WO2021205527A1 - 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機 - Google Patents

着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機 Download PDF

Info

Publication number
WO2021205527A1
WO2021205527A1 PCT/JP2020/015620 JP2020015620W WO2021205527A1 WO 2021205527 A1 WO2021205527 A1 WO 2021205527A1 JP 2020015620 W JP2020015620 W JP 2020015620W WO 2021205527 A1 WO2021205527 A1 WO 2021205527A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
coil
phase coil
coils
slot
Prior art date
Application number
PCT/JP2020/015620
Other languages
English (en)
French (fr)
Inventor
智希 増子
松岡 篤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022513730A priority Critical patent/JP7419501B2/ja
Priority to PCT/JP2020/015620 priority patent/WO2021205527A1/ja
Publication of WO2021205527A1 publication Critical patent/WO2021205527A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present disclosure relates to a magnetizing method for magnetizing a magnetic material of a rotor and an electric motor.
  • a magnetizing method in which a permanent magnet (specifically, an unmagnetized magnetic material) of a rotor is magnetized using a coil (also referred to as a winding) attached to a stator core.
  • a coil also referred to as a winding
  • An object of the present disclosure is to prevent significant deformation of the three-phase coil of the stator when magnetizing with the rotor placed inside the stator.
  • the magnetizing method is Fixed having a stator core having 18 ⁇ n (n is an integer of 1 or more) and a three-phase coil attached to the stator core in a distributed winding and forming 6 ⁇ n magnetic poles. It is a magnetizing method that magnetizes the magnetic material of the rotor inside the child.
  • the three-phase coil has 6 ⁇ n U-phase coils, 6 ⁇ n V-phase coils, and 6 ⁇ n W-phase coils.
  • Each coil is arranged in two of the 18 ⁇ n slots at every other slot on one end side of the stator core.
  • the method for manufacturing a motor is as follows.
  • a method for manufacturing an electric motor having a rotor having a magnetic material At the coil end of the three-phase coil, the three-phase coil has 6 ⁇ n U-phase coils, 6 ⁇ n V-phase coils, and 6 ⁇ n W-phase coils.
  • Each coil is arranged in two of the 18 ⁇ n slots at every other slot on one end side of the stator core. Placing the rotor inside the stator and It comprises magnetizing the magnetic material by passing an electric current through the coils of two phases of the three-phase coils.
  • the motor according to another aspect of the present disclosure is A stator core having 18 ⁇ n (n is an integer of 1 or more) slots and a three-phase coil attached to the stator core in a distributed winding manner to form 6 ⁇ n magnetic poles. With the child It has a permanent magnet and is equipped with a rotor located inside the stator.
  • the three-phase coil has 6 ⁇ n U-phase coils, 6 ⁇ n V-phase coils, and 6 ⁇ n W-phase coils at the coil ends of the three-phase coil.
  • Each coil of the three-phase coil is arranged in two of the 18 ⁇ n slots at every other slot on one end side of the stator core.
  • the permanent magnet is magnetized by passing an electric current through two phases of the three-phase coil in a state where the rotor is arranged inside the stator.
  • the compressor according to another aspect of the present disclosure is With a closed container With the compression device arranged in the closed container, The electric motor for driving the compression device is provided.
  • the air conditioner according to another aspect of the present disclosure is With the compressor Equipped with a heat exchanger.
  • FIG. It is a top view which shows schematic structure of the electric motor which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows schematic structure of a rotor. It is a top view which shows the structure of a stator schematically. It is a figure which shows the arrangement of the three-phase coil in a slot. It is a figure which shows typically the arrangement of the three-phase coil at a coil end, and the arrangement of a three-phase coil in a slot.
  • It is a flowchart which shows an example of the manufacturing process of an electric motor. It is a figure which shows the example of the insertion instrument for inserting a three-phase coil into a stator core. It is a figure which shows the process of inserting a three-phase coil into a stator core.
  • Embodiment 1 In the xyz Cartesian coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the electric motor 1, and the x-axis direction (x-axis) is orthogonal to the z-axis direction (z-axis).
  • the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
  • the axis Ax is the center of the stator 3 and the center of rotation of the rotor 2.
  • the direction parallel to the axis Ax is also referred to as "axial direction of rotor 2" or simply "axial direction”.
  • the radial direction is the radial direction of the rotor 2 or the stator 3 and is a direction orthogonal to the axis Ax.
  • the xy plane is a plane orthogonal to the axial direction.
  • the arrow D1 indicates the circumferential direction centered on the axis Ax.
  • the circumferential direction of the rotor 2 or the stator 3 is also simply referred to as the "circumferential direction".
  • FIG. 1 is a top view schematically showing the structure of the motor 1 according to the first embodiment.
  • the motor 1 has a rotor 2 having a plurality of magnetic poles, a stator 3, and a shaft 4 fixed to the rotor 2.
  • the electric motor 1 is, for example, a permanent magnet synchronous motor.
  • the rotor 2 is rotatably arranged inside the stator 3. There is an air gap between the rotor 2 and the stator 3. The rotor 2 rotates about the axis Ax.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the rotor 2.
  • the rotor 2 has a rotor core 21 and at least one permanent magnet 22 which is a magnetic material.
  • the permanent magnet 22 is a magnetic material magnetized by a magnetizing method described later.
  • the rotor core 21 has a plurality of magnet insertion holes 211 and a shaft hole 212 in which the shaft 4 is arranged.
  • the rotor core 21 may further have at least one flux barrier portion that is a space communicating with each magnet insertion hole 211.
  • the rotor 2 has a plurality of permanent magnets 22.
  • Each permanent magnet 22 is arranged in each magnet insertion hole 211.
  • One permanent magnet 22 forms one magnetic pole of the rotor 2, that is, N pole or S pole. However, two or more permanent magnets 22 may form one magnetic pole of the rotor 2.
  • one permanent magnet 22 forming one magnetic pole of the rotor 2 is arranged straight in the xy plane.
  • a set of permanent magnets 22 forming one magnetic pole of the rotor 2 may be arranged so as to have a V shape.
  • each magnetic pole of the rotor 2 is located at the center of each magnetic pole of the rotor 2 (that is, the north pole or the south pole of the rotor 2).
  • Each magnetic pole of the rotor 2 (also simply referred to as “each magnetic pole” or “magnetic pole”) means a region serving as an north pole or an south pole of the rotor 2.
  • FIG. 3 is a top view schematically showing the structure of the stator 3.
  • FIG. 4 is a diagram showing the arrangement of the three-phase coil 32 in the slot 311.
  • FIG. 5 is a diagram schematically showing the arrangement of the three-phase coil 32 at the coil end 32a and the arrangement of the three-phase coil 32 in the slot 311.
  • the dashed line indicates the coil of each phase at the coil end 32a
  • the chain line indicates the boundary between the inner layer and the outer layer in each slot 311.
  • the stator 3 has a stator core 31 and a three-phase coil 32 attached to the stator core 31 in a distributed winding manner.
  • the stator core 31 has an annular yoke, a plurality of teeth extending radially from the yoke, and 18 ⁇ n (n is an integer of 1 or more) slots 311 in which the three-phase coils 32 are arranged. ..
  • Each slot 311 is also referred to as, for example, a first slot, a second slot, ..., Nth slot.
  • the three-phase coil 32 (that is, the coil of each phase) has a coil side arranged in the slot 311 and a coil end 32a not arranged in the slot 311. Each coil end 32a is an end portion of the three-phase coil 32 in the axial direction.
  • the three-phase coil 32 has 6 ⁇ n U-phase coils 32U, 6 ⁇ n V-phase coils 32V, and 6 ⁇ n W-phase coils 32W at each coil end 32a.
  • the three-phase coil 32 has 6 ⁇ n U-phase coils 32U, 6 ⁇ n V-phase coils 32V, and 6 ⁇ n W-phase coils 32W on the stator core 31. That is, the three-phase coil 32 has three phases, a first phase, a second phase, and a third phase.
  • the first phase is the U phase
  • the second phase is the V phase
  • the third phase is the W phase.
  • each of the three phases is referred to as a U phase, a V phase, and a W phase.
  • Each U-phase coil 32U, each V-phase coil 32V, and each W-phase coil 32W shown in FIGS. 1 and 3 are also simply referred to as coils.
  • n 1. Therefore, in the example shown in FIGS. 1 and 3, at the coil end 32a, the three-phase coil 32 has six U-phase coils 32U, six V-phase coils 32V, and six W-phase coils 32W. ing. However, the number of coils in each phase is not limited to six.
  • the stator 3 has the structure shown in FIG. 3 at the two coil ends 32a. However, the stator 3 may have a structure shown in FIG. 3 at one of the two coil ends 32a.
  • each coil of the three-phase coil 32 is arranged in the slot 311 at a 2-slot pitch on one end side of the stator core 31.
  • the 2-slot pitch means "every 2 slots". That is, the 2-slot pitch means that one coil is arranged in slot 311 every two slots. In other words, the 2-slot pitch means that one coil is arranged in slot 311 every other slot. Therefore, as shown in FIGS. 1 and 3, each coil of the three-phase coil 32 is arranged in two slots 311 every other slot on one end side of the stator core 31. In other words, each coil of the three-phase coil 32 is arranged in two slots 311 with one slot 311 interposed therebetween on one end side of the stator core 31.
  • each slot 311 As shown in FIGS. 4 and 5, two coils are arranged in each slot 311. Each coil is arranged in each slot 311 along with coils of other phases. That is, two coils of different phases are arranged in each slot 311.
  • U-phase coil 32U in slot 311 The arrangement of the U-phase coil 32U in the slot 311 will be specifically described below.
  • the 3 ⁇ n U-phase coils 32U are arranged in the outer layer of the slot 311.
  • the other 3 ⁇ n U-phase coils 32U out of the 6 ⁇ n U-phase coils 32U are arranged in the inner layer of the slot 311.
  • three U-phase coils 32U are arranged in the outer layer of slot 311 and the other three U-phase coils 32U are arranged in the inner layer of slot 311.
  • V-phase coil 32V in slot 311 The arrangement of the V-phase coil 32V in the slot 311 will be specifically described below.
  • a part of the V-phase coil 32V is arranged in the inner layer of the slot 311 in which the U-phase coil 32U is arranged.
  • the other part of the V-phase coil 32V is arranged in the outer layer of the slot 311 in which the W-phase coil 32W is arranged. That is, when a part of each V-phase coil 32V is arranged in the outer layer of the slot 311 in which the coil of the other phase is arranged, the other part of each V-phase coil 32V is arranged with the coil of the other phase. It is arranged in the inner layer of the slot 311.
  • each V-phase coil 32V When a part of each V-phase coil 32V is arranged in the inner layer of the slot 311 in which the coil of the other phase is arranged, the other part of each V-phase coil 32V is arranged in the coil of the other phase. It is arranged on the outer layer of slot 311.
  • the 3 ⁇ n U-phase coils 32U arranged in the outer layer of the slot 311 are arranged at equal intervals in the circumferential direction.
  • the 3 ⁇ n U-phase coils 32U arranged in the inner layer of the slot 311 are arranged at equal intervals in the circumferential direction.
  • the 6 ⁇ n V-phase coils 32V are arranged at equal intervals in the circumferential direction.
  • the 3 ⁇ n W-phase coils 32W arranged in the outer layer of the slot 311 are arranged at equal intervals in the circumferential direction.
  • the 3 ⁇ n W-phase coils 32W arranged in the inner layer of the slot 311 are arranged at equal intervals in the circumferential direction.
  • the stator 3 may have an insulating member that insulates the coils of each phase of the three-phase coil 32.
  • the insulating member is, for example, insulating paper.
  • ⁇ Coil connection> Normally, when two coils are arranged in each slot, a difference in inductance occurs between the two coils in each slot. In this case, the current flowing through the three-phase coil varies between the phases while the motor is being driven, so that the current does not easily flow in the phase having a large inductance, and the current tends to flow in the phase having a small inductance. As a result, torque ripple occurs.
  • the U-phase coil 32U, the V-phase coil 32V, and the W-phase coil 32W arranged in the outer layer of the slot 311 are connected by a star connection.
  • the U-phase coil 32U, the V-phase coil 32V, and the W-phase coil 32W arranged in the inner layer of the slot 311 are connected by a star connection. These coils arranged in the outer layer and these coils arranged in the inner layer are connected in parallel. The neutral points of the star connection are not connected to each other.
  • FIG. 6 is a flowchart showing an example of the manufacturing process of the electric motor 1.
  • the method for manufacturing the electric motor 1 includes a magnetizing method for magnetizing the magnetic body 22 of the rotor 2.
  • step S1 the magnetic body 22 is arranged in each magnet insertion hole 211 of the rotor core 21. Specifically, the unmagnetized magnetic body 22 is arranged in each magnet insertion hole 211 of the rotor core 21.
  • the shaft 4 may be fixed to the shaft hole 212.
  • the magnetic material 22 is a rare earth magnet containing, for example, iron, neodymium, boron, and dysprosium. In this case, the dysprosium is diffused.
  • the magnetic material 22 may be a rare earth magnet containing iron, neodymium, boron, and terbium. In this case, the terbium has been diffused.
  • FIG. 7 is a diagram showing an example of an insertion device 9 for inserting the three-phase coil 32 into the stator core 31.
  • 8 and 9 are views showing a step of inserting the three-phase coil into the stator core 31.
  • step S2 the three-phase coil 32 is attached to the stator core 31 prepared in advance by the insertion tool 9.
  • the three-phase coil 32 is attached to the stator core 31 by distributed winding.
  • the three-phase coil 32 is arranged between the blades 91 of the insertion device 9, and the blade 91 is inserted into the stator core together with the three-phase coil 32. Insert inside 31.
  • the three-phase coil 32 is slid in the axial direction and placed in the slot 311.
  • the three-phase coil 32 has 6 ⁇ n U-phase coils 32U, 6 ⁇ n V-phase coils 32V, and 6 ⁇ n W-phase coils 32W.
  • Each coil of the three-phase coil 32 is arranged in two slots 311 out of 18 ⁇ n slots 311 every other slot on one end side of the stator core 31 so as to have.
  • the three-phase coil 32 is attached to the other end side of the stator core 31 by distributed winding. That is, at the coil end 32a of the three-phase coil 32, the three-phase coil 32 has 6 ⁇ n U-phase coils 32U, 6 ⁇ n V-phase coils 32V, and 6 ⁇ n W-phase coils 32W. In addition, each coil of the three-phase coil 32 is arranged in two of the 18 ⁇ n slots 311 at every other slot on the other end side of the stator core 31.
  • step S3 the U-phase coil 32U, the V-phase coil 32V, and the W-phase coil 32W are connected.
  • the U-phase coil 32U, the V-phase coil 32V, and the W-phase coil 32W arranged in the outer layer of the slot 311 are connected by a star connection.
  • the U-phase coil 32U, the V-phase coil 32V, and the W-phase coil 32W arranged in the inner layer of the slot 311 are connected by a star connection. These coils arranged in the outer layer and these coils arranged in the inner layer are connected in parallel.
  • the U-phase coil 32U, the V-phase coil 32V, and the W-phase coil 32W may be connected before the three-phase coil 32 is attached to the stator core 31 by distributed winding.
  • the U-phase coil 32U, the V-phase coil 32V, and the W-phase coil 32W connected to each other may be attached to the stator core 31 in a distributed winding manner.
  • step S4 the rotor 2 having the unmagnetized magnetic body 22 is arranged inside the stator 3 (specifically, the stator core 31).
  • FIG. 10 is a diagram showing a reference position in the magnetizing process.
  • step S4 for example, as shown in FIG. 10, the rotor 2 is placed at a reference position.
  • the reference position is a position on the xy plane where the center M1 of the magnetizing target magnetic pole of the rotor 2 coincides with the center of the magnetic pole of the three-phase coil 32.
  • the center of the magnetic pole of the three-phase coil 32 is the center of the magnetic pole formed when a current flows through the three-phase coil.
  • the center of the magnetic pole of the three-phase coil 32 is located on the magnetic pole center line C1 shown by the broken line, and the center of the magnetic pole to be magnetized by the rotor 2 is shown by the chain line. It is located on the magnetic pole center line M1.
  • FIG. 11 is a diagram showing a connection between the three-phase coil 32 and a power source for magnetizing.
  • step S5 the three-phase coil 32 is connected to a power source for magnetizing.
  • the V-phase coil 32V is connected to the positive side of the power supply
  • the U-phase coil 32U is connected to the negative side of the power supply.
  • one end of the W-phase coil 32W is not connected to the power supply.
  • step S1 to step S5 is not limited to the example shown in FIG. 6, and may be appropriately replaced.
  • FIG. 12 is a diagram showing an example of the first magnetizing step.
  • the arrow on the rotor 2 in FIG. 12 indicates the flow of magnetic flux from the three-phase coil 32.
  • step S6 the center of the magnetic pole of the rotor 2 having the unmagnetized magnetic body 22 is rotated by a first angle ⁇ 1 in the first rotation direction of the rotor 2 with respect to the center of the magnetic pole of the three-phase coil 32. In this state, a current is passed through the coils of two phases of the three-phase coils 32.
  • a current is applied to the coils of two phases of the three-phase coils 32. Let it through.
  • a current is passed through the U-phase coil 32U or the W-phase coil 32W and the V-phase coil 32V.
  • a current is passed through the U-phase coil 32U and the V-phase coil 32V, and no current is passed through the W-phase coil 32W.
  • the first rotation direction is counterclockwise with respect to the axis Ax.
  • the first angle ⁇ 1 is greater than 0 degrees and less than 11.2 degrees.
  • the first angle ⁇ 1 is preferably greater than 0 degrees and less than 10 degrees. It is more desirable that the first angle ⁇ 1 is greater than 1.7 degrees and less than 11.2 degrees.
  • the magnetic body 22 When a current flows from the power source to the three-phase coil 32, a magnetic flux is generated from the three-phase coil 32, and the magnetic body 22 as a magnetizing target is magnetized in the direction of easy magnetization. Since the rotor 2 is in a state of being rotated by a first angle ⁇ 1 with respect to the center of the magnetic poles of the three-phase coil 32, the magnetic body 22 can be easily magnetized in the direction in which the magnetic body 22 is easily magnetized. .. In particular, one end side of the magnetic body 22 in the longitudinal direction can be easily magnetized in the direction of easy magnetization. In the present embodiment, the easy magnetization direction of the magnetic body 22 is the lateral direction of the magnetic body 22 in the xy plane.
  • FIG. 13 is a diagram showing an example of the second magnetizing step.
  • the arrow on the rotor 2 in FIG. 13 indicates the flow of magnetic flux from the three-phase coil 32.
  • step S7 the center of the magnetic pole of the rotor 2 is rotated by a second angle ⁇ 2 in the second rotation direction of the rotor 2 with respect to the center of the magnetic pole of the three-phase coil 32, and the three-phase coil 32 is rotated.
  • a current is passed through the coils of our two phases. That is, in a state where the center of the magnetic pole of the rotor 2 is rotated by a second angle ⁇ 2 from the reference position in the second rotation direction of the rotor 2, a current is applied to the coils of two phases of the three-phase coils 32.
  • the second rotation direction is opposite to the first rotation direction.
  • step S7 a current is passed through the U-phase coil 32U or the W-phase coil 32W and the V-phase coil 32V.
  • step S7 a current is passed through the U-phase coil 32U and the V-phase coil 32V, and no current is passed through the W-phase coil 32W.
  • the second rotation direction is clockwise with respect to the axis Ax.
  • the second angle ⁇ 2 is greater than 0 degrees and less than 11.2 degrees.
  • the second angle ⁇ 2 is preferably greater than 0 degrees and less than 10 degrees. It is more desirable that the second angle ⁇ 2 is greater than 1.7 degrees and less than 11.2 degrees.
  • the second angle ⁇ 2 is equal to the first angle ⁇ 1.
  • the second rotation direction may be counterclockwise with respect to the axis Ax.
  • the first rotation direction is clockwise.
  • the second magnetizing step when a current flows from the power supply to the three-phase coil 32, a magnetic flux is generated from the three-phase coil 32, and the magnetic body 22 to be magnetized is magnetized in the direction of easy magnetization. Since the rotor 2 is in a state of being rotated by a second angle ⁇ 2 with respect to the center of the magnetic poles of the three-phase coil 32, the magnetic body 22 can be easily magnetized in the direction in which the magnetic body 22 is easily magnetized. .. In particular, the other end side of the magnetic body 22 in the longitudinal direction can be easily magnetized in the direction of easy magnetization.
  • both sides of the magnetic body 22 in the longitudinal direction can be easily magnetized in the direction of easy magnetization.
  • step S8 the three-phase coil 32 is removed from the power supply. As a result, the motor 1 is obtained.
  • FIG. 14 is a top view showing the motor 1a according to the comparative example.
  • FIG. 15 is a diagram showing the arrangement of the three-phase coil 32 in the slot of the stator 3a shown in FIG.
  • FIG. 16 is a diagram schematically showing the arrangement of the three-phase coil 32 at the coil end 32a of the electric motor 1a and the arrangement of the three-phase coil 32 in the slot 311 according to the comparative example.
  • the dashed line indicates the coil of each phase at the coil end 32a
  • the chain line indicates the boundary between the inner layer and the outer layer in each slot 311.
  • the three-phase coil 32 is lapped and attached to the stator core 31. In this case, at each coil end 32a, one side of each coil is arranged in the outer layer of slot 311 and the other side of the coil is arranged in the inner layer of the other slot 311.
  • the three-phase coil 32 when the three-phase coil 32 is attached to the stator core 31 by lap winding, it is difficult to attach the three-phase coil 32 to the stator core 31 by using an insertion tool (for example, the insertion tool 9 shown in FIG. 7). .. Therefore, usually, when the three-phase coil 32 is attached to the stator core 31 by lap winding as in the comparative example, the three-phase coil 32 is attached to the stator core 31 by hand. In this case, the productivity of the stator 3 decreases.
  • an insertion tool for example, the insertion tool 9 shown in FIG. 7
  • FIG. 17 is a diagram showing a magnetizing process as a comparative example.
  • the angle with respect to the reference position is zero in the magnetizing step.
  • the direction of the magnetic flux from the three-phase coil 32 is close to a right angle to the easy magnetization direction of the magnetic body 22 to be magnetized. Therefore, in the example shown in FIG. 17, it is difficult to magnetize both sides of the magnetic body 22 in the xy plane in the direction of easy magnetization.
  • each magnetic pole of the rotor 2 is magnetized twice. Specifically, for each magnetic pole of the rotor 2, the first magnetization is performed in a state where the center of the magnetic pole of the rotor 2 is rotated by a first angle ⁇ 1 with respect to the center of the magnetic pole of the three-phase coil 32. ..
  • the magnetic body 22 can be magnetized in a state where the direction of the magnetic flux from the three-phase coil 32 is as parallel as possible to the direction of easy magnetization on one end side of the magnetic body 22 to be magnetized. In particular, one end side of the magnetic body 22 in the xy plane is easily magnetized in the direction of easy magnetization.
  • the second magnetization is performed in a state where the center of the magnetic pole of the rotor 2 is rotated by a second angle ⁇ 2 with respect to the center of the magnetic pole of the three-phase coil 32.
  • the magnetic body 22 can be magnetized in a state where the direction of the magnetic flux from the three-phase coil 32 is as parallel as possible to the direction of easy magnetization on the other end side of the magnetic body 22 to be magnetized.
  • the magnetic material 22 can be easily magnetized in the direction of easy magnetization without using a large current.
  • the other end side of the magnetic body 22 in the xy plane is easily magnetized in the direction of easy magnetization. Therefore, as compared with the example shown in FIG. 17, both sides of the magnetic body 22 in the longitudinal direction can be easily magnetized in the direction of easy magnetization.
  • the magnetic body 22 can be easily magnetized in the direction of easy magnetization, the magnetic force of the rotor 2 can be increased. As a result, it is possible to provide a highly efficient electric motor 1.
  • FIG. 18 is a graph showing the relationship between the angle [degree] (mechanical angle) with respect to the reference position and the current value [kAT] from the power source for magnetizing.
  • the angle with respect to the reference position corresponds to the above-mentioned first angle ⁇ 1 and second angle ⁇ 2.
  • FIG. 19 is a diagram showing the connection between the three-phase coil 32 and the magnetizing power supply in the three-phase magnetizing shown in FIG.
  • "three-phase magnetization” shows data obtained by passing an electric current through all-phase coils of a three-phase coil.
  • “Two-phase magnetization” refers to data obtained by the method of the present embodiment, that is, a method of passing a current only through a two-phase coil among three-phase coils.
  • the method in the present embodiment can reduce the magnetizing current as compared with the three-phase magnetizing.
  • the current value is the minimum when the first angle ⁇ 1 and the second angle ⁇ 2 are 7.5 degrees.
  • first angle ⁇ 1 and the second angle ⁇ 2 are 1.7 degrees ⁇ 1 ⁇ 11.2 degrees, 1.7 degrees ⁇ 2 ⁇ 11.2 degrees, it is for magnetizing as compared with three-phase magnetizing.
  • the current from the power supply can be reduced.
  • the current value is the minimum.
  • the magnetic material 22 is a rare earth magnet containing, for example, iron, neodymium, boron, and dysprosium. Therefore, the thickness of the magnetic body 22 can be reduced, and as a result, the current from the magnetizing power source in the magnetizing step can be reduced.
  • dysprosium is diffused.
  • the dysprosium can be reduced in the magnetic material 22.
  • the cost of the magnetic material 22 can be reduced.
  • the magnetizing characteristics of the magnetic material deteriorate, so that the current from the magnetic power source in the magnetizing process increases.
  • the magnetizing method in the present embodiment even when the magnetic material 22 containing the diffusion-treated dysprosium is magnetized, the current from the magnetizing power source can be reduced. can.
  • the magnetic material 22 may be a rare earth magnet containing iron, neodymium, boron, and terbium. Therefore, the thickness of the magnetic body 22 can be reduced, and as a result, the current from the magnetizing power source in the magnetizing step can be reduced.
  • terbium is diffused.
  • the terbium can be reduced in the magnetic material 22.
  • the cost of the magnetic material 22 can be reduced.
  • the magnetizing characteristics of the magnetic material deteriorate, so that the current from the magnetic power source in the magnetizing process increases.
  • the magnetizing method in the present embodiment even when the magnetic material 22 containing the diffusion-treated terbium is magnetized, the current from the magnetizing power source can be reduced.
  • the magnetizing target magnetic pole of the rotor 2 is magnetized twice, a large force is generated in the three-phase coil 32, and the coil end 32a of the three-phase coil 32 is easily deformed.
  • FIG. 20 is a graph showing the difference in the electromagnetic force [N] in the radial direction for each connection pattern in the three-phase coil 32, which is generated when the three-phase coil 32 is energized in the magnetizing step.
  • FIG. 21 is a graph showing the difference in the electromagnetic force [N] in the axial direction for each connection pattern in the three-phase coil 32, which is generated when the three-phase coil 32 is energized in the magnetizing step.
  • connection patterns P1, P2, and P3 show data of three-phase magnetization.
  • the largest current flows through the U-phase coil 32U in the magnetizing step.
  • the largest current flows through the V-phase coil 32V in the magnetizing step.
  • the largest current flows through the W-phase coil 32W in the magnetizing step.
  • connection patterns P4, P5, and P6 show data of two-phase magnetization. That is, in the connection pattern P4, a current flows through the U-phase coil 32U and the V-phase coil 32V in the magnetizing step. In the connection pattern P5, a current flows through the V-phase coil 32V and the W-phase coil 32W in the magnetizing step. In the connection pattern P6, a current flows through the U-phase coil 32U and the W-phase coil 32W in the magnetizing step.
  • the electromagnetic force is concentrated on the coil of one phase of the three-phase coils 32.
  • the coil end 32a is easily deformed.
  • the electromagnetic force is suppressed, and the coil end 32a can be prevented from being significantly deformed.
  • the three-phase coil 32 is arranged in the slot 311 as described above. Therefore, the imbalance of the inductance between the phases is improved, and the imbalance of the current flowing through the three-phase coil 32 is improved. As a result, the electromagnetic force generated in the coil end 32a of a specific phase is reduced, and the coil end 32a can be prevented from being significantly deformed.
  • the motor 1 having the above-mentioned advantages can be manufactured. Further, according to the present embodiment, the three-phase coil 32 can be attached to the stator core 31 by using the insertion tool 9. Therefore, for example, the stator 3 can be manufactured more efficiently than the stator 3a described as a comparative example.
  • FIG. 22 is a top view showing another example of the motor.
  • FIG. 23 is a diagram showing the arrangement of the three-phase coil 32 in the slot 311 of the stator 3 shown in FIG.
  • FIG. 24 is a diagram schematically showing the arrangement of the three-phase coil 32 at the coil end 32a shown in FIG. 22 and the arrangement of the three-phase coil 32 in the slot 311.
  • the dashed line indicates the coil of each phase at the coil end 32a
  • the chain line indicates the boundary between the inner layer and the outer layer in each slot 311.
  • the arrangement of the three-phase coil 32 is different from the arrangement described in the first embodiment.
  • a configuration different from that of the first embodiment will be described.
  • the configuration not described in the modified example can be the same configuration as that of the first embodiment.
  • Each U-phase coil 32U is arranged in the outer layer of slot 311. That is, 6 ⁇ n U-phase coils 32U are arranged in the outer layer of slot 311.
  • Each V-phase coil 32V is arranged in the outer layer of slot 311 and the inner layer of other slots 311. Specifically, a part of the V-phase coil 32V is arranged in the inner layer of the slot 311 in which the U-phase coil 32U is arranged, and a part of the other part of the V-phase coil 32V is arranged in the W-phase coil 32W. It is arranged in the outer layer of the slot 311.
  • each V-phase coil 32V when a part of each V-phase coil 32V is arranged in the outer layer of the slot 311 in which the coil of the other phase is arranged, the other part of each V-phase coil 32V is arranged with the coil of the other phase. It is arranged in the inner layer of the slot 311.
  • the other part of each V-phase coil 32V is arranged in the coil of the other phase. It is arranged on the outer layer of slot 311.
  • Each W-phase coil 32W is arranged in the inner layer of slot 311. That is, 6 ⁇ n W-phase coils 32W are arranged in the inner layer of the slot 311.
  • the three-phase coil 32 constitutes two star connections.
  • the imbalance of inductance between the phases is improved, and the imbalance of the current flowing through the three-phase coil 32 is improved.
  • the electromagnetic force generated in the coil end 32a of a specific phase is reduced, and the coil end 32a can be prevented from being significantly deformed.
  • this configuration improves the imbalance of the inductance between the phases and the imbalance of the current flowing through the three-phase coil 32. As a result, the electromagnetic force generated in the coil end 32a of a specific phase is reduced, and the coil end 32a can be prevented from being significantly deformed.
  • a current is passed through the W-phase coil 32W and the V-phase coil 32V of the three-phase coils 32, and no current is passed through the U-phase coil 32U. That is, in steps S6 and S7, a current is passed through the W-phase coil 32W and the V-phase coil 32V, and no current is passed through the U-phase coil 32U.
  • the electromagnetic force is suppressed as compared with the three-phase magnetizing, and the coil end 32a can be prevented from being significantly deformed.
  • FIG. 25 is a cross-sectional view schematically showing the structure of the compressor 300.
  • the compressor 300 has an electric motor 1 as an electric element, a closed container 307 as a housing, and a compression mechanism 305 as a compression element (also referred to as a compression device).
  • the compressor 300 is a scroll compressor.
  • the compressor 300 is not limited to the scroll compressor.
  • the compressor 300 may be a compressor other than the scroll compressor, for example, a rotary compressor.
  • the electric motor 1 in the compressor 300 is the electric motor 1 described in the first embodiment.
  • the electric motor 1 drives the compression mechanism 305.
  • the compressor 300 further includes a subframe 308 that supports the lower end of the shaft 4 (that is, the end opposite to the compression mechanism 305 side).
  • the compression mechanism 305 is arranged in the closed container 307.
  • the compression mechanism 305 includes a fixed scroll 301 having a spiral portion, a swing scroll 302 having a spiral portion forming a compression chamber between the spiral portion of the fixed scroll 301, and a compliance frame 303 holding the upper end portion of the shaft 4. And a guide frame 304 which is fixed to the closed container 307 and holds the compliance frame 303.
  • a suction pipe 310 penetrating the closed container 307 is press-fitted into the fixed scroll 301. Further, the closed container 307 is provided with a discharge pipe 306 for discharging the high-pressure refrigerant gas discharged from the fixed scroll 301 to the outside.
  • the discharge pipe 306 communicates with an opening provided between the compression mechanism 305 of the closed container 307 and the electric motor 1.
  • the motor 1 is fixed to the closed container 307 by fitting the stator 3 into the closed container 307.
  • the configuration of the motor 1 is as described above.
  • a glass terminal 309 that supplies electric power to the motor 1 is fixed to the closed container 307 by welding.
  • the compressor 300 Since the compressor 300 has the electric motor 1 described in the first embodiment, the compressor 300 has the advantages described in the first embodiment.
  • the compressor 300 has the electric motor 1 described in the first embodiment, the performance of the compressor 300 can be improved.
  • FIG. 26 is a diagram schematically showing the configuration of the refrigerating and air-conditioning apparatus 7 according to the third embodiment.
  • the refrigerating and air-conditioning device 7 can be operated for heating and cooling, for example.
  • the refrigerant circuit diagram shown in FIG. 26 is an example of a refrigerant circuit diagram of an air conditioner capable of cooling operation.
  • the refrigerating and air-conditioning device 7 has an outdoor unit 71, an indoor unit 72, and a refrigerant pipe 73 connecting the outdoor unit 71 and the indoor unit 72.
  • the outdoor unit 71 includes a compressor 300, a condenser 74 as a heat exchanger, a throttle device 75, and an outdoor blower 76 (first blower).
  • the condenser 74 condenses the refrigerant compressed by the compressor 300.
  • the drawing device 75 decompresses the refrigerant condensed by the condenser 74 and adjusts the flow rate of the refrigerant.
  • the diaphragm device 75 is also referred to as a decompression device.
  • the indoor unit 72 has an evaporator 77 as a heat exchanger and an indoor blower 78 (second blower).
  • the evaporator 77 evaporates the refrigerant decompressed by the throttle device 75 to cool the indoor air.
  • the refrigerant is compressed by the compressor 300 and flows into the condenser 74.
  • the refrigerant is condensed by the condenser 74, and the condensed refrigerant flows into the drawing device 75.
  • the refrigerant is decompressed by the throttle device 75, and the decompressed refrigerant flows into the evaporator 77.
  • the refrigerant evaporates in the evaporator 77, and the refrigerant (specifically, the refrigerant gas) flows into the compressor 300 of the outdoor unit 71 again.
  • the configuration and operation of the refrigerating and air-conditioning device 7 described above is an example, and is not limited to the above-mentioned example.
  • the refrigerating and air-conditioning device 7 since the motor 1 described in the first embodiment is provided, the refrigerating and air-conditioning device 7 has the advantages described in the first embodiment.
  • the refrigerating and air-conditioning apparatus 7 according to the third embodiment has the compressor 300 according to the second embodiment, the performance of the refrigerating and air-conditioning apparatus 7 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

着磁方法は、3相コイル(32)のコイルエンドにおいて3相コイル(32)が6×n個のU相コイル(32U)、6×n個のV相コイル(32V)、及び6×n個のW相コイル(32W)を有するように、3相コイル(32U)の各コイルを、固定子鉄心(31)の一端側において1スロットおきに18×n個のスロット(311)のうちの2つのスロット(311)に配置することと、3相コイル(32)のうちの2つの相のコイルに電流を通すことにより回転子(2)の磁性体(22)を着磁することとを備える。

Description

着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機
 本開示は、回転子の磁性体を着磁する着磁方法、及び電動機に関する。
 一般に、固定子鉄心に取り付けられたコイル(巻線とも称する)を利用して、回転子の永久磁石(具体的には、着磁されていない磁性体)を着磁する着磁方法が知られている(例えば、特許文献1)。
特開2015-91192号公報
 しかしながら、従来の技術では、着磁用の電源からコイルに電流を流すと、コイルに大きな力が発生し、電動機の軸方向におけるコイルの端部、すなわち、コイルエンドが変形するという問題がある。
 本開示の目的は、回転子を固定子の内側に配置した状態で着磁を行うときに、固定子の3相コイルの著しい変形を防ぐことである。
 本開示の一態様に係る着磁方法は、
 18×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、6×n個の磁極を形成する3相コイルとを有する固定子の内側で、回転子の磁性体を着磁する着磁方法であって、
 前記3相コイルのコイルエンドにおいて前記3相コイルが6×n個のU相コイル、6×n個のV相コイル、及び6×n個のW相コイルを有するように、前記3相コイルの各コイルを、前記固定子鉄心の一端側において1スロットおきに前記18×n個のスロットのうちの2つのスロットに配置することと、
 前記3相コイルのうちの2つの相のコイルに電流を通すことにより前記磁性体を着磁することと
 を備える。
 本開示の他の態様に係る電動機の製造方法は、
 18×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、6×n個の磁極を形成する3相コイルとを有する固定子と、
 磁性体を有する回転子と
 を有する電動機の製造方法であって、
 前記3相コイルのコイルエンドにおいて前記3相コイルが6×n個のU相コイル、6×n個のV相コイル、及び6×n個のW相コイルを有するように、前記3相コイルの各コイルを、前記固定子鉄心の一端側において1スロットおきに前記18×n個のスロットのうちの2つのスロットに配置することと、
 前記固定子の内側に前記回転子を配置することと、
 前記3相コイルのうちの2つの相のコイルに電流を通すことにより前記磁性体を着磁することと
 を備える。
 本開示の他の態様に係る電動機は、
 18×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、6×n個の磁極を形成する3相コイルとを有する固定子と、
 永久磁石を有し、前記固定子の内側に配置された回転子と
 を備え、
 前記3相コイルは、前記3相コイルのコイルエンドにおいて6×n個のU相コイル、6×n個のV相コイル、及び6×n個のW相コイルを有し、
 前記3相コイルの各コイルは、前記固定子鉄心の一端側において1スロットおきに前記18×n個のスロットのうちの2つのスロットに配置されており、
 前記永久磁石は、前記固定子の内側に前記回転子が配置された状態で前記3相コイルのうちの2つの相のコイルに電流を通すことにより着磁されている。
 本開示の他の態様に係る圧縮機は、
 密閉容器と、
 前記密閉容器内に配置された圧縮装置と、
 前記圧縮装置を駆動する前記電動機と
 を備える。
 本開示の他の態様に係る空気調和機は、
 前記圧縮機と、
 熱交換器と
 を備える。
 本開示によれば、回転子を固定子の内側に配置した状態で着磁を行うときに、固定子の3相コイルの著しい変形を防ぐことができる。
実施の形態1に係る電動機の構造を概略的に示す上面図である。 回転子の構造を概略的に示す断面図である。 固定子の構造を概略的に示す上面図である。 スロット内の3相コイルの配置を示す図である。 コイルエンドにおける3相コイルの配置及びスロット内の3相コイルの配置を模式的に示す図である。 電動機の製造工程の一例を示すフローチャートである。 3相コイルを固定子鉄心内に挿入するための挿入器具の例を示す図である。 3相コイルを固定子鉄心内に挿入する工程を示す図である。 3相コイルを固定子鉄心内に挿入する工程を示す図である。 着磁工程における基準位置を示す図である。 3相コイルと着磁用の電源との接続を示す図である。 1回目の着磁工程の一例を示す図である。 2回目の着磁工程の一例を示す図である。 比較例に係る電動機を示す上面図である。 図14に示される固定子のスロット内の3相コイルの配置を示す図である。 比較例に係る電動機のコイルエンドにおける3相コイルの配置及びスロット内の3相コイルの配置を模式的に示す図である。 比較例としての着磁工程を示す図である。 基準位置に対する角度[度](機械角)と着磁用の電源からの電流値[kAT]との関係を示すグラフである。 図18に示される3相着磁における3相コイルと着磁用の電源との接続を示す図である。 着磁工程において、3相コイルに通電したときに発生する、3相コイルにおける結線パターンごとの径方向における電磁力[N]の違いを示すグラフである。 着磁工程において、3相コイルに通電したときに発生する、3相コイルにおける結線パターンごとの軸方向における電磁力[N]の違いを示すグラフである。 電動機の他の例を示す上面図である。 図22に示される固定子のスロット内の3相コイルの配置を示す図である。 図22に示されるコイルエンドにおける3相コイルの配置及びスロット内の3相コイルの配置を模式的に示す図である。 実施の形態2に係る圧縮機の構造を概略的に示す断面図である。 実施の形態3に係る冷凍空調装置の構成を概略的に示す図である。
実施の形態1.
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、固定子3の中心であり、回転子2の回転中心でもある。軸線Axと平行な方向は、「回転子2の軸方向」又は単に「軸方向」ともいう。径方向は、回転子2又は固定子3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線Axを中心とする周方向を示す。回転子2又は固定子3の周方向を、単に「周方向」ともいう。
〈電動機1〉
 図1は、実施の形態1に係る電動機1の構造を概略的に示す上面図である。
 電動機1は、複数の磁極を持つ回転子2と、固定子3と、回転子2に固定されたシャフト4とを有する。電動機1は、例えば、永久磁石同期電動機である。
 回転子2は、固定子3の内側に回転可能に配置されている。回転子2と固定子3との間には、エアギャップが存在する。回転子2は、軸線Axを中心として回転する。
 図2は、回転子2の構造を概略的に示す断面図である。
 回転子2は、回転子鉄心21と、磁性体である少なくとも1つの永久磁石22とを有する。永久磁石22は、後述する着磁方法で着磁された磁性体である。
 回転子鉄心21は、複数の磁石挿入孔211と、シャフト4が配置されるシャフト孔212とを有する。回転子鉄心21は、各磁石挿入孔211に連通する空間である少なくとも1つのフラックスバリア部をさらに有してもよい。
 本実施の形態では、回転子2は、複数の永久磁石22を有する。各永久磁石22は、各磁石挿入孔211内に配置されている。
 1つの永久磁石22が、回転子2の1磁極、すなわち、N極又はS極を形成する。ただし、2以上の永久磁石22が回転子2の1磁極を形成してもよい。
 本実施の形態では、xy平面において、回転子2の1磁極を形成する1つの永久磁石22は、真っ直ぐに配置されている。ただし、xy平面において、回転子2の1磁極を形成する1組の永久磁石22が、V字形状を持つように配置されていてもよい。
 回転子2の各磁極の中心は、回転子2の各磁極(すなわち、回転子2のN極又はS極)の中心に位置する。回転子2の各磁極(単に「各磁極」又は「磁極」とも称する)とは、回転子2のN極又はS極の役目をする領域を意味する。
〈固定子3〉
 図3は、固定子3の構造を概略的に示す上面図である。
 図4は、スロット311内の3相コイル32の配置を示す図である。
 図5は、コイルエンド32aにおける3相コイル32の配置及びスロット311内の3相コイル32の配置を模式的に示す図である。図5において、破線は、コイルエンド32aにおける各相のコイルを示し、鎖線は、各スロット311内の内層と外層との間の境界を示す。
 図3に示されるように、固定子3は、固定子鉄心31と、固定子鉄心31に分布巻きで取り付けられた3相コイル32とを有する。
 固定子鉄心31は、環状のヨークと、ヨークから径方向に延在する複数のティースと、3相コイル32が配置される18×n個(nは1以上の整数)のスロット311とを有する。各スロット311を、例えば、第1のスロット、第2のスロット、・・・、第nのスロットとも称する。図4及び図5に示されるように、18×n個のスロット311の各々は、3相コイル32のうちの1つのコイルが配置される内層と、径方向における内層の外側に設けられており3相コイル32のうちの1つのコイルが配置される外層とを含む。すなわち、図4及び図5に示される例では、各スロット311内の空間は、内層及び外層に分けられている。本実施の形態では、n=1である。したがって、図3から図5に示される例では、固定子鉄心31は、18個のスロット311を有する。
 3相コイル32(すなわち、各相のコイル)は、スロット311内に配置されたコイルサイドと、スロット311内に配置されていないコイルエンド32aとを持つ。各コイルエンド32aは、軸方向における3相コイル32の端部である。
 3相コイル32は、各コイルエンド32aにおいて、6×n個のU相コイル32U、6×n個のV相コイル32V、及び6×n個のW相コイル32Wを有する。言い換えると、3相コイル32は、固定子鉄心31上において、6×n個のU相コイル32U、6×n個のV相コイル32V、及び6×n個のW相コイル32Wを有する。すなわち、3相コイル32は、第1相、第2相、及び第3相の3相を持つ。例えば、第1相はU相であり、第2相はV相であり、第3相はW相である。本実施の形態では、3相の各々を、U相、V相、及びW相と称する。図1及び図3に示される各U相コイル32U、各V相コイル32V、及び各W相コイル32Wを、単にコイルとも称する。
 本実施の形態では、n=1である。したがって、図1及び図3に示される例では、コイルエンド32aにおいて、3相コイル32は、6個のU相コイル32U、6個のV相コイル32V、及び6個のW相コイル32Wを持っている。ただし、各相のコイルの数は、6個に限定されない。本実施の形態では、固定子3は、2つのコイルエンド32aにおいて、図3に示される構造を持っている。ただし、固定子3は、2つのコイルエンド32aの一方において、図3に示される構造を持っていればよい。
 3相コイル32に電流が流れたとき、3相コイル32は、6×n個の磁極を形成する。本実施の形態では、n=1である。したがって、本実施の形態では、3相コイル32に電流が流れたとき、3相コイル32は、6磁極を形成する。
 図1及び図3に示されるように、3相コイル32の各コイルは、固定子鉄心31の一端側において、2スロットピッチでスロット311内に配置されている。2スロットピッチとは、「2スロット毎」を意味する。すなわち、2スロットピッチとは、1つのコイルが2スロット毎にスロット311に配置されることを意味する。言い換えると、2スロットピッチとは、1つのコイルが1スロットおきにスロット311に配置されることを意味する。したがって、図1及び図3に示されるように、3相コイル32の各コイルは、固定子鉄心31の一端側において、1スロットおきに2つのスロット311に配置されている。言い換えると、3相コイル32の各コイルは、固定子鉄心31の一端側において、1つのスロット311をはさんで2つのスロット311に配置されている。
 図4及び図5に示されるように、各スロット311には、2つのコイルが配置されている。各コイルは、他の相のコイルと共に各スロット311に配置されている。すなわち、各スロット311には、異なる相の2つのコイルが配置されている。
〈スロット311内のU相コイル32Uの配置〉
 スロット311内のU相コイル32Uの配置を以下に具体的に説明する。
 6×n個のU相コイル32Uのうちの3×n個のU相コイル32Uは、スロット311の外層に配置されている。6×n個のU相コイル32Uのうちの他の3×n個のU相コイル32Uは、スロット311の内層に配置されている。図1に示される例では、3個のU相コイル32Uがスロット311の外層に配置されており、他の3個のU相コイル32Uがスロット311の内層に配置されている。
〈スロット311内のV相コイル32Vの配置〉
 スロット311内のV相コイル32Vの配置を以下に具体的に説明する。
 V相コイル32Vの一部は、U相コイル32Uが配置されたスロット311の内層に配置されている。V相コイル32Vの他の一部は、W相コイル32Wが配置されたスロット311の外層に配置されている。すなわち、各V相コイル32Vの一部が他の相のコイルが配置されたスロット311の外層に配置されている場合、各V相コイル32Vの他の一部は、他の相のコイルが配置されたスロット311の内層に配置されている。各V相コイル32Vの一部が他の相のコイルが配置されたスロット311の内層に配置されている場合、各V相コイル32Vの他の一部は、他の相のコイルが配置されたスロット311の外層に配置されている。
〈スロット311内のW相コイル32Wの配置〉
 スロット311内のW相コイル32Wの配置を以下に具体的に説明する。
 6×n個のW相コイル32Wのうちの3×n個のW相コイル32Wは、スロット311の外層に配置されている。6×n個のW相コイル32Wのうちの他の3×n個のW相コイル32Wは、スロット311の内層に配置されている。図1に示される例では、3個のW相コイル32Wがスロット311の外層に配置されており、他の3個のW相コイル32Wがスロット311の内層に配置されている。
〈コイルエンド32aにおける3相コイル32の配置〉
 スロット311の外層に配置された3×n個のU相コイル32Uは、周方向に等間隔に配置されている。スロット311の内層に配置された3×n個のU相コイル32Uは、周方向に等間隔に配置されている。6×n個のV相コイル32Vは、周方向に等間隔に配置されている。スロット311の外層に配置された3×n個のW相コイル32Wは、周方向に等間隔に配置されている。スロット311の内層に配置された3×n個のW相コイル32Wは、周方向に等間隔に配置されている。
〈巻線係数〉
 本実施の形態に係る電動機1では、回転子2の1磁極に対して3つのスロット311が対応しており、各コイルは、2スロットピッチでスロット311に配置されている。したがって、各コイルの短節巻係数kpは、以下の式で求められる。
 kp=sin{P/(Q/S)}×(π/6)
 分布巻きの3相コイル32の短節巻係数は、1つのコイルが鎖交できる磁束量の比率を示す係数である。Pを3相コイル32の磁極の数、Qをスロット311の数、Sをスロットピッチ数とすると、本実施の形態では、P=6、Q=18、S=2である。よって、kp=sin{(6/9)×(π/6)}=0.866である。1磁極を形成する3相コイル32の周方向における長さは、1磁極を形成する回転子2の周方向における長さよりも小さいので、短節巻係数kpは1にならない。
 分布巻きの3相コイル32の分布巻係数kdは、3相コイル32に鎖交する磁束の位相差を補正する係数である。毎極毎相スロット数をqとすると、分布巻係数kdは、次の式で求められる。
 kd={sin(π/6)}/[q×sin{(π/6)/q}]
 本実施の形態では、q=1である。よって、kd=1である。
 したがって、本実施の形態では、電動機1の巻線係数kwは、次の式で求められる。
 kw=kp×kd=0.866×1=0.866
〈絶縁部材〉
 固定子3は、3相コイル32の各相のコイルを絶縁する絶縁部材を有してもよい。絶縁部材は、例えば、絶縁紙である。
〈コイルの接続〉
 通常、各スロットに2つのコイルを配置する場合、各スロット内の2つのコイル間にインダクタンスの差が生じる。この場合、電動機の駆動中に3相コイルに流れる電流のばらつきが相間に生じ、インダクタンスの大きい相に電流が流れにくく、インダクタンスの小さい相に電流が流れやすい。その結果として、トルクリップルが生じる。
 コイル群の間にインダクタンスの差が生じている場合、電流がコイル群に均等に流れず、電流の不平衡が生じる。この場合、インダクタンスの小さいコイル群に流れる電流の振幅は大きくなり、電流の位相が進む。インダクタンスの大きいコイル群に流れる電流の振幅は小さくなり、電流の位相が遅れる。その結果、位相がずれた状態で電動機のトルクが出力されるので、各コイル群に流れる電流の振幅のピーク値の和が、相電流の振幅のピーク値の和よりも大きくなるため、コイルの抵抗によって発生する銅損などの損失が増加する。
 本実施の形態では、スロット311の外層に配置された、U相コイル32U、V相コイル32V、及びW相コイル32Wがスター結線で接続されている。スロット311の内層に配置された、U相コイル32U、V相コイル32V、及びW相コイル32Wがスター結線で接続されている。外層に配置されたこれらのコイル及び内層に配置されたこれらのコイルは、並列に接続されている。スター結線の中性点は互いに接続されていない。この構成により、インダクタンスのアンバランスが改善され、3相コイル32に流れる電流の不平衡が改善される。
〈電動機1の製造方法〉
 電動機1の製造方法の一例について説明する。
 図6は、電動機1の製造工程の一例を示すフローチャートである。電動機1の製造方法は、回転子2の磁性体22を着磁する着磁方法を含む。
 ステップS1では、磁性体22を、回転子鉄心21の各磁石挿入孔211内に配置する。具体的には、着磁されていない磁性体22を、回転子鉄心21の各磁石挿入孔211内に配置する。ステップS1において、シャフト4を、シャフト孔212に固定してもよい。
 磁性体22は、例えば、鉄、ネオジウム、ボロン、及びディスプロシウムを含有する希土類磁石である。この場合、ディスプロシウムは、拡散処理されている。
 磁性体22は、鉄、ネオジウム、ボロン、及びテルビウムを含有する希土類磁石でもよい。この場合、テルビウムは、拡散処理されている。
 図7は、3相コイル32を固定子鉄心31内に挿入するための挿入器具9の例を示す図である。
 図8及び図9は、3相コイルを固定子鉄心31内に挿入する工程を示す図である。
 ステップS2では、3相コイル32を予め作製された固定子鉄心31に挿入器具9で取り付ける。本実施の形態では、3相コイル32を、分布巻きで固定子鉄心31に取り付ける。図7に示される挿入器具9で3相コイル32を固定子鉄心31に挿入する場合、挿入器具9のブレード91間に3相コイル32を配置し、3相コイル32と共にブレード91を固定子鉄心31の内側に挿入する。次に、3相コイル32を軸方向にスライドさせ、スロット311内に配置する。
 本実施の形態では、3相コイル32のコイルエンド32aにおいて3相コイル32が6×n個のU相コイル32U、6×n個のV相コイル32V、及び6×n個のW相コイル32Wを有するように、3相コイル32の各コイルを、固定子鉄心31の一端側において1スロットおきに18×n個のスロット311のうちの2つのスロット311に配置する。
 同様に、ステップS2において、3相コイル32を固定子鉄心31の他端側に分布巻きで取り付ける。すなわち、3相コイル32のコイルエンド32aにおいて、3相コイル32が6×n個のU相コイル32U、6×n個のV相コイル32V、及び6×n個のW相コイル32Wを有するように、3相コイル32の各コイルを、固定子鉄心31の他端側において1スロットおきに18×n個のスロット311のうちの2つのスロット311に配置する。
 ステップS3では、U相コイル32U、V相コイル32V、及びW相コイル32Wを接続する。例えば、スロット311の外層に配置された、U相コイル32U、V相コイル32V、及びW相コイル32Wがスター結線で接続される。スロット311の内層に配置された、U相コイル32U、V相コイル32V、及びW相コイル32Wがスター結線で接続される。外層に配置されたこれらのコイル及び内層に配置されたこれらのコイルは、並列に接続される。
 ただし、3相コイル32を、分布巻きで固定子鉄心31に取り付ける前に、U相コイル32U、V相コイル32V、及びW相コイル32Wを接続してもよい。この場合、ステップS2において、互いに接続されたU相コイル32U、V相コイル32V、及びW相コイル32Wを、分布巻きで固定子鉄心31に取り付けてもよい。
 ステップS4では、着磁されていない磁性体22を持つ回転子2を、固定子3(具体的には、固定子鉄心31)の内側に配置する。
〈着磁工程〉
 固定子3の内側で、回転子2の磁性体22を着磁する着磁方法を説明する。
 図10は、着磁工程における基準位置を示す図である。
 ステップS4において、例えば、図10に示されるように、回転子2を基準位置に配置する。基準位置は、xy平面において、回転子2の着磁対象磁極の中心M1が、3相のコイル32の磁極の中心と一致する位置である。3相のコイル32の磁極の中心は、3相コイルに電流が流れたときに形成される磁極の中心である。図10において、3相のコイル32の磁極の中心は、破線で示されている磁極中心線C1上に位置しており、回転子2の着磁対象磁極の中心は、鎖線で示されている磁極中心線M1上に位置している。
 図11は、3相コイル32と着磁用の電源との接続を示す図である。
 ステップS5では、3相コイル32を着磁用の電源に接続する。
 例えば、図11に示される例では、V相コイル32Vを電源のプラス側に接続し、U相コイル32Uを電源のマイナス側に接続する。この場合、W相コイル32Wの一端は、電源に接続されていない。
 ステップS1からステップS5の工程の順序は、図6に示される例に限定されず、適宜入れ替えてもよい。
 図12は、1回目の着磁工程の一例を示す図である。図12における回転子2上の矢印は、3相コイル32からの磁束の流れを示す。
 ステップS6では、着磁されていない磁性体22を持つ回転子2の磁極の中心を、3相コイル32の磁極の中心に対して回転子2の第1の回転方向に第1の角度θ1回転させた状態で、3相コイル32のうちの2つの相のコイルに電流を通す。すなわち、回転子2の磁極の中心を、基準位置から回転子2の第1の回転方向に第1の角度θ1回転させた状態で、3相コイル32のうちの2つの相のコイルに電流を通す。ステップS6において、U相コイル32U又はW相コイル32Wと、V相コイル32Vとに電流を通す。図11に示される接続では、ステップS6において、U相コイル32U及びV相コイル32Vに電流を通し、W相コイル32Wには電流を通さない。本実施の形態では、第1の回転方向は、軸線Axについて反時計回りである。第1の角度θ1は、0度より大きく11.2度よりも小さい。第1の角度θ1は、0度より大きく10度よりも小さいことが望ましい。第1の角度θ1は、1.7度より大きく11.2度よりも小さいことがより望ましい。
 電源から3相コイル32に電流が流れると、3相コイル32から磁束が発生し、着磁対象としての磁性体22が、磁化容易方向に着磁される。回転子2は、3相コイル32の磁極の中心に対して第1の角度θ1回転させた状態であるので、磁性体22を、磁性体22の磁化容易方向に容易に着磁させることができる。特に、磁性体22の長手方向における一端側を磁化容易方向に容易に着磁させることができる。本実施の形態では、磁性体22の磁化容易方向は、xy平面における磁性体22の短手方向である。
 図13は、2回目の着磁工程の一例を示す図である。図13における回転子2上の矢印は、3相コイル32からの磁束の流れを示す。
 ステップS7では、回転子2の磁極の中心を、3相コイル32の磁極の中心に対して回転子2の第2の回転方向に第2の角度θ2回転させた状態で、3相コイル32のうちの2つの相のコイルに電流を通す。すなわち、回転子2の磁極の中心を、基準位置から回転子2の第2の回転方向に第2の角度θ2回転させた状態で、3相コイル32のうちの2つの相のコイルに電流を通す。第2の回転方向は、第1の回転方向とは反対方向である。ステップS7において、U相コイル32U又はW相コイル32Wと、V相コイル32Vとに電流を通す。図11に示される接続では、ステップS7において、U相コイル32U及びV相コイル32Vに電流を通し、W相コイル32Wには電流を通さない。本実施の形態では、第2の回転方向は、軸線Axについて時計回りである。第2の角度θ2は、0度より大きく11.2度よりも小さい。第2の角度θ2は、0度より大きく10度よりも小さいことが望ましい。第2の角度θ2は、1.7度より大きく11.2度よりも小さいことがより望ましい。
 本実施の形態では、第2の角度θ2は、第1の角度θ1と等しい。
 第2の回転方向は、軸線Axについて反時計回りでもよい。この場合、第1の回転方向は、時計回りである。
 2回目の着磁工程において、電源から3相コイル32に電流が流れると、3相コイル32から磁束が発生し、着磁対象としての磁性体22が、磁化容易方向に着磁される。回転子2は、3相コイル32の磁極の中心に対して第2の角度θ2回転させた状態であるので、磁性体22を、磁性体22の磁化容易方向に容易に着磁させることができる。特に、磁性体22の長手方向における他端側を磁化容易方向に容易に着磁させることができる。
 1回目の着磁工程及び2回目の着磁工程の結果、磁性体22の長手方向における両側を磁化容易方向に容易に着磁させることができる。
 ステップS8では、電源から3相コイル32を外す。これにより、電動機1が得られる。
〈比較例〉
 図14は、比較例に係る電動機1aを示す上面図である。
 図15は、図14に示される固定子3aのスロット内の3相コイル32の配置を示す図である。
 図16は、比較例に係る電動機1aのコイルエンド32aにおける3相コイル32の配置及びスロット311内の3相コイル32の配置を模式的に示す図である。図16において、破線は、コイルエンド32aにおける各相のコイルを示し、鎖線は、各スロット311内の内層と外層との間の境界を示す。
 比較例では、3相コイル32が重ね巻きで固定子鉄心31に取り付けられている。この場合、各コイルエンド32aにおいて、各コイルの片側がスロット311の外層に配置され、そのコイルの他方側が他のスロット311の内層に配置されている。
 したがって、3相コイル32を重ね巻きで固定子鉄心31に取り付ける場合、挿入器具(例えば、図7に示される挿入器具9)を用いて、3相コイル32を固定子鉄心31に取り付けることが難しい。そのため、通常、比較例のような重ね巻きで3相コイル32を固定子鉄心31に取り付ける場合、手で3相コイル32を固定子鉄心に取り付ける。この場合、固定子3の生産性が下がる。
〈本実施の形態の利点〉
 本実施の形態の利点を説明する。
 図17は、比較例としての着磁工程を示す図である。
 図17に示される例では、着磁工程において、基準位置に対する角度がゼロである。この場合、3相コイル32からの磁束の向きは、着磁対象としての磁性体22の磁化容易方向に対して直角に近い。したがって、図17に示される例では、xy平面における磁性体22の両側を磁化容易方向に着磁させることが困難である。
 これに対して、本実施の形態では、回転子2の各磁極について2回の着磁を行う。具体的には、回転子2の各磁極について、回転子2の磁極の中心を、3相コイル32の磁極の中心に対して第1の角度θ1回転させた状態で1回目の着磁を行う。この方法により、3相コイル32からの磁束の向きが着磁対象としての磁性体22の一端側の磁化容易方向とできるだけ平行である状態で、磁性体22を着磁させることができる。特に、xy平面における磁性体22の一端側が、磁化容易方向に容易に着磁される。
 さらに、回転子2の各磁極について、回転子2の磁極の中心を、3相コイル32の磁極の中心に対して第2の角度θ2回転させた状態で2回目の着磁を行う。この方法により、3相コイル32からの磁束の向きが着磁対象としての磁性体22のもう一端側の磁化容易方向とできるだけ平行である状態で、磁性体22を着磁させることができる。その結果、大きな電流を用いずに磁性体22を磁化容易方向に容易に着磁させることができる。特に、xy平面における磁性体22のもう一端側が、磁化容易方向に容易に着磁される。したがって、図17に示される例に比べて、磁性体22の長手方向における両側を磁化容易方向に容易に着磁させることができる。
 さらに、磁性体22を磁化容易方向に容易に着磁させることができるので、回転子2の磁力を高めることができる。その結果、効率の高い電動機1を提供することができる。
 図18は、基準位置に対する角度[度](機械角)と着磁用の電源からの電流値[kAT]との関係を示すグラフである。図18において、基準位置に対する角度は、上述の第1の角度θ1及び第2の角度θ2に対応する。
 図19は、図18に示される3相着磁における3相コイル32と着磁用の電源との接続を示す図である。
 図18において、「3相着磁」は、3相コイルの全て相のコイルに電流を通す方法で得られるデータを示す。「2相着磁」は、本実施の形態における方法、すなわち、3相コイルのうちの2相のコイルのみに電流を通す方法で得られるデータを示す。
 3相着磁では、2相着磁比べて、3相コイル32からの磁束を磁性体22の磁化容易方向と一致させることが難しい。そのため、特に、磁性体22の長手方向における両側を磁化容易方向に着磁させるためには、大きな電流を必要とする。これに対して、図18に示されるように、3相着磁に比べて、本実施の形態における方法は、着磁用の電流を低減することができる。
 3相着磁では、第1の角度θ1及び第2の角度θ2が7.5度の場合、電流値が最小である。
 第1の角度θ1及び第2の角度θ2が、1.7度<θ1<11.2度、1.7度<θ2<11.2度の場合、3相着磁に比べて、着磁用の電源からの電流を低減することができる。本実施の形態では、第1の角度θ1及び第2の角度θ2が5.0度の場合、電流値が最小である。
 磁性体22は、例えば、鉄、ネオジウム、ボロン、及びディスプロシウムを含有する希土類磁石である。そのため、磁性体22の厚みを低減することでき、その結果、着磁工程における着磁用の電源からの電流を低減することができる。
 ディスプロシウムは、拡散処理されていることが望ましい。ディスプロシウムが拡散処理されている場合、磁性体22においてディスプロシウムを削減することができる。その結果、磁性体22のコストを削減することができる。
 しかしながら、通常、ディスプロシウムが削減されると、磁性体の着磁特性が悪化するため、着磁工程における着磁用の電源からの電流が増加する。これに対して、本実施の形態における着磁方法によれば、拡散処理されたディスプロシウムを含有する磁性体22を着磁する場合でも、着磁用の電源からの電流を低減することができる。
 磁性体22は、鉄、ネオジウム、ボロン、及びテルビウムを含有する希土類磁石でもよい。そのため、磁性体22の厚みを低減することでき、その結果、着磁工程における着磁用の電源からの電流を低減することができる。
 テルビウムは、拡散処理されていることが望ましい。テルビウムが拡散処理されている場合、磁性体22においてテルビウムを削減することができる。その結果、磁性体22のコストを削減することができる。
 しかしながら、通常、テルビウムが削減されると、磁性体の着磁特性が悪化するため、着磁工程における着磁用の電源からの電流が増加する。これに対して、本実施の形態における着磁方法によれば、拡散処理されたテルビウムを含有する磁性体22を着磁する場合でも、着磁用の電源からの電流を低減することができる。
 本実施の形態では、回転子2の着磁対象磁極について2回の着磁を行うので、3相コイル32に大きな力が発生し、3相コイル32のコイルエンド32aが変形しやすい。
 図20は、着磁工程において、3相コイル32に通電したときに発生する、3相コイル32における結線パターンごとの径方向における電磁力[N]の違いを示すグラフである。
 図21は、着磁工程において、3相コイル32に通電したときに発生する、3相コイル32における結線パターンごとの軸方向における電磁力[N]の違いを示すグラフである。
 図20において、結線パターンP1,P2,P3は、3相着磁のデータを示す。結線パターンP1では、着磁工程において、U相コイル32Uに最も大きな電流が流れる。結線パターンP2では、着磁工程において、V相コイル32Vに最も大きな電流が流れる。結線パターンP3では、着磁工程において、W相コイル32Wに最も大きな電流が流れる。
 図20において、結線パターンP4,P5,P6は、2相着磁のデータを示す。すなわち、結線パターンP4では、着磁工程において、U相コイル32U及びV相コイル32Vに電流が流れる。結線パターンP5では、着磁工程において、V相コイル32V及びW相コイル32Wに電流が流れる。結線パターンP6では、着磁工程において、U相コイル32U及びW相コイル32Wに電流が流れる。
 図20及び図21に示されるように、3相着磁では、3相コイル32のうちの1つの相のコイルに電磁力が集中する。この場合、コイルエンド32aが変形しやすい。これに対して、本実施の形態のような2相着磁では、電磁力が抑えられており、コイルエンド32aの著しい変形を防ぐことができる。
 さらに、本実施の形態では、3相コイル32が上述のようにスロット311に配置されている。そのため、相間のインダクタンスのアンバランスが改善され、3相コイル32に流れる電流の不平衡が改善される。その結果、特定の相のコイルエンド32aに発生する電磁力が低減され、コイルエンド32aの著しい変形を防ぐことができる。
 本実施の形態によれば、上述の利点を持つ電動機1を製造することができる。さらに、本実施の形態によれば、挿入器具9を用いて3相コイル32を固定子鉄心31に取り付けることができる。そのため、例えば、比較例として説明した固定子3aに比べて、固定子3を効率的に製造することができる。
変形例.
 電動機1の他の例を説明する。
 図22は、電動機の他の例を示す上面図である。
 図23は、図22に示される固定子3のスロット311内の3相コイル32の配置を示す図である。
 図24は、図22に示されるコイルエンド32aにおける3相コイル32の配置及びスロット311内の3相コイル32の配置を模式的に示す図である。図24において、破線は、コイルエンド32aにおける各相のコイルを示し、鎖線は、各スロット311内の内層と外層との間の境界を示す。
 変形例では、3相コイル32の配置が、実施の形態1で説明した配置と異なる。変形例では、実施の形態1と異なる構成について説明する。変形例において説明されない構成は、実施の形態1と同じ構成とすることができる。
〈スロット311内のU相コイル32Uの配置〉
 スロット311内のU相コイル32Uの配置を以下に具体的に説明する。
 各U相コイル32Uは、スロット311の外層に配置されている。すなわち、6×n個のU相コイル32Uは、スロット311の外層に配置されている。
〈スロット311内のV相コイル32Vの配置〉
 スロット311内のV相コイル32Vの配置を以下に具体的に説明する。
 各V相コイル32Vは、スロット311の外層及び他のスロット311の内層に配置されている。具体的には、V相コイル32Vの一部は、U相コイル32Uが配置されたスロット311の内層に配置されており、V相コイル32Vの他の一部は、W相コイル32Wが配置されたスロット311の外層に配置されている。すなわち、各V相コイル32Vの一部が他の相のコイルが配置されたスロット311の外層に配置されている場合、各V相コイル32Vの他の一部は、他の相のコイルが配置されたスロット311の内層に配置されている。各V相コイル32Vの一部が他の相のコイルが配置されたスロット311の内層に配置されている場合、各V相コイル32Vの他の一部は、他の相のコイルが配置されたスロット311の外層に配置されている。
〈スロット311内のW相コイル32Wの配置〉
 スロット311内のW相コイル32Wの配置を以下に具体的に説明する。
 各W相コイル32Wは、スロット311の内層に配置されている。すなわち、6×n個のW相コイル32Wは、スロット311の内層に配置されている。
 変形例では、3相コイル32は、2つのスター結線を構成する。変形例では、2つのスター結線が並列に接続されていても、相間のインダクタンスのアンバランスが改善され、3相コイル32に流れる電流の不平衡が改善される。その結果、特定の相のコイルエンド32aに発生する電磁力が低減され、コイルエンド32aの著しい変形を防ぐことができる。
 変形例では、この構成により、相間のインダクタンスのアンバランスが改善され、3相コイル32に流れる電流の不平衡が改善される。その結果、特定の相のコイルエンド32aに発生する電磁力が低減され、コイルエンド32aの著しい変形を防ぐことができる。
 変形例では、着磁工程において、3相コイル32のうちのW相コイル32W及びV相コイル32Vに電流を通し、U相コイル32Uには電流を通さない。すなわち、ステップS6及びステップS7において、W相コイル32W及びV相コイル32Vに電流を通し、U相コイル32Uには電流を通さない。この場合、図20及び図21に示されるように、3相着磁に比べて、電磁力が抑えられており、コイルエンド32aの著しい変形を防ぐことができる。
実施の形態2.
 実施の形態2に係る圧縮機300について説明する。
 図25は、圧縮機300の構造を概略的に示す断面図である。
 圧縮機300は、電動要素としての電動機1と、ハウジングとしての密閉容器307と、圧縮要素(圧縮装置とも称する)としての圧縮機構305とを有する。本実施の形態では、圧縮機300は、スクロール圧縮機である。ただし、圧縮機300は、スクロール圧縮機に限定されない。圧縮機300は、スクロール圧縮機以外の圧縮機、例えば、ロータリー圧縮機でもよい。
 圧縮機300内の電動機1は、実施の形態1で説明した電動機1である。電動機1は、圧縮機構305を駆動する。
 圧縮機300は、さらに、シャフト4の下端部(すなわち、圧縮機構305側と反対側の端部)を支持するサブフレーム308を備えている。
 圧縮機構305は、密閉容器307内に配置されている。圧縮機構305は、渦巻部分を有する固定スクロール301と、固定スクロール301の渦巻部分との間に圧縮室を形成する渦巻部分を有する揺動スクロール302と、シャフト4の上端部を保持するコンプライアンスフレーム303と、密閉容器307に固定されてコンプライアンスフレーム303を保持するガイドフレーム304とを備える。
 固定スクロール301には、密閉容器307を貫通する吸入管310が圧入されている。また、密閉容器307には、固定スクロール301から吐出される高圧の冷媒ガスを外部に吐出する吐出管306が設けられている。この吐出管306は、密閉容器307の圧縮機構305と電動機1との間に設けられた開口部に連通している。
 電動機1は、固定子3を密閉容器307に嵌め込むことにより密閉容器307に固定されている。電動機1の構成は、上述した通りである。密閉容器307には、電動機1に電力を供給するガラス端子309が溶接により固定されている。
 電動機1が回転すると、その回転が揺動スクロール302に伝達され、揺動スクロール302が揺動する。揺動スクロール302が揺動すると、揺動スクロール302の渦巻部分と固定スクロール301の渦巻部分とで形成される圧縮室の容積が変化する。そして、吸入管310から冷媒ガスが吸入され、圧縮されて、吐出管306から吐出される。
 圧縮機300は、実施の形態1で説明した電動機1を有するので、圧縮機300は、実施の形態1で説明した利点を持つ。
 さらに、圧縮機300は実施の形態1で説明した電動機1を有するので、圧縮機300の性能を改善することができる。
実施の形態3.
 実施の形態2に係る圧縮機300を有する、空気調和機としての冷凍空調装置7について説明する。
 図26は、実施の形態3に係る冷凍空調装置7の構成を概略的に示す図である。
 冷凍空調装置7は、例えば、冷暖房運転が可能である。図26に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。
 実施の形態3に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。
 室外機71は、圧縮機300と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機300によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。
 室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。
 冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機300によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機300へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。
 以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。
 実施の形態3に係る冷凍空調装置7によれば、実施の形態1で説明した電動機1を有するので、冷凍空調装置7は、実施の形態1で説明した利点を持つ。
 さらに、実施の形態3に係る冷凍空調装置7は、実施の形態2に係る圧縮機300を有するので、冷凍空調装置7の性能を改善することができる。
 以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。
 1 電動機、 2 回転子、 3 固定子、 4 シャフト、 7 冷凍空調装置、 31 固定子鉄心、 32 3相コイル、 32a コイルエンド、 32U U相コイル、 32V V相コイル、 32W W相コイル、 71 室外機、 72 室内機、 74 凝縮器、 77 蒸発器、 300 圧縮機、 305 圧縮機構、 307 密閉容器、 311 スロット。

Claims (16)

  1.  18×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、6×n個の磁極を形成する3相コイルとを有する固定子の内側で、回転子の磁性体を着磁する着磁方法であって、
     前記3相コイルのコイルエンドにおいて前記3相コイルが6×n個のU相コイル、6×n個のV相コイル、及び6×n個のW相コイルを有するように、前記3相コイルの各コイルを、前記固定子鉄心の一端側において1スロットおきに前記18×n個のスロットのうちの2つのスロットに配置することと、
     前記3相コイルのうちの2つの相のコイルに電流を通すことにより前記磁性体を着磁することと
     を備える着磁方法。
  2.  前記回転子の磁極の中心を、前記3相コイルの前記磁極の中心に対して前記回転子の第1の回転方向に第1の角度回転させた状態で、前記3相コイルのうちの2つの相のコイルに電流を通し、
     前記回転子の前記磁極の中心を、前記3相コイルの前記磁極の中心に対して前記第1の回転方向とは反対方向である第2の回転方向に第2の角度回転させた状態で、前記3相コイルのうちの前記2つの相のコイルに電流を通す
     請求項1に記載の着磁方法。
  3.  前記第1の角度は、0度より大きく10度よりも小さく、
     前記第2の角度は、0度より大きく10度よりも小さい
     請求項2に記載の着磁方法。
  4.  前記第2の角度は、前記第1の角度と等しい請求項2に記載の着磁方法。
  5.  前記18×n個のスロットの各々は、前記3相コイルのうちの1つのコイルが配置される内層と、径方向における前記内層の外側に設けられており前記3相コイルのうちの1つのコイルが配置される外層とを含み、
     前記U相コイルは、前記外層に配置されており、
     前記W相コイルは、前記内層に配置されており、
     前記V相コイルの一部は、前記U相コイルが配置された前記スロットの前記内層に配置されており、前記V相コイルの他の一部は、前記W相コイルが配置された前記スロットの前記外層に配置されている
     請求項1から4のいずれか1項に記載の着磁方法。
  6.  前記3相コイルのうちの前記W相コイル及び前記V相コイルに電流を通す請求項5に記載の着磁方法。
  7.  前記18×n個のスロットの各々は、前記3相コイルのうちの1つのコイルが配置される内層と、径方向における前記内層の外側に設けられており前記3相コイルのうちの1つのコイルが配置される外層とを含み、
     前記6×n個のU相コイルのうちの3×n個の前記U相コイルは、前記外層に配置されており、
     前記6×n個のU相コイルのうちの他の3×n個の前記U相コイルは、前記内層に配置されており、
     前記6×n個のW相コイルのうちの3×n個の前記W相コイルは、前記外層に配置されており、
     前記6×n個のW相コイルのうちの他の3×n個の前記W相コイルは、前記内層に配置されており、
     前記V相コイルの一部は、前記U相コイルが配置された前記スロットの前記内層に配置されており、前記V相コイルの他の一部は、前記W相コイルが配置された前記スロットの前記外層に配置されている
     請求項1から4のいずれか1項に記載の着磁方法。
  8.  前記3相コイルのうちの前記U相コイル又は前記W相コイルと、前記V相コイルとに電流を通す請求項7に記載の着磁方法。
  9.  前記磁性体は、鉄、ネオジウム、ボロン、及びディスプロシウムを含有する希土類磁石である請求項1から8のいずれか1項に記載の着磁方法。
  10.  前記ディスプロシウムは、拡散処理されている請求項9に記載の着磁方法。
  11.  前記磁性体は、鉄、ネオジウム、ボロン、及びテルビウムを含有する希土類磁石である請求項1から8のいずれか1項に記載の着磁方法。
  12.  前記テルビウムは、拡散処理されている請求項11に記載の着磁方法。
  13.  18×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、6×n個の磁極を形成する3相コイルとを有する固定子と、
     磁性体を有する回転子と
     を有する電動機の製造方法であって、
     前記3相コイルのコイルエンドにおいて前記3相コイルが6×n個のU相コイル、6×n個のV相コイル、及び6×n個のW相コイルを有するように、前記3相コイルの各コイルを、前記固定子鉄心の一端側において1スロットおきに前記18×n個のスロットのうちの2つのスロットに配置することと、
     前記固定子の内側に前記回転子を配置することと、
     前記3相コイルのうちの2つの相のコイルに電流を通すことにより前記磁性体を着磁することと
     を備える電動機の製造方法。
  14.  18×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、6×n個の磁極を形成する3相コイルとを有する固定子と、
     永久磁石を有し、前記固定子の内側に配置された回転子と
     を備え、
     前記3相コイルは、前記3相コイルのコイルエンドにおいて6×n個のU相コイル、6×n個のV相コイル、及び6×n個のW相コイルを有し、
     前記3相コイルの各コイルは、前記固定子鉄心の一端側において1スロットおきに前記18×n個のスロットのうちの2つのスロットに配置されており、
     前記永久磁石は、前記固定子の内側に前記回転子が配置された状態で前記3相コイルのうちの2つの相のコイルに電流を通すことにより着磁されている
     電動機。
  15.  密閉容器と、
     前記密閉容器内に配置された圧縮装置と、
     前記圧縮装置を駆動する請求項14に記載の電動機と
     を備えた圧縮機。
  16.  請求項15に記載の圧縮機と、
     熱交換器と
     を備えた空気調和機。
PCT/JP2020/015620 2020-04-07 2020-04-07 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機 WO2021205527A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022513730A JP7419501B2 (ja) 2020-04-07 2020-04-07 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機
PCT/JP2020/015620 WO2021205527A1 (ja) 2020-04-07 2020-04-07 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015620 WO2021205527A1 (ja) 2020-04-07 2020-04-07 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機

Publications (1)

Publication Number Publication Date
WO2021205527A1 true WO2021205527A1 (ja) 2021-10-14

Family

ID=78023033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015620 WO2021205527A1 (ja) 2020-04-07 2020-04-07 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機

Country Status (2)

Country Link
JP (1) JP7419501B2 (ja)
WO (1) WO2021205527A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250851A (ja) * 1986-04-23 1987-10-31 Yaskawa Electric Mfg Co Ltd 永久磁石同期機形モ−タ
JPH09182388A (ja) * 1995-12-21 1997-07-11 Daikin Ind Ltd 永久磁石型電動機の着磁方法
WO2001043259A1 (fr) * 1999-12-13 2001-06-14 Mitsubishi Denki Kabushiki Kaisha Moteur du type a aimant permanent et procede de production correspondant
JP2005102480A (ja) * 2003-08-19 2005-04-14 Matsushita Electric Ind Co Ltd 永久磁石型電動機の着磁方法および装置
WO2017130309A1 (ja) * 2016-01-27 2017-08-03 三菱電機株式会社 着磁方法、回転子、電動機およびスクロール圧縮機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016390096B2 (en) * 2016-01-27 2019-08-08 Mitsubishi Electric Corporation Rotor, magnetizing method, electric motor, and scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250851A (ja) * 1986-04-23 1987-10-31 Yaskawa Electric Mfg Co Ltd 永久磁石同期機形モ−タ
JPH09182388A (ja) * 1995-12-21 1997-07-11 Daikin Ind Ltd 永久磁石型電動機の着磁方法
WO2001043259A1 (fr) * 1999-12-13 2001-06-14 Mitsubishi Denki Kabushiki Kaisha Moteur du type a aimant permanent et procede de production correspondant
JP2005102480A (ja) * 2003-08-19 2005-04-14 Matsushita Electric Ind Co Ltd 永久磁石型電動機の着磁方法および装置
WO2017130309A1 (ja) * 2016-01-27 2017-08-03 三菱電機株式会社 着磁方法、回転子、電動機およびスクロール圧縮機

Also Published As

Publication number Publication date
JPWO2021205527A1 (ja) 2021-10-14
JP7419501B2 (ja) 2024-01-22

Similar Documents

Publication Publication Date Title
JP7058802B2 (ja) 電動機の製造方法、電動機、圧縮機、及び空気調和機
WO2019215865A1 (ja) ロータ、電動機、圧縮機および空気調和装置
WO2022054219A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
US20230208232A1 (en) Stator, electric motor, compressor, and air conditioner
WO2021205527A1 (ja) 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機
JP7086212B2 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
US20230291263A1 (en) Stator, electric motor, compressor, air conditioner, and method for fabricating stator
WO2021161403A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
WO2021161406A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
WO2021161409A1 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
JP7026805B2 (ja) ステータ、モータ、ファン、及び空気調和機並びにステータの製造方法
WO2023112076A1 (ja) 電動機、圧縮機、及び空気調和機
JP7237159B2 (ja) 固定子、電動機、圧縮機、空気調和機、固定子の製造方法、及び着磁方法
JP4080277B2 (ja) Dcブラシレスモータ及び圧縮機及び冷凍サイクル装置及びdcブラシレスモータの組込着磁方法
WO2023032134A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2021181593A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
JP7353508B2 (ja) 固定子、電動機、圧縮機および空気調和装置
JP2005130623A (ja) 永久磁石モータの製造方法及び圧縮機の製造方法並びに空気調和機
WO2024150393A1 (ja) 着磁方法、電動機、圧縮機および冷凍サイクル装置
US20220231554A1 (en) Rotor, electric motor, compressor, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930549

Country of ref document: EP

Kind code of ref document: A1