WO2001043259A1 - Moteur du type a aimant permanent et procede de production correspondant - Google Patents

Moteur du type a aimant permanent et procede de production correspondant Download PDF

Info

Publication number
WO2001043259A1
WO2001043259A1 PCT/JP2000/007926 JP0007926W WO0143259A1 WO 2001043259 A1 WO2001043259 A1 WO 2001043259A1 JP 0007926 W JP0007926 W JP 0007926W WO 0143259 A1 WO0143259 A1 WO 0143259A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor core
stator
rotor
type motor
Prior art date
Application number
PCT/JP2000/007926
Other languages
English (en)
French (fr)
Inventor
Tsuneyoshi Tajima
Tomoaki Oikawa
Osamu Kazama
Koji Masumoto
Masaki Katou
Kazuhiko Baba
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2001543833A priority Critical patent/JP4598343B2/ja
Priority to US09/869,322 priority patent/US6717315B1/en
Priority to KR10-2001-7013873A priority patent/KR100440537B1/ko
Publication of WO2001043259A1 publication Critical patent/WO2001043259A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a permanent magnet type motor used for, for example, an air conditioner or a compressor for a refrigerator, and a method for producing the same.
  • FIG. 9 is a diagram showing a conventional permanent magnet type motor.
  • a stator 1 includes an annular stator core 2, a plurality of teeth 3 formed on the stator core 2, and a core wound around these teeth 3. It is composed of Ill 4.
  • the stator 1 is, for example, a distributed winding stator having a plurality of phases of stator windings.
  • a rotor 10 is rotatably disposed inside the stator 1 via a gap 5.
  • the rotor 10 has a rotating shaft 11 and a rotor core 12 provided on the outer periphery of the rotating shaft 11.
  • the permanent magnet type motor using a permanent magnet for the rotor of the motor has a cross-section in the rotor core 12 with a plurality of holes 13 for inserting permanent magnets near the outer circumference.
  • Each of the permanent magnets 14 is arranged such that the convex portion faces outward.
  • each permanent magnet 14 has its magnetic orientation 15 parallel to the straight line connecting the center of the rotor 10 and the center of the permanent magnet 14 in the circumferential direction.
  • the magnetic orientation center is magnetized so that it is at infinity.
  • the rotor core 12 is formed by laminating a large number of silicon steel sheets having the receiving holes 13 formed therein.
  • the air gap magnetic flux density distribution by the permanent magnet 14 between the rotor 10 and the stator 1 has a waveform as shown in FIG.
  • this waveform is significantly different from a sine wave, there is a problem that the cogging torque is large and the vibration and noise are large.
  • the rotor 10 is magnetized such that the focal point of the magnetic orientation 15 of each part of each permanent magnet 14 is provided outside the rotor 10.
  • the air gap magnetic flux density distribution by the permanent magnets 14 is large at the center of the magnetic pole and small at both ends, so that it is close to a sine wave as shown in Fig. 13.
  • the cogging torque can be reduced, and vibration and noise can be reduced.
  • the magnetic orientation 15 must be concentrated on the convex side of the permanent magnet 14 when the permanent magnet 14 is manufactured.
  • the center of the arc due to the shape of the permanent magnet itself and the center of the magnetic orientation are in opposite directions, so that the compression direction and the magnetic flux direction during molding in the permanent magnet manufacturing process are different, and the permanent magnet itself is There is a problem that the residual magnetic flux density is reduced and the motor efficiency is reduced accordingly.
  • FIG. 14 a configuration shown in FIG. 14 can be considered.
  • the rotor 10 is arranged such that the convex side of each permanent magnet 14 faces the inside of the rotor core 12, and focuses the magnetic orientation 15 of each part of each permanent magnet 14 on the rotor. It is magnetized so that it is provided outside of 10 According to the above means, the air gap magnetic flux density distribution due to the permanent magnets 14 is large at the center of the magnetic pole and small at both ends, so that a sinusoidal wave as shown in Fig. 15 is obtained.
  • the cogging torque can be reduced, the vibration and noise can be reduced, and the magnetic orientation 15 is changed to the concave side of the permanent magnet 14 when the permanent magnet 14 is manufactured.
  • the center of the arc formed by the shape of the permanent magnet itself and the center of the magnetic orientation are in the same direction, the compression direction and the magnetic flux direction during molding are the same.
  • the permanent magnet itself does not lower its residual magnetic flux density, so that the motor efficiency does not deteriorate.
  • the thickness of the rotor core portion 12a separating the air gap 5 from each permanent magnet 14 as shown in Fig. 16 is obtained. Increases, the magnetic resistance decreases, and the magnetic flux 20 generated by the current of the coil 4 passes through the rotor core portion 12 a and passes through the rotor core portion 12 a with the tooth 3 of the stator core 2. The amount of magnetic flux that shorts between increases. Along with this, the torque ripple generated by the fundamental and harmonic components contained in the magnetic flux also increases, causing a problem that vibration and noise increase. .
  • An object of the present invention is, for example, to provide a permanent magnet type motor having a permanent magnet capable of reducing vibration and noise without lowering the motor efficiency, and a method of manufacturing the same.
  • a preferred embodiment according to the present invention is directed to a stator having a plurality of stator windings, and a rotor core and a rotor which are disposed inside the stator with a gap therebetween to face each other.
  • the permanent magnet has a cross section perpendicular to the axis on both the inner diameter side and the outer diameter side.
  • the magnetic orientation of each magnetic pole of the permanent magnet is provided outside the rotor at the focal point.
  • the rotor is formed by laminating a large number of rotor core punched sheets provided with a plurality of holes for inserting permanent magnets to form a rotor core laminated body, and permanent magnets are inserted into the hole for inserting permanent magnets.
  • the thickness of the rotor core separating the permanent magnet and the air gap is set to be within 30% of the soil thickness of the rotor core blank.
  • the permanent magnet is mounted on an outer peripheral portion of a rotor core, and a non-magnetic protective pipe is fitted on the outer peripheral portion of the permanent magnet to constitute a rotor.
  • the radius of the arc on the outer diameter side of the permanent magnet insertion hole provided in the rotor core is R, and the radius of the outer diameter side arc of the permanent magnet inserted into this accommodation hole is r.
  • R is set to be r.
  • the winding is directly wound on the stator teeth. It is provided with a concentrated winding stator.
  • the radius of the inner diameter side protrusion of the permanent magnet is made smaller than the radius of the outer diameter side protrusion.
  • a permanent hole is provided in the rotor core for inserting a permanent magnet, and a straight part is provided in a part of the arc on the inner diameter side of the permanent magnet.
  • FIG. 1 shows the first embodiment and is a diagram of a permanent magnet type motor.
  • FIG. 2 shows the first embodiment and shows the magnetic orientation state of the permanent magnet.
  • FIG. 3 shows the first embodiment and is a magnetic flux density distribution diagram.
  • FIG. 4 is a diagram showing the first embodiment and is an enlarged view of a main part of FIG.
  • Fig. 5 shows the second embodiment and is a diagram of the rotor of the permanent magnet type motor. You.
  • FIG. 6 shows the third embodiment and is a diagram of one pole of the rotor.
  • FIG. 7 shows the fourth embodiment and is a diagram of a permanent magnet type motor.
  • FIG. 8 shows the fifth embodiment, and is a diagram of one pole of the rotor.
  • Figure 9 is a diagram of a conventional permanent magnet motor.
  • FIG. 10 is a view showing a magnetic orientation state of a conventional permanent magnet.
  • Figure 11 is a magnetic flux density distribution diagram.
  • FIG. 12 is a diagram showing a magnetic orientation state of another conventional permanent magnet.
  • Figure 13 is a magnetic flux density distribution diagram.
  • FIG. 14 is a diagram showing a magnetic orientation state of another conventional permanent magnet.
  • Figure 15 is a magnetic flux density distribution diagram.
  • FIG. 16 is an enlarged view of a main part of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram of a permanent magnet type motor
  • FIG. 2 is a diagram showing a magnetic orientation state of a permanent magnet
  • FIG. 3 is a magnetic flux density distribution diagram
  • FIG. 1 is an enlarged view of a main part of FIG.
  • a stator 1 has an annular stator core 2, a plurality of teeth 3 formed on the stator core 2, and a coil 4 wound around these teeth 3. It is composed of
  • the stator 1 is, for example, a distributed stator having a plurality of stator windings.
  • a rotor 10 is rotatably disposed inside the stator 1 via a gap 5.
  • the rotor 10 has a rotating shaft 11 and a rotor core 12 provided on an outer peripheral portion of the rotating shaft 11.
  • the rotor 10 is formed on the rotor core 12.
  • the permanent magnets 14 are inserted into the accommodating holes 13 for inserting the permanent magnets from the axial direction and incorporated.
  • the rotor core 12 is formed by laminating a large number of keyed steel plates called rotor core blanks with punched holes 13 in the direction of the rotating shaft 11 (in the direction perpendicular to the plane of FIG. 1). It has a rotor core laminate.
  • the accommodation hole 13 provided in the rotor core 12 has a shape that is convex on both the inner diameter side and the outer diameter side in a cross section perpendicular to the rotating shaft 11.
  • the thickness t in the radial direction of the rotor core portion 12a separating the permanent magnet 14 and the gap 5 is set to be within ⁇ 30% of the thickness of the rotor core blank. For example, assuming that the thickness of one rotor core blanking plate is 0.5 mm, the radial thickness t of the rotor core portion 12a is 0.35 mm to 0.6 mm. 5 mm.
  • the radius of the arc on the outer diameter side of the accommodation hole 13 provided in the rotor core 12 is R
  • the radius of the arc on the outer diameter side of the permanent magnet 14 is r
  • the outer convex arc of the permanent magnet 14 is set to be on the circumference of the concentric circle with the outer circumference of the rotor 10.
  • the radial thickness t is a constant value.
  • the permanent magnet 14 has a shape substantially similar to the accommodation hole 13, and the N pole and the S pole are alternated, and as shown in FIG. In addition, each part is magnetized so that the focal point of the magnetic orientation 15 is outside the rotor 10.
  • the air gap magnetic flux density distribution due to the permanent magnets 14 is large at the center of the magnetic pole and small at both ends. As shown in FIG. 3, the distribution is close to a sine wave, so that the cogging torque can be reduced and vibration and noise can be reduced.
  • the magnetic orientation 15 has one focal point, The same effect can be obtained even if the focus is divided into a plurality of positions outside the child 10.
  • the magnetic orientation 15 is set so that its focal point is on the outer diameter of the rotor 10, but the cross section of the permanent magnet 14 is also convex on the inner diameter side. As shown in Fig. 1, if the radius R of the inner-side protrusion is smaller than the radius R of the outer-side protrusion, the compression direction and the direction of the magnetic flux during molding of the permanent magnet become substantially equal, and the residual The magnetic flux density does not decrease.
  • the receiving holes 13 and the permanent magnets 14 have a shape that is also convex on the outer diameter side, and a rotor core portion that separates the gap 5 from each permanent magnet 14. Since the thickness t in the radial direction of 12a has been reduced, the magnetic resistance of this portion has increased, and the rotor core separating the air gap 5 from each permanent magnet 14 as shown in Fig. 4 The number of magnetic fluxes passing through the part 12a can be limited. Therefore, of the magnetic flux 20 generated by the current of the coil 4, the magnetic flux generated by short-circuiting between the rotor core portion 12 a and the teeth 3 of the stator core 2. Since the amount can be reduced, the torque ripple generated by the harmonic components of the magnetic flux is reduced, and the vibration and noise can be reduced.
  • the radial thickness t of the rotor core portion 12a separating the air gap 5 of the rotor core 12 from the permanent magnet 14 depends on the punching performance and magnetic resistance of the rotor core blank. However, it is desirable that the thickness be within ⁇ 30%. That is, if the radial thickness t of the rotor core portion 12 a is made too small, the rotor core punching At the time of punching, the rotor core 1 2a will be destroyed. Conversely, if the radial thickness t of the rotor core portion 12 a is made too large, the number of magnetic fluxes passing through the rotor core portion 12 a separating the air gap 5 from each permanent magnet 14 is reduced. It will not be possible to reduce it.
  • FIG. 5 shows the second embodiment and is a view of the rotor of the permanent magnet type motor.
  • a permanent magnet 14 is arranged on the outer periphery of the rotor core 12 and a non-magnetic pipe 16 is fitted to protect the permanent magnet 14.
  • the magnetic flux short-circuited between the rotor cores 12 and the stator cores 2 is further reduced, and the torque ripple is also reduced accordingly, so that vibration and noise can be reduced. .
  • FIG. 6 shows the third embodiment and is a diagram of one pole of the rotor.
  • R the radius of the arc on the outer diameter side of the accommodation hole 13 provided in the rotor core 12
  • r the radius of the arc on the outer diameter side of the permanent magnet 14
  • FIG. 7 shows the fourth embodiment and is a diagram of a permanent magnet type motor.
  • the stator is a distributed winding stator, but as shown in Fig. 7, the stator 1 has an annular stator core 2 and a stator core 2 In the case of a concentrated winding stator composed of a plurality of teeth 3 formed in 2 and a coil 4 wound directly on these teeth 3, It has the following advantages.
  • the magnetic flux generated by the current of the coil 4 passes through the rotor core portion 12 a separating the air gap 5 from each permanent magnet 14, and the stator core 2 teeth Since the effect on the vibration and sound caused by the magnetic flux, which is short-circuited to 3, is greater than that of the distributed winding stator, the rotor core separating the air gap 5 from each permanent magnet 14 Reduction of torque ripple, that is, noise and vibration, by setting the radial thickness t of 12a to be within ⁇ 30% of the thickness of the rotor core blank The effect becomes more effective.
  • stator core 2 has been divided into separate teeth 3 and the core has been developed in a straight or reverse warped shape.
  • a type of concentrated winding stator that directly winds a tooth has been proposed.
  • This type of stator has low stator stiffness due to splitting, and tends to increase noise and vibration.Thus, this embodiment achieves both high efficiency and reduction of noise and vibration. It will be more effective.
  • the present invention is not limited to the embodiments described above and shown in the drawings.
  • the number of the permanent magnets 14 may be other than six. Modifications can be made as appropriate without departing from the scope.
  • FIG. 8 shows the fifth embodiment, and is a diagram of one pole of the rotor. As shown in the figure, a part of the arc on the inner diameter side of the accommodating hole 13 of the permanent magnet 14 provided in the rotor core 12 and one of the arcs on the inner diameter side of the permanent magnet 14 are provided. Straight section The provision of the section 30 has the following advantages.
  • the straight portion 30 is provided in a part of the arc of the permanent magnet 14, the thickness difference between the central portion and both ends of the permanent magnet 14 is reduced, and the compression density during the molding of the permanent magnet is reduced. Therefore, molding defects such as cracks and chips can be reduced.
  • the straight portion 30 in a part of the arc of the permanent magnet 14 is stabilized even in the polishing process after molding, so that accuracy can be easily obtained. .
  • the dimensional defects of the permanent magnets 14 can be reduced, and the insertion defects in the insertion process into the rotor core 12 can be reduced.
  • the straight section 30 is provided not on the outer diameter side but on a part of the arc on the inner diameter side, so a short circuit occurs between the rotor core 1 2a and the teeth 3 of the stator core 2.
  • the amount of magnetic flux does not change, and the torque ripple generated by the harmonic components of this magnetic flux does not increase.
  • a permanent magnet type motor has a structure in which a permanent magnet has a cross section perpendicular to the axis that is convex on both the inner diameter side and the outer diameter side, and also includes a permanent magnet. Since the focal point of the magnetic orientation at the magnetic pole is provided outside the rotor, the air gap magnetic flux density distribution due to the permanent magnet is large at the center of the magnetic pole and small at both ends. Since the distribution is close, the cogging torque can be reduced, the vibration and noise can be reduced, and the magnet can be manufactured without lowering the residual magnetic flux density. However, there is no longer a problem that the efficiency is reduced.
  • the rotor is formed by laminating a number of rotor core punched sheets provided with a plurality of receiving holes for inserting permanent magnets to form a rotor core laminated body, and the permanent magnets are inserted into the receiving holes for inserting permanent magnets. And a gap between the permanent magnet and the air gap. Since the thickness of the rotor core is within ⁇ 30% of the thickness of the punched rotor core, the rotor core and the stator in the magnetic flux generated by the stator coil current Since the amount of magnetic flux that is short-circuited with the iron core teeth is reduced, torque ripple generated by harmonic components of this magnetic flux is reduced, and vibration and noise are reduced. it can.
  • the permanent magnet is mounted on the outer periphery of the rotor core and a non-magnetic protection pipe is fitted on the outer periphery of the permanent magnet to form the rotor, the rotor core and the stator are formed. The amount of magnetic flux that is short-circuited to the iron core is further reduced.
  • R be the radius of the arc on the outer diameter side of the accommodation hole for the permanent magnet provided in the rotor core
  • r be the radius of the arc on the outer diameter side of the permanent magnet inserted into this accommodation hole.
  • R is set so that R ⁇ r.
  • the rotor core that separates the permanent magnet from the air gap does not come into contact with the rotor near the center in the circumferential direction of the permanent magnet. Rotor deformation and breakage due to centrifugal force generated during high-speed rotation can be prevented.
  • the thickness of the rotor core that separates the permanent magnet from the air gap is within ⁇ 30% of the thickness of the rotor core blank, it is directly attached to the teeth of the stator. Since the concentrated winding stator that winds the winding is applied, the radial thickness of the rotor core separating the air gap from the permanent magnet is within 30% of the thickness of the rotor core blank.
  • the torque ripple that is, the noise and vibration reduction effect by the setting is more effective.
  • a permanent magnet insertion hole provided in the rotor core and a straight part provided in a part of the arc on the inner diameter side of the permanent magnet make the permanent magnet Since the compression density is reduced, molding defects such as cracks and chips can be reduced.

Description

明細書 永久磁石形モー夕及び永久磁石形モータ の製造方法 技術分野
こ の発明は、 た と えば、 空気調和機や冷蔵庫用圧縮機等に用 い ら れる 永久磁石形モー夕及びその製造方法に関する 。 背景技術
従来例 1 .
図 9 は従来の永久磁石形モータ を示す図であ る 。
図 9 において、 固定子 1 は、 環状をなす固定子鉄心 2 と、 こ の固定子 鉄心 2 に形成さ れた複数のティ ース 3 と 、 これ ら ティ ース 3 に卷回 さ れ たコ イ ル 4 とか ら構成されている 。 固定子 1 は、 た とえ ば、 複数相の固 定子卷線を有する分布卷固定子であ る。
固定子 1 の 内側に は、 空隙 5 を介 して回転子 1 0 が回転可能に配設さ れている 。 こ の回転子 1 0 は、 回転軸 1 1 と 、 こ の回転軸 1 1 の外周部 に設け ら れた回転子鉄心 1 2 と を有 して いる 。
図に示すよ う に、 モータ の回転子に永久磁石を用 いる永久磁石形モ一 夕 は、 外周近傍に複数の永久磁石挿入用 の収容孔 1 3 を設けた回転子鉄 心 1 2 に断面が円弧状をなす永久磁石 1 4 を挿入 して組み込む こ と によ つ て構成さ れてお り 、 各永久磁石 1 4 は、 凸部側が外側を向 く よ う に配 置されて いる 。
そ して、 各永久磁石 1 4 は、 図 1 0 に示すよ う に各部の磁気配向 1 5 が回転子 1 0 の中心 と永久磁石 1 4 の周方向中央部 と を結ぶ直線と平行 となる よ う に、 換言すれば磁気配向中心が無限遠 となる よ う に着磁され ている。 なお、 回転子鉄心 1 2 は、 収容孔 1 3 が形成さ れたケィ 素鋼板 を多数枚積層 して構成されたも のであ る 。
しか しなが ら 、 従来例 1 の構成の も のでは、 回転子 1 0 と固定子 1 と の間の永久磁石 1 4 によ る 空隙磁束密度分布が図 1 1 に示すよ う な波形 とな り 、 こ の波形が正弦波 と大き く 異な るため、 コ ギ ン グ トルク が大き く 、 振動や騒音が大き い と い う 問題点を有 していた。
従来例 2 .
こ の問題点を解決する手段 と して、 図 1 2 に示すものが考え ら れる。 こ の回転子 1 0 は、 各永久磁石 1 4 の各部の磁気配向 1 5 の焦点を回転 子 1 0 の外側に設ける よ う に着磁されている 。
上記の手段によ り 、 永久磁石 1 4 に よ る空隙磁束密度分布は、 磁極の 中央部において大き く 、 両端部 において小さ く な る ので、 図 1 3 に示す よ う に、 正弦波に近い分布 とな り 、 これに伴いコ ギ ング トルク を低減で き、 振動や騒音を小さ く でき る 。
と こ ろ が、 上記 したよ う な構成のモー 夕 にお いては、 永久磁石 1 4 を 製造する際に磁気配向 1 5 を永久磁石 1 4 の凸部側に集中 させなければ な らず、 すなわち 、 永久磁石 自 身の形状 によ る 円弧の中心 と磁気配向の 中心とが逆方向 となるため、 永久磁石製造工程の成形時の圧縮方向 と磁 束方向が異なるため、 永久磁石 自 身の残留磁束密度が低下 し、 これに伴 つ てモータ効率が低下する と い う 問題点を有 して いる。
従来例 3 .
また、 上記従来例 1 の問題点を解決する他の手段 と して、 図 1 4 に示 す構成の も の も考え られる 。 こ の回転子 1 0 は、 各永久磁石 1 4 の凸部 側が回転子鉄心 1 2 の内側を向 く よ う に配置 し 、 各永久磁石 1 4 の各部 の磁気配向 1 5 の焦点を回転子 1 0 の外側に設ける よ う に着磁 して いる 上記の手段によれば、 永久磁石 1 4 に よ る空隙磁束密度分布は、 磁極 の中央部にお いて大き く 、 両端部において小さ く なる ので、 図 1 5 に示 すよ う に正弦波に近い分布 とな り 、 これに伴いコ ギ ング トルク を低減で き 、 振動や騒音を小 さ く できる と共に、 永久磁石 1 4 を製造する際に磁 気配向 1 5 を永久磁石 1 4 の凹部側に集中 さ せればよ く 、 すなわち 、 永 久磁石 自 身の形状に よ る 円弧の 中心と磁気配向の 中心とが同 じ方向 とな る ので、 成形時の圧縮方向 と磁束方向が同一 とな り 、 永久磁石 自 身の残 留磁束密度が低下 しないので、 モータ効率が悪化する こ と もない。
と こ ろが、 上記 したよ う な従来例 3 の回転子の構成では、 図 1 6 に示 すよ う に空隙 5 と各永久磁石 1 4 と を隔てる 回転子鉄心部分 1 2 a の厚 みが増加 し 、 磁気抵抗が低 く な り 、 コ イ ル 4 の電流によ り 発生する磁束 2 0 の内、 回転子鉄心部分 1 2 a を通過 し固定子鉄心 2 のティ ース 3 と の間で短絡する磁束の量が増加する。 こ れに伴い、 こ の磁束に含まれる 基本波成分や高調波成分に よ り 発生する トルク リ ッ プル も大き く な り 、 振動や騒音が大き く なる と い う 問題点を有 してい る 。
こ の発明は、 た と えば、 モー タ効率を低下 させる こ とな く 、 振動や騒 音を低減でき る永久磁石を備えた永久磁石形モータ及びその製造方法を 提供する こ と を 目 的 とする 。 発明の開示
こ の発明に係る好適な実施の形態は、 複数相の固定子卷線を有する 固 定子 と、 こ の固定子内側に空隙部分を介 して対向配置さ れ、 回転子鉄心 と こ の回転子鉄心に設け ら れた永久磁石 と、 を有する 回転子 と を備えた 永久磁石形モー夕及びその製造方法にお いて、 永久磁石を軸直角方向断 面が内径側 と外径側 と の両方に凸 となる 形状 とする と共 に、 永久磁石の 各磁極における磁気配向の焦点を前記回転子の外側に設けた も のであ る また、 回転子は、 複数の永久磁石挿入用 の収容孔を設けた回転子鉄心 抜板を多数枚積層 して回転子鉄心積層体を形成 し 、 永久磁石挿入用 の収 容孔に永久磁石を挿着する構成 と し、 更に永久磁石 と空隙 との間を隔て る 回転子鉄心の厚み寸法を回転子鉄心抜板の板厚の 土 3 0 % 以内 と した ものであ る。
また、 回転子鉄心の外周部に前記永久磁石を装着 し、 こ の永久磁石の 外周部に非磁性の保護パイ プを嵌着 して回転子を構成 し た も のであ る。
また、 回転子鉄心に設けた永久磁石挿入用の収容孔の外径側の円弧の 半径を R と し 、 こ の収容孔に挿入さ れる永久磁石の外径側の 円弧の半径 を r と した場合、 Rく r となる よ う に設定 した も のであ る 。
また、 永久磁石 と空隙と の間 を隔てる 回転子鉄心の厚み寸法を回転子 鉄心抜板の板厚の 土 3 0 %以内 と した も の において、 固定子のティ ース 部に直接巻線を卷回する集中巻固定子を施 した も のであ る 。
また、 永久磁石の 内径側凸の 半径を外径側凸の半径よ り も小さ く した も のであ る。
また、 回転子鉄心に設けた永久磁石挿入用 の収容孔、 お よび永久磁石 の内径側円弧の一部に直線部を設けた も のであ る 。 図面の簡単な説明
図 1 は実施の形態 1 を示す図で 永久磁石形モー夕の図であ る。
図 2 は実施の形態 1 を示す図で 永久磁石の磁気配向状態を示す図で あ る。
図 3 は実施の形態 1 を示す図で 磁束密度分布図であ る 。
図 4 は実施の形態 1 を示す図で 図 1 の要部拡大図であ る 。
図 5 は実施の形態 2 を示す図で 永久磁石形モー夕の回転子の図であ る。
図 6 は実施の形態 3 を示す図で、 回転子の 1 極分の図であ る。
図 7 は実施の形態 4 を示す図で、 永久磁石形モ一夕 の図であ る。 図 8 は実施の形態 5 を示す図で、 回転子の 1 極分の図であ る 。
図 9 は従来の永久磁石形モータ の図であ る 。
図 1 0 は従来の永久磁石の磁気配向状態を示す図であ る 。
図 1 1 は磁束密度分布図であ る 。
図 1 2 は他の従来の永久磁石の磁気配向状態を示す図であ る 。
図 1 3 は磁束密度分布図であ る 。
図 1 4 はさ ら に他の従来の永久磁石の磁気配向状態を示す図であ る 。 図 1 5 は磁束密度分布図であ る 。
図 1 6 は図 1 4 の要部拡大図であ る。 発明を実施するための最良の形態
実施の形態 1 .
以下、 こ の発明の実施の形態 1 を図面を参照 し て説明する。
図 1 〜 4 は実施の形態 1 を示す図で、 図 1 は永久磁石形モータ の図、 図 2 は永久磁石の磁気配向状態を示す図 と、 図 3 は磁束密度分布図、 図 4 は図 1 の要部拡大図であ る。
図 1 において、 固定子 1 は、 環状をなす固定子鉄心 2 と、 こ の固定子 鉄心 2 に形成された複数のティ ース 3 と 、 これ ら ティ ース 3 に巻回され たコイ ル 4 とか ら構成さ れてい る 。 固定子 1 は、 た と え ば、 複数相の固 定子卷線を有する分布卷固定子であ る。
固定子 1 の内側に は、 空隙 5 を介 して回転子 1 0 が回転可能に配設さ れている 。 こ の回転子 1 0 は、 回転軸 1 1 と 、 こ の回転軸 1 1 の外周部 に設け ら れた回転子鉄心 1 2 と を有 し、 こ の回転子鉄心 1 2 に形成され た永久磁石挿入用の収容孔 1 3 に、 永久磁石 1 4 を軸方向か ら挿入 して 組み込む こ と によ っ て構成されている 。 なお、 回転子鉄心 1 2 は、 収容 孔 1 3 が打抜形成された回転子鉄心抜板 と呼ばれる ケィ 素鋼板を回転軸 1 1 の方向 に (図 1 の紙面垂直方向に) 多数枚積層 した回転子鉄心積層 体を有 し てレ ^ る。
上記回転子鉄心 1 2 に設け ら れた収容孔 1 3 は、 回転軸 1 1 の直角方 向断面 において、 内径側 と外径側の両方 に凸 とな る 形状 となっ てお り 、 また、 永久磁石 1 4 と空隙 5 と を隔てる 回転子鉄心部分 1 2 a の径方向 の厚み寸法 t が回転子鉄心抜板の板厚の ± 3 0 % 以内 になる よ う に設定 さ れてい る。 た とえば、 1 枚の回転子鉄心抜板の板厚が 0 . 5 m mだ と する と 、 回転子鉄心部分 1 2 a の径方向の厚み寸法 t は、 0 . 3 5 m m 〜 0 . 6 5 m m となる。
回転子鉄心 1 2 に設け ら れた収容孔 1 3 の外径側の 円弧の半径を R 、 永久磁石 1 4 の外径側の 円弧の半径を r と した場合に、 R > r となる よ う に設定 したので、 かつ、 永久磁石 1 4 の外側の凸の 円弧は、 回転子 1 0 の外周円 と 同心円 の 円周上に あ る よ う に したので、 回転子鉄心部分 1 2 a の径方向の厚み寸法 t は一定値 となる 。
また、 永久磁石 1 4 は、 前記収容孔 1 3 に ほぼ相似 となる 形状 と なつ ている と と も に、 N極 と S 極 とが交互になる よ う に、 かつ、 図 2 に示す よ う に、 各部の磁気配向 1 5 の焦点が回転子 1 0 の外側になる よ う に着 磁さ れて いる 。
こ のよ う に構成さ れた永久磁石形モー夕 にお い ては、 永久磁石 1 4 に よる空隙磁束密度分布は、 磁極の中央部にお いて大き く 、 両端部におい て小さ く なる ので、 図 3 に示すよ う に、 正弦波に近い分布 とな り 、 これ に伴いコ ギ ング トルク を低減でき、 振動や騒音を小さ く でき る 。
なお、 図 2 では、 磁気配向 1 5 の焦点が 1 ケ 所 となっ てい る が、 回転 子 1 0 の外側であれば焦点が複数ケ所に分かれて も 同様の効果を有する こ とができ る 。
また、 磁気配向 1 5 をその焦点が回転子 1 0 の外径に く る よ う に設定 しているが、 永久磁石 1 4 の断面が内径側に も 凸 となっ てお り 、 かつ、 図 1 に示すよ う に、 内径側凸の半径 R を外径側凸の半径 R よ り も小さ く すれば、 永久磁石成形時の圧縮方向 と磁束の方向が概略等 し く な り 、 残 留磁束密度が低下する こ とがない。
また、 図 1 とは、 逆に、 内径側凸の半径 R を外径側凸の半径 R よ り も 大き く した い場合には、 まず、 永久磁石成形時は内径側凸の半径 R を外 径側凸の半径 R よ り も小さ く して成形 し 、 後か ら 外径側凸の半径 R を大 き く する よ う に切削すれば同様の効果が得 ら れる 。
以上のよ う に、 永久磁石 1 4 自 身の残留磁束密度が低下する こ とがな く なる ので、 モー夕効率が低下 して し ま う と い う 問題も ない。
さ ら に、 収容孔 1 3 お よび永久磁石 1 4 は外径側に も 凸 となる形状 と なっ ている と と も に、 空隙 5 と各永久磁石 1 4 と を隔て る 回転子鉄心部 分 1 2 a の径方向の厚み寸法 t を薄 く したので、 こ の部分の磁気抵抗が 大き く な り 、 図 4 に.示すよ う に空隙 5 と各永久磁石 1 4 と を隔てる 回転 子鉄心部分 1 2 a を通る磁束の数を制限する こ とができ る。 したがっ て 、 コ イ ル 4 の電流に よ り 発生する磁束 2 0 の内、 前記回転子鉄心部分 1 2 a と固定子鉄心 2 のティ ース 3 との間で短絡 し て し ま う 磁束の量を少 な く する こ とができ る ので、 こ の磁束の高調波成分によ り 発生する トル ク リ ッ プルが低減さ れ、 振動や騒音を小さ く でき る 。
なお、 前記回転子鉄心 1 2 の空隙 5 と永久磁石 1 4 と を隔てる回転子 鉄心部分 1 2 a の径方向の厚み寸法 t は、 回転子鉄心抜板の打抜性 と磁 気抵抗よ り 、 板厚の ± 3 0 %以内が望ま し い。 すなわち 、 回転子鉄心部 分 1 2 a の径方向の厚み寸法 t を小さ く しすぎる と、 回転子鉄心抜板の 打抜時に回転子鉄心部分 1 2 a を破壊 して し ま う 。 逆に、 回転子鉄心部 分 1 2 a の径方向の厚み寸法 t を大き く しすぎる と、 空隙 5 と各永久磁 石 1 4 と を隔てる 回転子鉄心部分 1 2 a を通る磁束の数を少な く する こ とができな く なる 。
実施の形態 2 .
以下、 こ の発明の実施の形態 2 を図面を参照 して説明する 。
図 5 は実施の形態 2 を示す図で、 永久磁石形モータ の回転子の図であ る 。 図 5 に示すよ う に、 回転子鉄心 1 2 の外周部に永久磁石 1 4 を配置 し、 非磁性のパイ プ 1 6 を嵌着 して こ の永久磁石 1 4 を保護する構成 と する こ と によ り 、 回転子鉄心 1 2 と固定子鉄心 2 との間で短絡する磁束 がさ ら に減少 し、 これに伴い ト ルク リ ッ プル も低減さ れる ので、 振動や 騒音を小さ く でき る 。
実施の形態 3 .
以下、 こ の発明の実施の形態 3 を図面を参照 して説明する。
図 6 は実施の形態 3 を示す図で、 回転子の 1 極分の図であ る 。 図に示 すよ う に、 回転子鉄心 1 2 に設け られた収容孔 1 3 の外径側の円弧の半 径を R 、 永久磁石 1 4 の外径側の 円弧の半径を r と した場合に、 R < r となる よ う に設定 したので、 永久磁石 1 4 と空隙 5 と を隔てる 回転子鉄 心部分 1 2 a と永久磁石 1 4 の周方向における 中央付近での接触がな く な り 、 回転子 1 0 の高速回転時に生 じ る遠心力 に よ る回転子鉄心部分 1 2 a の中央部付近か ら両端部に作用する大きな慣性モー メ ン ト がな く な るので、 せん断応力 を減少させる こ とができ る 。 したがっ て、 本実施の 形態によれば、 回転子の変形及び破断を防止でき る。
実施の形態 4 .
以下、 この発明の実施の形態 4 を図面を参照 して説明する。
図 7 は実施の形態 4 を示す図で、 永久磁石形モータ の図であ る。 実施 の形態 1 〜 3 では、 固定子は分布巻固定子であ る も の と したが、 図 7 に 示すよ う に、 固定子 1 は、 環状をなす固定子鉄心 2 と、 こ の固定子鉄心 2 に形成された複数のティ ース 3 と、 こ れ ら ティ ース 3 に直接卷回され たコ イ ル 4 と か ら構成さ れる集中巻固定子であ る も の と した場合、 以下 のよ う な利点があ る 。
集中巻固定子では、 コ イ ル 4 の電流に よ り 発生する磁束の内、 空隙 5 と各永久磁石 1 4 と を隔てる回転子鉄心部分 1 2 a を通過 し固定子鉄心 2 のティ ース 3 との間で短絡 して し ま う 磁束によ る振動や音への影響が 分布巻固定子のそれよ り も大き いため、 空隙 5 と 各永久磁石 1 4 と を隔 てる 回転子鉄心部分 1 2 a の径方向の厚み寸法 t を回転子鉄心抜板の板 厚の ± 3 0 % 以内 になる よ う に設定 した こ と によ る トルク リ ッ プル、 す なわち騒音や振動の低減効果がよ り 効果的になる 。
また、 コ イ ル 4 の高 占積率化による高効率化のため、 近年、 固定子鉄 心 2 を分割 したティ ース 3 単体卷ゃ、 鉄心をス 卜 レー ト 状ゃ逆反 り 状に 展開 してティ ース に直接卷線を行う タイ プの集中卷固定子が提案さ れて いる 。 こ のタ イ プの固定子は、 分割によ り 固定子剛性が弱 く 、 騒音や振 動が大き く な り がち であ る ため、 本形態が高効率化 と騒音、 振動の低減 の両立によ り 効果的 となる 。
と こ ろで、 本発明は上記 し、 かつ図面 に示 した各実施の形態にのみ限 定される も のではな く 、 例えば永久磁石 1 4 の個数は 6 個以外でも よ い 等、 要旨 を逸脱 しない範囲内で適宜変形 して実施でき る 。
実施の形態 5 .
以下、 こ の発明の実施の形態 5 を図面を参照 し て説明する。
図 8 は実施の形態 5 を示す図で、 回転子の 1 極分の図であ る 。 図に示 すよ う に、 回転子鉄心 1 2 に設け られた永久磁石 1 4 の収容孔 1 3 の内 径側の 円弧の一部に、 及び、 永久磁石 1 4 の 内径側の 円弧の一部に直線 部 3 0 を設けたので、 以下のよ う な利点があ る 。
永久磁石 1 4 の 円弧の一部に直線部 3 0 を設けたため、 永久磁石 1 4 の 中央部 と両端部 と の厚み差が小さ く な り 、 永久磁石成形の際の圧縮粗密 さ が小さ く なる のでク ラ ッ クや欠けな どの成形不良を減少 させる こ とが でき る 。
また、 永久磁石 1 4 の円弧の一部に直線部 3 0 を設けた こ と によ り 、 成形後の研磨加工で も設備に対する位置が安定する ので、 精度を容易 に 出す こ とができ る 。 これに よ り 永久磁石 1 4 の寸法不良が低減でき る と 共に、 回転子鉄心 1 2 への揷入工程での挿入不良 も低減でき る 。
さ ら に、 外径側ではな く 、 内径側の 円弧の一部に直線部 3 0 を設けた ので、 回転子鉄心部分 1 2 a と 固定子鉄心 2 のティ ース 3 と の間で短絡 して し ま う 磁束の量は変わ らず、 こ の磁束の高調波成分に よ り 発生する トルク リ ッ プルが増加 して し ま う こ と も ない。 産業上の利用可能性
こ の発明の好適な実施の形態に係る永久磁石形モー夕 は、 永久磁石を 軸直角方向断面が内径側 と外径側 と の両方に 凸 と なる形状 とする と共 に 、 永久磁石の各磁極 にお ける磁気配向の焦点を前記回転子の外側に設け たので、 永久磁石に よ る空隙磁束密度分布は、 磁極の中央部において大 き く 、 両端部において小さ く なる ので、 正弦波に近い分布 とな り 、 これ に伴い コ ギ ン グ トルク を低減でき、 振動や騒音を小さ く でき、 また、 残 留磁束密度を低下さ せる こ とな く 磁石を製造する こ とができ る ため、 モ 一夕効率が低下 して し ま う と い う 問題 も な く なる 。
また、 回転子は、 複数の永久磁石挿入用 の収容孔を設けた回転子鉄心 抜板を多数枚積層 し て回転子鉄心積層体を形成 し 、 永久磁石挿入用 の収 容孔に永久磁石を揷着する構成 と し 、 更に永久磁石 と空隙 との間を隔て る 回転子鉄心の厚み寸法を回転子鉄心抜板の板厚の ± 3 0 % 以内 と した ので、 固定子の コ イ ルの電流に よ り 発生する磁束の内、 回転子鉄心部分 と固定子鉄心のティ ース との間で短絡 して し ま う 磁束の量が小さ く なる ので、 こ の磁束の高調波成分に よ り 発生する トルク リ ッ プルが低減され 、 振動や騒音を小さ く でき る。
また、 回転子鉄心の外周部に前記永久磁石 を装着 し、 こ の永久磁石の 外周部に非磁性の保護パイ プを嵌着 して回転子を構成 し たので、 回転子 鉄心部分 と固定子鉄心のティ 一ス との間で短絡する磁束の量がさ ら に小 さ く なる 。
また、 回転子鉄心 に設けた永久磁石揷入用 の収容孔の外径側の円弧の 半径を R と し 、 こ の収容孔に揷入さ れる永久磁石の外径側の 円弧の半径 を r と した場合、 R < r となる よ う に設定 したので、 永久磁石 と空隙 と を隔てる 回転子鉄心部分と永久磁石の周方向 にお ける 中央付近での接触 がな く な り 、 回転子の高速回転時に生 じ る遠心力 によ る 、 回転子の変形 及び破断を防止でき る。
また、 永久磁石 と空隙 との間 を隔てる 回転子鉄心の厚み寸法を回転子 鉄心抜板の板厚の ± 3 0 %以内 と し た も の にお いて、 固定子のティ ース 部に直接卷線を巻回する集中巻固定子を施 したので、 空隙 と永久磁石 と を隔てる 回転子鉄心部分の径方向の厚み寸法を回転子鉄心抜板の板厚の 士 3 0 %以内 にな る よ う に設定 した こ と に よ る ト ルク リ ッ プル、 すなわ ち騒音や振動の低減効果がよ り 効果的になる 。
また、 永久磁石の内径側凸の半径を外径側凸の半径よ り も小さ く した ので、 永久磁石成形時の圧縮方向 と磁束の方向が概略等 し く な り 、 残留 磁束密度が低下する こ とがない。
また、 回転子鉄心に設けた永久磁石挿入用 の収容孔、 および永久磁石 の内径側円弧の一部に直線部を設けた こ と に よ り 、 永久磁石成形の際の 圧縮粗密 さ が小さ く なる ので、 ク ラ ッ ク や欠けな どの成形不良 を低減す る こ とができ る。
また、 成形後の研磨加工 にお いて も設備に対する位置が安定する ので 、 精度を容易 に出す こ とができ る。 これによ り 永久磁石の寸法不良 を低 減でき る と共 に、 回転子鉄心への挿入工程での挿入不良 も低減でき る。
さ ら に回転子鉄心 と固定子鉄心のティ 一ス との間で短絡 して し ま う磁 束の量が増加する こ とがな いので、 こ の磁束の高調波成分に よ り 発生す る トルク リ ッ プルが増加 して し ま う こ と もない。

Claims

請求の範囲
1 . 複数相の固定子卷線を有する 固定子 と、 こ の固定子内側に空隙 部分を介 して対向配置さ れ、 回転子鉄心 と こ の回転子鉄心に設け ら れた 永久磁石 と を有する 回転子 と、 を備えた永久磁石形モー タ にお いて、 前記永久磁石を軸直角方向断面が内径側 と外径側 と の両方に凸 となる 形状 とする と共に、 前記永久磁石の各磁極にお ける磁気配向の焦点を前 記回転子の外側に設けた こ と を特徴 とする永久磁石形モータ 。
2 . 前記回転子は、 複数の永久磁石挿入用 の収容孔を設けた回転子 鉄心抜板を多数枚積層 して回転子鉄心積層体を形成 し 、 前記永久磁石挿 入用 の収容孔に前記永久磁石を挿着する構成 と し 、 更に前記永久磁石 と 前記空隙 との間を隔てる 回転子鉄心の厚み寸法を前記回転子鉄心抜板の 板厚の 土 3 0 %以内 と した こ と を特徴 とする請求項 1 記載の永久磁石形 モータ。
3 . 前記回転子鉄心の外周部に前記永久磁石 を装着 し、 こ の永久磁 石の外周部に非磁性の保護パイ プを嵌着 して前記回転子を構成 した こ と を特徴 とする請求項 1 記載の永久磁石形モー 夕。
4 . 前記回転子鉄心に永久磁石揷入用の収容孔を設け、 前期収容孔 の外径側の円弧の半径を R と し 、 こ の収容孔に挿入さ れる前記永久磁石 の外径側の円弧の半径を r と した場合、 R < r となる よ う に設定 した こ と を特徴 とする請求項 1 記載の永久磁石形モー夕 。
5 . 前記固定子に、 ティ ース部に直接卷線を卷回する集中卷固定子 を用 いた こ と を特徴 とする 請求項 1 記載の永久磁石形モータ。
6 . 前記永久磁石の内径側凸の半径を外径側凸の半径よ り も小さ く した こ と を特徴 とする請求項 1 記載の永久磁石形モー夕 。
7 . 前記回転子鉄心に設けた永久磁石挿入用 の収容孔の内径側円弧 の一部に、 お よび、 前記永久磁石の内径側円弧の一部に、 直線部を設け た こ と を特徴 とする請求項 1 記載の永久磁石形モータ。
8 . 複数相の固定子卷線を有する固定子 と、 こ の固定子内側に空隙 部分を介 して対向配置さ れ、 回転子鉄心 と こ の回転子鉄心に設け ら れた 永久磁石 と を有する 回転子 と、 を備えた永久磁石形モータ にお いて、 前記永久磁石を軸直角方向断面が内径側 と外径側 との両方に凸 となる 形状 とする こ と を特徴とする永久磁石形モータ。
9 . 複数相の固定子卷線を有する 固定子 と、 こ の固定子内側に空隙 部分を介 して対向配置され、 回転子鉄心 と こ の回転子鉄心に設け ら れた 永久磁石 と を有する 回転子 と、 を備えた永久磁石形モータ の製造方法に おいて、
前記永久磁石を軸直角方向断面が内径側 と外径側 との両方に凸 となる 形状 とする と こ と を特徴 とする永久磁石形モータ の製造方法。
1 0 . 複数の永久磁石挿入用 の収容孔を設けた回転子鉄心抜板を多 数枚積層 して回転子鉄心積層体を形成する工程 と 、
前記永久磁石挿入用 の収容孔に前記永久磁石を揷着する工程 と を有 し 前記永久磁石 と前記空隙 との間を隔て る 回転子鉄心の厚み寸法を前記 回転子鉄心抜板の板厚の ± 3 0 %以内 と し た こ と を特徴 とする請求項 9 記載の永久磁石形モー夕 の製造方法。
PCT/JP2000/007926 1999-12-13 2000-11-10 Moteur du type a aimant permanent et procede de production correspondant WO2001043259A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001543833A JP4598343B2 (ja) 1999-12-13 2000-11-10 永久磁石形モータ
US09/869,322 US6717315B1 (en) 1999-12-13 2000-11-10 Permanent magnet type motor and method of producing permanent magnet type motor
KR10-2001-7013873A KR100440537B1 (ko) 1999-12-13 2000-11-10 영구자석형 모터 및 영구자석형 모터의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/353721 1999-12-13
JP35372199 1999-12-13

Publications (1)

Publication Number Publication Date
WO2001043259A1 true WO2001043259A1 (fr) 2001-06-14

Family

ID=18432779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007926 WO2001043259A1 (fr) 1999-12-13 2000-11-10 Moteur du type a aimant permanent et procede de production correspondant

Country Status (6)

Country Link
US (1) US6717315B1 (ja)
JP (1) JP4598343B2 (ja)
KR (1) KR100440537B1 (ja)
CN (1) CN1251382C (ja)
TW (1) TWM276381U (ja)
WO (1) WO2001043259A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164082A (ja) * 2001-11-22 2003-06-06 Hitachi Metals Ltd フェライト磁石および回転機、フェライト磁石の製造方法
WO2005008862A1 (ja) * 2003-07-22 2005-01-27 Aichi Steel Corporation Ltd. 薄型ハイブリッド着磁型リング磁石、ヨーク付き薄型ハイブリッド着磁型リング磁石、および、ブラシレスモータ
JP2005287173A (ja) * 2004-03-29 2005-10-13 Nidec Shibaura Corp モータの回転子
US7750776B2 (en) 2004-04-20 2010-07-06 Aichi Steel Corporation Anisotropic bonded magnet for use in a 4-pole motor, a motor employing that magnet, and an alignment process apparatus for the anisotropic bonded magnet for use in a 4-pole motor
WO2013150652A1 (ja) * 2012-04-06 2013-10-10 三菱電機株式会社 回転子および永久磁石埋込型電動機
WO2015037428A1 (ja) * 2013-09-13 2015-03-19 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
WO2015098326A1 (ja) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 回転子、およびこれを備えた永久磁石式回転電機、電動駆動システム、電動車両
JP2015154533A (ja) * 2014-02-12 2015-08-24 Wolongモーター制御技術株式会社 電動機
JP2015231254A (ja) * 2014-06-03 2015-12-21 アスモ株式会社 回転子及びこれを備えた回転電機
JP2019122217A (ja) * 2018-01-11 2019-07-22 本田技研工業株式会社 回転電機のロータ
WO2021205527A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065829B2 (ja) * 2003-10-10 2008-03-26 本田技研工業株式会社 永久磁石式回転子およびブラシレスモータ
KR101279513B1 (ko) * 2007-01-04 2013-06-28 엘지전자 주식회사 비엘디시 모터 및 이를 구비한 세탁기
US8633627B2 (en) * 2011-08-30 2014-01-21 General Electric Company Electric machine
CN103975505B (zh) * 2011-11-30 2016-10-19 三菱电机株式会社 永久磁铁嵌入式电动机
EP2800244B1 (en) * 2011-12-27 2020-07-01 Mitsubishi Electric Corporation Electric motor
JP5693521B2 (ja) * 2012-05-30 2015-04-01 三菱電機株式会社 永久磁石埋込型電動機
JP5990475B2 (ja) * 2013-02-14 2016-09-14 本田技研工業株式会社 回転電機のロータ
EP2991195A1 (de) * 2014-09-01 2016-03-02 Siemens Aktiengesellschaft Permanenterregte dynamoelektrische Maschine
US9509186B2 (en) * 2015-02-10 2016-11-29 Zero Motorcycles, Inc. Reduced weight rotor having structural integrity
DE102015206296A1 (de) * 2015-04-09 2016-10-13 Volkswagen Aktiengesellschaft Elektromaschine
WO2017002873A1 (ja) * 2015-06-29 2017-01-05 株式会社ミツバ ブラシレスモータ
US9520752B1 (en) 2015-09-30 2016-12-13 Faraday & Future Inc. Interior permanent magnet machine for automotive electric vehicles
JPWO2017154156A1 (ja) * 2016-03-09 2018-12-20 三菱重工エンジン&ターボチャージャ株式会社 突極型回転子、および、回転子の製造方法
DE102016219395A1 (de) * 2016-10-06 2018-04-12 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Segmentmagnet und Permanentmagnetmotor mit Segmentmagneten
CN109245460B (zh) * 2016-12-26 2020-11-27 泉州台商投资区长矽工业设计有限公司 一种定子磁瓦的冲压转送机构
GB201704579D0 (en) * 2017-03-23 2017-05-10 Rolls Royce Plc An electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
CN113991959B (zh) 2017-07-21 2024-04-16 株式会社电装 旋转电机
TWM576750U (zh) 2017-07-25 2019-04-11 美商米沃奇電子工具公司 電氣組合物、電動化裝置系統、電池組、電馬達、馬達總成及電馬達總成
CN107394929A (zh) * 2017-09-22 2017-11-24 珠海格力节能环保制冷技术研究中心有限公司 转子总成及电机
CN111557069A (zh) 2017-12-28 2020-08-18 株式会社电装 旋转电机
DE112018006694T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
DE112018006717T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
JP7006541B2 (ja) 2017-12-28 2022-01-24 株式会社デンソー 回転電機
WO2020172180A1 (en) 2019-02-18 2020-08-27 Milwaukee Electric Tool Corporation Impact tool
US11056936B2 (en) 2019-04-15 2021-07-06 Ford Global Technologies, Llc Electric motor and construction methods thereof
WO2021076428A1 (en) 2019-10-15 2021-04-22 Darrell Schmidt Enterprises, Inc. Magnetic coupler
US11522436B2 (en) 2019-10-15 2022-12-06 Darrell Schmidt Enterprises, Inc. Permanently magnetized enhanced generator
CN112564334A (zh) * 2020-12-18 2021-03-26 哈尔滨理工大学 一种新型高速永磁同步电机定转子结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223612A1 (en) * 1985-11-20 1987-05-27 AlliedSignal Inc. Electrical machine rotor
JPH05219669A (ja) * 1992-02-03 1993-08-27 Toshiba Corp 永久磁石式回転子
JPH0739090A (ja) * 1993-07-21 1995-02-07 Toshiba Corp 永久磁石形モータ
JPH11146582A (ja) * 1997-11-07 1999-05-28 Aichi Emerson Electric Co Ltd 埋め込み磁石型回転子
JPH11285184A (ja) * 1998-03-27 1999-10-15 Fujitsu General Ltd 永久磁石電動機
JP2000245084A (ja) * 1999-02-23 2000-09-08 Fujitsu General Ltd 永久磁石電動機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284680A (ja) * 1992-04-01 1993-10-29 Toshiba Corp 永久磁石式回転子
US5510662A (en) * 1993-05-26 1996-04-23 Kabushiki Kaisha Toshiba Permanent magnet motor
JPH06339240A (ja) 1993-05-26 1994-12-06 Toshiba Corp 永久磁石形モータ
JP3424765B2 (ja) * 1994-03-11 2003-07-07 株式会社安川電機 永久磁石形同期回転電機
US5811904A (en) * 1996-03-21 1998-09-22 Hitachi, Ltd. Permanent magnet dynamo electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223612A1 (en) * 1985-11-20 1987-05-27 AlliedSignal Inc. Electrical machine rotor
JPH05219669A (ja) * 1992-02-03 1993-08-27 Toshiba Corp 永久磁石式回転子
JPH0739090A (ja) * 1993-07-21 1995-02-07 Toshiba Corp 永久磁石形モータ
JPH11146582A (ja) * 1997-11-07 1999-05-28 Aichi Emerson Electric Co Ltd 埋め込み磁石型回転子
JPH11285184A (ja) * 1998-03-27 1999-10-15 Fujitsu General Ltd 永久磁石電動機
JP2000245084A (ja) * 1999-02-23 2000-09-08 Fujitsu General Ltd 永久磁石電動機

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164082A (ja) * 2001-11-22 2003-06-06 Hitachi Metals Ltd フェライト磁石および回転機、フェライト磁石の製造方法
WO2005008862A1 (ja) * 2003-07-22 2005-01-27 Aichi Steel Corporation Ltd. 薄型ハイブリッド着磁型リング磁石、ヨーク付き薄型ハイブリッド着磁型リング磁石、および、ブラシレスモータ
CN100380779C (zh) * 2003-07-22 2008-04-09 爱知制钢株式会社 薄型混合磁化环状磁铁和具有轭部的薄型混合磁化环状磁铁、以及无电刷电机
US7560841B2 (en) 2003-07-22 2009-07-14 Aichi Steel Corporation, Ltd. Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor
JP2005287173A (ja) * 2004-03-29 2005-10-13 Nidec Shibaura Corp モータの回転子
US7750776B2 (en) 2004-04-20 2010-07-06 Aichi Steel Corporation Anisotropic bonded magnet for use in a 4-pole motor, a motor employing that magnet, and an alignment process apparatus for the anisotropic bonded magnet for use in a 4-pole motor
WO2013150652A1 (ja) * 2012-04-06 2013-10-10 三菱電機株式会社 回転子および永久磁石埋込型電動機
US9577483B2 (en) 2012-04-06 2017-02-21 Mitsubishi Electric Corporation Rotor for a permanent-magnet embedded motor having permanent magnets fitted into a plurality of magnet insertion holes formed in a circumferential direction
JPWO2013150652A1 (ja) * 2012-04-06 2015-12-14 三菱電機株式会社 回転子および永久磁石埋込型電動機
JP6009088B2 (ja) * 2013-09-13 2016-10-19 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
WO2015037428A1 (ja) * 2013-09-13 2015-03-19 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
US10008893B2 (en) 2013-09-13 2018-06-26 Mitsubishi Electric Corporation Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
US9893581B2 (en) 2013-12-27 2018-02-13 Hitachi Automotive Systems, Ltd. Rotor, and permanent-magnet-type rotational electric machine, electric drive system, and electric vehicle which are provided with said rotor
JP2015126646A (ja) * 2013-12-27 2015-07-06 日立オートモティブシステムズ株式会社 回転子、およびこれを備えた永久磁石式回転電機、電動駆動システム、電動車両
WO2015098326A1 (ja) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 回転子、およびこれを備えた永久磁石式回転電機、電動駆動システム、電動車両
JP2015154533A (ja) * 2014-02-12 2015-08-24 Wolongモーター制御技術株式会社 電動機
JP2015231254A (ja) * 2014-06-03 2015-12-21 アスモ株式会社 回転子及びこれを備えた回転電機
JP2019122217A (ja) * 2018-01-11 2019-07-22 本田技研工業株式会社 回転電機のロータ
US10873225B2 (en) 2018-01-11 2020-12-22 Honda Motor Co.. Ltd. Rotor for rotary electric machine having a gap for alleviating stress during rotation
WO2021205527A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機
JP7419501B2 (ja) 2020-04-07 2024-01-22 三菱電機株式会社 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機

Also Published As

Publication number Publication date
CN1251382C (zh) 2006-04-12
KR100440537B1 (ko) 2004-07-21
CN1340236A (zh) 2002-03-13
JP4598343B2 (ja) 2010-12-15
US6717315B1 (en) 2004-04-06
TWM276381U (en) 2005-09-21
KR20010112472A (ko) 2001-12-20

Similar Documents

Publication Publication Date Title
WO2001043259A1 (fr) Moteur du type a aimant permanent et procede de production correspondant
JP6422595B2 (ja) 電動機および空気調和機
US7595575B2 (en) Motor/generator to reduce cogging torque
JP4485225B2 (ja) 永久磁石型モータ及び密閉型圧縮機及びファンモータ
JP2012120326A (ja) 磁石埋め込み型回転子、電動機及び電動機の組立方法
WO2014046228A1 (ja) 永久磁石埋込型電動機
JP2007074870A (ja) 永久磁石埋込型ロータおよび永久磁石埋込型モータ
JP5693521B2 (ja) 永久磁石埋込型電動機
JP2018137924A (ja) 回転電機のロータ
WO2007123057A1 (ja) モータ
JP2019126102A (ja) 回転子および回転電機
JP2013123327A (ja) 回転電機
JP2007336624A (ja) 多相クローティース型永久磁石モータ
JPH10178751A (ja) 電動機
JP5674962B2 (ja) 永久磁石埋込型電動機
JP2002058184A (ja) ロータの構造及び電動機
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JP2002101585A (ja) 同期電動機のロータ構造
JP2010142000A (ja) ステータコア,ステータおよびアキシャル型モータ
JP2019162005A (ja) ブラシレスモータ、及び送風装置
JP2006014565A (ja) ディスク型回転電機
JPH11285188A (ja) 永久磁石電動機
WO2022107713A1 (ja) モータ及びステータの製造方法
JP2007110868A (ja) 永久磁石型モータ
JP7456978B2 (ja) 回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803691.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2001 543833

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

WWE Wipo information: entry into national phase

Ref document number: 09869322

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017013873

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017013873

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017013873

Country of ref document: KR