WO2007123057A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2007123057A1
WO2007123057A1 PCT/JP2007/058132 JP2007058132W WO2007123057A1 WO 2007123057 A1 WO2007123057 A1 WO 2007123057A1 JP 2007058132 W JP2007058132 W JP 2007058132W WO 2007123057 A1 WO2007123057 A1 WO 2007123057A1
Authority
WO
WIPO (PCT)
Prior art keywords
end point
rotor
permanent magnet
yoke
shape
Prior art date
Application number
PCT/JP2007/058132
Other languages
English (en)
French (fr)
Inventor
Yuichi Yoshikawa
Hiroshi Murakami
Yukinori Nakagawa
Masahiko Morisaki
Hu Li
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2007800039599A priority Critical patent/CN101375485B/zh
Priority to JP2008512091A priority patent/JP5067365B2/ja
Publication of WO2007123057A1 publication Critical patent/WO2007123057A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/279Magnets embedded in the magnetic core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/222Flywheel magnetos

Definitions

  • the present invention relates to a permanent magnet embedded brushless motor equipped with a twin rotor, and more particularly to a configuration of a rotor.
  • FIG. 9 shows a conventional toroidal brushless motor having a twin rotor, which includes a stator 110, an inner rotor 120, and an outer rotor 130.
  • Stator 110 includes a stator core 111 and a coil 115.
  • the stator core 111 is powered by the stator yoke 114 and the outer teeth 112 and the inner teeth 113 provided on the stator yoke 114, and the outer slots 116 are arranged between the outer teeth 112 and the inner teeth 11.
  • the stator yoke 114 is provided with a plurality of toroidal three-phase coils 115. This coil 115 is wound around the stator yoke 114 by a concentrated winding method, and is housed in an outer slot 116 and an inner slot 117, and is star-connected or delta-connected.
  • the inner rotor 120 is directly connected to the rotating shaft 140, and is rotatably held inside the stator 110.
  • the inner rotor 120 further includes an inner rotor yoke 121 and a permanent magnet 122.
  • the inner rotor yoke 121 is provided with a plurality of permanent magnet insertion holes 124, into which permanent magnets 122 are inserted and bonded and fixed.
  • the outer rotor 130 is similarly directly connected to the rotating shaft 140 and is rotatably held outside the stator 110.
  • the outer rotor 130 further includes a rotor yoke 131 and a permanent magnet 132.
  • the outer rotor yoke 131 is provided with a plurality of permanent magnet insertion holes 134, into which the permanent magnets 132 are inserted and bonded and fixed.
  • the rotor has a twin rotor configuration, thereby increasing the output torque.
  • the cogging torque increases and the vibration and noise increase.
  • Patent Document 1 Japanese Patent Application JP 2001-37133
  • the motor of the present invention has the following configuration.
  • a stator core having an inner slot formed between the inner teeth and an outer slot formed between the outer teeth is included.
  • the stator includes a plurality of coils wound around a stator yoke between the inner slot and the outer slot and connected in a three-phase star or delta shape.
  • the inner rotor has an inner rotor yoke having a plurality of inner permanent magnet insertion holes and a plurality of inner permanent magnets embedded in the inner permanent magnet insertion holes, and the outer rotor has a plurality of outer permanent magnet insertions.
  • An outer rotor yoke having a hole and a plurality of outer permanent magnets embedded in the outer permanent magnet insertion hole.
  • Magnetic pole center line force The point that intersects the outer shape of the inner rotor yoke is the end point XI, and the point that intersects the inner shape of the outer rotor yoke is the end point X2.
  • the point where the magnetic flux boundary line intersects the outer shape of the inner rotor yoke is the end point Zl, and the point where it intersects the inner shape of the outer rotor yoke is the end point Z2.
  • the point at which the straight line passing through the center of rotation with a predetermined angle ⁇ 1 from the magnetic pole center line intersects the outer rotor yoke outline is the end point A1, and the predetermined angle from the magnetic pole center line to the magnetic pole boundary line A point where a straight line having ⁇ 2 and passing through the center of rotation intersects the inner shape of the outer rotor yoke is defined as an end point A2.
  • the cross-sectional shape of the inner rotor yoke is formed by connecting at least two continuous straight lines between the end point Al and the end point Zl, and the cross-sectional shape of the outer rotor yoke is at least between the end point A2 and the end point Z2. Connected by two continuous straight lines.
  • FIG. 1 is a cross-sectional view of a motor in an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view showing an inner rotor of the motor in the embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view showing an outer rotor of a motor in an embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between motor arc angles 0 1 and ⁇ 2 and cogging torque in the embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between motor slot open angles ⁇ 1, ⁇ 2 and cogging torque in the embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the motor slot open angles ⁇ 1, ⁇ 2 and the cogging torque phase in the embodiment of the present invention.
  • FIG. 7 is a graph showing a relationship between motor slot open angles ⁇ 1 and ⁇ 2 and cogging torque in the embodiment of the present invention.
  • FIG. 8B is a cross-sectional view showing another embodiment of the permanent magnet insertion hole of the motor in the embodiment of the present invention.
  • FIG. 8B is a cross-sectional view showing another embodiment of the permanent magnet insertion hole of the motor in the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a conventional motor.
  • FIG. 1 is a sectional view of a motor according to an embodiment of the present invention.
  • the motor according to the present embodiment includes a stator 10, an inner rotor 20 that faces the inner diameter side of the stator 10, and an outer rotor 30 that faces the outer diameter side.
  • the stator core 11 constituting the stator 10 includes a substantially annular stator yoke 14, an outer tooth 12 in which the force of the stator yoke 14 also projects in the outer circumferential direction, and the same number of outer teeth 12 projecting from the stator yoke 14 in the inner circumferential direction. It consists of 13 inner teeth. Between each outer tooth 12, there is an outer slot 16 force. Between each inner tooth 13, there is an inner slot 17 force.
  • a plurality of coils 15 connected in a three-phase star or delta shape and wound around the stator yoke 14 between the outer slot 16 and the inner slot 17 in a concentrated winding system.
  • the coil 15 is accommodated in all slots.
  • An outer rotor 30 is disposed facing the outer teeth 12 via a predetermined air gap.
  • the inner rotor 20 is disposed facing the inner teeth 13 via a predetermined air gap.
  • the outer rotor 30 has an outer permanent magnet insertion hole 34 in an outer rotor yoke 31 on which electromagnetic steel plates are laminated, and the outer permanent magnet 32 is accommodated therein to form an outer magnetic pole portion.
  • the inner rotor 20 has an inner permanent magnet insertion hole 24 in an inner rotor yoke 21 on which electromagnetic steel plates are laminated, and the inner permanent magnet 22 is housed therein to form an inner magnetic pole portion.
  • the outer magnetic pole portion is configured by accommodating the outer permanent magnet 32 in each of the plurality of outer permanent magnet insertion holes 34 of the outer rotor yoke 31.
  • the inner magnetic pole portion has an inner permanent magnet in each of the plurality of inner permanent magnet insertion holes 24 of the inner rotor yoke 21.
  • a magnet 22 is housed.
  • the straight line connecting the center of the inner permanent magnet 22 and the center of the outer permanent magnet 32 is extended, it is configured to pass through the rotation center 41, and this straight line is defined as the magnetic pole center line 27.
  • the rotation center 41 is passed.
  • This straight line is defined as a magnetic flux boundary line 28. That is, the inner permanent magnet 22 and the outer permanent magnet 32 are arranged in the same phase.
  • the outer rotor 30 is coupled to an outer rotor frame (not shown) by means such as press-fitting, shrink fitting, or adhesion.
  • the inner rotor 20 is coupled to an inner rotor frame (not shown) by means such as press fitting, shrink fitting, or adhesion.
  • the inner rotor frame and the outer rotor frame are configured to be detachable. However, normally, the inner rotor frame and the outer rotor frame are connected to the rotating shaft 40 and rotate together by applying a predetermined current to the coil 15.
  • the outer rotor 30 and the inner rotor 20 are provided with permanent magnet insertion holes 34 and 24, respectively, in which the outer permanent magnet 32 and the inner permanent magnet 22 are accommodated.
  • the number of outer permanent magnet insertion holes 34 and the number of inner permanent magnet insertion holes 24 is the same, both of which have a trapezoidal cross section, and the rotor yoke between adjacent permanent magnet insertion holes is set to have a uniform thickness. ing.
  • the circumferential length of the outer permanent magnet insertion hole 34 is the same as the radial length longer than the inner permanent magnet insertion hole 24.
  • the outer permanent magnet 32 is inserted into the outer permanent magnet insertion hole 34, and the inner permanent magnet 22 is inserted into the inner permanent magnet insertion hole 24, both of which are bonded and fixed.
  • the shapes of the permanent magnets are all rectangular in cross section, and the circumferential length is the same in the radial direction in which the outer permanent magnet 32 is longer than the inner permanent magnet 22.
  • the inner permanent magnet insertion hole 24 and the outer permanent magnet insertion hole 34 are both configured to have a gap at both ends in the circumferential direction when the permanent magnet is inserted. This is to prevent a short circuit of magnetic flux between adjacent permanent magnets.
  • both the outer permanent magnet 32 and the inner permanent magnet 22 have N poles and S poles arranged alternately. Torque is generated in the outer rotor 30 by the current flowing in the coil of the outer slot 16, and torque is generated in the inner rotor 20 by the current flowing in the coil of the inner slot 17. A large torque can be obtained with the same current.
  • a permanent magnet embedded structure adds reluctance torque, a small, large torque, high efficiency motor can be realized.
  • the coil 15 ⁇ winding structure improves the winding space factor in each slot and reduces the coil end, which can contribute to further improvement in efficiency.
  • the outer permanent magnet 32 and the inner permanent magnet 22 are both formed into a rectangular shape, so that the machining cost of the magnet is reduced unlike a generally employed arc-shaped magnet. It can be greatly reduced. Thereby, in addition to small size, large torque and high efficiency, low cost can be realized.
  • FIG. 2 is a partial cross-sectional view showing a main part of the inner rotor 20 of the present embodiment.
  • a point where a magnetic pole center line 27 connecting the center of the inner permanent magnet 22 with the center of rotation 41 intersects the outer shape of the inner rotor yoke 21 is defined as an end point XI.
  • the end point Z1 is a point where a magnetic flux boundary line 28 connecting the intermediate point between the inner permanent magnet 22 and the adjacent inner permanent magnet 22 from the rotation center 41 intersects the outer shape of the inner rotor yoke 21.
  • the electrical angle from the magnetic pole center line 27 to the magnetic flux boundary line 28 is 90 °.
  • This end point Z1 is defined as follows.
  • the shortest distance between the end of the inner permanent magnet insertion hole 24 and the outer straight line B1-Z1 (described later) of the inner rotor yoke 21 is L1, and the thickness of one of the high-permeability thin iron plates constituting the inner rotor yoke 21 Where d is dZ2, L1, and 2d. If the shortest distance L1 to the outer shape is dZ2 or less, pressing becomes difficult and the strength of the inner rotor 21 is greatly reduced. In addition, when the shortest distance L1 to the outer shape is 2d or more, the output torque is greatly reduced because the magnetic flux linked to the coil decreases.
  • the above range is optimal for the value of the shortest distance L1 from the outer shape.
  • the end portion of the inner permanent magnet insertion hole 24 for determining the shortest distance L1 from the outer shape is the portion closest to the outer shape of the inner permanent magnet insertion hole 24 as shown in the figure.
  • a point that has a predetermined angle ⁇ 1 from the magnetic pole center line 27 in the direction of the magnetic flux boundary line 28 and that passes through the rotation center 41 and the outer shape of the inner rotor yoke 21 is an end point A1, and the end point XI and the end point Connect A1 with a circular arc (first circular arc) centered on the rotation center 41.
  • This predetermined angle 0 1 is The electrical angle is in the range of 15 ° ⁇ 1 ⁇ 75 °. More preferably, the range is 15 ° and ⁇ 1 ⁇ 60 °.
  • the end point A1 and the end point Z1 are connected by two continuous straight lines. That is, they are connected by a straight line Al-B1 and a straight line Bl-Z1.
  • the end point B1 has an angle ⁇ lb with respect to the magnetic pole center line 27.
  • the outer shape of the inner rotor yoke 21 must be connected by an arc from the end point XI where the magnetic pole center line 27 intersects to the end point A1, and connected by two straight lines from the end point A1 to the end point Bl and the end point Z1. become.
  • the two straight lines that continue from the end point A1 to the end point Bl and the end point Z1 are located inside the circle that extends from the end point X1 to the end point A1 with the same curvature.
  • the end point B1 has a convex shape (180 °).
  • the distance Lbl to the end point B1 and the distance Lzl to the end point B1 are LbKLzl, which is the circle (indicated by the broken line) obtained by extending the arc XI-A1 with the same curvature.
  • the gap from the inner peripheral surface of the inner tooth 13 of the stator core 11 increases as the distance from the magnetic pole center line 27 increases.
  • FIG. 3 is a partial cross-sectional view showing the main part of the outer rotor 30 of the present embodiment.
  • a point where a magnetic pole center line 27 connecting the center of the outer permanent magnet 32 with the center of rotation 41 intersects the inner shape of the outer rotor yoke 31 is defined as an end point X2.
  • the end point Z2 is a point where a magnetic flux boundary line 28 connecting the intermediate point between the outer permanent magnet 32 and the adjacent outer permanent magnet 32 from the rotation center 41 intersects the inner shape of the outer rotor yoke 31.
  • the electrical angle from the magnetic pole center line 27 to the magnetic flux boundary line 28 is 90 °.
  • This end point Z2 is defined as follows.
  • the shortest distance between the end of the outer permanent magnet insertion hole 34 and the inner straight line B2—Z2 (described later) of the outer rotor yoke 31 is L2, and the thickness of one of the high-permeability thin iron plates constituting the outer rotor yoke 31 EZ2 ⁇ L2 ⁇ 2e where e is the size. If the shortest distance L2 from the inner shape is eZ2 or less, pressing becomes difficult and the strength of the outer rotor 21 is greatly reduced. In addition, when the shortest distance L2 from the inner shape is 2e or more, the output torque is greatly reduced because the magnetic flux linked to the coil decreases.
  • the above range is optimal for the value of the shortest distance L2 from the inner shape.
  • the end of the permanent magnet insertion hole 34 for determining the shortest distance L2 from the inner shape is as shown in the figure. This is the portion closest to the inner shape of the outer permanent magnet insertion hole 34.
  • a point that has a predetermined angle ⁇ 2 from the magnetic pole center line 27 in the direction of the magnetic flux boundary line 28 and passes through the rotation center 41 and the inner shape of the outer rotor yoke 31 is defined as an end point A2, and an end point X2
  • the end point A2 is connected by an arc (second arc) centered on the rotation center 41.
  • the predetermined angle 0 2 is in the range of 15 ° ⁇ 2 and 75 ° in electrical angle. More preferably, it is in the range of 15 ° ⁇ 2 and 60 °.
  • the end point A2 and the end point Z2 are connected by two continuous straight lines. That is, they are connected by a straight line A2-B2 and a straight line B2-Z2.
  • the end point B2 has an angle ⁇ 2b with the magnetic pole center line 27.
  • the inner shape of the outer rotor yoke 31 is connected by an arc from the end point X2 where the magnetic pole center line 27 intersects to the end point A2, and is connected by two straight lines from the end point A2 to the end points B2 and Z2. It will be.
  • the two straight lines from the end point A2 to the end point B2 and the end point Z2 are located outside the circle obtained by extending the arc from the end point X2 to the end point A2 with the same curvature.
  • the shape of the end point B2 is a convex shape ( ⁇ 180 °).
  • the distance Lb2 from the circle (shown by a broken line) obtained by extending the above-mentioned arc X2-A2 with the same curvature to the end point B2 and the distance Lz2 to the end point Z2 is Lb2 ⁇ Lz2. That is, as the distance from the magnetic pole center line 27 increases, the gap between the outer core 12 of the outer teeth 12 of the stator core 11 increases.
  • FIG. 4 shows the relationship between the angle ⁇ 1 (electrical angle) from the end point XI to the end point A1 in the inner rotor 20 and the cogging torque, and the angle ⁇ 2 (from the end point X2 to the end point A2 in the outer rotor 30).
  • It is a graph which shows the relationship between an electrical angle) and a cogging torque.
  • a broken line indicates a case where only the inner rotor 20 exists, and a solid line indicates a case where only the outer rotor 30 exists.
  • FIG. 5 shows the relationship between the slot open angle ex 1 (electrical angle) of the inner rotor 20 and the cogging torque, and the relationship between the slot open angle ex 2 (electrical angle) of the outer rotor 30 and the cogging torque. It is a graph. A broken line indicates a case where only the inner rotor 20 is present, and a solid line indicates a case where only the outer rotor 30 is present.
  • the slot open is the distance between adjacent teeth in the maximum width portion of the teeth, and the angles a 1 and ⁇ 2 are as shown in FIG.
  • FIG. 6 shows the relationship between the slot open angles ⁇ 1 and ⁇ 2 and the phase of the cogging torque.
  • FIG. 7 shows the cogging torque waveform at this time.
  • the thin broken line indicates the relationship between the slot open angle ⁇ 1 of the inner rotor 20 and the cogging torque when only the inner rotor 20 is present, and the thin solid line indicates the outer rotor 30 when only the outer rotor 30 is present.
  • the relationship between the slot open angle ⁇ 2 and the cogging torque is shown below.
  • the thick solid line shows the cogging torque of the motor as a whole by combining the cogging torque of the inner rotor 20 and the outer rotor 30.
  • the inner magnet insertion hole 24 and the outer magnet insertion hole 34 have been described as trapezoidal shapes, but are not limited thereto.
  • Figures 8 and 8 show examples different from trapezoidal shapes.
  • the magnet insertion hole 45a both the inner magnet insertion hole and the outer magnet insertion hole
  • the magnet insertion hole 45b both the inner magnet insertion hole and the outer magnet insertion hole
  • This shape facilitates the positioning of the permanent magnets 46a and 46b, and the protrusions 47a, 47b and 48b function as an adhesive reservoir, and at the same time, prevent a magnetic flux short circuit with the adjacent permanent magnet.
  • the protrusions 48b in FIG. 8B can also be provided on the outer peripheral side of both ends in the circumferential direction.
  • the inner rotor 20 has a stacked thickness (length in the axial direction) and an outer rotor 30 (thickness in the axial direction) are basically the same, but different products. It is good also as thickness.
  • the inner rotor 20 may have a larger thickness than the outer rotor 30. Is possible.
  • the inner rotor 20 has two portions between the end point A1 and the end point Z1.
  • the force which is connected by the straight line, and is composed of the straight line Al—B1 and the straight line Bl—Z1 The present invention is not limited to the two continuous straight lines and may be increased.
  • an end point C1 may be further provided between the end point B1 and the end point Z1, and the straight line Al—B1, straight line Bl—Cl, and straight line CI—Z1 may be connected by three continuous straight lines.
  • the outer rotor 30 connects the end point A2 and the end point Z2 with two continuous straight lines, and is composed of a straight line A2—B2 and a straight line B2—Z2. It is not limited to a straight line, and it may be increased.
  • an end point C2 may be further provided between the end point B2 and the end point Z2, and the straight line A2-B2, the straight line B2-C2, and the straight line C2-Z2 may be connected by three continuous straight lines.
  • the inner rotor 20 and the outer rotor 30 are described as having the same number of straight lines, but the number is not limited to the same.
  • the inner rotor 20 may have a number of straight lines
  • the outer rotor 30 may have a different number of straight lines in the inner and outer rotors, such as three or four.
  • the motor of the present invention can improve the rigidity of the stator and reduce vibration and noise by resin molding the stator 10.
  • the force described that the inner rotor frame and the outer rotor frame are connected to the rotating shaft 40 is good also as a structure which oil-molds and connects both rotors.
  • the inner magnet 22 is fixed to the inner magnet insertion hole 24 and the outer magnet 32 is fixed to the outer magnet insertion hole 34.
  • no adhesive is used. It is good also as a structure.
  • the inner rotor yoke 21, the inner magnet 22, the outer rotor yoke 31, and the outer magnet 32 may be integrally molded together, and the inner rotor 20 and the outer rotor 30 may be fixed to each other. As a result, the bonding process can be omitted, and man-hours can be reduced.
  • the motor according to the present embodiment reduces the cogging torque and torque ripple without reducing the output torque, reduces the harmonic content of the induced voltage, and suppresses vibration and noise. Can be provided. Industrial applicability
  • the present invention is useful for motors that are small in size and limited in space, and that require high output, high efficiency, low vibration, low noise, and low cost, such as home appliances and electrical components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 本モータは、環状のステータヨークと、このステータヨークから内外に向かって突出した複数の内外ティースとを有するステータコアと、ステータコアに巻回された複数のコイルとを備えたステータと、内外ティースに空隙を介して対向し永久磁石が埋め込まれた内側ロータと外側ロータとを含む。これら外側ロータと内側ロータとの断面形状は、磁極中心線より磁束境界線の方向に、円弧とそれに続く少なくとも2つの連続した直線で結ばれる。

Description

明 細 書
モータ
技術分野
[0001] 本発明は、ツインロータを搭載する永久磁石埋め込み型ブラシレスモータに関し、 特にロータの構成に関するものである。
背景技術
[0002] 図 9は、従来のツインロータを有するトロイダル方式のブラシレスモータであり、ステ ータ 110と内側ロータ 120と外側ロータ 130から構成されている。
[0003] ステータ 110は、ステータコア 111とコイル 115よりなる。ステータコア 111は、ステ ータヨーク 114と、このステータヨーク 114に設けられた外側ティース 112と内側ティ ース 113と力らなり、外側ティース 112の間には外側スロット 116が、内側ティース 11
3の間には内側スロット 117が、それぞれ構成されている。
[0004] ステータヨーク 114にはトロイダル方式の複数の 3相コイル 115が施されている。こ のコイル 115は集中卷線方式でステータヨーク 114に卷回され、外側スロット 116と内 側スロット 117〖こ収納され、スターまたはデルタ結線される。
[0005] 内側ロータ 120は回転軸 140に直結され、ステータ 110の内側に回転自在に保持 される。内側ロータ 120は、更に内側ロータヨーク 121と永久磁石 122とを有する。内 側ロータヨーク 121は、複数の永久磁石挿入孔 124が設けられており、そこに永久磁 石 122が挿入、接着固定されている。
[0006] また、外側ロータ 130は、同様に回転軸 140に直結され、ステータ 110の外側に回 転自在に保持される。外側ロータ 130は、更にロータヨーク 131と永久磁石 132とを 有する。外側ロータヨーク 131は、複数の永久磁石挿入孔 134が設けられており、そ こに永久磁石 132が挿入、接着固定されている。
[0007] 内側ロータ 120および外側ロータ 130は、コイル 115に流れる電流による磁界によ つて回転する。このようなトロイダル方式のブラシレスモータの構成は、例えば特許文 献 1に開示されている。
[0008] この従来のモータによれば、ロータをツインロータ構成とすることで、出力トルクを大 きくすることができるが、コギングトルクが増加し、振動 '騒音が増加するという課題が ある。
特許文献 1:日本特許出願特開 2001— 37133号公報
発明の開示
[0009] 本発明のモータは次の構成を有する。環状のステータヨークと、このステータヨーク 力 径方向内側に向かって突出した複数の内側ティースと、この内側ティースと同数 でステータヨーク力ゝら径方向外側に向かって突出した複数の外側ティースを含む。さ らに、内側ティースの間に構成された内側スロットと、外側ティースの間に構成された 外側スロットとを有するステータコアを含む。さらに、内側スロットと外側スロットの間の ステータヨークに卷回され、 3相スターまたはデルタ状に結線された複数のコイルとを 備えたステータを含む。
[0010] 内側ティースに空隙を介して対向した内側ロータと、外側ティースに空隙を介して 対向した外側ロータとを含み、内側ロータと外側ロータは、同一回転軸に接続される
[0011] 内側ロータは、複数の内側永久磁石挿入孔を有する内側ロータヨークと、内側永久 磁石挿入孔に埋め込まれた複数の内側永久磁石とを有し、外側ロータは、複数の外 側永久磁石挿入孔を有する外側ロータヨークと、外側永久磁石挿入孔に埋め込まれ た複数の外側永久磁石とを有する。
[0012] 回転軸の回転中心と内側ロータの磁極中心と外側ロータの磁極中心を結ぶ磁極中 心線、及び回転軸の回転中心と内側ロータの磁束境界と外側ロータの磁束境界を結 ぶ磁束境界線とは、共に直線である。
[0013] 磁極中心線力 内側ロータヨークの外形と交差する点を端点 XI、外側ロータヨーク の内形と交差する点を端点 X2とする。磁束境界線が、内側ロータヨークの外形と交 差する点を端点 Zl、外側ロータヨークの内形と交差する点を端点 Z2とする。磁極中 心線より磁極境界線の方向に所定角度 Θ 1を有し回転中心を通る直線が内側ロータ ヨークの外形と交差する点を端点 A1とし、磁極中心線より磁極境界線の方向に所定 角度 Θ 2を有し回転中心を通る直線が外側ロータヨークの内形と交差する点を端点 A2とする。 [0014] ここに、内側ロータヨークの断面形状は、端点 Alと端点 Zlとの間が少なくとも 2つ の連続した直線で結ばれ、外側ロータヨークの断面形状は、端点 A2と端点 Z2との間 が少なくとも 2つの連続した直線で結ばれる。
図面の簡単な説明
[0015] [図 1]図 1は本発明の実施の形態におけるモータの断面図である。
[図 2]図 2は本発明の実施の形態におけるモータの内側ロータを示す部分断面図で ある。
[図 3]図 3は本発明の実施の形態におけるモータの外側ロータを示す部分断面図で ある。
[図 4]図 4は本発明の実施の形態におけるモータの円弧角度 0 1、 Θ 2とコギングトル クとの関係を示すグラフである。
[図 5]図 5は本発明の実施の形態におけるモータのスロットオープン角度《1、 α 2と コギングトルクとの関係を示すグラフである。
[図 6]図 6は本発明の実施の形態におけるモータのスロットオープン角度《1、 α 2と コギングトルクの位相との関係を示すグラフである。
[図 7]図 7は本発明の実施の形態におけるモータのスロットオープン角度 α 1、 α 2と コギングトルクとの関係を示すグラフである。
[図 8Α]図 8Αは本発明の実施の形態におけるモータの永久磁石挿入穴の他の形態 を示す断面図である。
[図 8Β]図 8Βは本発明の実施の形態におけるモータの永久磁石挿入穴の他の形態 を示す断面図である。
[図 9]図 9は従来のモータの断面図である。
符号の説明
[0016] 10 ステータ
11 ステータコア
12 外側ティース
13 内側ティース
14 ステータヨーク 16 外側スロット
17 内佃 jスロット
20 内側ロータ
21 内側ロータヨーク
22 内側永久磁石
24 内側永久磁石挿入孔
27 磁極中心線
28 磁束境界線
30 外側ロータ
31 外側ロータヨーク
32 外側永久磁石
34 外側永久磁石挿入孔
40 回転軸
41 回転中心
XI 磁極中心線が内側ロータヨークの外形と交差する端点
X2 磁極中心線が外側ロータヨークの内形と交差する端点
Z1 磁束境界線が内側ロータヨークの外形と交差する端点
Z2 磁束境界線が外側ロータヨークの内形と交差する端点
A1 磁極中心線より磁束境界線の方向に所定角度 0 1をなし回転中心を通る直線 が内側ロータヨークの外形と交差する端点
A2 磁極中心線より磁束境界線の方向に所定角度 Θ 2をなし回転中心を通る直線 が外側ロータヨークの内形と交差する端点
B1 磁極中心線より磁束境界線の方向に所定角度 0 lbをなし回転中心を通る直 線が内側ロータヨークの外形と交差する端点
B1 磁極中心線より磁束境界線の方向に所定角度 Θ 2bをなし回転中心を通る直 線が外側ロータヨークの内形と交差する端点
l 内側ロータのスロットオープン角度 2 外側ロータのスロットオープン角度
L1 内側永久磁石挿入孔の端部と内側ロータヨークの外形との最短距離
L2 外側永久磁石挿入孔の端部と外側ロータヨークの内形との最短距離 d 内側ロータヨークの高透磁率鉄板の 1枚の厚さ
e 外側ロータヨークの高透磁率鉄板の 1枚の厚さ
発明を実施するための最良の形態
[0017] 以下、本発明の実施形態について、図面を用いて説明する。図 1は、本発明の実 施の形態におけるモータの断面図である。本実施の形態のモータは、ステータ 10と、 このステータ 10の内径側に対向する内側ロータ 20と、外径側に対向する外側ロータ 30とで構成される。
[0018] ステータ 10を構成するステータコア 11は、略環状のステータヨーク 14と、このステ ータヨーク 14力も外周方向に突出した外側ティース 12と、外側ティース 12と同数でス テータヨーク 14から内周方向に突出した内側ティース 13とから成る。各々の外側ティ ース 12の間には外側スロット 16力 各々の内側ティース 13の間には内側スロット 17 力 それぞれ構成されている。
[0019] そして、 3相スターもしくはデルタ状に結線されトロイダル卷線形式による複数のコィ ル 15力 外側スロット 16と内側スロット 17の間のステータヨーク 14に集中卷線方式で 卷回されている。なお、このコイル 15は、全スロットに収納されている。
[0020] 外側ティース 12に対向して所定のエアギャップを介して外側ロータ 30が配設され ている。同様に、内側ティース 13に対向して所定のエアギャップを介して内側ロータ 20が配設されている。
[0021] 外側ロータ 30は、電磁鋼板が積層された外側ロータヨーク 31に外側永久磁石挿入 孔 34を有しており、そこに外側永久磁石 32が収納されて外側磁極部を構成して ヽる 。同様に、内側ロータ 20は、電磁鋼板が積層された内側ロータヨーク 21に内側永久 磁石挿入孔 24を有しており、そこに内側永久磁石 22が収納されて内側磁極部を構 成している。言い換えれば、この外側磁極部は、外側ロータヨーク 31の複数の外側 永久磁石挿入孔 34の各々に外側永久磁石 32を収納して構成される。同様に、内側 磁極部は、内側ロータヨーク 21の複数の内側永久磁石挿入孔 24の各々に内側永久 磁石 22を収納して構成される。
[0022] ここで、内側永久磁石 22の中央と外側永久磁石 32の中央とを結ぶ直線を延長す ると回転中心 41を通るように構成されており、この直線を磁極中心線 27と定義する。 また、内側永久磁石 22と隣接内側永久磁石 22との中間点と外側永久磁石 32と隣接 外側永久磁石 32との中間点とを結ぶ直線を延長すると回転中心 41を通るように構 成されており、この直線を磁束境界線 28と定義する。即ち、内側永久磁石 22と外側 永久磁石 32は、同位相で配置されている。
[0023] 外側ロータ 30は、外側ロータフレーム(図示しない)に圧入、焼きばめ、もしくは接 着等の手段で結合されている。同様に、内側ロータ 20は内側ロータフレーム(図示し ない)に圧入、焼きばめ、もしくは接着等の手段で結合されている。そして、内側ロー タフレームと外側ロータフレームは、着脱可能に構成されている。しかし通常はこれら 内側ロータフレームと外側ロータフレームは、回転軸 40に連結されて、コイル 15に所 定の通電を行うことにより、一体に回転する。
[0024] ここで前述の通り、外側ロータ 30と内側ロータ 20は、それぞれ永久磁石揷入孔 34 、 24を備え、そこに外側永久磁石 32,内側永久磁石 22が収納されている。外側永 久磁石挿入孔 34と内側永久磁石挿入孔 24とは同数であり、いずれも断面が台形形 状とし、隣接する永久磁石挿入孔との間のロータヨークは均一厚さになるように設定 されている。そして、周方向の長さは、外側永久磁石挿入孔 34の方が内側永久磁石 挿入孔 24より長ぐ径方向の長さは同一に構成されている。外側永久磁石挿入孔 34 に外側永久磁石 32が挿入され、内側永久磁石挿入孔 24に内側永久磁石 22が挿入 され、いずれも接着固定される。永久磁石の形状は、いずれも断面が長方形であり、 周方向の長さは、外側永久磁石 32の方が内側永久磁石 22より長ぐ径方向の長さ は同一に構成されている。そして、内側永久磁石挿入孔 24と外側永久磁石挿入孔 3 4は、共に、永久磁石が挿入されたとき、周方向両端に空隙部を有するように構成さ れている。これは隣接永久磁石との間の磁束の短絡を防止するためである。
[0025] 永久磁石の着磁極性は、外側永久磁石 32、内側永久磁石 22共に N極、 S極が交 互に配置される。外側スロット 16のコイルに流れる電流で外側ロータ 30にトルクが発 生し、内側スロット 17のコイルに流れる電流で内側ロータ 20にトルクが発生するので 、同一電流で大トルクが得られる。更に、永久磁石埋め込み構造とすることにより、リ ラタタンストルクも付加されるので、小型、大トルク、高効率のモータが実現できる。ま た、コイル 15 ^^中巻き構造とすることにより、各スロットにおける卷線占積率が向上 し、コイルエンド部が小さくできるので、更なる効率の向上に寄与できる。
[0026] 更に、本実施の形態においては、外側永久磁石 32と内側永久磁石 22とを共に長 方形形状とすることで、一般的に採用される円弧形磁石と異なり、磁石の加工コストを 大幅に削減することができる。これにより小型、大トルク、高効率に加えて、低コストィ匕 を実現することができる。
[0027] 次に、図 2は本実施の形態の内側ロータ 20の要部を示す部分断面図である。図 2 において、回転中心 41より内側永久磁石 22の中央を結ぶ磁極中心線 27が内側口 ータヨーク 21の外形と交差する点を端点 XIとする。また、回転中心 41より内側永久 磁石 22と隣接内側永久磁石 22との中間点を結ぶ磁束境界線 28が内側ロータヨーク 21の外形と交差する点を端点 Z1とする。磁極中心線 27より磁束境界線 28までの電 気角は 90° となる。
[0028] この端点 Z1は、次のように定義する。内側永久磁石挿入孔 24の端部と内側ロータ ヨーク 21の外形直線 B1—Z1 (後述する)との最短距離を L1とし、内側ロータヨーク 2 1を構成する高透磁率薄鉄板の 1枚の厚さを dとしたとき、 dZ2く L1く 2dとする。外 形との最短距離 L1を dZ2以下とすると、プレスが困難となり、さら〖こは内側ロータョ ーク 21の強度が大幅に低下する。また、外形との最短距離 L1を 2d以上にした場合 は、コイルに鎖交する磁束が減少するために出力トルクが大幅に低下する。これは、 L1が大きければ大きいほど、内側ロータヨーク 21における隣接永久磁石間の漏れ 磁束の量が増大する。このため、その増大分の磁束カ^テ一タに鎖交しなくなるため である。以上のことから、外形との最短距離 L1の値は上記範囲が最適である。また、 外形との最短距離 L1を決定するための内側永久磁石挿入孔 24の端部は、図示のよ うに内側永久磁石挿入孔 24における外形と最も接近した部分ということになる。
[0029] 次に、磁極中心線 27より磁束境界線 28の方向に所定角度 θ 1を有し回転中心 41 を通る直線と内側ロータヨーク 21の外形と交差する点を端点 A1とし、端点 XIと端点 A1の間を、回転中心 41を中心とする円弧 (第 1の円弧)で結ぶ。この所定角度 0 1は 、電気角で 15° < θ 1 < 75° の範囲である。より好ましくは、 15° く Θ 1 < 60° の 範囲である。
[0030] 次に、端点 A1と端点 Z1との間を 2つの連続した直線で結ぶ。即ち、直線 Al— B1 、直線 Bl— Z1で結んでいる。端点 B1は、磁極中心線 27との角度 Θ lbを有する。以 上のように、内側ロータヨーク 21の外形形状は、磁極中心線 27が交差する端点 XIよ り端点 A1まで円弧で結び、端点 A1より端点 Bl、端点 Z1と連続した 2つの直線で結 ばれることになる。この端点 A1より端点 Bl、端点 Z1と連続した 2つの直線は、端点 X 1より端点 A1までの円弧を同じ曲率で延長した円の内側に位置する。
[0031] このとき、端点 B1の形状は、凸形状(く 180° )である。これにより、前述の円弧 XI —A1を同じ曲率で延長した円(破線で示す)と端点 B1までの距離 Lbl、端点 Z1まで の距離 Lzlは、 LbKLzlとなる。すなわち、磁極中心線 27から離れるほど、ステー タコア 11の内側ティース 13の内周面とのギャップが拡大することになる。
[0032] 次に、図 3は本実施の形態の外側ロータ 30の要部を示す部分断面図である。図 3 において、回転中心 41より外側永久磁石 32の中央を結ぶ磁極中心線 27が外側口 ータヨーク 31の内形と交差する点を端点 X2とする。また、回転中心 41より外側永久 磁石 32と隣接外側永久磁石 32との中間点を結ぶ磁束境界線 28が外側ロータヨーク 31の内形と交差する点を端点 Z2とする。磁極中心線 27より磁束境界線 28までの電 気角は 90° となる。
[0033] この端点 Z2は、次のように定義する。外側永久磁石挿入孔 34の端部と外側ロータ ヨーク 31の内形直線 B2— Z2 (後述する)との最短距離を L2とし、外側ロータヨーク 3 1を構成する高透磁率薄鉄板の 1枚の厚さを eとしたとき、 eZ2<L2< 2eとする。内 形との最短距離 L2を eZ2以下とすると、プレスが困難となり、さら〖こは外側ロータョ ーク 21の強度が大幅に低下する。また、内形との最短距離 L2を 2e以上にした場合 は、コイルに鎖交する磁束が減少するために出力トルクが大幅に低下する。これは、 L2が大きければ大きいほど、外側ロータヨーク 31における隣接永久磁石間の漏れ 磁束の量が増大する。このため、その増大分の磁束カ^テ一タに鎖交しなくなるため である。以上のことから、内形との最短距離 L2の値は上記範囲が最適である。また、 内形との最短距離 L2を決定するための永久磁石挿入孔 34の端部は、図示のように 外側永久磁石挿入孔 34の内形と最も接近した部分ということになる。
[0034] 次に、磁極中心線 27より磁束境界線 28の方向に所定角度 Θ 2を有し回転中心 41 を通る直線と外側ロータヨーク 31の内形と交差する点を端点 A2とし、端点 X2と端点 A2の間を、回転中心 41を中心とする円弧 (第 2の円弧)で結ぶ。この所定角度 0 2は 、電気角で 15° < Θ 2く 75° の範囲である。より好ましくは、 15° < Θ 2く 60° の 範囲である。
[0035] 次に、端点 A2と端点 Z2との間を 2つの連続した直線で結ぶ。即ち、直線 A2— B2 、直線 B2— Z2で結んでいる。端点 B2は、磁極中心線 27との角度 Θ 2bを有する。以 上のように、外側ロータヨーク 31の内形形状は、磁極中心線 27が交差する端点 X2よ り端点 A2まで円弧で結び、端点 A2より端点 B2、端点 Z2と連続した 2つの直線で結 ばれることになる。この端点 A2より端点 B2、端点 Z2と連続した 2つの直線は、端点 X 2より端点 A2までの円弧を同じ曲率で延長した円の外側に位置する。
[0036] このとき、端点 B2の形状は、凸形状(く 180° )である。これにより、前述の円弧 X2 —A2を同じ曲率で延長した円(破線で示す)と端点 B2までの距離 Lb2、端点 Z2まで の距離 Lz2は、 Lb2< Lz2となる。すなわち、磁極中心線 27から離れるほど、ステー タコア 11の外側ティース 12の外周面とのギャップが拡大することになる。
[0037] 次に、図 4は、内側ロータ 20における端点 XIから端点 A1までの角度 θ 1 (電気角) とコギングトルクの関係、及び外側ロータ 30における端点 X2から端点 A2までの角度 Θ 2 (電気角)とコギングトルクの関係を示すグラフである。破線は、内側ロータ 20の みが存在すると仮定した場合、実線は、外側ロータ 30のみが存在すると仮定した場 合をそれぞれ示している。
[0038] 次に、図 5は、内側ロータ 20のスロットオープン角度 ex 1 (電気角)とコギングトルク の関係、及び外側ロータ 30のスロットオープン角度 ex 2 (電気角)とコギングトルクの 関係を示すグラフである。破線は、内側ロータ 20のみが存在すると仮定した場合、実 線は、外側ロータ 30のみが存在すると仮定した場合をそれぞれ示している。なお、ス ロットオープンとは、ティースの最大幅部における隣接ティースとの間隔であり、その 角度 a l、 α 2は、図 1に示す通りである。
[0039] 次に、図 6は、スロットオープン角度 α 1、 α 2とコギングトルクの位相との関係を示 す。内側ロータ 20のスロットオープン角度 α 1、外側ロータ 30のスロットオープン角度 α 2共に、電気角 10° 及び 15° のポイントでコギングトルクの位相が反転しているこ とが確認できる。
[0040] 図 4に示したロータ形状の変化と、図 5に示したスロットオープンの変化に伴うコギン グトルクの値を調整することによって、内側コギングトルクと外側コギングトルクの位相 を反転し、なおかつ内外コギングトルクの値を同一とすることで、コギングトルクを大幅 に低減することができる。図 7に、このときのコギングトルク波形を示す。細い破線は、 内側ロータ 20のみが存在すると仮定した場合の内側ロータ 20のスロットオープン角 度 α 1とコギングトルクの関係、細い実線は、外側ロータ 30のみが存在すると仮定し た場合の外側ロータ 30のスロットオープン角度 α 2とコギングトルクの関係をそれぞ れ示す。太い実線は、これら内側ロータ 20と外側ロータ 30のコギングトルクが合成さ れ、モータ全体としてのコギングトルクを示す。本発明を適用することによって、モー タ全体のコギングトルクを大幅に低減できる効果が確認できる。
[0041] 次に、内側磁石挿入穴 24及び外側磁石挿入穴 34は、台形形状にて説明したが、 これに限るものではない。図 8Α、図 8Βに、台形形状と異なる例を示す。図 8Αにおい ては、磁石挿入穴 45a (内側磁石挿入穴、外側磁石挿入穴共に)は、周方向両端に 突起部 47aを備え、永久磁石 46aが挿入されている。図 8Bにおいては、磁石挿入穴 45b (内側磁石挿入穴、外側磁石挿入穴共に)は、周方向両端に突起部 47bと周方 向両端部の内周側に突起部 48bとを備え、永久磁石 46aが挿入されている。この形 状により永久磁石 46a、 46bの位置決め容易化を図ると共に、突起部 47a、 47b、 48 bは、接着剤溜まりとして機能し、同時に隣接永久磁石との磁束短絡を防止する。な お、図 8Bにおける突起部 48bは、周方向両端部の外周側に設けることもできる。
[0042] 本実施の形態においては、内側ロータ 20の積厚(軸方向の長さ)と外側ロータ 30 の積厚 (軸方向の長さ)は、基本的には同一であるが、異なる積厚としてもよい。例え ば、内側ロータ 20と外側ロータ 30のコギングトルクを合成して、モータ全体のコギン グトルクを低減するために、例えば内側ロータ 20の積厚を外側ロータ 30の積厚より 大きくする等の構成も可能である。
[0043] なお、本実施の形態においては、内側ロータ 20は、端点 A1と端点 Z1との間を 2つ の連続した直線で結び、直線 Al— Bl、直線 Bl— Z1とで構成している力 本発明は 2つの連続した直線に限定されずもっと増やしてもよい。例えば、端点 B1と端点 Z1と の間に更に端点 C1を設け、直線 Al— Bl、直線 Bl— Cl、直線 CI— Z1と 3つの連 続した直線で結ぶ構成としてもよい。更に、 4つ、 5つと直線の数を増やす構成も可能 である。
[0044] 同様に、外側ロータ 30は、端点 A2と端点 Z2との間を 2つの連続した直線で結び、 直線 A2— B2、直線 B2— Z2とで構成している力 本発明は 2つの連続した直線に限 定されずもっと増やしてもよい。例えば、端点 B2と端点 Z2との間に更に端点 C2を設 け、直線 A2— B2、直線 B2— C2、直線 C2—Z2と 3つの連続した直線で結ぶ構成と してもよい。更に、 4つ、 5つと直線の数を増やす構成も可能である。
[0045] また本実施の形態においては、内側ロータ 20と外側ロータ 30とは、直線の数は同 数として説明したが、同数に限定されるものではない。例えば、内側ロータ 20は直線 の数を 2に、外側ロータ 30は直線の数を 3あるいは 4の如ぐ内外ロータにおける直線 の数を異なる数とする構成も可能である。
[0046] また本発明のモータは、ステータ 10を榭脂モールドすることによってステータの剛 性向上と振動 '騒音の低減を図ることができる。
[0047] また本実施の形態においては、内側ロータフレームと外側ロータフレームが回転軸 40に連結されると説明した力 これらロータフレームを使わず、内側ロータ 20と外側 ロータ 30とを一体的に榭脂モールドして、両ロータを連結する構造としてもよい。
[0048] また本実施の形態においては、内側磁石 22は内側磁石挿入穴 24に、外側磁石 3 2は外側磁石挿入穴 34に、それぞれ接着固定されると説明したが、接着剤を使わな い構成としてもよい。即ち、内側ロータヨーク 21と内側磁石 22と外側ロータヨーク 31と 外側磁石 32とを一体的に榭脂モールドし、内側ロータ 20と外側ロータ 30を相互に固 定する構成としてもよい。これにより接着工程を省略し、工数の低減を図ることができ る。
[0049] 以上の通り本実施の形態におけるモータは、出力トルクを低減することなぐコギン グトルクやトルクリップルを低減するとともに、誘起電圧の高調波含有率を低減し、振 動と騒音を抑制したモータを提供することができる。 産業上の利用可能性
本発明は、家電製品ゃ電装品など、小型でスペースに制限があり、かつ高出力で 高効率、低振動'低騒音、低コストが求められるモータに有用である。

Claims

請求の範囲
環状のステータヨークと、前記ステータヨークカも径方向内側に向力つて突出した複 数の内側ティースと、前記内側ティースと同数で前記ステータヨーク力 径方向外側 に向カゝつて突出した複数の外側ティースと、前記内側ティースの間に構成された内 側スロットと、前記外側ティースの間に構成された外側スロットとを有するステータコア と、前記内側スロットと前記外側スロットの間の前記ステータヨークに卷回され、 3相ス ターまたはデルタ状に結線された複数のコイルとを備えたステータと、
前記内側ティースに空隙を介して対向した内側ロータと、前記外側ティースに空隙を 介して対向した外側ロータとを含み、前記内側ロータと前記外側ロータは、同一回転 軸に接続され、
前記内側ロータは、複数の内側永久磁石挿入孔を有する内側ロータヨークと、前記 内側永久磁石挿入孔に埋め込まれた複数の内側永久磁石とを有し、
前記外側ロータは、複数の外側永久磁石挿入孔を有する外側ロータヨークと、前記 外側永久磁石挿入孔に埋め込まれた複数の外側永久磁石とを有し、
前記回転軸の回転中心と前記内側ロータの磁極中心と前記外側ロータの磁極中心 を結ぶ磁極中心線、及び前記回転軸の回転中心と前記内側ロータの磁束境界と前 記外側ロータの磁束境界を結ぶ磁束境界線とは、共に直線であり、
前記磁極中心線が、前記内側ロータヨークの外形と交差する点を端点 XI、前記外側 ロータヨークの内形と交差する点を端点 X2とし、
前記磁束境界線が、前記内側ロータヨークの外形と交差する点を端点 Zl、前記外側 ロータヨークの内形と交差する点を端点 Z2とし、
前記磁極中心線より前記磁極境界線の方向に所定角度 Θ 1を有し前記回転中心を 通る直線が前記内側ロータヨークの外形と交差する点を端点 A1とし、
前記磁極中心線より前記磁極境界線の方向に所定角度 Θ 2を有し前記回転中心を 通る直線が前記外側ロータヨークの内形と交差する点を端点 A2としたとき、 前記内側ロータヨークの断面形状は、前記端点 A1と前記端点 Z1との間が少なくとも
2つの連続した直線で結ばれ、前記外側ロータヨークの断面形状は、前記端点 A2と 前記端点 Z2との間が少なくとも 2つの連続した直線で結ばれるモータ。
[2] 前記内側ロータヨークの断面形状は、前記端点 XIと前記端点 A1の間が前記回転 中心を中心とする第 1の円弧であり、前記端点 A1と前記端点 Z1との間の前記少なく とも 2つの連続した直線は、前記第 1の円弧を同じ曲率で延長した円の内側に位置 する請求項 1記載のモータ。
[3] 前記外側ロータヨークの断面形状は、前記端点 X2と前記端点 A2の間が前記回転 中心を中心とする第 2の円弧であり、前記端点 A2と前記端点 Z2との間の前記少なく とも 2つの連続した直線は、前記第 2の円弧を同じ曲率で延長した円の外側に位置 する請求項 1記載のモータ。
[4] 前記所定角度 0 1及び前記所定角度 0 2は、共に、電気角で 15° < 0 a< 75° の 範囲にある請求項 1記載のモータ。
[5] 前記端点 A1と前記端点 Z1との間を結ぶ少なくとも 2つの連続した直線の交点、及び 前記端点 A2と前記端点 Z2との間を結ぶ少なくとも 2つの連続した直線の交点は、共 に凸形状である請求項 1記載のモータ。
[6] 前記内側永久磁石挿入孔の端部と前記内側ロータヨークの外形との最短距離を L1 とし、前記内側ロータヨークを構成する高透磁率薄鉄板の 1枚の厚さを dとしたとき、 d
Z2く L1く 2dである請求項 1記載のモータ。
[7] 前記外側永久磁石挿入孔の端部と前記外側ロータヨークの内形との最短距離を L2 とし、前記外側ロータヨークを構成する高透磁率薄鉄板の 1枚の厚さを eとしたとき、 e
Z2<L2く 2eである請求項 1記載のモータ。
[8] 前記内側永久磁石挿入孔と前記外側永久磁石挿入孔は、共に、周方向両端に空隙 部を有する請求項 1記載のモータ。
[9] 前記内側スロットの開口部である内側スロットオープンの大きさと前記外側スロットの 開口部である外側スロットオープンの大きさとを調節することによって、
前記内側ロータによるコギングトルクと前記外側ロータによるコギングトルクとを逆位 相とする請求項 1記載のモータ。
[10] 前記内側ロータによるコギングトルクと前記外側ロータによるコギングトルクとは打ち 消される請求項 9記載のモータ。
PCT/JP2007/058132 2006-04-17 2007-04-13 モータ WO2007123057A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800039599A CN101375485B (zh) 2006-04-17 2007-04-13 电动机
JP2008512091A JP5067365B2 (ja) 2006-04-17 2007-04-13 モータ

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006113165 2006-04-17
JP2006-113165 2006-04-17
JP2006113164 2006-04-17
JP2006-113164 2006-04-17
JP2006114178 2006-04-18
JP2006-114178 2006-04-18

Publications (1)

Publication Number Publication Date
WO2007123057A1 true WO2007123057A1 (ja) 2007-11-01

Family

ID=38624958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058132 WO2007123057A1 (ja) 2006-04-17 2007-04-13 モータ

Country Status (3)

Country Link
JP (1) JP5067365B2 (ja)
CN (1) CN101375485B (ja)
WO (1) WO2007123057A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044231A1 (ja) * 2008-10-15 2010-04-22 パナソニック株式会社 デュアルロータモータ
EP2378633A1 (en) * 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Electrical machine and permanent-magnet
WO2013001557A1 (ja) * 2011-06-27 2013-01-03 株式会社 日立製作所 磁気歯車型回転電機
WO2015196604A1 (zh) * 2014-06-24 2015-12-30 中山大洋电机股份有限公司 一种电机转子及应用该电机转子的塑封电机
WO2018225293A1 (ja) * 2017-06-07 2018-12-13 日立ジョンソンコントロールズ空調株式会社 永久磁石式回転電機及びそれを用いた圧縮機
JP2020102911A (ja) * 2018-12-20 2020-07-02 サンデンホールディングス株式会社 電動圧縮機用モータ、それを備えた電動圧縮機、及び、電動圧縮機用モータの製造方法
EP3832850A1 (en) * 2019-12-05 2021-06-09 Whirlpool Corporation Direct drive electric motor having stator and magnet configurations for improved torque capability
WO2021229954A1 (ja) * 2020-05-15 2021-11-18 パナソニックIpマネジメント株式会社 回転子及び電動機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314068A (ja) * 2000-05-01 2001-11-09 Denso Corp 2ロータ型同期機
JP2005027422A (ja) * 2003-07-02 2005-01-27 Hitachi Ltd 永久磁石式回転電機及びそれを用いた電動圧縮機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359953A (ja) * 2001-05-31 2002-12-13 Denso Corp 車両用同期機
CN1280972C (zh) * 2003-10-17 2006-10-18 财团法人工业技术研究院 内置永久磁铁式电动机转子部件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314068A (ja) * 2000-05-01 2001-11-09 Denso Corp 2ロータ型同期機
JP2005027422A (ja) * 2003-07-02 2005-01-27 Hitachi Ltd 永久磁石式回転電機及びそれを用いた電動圧縮機

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099984B (zh) * 2008-10-15 2015-02-25 松下电器产业株式会社 双转子电动机
CN102099984A (zh) * 2008-10-15 2011-06-15 松下电器产业株式会社 双转子电动机
WO2010044231A1 (ja) * 2008-10-15 2010-04-22 パナソニック株式会社 デュアルロータモータ
JP2010098802A (ja) * 2008-10-15 2010-04-30 Panasonic Corp デュアルロータモータ
KR101128590B1 (ko) * 2008-10-15 2012-03-23 파나소닉 주식회사 듀얼 로터 모터
US8207648B2 (en) 2008-10-15 2012-06-26 Panasonic Corporation Dual rotor having varying air gaps
EP2378633A1 (en) * 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Electrical machine and permanent-magnet
WO2013001557A1 (ja) * 2011-06-27 2013-01-03 株式会社 日立製作所 磁気歯車型回転電機
JPWO2013001557A1 (ja) * 2011-06-27 2015-02-23 株式会社日立製作所 磁気歯車型回転電機
US9337708B2 (en) 2011-06-27 2016-05-10 Hitachi, Ltd. Magnetic gear-type electric rotating machine
WO2015196604A1 (zh) * 2014-06-24 2015-12-30 中山大洋电机股份有限公司 一种电机转子及应用该电机转子的塑封电机
WO2018225293A1 (ja) * 2017-06-07 2018-12-13 日立ジョンソンコントロールズ空調株式会社 永久磁石式回転電機及びそれを用いた圧縮機
JP2018207704A (ja) * 2017-06-07 2018-12-27 日立ジョンソンコントロールズ空調株式会社 永久磁石式回転電機及びそれを用いた圧縮機
JP2020102911A (ja) * 2018-12-20 2020-07-02 サンデンホールディングス株式会社 電動圧縮機用モータ、それを備えた電動圧縮機、及び、電動圧縮機用モータの製造方法
US11569719B2 (en) 2019-12-05 2023-01-31 Whirlpool Corporation Direct drive electric motor having stator and magnet configurations for improved torque capability
EP3832850A1 (en) * 2019-12-05 2021-06-09 Whirlpool Corporation Direct drive electric motor having stator and magnet configurations for improved torque capability
US11245317B2 (en) 2019-12-05 2022-02-08 Whirlpool Corporation Direct drive electric motor having stator and magnet configurations for improved torque capability
WO2021229954A1 (ja) * 2020-05-15 2021-11-18 パナソニックIpマネジメント株式会社 回転子及び電動機

Also Published As

Publication number Publication date
CN101375485B (zh) 2011-04-13
JP5067365B2 (ja) 2012-11-07
CN101375485A (zh) 2009-02-25
JPWO2007123057A1 (ja) 2009-09-03

Similar Documents

Publication Publication Date Title
KR101730525B1 (ko) 브러시없는 동기식 모터
JP4670871B2 (ja) モータ
JP4834386B2 (ja) 永久磁石型モータ及びそれを使用した電動パワーステアリング装置
JP5067365B2 (ja) モータ
JP5163913B2 (ja) アウターロータ型電動機
JP2003264947A (ja) 永久磁石電動機
JP2001037133A (ja) ステータ及び電動機
US20120098378A1 (en) Motor
JP3137510B2 (ja) 同期機の固定子,その製造方法並びにティース片及びヨーク片
JP6545387B2 (ja) コンシクエントポール型の回転子、電動機および空気調和機
TWI352481B (ja)
WO2019064923A1 (ja) ロータコア、ロータ、回転電機、自動車用電動補機システム
JP2014107939A (ja) ブラシレスモータ
JP4569632B2 (ja) モータ
JP2007215397A (ja) 電動機及びこれを搭載した機器
JP2005080365A (ja) 回転電機用ステータ
JP2004015998A (ja) 軸方向に分割された三相固定子巻線を有する永久磁石型回転機
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JPH11285186A (ja) 永久磁石電動機
JP2005269831A (ja) ブラシレスdcモータ
JP5975786B2 (ja) マグネット補助型リラクタンスモータ用ロータ及びブラシレスモータ
JP6003028B2 (ja) 回転電機
WO2019044206A1 (ja) 回転電機
JP6350612B2 (ja) 回転電機
WO2007123058A1 (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512091

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780003959.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741568

Country of ref document: EP

Kind code of ref document: A1