成した後に、 スリット状の第 1の分割 部 2 9を形成したが、第 1 レジスト層 2 7および第 2レジスト層 2 8は、 スリット状の第 1の分割部 2 9を形成した後に形成してもよいものであ る。 但し、 このようにスリット状の第 1の分割部 2 9を形成した後に第 1レジスト層 2 7および第 2レジスト層 2 8をスクリーン印刷する場合 には、 シート状の絶縁基板 2 1の強度が弱くなるため、 スクリーン印刷 時の印圧を弱くする必要がある。
さらに第 2レジスト層 2 8はプリコートガラス層からなる第 1の保護 層 2 4を形成した直後に形成しても本発明の第 1の実施例と同様の効果 が得られるものである。
さらにまた上記本発明の第 1の実施例においては、 第 1 レジスト層 2 7および第 2レジスト層 2 8の剥離は、 はんだ層 3 1の形成前に行った が、 これははんだ層 3 1の形成後も可能である。
また上記本発明の第 1の実施例においては、 上面電極層 2 2として銀 系の材料を用い、 かつ抵抗層 2 3として酸化ルテニウム系の材料を用い たが、 これらは他の材料系でも本発明の第 1の実施例と同様の効果を得 ることができるものである。
そしてまた上記本発明の第 1の実施例においては、 スリット状の第 1 の分割部 2 9および第 2の分割部 3 2をダイシング工法を用いて形成し たものについて説明したが、 このダイシング工法以外に、 レーザーゃゥ オータージエツト等の分割部形成手段を用いてスリッ卜状の第 1の分割 部 2 9および第 2の分割部 3 2を形成するようにした場合で 、 上記本 発明の第 1の実施例と同様の作用効果を奏するものである。
さらに上記本発明の第 1の実施例においては、 個片状基板 1 1の上面 に一対の上面電極層 1 2を形成し、 その後、 この一対の上面電極層 1 2 に一部が重なるように抵抗層 1 3を形成したものについて説明したが、 これとは逆に個片状基板 1 1の上面に抵抗層 1 3を形成し、 その後、 こ の抵抗層 1 3に一部が重なるように一対.の上面電極層 1 2を形成した場 合でも、 上記本発明の第 1の実施例と同様の作用効果を奏するものであ る。
さらにまた上記本発明の第 1の実施例においては、 複数の短冊状基板 2 1 bに分割するためのスリット状の第 1の分割部 2 9を複数形成する 場合、 複数対の上面電極層 2 2、 複数の抵抗層 2 3、 複数の第 1の保護 層 2 4、 複数のトリミング溝 2 5、 複数の第 2の保護層 2 6、 複数の第 1レジスト層 2 7、 複数の第 2レジスト層 2 8を形成したシ一ト状の絶 縁基板 2 1にスリット状の第 1の分割部 2 9を複数形成するようにした ものについて説明したが、 これに限定されるものではなく、 例えば、 こ れ以外に、 シート状の絶縁基板 2 1に、 最初にスリット状の第 1の分割 部 2 9を複数形成するようにした場合、 スリット状の第 1の分割部 2 9 をあらかじめ複数形成したシ一ト状の絶縁基板 2 1 .を用いた場合、 シ一 ト状の絶縁基板 2 1に複数対の上面電極層 2 2を形成した後、 このシ一 ト状の絶縁基板 2 1にスリット状の第 1の分割部 2 9を複数形成するよ うにした場合、 シート状の絶縁基板 2 1に複数の抵抗層 2 3を形成した 後、 このシ一卜状の絶縁基板 2 1にスリット状の第 1の分割部 2 9を複 数形成するようにした場合、 シート状の絶縁基板 2 1に複数対の上面電 極層 2 2を形成し、 かっこの複数対の上面電極層 2 2に一部が重なるよ うに複数の抵抗層 2 3を形成した後、 この,シ一ト状の絶縁基板 2 1にス リッ ト状の第 1の分割部 2 9を複数形成するようにした場合、 シート状 の絶縁基板 2 1に複数の抵抗層 2 3を形成し、 かっこの複数の抵抗層 2 3に一部が重なるように複数対の上面電極層 2 2を形成した後、 このシ ―ト状の絶縁基板 2 1にスリット状の第 1の分割部 2 9を複数形成する ようにした場合、 シート状の絶縁基板 2 1に複数対の上面電極層 2 2、 複数の抵抗層 2 3を形成し、 かっこの複数の抵抗層 2 3における前記複 数対の上面電極層 2 2間の抵抗値を調整するためにトリミングを行った 後、 このシ一卜状の絶縁基板 2 1にスリット状の第 1の分割部 2 9を形 成するようにした場合においても、 上記本発明の第 1の実施例と同様の 効果を奏するものである。
(第 2の実施例)
以下、 本発明の第 2の実施例における抵抗器の製造方法を図面を参照 しながら説明する。
第 1 2図は本発明の第 2の実施例における抵抗器を製造する場合に用 いられるシート状の絶縁基板の全周囲の端部に不要領域部を形成した状 態を示す上面図、 第 1 3図 ( a) 〜 (e) 、 第 14図 (a) 〜 (e) 、 第 1 5図 (a) 〜 (d) 、 第 1 6図 (a) 〜 (d) 、 第 1 7図 (a) 〜 (c ) および第 1 8図 (a) 〜 (c ) は本発明の第 2の実施例における 抵抗器の製造方法を示す工程図である。
まず、 第 1 2'図、 第 1 3図 (a) 、 第 1 4図 (a) に示すように、 焼 成済みの 9 6 %純度のアルミナからなる厚み 0. 2 mmの絶縁性を有す るシート状の絶縁基板 4 1を準備する。 この場合、 シート状の絶縁基板 41は、 第 1 2図に示すように、 全周囲の端部に最終的には製品となら ない不要領域部 4 1 aを有しているものである。 そしてこの不要領域部 4 1 aは略口字状に構成されているものである。
次に第 1 2図、 第 1 3図 (b) 、 第 1 4図 (b) に示すように、 シー ト状の絶縁基板 4 1の上面にスクリーン印刷工法により銀を主成分とす る複数対の上面電極層 42を形成し、 ピーク温度 8 5 0 °Cの焼成プロフ アイルで焼成することにより、 上面電極層 42を安定な膜とした。
次に、 第 1 2図、 第 1 3図 (c) 、 第 14図 (c ) に示すように、 複 数対の上面電極層 42を跨ぐように、 スクリーン印刷工法により酸化ル テニゥム系の複数の抵抗層 4 3を形成し、 'ピーク温度 8 5 0 °Cの焼成プ 口ファイルで焼成することにより、 抵抗層 43を安定な膜とした。
次に、 第 1 3図 (d) 、 第 1 4図 (d) に示すように、 複数の抵抗層 43を覆うように、 スクリーン印刷工法により複数のプリコートガラス 層からなる第 1の保護層 44を形成し、 ピーク温度 6 0 0 °Cの焼成プロ ファイルで焼成することにより、 プリコートガラス層からなる第 1の保 護層 4 4を安定な膜とした。 ·
次に、 第 1 3図 (e ) 、 第 1 4図 (e ) に示すように、 複数対の上面 電極層 4 2間の抵抗層 4 3の抵抗値を一定の値に調整するために、 レ一 ザ一トリミング工法により トリミングを行い、 複数のトリミング溝 4 5 を形成した。
次に、 第 1 5図 (a ) 、 第 1 6図 (a ) に示すように、 図面上の縦方 向に並ぶ複数のプリコー卜ガラス層からなる第 1の保護層 4 4を覆うよ うに、 スクリーン印刷工法により樹脂を主成分とする複数の第 2の保護 層 4 6を形成し、 ピーク温度 2 0 0 °Cの硬化プロファイルで硬化するこ とにより、 第 2の保護層 4 6を安定な膜とした。
次に、 第 1 5図 (b ) 、 第 1 6図 (b ) に示すように、 スクリーン印 刷工法により、 シート状の絶縁基板 4 1の裏面上に複数のレジスト層 4 7を形成し、 紫外線硬化によりレジスト層 4 7を安定な膜とした。
次に、 第 1 2図、 第:! 5図 (c ) 、 第 1 6図 (c ) に示すように、 レ ジスト層 4 7を形成したシート状の絶縁基板 4 1の全周囲の端部に形成 された不要領域部 4 1 aを除いて、 複数対の上面電極層 4 を分離して 複数の短冊状基板 4 1 bに分割するためのスリッ卜状の第 1の分割部 4 8をダイシング工法により複数形成する。 この場合、 複数のスリット状 の第 1の分割部 4 8は 7 0 0 mピッチで形成されており、 かっこのス リット状の第 1の分割部 4 8の幅は 1 2 0 m幅となっている。 また前 記複数のスリッ 卜状の第 1の分割部 4 8は、 シ一ト状の絶縁基板 4 1を 上下方向に貫通する貫通孔で形成されているものである。 そしてまた前 記シート状の絶縁基板 4 1は、 不要領域部 4 1 aを除いてダイシングェ 法により複数のスリツト状の第 1の分割部 4 8を形成しているため、 ス リット状の第 1の分割部 4 8を形成した後も複数の短冊状基板 4 1 bは 不要領域部 4 1 aにつながっているため、 シート状態を呈しているもの である。
次に、 第 1 5図 (d ) 、 第 1 6図 (cl ) に示すように、 スパッタエ法 を用いて、 シート状の絶縁基板 4 1の裏面および複数のスリット状の第 1の分割部 4 8の内面にニッケルまたはニッケル系合金、 例えばニッケ ルークロム合金による厚みが約 0 . 1〜 1 mの側面電極層 4 9を形成 する。 この場合、 複数のスリット状の第 1の分割部 4 8の内面に形成さ れた側面電極層 4 9は、 シート状の絶縁基板 4 1の上面に形成された上 面電極層 4 2に接して電気的に接続されるものである。
次に、 第 1 7図 (a ) 、 第 1 8図 (a ) に示すように、 複数のレジス ト層 (図示せず) を剥離し、 複数対の側面電極層 4 9をパターンニング する。
次に、 第 1 7図 (b ) 、 第 1 8図 (b ) に示すように、 電気めつきェ 法を用いて、 露出している複数対の側面電極層 4 9および複数のレジス ト層 (図示せず) を剥離したことにより露出した複数対の上面電極層 4 2の一部を覆うように、 厚みが約 4〜 6 mのニッケルからなる複数対 のニッケル層 5 0と厚みが約 4〜 6 Ai mのスズからなる複数対のはんだ 層 5 1を形成する。
上記スパッ夕工法により形成される側面電極層 4 9の厚みは約 0 . 1 ~ 1 mの厚みとなっているが、 この範囲に限定されるものではなく、 ニッケル層 5 0およ'びはんだ層 5 1を加えた厚みは 1〜 1 5 mの厚み が妥当である。
また上記はんだ層 5 1はスズで構成しているが、 これに限定されるも のではなく、 スズ合金系の材料でもよく、 これらの材料で形成した場合 は、 リフローはんだ付け時に安定したはんだ付けができるものである。 そしてまた上記上面電極層 4 2は銀系の材料で構成するとともに、 抵 抗層 4 3は酸化ルテニウム系の材料で構成しているため、 耐熱性および 耐久性に優れた抵抗特性を確保できるものである。
' さらに上記抵抗層 4 3等を覆う保護層は、 抵抗層 4 3を覆うブリコ一 卜ガラス層からなる第 1の保護層 4 4と、 この第 1の保護層 4 4を覆う とともに、 トリミング溝 4 5を覆う樹脂を主成分とする第 2の保護層 4 6の 2層で構成しているため、 前記第 1の保護層 4 4でレーザートリミ ング時のクラックの発生を防止して電流雑音を小さくできるとともに、 前記樹脂を主成分とする第 2の保護麿 4 6で抵抗層 4 3全体が覆われる ことにより耐湿性に優れた抵抗特性を確保できるものである。
最後に、 第 1 2図、 第 1 7図 (c ) 、 第 1 8図 (c ) に示すように、 シート状の絶縁基板 4 1の全周囲の端部に形成された不要領域部 4 1 a を除いて、シート状の絶縁基板 4 1における複数の短冊状基板 4 1 に、 複数の抵抗層 4 3が個々に分離されて偭片状基板 4 1 cに分割されるよ うにスリット状の第 1の分割部 4 8と直交する方向にダイシング工法を 用いて複数の第 2の分割部 5 2を形成する。 この場合、 複数の第 2の分 割部 5 2は 4 0 0 mピッチで形成されており、 かっこの第 2の分割部 5 2の幅は 1 0 0 幅となっている。 そしてこの複数の第 2の分割部 5 2は不要領域部 4 1 aを除いて複数の短冊状基板 4 1 bにダイシング 工法により形成するようにしているため、 この複数の第 2の分割部 5 2 を形成する毎に個片状基板 4 1 cに切断分割され、 そして個片化された 製品は不要領域部 4 1 aから分離されるものである。
以上のような工程により、 本発明の第 2の実施例における抵抗器は製 造されるものである。
上記工程により製造した抵抗器の長さ寸法および幅寸法はダイシング 工法により形成されたスリッ卜状の第 1の分割部 4 8および第 2の分割 部 5 2の間隔が正確 (± 0 . 0 0 5 mm以内) であるとともに、 側面電 極層 4 9、ニッケル層 5 0およびはんだ層 5 1の厚みも正確であるため、 製品である抵抗器の全長および全幅は、 正確に長さ 0 . 6 111111ズ幅0 . 3 mmとなるものである。 また上面電極層 4 2および抵抗層 4 3のパ夕 ーン精度も個片状基板の寸法ラング分類が不要であるとともに同一の個 片状基板の寸法ランク内での寸法ばらつきを考慮する必要がないため、 抵抗層 4 3の有効面積も従来品に比べて大きくとることができるもので ある。 すなわち、 従来品における抵抗層は長さ約 0 . 2 0 mm X幅 0 . 1 9 mmであったのに対し、 本発明の第 2の実施例における抵抗器の抵 抗層 4 3は長さ約 0 . 2 5 01 ]11 幅0 . 2 4 mmとなって面積では約 1 . 6倍以上となるものである。
上記複数のスリッ ト状の第 1の分割部 4 8および複数の第 2の分割部 5 2はダイシング工法を用いて形成しているため、 個片状基板の寸法分 類が不要なシート状の絶縁基板 4 1を用いることができ、 これにより、 従来のような個片状基板の寸法分類は不要となるため、 従来のようなマ スク交換'による工程の煩雑さをなくすることができるとともに、 ダイシ ングも半導体等で一般的なダイシング設備を用いて容易に行うことがで きるものである。
また上記シート状の絶縁基板 4 1は全周囲の端部に最終的には製品と ならない不要領域部 4 1 aを形成し、 かつ複数のスリット状の第 1の分 割部 4 8および複数の第 2の分割部 5 2は前記不要領域部 4 1 aには形 成しないようにしているため、 複数のスリット状の第 1の分割部 4 8を 形成した後も複数の短冊状基板 4 1 bは不要領域部 4 1 aにつながって おり、 そのため、 シート状の絶縁基板 4 1が複数の短冊状基板 4 1 bに 細かく分離されるとい.うことはなく、 したがって、 複数のスリット状の 第 1の分割部 4 8を形成した後も、 不要領域部 4 1 aを有するシート状 の絶縁基板 4 1の状態で後工程を行うことができるため、 工法設計が簡 略化できるものである。 また複数の第 2の分割部 5 2を形成すると、 こ の複数の第 2の分割部 5 2を形成する毎に個片状基板 4 1 cに切断分割 され、そして個片化された製品は不要領域部 4 1 aから分離されるため、 不要領域部 4 1 aと製品とを後で選別するという工程は不要となるもの である。
そしてまた複数対の側面電極層 4 9、 ニッケル層 5 0および複数対の はんだ層 5 1はシート状の絶縁基板 4 1の状態で形成するようにしてい るため、 側面電極層 4 9をシート状の絶縁基板 4 1の必要箇所に形成す ることができるとともに、 電気めつき工法によりニッケル層 5 0および はんだ層 5 1を形成する際には電位差を小さくすることができ、 これに より、 安定したニッケル層 5 0およびはんだ層 5 1を形成できるもので ある。
なお、 上記本発明の第 2の実施例においては、 最終的には製品となら ない不要領域部 4 1 aをシート状の絶縁基板 4 1の全周囲の端部に形成 して略口字状に構成したものについて説明したが、 この不要領域部 4 1 aはシート状の絶縁基板 4 1の全周囲の端部に必ずしも形成する必要は なく、 例えば、 第 1 9図に示すようにシート状の絶縁基板 4 1の一端部 に不要領域部 4 1 dを形成した場合、 第 2 0図に示すようにシート状の 絶縁基板 4 1の両端部に不要領域部 4 1 eを形成した場合、 第 2 1図に 示すようにシ一卜状の絶縁基板 4 1の 3つの端部に不要領域部 4 1 f を 形成した場合においても、 上記本発明の第 2の実施例と同様の作用効果 を奏するものである。 また上記本発明の第 2の実施例においては、 複数の第 2の分割部 5 2 をダイシング工法により形成したものについて説明したが、これ以外に、 例えば、 この複数の第 2の分割部 5 2をシート状の絶縁基板 4 1の裏面 側、 上面側、 中央部のいずれかに薄肉部を残してシート状の絶縁基板 4 1の上面側、 裏面側、 中央部のいずれかをレーザ一工法、 ダイシングェ 法等で切断することにより形成してもよく、 これらの場合は、 第 2の分 割部 5 2を形成する毎に個片化されるのではなく、 2段階で個片化され るものである。
そしてまた上記本発明の第 2の実施例においては、 レジスト層 4 7 を 形成した後に、 スリット状の第 1の分割部 4 8を形成したが、 レジスト 層 4 7は、 スリッ卜状の第 1の分割部 4 8を形成した後に形成してもよ いものである。 但し、 このようにスリット状の第 1の分割部 4 8を形成 した後にレジス卜層 4 7をスクリーン印刷する場合には、 シート状の絶 縁基板 4 1の強度が弱くなるため、 スクリーン印刷時の印圧を弱くする 必要がある。
さらにレジスト層 4 7はプリコートガラス層からなる第 1の保護層 4 4を形成した直後に形成しても本発明の第 2の実施例と同様の効果が得 られるものである。
さらにまた上記本発明の第 2の実施例においては、 レジスト層 4 7の 剥離は、 ニッケル層 5 0およびはんだ層 5 1の形成前に行ったが、 これ はニッケル層 5 0およびはんだ層 5 1の形成後も可能である。
また上記本発明の第 2の実施例においては、 上面電極層 4 2として銀 系の材料を用い、 かつ抵抗層 4 3として酸化ルテニウム系の材料を用い たが、 これらは他の材料系でも本発明の第 2の実施例と同様の効果を得 ることができるものである。 そしてまた上記本発明の第 2の実施例においては、 スリット状の第 1 の分割部 4 8および第 2の分割部 5 2をダイシング工法を用いて形成し たものについて説明したが、 このダイシング工法以外に、 レーザ一ゃゥ オータージエツ ト等の分割部形成手段を用いてスリット状の第 1の分割 部 4 8および第 2の分割部 5 2を形成するようにした場合でも、 上記本 発明の第 2の実施例と同様の作用効果を奏するものである。
さらに上記本発明の第 2の実施例においては、 複数の短冊状基板 4 1 bに分割するためのスリット状の第 1の分割部 4 8を複数形成する場合, 複数対の上面電極層 4 2、複数の抵抗層 4 3、 複数の第 1の保護層 4 、 複数のトリミング溝 4 5、 複数の第 2の保護層 4 6、 複数のレジスト層 4 7を形成したシート状の絶縁基板 4 1にスリッ卜状の第 1の分割部 4 8を複数形成するようにしたものについて説明したが、 これに限定され るものではなく、 例えば、 これ以外に、 シート状の絶縁基板 4 1に、 最 初にスリッ ト状の第 1の分割部 4 8を複数形成するようにした場合、 ス リット状の第 1の分割部 4 8をあらかじめ複数形成したシート状の絶縁 基板 4 1を用いた場合、 シート状の絶縁基板 4 1に複数対の上面電極層 4 2を形成した後、 このシート状の絶縁基板 4 1にスリット状の第 1の 分割部 4 8を複数形成するようにした場合、 シート状の絶縁基板 4 1に 複数の抵抗層 4 3を形成した後、 このシート状の絶縁基板 4 1にスリッ ト状の第 1の分割部 4 8を複数形成するようにした場合、 シート状の絶 縁基板 4 1に複数対の上面電極層 4 2を形成し、 かっこの複数対の上面 電極層 4 2に一部が重なるように複数の抵抗層 4 3を形成した後、 この シート状の絶縁基板 4 1にスリット状の第 1の分割部 4 8を複数形成す るようにした場合、 シート状の絶縁基板 4 1に複数の抵抗層 4 3を形成 し、 かっこの複数の抵抗層 4 3に一部が重なるように複数対の上面電極 層 42を形成した後、 このシ一ト状の絶縁基板 4 1にスリット状の第 1 の分割部 4 8を複数形成するようにした場合、 シート状の絶縁基板 4 1 に複数対の上面電極層 42、 複数の抵抗層 43を形成し、 かっこの複数 の抵抗層 4 3における前記複数対の上面電極層 42間の抵抗値を調整す るためにトリミングを行った後、 このシ一卜状の絶縁基板 4 1にスリツ ト状の第 1の分割部 48を形成するようにした場合においても、 上記本 発明の第 2の実施例と同様の効果を奏するものである。
(第 3の実施例)
以下、 本発明の第 3の実施例における抵抗器の製造方法を図面を参照 しながら説明する。
第 2 2図は本発明の第 3の実施例における抵抗器を製造する場合に用 いられるシート状の絶縁基板の全周囲の端部に不要領域部を形成した状 態を示す上面図、 第 2 3図 (a) 〜 (e) 、 第 24図 (a) 〜 (e) 、 第 2 5図 ( a) 〜 (d) 、 第 2 6図 (a) 〜 (d) 、 第 2 7図 (a) 〜 (c) および第 2 8図 (a) 〜 (c) は本発明の第 3の実施例における 抵抗器の製造方法を示す工程図である。
まず、 第 2 2図、 第 2 3図 (a) 、 第 24図 (a) に示すように、 焼 成済みの 9 6 %純度のアルミナからなる厚み 0. 2 mmの絶縁性を有す るシート状の絶縁基板.6 1を準備する。 この場合、 シート状の絶縁基板 6 1は、 第 2 2図に示すように、 全周囲の端部に梟終的には製品となら ない不要領域部 6 1 aを有しているものである。 そしてこの不要領域部 6 1 aは略口字状に構成されているものである。
次に第 2 2図、 第 2 3図 (b) 、 第 24図 (b) に示すように、 シ一 ト状の絶縁基板 6 1の上面にスクリーン印刷工法により銀を主成分とす る複数対の上面電極層 6 2を形成し、 ピーク温度 8 5 0 °Cの焼成プロフ アイルで焼成することにより、 上面電極層 6 2を安定な膜とした。
次に、 第 2 2図、 第 2 3図 (c ) 、 第 24図 (c) に示すように、 複 数対の上面電極層 6 2を跨ぐように、 スクリーン印刷工法により酸化ル テニゥム系の複数の抵抗層 6 3を形成し、 ピーク温度 8 5 0 °Cの焼成プ 口ファイルで焼成することにより、 抵抗層 6 3を安定な膜とした。
次に、 第 2 3図 (d) 、 第 24図 (d) に示すように、 複数の抵抗層 6 3を覆うように、 スクリーン印刷工法により複数のプリコートガラス 層からなる第 1の保護層 64を形成し、 ピーク温度 6 0 0 °Cの焼成プロ ファイルで焼成することにより、 プリコートガラス層からなる第 1の保 護層 64を安定な膜とした。
次に、 第 2 3図 (e) 、 第 24図 (e) に示すように、 複数対の上面 電極層 6 2間の抵抗層 6 3の抵抗値を一定の値に調整するために、 レ一 ザ一トリミング工法により トリミングを行い、 複数のトリミング溝 6 5 を形成した。
次に、 第 2 5図 (a) 、 第 2 6図 (a) に示すように、 図面上の縦方 向に並ぶ複数のプリコートガラス層からなる第 1の保護層 64を覆うよ うに、 スクリーン印刷工法により樹 I旨を主成分とする複数の第 2の保護 層 6 6を形成し、 ピ一ク温度 2 0 0 °Cの硬化プロファイルで硬化するこ とにより、 第 2の保護層 6 6を安定な膜とした。
次に、 第 2 2図、 第 2 5図 (b) 、 第 2 6図 (b) に示すように、 シ ―ト状の絶縁基板 6 1の全周囲の端部に形成された不要領域部 6 1 aを 除いて、 複数対の上面電極層 6 2を分離して複数の短冊状基板 6 1 に 分割するためのスリット状の第 1の分割部 6 7をダイシング工法により 複数形成する。 この場合、 複数のスリッ ト状の第 1の分割部 6 7は 7 0 ,0 xmピッチで形成されており、 かっこのスリット状の第 1の分割部 6 7の幅は 1 2 0 m幅となっている。 また前記複数のスリッ卜状の第 1 の分割部 6 7は、 シート状の絶縁基板 6 1を上下方向に貫通する貫通孔 で形成されているものである。 そしてまた前記シート状の絶縁基板 6 1 は、 不要領域部 6 1 aを除いてダイシング工法により複数のスリツ ト状 の第 1の分割部 6 7を形成しているため、 スリット状の第 1の分割部 6 7を形成した後も複数の短冊状基板 6 l bは不要領域部 6 1 aにつなが つているため、 シ一ト状態を呈しているものである。
次に、 第 2 5図 (c ) 、 第 2 6図 (c) に示すように、 スリット状の 第 1の分割部 6 7が複数形成された状態のシート状の絶縁基板 6 1の裏 面に磁性金属からなるマスク 6 8を設置するとともに、 前記シート状の 絶縁基板 6 1の上面側に前記マスク 6 8を所定位置に固定するためのマ グネット 6 9を設置する。 次に、 第 2 5図 (d) 、 第 2 6図 (d) に示 すように、 この設置状態で、 スパッ夕工法を用いて、 シート状の絶縁基 板 6 1の裏面および複数のスリット状の第 1の分割部 6 7の内面にニッ ケルまたはニッケル系合金、 例えばニッケル—クロム合金による厚みが 約 0. 1〜 1 zmの複数対の側面電極層 7 0を形成する。 この場合、 複 数のスリッ ト状の第 1の分割部 6 7の内面に形成された側面電極層 7 0 は、 シート状の絶縁基板 6 1の上面に形成された上面電極層 6 2に接し て電気的に接続されるものである。
次に、 第 2 7図 (a) 、 第 2 8図 (a) に示すように、 マスク 6 8と マグネット 6 9を取り外す。
次に、 第 2 7図 (b) 、 第 2 8図 (b) に示すように、 電気めつきェ 法を用いて、 露出している複数対の側面電極層 7 0および複数対の上面 雩極層 6 2の一部を覆うように、 厚みが約 4〜 6 Ai mのニッケルからな る複数対のニッケル層 7 1と厚みが約 4〜 6 のスズからなる複数対 のはんだ層 7 2を形成する。
上記スパッ夕工法により形成される側面電極層 7 0の厚みは約 0 . 1 〜 1 mの厚みとなっているが、 この範囲に限定されるものではなく、 ニッケル層 7 1およびはんだ層 7 2を加えた厚みは 1〜 1 5 mの厚み が妥当である。
また上記はんだ層 7 2はスズで構成しているが、 これに限定されるも のではなく、 スズ合金系の材料でもよく、 これらの材料で形成した場合 は、 リフローはんだ付け時に安定したはんだ付けができるものである。 そしてまた上記上面電極層 6 2は銀系の材料で構成するとともに、 抵 抗層 6 3は酸化ルテニウム系の材料で構成しているため、 耐熱性および 耐久性に優れた抵抗特性を確保できるものである。
さらに上記抵抗層 6 3等を覆—う保護層は、 抵抗層 6 3を覆うブリコ一 トガラス層からなる第 1の保護層 6 4と、 この第 1の保護層 6 4を覆う とともに、 トリミング溝 6 5を覆う樹脂を主成分とする第 2の保護層 6 6の 2層で構成しているため、 前記第 1の保護層 6 4でレーザートリミ ング時のクラックの発生を防止して電流雑音を小さくできるとともに、 前記樹脂を主成分とする第 2の保護層 6 6で抵抗層 6 3全体が覆われる ことにより耐湿性に優れた抵抗特性.を確保できるものである。
最後に、 第 2 2図、 第 2 7図 (c ) 、 第 2 8図 (c ) に示すように、 シート状の絶縁基板 6 1の全周囲の端部に形成された不要領域部 6 1 a を除いて、シート状の絶縁基板 6 1における複数の短冊状基板 6 1 bに、 複数の抵抗層 6 3が個々に分離されて個片状基板 6 1 cに分割されるよ うにスリッ卜状の第 1の分割部 6 7と直交する方向にダイシング工法を 用いて複数の第 2の分割部 7 3を形成する。 この場合、 複数の第 2の分 割部 7 3は 4 0 0 mピッチで形成されており、 かっこの第 2の分割部 7 3の幅は 1 0 0 m幅となっている。 そしてこの複数の第 2の分割部 7 3は不要領域部 6 1 aを除いて複数の短冊状基板 6 1 bにダイシング 工法により形成するようにしているため、 この複数の第 2の分割部 7 3 を形成する毎に個片状基板 6 1 cに切断分割され、 そして個片化された 製品は不要領域部 6 1 aから分離されるものである。
以上のような工程により、 本発明の第 3の実施例における抵抗器は製 造されるものである。
上記工程により製造した抵抗器の長さ寸法および幅寸法はダイシング 工法により形成されたスリッ卜状の第 1の分割部 6 7および第 2の分割 部 7 3の間隔が正確 (± 0 . 0 0 5 mm以内) であるとともに、 側面電 極層 Ί 0、ニッケル層 7 1およびはんだ層 7 2の厚みも正確であるため、 製品である抵抗器の全長および全幅は、 芷確に長さ 0 . 6 111111 幅0 . 3 mmとなるものである。 また上面電極層 6 2および抵抗層 6 3のパ夕 —ン精度も偭片状基板の寸法ランク分類が不要であるとともに同一の個 片状基板の寸法ランク内での寸法ばらつきを考慮する必要がないため、 抵抗層 6 3の有効面積も従来品に比べて大きくとることができるもので ある。 すなわち、 従来品における抵抗層は長さ約 0 . 2 0 mm X幅 0 . 1 9 mmであったのに対し、 本発明の第 3の実施例における抵抗器の抵 抗層 6 3は長さ約 0 . 2 5 111 11 ズ幅0 . 2 4 mmとなって面積では約 1 . 6倍以上となるものである。
上記複数のスリッ ト状の第 1の分割部 6 7および複数の第 2の分割部 7 3はダイシング工法を用いて形成しているため、 個片状基板の寸法分 類が不要なシ一卜状の絶縁基板 6 1を用いることができ、 これにより、 従来のような個片状基板の寸法分類は不要となるため、 従来のようなマ スク交換による工程の煩雑さをなくすることができるとともに、 ダイシ ングも半導体等で一般的なダイシング設備を用いて容易に行うことがで ' きるものである。
また上記シート状の絶縁基板 6 1は全周囲の端部に最終的には製品と ならない不要領域部 6 1 aを形成し、 かつ複数のスリツ ト状の第 1の分 割部 6 7および複数の第 2の分割部 7 3は前記不要領域部 6 1 aには形 成しないようにしているため、 複数のスリット状の第 1の分割部 6 7を 形成した後も複数の短冊状基板 6 l bは不要領域部 6 1 aにつながって おり、 そのため、 シート状の絶縁基板 6 1が複数の短冊状基板 6 1 に 細かく分離されるということはなく、 したがって、 複数のスリッ ト状の 第 1の分割部 6 7を形成した後も、 不要領域部 6 1 aを有するシート状 の絶縁基板 6 1の状態で後工程を行うことができるため、 工法設計が簡 略化できるものである。 また複数の第 2の分割部 7 3を形成すると、 こ の複数の第 2の分割部 7 3を形成する毎に個片状基板 6 1 cに切断分割 され、そして個片化された製品は不要領域部 6 1 aから分離されるため、 不要領域部 6 1 aと製品とを後で選別するという工程は不要となるもの である。
そしてまた複数対の側面電極層 7 0、 ニッケル層 7 1および複数対の はんだ層 7. 2はシ一ト状の絶縁基板 6 1の状態で形成するようにしてい るため、 側面電極層 7 0をシート状の絶縁基板 6 1の必要箇所に形成す ることができるとともに、 電気めつき工法によりニッケル層 7 1および はんだ層 7 2を形成する際には電位差を小さくすることができ、 これに より、 安定したニッケル層 7 1およびはんだ層 7 2を形成できるもので ある。
なお、 上記本発明の第 3の実施例においては、 最終的には製品となら ない不要領域部 6 aをシート状の絶縁基板 6 1の全周囲の端部に形成 して略口字状に構成したものについて説明したが、 この不要領域部 6 1 aはシ一卜状の絶縁基板 6 1の全周囲の端部に必ずしも形成する必要は なく、 例えば、 第 2 9図に示すようにシート状の絶縁基板 6 1の一端部 に不要領域部 6 1 dを形成した場合、 第 3 0図に示すようにシート状の 絶縁基板 6 1の両端部に不要領域部 6 1 eを形成した場合、 第 3 1図に 示すようにシート状の絶縁基板 6 1の 3つの端部に不要領域部 6 1 f を 形成した場合においても、 上記本発明の第 3の実施例と同様の作用効果 を奏するものである。 ,
また上記本発明の第 3の実施例においては、 複数の第 2の分割部 7 3 をダイシング工法により形成したものについて説明したが、これ以外に、 例えば、 この複数の第 2の分割部 7 3をシート状の絶縁基板 6 1の裏面 側、 上面側、 中央部のいずれかに薄肉部を残してシート状の絶縁基板 6 1の上面側、 裏面側、 中央部のいずれかをレーザ一工法、 ダイシングェ 法等で切断することにより形成してもよく、 これらの場合は、 第 2の分 割部 7 3を形成する毎に個片化されるのではなく、 2段階で個片化され るものである。
また上記本発明の第 3の実施例においては、 上面電極層 6 2として銀 系の材料を用い、 かつ抵抗層 6 3として酸化ルテニウム系の材料を用い たが、 これらは他の材料系でも本発明の第 3の実施例と同様の効果を得 ることができるものである。
そしてまた上記本発明の第 3の実施例においては、 スリット状の第 1 の分割部 6 7.および第 2の分割部 7 3をダイシング工法を用いて形成し たものについて説明したが、 このダイシング工法以外に、 レーザーゃゥ オータージエツ ト等の分割部形成手段を用いてスリット状の第 1の分割 部 6 7および第 2の分割部 7 3を形成するようにした場合でも、 上記本 発明の第 3の実施例と同様の作用効果を奏するものである。
さらに上記本発明の第 3の実施例においては、 複数の短冊状基板 6 1 bに分割するためのスリット状の第 1の分割部 6 7を複数形成する場合. 複数対の上面電極層 6 2、複数の抵抗層 6 3、複数の第 1の保護層 6 4、 複数のトリミング溝 6 5、 複数の第 2の保護層 6 6を形成したシート状 の,絶縁基板 6 1にスリット状の第 1の分割部 6 7を複数形成するように したものについて説明したが、 これに限定されるものではなく、例えば、 これ以外に、 シート状の絶縁基板 6 1に、 最初にスリッ ト状の第 1の分 割部 6 7を複数形成するようにした場合、 スリット状の第 1の分割部 6 7をあらかじめ複数形成したシート状の絶縁基板 6 1を用いた場合、. シ —ト状の絶縁基板 6 1に複数対の上面電極層 6 2を形成した後、 このシ —ト状の絶縁基板 6 1にスリット状の第 1の分割部 6 7を複数形成する ようにした場合、 'シート状の絶縁基板 6 1に複数の抵抗層 6 3を形成し た後、 このシート状の絶縁基板 6 1にスリット状の第 1の分割部 6 7を 複数形成するようにした場合、 シート状の絶縁基板 6 1に複数対の上面 電極層 6 2を形成し、 かっこの複数対の上面電極層 6 2に一部が重なる ように複数の抵抗層 6 3を形成した後、 このシート状の絶縁基板 6 1に スリツ 卜状の第 1の分割部 6 7を複数形成するようにした場合、 シート 状の絶縁基板 6 1に複数の抵抗層 6 3を形成し、 かっこの複数の抵抗層 6 3.に一部が重なるように複数対の上面電極層 6 2を形成した後、 この シ一卜状の絶縁基板 6 1にスリット状の第 1の分割部 6 7を複数形成す るようにした場合、シート状の絶縁基板 6 1に複数対の上面電極層 6 2、 複数の抵抗層 6 3を形成し、 かっこの複数の抵抗層 6 3における前記複 数対の上面電極層 6 2間の抵抗値を調整するためにトリミングを行った 後、 このシート状の絶縁基板 6 1にスリット状の第 1の分割部 6 7を形 成するようにした場合においても、 上記本発明の第 3の実施例と同様の 効果を奏するものである。 ··
(第 4の実施例)
以下、 本発明の第 4の実施例における抵抗器の製造方法を図面を参照 しながら説明する。
第 3 2図は本発明の第 4の実施例における抵抗器を製造する場合に用 いられるシート状の絶縁基板の全周囲の端部に不要領域部を形成した状 態を示す上面図、 第 3 3図 (a) 〜 (e) 、 第 34図 (a) 〜 (e) 、 第 3 5図 ( a) 〜 (c ) 、 第 3 6図 (a) 〜 (c) 、 第 3 7図 (a) 〜 (c) および第 3 8図 (a) 〜 (c) は本発明の第 4の実施例における 抵抗器の製造方法を示す工程図である。 - まず、 第 3 2図、 第 3 3図 (a) 、 第 34図 (a) に示すように、 焼 成済みの 9 6 %純度のアルミナからなる厚み 0. 2 mmの絶縁性を有す るシート状の絶縁基板 8 1を準備する。 この場合、 シート状の絶縁基板 8 1は、 第 3 2図に示すように、 全周囲の端部に最終的には製品となら ない不要領域部 8 1 aを有しているものである。 そしてこの不要領域部 8 1 aは略口字状に構成されているものである。
次に第 3 2図、 第 3 3図 (b) 、 第 34図 (b) に示すように、 シ一' ト状の絶縁基板 8 1の上面にスクリーン印刷工法により銀を主成分とす る複数対の上面電極層 8 2を形成し、 ピーク温度 8 5 0 °Cの焼成プロフ アイルで焼成することにより、 上面電極層 8 2を安定な膜とした。
次に、 第 32図、 第 3 3図 (c) 、 第 34図 (c) に示すように、 複 数対の上面電極層 8 2を跨ぐように、 スクリーン印刷工法により酸化ル テニゥム系の複数の抵抗層 8 3を形成し、 ピーク温度 8 5 0 °Cの焼成プ 口ファイルで焼成することにより、 抵抗層 8 3を安定な膜とした。 次に、 第 3 3図 (d ) 、 第 3 4図 (d ) に示すように、 複数の抵抗層 8 3を覆うように、 スクリーン印刷工法により複数のプリコ一トガラス 層からなる第 1の保護層 8 4を形成し、 ピーク温度 6 0 0 °Cの焼成プロ ファイルで焼成することにより、 プリコートガラス層からなる第 1の保 護層 8 4を安定な膜とした。
次に、 第 3 3図 (e ) 、 第 3 4図 (e ) に示すように、 複数対の上面 電極層 8 2間の抵抗層 8 3の抵抗値を一定の値に調整するために、 レ一 ザ一トリミング工法により トリミングを行い、 複数のトリミング溝 8 5 を形成した。
次に、 第 3 5図 (a ) 、 第 3 6図 (a ) に示すように、 図面上の縦方 向に並ぶ複数のプリコートガラス層からなる第 1の保護層 8 4を覆うよ うに、 スクリーン印刷工法により樹脂を主成分とする複数の第 2の保護 層 8 6を形成し、 ピーク温度 2 0 0 °Cの硬化プロファイルで硬化するこ とにより、 第 2の保護層 8 6を安定な膜とした。
次に、 第 3 2図、 第 3 5図 (b ) 、 第 3 6図 (b ) に示すように、 シ ート状の絶縁基板 8 1の全周囲の端部に形成された不要領域部 8 1 aを 除いて、 複数対の上面電極層 8 2を分離して複数の短冊状基板 8 1 bに 分割するためのスリッ ト状の第 1の分割部 8 7をダイシング工法により 複数形成する。 この場合、 複数のスリット状の第 1の分割部 8 7は 7 0 0 ピッチで形成されており、 かっこのスリット状の第 1の分割部 8 7の幅は 1 2 0 ; m幅となっている。 また前記複数のスリット状の第 1 の分割部 8 7は、 シート状の絶縁基板 8 1を上下方向に貫通する貫通孔 で形成されているものである。 そしてまた前記シート状の絶縁基板 8 1 は、 不要領域部 8 1 aを除いてダイシング工法により複数のスリット状 の第 1の分割部 8 7を形成しているため、 スリット状の第 1の分割部 8 7を形成した後も複数の短冊状基板 8 1 bは不要頜域部 8 1 aにつなが つているため、 シ一ト状態を呈しているものである。
次に第 3 5図 (c ) 、 第 3 6図 (c ) に示すように、 ズリツト状の第 1の分割部 8 7が複数形成された状態のシート状の絶縁基板 8 1の裏面 全面にニッケルまたはニッケル系合金による金属膜 8 8をスパッ夕工法、 無電解めつき工法等により形成するとともに、 前記スリット状の第 1の 分割部 8 7の内面にニッケルまたはニッケル系合金による複数対の側面 電極層 8 .9をスパッ夕工法、 無電解めつき工法等により形成する。 この 場合、 複数のスリット状の第 1の分割部 8 7の内面に形成された側面電 極層 8 9は、 シート状の絶縁基板 8 1の上面に形成された上面電極層 8 2に接して電気的に接続されるものである。
次に、 第 3 7図 (a ) 、 第 3 8図 (a ) に示すように、 前記シ一ト状 の絶縁基板 8 1の裏面全面に形成された金属膜 8 8の不要部分をレーザ —で除去することにより複数対の裏面電極層 9 0を形成する。
次に第 3 7図 (b ) 、 第 3 8図 (b ) に示すように、 電気めつき工法 を用いて、 露出している複数対の側面電極層 8 9および複数対の上面電 極層 8 2の一部を覆うように、 約 4〜 6 / mのニッゲルからなる複数対 のニッケル層 9 1と厚みが約 4〜 6 mのスズからなる複数対のはんだ 層 9 2を形成する。 なお、 前記複数対の側面電極層 8 9をスパッタエ法 により形成した場合は、 側面電極層 8 9の厚みが約 0 . l ~ l mの厚 みであるため、ニッケル層 9 1とはんだ層 9 2を形成する必要があるが、 前記複数対の側面電極層 8 9を無電解めつき工法により形成した場合は、 側面電極層 8 9の厚みが約 4〜 6 mの厚みであるため、 はんだ層 9 2 のみを形成すればよいものである。
また上記はんだ層 9 2はスズで構成しているが、 これに限定されるも のではなく、 スズ合金系の材料でもよく、 これらの材料で形成した場合 は、 リフローはんだ付け時に安定したはんだ付けができるものである。 そしてまた上記上面電極層 8 2は銀系の材料で構成するとともに、 抵 抗層 8 3は酸化ルテニウム系の材料で構成しているため、 耐熱性および 耐久性に優れた抵抗特性を確保できるものである。
さらに上記抵抗層 8 3等を覆う保護層は、 抵抗層 8 3を覆うブリコ一 トガラス層からなる第 1の保護層 8 4と、 この第 1の保護層 8 4を覆う とともに、 トリミング溝 8 5を覆う樹脂を主成分とする第 2の保護層 8 6の 2層で構成しているため、 前記第 1の保護層 8 4でレーザートリミ , ング時のクラックの発生を防止して電流雑音を小さくできるとともに、 前記樹脂を主成分とする第 2の保護層 8 6で抵抗層 8 3全体が覆われる ことにより耐湿性に優れた抵抗特性を確保できるものである。
最後に、 第 3 2図、 第 3 7図 (c ) 、 第 3 8図 (c ) に示すように、 シート状の絶縁基板 8 1の全周囲の端部に形成された不要領域部 8 1 a を除いて、シート状の絶縁基板 8 1における複数の短冊状基板 8 1 bに、 複数の抵抗層 8 3が個々に分離されて個片状基板 8 1 cに分割されるよ うにスリッ ト状の第 1の分割部 8 7と直交する方向にダイシング工法を 用いて複数の第 2の分割部 9 3を形成する。 この場合、 複数の第 2の分 割部 9 3は 4 0 0 mピッチで形成されており、 かっこの第 2の分割部 9 3の幅は 1 0 0 幅となっている。 そしてこの複数の第 2の分割部 9 3は不要領域部 8 1 aを除いて複数の短冊状基板 8 1 bにダイシング 工法により形成するようにしているため、 この複数の第 2の分割部 9 3 を形成する毎に個片状基板 8 1 cに切断分割され、 そして個片化された 製品は不要領域部 8 1 aから分離されるものである。
以上のような工程により、 本発明の第 4の実施例における抵抗器は製 造されるものである。 .
上記工程により製造した抵抗器の長さ寸法および幅寸法はダイシング 工法により形成されたスリット状の第 1の分割部 8 7および第 2の'分割 部 9 3の間隔が正確 (± 0 . 0 0 5 mm以内) であるとともに、 側面電 極層 8 9、ニッケル層 9 1およびはんだ層 9 2の厚みも正確であるため、 製品である抵抗器の全長および全幅は、 正確に長さ 0 . 6 1!1111 幅0 . 3 mmとなるものである。 また上面電極層 8 2および抵抗層 8 3のパ夕 —ン精度も個片状基板の寸法ランク分類が不要であるとともに同一の個 片状基板の寸法ランク内での寸法ばらつきを考慮する必要がないため、 抵抗層 8 3の有効面積も従来品に比べて大きくとることができるもので ある。 すなわち、 従来品における抵抗層は長さ約 0 . 2 0 ]11111 幅0 . 1 9 mmであったのに対し、 本発明の第 4の実施例における抵抗器の抵 抗層 8 3は長さ約 0 . 2 5 1!1111ズ幅0 . 2 4 mmとなって面積では約 1 . 6倍以上となるものである。
上記複数のスリット状の第 1の分割部 8 7および複数の第 2の分割部 9 3はダイシング工法を用いて形成しているため、 個片状基板の寸法分 類が不要なシ一ト状の絶縁基板 8 1を用いることができ、 これにより、 従来のような個片状基板の寸法分類は不要となるため、 従来のようなマ スク交換による工程の煩雑さをなくすることができるとともに、 ダイシ ングも半導体等で一般的なダイシング設備を用いて容易に行うことがで きるものである。
また上記シート状の絶縁基板 8 1は全周囲の端部に最終的には製品と ならない不要領域部 8 1 aを形成し、 かつ複数のスリット状の第 1の分 割部 8 7および複数の第 2の分割部 9 3は前記不要領域部 8 1 aには形 成しないようにしているため、 複数のスリット状の第 1の分割部 8 7を 形成した後も複数の短冊状基板 8 1 bは不要領域部 8 1 aにつながって おり、 そのため、 シート状の絶縁基板 8 1が複数の短冊状基板 8 1 bに 細かく分離されるということはなく、 したがって、 複数のスリット状の 第 1の分割部 8 7を形成した後も、 不要領域部 8 1 aを有するシート状 の絶縁基板 8 1の状態で後工程を行うことができるため、 工法設計が簡 略化できるものである。 また複数の第 2の分割部 9 3を形成すると、 こ の複数の第 2の分割部 9 3を形成する毎に個片状基板 8 1 cに切断分割 され、そして個片化された製品は不要領域部 8 1 aから分離されるため、 不要領域部 8 1 aと製品とを後で選別するという工程は不要となるもの である。
そしてまた複数対の側,面電極層 8 9、 ニッケル層 9 1および複数対の はんだ層 9 2はシート状の絶縁基板 8 1の状態で形成するようにしてい るため、 側面電極層 8 9をシート状の絶縁基板 8 1の必要箇所に形成す ることができるとともに、 電気めつき工法によりニッケル層 9 1および はんだ層 9 2を形成する際には電位差を小さくすることができ、 これに より、 安定したニッケル層 9 1およびはんだ層 9 2を形成できるもので ある。
なお、 上記本発明の第 4の実施例においては、 最終的には製品となら ない不要領域部 8 1 aをシート状の絶縁基板 8 1の全周囲の端部に形成 して略口字状に構成したものについて説明したが、 この不要領域部 8 1 aはシート状の絶縁基板 8 1の全周囲の端部に必ずしも形成する必要は なく、 例えば、 第 3 9図に示すようにシート状の絶縁基板 8 1の一端部 に不要領域部 8 1 dを形成した場合、 第 4 0図に示すようにシート状の 絶縁基板 8 1の両端部に不要領域部 8 1 eを形成した場合、 第 4 1図に 示すようにシート状の絶縁基板 8 1の 3つの端部に不要領域部 8 1 f を 4ひ 形成した場合においても、 上記本発明の第 4の実施例と同様の作用効果 を奏するものである。
また上記本発明の第 4の実施例においては、 複数の第 2の分割部 9 3 をダイシング工法により形成したものについて説明したが、これ以外に、 例えば、 この複数の第 2の分割部 9 3をシート状の絶縁基板 8 1の裏面 側、 上面側、 中央部のいずれかに薄肉部を残してシート状の絶縁基板 8 1の上面側、 裏面側、 中央部のいずれかをレーザ一工法、 ダイシングェ 法等で切断することにより形成してもよく、 これらの場合は、 第 2の分 割部 9 3を形成する毎に個片化されるのではなく、 2段階で個片化され るものである。
また上記本発明の第 4の実施例においては、 上面電極層 8 2として銀 系の材料を用い、 かつ抵抗層 8 3として酸化ルテニウム系の材料を用い たが、 これらは他の材料系でも本発明の第 4の実施例と同様の効果を得 ることができるものである。
そしてまた上記本発明の第 4の実施例においては、 スリット状の第 1 の分割部 8 7および第 2の分割部 9 3をダイシング工法を用いて形成し たものについて説明したが、 このダイシング工法以外に、 レ一ザ一ゃゥ オータージエツ 卜等の分割部形成手段を用いてスリット状の第 1の分割 部 8 7および第 2の分割部 9 3を形成するようにした場合でも、 上記本 発明の第 4の実施例と同様の作用効果を奏するものである。
さらに上記本発明の第 4の実施例においては、 複数の短冊状基板 8 1 bに分割するためのスリット状の第 1の分割部 8 7を複数形成する場合、 複数対の上面電極層 8 2、複数の抵抗層 8 3、複数の第 1の保護層 8 4、 複数のトリミング溝 8 5、 複数の第 2の保護層 8 6を形成したシート状 の絶縁基板 8 1にスリット状の第 1の分割部 8 7を複数形成するように したものについて説明したが、 これに限定されるものではなく、例えば、 これ以外に、 シート状の絶縁基板 8 1に、 最初にスリット状の第 1の分 割部 8 7を複数形成するようにした場合、 スリット状の第 1の分割部 8 7をあらかじめ複数形成したシ一ト状の絶縁基板 8 1を用いた場合、 シ ート状の絶縁基板 8 1に複数対の上面電極層 8 2を形成した後、 このシ ート状の絶縁基板 8 1にスリット状の第 1の分割部 8 7を複数形成する ようにした場合、 シート状の絶縁基板 8 1に複数の抵抗層 8 3を形成し た後、 このシート状の絶縁基板 8 1にスリッ 卜状の第 1の分割部 8 7を 複数形成するようにした場合、 シート状の絶縁基板 8 1に複数対の上面 電極層 8 2を形成し、 かっこの複数対の上面電極層 8 2に一部が重なる ように複数の抵抗層 8 3を形成した後、 このシート状の絶縁基板 8 1に スリット状の第 1の分割部 8 7を複数形成するようにした場合、 シート 状の絶縁基板' 8 1に複数の抵抗層 8 3を形成し、 かっこの複数の抵抗層 8 3に一部が重なるように複数対の上面電極層 8 2を形成した後、 この シート状の絶縁基板 8 1にスリット状の第 1の分割部 8 7を複数形成す るようにした場合、シート状の絶縁基板 8 1に複数対の上面電極層 8 2、 複数の抵抗層 8 3を形成し、 かっこの複数の抵抗層 8 3における前記複 数対の上面電極層 8 2間の抵抗値を調整するためにトリミングを行った 後、 このシート状の絶縁基板 8 1にスリット状の第 1の分割部 8 7を形 成するようにした場合においても、 上記本発明の第 4の実施例と同様の 効果を奏するものである。
(第 5の実施例) .
以下、 本発明の第 5の実施例における抵抗器の製造方法について、 図 面を参照しながら説明する。
第 4 2図は本発明の第 5の実施例における抵抗器の断面図である。 第 42図において、 1 0 1は焼成済みの 9 6 %純度のアルミナからな るシ一ト状の絶瘃基板をスリット状の第 1の分割部とこの第 1の分割部 と直交関係にある第 2の分割部で分割することにより個片化された個片 状基板である。 1 0 2は個片状基板 1 0 1の上面に形成された金を主成 分とする一対の金属層である。 1 0 3は一対の金属層 1 02に一部が重 なるように個片状基板 1 0 1の上面に形成された銀を主成分とする一対 の上面電極層である。 1 0 4は一対の上面電極層 1 0 3に一部が重なる ように個片状基板 1 0 1の上面に形成された酸化ルテニウム系の抵抗層 である。 1 0 5ば抵抗層 1 04の上面に形成されたプリコー卜ガラス層 からなる第 1の保護層である。 1 0 6は一対の上面電極層 1 0 3間の抵 抗層 1 04の抵抗値を修正するために設けられたトリミング溝である。 1 0 7はプリコートガラス層からなる第 1の保護層 1 0 5を覆うように 形成された樹脂を主成分とする第 2の保護層である。 1 0 8は一対の上 面電極層 1 0 3の一部に重なるとともに、 個片状基板 1 0 1の両側面お よび裏面の両端部を覆うように形成された'ニッケルからなる一対の側面 電極層である。 1 0 9は一対の側面電極層 1 0 8および一対の上面電極 層 1 0 3の一部を覆うように形成されたスズからなるはんだ層である。 以上のように構成された本発明の第 5の実施例における抵抗器につい て、 次にその製造方法を図面を参照しながら説明する。
第 43図は本発明の第 5の実施例における抵抗器を製造する場合に用 いられるシート状の絶縁基板の全周囲の端部に不要領域部を形成した状 態を示す上面図、 第 44図 (a) 〜 ( f )、 第 4 5図 (a) 〜 ( f )、 第 46図 (a) 〜 (d)、 第 47図 (a) 〜 (d)、 第 48図 (a) 〜 (c) および第 4 9図 (a) 〜 (c) は本発明の第 5の実施例における抵抗器 の製造方法を示す工程図である。 まず、 第 43図、 第 44図 (a)、 第 4 5図 (a) に示すように、 焼成 済みの 9 6 %純度のアルミナからなる厚み 0. 2醒の絶縁性を有するシ ート状の絶縁基板 1 1 1を準備する。 この場合、 シート状の絶縁基板 1 1 1は、 第 4 3図に示すように、 全周囲の端部に最終的には製品となら ない不要領域部 1 1 1 aを有しているものである。 そしてこの不要領域 部 1 1 1 aは略口字状に構成されているものである。
次に、 第 4 3図、 第 44図 (b)、 第 4 5図 (b) に示すように、 シー ト状の絶縁基板 1 1 1の上面に複数の第 1の分割部を跨ぐようにしてス クリーン印刷工法により金を主成分とする複数対の金属層 1 1 2を形成 し、 ピーク温度 8 5 0 °Cの焼成プロファイルで焼成することにより、 金 属層 1 1 2を安定な膜とした。
次に、 第 43図、 第 44図 (c )、 第 4 5図 (c ) に示すように、 シ一 ト状の絶縁基板 1 1 1の上面に前記複数対の金属層 1 1 2と電気的に接 続されるようにスクリーン印刷工法により銀を主成分とする複数対の上 面電極層 1 1 3を形成し、 ピ一ク温度 8 5 0 °Cの焼成プロファイルで焼 成することにより、 上面電極層 1 1 3を安定な膜とした。
次に、 第 4 3図、 第 44図 (d)、 第 4 5図 (d) に示すように、 複数 対の上面電極層 1 1 3を跨ぐように、 スクリーン印刷工法により酸化ル テニゥム系の複数の抵抗層 1 1 4を形成し、 ピーク温度 8 5 0 °Cの焼成 プロファイルで焼成することにより、 抵抗層 1 1 4を安定な膜とした。 次に、 第 44図 (e 第 4 5図 (e) に示すように、 複数の抵抗層 1 14を覆うように、 スクリーン印刷工法により複数のプリコートガラス 層からなる第 1の保護層 1 1 5を形成し、 ピーク温度 6 0 0 °Cの焼成プ 口ファイルで焼成することにより、 プリコートガラス層からなる第 1の 保護層 1 1 5を安定な膜とした。 次に、 第 44図 ( ί)、 第 45図 ( f ) に示すように、 複数対の上面電 極層 1 1 3間の抵抗層 1 1 4の抵抗値を一定の値に調整するために、 レ 一ザ一トリミング工法により トリミングを行い、 複数のトリミング溝 Γ 1 6を形成した。
次に、 第 46図 (a)、 第 47図 ( a) に示すように、 図面上の縦方向 に並ぶ複数のプリコートガラス層からなる第 1の保護層 1 1, 5を覆うよ うに、 スクリーン印刷工法により樹脂を主成分とする複数の第 2の保護 層 1 1 7を形成し、 ピーク温度 2 0 0 °Cの硬化プロファイルで硬化する ことにより、 第 2の保護層 1 1 7を安定な膜とした。
次に、 第 46図 (b)、 第 47図 (b) に示すように、 複数の第 2の保 護層 1 1 7を覆うように、 スクリーン印刷工法により複数の第 1レジス ト層 1 1 8を形成し、 紫外線硬化により第 1レジスト層 1 1 8を安定な 膜とした。 さらにスクリーン印刷工法により、 シート状の絶縁基板 1 1 1の裏面上に複数の第 2レジスト層 1 1 9を形成し、 紫外線硬化により 第 2レジスト層 1 1 9を安定な膜とした。
次に、 第 43図、 第 46図 (c)、 第 4 7図 (c) に示すように、 第 1 レジスト層 1 1 8および第 2レジスト層 1 1 9を形成したシ一ト状の絶 縁基板 1 1 1の全周囲の端部に形成された不要領域部 1 1 1 aを除いて、 複数対の金属層 1 1 2のみを分離して複数の短冊状基板 1 1 1 bに分割 するためのスリット状の第 1の分割部 1 2 0をダイシング工法により複 数形成する。 この場合、 複数のスリツト状の第 1の分割部 1 2 0は 7 0 0 mピッチで形成されており、 かっこのスリット状の第 1の分割部 1 2 0の幅は 1 2 0 幅となっている。 また前記複数のスリット状の第 1の分割部 1 2 0は、 シート状の絶縁基板 1 1 1を上下方向に貫通する 貫通孔で形成されているものである。 そしてまた前記シート状の絶縁基 板 1 1 1は、 不要領域部 1 1 1 aを除いてダイシング工法により複数の スリット状の第 1の分割部 1 2 0を形成しているため、 スリット状の第 1の分割部 1 2 0を形成した後も複数の短冊状基板 1 1 1 bは不要領域 部 1 1 1 aにつながっているため、シート状態を呈しているものである。 次に、 第 4 6図 (d )、 第 4 7図 (d ) に示すように、 めっき浴に浸漬 してめつきを行う無電解めつき工法を用いて、 シート状の絶縁基板 1 1 1の全面にニッケルめっきを施し、 厚みが約 4〜 6 mの側面電極層 1 2 1を形成する。 この場合、複数のスリット状の第 1の分割部 1 2 0が、 シート状の絶縁基板 1 1 1を上下方向に貫通する貫通孔で形成されてい るため、 シート状の絶縁基板 1 1 1の全面に無電解めつき工法でニッケ ルめっきを施すこと.により側面電極層 1 2 1を形成した場合,、 側面電極 層 1 2 1はシー卜状の絶縁基板 1 1 1の上面側から貫通孔となっている ズリッ ト状の第 1の分割部 1 2 0の内面全体を経てシート状の絶縁基板 1 1 1の裏面側まで形成されるものである。 またこの側面電極層 1 2 1 は、 シート状の絶縁基板 1 1 1の上面側では露出している上面電極層 1 1 3の一部と第 1 レジスト層 1 1 8を覆うように形成され、 かつシート 状の絶縁基板 1 1 1の裏面側では第 2レジスト層 1 1 9を覆うように形 成されるものである。
次に、 第 4 図 (a )、 第 4 9図 ( a ) に示すように、 複数め第 1レジ スト層 (図示せず) および複数の第 2レジスト層 (図示せず) を剥離し、 複数対の側面電極層 1 2 1をパターニングする。
次に、 第 4 8図 (b )、 第 4 9図 (b ) に示すように、 電気めつき工法 を用いて、 .露出している複数対の側面電極層 1 2 1および複数の第 1レ ジス卜層 (図示せず) を剥離したことにより露出した上面電極層 1 1 3 の一部を覆うように、 厚みが約 4〜 6 mのスズからなる複数対のはん だ層 1 2 2を形成する。
上記側面電極層 1 2 1の厚みは約 4〜 6 /z mの厚みとなっているが、 この範囲に限定されるものではなく、 その厚みは 1〜 1 5 i mが妥当で あり、 このような構成においては、 非常に寸法精度の高いものが得られ るものである。
また上記はんだ層 1 2 2はスズで構成しているが、 これに限定される ものではなく、 スズ合金系の材料でもよく、 これらの材料で構成した場 合は、リフロ一はんだ付け時に安定したはんだ付けができるものである。 そしてまた上記金属層 1 1 2は金系の材料で構成するとともに、 上記 上面電極層 1 1 3は銀系の材料で構成し、 さらに抵抗層 1 1 4は酸化ル テニゥム系の材料で構成しているため、 耐熱性および耐久性に優れた抵 抗特性を確保できるものである。
さらに上記抵抗層 1 1 4等を覆う保護層は、 抵抗層 1 1 4を覆うプリ コートガラス層からなる第 1の保護層 1 1 5と、 この第 1の保護層 1 1 5を覆うとともに、 トリミング溝 1 1 6を覆う樹脂を主成分とする第 2 の保護層 1 1 7の 2層で構成しているため、 前記第 1の保護層 1 1 5で レーザートリミング時のクラックの発生を防止して電流雑音を小さくで きるとともに、 前記樹脂を主成分とする第 2の保護層 1 1 7で抵抗層 1 1 4全体が覆われることにより耐湿性に優れた抵抗特性を確保できるも のである。
最後に、 第 4 3図、 第 4 8図 (c )、 第 4 9図 (c ) に示すように、 シ ート状の絶縁基板 1 1 1の全周囲の端部に形成された不要領域部 1 1 1 aを除いて、 シート状の絶縁基板 1 1 1における複数の短冊状基板 1 1 1 bに、 複数の抵抗層 1 1 4が個々に分離されて個片状基板 1 1 1 cに 分割されるようにスリツ卜状の第 1の分割部 1 2 0と直交する方向にダ イシング工法を用いて複数の第 2の分割部 1 2 3を形成する。この場合、 複数の第 2の分割部 1 2 3は 40 0 mピッチで形成されており、 かつ この第 2の分割部 1 2 3の幅は 1 0 0 m幅となっている。 そしてこの 複数の第 2の分割部 1 2 3は不要領域部 1 1 1 aを除いて複数の短冊状 基板 1 1 1 bにダイシング工法により形成するようにしているため、 こ の複数の第 2の分割部 1 2 3を形成する毎に個片状基板 1 1 1 cに切断 分割され、 そして個片化された製品は不要領域部 1 1 1 aから分離され るものである。
以上のような工程により、 本発明の第 5の実施例における抵抗器は製 造されるものである。
上記工程により製造した抵抗器の長さ寸法および幅寸法は、 ダイシン グ工法により形成されたスリッ卜状の第 1の分割部 1 2 0および第 2の 分割部 1 2 3の間隔が正確 ( ± 0. 0 0 5 mm以内) であるとともに、 側 面電極層 1 2 1およびはんだ層 1 2 2の厚みも正確であるため、 製品で ある抵抗器の全長および全幅は、 正確に長さ 0. 6MIX幅 0. 3 ΐΜΐとな るものである。 また金属層 1 1 2、 上面電極層 1 1 3および抵抗層 1 1 4のパターン精度も個片状基板の寸法ランク分類が不要であるとともに 同一の個片状基板の寸法ランク内での寸法バラツキを考慮する必要がな いため、 抵抗層 1 1 4の有効面積も従来品に比べて大きくとることがで きるものである。 すなわち、 従来品における抵抗層は長さ約 0. 2 0匪 X幅 0. 1 9 nunであったのに対し、 本発明の第 5の実施例における抵抗 器の抵抗層 1 1 4は長さ約 0. 2 5111111 幅約0. 24mmとなって、 面積 では約 1. 6倍以上となるものである。
上記複数のスリット状の第 1の分割部 1 2 0および複数の第 2の分割 部 1 2 3はダイシング工法を用いて形成しているため、 個片状基板の寸 法分類が不要なシート状の絶縁基板 1 1 1を用いることができ、 これに より、 従来のような個片状基板の寸法分類は不要となるため、 従来のよ うなマスク交換による工程の煩雑さをなくすることができるとともに、 ダイシングも半導体等で一般的なダイシング設備を用いて容易に行うこ とができるものである。
また上記シート状の絶縁基板 1 1 1は全周囲の端部に最終的には製品 とはならない不要領域部 1 1 1 aを形成し、 かつ複数のスリット状の第 1の分割部 1 2 0および複数の第 2の分割部 1 2 3は前記不要領域部 1 1 1 aには形成しないようにしているため、 複数のスリット状の第 1の 分割部 1 2 0を形成した後も複数の短冊状基板 1 1 1 bは不要領域部 1 1 1 aにつながっており、 そのため、 シート状の絶縁基板 1 1 1が複数 の短冊状基板 1 1 1 bに細かく分離されるということはなく、 したがつ て、 複数のスリッ ト状の第 1の分割部 1 2 0を形成した後も、 不要領域 部 1 1 1 aを有するシート状の絶縁基板 1 1 1の状態で後工程を行うこ とができるため、 工法設計が簡略化できるものである。 また複数の第 2 の分割部 1 2 3を形成すると、 この複数の第 2の分割部 1 2 3を形成す る毎に個片状基板 1 1 1 cに切断分割され、 そして個片化された製品は 不要領域部 1 1 1 aから分離されるため、 不要領域部 1 1 ;! aと製品と を後で選別するという工程は不要となるものである。
そしてまた複数対の側面電極層 1 2 1および複数対の んだ層 1 2 2 はシート状の絶縁基板 1. 1 1の状態で形成するようにしているため、 側 面電極層 1 2 1をシート状の絶縁基板 1 1 1に形成することができると ともに、 電気めつき工法によりはんだ層 1 2 2を形成する際には電位差 を小さくすることができ、 これにより、 安定したはんだ層 1 2 2を形成 できるものである。 なお、 上記本発明の第 5の実施例においては、 最終的には製品とはな らない不要領域部 1 1 1 aをシート状の絶縁基板 1 1 1の全周囲の端部 に形成して略口字状に構成したものについて説明したが、 この不要領域 部 1 1 1 aはシ一ト状の絶縁基板 1 1 1の全周囲の端部に必ずしも形成 する必要はなく、 例えば、 第 5 0図に示すようにシート状の絶縁基板 1 1 1の一端部に不要領域部 1 1 1 dを形成した場合、 第 5 1図に示すよ うにシート状の絶縁基板 1 1 1の両端部に不要領域部 1 1 1 eを形成し た場合、 第 5 2図に示すようにシー卜状の絶縁基板 1 1 1の 3つの端部 に不要領域部 1 1 1 f を形成した場合においても、 上記本発明の第 5の 実施例と同様の作用効果を奏するものである。
'また上記本発明の第 5の実施例においては、 複数の第 2の分割部 1 2 3をダイシング工法により形成したものについて説明したが、 これ以外 に、 例えば、 この複数の第 2の分割部 1 2 3をシート状の絶縁基板 1 1 1の裏面側、 上面側、 中央部のいずれかに薄肉部を残してシート状の絶 縁基板 1 1 1の上面側、 裏面側、 中央部のいずれかをレーザー工法、 ダ ィシング工法等で切断することにより形成してもよく、これらの場合は、 第 2の分割部 1 2 3を形成する毎に個片化されるのではなく、 2段階で 個片化されるものである。
そしてまた上記本発明の第 5の実施例においては、 第 1レジスト層 1 1 8 ·および第 2レジスト層 1 1 9を形成した後に、 スリット状の第 1の 分割部 1 2 0を形成したが、 第 1レジスト層 1 1 8および第 2レジスト 層 1 1 9は、 スリツト状の第 1の分割部 1 2 0を形成した後に形成して もよいものである。 但し、 このようにスリット状の第 1の分割部 1 2 0 を形成した後に第 1レジスト層 1 1 8および第 2レジスト層 1 1 9をス クリーン印刷する場合には、 シート状の絶縁基板 1 1 1の強度が弱くな るため、 スクリーン印刷時の印圧を弱くする必要がある。
さらに第 2レジスト層 1 1 9はプリコ一トガラス層からなる第 1の保 護層 1 1 5を形成した直後に形成しても本発明の第 5の実施例と同様の 効果が得られるものである。
さらにまた上記本発明の第 5の実施例においては、 第 1レジスト層 1
1 8および第 2レジスト層 1 1 9の剥離は、 はんだ層 1 2 2の形成前に 行ったが、 これははんだ層 1 2 2の形成後でも可能である。
また上記本発明の第 5の実施例においては、 金属層 1 1 2として金系 の材料を用い、 かつ上面電極層 1 1 3として銀系の材料を用い、 さらに 抵抗層 1 1 4として酸化ルテニウム系の材料を用いたが、 これらは他の 材料系でも本発明の第 5の実施例と同様の効果を得ることができるもの である。
そしてまた上記本発明の第 5の実施例においては、 スリット状の第 1 の分割部 1 2 0およぴ第 2の分割部 1 2 3をダイシング工法を用いて形 成したものについて説明したが、 このダイシング工法以外に、 レーザー やウォー夕ージエツト等の分割部形成手段を用いてスリット状の第 1の 分割部 1 2 0および第 2の分割部 1 2 3を形成するようにした場合でも、 上記本発明の第 5の実施例と同様の作用効果を奏するものである。
さらに上記本発明の第 5の実施例においては、 シート状の絶縁基板 1 1 1の上面に複数対の上面電極層 1 1 3を形成した後、 この複数対の上 面電極層 1 1 3を跨ぐように複数の抵抗層 1 1 4を形成するようにして いるが、 シート状の絶縁基板 1 1 1の上面に複数の抵抗層 1 1 4を形成 した後、 この複数の抵抗層 1 1 4に一部が重なるように複数対の上面電 極層 1 1 3を形成するようにしても、 上記本発明の第 5の実施例と同様 の作用効果を奏するものである。 さらにまた上記本発明の第 5の実施例においては、 複数の短冊状基板 1 1 1 bに分割するためのスリット状の第 1の分割部 1 2 0を複数形成 する場合、 複数対の金属層 1 1 2、 複数対の上面電極層 1 1 3、 複数の 抵抗層 1 1 4、 複数の第 1の保護層' 1 1 5、複数のトリミング溝 1 1 6、 複数の第 2の保護層 1 1 7、 複数の第 1レジスト層 1 1 8、 複数の第 2 レジスト層 1 1 9を形成したシート状の絶縁基板 1 1 1における前記複 数対の金属層 1 1 2のみに、 この複数対の金属層 1 1 2を分離してシ一 ' ト状の絶縁基板 1 1 1を複数の短冊状基板 1 1 1 bに分割するためのス リット状の第 1の分割部 1 2 0を複数形成するようにしたものについて 説明.したが、 これに限定されるものではなく、 例えば、 これ以外に、 シ ート状の絶縁基板 1 1 1に複数対の金属層 1 1 2、 複数対の上面電極層 1 1 3、 複数の抵抗層 1 1 4を形成し、 そしてこの複数の抵抗層 1 1 4 における前記複数対の上面電極層 1 1 3間の抵抗値を調整するためにト リミングを行った後、 このシート状の絶縁基板 1 1 1における前記複数 対の金属層 1 1 2のみに、 この複数対の金属層 1 1 2を分離してシート 状の絶縁基板 1 1 1を複数の短冊状基板 1 1 1 bに分割するためのスリ ッ卜状の第 1の分割部 1 2 0を複数形成するようにした場合においても、 上記本発明の第 5の実施例と同様の効果を奏するものである。
また上記本発明の第 5の実施例においては、 シート状の絶縁基板 1 1 1の上面に複数対の金属層 1 1 2を形成する工程と、 前記シ一ト状の絶 縁基板 1 1 1の上面に前記金属層 1 1 2と電気的に接続される複数対の , 上面電極層 1 1 3と複数の抵抗層 1 1 4を両者が電気的に接続されるよ うに形成する工程と、 前記複数の抵抗層 1 1 4における前記複数対の上 面電極層 1 1 3間の抵抗値を調整するために卜リミングを行う工程と、 少なくとも前記複数の抵抗層 1 1 4を覆うように複数の保護層 1 1 5を 形成する工程とを実施したシート状の絶縁基板 1 1 1における前記複数 対の金属層 1 1 2のみに、 この複数対の金属層 1 1 2を分離してシ一ト 状の絶縁基板 1 1 1に複数の短冊状基板 1 1 l bに分割するためのスリ ッ ト状の第 1の分割部 1 2 0を複数形成したもので、 この製造方法によ れば、 シート状の絶縁基板 1 1 1の上面に形成された複数対の金属層 1 1 2と複数対の上面電極層 1 1 3が電気的に接続されるように構成して いるため、 一対の上面電極層 1 1 3間の抵抗値を調整するためのトリミ ング時の抵抗値測定においては、 当該の上面電極層 1 1 3の他に隣接す る金属層 1 1 2も使用でき、 これにより、 特に微細な抵抗器の場合には トリミング用の検針を上面電極に容易に接触させることができ、 また、 シート状の絶縁基板 1 1 1にスリット状の第 1の分割部 1 2 0を形成す る場合、 金属層 1 1 2のみが切断されて上面電極層 1 1 3は切断されな いため、 バリが発生することはなく、 これにより、 抵抗器上面を平滑に できるため、 実装効率を高めることができるという効果を有するもので ある。 . 産業上の利用可能性
以上のように本発明の抵抗器は、 シート状の絶縁基板をスリット状の 第 1の分割部とこの第 1の分割部と直交関係にある第 2の分割部で分割 することにより個片化された個片状基板と、 前記個片状基板の ±面に形 成された一対の上面電極層と、 前記一対の上面電極層に一部が重なるよ うに形成された抵抗層と、前記抵抗層を覆うように形成された保護層と、 前記一対の上面電極層と電気的に接続されるように前記個片状基板の側 面に形成されたニッケル系電極による一対の側面電極層とを備えたもの で、 この構成によれば、 シート状の絶縁基板をスリット状の第 1の分割 部とこの第 1の分割部と直交関係にある第 2の分割部で分割することに より個片化された個片状基板を用いているため、 個片状基板の寸法分類 は不要となり、 これにより、 従来の'ような個片状基板の寸法ランクに応 じてマスクを交換するという工程をなくすることができるとともに、 安 価で、 かつ微細な抵抗器を'提供することができるものである。

Claims

請 求 の 範 囲
1 . シート状の絶縁基板をスリッ ト状の第 1の分割部とこの第 1の 分割部と直交関係にある第 2の分割部で分割することにより個片化され た個片状基板と、 前記個片状基板の上面に形成された一対の上面電極層 と、 前記一対の上面電極層に一部が重なるように形成された抵抗層と、 前記抵抗層を覆うように形成された保護層と、 前記一対の上面電極層と 電気的に接続されるように前記個片状基板の側面に形成されたニッケル 系電極による一対の側面電極層とを備えた抵抗器。
2 . シート状の絶縁基板をスリツ ト状の第 1の分割部とこの第 1の 分割部と直交関係にある第 2の分割部で分割することにより個片化され た個片状基板と、 前記個片状基板の上面に形成された抵抗層と、 前記抵 抗層に一部が重なるように形成された一対の上面電極層と、 前記抵抗層 を覆うように形成された保護層と、 前記一対の上面電極層と電気的に接 続されるように前記個片状基板の側面に形成されたニッケル系電極によ る一対の側面電極層とを備えた抵抗器。
3 . シート状の絶縁基板の上面に複数対の上面電極層を形成するェ 程と、 前記複数対の上面電極層に一部が重なるように複数の抵抗層を形 成する工程と、 前記複数の抵抗層における前記複数対の上面電極層間の 抵抗値を調整するためにトリミングを行う工程と、 少なくとも前記複数 の抵抗層を覆うように複数の保護層を形成する工程と、 前記シート状の 絶縁基板を複数の短冊状基板に分割するためのスリット状の第 1の分割 部を複数形成する工程と、 前記スリット状の第 1の分割部が複数形成さ れた状態のシート状の絶縁基板における前記複'数のスリット状の第 1の 分割部の内面に複数対の側面電極層を形成する工程と、 前記シート状の 絶縁基板における複数の短冊状基板に、 前記複数の抵抗層が個々に分離 されて個片状基板に分割されるように前記スリッ ト状の第 1の分割部と 直交する方向に複数の第 2の分割部を形成する工程とを備えた抵抗器の 製造方法。
4 . シート状の絶縁基板の上面に複数の抵抗層を形成する工程と、 前 記複数の抵抗層に一部が重なるように複数対の上面電極層を形成するェ 程と、 前記複数の抵抗層における前記複数対の上面電極層間の抵抗値を 調整するためにトリミングを行う工程と、 少なくとも前記複数の抵抗層 を覆うように複数の保護層を形成する工程と、 前記シート状の絶縁基板 を複数の短冊状基板に分割するためのスリット状の.第 1の分割部を複数 形成する工程と、 前記スリット状の第 1の分割部が複数形成された状態 のシー卜状の絶縁基板における前記複数のスリット状の第 1の分割部の 内面に複数対の側面電極層を形成する工程と、 前記シ一ト状の絶縁基板 における複数の短冊状基板に、 前記複数の抵抗層が個々に分離されて個 片状基板に分割されるように前記スリッ ト状の第 1の分割部と直交する 方向に複数の第 2の分割部を形成する工程とを備えた抵抗器の製造方法 c
5 . 請求の範囲第 3項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 上面電極層形成工程、 抵抗層形成工程、 トリミング工程、 保護層形成ェ 程を実施したシート状の絶縁基板に、 複数対の上面電極層を分離して、 複数の短冊状基板に分割するためのスリット状の第 1の分割部を複数形 成し、 かつ複数対の側面電極層を形成する工程は、 前記シート状の絶縁 基板に無電解めつき工法でニッケルめっきを施すことにより前記複数の スリット状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗 器の製造方法。
6 . 請求の範囲第 4項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 抵抗層形成工程、 上面電極層形成工程、 トリミング工程、 保護層形成ェ 程を実施したシート状の絶縁基板に、 複数対の上面電極層を分離して、 複数の短冊状基板に分割するためのスリット状の第 1の分割部を複数形 成し、 かつ複数対の側面電極層を形成する工程は、 前記シート状の絶縁 基板に無電解めつき工法でニッケルめっきを施すことにより前記複数の スリッ ト状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗 器の製造方法。
7 . シ一ト状の絶縁基板の上面に複数対の上面電極層と複数の抵抗 層を両者が電気的に接続されるように形成する工程と、 前記複数の抵抗 層における前記複数対の上面電極層間の抵抗値を調整するためにトリミ ングを行う工程と、 少なくとも前記複数の抵抗層を覆うように複数の保 護層を形成する工程と、 前記シート状の絶縁基板の裏面にレジスト層を 形成する工程と、 前記シート状の絶縁基板を複数の短冊状基板に分割す るためのスリッ ト状の第 1の分割部を複数形成する工程と、 前記スリッ ト状の第 1の分割部が複数形成された状態のシート状の絶縁基板の裏面 および複数のスリット状の第 1の分割部の内面にスパッ夕工法により二 ッケルまたはニッケル系合金による側面電極層を形成する工程と、 前記 レジスト層を剥離して複数対の側面電極層をパターニングする工程と、 前記シート状の絶縁基板における複数の短冊状基板に、 前記複数の抵抗 層が個々に分離されて個片状基板に分割されるように前記スリット状の 第 1の分割部と直交する方向に複数の第 2の分割部を形成する工程とを 備えた抵抗器の製造方法。
8 . シ一ト状の絶縁基板の上面に複数対の上面電極層と複数の抵抗 層を両者が電気的に接続されるように形成する工程と、 前記複数の抵抗 層における前記複数対の上面電極層間の抵抗値を調整するためにトリミ ングを行う工程と、 少なくとも前記複数の抵抗層を覆うように複数の保 護層を形成する工程と、 前記シート状の絶縁基板を複数の短冊状基板に 分割するためのスリット状の第 1の分割部を複数形成する工程と、 前記 スリット状の第 1の分割部が複数形成された状態のシート状の絶縁基板 の裏面にマスクを設置する工程と、 このマスクを設置した状態で前記絶 縁基板の裏面および複数のスリット状の第 1の分割部の内面にスパッ夕 工法によりニッケルまたはニッケル系合金による複数対の側面電極層を 形成する工程と、前記シート状の絶縁基板における複数の短冊状基板に、 前記複数の抵抗層が個々に分離されて個片状基板に分割されるように前 記スリット状の第 1の分割部と直交する方向に複数の第 2の分割部を形 成する工程とを備えた抵抗器の製造方法。
9 . シート状の絶縁基板の上面に複数対の上面電極層と複数の抵抗 層を両者が電気的に接続されるように形成する工程と、 前記複数の抵抗 層における前記複数対の上面電極層間の抵抗値を調整するためにトリミ ングを行う工程と、 少なくとも前記複数の抵抗層を覆うように複数の保 護層を形成する工程と、 前記シート状の絶縁基板を複数の短冊状基板に 分割するためのスリット状の第 1の分割部を複数形成する工程と、 前記 スリット状の第 1の分割部が複数形成された状態のシート状の絶縁基板 の裏面全面にニッケルまたはニッケル系合金による金属膜を形成するェ 程と、 前記複数のスリット状の第 1の分割部の内面にニッケルまたは二 ッケル系合金による複数対の側面電極層を形成する工程と、 前記シ一ト 状の絶縁基板の裏面全面に形成された金属膜の不要部分をレーザ一で除 去することにより複数対の裏面電極層を形成する工程と、 前記シ一ト状 の絶縁基板における複数の短冊状基板に、 前記複数の抵抗層が個々に分 離されて個片状基板に分割されるように前記スリット状の第 1の分割部 と直交する方向に複数の第 2の分割部を形成する工程とを備えた抵抗器 の製造方法。
1 0 . 請求の範囲第 3項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板に最初にスリッ 卜状の第 1の分割部を複数形成し、 かつ複数対の側面電極層を形成する工程は、 前記シート状の絶縁基板に 無電解めつき工法でニッケルめっきを施すことにより前記複数のスリッ ト状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗器の製 造方法。
1 1 . 請求の範囲第 4項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリツト状の第 1の分割部を複数形成する工程は, シート状の絶縁基板に最初にスリッ ト状の第 1の分割部を複数形成し、 かつ複数対の側面電極層を形成する工程は、 前記シート状の絶縁基板に 無電解めつき工法でニッケルめっきを施すことにより前記複数のスリッ ト状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗器の製 造方法。
1 2 . 請求の範囲第 7項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は, シート状の絶縁基板に最初にスリット状の第 1の分割部を複数形成した 抵抗器の製造方法。
1 3 . 請求の範囲第 8項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は, シート状の絶縁基板に最初にスリット状の第 1の分割部を複数形成した 抵抗器の製造方法。
1 4 . 請求の範囲第 9項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板に最初にスリッ.ト状の第 1の分割部を複数形成した 抵抗器の製造方法。
1 5 . 請求の範囲第 3項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 あらかじめスリッ ト状の第 1の分割部を複数形成したシ一ト状の絶縁基 板を用い、 かつ複数対の側面電極層を形成する工程は、 前記シート状の 絶縁基板に無電解めつき工法でニッケルめっきを施すことにより前記複 数のスリッ 卜状の第 1の分割部の内面に複数対の側面電極層を形成した 抵抗器の製造方法。
1 6 . 請求の範囲第 4項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は. あらかじめスリッ ト状の第 1の分割部を複数形成したシ一ト状の絶縁基 板を用い、 かつ複数対の側面電極層を形成する工程は、 前記シート状の 絶縁基板に無電解めつき工法でニッケルめっきを施すことにより前記複 数のスリッ 卜状の第 1の分割部の内面に複数対の側面電極層を形成した 抵抗器の製造方法。
1 7 . 請求の範囲第 7項において、 シート状の絶縁基板を複数の短冊 状基板に分割するためのスリッ ト状の'第 1の分割部を複数形成する工程 は、 あらかじめスリット状の第 1の分割部を複数形成したシート状の絶 縁基板を用いた抵抗器の製造方法。
1 8 . 請求の範囲第 8項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリッ卜状の第 1の分割部を複数形成する工程は、 あらかじめスリット状の第 1の分割部を複数形成したシート状の絶縁基 板を用いた抵抗器の製造方法。
1 9 . 請求の範囲第 9項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 あらかじめスリット状の第 1の分割部を複数形成したシート状の絶縁基 板を用いた抵抗器の製造方法。
2 0 . 請求の範囲第 3項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数対の上面電極層を形成した後に実施し、 かつ複数対の側面電極層を形成する工程は、 前記シート状の絶縁基板に 無電解めつき工法でニッケルめっきを施すことにより前記複数のスリッ ト状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗器の製 造方法。
2 1 . 請求の範囲第 4項において、 シート状の絶縁基板を複数の短冊状 基板に分割するた'めのスリッ ト状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数対の上面電極層を形成した後に実施し、 かつ複数対の側面電極層を形成する工程は、 前記シ一ト状の絶縁基板に ' 無電解めつき工法でニッケルめっきを施すことにより前記複数のスリッ ト状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗器の製 造方法。
2 2 . 請求の範囲第 7項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数対の上面電極層を形成した後に実施し、 かつ複数の抵抗層を形成する工程は、 前記複数対の上面電極層に一部が 重なるように複数の抵抗層を形成した抵抗器の製造方法。
2 3 . 請求の範囲第 8項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数対の上面電極層を形成した後に実施し、 かつ複数の抵抗層を形成する工程は、 前記複数対の上面電極層に一部が 重なるように複数の抵抗層を形成した抵抗器の製造方法。
2 4 . 請求の範囲第 9項において、 シート状の絶縁基板を複数の'短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は, シート状の絶縁基板の上面に複数対の上面電極層を形成した後に実施し- かつ複数の抵抗層を形成する工程は、 前記複数対の上面電極層に一部が 重なるように複数の抵抗層を形成した抵抗器の製造方法。
2 5 . 請求の範囲第 3項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は, , シート状の絶縁基板の上面に複数対の上面電極層を形成し、 かっこの複 数対の上面電極層に一部が重なるように抵抗層を形成した後に実施し、 かつ複数対の側面電極層を形成する工程は、 前記シート状の絶縁基板に 無電解めつき工法でニッケルめっきを施すことにより前記複数のスリッ ト状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗器の製 造方法。
2 6 . 請求の範囲第 4項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数対の抵抗層を形成し、 かっこの複数の 抵抗層に一部が重なるように複数対の上面電極層を形成した後に実施し、 かつ複数対の側面電極層を形成する工程は、 前記シート状の絶縁基板に 無電解めつき工法でニッケルめっきを施すことにより前記複数のスリッ ト状の第 1の分割部の内面に複数対の側面電極層を形成した抵抗器の製 造方法。
2 7 . 請求の範囲第 7項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は, シート状の絶縁基板の上面に複数対の上面電極層と複数の抵抗層を両者 が電気的に接続されるように形成した後に実施した抵抗器の製造方法。
2 8 . 請求の範囲第 8項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数対の上面電極層と複数の抵抗層を両者 が電気的に接続されるように形成した後に実施した抵抗器の製造方法。
2 9 . 請求の範囲第 9項において、 シ一ト状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数対の上面電極層と複数の抵抗層を両者 が電気的に接続されるように形成した後に実施した抵抗器の製造方法。
3 0 . 請求の範囲第 3項において、 シ一卜状の絶縁基板を複数の短冊状 基板に分割するためのスリッ 卜状の第 1の分割部を複数形成する工程は, 複数の抵抗層における複数対の上面電極層間の抵抗値を調整するために トリミングを行う トリミング工程の後に実施し、 かつ複数対の側面電極 層を形成する工程は、 前記シート状の絶縁基板に無電解めつき工法で二 ッケルめっきを施すことにより前記複数のスリット状の第 1の分割部の 内面に複数対の側面電極層を形成した抵抗器の製造方法。
3 1 . 請求の範囲第 4項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリッ ト状の第 1の分割部を複数形成する工程は, 複数の抵抗層における複数対の上面電極層間の抵抗値を調整するために トリミングを行う トリミング工程の後に実施し、 かつ複数対の側面電極 層を形成する工程は、 前記シート状の絶縁基板に無電解めつき工法で二 ッケルめっきを施すことにより前記複数のスリッ 卜状の第 1の分割部の 内面に複数対の側面電極層を形成した抵抗器の製造方法。
3 2 . 請求の範囲第 7項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数の抵抗層を形成した後に実施し、 かつ 複数対の上面電極層を形成する工程は、 前記複数の抵抗層に一部が重な るように複数対の上面電極層を形成した抵抗器の製造方法。
3 3 . 請求の範囲第 8項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シ一卜状の絶縁基板の上面に複数の抵抗層を形成した後に実施し、 かつ 複数対の上面電極層を形成する工程は、 前記複数の抵抗層に一部が重な るように複数対の上面電極層を形成した抵抗器の製造方法。
3 4 . 請求の範囲第 9項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 シート状の絶縁基板の上面に複数の抵抗層を形成した後に実施し、 かつ 複数対の上面電極層を形成する工程は、 前記複数の抵抗層に一部が重な るように複数対の上面電極層を形成した抵抗器の製造方法。
3 5 . 請求の範囲第 7項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は. 複数の抵抗層における複数対の上面電極層間の抵抗値を調整するために トリミングを行うトリミング工程の後に実施した抵抗器の製造方法。
3 6 . 請求の範囲第 8項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は, 複数の抵抗層における複数対の上面電極層間の抵抗値を調整するために トリミングを行う トリミング工程の後に実施した抵抗器の製造方法。
3 7 . 請求の範囲第 9項において、 シート状の絶縁基板を複数の短冊状 基板に分割するためのスリット状の第 1の分割部を複数形成する工程は、 複数の抵抗層における複数対の上面電極層間の抵抗値を調整するために トリミングを行う トリミング工程の後に実施した抵抗器の製造方法。
3 8 . シ一ト状の絶縁基板の上面に複欽対の金属層を形成する工程と、 前記シート状の絶縁基板の上面に前記金属層と電気的に接続される複数 対の上面電極層と複数の抵抗層を両者が電気的に接続されるように形成 する工程と、 前記複数の抵抗層における前記複数対の上面電極層間の抵 抗値を調整するためにトリミングを行う工程と、 少なくとも前記複数の 抵抗層を覆うように複数の保護層を形成する工程と、 前記シート状の絶 縁基板における前記複数対の金属層のみに、 この複数対の金属層を分離 してシート状の絶縁基板を複数の短冊状基板に分割するためのスリッ ト 状の第 1の分割部を複数形成する工程と、 前記スリッ ト状の第 1の分割 部が複数形成された状態のシート状の絶縁基板における前記複数のスリ ッ ト状の第 1の分割部の内面にニッケルまたはニッケル系合金による複 数対の側面電極層を形成する工程と、 前記シート状の絶縁基板における 複数の短冊状基板に、 前記複数の抵抗層が偭々に分離されて個片状基板 に分割されるように前記スリッ卜状の第 1の分割部と直交する方向に複 数の第 2の分割部を形成する工程とを備えた抵抗器の製造方法。
3 9 . シート状の絶縁基板の上面に複数対の金属層を形成する工程と、 前記シート状の絶縁基板の上面に前記金属層と電気的に接続される複数 対の上面電極層と複数の抵抗層を両者が電気的に接続されるように形成 する工程と、 前記複数の抵抗層における前記複数対の上面電極層間の抵 抗値を調整するためにトリミングを行う工程と、 前記トリミングを行つ たシート状の絶縁基板における前記複数対の金属層のみに、 この複数対 の金属層を分離してシー.ト状の絶縁基板を複数の短冊状基板に分割する ためのスリッ ト状の第 1の分割部を複数形成する工程と、 少なくとも前 記複数の抵抗層を覆うように複数の保護層を形成する工程と、 前記スリ ット状の第 1の分割部が複数形成された状態のシート状の絶縁基板にお ける前記複数のスリット状の第 1の分割部の内面にニッケルまたはニッ ケル系合金による複数対の側面電極層を形成する工程と、 前記シート状 の絶縁基板における複数の短冊状基板に、 前記複数の抵抗層が個々に分 離されて個片状基板に分割されるように前記スリット状の第 1の分割部 と直交する方向に複数の第 2の分割部を形成する工程とを備えた抵抗器 の製造方法。
PCT/JP2001/000251 2000-01-17 2001-01-17 Resistance et son procede de fabrication WO2001054143A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/181,306 US6935016B2 (en) 2000-01-17 2001-01-17 Method for manufacturing a resistor
EP01901377A EP1255256B1 (en) 2000-01-17 2001-01-17 Resistor and method for fabricating the same
DE60139855T DE60139855D1 (de) 2000-01-17 2001-01-17 Widerstand und seine herstellungsmethode
US11/037,935 US7334318B2 (en) 2000-01-17 2005-01-18 Method for fabricating a resistor
US11/037,533 US7165315B2 (en) 2000-01-17 2005-01-18 Method for fabricating a resistor
US11/037,963 US7188404B2 (en) 2000-01-17 2005-01-18 Method for fabricating a resistor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000007407 2000-01-17
JP2000-007407 2000-01-17
JP2000043913A JP2001237112A (ja) 2000-02-22 2000-02-22 抵抗器の製造方法
JP2000-043913 2000-02-22
JP2000045507A JP2001274002A (ja) 2000-01-17 2000-02-23 抵抗器およびその製造方法
JP2000-045507 2000-02-23

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10181306 A-371-Of-International 2001-01-17
US11/037,533 Division US7165315B2 (en) 2000-01-17 2005-01-18 Method for fabricating a resistor
US11/037,963 Division US7188404B2 (en) 2000-01-17 2005-01-18 Method for fabricating a resistor
US11/037,935 Division US7334318B2 (en) 2000-01-17 2005-01-18 Method for fabricating a resistor

Publications (1)

Publication Number Publication Date
WO2001054143A1 true WO2001054143A1 (fr) 2001-07-26

Family

ID=27342059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000251 WO2001054143A1 (fr) 2000-01-17 2001-01-17 Resistance et son procede de fabrication

Country Status (6)

Country Link
US (4) US6935016B2 (ja)
EP (3) EP1255256B1 (ja)
KR (1) KR100468373B1 (ja)
CN (2) CN1722316B (ja)
DE (1) DE60139855D1 (ja)
WO (1) WO2001054143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237324B2 (en) * 2002-01-15 2007-07-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing chip resistor

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020176927A1 (en) * 2001-03-29 2002-11-28 Kodas Toivo T. Combinatorial synthesis of material systems
DE10162276C5 (de) * 2001-12-19 2019-03-14 Watlow Electric Manufacturing Co. Rohrförmiger Durchlauferhitzer und Heizplatte sowie Verfahren zu deren Herstellung
JP2004140117A (ja) * 2002-10-16 2004-05-13 Hitachi Ltd 多層回路基板、及び多層回路基板の製造方法
TWI266568B (en) * 2004-03-08 2006-11-11 Brain Power Co Method for manufacturing embedded thin film resistor on printed circuit board
CN100521835C (zh) * 2005-12-29 2009-07-29 梁敏玲 电阻膜加热装置的制造方法及所形成的电阻膜加热装置
TW200733149A (en) * 2006-02-22 2007-09-01 Walsin Technology Corp Manufacturing method of chip resistor
US7911318B2 (en) * 2007-02-16 2011-03-22 Industrial Technology Research Institute Circuit boards with embedded resistors
US8044764B2 (en) * 2008-03-12 2011-10-25 International Business Machines Corporation Resistor and design structure having resistor material length with sub-lithographic width
US8111129B2 (en) 2008-03-12 2012-02-07 International Business Machines Corporation Resistor and design structure having substantially parallel resistor material lengths
KR101089840B1 (ko) * 2009-04-01 2011-12-05 삼성전기주식회사 회로 기판 모듈 및 그의 제조 방법
TWM439246U (en) * 2012-06-25 2012-10-11 Ralec Electronic Corp Micro metal sheet resistance
TWI491875B (zh) 2013-12-26 2015-07-11 Taiwan Green Point Entpr Co Electrochemical sensing test piece and its manufacturing method
TWI571891B (zh) * 2014-03-03 2017-02-21 Walsin Tech Corp Thin film resistor method
US9552908B2 (en) * 2015-06-16 2017-01-24 National Cheng Kung University Chip resistor device having terminal electrodes
JP6506636B2 (ja) * 2015-06-18 2019-04-24 Koa株式会社 チップ抵抗器の製造方法
CN106328330A (zh) * 2015-06-19 2017-01-11 旺诠股份有限公司 晶片式薄膜电阻的制造方法
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
TWI620318B (zh) * 2016-08-10 2018-04-01 Wafer resistor device and method of manufacturing same
US10290403B2 (en) * 2016-12-15 2019-05-14 National Cheng Kung University Methods of fabricating chip resistors using aluminum terminal electrodes
CN107233900A (zh) * 2017-06-20 2017-10-10 山西大同大学 一种二硫化钼复合纳米金光催化剂及其制备方法
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
KR20220054306A (ko) * 2019-09-04 2022-05-02 세미텍 가부시키가이샤 저항기, 그 제조 방법 및 저항기를 구비한 장치
KR102231104B1 (ko) * 2019-12-27 2021-03-23 삼성전기주식회사 저항 부품

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142904A (ja) * 1989-10-30 1991-06-18 Matsushita Electric Ind Co Ltd チップ抵抗器の製造方法
JPH04102302A (ja) * 1990-08-21 1992-04-03 Rohm Co Ltd チップ型抵抗器の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774001A (ja) 1993-09-02 1995-03-17 Murata Mfg Co Ltd 抵抗素子を含む電子部品
JPH0786012A (ja) 1993-09-13 1995-03-31 Matsushita Electric Ind Co Ltd 角形チップ抵抗器の製造方法
US5680092A (en) * 1993-11-11 1997-10-21 Matsushita Electric Industrial Co., Ltd. Chip resistor and method for producing the same
JPH07245228A (ja) 1994-03-03 1995-09-19 Murata Mfg Co Ltd 表面実装型電子部品の製造方法
JPH08306503A (ja) * 1995-05-11 1996-11-22 Rohm Co Ltd チップ状電子部品
JPH0950901A (ja) 1995-08-07 1997-02-18 Hokuriku Electric Ind Co Ltd チップ電子部品とその製造方法
JPH09120902A (ja) 1995-10-24 1997-05-06 Hokuriku Electric Ind Co Ltd チップ電子部品とその製造方法
JP3637124B2 (ja) * 1996-01-10 2005-04-13 ローム株式会社 チップ型抵抗器の構造及びその製造方法
EP0810614B1 (en) * 1996-05-29 2002-09-04 Matsushita Electric Industrial Co., Ltd. A surface mountable resistor
JPH1116762A (ja) 1997-06-23 1999-01-22 Taiyo Yuden Co Ltd 電子部品の外部電極形成方法
WO1999001876A1 (fr) * 1997-07-03 1999-01-14 Matsushita Electric Industrial Co., Ltd. Resistance et procede de fabrication
JPH1126204A (ja) * 1997-07-09 1999-01-29 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JPH11307304A (ja) 1998-04-20 1999-11-05 Hokuriku Electric Ind Co Ltd チップ抵抗器及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142904A (ja) * 1989-10-30 1991-06-18 Matsushita Electric Ind Co Ltd チップ抵抗器の製造方法
JPH04102302A (ja) * 1990-08-21 1992-04-03 Rohm Co Ltd チップ型抵抗器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1255256A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237324B2 (en) * 2002-01-15 2007-07-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing chip resistor

Also Published As

Publication number Publication date
US20030132828A1 (en) 2003-07-17
EP1981041A2 (en) 2008-10-15
US20050153515A1 (en) 2005-07-14
CN1220219C (zh) 2005-09-21
US6935016B2 (en) 2005-08-30
KR100468373B1 (ko) 2005-01-27
US7165315B2 (en) 2007-01-23
EP1255256A4 (en) 2008-06-18
CN1722316B (zh) 2010-09-29
DE60139855D1 (de) 2009-10-22
CN1722316A (zh) 2006-01-18
EP1255256B1 (en) 2009-09-09
EP1255256A1 (en) 2002-11-06
US7188404B2 (en) 2007-03-13
US20050125991A1 (en) 2005-06-16
EP1981040A2 (en) 2008-10-15
CN1395734A (zh) 2003-02-05
US7334318B2 (en) 2008-02-26
KR20020071946A (ko) 2002-09-13
US20050158960A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
WO2001054143A1 (fr) Resistance et son procede de fabrication
TWI394175B (zh) 電阻器及其製造方法
KR100501559B1 (ko) 저항기 및 그 제조 방법
JP3846312B2 (ja) 多連チップ抵抗器の製造方法
JP3608569B2 (ja) 抵抗器の製造方法
JP3608570B2 (ja) 抵抗器の製造方法
JP3905030B2 (ja) 抵抗器の製造方法
JP2004146859A (ja) 抵抗器の製造方法
JP3636190B2 (ja) 抵抗器およびその製造方法
JP2001274002A5 (ja)
JP4415502B2 (ja) 抵抗器およびその製造方法
JP4530024B2 (ja) 抵抗器およびその製造方法
JP2004288808A (ja) 抵抗器の製造方法
JP2001237112A (ja) 抵抗器の製造方法
JP3812442B2 (ja) 多連チップ抵抗器の製造方法
JP2004146858A (ja) 抵抗器の製造方法
JP2001274002A (ja) 抵抗器およびその製造方法
JP3846311B2 (ja) 多連チップ抵抗器の製造方法
JP2005159381A (ja) 抵抗器の製造方法
JP2003007518A (ja) 多連チップ抵抗器の製造方法
JPH05304002A (ja) 角形チップ抵抗器及びその製造方法
JPH0372602A (ja) 角板型薄膜チップ抵抗器の製造方法
JP2001257102A (ja) 多連チップ抵抗器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 01803621X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001901377

Country of ref document: EP

Ref document number: 1020027009193

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027009193

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10181306

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001901377

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027009193

Country of ref document: KR