WO2001040817A1 - Appareil d'essai de charge a bas niveau - Google Patents

Appareil d'essai de charge a bas niveau Download PDF

Info

Publication number
WO2001040817A1
WO2001040817A1 PCT/JP2000/004992 JP0004992W WO0140817A1 WO 2001040817 A1 WO2001040817 A1 WO 2001040817A1 JP 0004992 W JP0004992 W JP 0004992W WO 0140817 A1 WO0140817 A1 WO 0140817A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
load test
resistor
switching member
assembly
Prior art date
Application number
PCT/JP2000/004992
Other languages
English (en)
French (fr)
Inventor
Toyoshi Kondo
Original Assignee
Tatsumi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsumi Corporation filed Critical Tatsumi Corporation
Priority to EP00949910A priority Critical patent/EP1156342B1/en
Priority to DE60031095T priority patent/DE60031095T2/de
Priority to BRPI0007931A priority patent/BRPI0007931B1/pt
Priority to CA002360817A priority patent/CA2360817C/en
Priority to AU63150/00A priority patent/AU781869B2/en
Priority to US09/889,589 priority patent/US6653928B1/en
Publication of WO2001040817A1 publication Critical patent/WO2001040817A1/ja
Priority to NO20013648A priority patent/NO320079B1/no
Priority to HK02103809.3A priority patent/HK1045731B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts

Definitions

  • the present invention relates to a dry load test apparatus used for an electric load test of, for example, an AC generator and other power supplies.
  • Such private power generators are not always operated and operated, but are limited to emergency power failures, and in that case, it is required that they operate reliably. For this reason, it is necessary to carry out a load test regularly so that the private generator can operate normally in the event of an emergency power failure.
  • the private generator As a method of load test of this private generator, the private generator is actually operated to generate electric power, and equipment that actually uses electric power in factories or department stores (such as indoor lighting and coolers). The best is to supply the generated electric power to an electric device.
  • the load test takes a long time, and more than a dozen times of generator power-on / off tests and rapid power Since there is also a capacity up test, it is difficult to perform a load test using equipment that actually requires electric power (for example, electrical equipment such as indoor lighting and a cooler), which is not suitable for the test.
  • the actual situation is that the load test of a private generator is actually performed using a load test resistance device with a load resistor having a capacity commensurate with the capacity of the generator. .
  • a three-phase AC generator is used as a private generator as described above. For this reason, in the dry load test apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 6-334725 and Japanese Patent Application Laid-Open No. Hei 7-433436, the R-phase, S-phase, Three star-connected fixed resistor units are used so that a load corresponding to the T phase can be obtained.
  • each of the fixed resistance units has a resistance assembly including a plurality of rod-shaped resistance elements, and sets the load capacitance by a combination of the plurality of resistance elements.
  • a switch for selecting the resistance value of the load resistance for the load test as described above is disclosed, for example, in Japanese Patent Application Laid-Open No. 2000-192 (P20000-1923A). There are others.
  • the resistance devices for load testing of three-phase AC generators include a permanent type that is permanently installed in factories, devs, pumping stations, and hospitals, and a load resistance test that is installed in vehicles.
  • a load test device of this mobile type as shown in Fig. 5 OA (see Japanese Patent Application Laid-Open No. 9-153307), a dry load is placed on the bed 2 of the truck 1.
  • the dry load test apparatus 3 includes a frame 4 mounted on a carrier 2 and a resistance unit for R, S, and T phases mounted adjacent to the frame 4. 5, 6, and 7. These resistance units 5, 6, 7 have the same configuration.
  • each of the resistance units 5, 6, 7 is connected to a base frame 10 disposed on the frame 4 and between the frame 4 and the base frame 10.
  • the resistance units 5, 6, and 7 are arranged below the base frame 10 and the frame 4, and furthermore, the electric fan 15 mounted on the frame 4 and the base frame 1, 0
  • the insulator (insulating member) 16 fixed on the top, the housing 17 fixed on the insulator 16 and the upper and lower ends open, and the cooling air from the electric fan 15 are guided to the housing 17 It has a hood 18.
  • the housing 17 has a hexahedral shape formed from angles.
  • the side opening of the arm 18 is closed with insulating plates 19a, 19b, 19c, and 19d.
  • each of the resistor units 5, 6, 7 has a resistor body 20R, 20S, 20T disposed in the nozzle 17.
  • the resistance assemblies R 1, S i, and T i are a plurality of rod-shaped resistance elements (heaters) 21 arranged side by side on a plane and having both ends held by insulating plates.
  • a conductive connecting piece 22 connecting a plurality of resistance elements 21 in series.
  • the multi-stage resistor assemblies R i, S i, and T i can be turned on and off by individual vacuum circuit breakers (individual VCBs) B, so that the fineness of the three-phase AC generator can be improved. It is possible to carry out a load test.
  • the procedure for performing the load resistance input test of the three-phase AC generator 23 is as follows.
  • the load on the power generation capacity of the three-phase alternator 23 is 25% for the first 10 minutes, 50% for the next 10 minutes, 75% for the next 10 minutes, and 75% for the last.
  • the power generation capacity of the three-phase By taking data from the load test of the three-phase AC generator 23 while changing the load ratio, it is possible to perform a detailed load input test of the three-phase AC generator. I can do it.
  • V CB vacuum circuit breakers
  • the present invention provides a dry-type load test apparatus that is compact and can set the resistance value of a load resistance for a load resistance test precisely, and can reduce the manufacturing cost of the apparatus. It is intended to do so.
  • a dry load test apparatus is a flat load test apparatus comprising a plurality of elongated resistive elements which are arranged side by side at intervals and connected in series at ends.
  • a plurality of first switching members A plurality of inter-assembly conductive members for connecting the other ends of the first switching member array of the first switching member array to each other; and a power supply under test for some of the plurality of inter-assembly conductive members. It is characterized by having one high-voltage switch connected to the switch.
  • the invention according to claim 2 is the device according to claim 1, wherein the at least one end of the first switching member is connected to each end of the resistance element of the resistance element row.
  • the feature is that it constitutes a series of switching members.
  • the invention of claim 3 is the invention according to claim 1, wherein one end of the first switching member is connected to each end of the resistance element of each of the resistance element rows,
  • the present invention is characterized in that a switching member row corresponding to the above is configured.
  • a short-circuit means for selectively short-circuiting the plurality of inter-assembly conductive members.
  • the invention according to claim 5 is characterized in that, in claim 4, the short-circuit means is a second switching member.
  • the switching member includes a first and a second fixed contact intermittently connecting a set of a plurality of fixed contact pairs and the first and second fixed contacts of each of the fixed contact pairs.
  • the plurality of first fixed contacts and the plurality of second fixed contacts are connected to each other.
  • the invention of claim 7 is characterized in that, in claim 6, the driving means is a solenoid operated and controlled by an operation panel and a control circuit.
  • the invention according to claim 8 is the invention according to claim 7, wherein the solenoid includes a coil and an actuator driven by a magnetic force of the coil, and the solenoid includes the movable contact and a driving direction thereof. It is characterized by being arranged on substantially the same straight line as.
  • the invention of claim 9 is characterized in that, in claim 6, the driving means is an air cylinder whose operation is controlled by an air control circuit.
  • the dry load test device means a dry electric load test device.
  • the dry load test apparatus does not cool the resistance element as a heat generating load with water, but cools it with dry air.
  • dry load test equipment is used in this sense.
  • FIG. 1A is a plan view of a track on which the dry load test apparatus according to the present invention is mounted
  • FIG. 1B is a side view of FIG. 1A.
  • FIG. 2 is a schematic plan view schematically showing an internal dry load test apparatus in a cross section of the box for storing the apparatus shown in FIGS. 1A and 1B.
  • FIG. 3 is a schematic side view of the dry load test apparatus of FIG. 2 viewed from the direction of arrow A.
  • Fig. 4 is a schematic side view of the dry load test apparatus of FIG. 2 viewed from the direction of arrow A.
  • FIG. 3 is a schematic side view of the dry load test apparatus of FIG. 2 viewed from the direction of arrow B.
  • Fig 5
  • FIG. 5 is a schematic explanatory diagram showing an example of the dry load test apparatus and the power supply under test of FIGS. 1 to 4.
  • Fig. 6 is a schematic explanatory diagram showing an example of the dry load test apparatus and the power supply under test of FIGS. 1 to 4.
  • FIG. 4 is an enlarged partial perspective view of a part of FIG.
  • Fig. 7A is a side view of the resistance unit shown in Figs. 3 and 4 with a part of the electric fan cut away
  • Fig. 7B is an explanatory diagram of the insulating plate of Fig. 7A.
  • FIG. 7B is an enlarged cross-sectional view showing the relationship between the resistance unit and the switching member of FIG. 7A.
  • FIG. 9A is an explanatory view showing a part of the resistance element shown in FIG. 8 in a cutaway and detailed view
  • FIG. 9B is an explanatory view showing an enlarged end structure of the resistance element in FIG. 9A
  • FIG. 9B is an explanatory view showing another example of the end holding structure of the resistance element in FIG. 9A.
  • Fig. 10 is an explanatory view showing a part of the resistance element shown in FIG. 8 in a cutaway and detailed view
  • FIG. 9B is an explanatory view showing an enlarged end structure of the resistance element in FIG. 9A
  • FIG. FIG. 9B is an explanatory view showing another example of the end holding structure of the resistance element in FIG. 9A.
  • Fig. 10 is an explanatory view showing a part of the resistance element shown in FIG. 8 in a cutaway and detailed view
  • FIG. 9B is an explanatory view showing an enlarged end structure of the resistance element in FIG. 9A
  • FIG. 9B is an explanatory view showing another
  • FIG. 9 is a circuit diagram of the dry load test apparatus of FIGS. 1 to 8.
  • FIG. 10 is a partially enlarged explanatory view of FIG. 10;
  • FIG. 3 is an explanatory diagram showing an arrangement relationship between a switching member and an inter-assembly conductive member as viewed from the direction of arrow A in FIG.
  • FIG. 3 is an explanatory diagram showing an arrangement relationship between a switching member and an inter-assembly conductive member as viewed from the direction of arrow B in FIG.
  • FIG. 10 is an explanatory diagram showing a relationship between the resistance assembly of FIG. 10 and a member for short-circuiting a resistance element of the resistance assembly.
  • Fig. 15 is an explanatory diagram showing a relationship between the resistance assembly of FIG. 10 and a member for short-circuiting a resistance element of the resistance assembly.
  • FIG. 15 is a partially enlarged explanatory view showing the relationship between the resistance assembly and the switching member of FIG. 14.
  • FIG. 16 is a front view of the switching member shown in FIG.
  • FIG. 17 is a bottom view of the switching member of FIG. 16.
  • FIG. 17 is a longitudinal sectional view of the switching member of FIG. 16.
  • FIG. 9 is a diagram illustrating the operation of the switching member of FIG. 18.
  • FIG. 17 is a plan view of a contact holding case of the switching member of FIG. 16.
  • FIG. 18 is a left side view of the solenoid shown in FIG.
  • FIG. 2 is a plan view of FIG. 21.
  • FIG. 17 is a schematic circuit diagram for controlling the operation of the switching member shown in FIG. 16.
  • FIG. 6 is a control circuit diagram of the switching member shown in FIG. .
  • FIG. 5 is a schematic explanatory view showing a connection example of resistance elements of the resistance assembly shown in FIG. 14.
  • Fig. 26
  • FIG. 26 is a partially enlarged explanatory view of FIG. 25.
  • FIG. 26 is an explanatory diagram of the resistance value of the resistor assembly by the connection of FIG. 25.
  • FIG. 15 is a schematic explanatory view showing another connection example of the resistance element of the resistance assembly shown in FIG. 14.
  • FIG. 28 is a partially enlarged explanatory view of FIG. 28.
  • FIG. 28 is an explanatory view of the resistance value of the resistor assembly by the connection of FIG. 28.
  • FIG. 15 is a schematic explanatory view showing still another connection example of the resistance elements of the resistance assembly shown in FIG. 14.
  • FIG. 3 is a partially enlarged explanatory view of FIG. 31.
  • FIG. 3 is an explanatory view of the resistance value of the resistor assembly by the connection of FIG. 31.
  • FIG. 16 is an explanatory diagram showing another example of the control circuit of the switching member shown in FIG. 15.
  • FIG. 4 is a schematic circuit diagram of a dry load test device according to a second embodiment of the present invention.
  • FIG. 35 is a partially enlarged explanatory view of FIG. 34.
  • FIG. 6 is a control circuit diagram of the switching member of FIG. 35.
  • FIG. 36 is an explanatory diagram showing another example of a control circuit diagram of the switching member of FIG. 35.
  • FIG. 16 is a plan view showing another example of the switching member shown in FIGS. 16 to 18.
  • FIG. 39 is a bottom view of FIG.
  • FIG. 16 is a plan view showing still another example of the switching member shown in FIGS. 16 to 18.
  • FIG. 4 is an air control circuit diagram of the switching member of FIG. 41.
  • FIG. 4 is a right side view of FIG.
  • Fig. 45A is a side view of a part of the dry load test apparatus according to the fourth embodiment of the present invention, with a part broken away
  • Fig. 45B is a modified example of Fig. 45A with a part broken away.
  • FIG. 45 is a right side view of the dry load test apparatus of FIG. Fig. 4 7
  • FIG. 46 is a plan view of FIG. 46.
  • FIG. 48A is an explanatory diagram schematically showing a connection example of the resistor unit of the present invention
  • FIG. 48B is an explanatory diagram showing a connection state of the resistor unit of FIG. 48A.
  • FIG. 4 is a plan view showing another example of the track on which the dry load test device according to the present invention is mounted.
  • FIG. 5 is a side view of a track on which a conventional dry load test device is mounted, and FIG. 5 is a side view of a resistance unit showing a part of an electric fan of FIG.
  • FIG. 55 is an explanatory view of the resistor assembly of FIG. 50.
  • FIG. 60 is an explanatory diagram showing a connection example of the resistor assembly of FIG. 50.
  • FIG. 57 is a circuit diagram of the resistor assembly of FIG. 52.
  • FIG. 1 (a) is a plan view of a mobile dry load test apparatus according to the present invention, that is, a mobile electric load test apparatus
  • FIG. 1 (b) is a side view of FIG. 1 (a).
  • This mobile dry load tester is composed of a track 30 and a dry load tester (electronic Air load test device) 40.
  • the truck 30 has a carrier 31 and a box 32 provided on the carrier 31. In this box 32, a luggage compartment 33 is provided. Then, a dry load test apparatus 40 is provided in the cargo room 32.
  • the dry load test apparatus 40 includes a frame 41 provided in a cargo room 32 and a frame 41. It has resistor units 42, 43, and 44 for the R, S, and T phases that are adjacently arranged on the front and back (see Fig. 1 (a), Fig. 5, and Fig. 6). These resistor units 42, 43, and 44 have almost the same configuration.
  • each of the resistor units 42, 43, and 44 includes a base frame 45 arranged on the frame 41, a frame 41 and the base frame 4 as shown in FIG. 5
  • the fixed bolts 48, 48 are provided integrally with the fixed bolt 47 and penetrate the frame 41 and the base frame 45, respectively, and are screwed to both ends of the fixed bolts 48, 48, respectively. It has fixed nuts 49, 49.
  • each of the resistance units 42, 43, and 44 is disposed below the base frame 45 and the frame 41, and is connected to the electric fan 5 attached to the frame 41.
  • an insulator (insulating member) 51 fixed on the base frame 45 a housing 52 fixed on the insulator 51 and having upper and lower ends open (see FIG. 6), and an electric fan 50 It has an insulating hood 53 that guides cooling air from the housing to the housing 52.
  • the nozzle 52 has a hexahedral frame 54 formed from an angle formed with an epoxy-based heat-resistant material.
  • the insulating plates 55a, 55b, 55c, 55d, etc., made of slabs, are closed with side openings.
  • the insulating plates 55a, 55, 55c (see Fig. 6) and 55d are fixed to the frame 54 with fixtures 56 such as port nuts.
  • the side opening / closing plates of the insulating plates 55b, 55d, etc. can be replaced with side opening / closing plates of a heat-resistant and non-combustible material other than the insulating material.
  • this material for example, an aluminum plate or an iron plate can be used.
  • the number of mounting holes hj is not limited to 16 and the number of mounting holes H is not limited to 22 rows.
  • the mounting hole h 5 of the upper and lower mounting holes column H i are provided alternately with shifted half a pitch to the left and right.
  • each of the resistor units 42, 43, and 44 has a resistor body 57 R, 5 disposed inside the nosing 52. 7 S, 57 T.
  • the resistance assemblies R i, S., T i are also provided in 22 stages corresponding to the mounting hole rows H i.
  • FIG. 11 shows the overall connection relationship of the resistor assemblies RS i, and only large symbols are given for convenience of illustration.
  • the resistance elements mounted in the mounting holes hi of the upper and lower mounting hole rows H, ri are shifted by half a pitch to the left and right, and the resistive elements rj in the vertical direction are arranged in a zigzag.
  • the cooling air supplied between the insulating plates 55a, 55b and 55c from below by the electric fan 50 is taken into the mounting holes hi of the upper and lower mounting hole rows Hi. This effectively hits the attached resistance element r s and efficiently cools all the resistance elements ri in the mounting hole array Hi.
  • multi-stage resistor assemblies R t R n each conductive connecting piece 5 8 a of, constitutes the connection piece column in a line vertically
  • multistage resistor assemblies R, each conductive connection piece to R n 5 8 b i-, constitute a connection row in one row up and down
  • each resistance element (heater) ri of the multi-stage resistor assembly R i to R n is arranged in a row in the vertical direction to form a resistor row.
  • the resistance element includes a cylindrical body 59 made of a metal material having high thermal conductivity or stainless steel, and a heat radiation fixed to the outer periphery of the cylindrical body 59.
  • One end is inserted concentrically into both ends of the fin 60 and the body 59
  • the insulator 62 is made of a ceramic insulator or the like, and has an annular groove 62a formed on its peripheral surface to prevent dust from adhering.
  • the resistance element ri includes a resistance wire (a heater wire such as a chrome wire) 63 arranged at the center of the cylinder 59 and having both ends connected to the rod-shaped electrodes 61, 61;
  • the insulating material (insulating member) 64 such as magnesia filled between the inner surface of the rod 59 and one end of the rod-shaped electrodes 61, 61 and the resistance wire 63 is connected to the other end of the rod-shaped electrode 61. It has screwed fixed nuts 65 and 65a.
  • the conductive connecting piece 58 is fixed to the resistance element ri by tightening between the fixing nuts 65 and 65a.
  • an annular or cylindrical heat-resistant caulking material (heat-resistant sealing material) 64 a is fitted between the end of the cylindrical body 59 and the rod-shaped electrode 61. Then, the insulator (insulating member) 62 is used to hold the insulator 64, so that the heat-resistant caulking material 64a prevents moisture from entering the insulator 64.
  • the length of the insulator 62 is set to, for example, about 10 mm or more, and the conductive connecting piece 58 and the cylindrical body 59 are connected to each other. The insulation distance between them is sufficiently ensured.
  • An insulating member 66 having heat resistance and elasticity is fixed near both ends of the cylindrical body 59.
  • the insulating member 66 is made of heat-resistant and elastic silicone rubber (synthetic resin) or the like.
  • An annular mounting groove 66 a is formed in the center of the insulating member 66.
  • the resistance elements (heaters) rj of the resistance assemblies R i, S i, and T i are arranged corresponding to the mounting holes hi of the mounting hole row Hi as described above. Then, the resistance element (heater) ri connects the insulating members 66, 66 at both ends to the insulating plates 55a, 55 5c mounting holes hi, hi fit into the insulation member 66, 66 6 annular mounting groove
  • the insulating plates 55a and 55c supporting the resistance element ri are made of an epoxy resin-based relatively heat-resistant material, but the insulating member 66 is made of a heat-resistant silicone rubber. (Synthetic resin), etc., to prevent the heat of the resistance element r; from being directly transmitted to the insulating plates 55a, 55c, thereby making the insulating plates 55a, 55c durable. It improves the performance.
  • the insulating member 66 is formed from heat-resistant and elastic silicone rubber (synthetic resin) or the like, but is not necessarily limited to this.
  • the insulating members 6 6 ′ may hold the insulating plates 55 a, 55 c and the like.
  • the dry load test apparatus 40 is connected to the resistance units 42, 43, and 44, and the resistance units 42, 43 are spaced apart from each other. It has insulating plates 67 and 68 located at positions sandwiching 43 and 44 (see Figs. 3, 4 and 6). These insulating plates 67, 68 extend in the direction of the arrangement of the resistance units 42, 43, 44, and cover the entire sides of the resistance units 42, 43, 44. It is formed in size. The lower ends of these insulating plates 67, 68 It is attached to the frame 41 by mounting means such as bolts and nuts (not shown).
  • the first switching members SW aii and SW b have normally open contacts and are attached to insulating plates 67 and 68, respectively.
  • the first switching members SWa and SWbii have a structure as shown in FIGS. 16 to 23. That is, the first switching members SWai and SWbu have the case 69.
  • This case 69 consists of a contact case (split case) made of insulating material such as Teflon that can withstand high voltage and is separable from each other and that can withstand high voltage. It has a solenoid case made of insulating material (split case) 71.
  • the contact case 70 is provided with two sets of fixed contact pairs including first and second fixed contacts Pa and Pb.
  • the fixed contacts P a and P a are arranged side by side on one side of the contact case 70, and the fixed contacts P b and P b are arranged side by side on the other side of the contact case 70.
  • a contact holding member 72 made of an insulating material such as a synthetic resin is provided between the fixed contacts Pa, Pa and the fixed contacts Pb, Pb at positions sandwiching the fixed contacts Pa, Pa. It is arranged so that it can move in parallel with the arrangement direction of Pa.
  • the contact moving member 72 is spring-biased by a spring 73 to one side in the longitudinal direction (to the left in FIGS. 18 to 20).
  • the contact holding members 72 are provided with contact moving slits 72 a and 72 a that penetrate left and right at intervals in the longitudinal direction.
  • projections 72b, 72b for holding the spring are formed on one of the end walls of the contact moving slits 72a, 72a.
  • One ends of the springs 74, 74 are fitted and held in the protrusions 72b, 72b, and the other ends of the springs 74, 74 have plate-like movable contacts M, M, respectively.
  • the projections 75 and 75 provided at the center are fitted and held.
  • the springs 74, 74 press the movable contacts M, M against the end walls of the contact-moving slits 72a, 72a.
  • the contact portions at both ends of the movable contact M are oriented to the fixed contacts Pa and Pb.
  • the contact portions at both ends of the movable contact plate M are separated from the fixed contacts Pa and Pb by the panel force of the spring 73, and the contacts Pa and Pb are normally open contacts.
  • the fixed contacts Pa and Pa are connected by a terminal plate 76, and the fixed contacts Pb and Pb are connected by a terminal plate 77. With this configuration, the contacts Pa, Pa, Pb, and Pb can withstand a certain high voltage.
  • a base plate 78a that can withstand a high voltage such as Teflon, and this base plate 78a is connected to the space inside the case 71.
  • the space and in case 72 are insulated against high voltage.
  • a solenoid holding frame 78 fixed to the base plate 78a is fixed in the solenoid case 71, and a solenoid S is fixed to the solenoid holding frame 78. Installed as a driving means.
  • the solenoid S is fixed to the solenoid holding frame 78 and holds the contact.
  • An iron core 79 extending parallel to the member 72, a coil (solenoid body) 80 wound around the iron core 79, and a solenoid holding the iron core 79 so as to be able to move forward and backward with respect to the iron core 79.
  • It has a movable iron plate 81 held by a frame 78 and an insulating engagement plate 81a formed of a material capable of withstanding high voltage, such as Teflon, and fixed to the movable iron plate 81.
  • the insulating engaging plate 81a protrudes further downward from the movable iron plate 81, and the tip (lower end) of the insulating engaging plate 81a engages with the engaging recess 72b of the contact holding member 72. ing.
  • An energization control circuit 84 is connected to the coil 80 via lead wires 82 and 83.
  • lead wires 82 and 83 are drawn out from the solenoid case 71 at the edge away from the contact case 70. As a result, the lead wires 82 and 83 are set so as to be separated from the fixed contacts Pa and Pb and the movable contact M. The withstand voltage between the lead wires 82 and 83 is improved.
  • the movable iron plate 81 When the coil 80 is energized by the energization control circuit 84, the movable iron plate 81 is attracted and moved to the fixed iron core 79 by magnetic force, and is magnetically attached to the fixed iron core 79, and The solenoid S is activated (ON).
  • the insulating engagement plate 81a which moves together with the movable iron plate 81 by this suction movement, causes the contact-holding member 72 to move against the panel force of the spring 73 in FIGS. Move to the right.
  • the movable contact M is brought into contact (contact) with the fixed contacts Pa and Pb, and the fixed contacts Pa and Pb are made conductive (short-circuited).
  • One end (fixed contact P a) of the first switching member SW a is connected to the conductive connection piece 58 ai, respectively, and one end (fixed contact P a) of the first switching member SW bi is connected to the first switching member SW bi. ) it is. electrically conductive connection pieces of the resistor elements gamma iota is attached One end (fixed contact P a) of the remaining first switching member SW b is connected to the conductive connecting piece 58 b i-, respectively.
  • the resistance element r of many resistance assemblies R i, S i, and T i has an end E to which no conductive connection piece is attached, and a conductive member between assemblies.
  • FIG. 14 illustrates the resistance assemblies R i, S i, T, at the same time, in FIG. 14, for convenience of illustration, the reference numerals are attached with the minimum necessary, and the detailed description is shown in FIG. This is explained in 15 below.
  • illustration of the insulating plates 67 and 68 shown in FIG. 8 is omitted for convenience of explanation.
  • the inter-assembly conductive member Cb / 2) +1 of the resistor assembly R is connected to the contact 86 R of the main vacuum circuit breaker (VCB) 86 via the wiring 85 R.
  • resistor assembly S assembly between conductive members of i C b (10/2) + 1 wiring 8 5 via the S main vacuum circuit breaker is a high-voltage sweep rate pitch (VCB) 8 6 contacts 8 6 S
  • VB high-voltage sweep rate pitch
  • T assembly between the conductive member C b / 2 of i) + 1 is main Lee down of the vacuum circuit breaker via a line 8 5 T (VCB) 8 6 contacts 8 6 T, connected to You.
  • the contacts 86 R 2 , 86 S 2 , and 86 T 2 of the vacuum circuit breaker (VCB) 86 are connected to the three-phase AC generator 88 via wiring 87 R, 87 S, 87 mm. Connected to the R, S, T phase contacts 88 R, 88 S, 88 ⁇ .
  • each of the resistor assemblies RS,, ⁇ As described above, by providing the switching members SWa, SWb and the inter-assembly conducting members C a C bj, C b ⁇ / + i, conventionally, each of the resistor assemblies RS,, ⁇ , The structure that was turned on and off by the vacuum circuit breaker (VCB) for each stage is no longer required, and the vacuum circuit breaker (VCB) requires only one main vacuum circuit breaker (VCB) 86.
  • the dry load test apparatus 40 has short-circuit means for short-circuiting some resistance elements ri of the resistance assemblies R i, S,, T.
  • the short-circuit means include short-circuit connecting wires 89, 89, short-circuit connecting wires 90, 90, 90, conductive plates (conductive connecting members) 91, 91, 91 and Prepare conductive plates (conductive connecting members) 92, 92, and 92 that are connected to each other.
  • the energization control circuit 84 includes a low-voltage switch 93 for a low-voltage load test, a high-voltage switch 94 for a high-voltage load test, and a high-voltage load test, as shown in FIG. And a power supply 96 is connected via a power supply switch 97.
  • the electric fan 50 is driven and controlled by an energization control circuit 84.
  • the track 30 moves the dry load test apparatus 40 to the site where the load test is performed.
  • the location where the three-phase AC generator 88 is installed as the electrical equipment to be subjected to the voltage load test Become.
  • the resistor bodies 57 R, 57 S, and 57 T provided in each of the resistor units 42, 43, and 44 of the present embodiment are flattened in two stages. It has a resistance assembly R ,, ST.
  • 16 rod-shaped resistance elements r, of the resistance assemblies R i, S i, ⁇ , are provided.
  • the coil 80 which is the solenoid body of the switching member SWa, is made to correspond to S :! to S8 in FIG. 24, and the software of the switching member SW bii is set.
  • An example of a voltage load test is described below, in which the coil 80, which is the main body of the lens, is associated with S9 to S16.
  • the three-phase AC generator 88 is used as an electric device to be subjected to the voltage load test, the three-phase AC generator 88 is connected to the resistance of the dry load test device 40.
  • the case of connection to the main body 57R, 57S, 57T as shown in Fig. 5 is explained.
  • the R, S, and T phases of the three-phase AC generator 88 have conductive switches 58 b] to 58 b all of the switching member rows SW b and SW b n.
  • the resistance body 5 7 R of the assembly between the conductive member C a, ⁇ C a m / 2 is made conductive (short-circuited) with the conductive plate 9 2
  • resistor body 5 7 assembly between 3 ⁇ 4 conductive member S C ai ⁇ C a m / 2 conduction conductive plate 9 2 (short) is, causes conduction resistance body 5 7 assembly between the conductive member C a 2 for T in the conductive plate 9 2-circuited.
  • the resistance elements r of the resistance assemblies R i and ST i constituting the resistance bodies 57 R, 57 S and 57 T are connected to the conductive connection pieces 58 a!
  • the sixteen resistance elements ri of the resistance assemblies R i, S i, are all connected in parallel. Moreover, in the R, S, and T phases of the three-phase AC generator 88 , all the resistance elements ri are connected in parallel to reduce the resistance value of the load assembly R i, S., T i ( That is, the resistor element bodies 57 R, 57 S, and 57 T) having a low resistance value are connected.
  • the three-phase AC generator 88 is operated, while the power switch 97 is turned ON to operate the energization control circuit 84. Thereafter, the low-pressure switch 93 is turned ON.
  • the energization control circuit 84 first turns on the main vacuum circuit breaker 86, and then turns the coil 80 (S 1) of the switching members SW a .i and SW bu. To S16) to turn on all of the switching members SW aii and SW bii.
  • the output (voltage, current) from the three-phase AC generator 88 is input to the resistance elements ri of the resistance assemblies R i, S i, and T i, and the load test is started. You. As a result, current flows through the resistance elements of the resistance assemblies R i, S i, ⁇ , and the resistance element ri generates heat.
  • the energization control circuit 84 activates the electric fans 50 of the resistance units 42, 43, and 44 to remove the cooling air from the electric fans 50 to the resistance unit. Vent to the housing 52 of the sockets 42, 43, and 44.
  • the cooling air absorbs the heat generated by the resistance elements ri of the resistance units 42, 43, and 44 when flowing around the heat radiating fins 60, and removes the resistance elements ri. After cooling, the air is exhausted to the outside from an exhaust port (not shown) of the box 32 forming the cargo room 33.
  • the load test is performed by changing the load resistance value applied to 8 to 25%, 50%, 75%, 100% at predetermined time intervals, for example.
  • the ratio of the load resistance value applied to the three-phase AC generator 88 is set more finely. You can. For example, a load test can be performed every 5% and 10%. (2) 3 3 0 0.V high voltage load test
  • each resistor assembly R i, ST i Each of the 16 resistive elements ri is connected in parallel with two resistors 8 r, 8 r each having a value in which half of the eight resistive elements ri are connected in parallel. Are connected to a neutral point where the voltage becomes 0 via a switching member SW bi 5 and connection lines 89, 89.
  • the R, S, and T phases of the three-phase AC generator 88 have resistor bodies 57 R, 5
  • Conductive member between each assembly of 7S, 57T CbCb (m / 2) + 1 is wiring 90, 90, 90, wiring 851, 85S, 85T and vacuum Connected via circuit breaker 86.
  • the R, S, and T phases of the three-phase alternator 88 have a resistance assembly R i, S having resistors 8 r, 8 r connected in parallel and having a medium resistance value.
  • (that is, the medium resistance resistors 57 R, 57 S, 57 T) are connected.
  • the three-phase AC generator 88 is operated, while the power switch 97 is turned on to operate the energization control circuit 84. After this, turn on the high voltage switch 94.
  • the energization control circuit 84 first turns on the main vacuum circuit breaker 86, and then switches the members SW b ⁇ :, SW bis coils 80 (S 1, S 1 by energizing the 5), causing oN the sweep rate pitch ring member SW bi SW b i S.
  • the output (voltage, current) from the three-phase alternator 88 is input to the resistor assemblies R, S i, and T i, and the load test is performed. Be started.
  • the resistor assemblies R, S i, and T i the resistor assemblies
  • Electric current is applied to each of the resistance elements ri constituting 8r and 8r, and the resistance elements ri generate heat.
  • the energization control circuit 84 activates the electric fans 50 of the resistance units 42, 43, and 44, and cools the cooling air from the electric fans 50 to the resistance unit. G to the housing 52 of 42,43,44. And this cooling The wind absorbs heat generated in the resistance elements ⁇ of the resistance units 42, 43, and 44 when flowing around the heat radiating fins 60, cools the resistance element ri, and then cools down the cargo room. Air is exhausted to the outside from an exhaust port (not shown) of the box 32 that forms 33.
  • the resistor body 57 R, 57 S, 57 T power, and the three-phase AC generator can be used.
  • the load test is performed by changing the load resistance value applied at 8 to 25%, 50%, 75%, and 100% at predetermined time intervals. Further, in the present embodiment, since there are provided two stages of flat resistance assemblies R i, S i, and T i, the ratio of the load resistance value applied to the three-phase AC generator 88 is set more finely. You can. For example, a load test can be performed every 5% and 10%.
  • each resistor assembly R i, S. Each resistor element Rrir 16 is Sui etching member T, SW b iie, through SW b il 6, SW b. 16 ⁇ Pi connection lines 8 9, 8 9 Are connected to a neutral point where the voltage becomes zero.
  • the R, S, and T phases of the three-phase AC generator 88 are connected to the conductive members C b (m / 2) +1 between the assembly of the resistor bodies 57 R, 57 S, and 57 T. They are connected via 90, 90, 90, wiring 85 R, 85 S, 85 T and vacuum circuit breaker 86.
  • each of the resistor assemblies R i, S i, and T i is formed by connecting all the resistor elements ri of the 16 resistor elements rj in series, and Becomes high resistance.
  • the R, S, and T phases of the three-phase alternator 88 have a resistance assembly R i, S., T. (Ie, high resistance) having all resistance elements r, connected in series.
  • the value of the resistor body (57R, 57S, 57T) is connected.
  • the three-phase AC generator 88 is operated, while the power switch 97 is turned ON to operate the energization control circuit 84. Thereafter, the high pressure switch 95 is turned ON.
  • the energization control circuit 84 first turns on the main vacuum circuit breaker 86, and then energizes the coil 80 (S1) of the switching member SW b H, Turn on the switching member SW b H.
  • the output (voltage, current) from the three-phase AC generator 88 is supplied to the resistance elements ri of the resistance assemblies Ri, Si, and Ti, and the resistance element ri generates heat. .
  • the energization control circuit 84 activates the electric fans 50 of the resistance units 42, 43, and 44, and the cooling air from the electric fans 50 is cooled by the resistance fans. Ventilate the housing 52 of the units 42, 43, and 44. This cooling air absorbs the heat generated by the resistance elements r! Of the resistance units 42, 43, and 44 when flowing around the heat radiating fins 60, and the resistance element r! After being cooled, the air is exhausted to the outside from an exhaust port (not shown) of the box 32 forming the load chamber 33.
  • the load test is performed by changing the load resistance value applied to 8 at predetermined time intervals, for example, to 25%, 50%, 75%, and 100%.
  • the ratio of the load resistance value applied to the three-phase AC generator 88 is set more finely. This You can also. For example, a load test can be performed for each of 5% and 10%.
  • the low-voltage switch 93 for the low-voltage load test, the high-voltage switch 94 for the high-voltage load test, and the high-voltage switch 95 for the high-voltage load test were turned on.
  • the current is automatically controlled by the energization control circuit 84 in accordance with a load test program.
  • This program can be stored in advance in a storage means such as a ROM (not shown) of the power supply control circuit 84, or can be stored in a recording medium such as a hard disk.
  • the load control circuit 84 can read and use the CPU (not shown) at the start of the load test.
  • the load test is performed according to the program, but the present invention is not limited to this.
  • Switch SW 1 to SW 16 for ON / OFF operation of the switching members SW aii and SW b of each stage are provided corresponding to 0, and S 1 to SW 16 are provided by switches SW 1 to SW 16. It is also possible to control the energization of the coil 80 shown in S16.
  • the vacuum circuit breaker 86 can also be operated by the switch 98 to perform the ON / OFF operation.
  • the conductive connection pieces 58 a, to 58 a 58 a! To 58 a (»/ 2 ) of the resistance assembly R i, S i, ⁇ Switching members SW a and SW b are connected to all of the It is not limited to this.
  • connection lines 89, 90 and the conductive plates 9 An example was shown in which some of the resistance elements ri of the resistance assemblies R, S,, were manually connected (short-circuited) in advance using 1, 92, etc., but this is not necessarily required. It is not limited.
  • the second switching members SW ci and SW di as the short-circuit means have the same configuration as the first switching members SW ai and SW d as the short-circuit means (the configurations in FIGS. 16 to 23). Can be used. Moreover, a row of first switching members SWa, SWd is provided for each of the resistor assemblies R, Si, T, and is multistage. Therefore, the second switching members SWci, SWd; need only be able to short-circuit the inter-assembly conductive members C a and the inter-assembly conductive members C bi, so that only one row is required.
  • the conductive members CbCbCb between the assembly of the resistor bodies 57R, 57S, and 57T are electrically connected to each other by a vacuum circuit breaker (VCB) 100, which is a high-voltage switch.
  • VB vacuum circuit breaker
  • Short-circuit Connect as much as possible, and connect the conductive members CbCbCb between the assembly of the resistor bodies 57R, 57S, and 57T with a vacuum circuit breaker (VCB) 101, which is a high-voltage switch.
  • the solenoids S17 to S32 are also operated and controlled by the power supply control circuit 8'4.
  • the same parts as those in FIG. 24 are denoted by the same reference numerals as in FIG. 24, and description thereof will be omitted.
  • the energization control circuit 84 turns on the main vacuum circuit breaker 86 first, and then turns on the resistance assemblies that constitute the resistor bodies 57 R, 57 S, and 57 T.
  • the switching members SW a are turned on, and the resistor bodies 57 R, 5 7 S, 57 T
  • the switching member SW of the resistance assemblies R i, S i, T which constitute T Energize all of the C j coils 80 (SI 7 to S 24) and turn on all of the switching members SW ci.
  • the resistance elements 1 ′′ of the resistance assemblies R,, S i, and D which constitute the resistance bodies 57 R, 57 S, and 57 T, are connected to the conductive connection pieces 58 & 1 to 5 8 & (1 »/ 2 ), all switching members SW ai to SW a, conductive members between assemblies C a.
  • To C a Switching members SW c 1 to SW cm / 2 and conductive plate 92 Connected to a neutral point where the voltage is zero.
  • the electric control circuit 84 also switches the coil 80 (S 9 to S 9) of the switching member SW bii of the resistor assemblies R i, ST, which constitute the resistor bodies 57 R, 57 S, 57 T. 16) is turned on, all the switching members SW bii are turned ON, and the switching of the resistance assemblies R,, S>, which constitute the resistance main bodies 57 R, 57 S and 57 T, is performed. Energize all the coils 80 (S25 to S32) of the member SW di and turn on all of the switching member SW di.
  • the R, S, and T phases of the three-phase AC generator 88 have conductive connecting pieces 58 b, to 58 b, all of the switching member rows SW b SW bn of the switching member row.
  • bii (SW bii SW bi im /), resistor body 57 R, 57 S, 57 T, inter-assembly conductive member C b 1 to C b (ro / 2) + 1 , switching member SW c! , ⁇ SW d + 1 and the conductive plate 91, the wirings 85 R, 85 S, 85 T and the vacuum circuit breaker 86, and the resistance elements ri of the resistance assemblies R i, S i, T, It is connected.
  • the sixteen resistance elements ri of the resistance assemblies R i, S are all connected in parallel.
  • all the resistance elements ri are connected in parallel to reduce the load resistance R, S i, T, (ie, Low resistance resistance book Bodies 57R, 57S, 57T) are connected.
  • the output (voltage, current) from the three-phase AC generator 88 is input to the resistance elements of the resistance assemblies R, S i, T, and the load test is started.
  • the resistance element ri of the resistance assembly Ri, S i, T is energized, and the resistance element generates heat.
  • the energization control circuit 84 activates the electric fans 50 of the resistance units 42, 43, and 44, and cools the cooling air from the electric fans 50 to the resistance unit.
  • the cooling air absorbs the heat generated by the resistance elements r of the resistance units 42, 43, and 44 when flowing around the heat radiating fins 60, and the cooling air flows through the resistance elements. After cooling, the air is exhausted to the outside from an exhaust port (not shown) of the box 32 forming the cargo room 33.
  • the ON / OFF control of the switching members SW ii and SW bu of each stage can be performed, so that the resistor body 57 R, 57 S, 57 T force, the three-phase AC generator 8
  • a load test is performed by changing the load resistance value applied to 8 at predetermined time intervals, for example, to 25%, 50%, 75%, and 100%.
  • the flat resistance assemblies R 1, S 2, T 3! Since two stages are provided, the ratio of the load resistance value applied to the three-phase AC generator 88 can be set more finely. For example, a load test can be performed every 5% and 10%. (2) 330 V high voltage load test
  • the three-phase AC generator 88 is operated, while the power switch 97 is turned ON to operate the energization control circuit 84.
  • the energization control circuit 84 first turns on the main vacuum circuit breaker 86 and the vacuum circuit breaker 101. After the N is applied, the coil 80 (S5) of the switching member SW bii of the resistance assembly Ri, Si, ⁇ constituting the resistor body 57R, 57S, 57T is energized. Turn on the switching member SW bi 5 .
  • the resistance elements ri of the resistance assemblies R i, ST which constitute the resistance main bodies 57 R, 57 S, 57 T, are formed by the conductive connection pieces 58 b 5 , the switching members SW b i 5. Connected to the neutral point where the voltage becomes 0 via the inter-assembly conductive member Cb and the vacuum circuit breaker 101.
  • each of the sixteen resistor elements rj of each of the resistor assemblies R i, S, and the half eight resistor elements ri are connected in parallel.
  • the two resistors 8 r, 8 r having the same values are connected in parallel, and one end of the parallel resistors 8 r, 8 r is a conductive connecting piece 58 b 5 , a switching member SW b 15 , an assembly voltage via the Mashirubeden member C b 5 and the vacuum interrupter 1 0 1 are connected to each other in the neutral point becomes zero.
  • the electronic control circuit 84 turns on the vacuum circuit breaker 102 and also sets the resistor assemblies R 1, S i, T i constituting the resistor main bodies 57 R, 57 S, 57 T.
  • the coil 80 (S9) of the switching member SW bii is energized to turn on the switching member SW bu of each resistance assembly Ri, S.
  • the output (voltage and current) from the three-phase AC generator 88 is input to the resistors 8 r and 8 r of the resistor assemblies R i, S i and T i, and the load test is performed. start Is done. As a result, power is supplied to each of the resistance elements ri forming the resistors 8r , 8r , and the resistance elements ri generate heat.
  • the ON / OFF control of the switching members SW aii and SW bu of each stage can be performed to obtain the three-phase AC generator 88 R from the resistor bodies 57 R, 57 S and 57 T power.
  • the load test is performed by changing the load resistance value applied to the load at predetermined intervals, for example, to 25%, 50%, 75%, and 100%. Further, in this embodiment, since there are provided two stages of flat resistance assemblies R !, S, and Ti, the ratio of the load resistance value applied to the three-phase AC generator 88 is set more finely. You can do that too. For example, a load test can be performed every 5% and 10%. (3) 660 V high voltage load test
  • the three-phase AC generator 88 is operated, while the power switch 97 is turned ON to activate the energization control circuit 84.
  • the high pressure switch 95 is turned ON.
  • the energization control circuit 84 first turns on the main vacuum circuit breaker 86 and the vacuum circuit breaker 100, and then turns on the resistor bodies 57R, 57S, 57T.
  • the coil 80 (S1) of the switching member SWb of the resistance assembly Ri, Si, Ti constituting the resistor assembly is energized to turn on the switching member $ Wb.
  • the resistance elements r of the resistance assemblies R i, S i, and T i that constitute the resistance bodies 57 R, 57 S, and 57 T are connected to the conductive connection pieces 58 bi and the switching section.
  • C bt and vacuum circuit breaker 100 0 are connected to each other to a neutral point where the voltage becomes zero.
  • the R, S, and T phases of the three-phase AC generator 88 are connected to the conductive members C b (m / 2) +1 between the assembly of the resistor bodies 57 R, 57 S, and 57 T. 90, 90, 90, connected via wiring 85R, 85S, 85T and vacuum circuit breaker 86 You.
  • each of the resistor assemblies R 1, ST ′ has a resistance value of ⁇ resistance where all the resistance elements ri of the 16 resistance elements ri are connected in series. It becomes the state of having become.
  • a resistance assembly R i, S i, T i (that is, a high resistance) in which all resistance elements ⁇ are connected in series is provided.
  • the value of the resistor body (57R, 57S, 57T) will be connected.
  • the output (voltage and current) from the three-phase AC generator 88 is applied to the resistance elements ri of the resistance assemblies R, S ⁇ , ⁇ , When energized, the resistance element ri generates heat.
  • the energization control circuit 84 activates the electric fans 50 of the resistor units 42, 43, and 44, and resists the cooling air from the electric fans 50. Ventilate the nozzles 52 of the nits 42, 43, and 44. This cooling air absorbs the heat generated by the resistance elements r ⁇ of the resistance units 42 , 43, and 44 when flowing around the heat radiating fins 60, and causes the resistance element rj to be absorbed. After cooling, the air is exhausted to the outside from an exhaust port (not shown) of the box 32 forming the cargo room 33.
  • the resistance main body 57 R, 57 S, 57 T power, the three-phase AC generator, etc. 8 8 The load test is performed by changing the load resistance value applied at 8 to 25%, 50%, 75%, and 100% at predetermined time intervals. Further, in the present embodiment, since there are provided two stages of flat resistance assemblies R i, S i, T, the ratio of the load resistance value applied to the three-phase AC generator 88 is set more finely. You can. For example, a load test can be performed every 5% and 10%.
  • Such a load test is performed by using a low-voltage switch 93 for a low-voltage load test and a high-voltage switch.
  • the energization control circuit 84 automatically operates according to the program for the load test. It is being told.
  • This program can be stored in advance in a storage means such as a ROM (not shown) of the power supply control circuit 84, or can be stored in a recording medium such as a hard disk. Also, at the start of the load inspection, the load can be read into a CPU (not shown) of the conduction control circuit 84 and used.
  • each of the resistor bodies 57 R, 57 S, 57 T constitutes a multi-stage (22 stage in this embodiment) resistor assembly R, S i, T i. It is not necessary to provide a vacuum circuit breaker at all, and there are only three vacuum circuit breakers, denoted by 100, 101, and 102, so even if automated, the equipment would be large in size. In addition, the cost hardly increases.
  • the load test is performed according to the program, but the present invention is not necessarily limited to this. For example, as shown in FIG.
  • the coil 80 of the switching member SWa shown by S1 to S8 and the coil 80 of the switching member SWb shown by S9 to S16 Correspondingly, ON / OFF operation of the switching members SW aii and SW b of each stage
  • the switches SW1 to SW16 for operation are provided, and the switches SW1 to SW16 are used to control the energization of the coil 80 indicated by S1 to S16. You can do it.
  • the vacuum circuit breakers 86, 100, 101, and 102 may be turned on and off with switches 98, 98a, 68b, and 98c. it can.
  • 0 2 can be omitted.
  • the number of vacuum circuit breakers can be reduced by one as compared with the above-described embodiment, so that the cost can be further reduced and the size can be reduced.
  • the switching member S W a In the first and second embodiments of the invention described above, the switching member S W a,
  • SW bii, switching member SW c 3 ⁇ (1 mm etc. are provided with the solenoid 3 and the contact holding member 72 holding the movable contact M side by side, but it is not necessarily limited to this. Absent.
  • a solenoid node S having a movable iron plate (actuator) 81 driven by the magnetic force of the coil 80 and the coil 80 is provided, and a contact case is provided.
  • 70 is provided with a solenoid mounting portion 70a, and a solenoid S is provided on the contact holding member 72 in substantially the same straight line as the driving direction of the movable contact M. It may be configured to be mounted on the node mounting part 70a (see Fig. 40). In this case, the distance between the fixed contacts PI and P2 and the coil 80 is set so as not to discharge.
  • the lead wires 82, 83 of the solenoid S are provided at the end remote from the fixed contacts P1, P2. As a result, Discharge prevention measures can be taken between the lead wires 82 and 83 and the fixed contacts PI and P2.
  • the contact holding member 72 has a small hole 72c formed at the tip of the solenoid node S side, and the movable iron plate 81 is engaged with the small hole 72c.
  • the coil 80 is energized to generate a magnetic force in the iron core 79
  • the movable iron plate 81 is attracted to the iron core 79 by the magnetic force, and the contact holding member 72 is moved to the right in FIG.
  • the movable contacts M, M turn on the fixed contacts Pa, Pa and Pb, Pb, as in the first embodiment of the invention.
  • the solenoid S and the contacts M, P a , Pb can be more reliably insulated.
  • the contact holding member 72 from Teflon or the like, it becomes possible to withstand a higher voltage. This point can be applied to all of the above-described embodiments and the later-described embodiments.
  • the switching members SW aii, SW b «j, the switching members SW C i , SW di, etc. are of the magnet type using the solenoid S.
  • the example used is shown, but it is not limited to this.
  • the switching members SW aii and SW bii, and the switching members SW cj and SW di may be air-type switches as shown in FIG. 41.
  • the air cylinder 200 is used as a driving means instead of the solenoid S of the switching members SW aij and SW bii and the switching members SW ci and SW di. Provided.
  • the air cylinder 200 is connected to the cylinder body 200 as shown in FIG. 1, a piston 202 disposed in the cylinder body 201, and a piston rod 203 integral with the piston 202.
  • the piston rod 203 is engaged with the contact holding member 72 in series.
  • the cylinder body 201 has air chambers A and B defined by pistons 202, and ports 2 that open to the air chambers A and B, respectively. 0 1 a and 2 0 1 b are formed. This port 201b is open to the atmosphere.
  • the operation of the air cylinder 200 is controlled by an air control circuit AC.
  • the air control circuit AC has an air compressor 204, an air tank 205 and an electromagnetic valve 206.
  • An air compressor 204 is connected to a port 201 a of the air cylinder 200 via an air tank 205 and an electromagnetic valve 206.
  • An electromagnetic valve 208 and a pressure sensor 209 are connected to a pipe 207 connecting the port 209a and the port 201a.
  • the solenoid valve 208 opens the air chamber A to the atmosphere when activated.
  • the pressure detection signal from the pressure sensor 209 is input to the arithmetic and control circuit 210, and the air compressor 204 and the electromagnetic valves 206 and 208 are sent to the arithmetic and control circuit 210.
  • the operation is controlled more.
  • a pressure sensor 211 is connected to the air tank 205, and a pressure detection signal from the pressure sensor 211 is also input to the arithmetic and control circuit 210.
  • the arithmetic and control circuit 21 operates the air compressor 204 to store compressed air in the air tank 205. Accordingly, when the pressure from the pressure sensor 211 reaches a predetermined value, the operation of the air compressor 204 is stopped. .
  • the arithmetic and control circuit 210 controls the operation of the switches 94, 95, 96 and the like to operate and open the electromagnetic valve 206. This allows. Compressed air is guided from the air tank 205 to the air chamber A of the cylinder body 201 via the pipe 207. This compressed air moves the piston 202 to the right by staking the panel force of the spring 73 shown in Figs. 18 and 19 and moving the movable contact M to the fixed contacts Pl, P 2 and press contact. The arithmetic and control circuit 210 closes the electromagnetic valve 206 when the pressure detection signal from the pressure sensor 209 exceeds a predetermined value and the change in the pressure detection signal becomes constant. Let it.
  • the arithmetic control circuit 2 1 0 Sui etching member SW aii, SW b. I, scan I Tsuchingu member SW ci, in use the load test SW d 5 and the like, the pressure is a predetermined value from the pressure sensor 2 0 8
  • the electromagnetic valve 206 is opened and compressed air is supplied to the air chamber A again.
  • the arithmetic control circuit 210 opens the solenoid valve 208 to open the air chamber A to the atmosphere.
  • the contact holding member 72, the piston rod 203, and the piston 202 are displaced to the left in FIG. 42 by the panel force of the spring 73.
  • the air in the air chamber A is exhausted to the atmosphere via the electromagnetic valve 208, and the movable contact M is separated from the fixed contacts P1, P2.
  • each resistor unit 42, 43, 44 has a resistor body 57R, 57S, 5R.
  • resistor body 57R, 57S, 5R a resistor body 57R, 57S, 5R.
  • the number of stages of the resistor assemblies R i, S i, ⁇ , and the number of stages should be reduced to, for example, two or three, and As shown in 43 and 44, separately provided resistor units 42, 43 and
  • the number of stages of the resistance assemblies R i and S i ( ⁇ ) is set to one for convenience of illustration, but actually two or three.
  • the resistance units 42, 43, and 44 have metal box-shaped frames 301, 301, and 301, respectively. It is necessary to arrange an insulating member 302 between 3, 4 and 4, and to have a certain insulation distance between the frame 301 and the resistor assembly Ri, Si, ⁇ . is there. For this reason, the intervals between the resistor bodies 57 R, 57 S, and 57 T become large, and the height of the dry load test apparatus 300 tends to be high, which is not desirable.
  • a dry load test apparatus 400 incorporating only 57 S and 57 resistance assemblies 1 S i may be used.
  • the dry load test apparatus 400 has a rectangular parallelepiped (box-like) metal (eg, iron) frame 401 having four side surfaces and two upper and lower surfaces opened, and a frame 4. It has insulating plates 402 to 405 that close the opening to the side of 01. Then, the resistor bodies 57 R, 5 The 7 S, 57 T resistor assembly R i, S., T, is fixed between bridge plates 402, 404.
  • the dry load test apparatus 400 can be much smaller in height than the dry load test apparatus 300.
  • the number of stages of the resistor assemblies R., S i, and T i is set to one for convenience of illustration, but the number is actually two to three.
  • the insulating plates 403 and 405 are removed from the side force of the frame 401, and the two opposing side surfaces located between the insulating plates 402 and 404 of the frame 401 are removed.
  • the motorized fan 50 may be attached to one of the openings as shown in Fig. 45B, and the upper and lower openings of the frame 401 may be closed. .
  • the cooling air from the electric fan 50 flows into the frame 401 from the opening on the side of the frame 401 as shown by the arrow 401a. After cooling the internal resistance element, it is exhausted from the opening on the other side. With this configuration, the height of the dry load test device 400 can be further reduced, so that the dry load test device 400 can be incorporated into a small truck.
  • the electric fan 50 is attached to the frame 41, and the cooling air generated from the electric fan 50 is indicated by an arrow 401a through the insulation hood 53. As described above, the fluid flows into the frame 401 from the opening force on the side surface of the frame 401.
  • the R-phase resistance unit 42, the S-phase resistance unit 43, and the T-phase resistance unit 44 are provided one by one. It is not necessarily limited to this.
  • the resistance elements r, of the resistance units 42, 43, and 44 are connected in series for 660 V, and the resistance units 42, 43 connected in series with , 44 are provided as shown in Fig. 48A, and two sets of each resistor unit 42,
  • the dry load test apparatus 40 provided with the resistance units 42, 43, and 44 is mounted on the track 30 and the dry load test apparatus 40 is provided. After transporting the test equipment 40 to the site where the electric load test is to be performed by the track 30, perform the electric load test with the dry load test equipment 40 mounted on the track 30. However, this is not necessarily the case.
  • the resistor units 42, 43, and 44 corresponding to the R, S, and T phases are removably mounted on the truck 30 loading platform. Please keep it. Then, the resistance units 42, 43, and 44 are transported to the site where the electric load test is to be performed by the track 30, and the tracks 30 are then transferred from the track 30 to the site. Remove and remove from track 30. After that, the resistance units 42, 43, and 44 are installed on the site with the configuration as in the first embodiment of the invention, and the electric load test of the power source such as the generator at the site is started. . In FIG. 45 to FIG. 47, only one resistor assembly R i, S,, T i is shown for convenience of explanation, but actually, several are provided in multiple stages.
  • the dry load test apparatus is a tuft-shaped dry load test apparatus including a large number of elongated resistive elements that are flatly arranged at intervals and connected in series at the ends.
  • the resistance elements of the multi-stage resistor assembly are provided.
  • a multi-stage high-voltage load test resistor body provided with a number of corresponding resistor element arrays, and one end connected to one end of each of the resistor elements in the resistor element array.
  • the invention according to claim 2 is characterized in that one end of the first switching member is connected to each end of the resistance element of at least some of the resistance element rows, respectively. With this configuration, the number of parts can be minimized.
  • the invention of claim 4 is the invention according to claim 1, wherein a short-circuit means for selectively short-circuiting the plurality of inter-assembly conductive members is provided, so that a plurality of inter-assembly conductive members are connected.
  • the resistance value of the resistor assembly can be set more finely depending on the method (short circuit).
  • the short-circuit means is a second switching member, so that the ON / OFF operation of the first and second switching members enables A combination of resistor assemblies to be short-circuited can be selected easily and quickly.
  • the invention according to claim 6 is the device according to claim 5, wherein the switching member interrupts the first and second fixed contacts with one set of a plurality of fixed contact pairs and the first and second fixed contacts of each of the fixed contact pairs.
  • the plurality of first fixed contacts and the second fixed contacts are connected to each other, so that they can be used for high voltage with a simple structure.
  • the invention according to claim 7 is the invention according to claim 6, wherein the driving means is a solenoid that is operated and controlled by an operation panel and a control circuit.
  • the driving means is a solenoid that is operated and controlled by an operation panel and a control circuit.
  • the combination of assemblies can be selected easily and quickly and automatically.
  • the invention according to claim 8 is the method according to claim 7, wherein the solenoid is a coil and a coil.
  • the actuator has an actuator driven by the magnetic force of the coil, and the solenoid is arranged on the same straight line as the movable contact and its driving direction. The withstand voltage between the two can be easily secured.
  • the driving means is an air cylinder whose operation is controlled by an air control circuit, so that the withstand voltage with respect to the fixed contact and other parts can be easily secured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Drying Of Solid Materials (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Control Of Electric Motors In General (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

明 細 書
乾式負荷試験装置 技術分野
本発明は、 例えば交流発電機やその他の電源等の電気負荷試験に用い られる乾式負荷試験装置に関する ものである。
背景技術
< 自家用発電機の負荷試験の必要性 >
近年、 例えば工場, デパー ト, 電算ビル, 医療機関, 商業ビル等の電 力を必要等する施設 (建物) においては、 停電時にあっても安定的に電 力供給がな されるのが望ま しい。 このため、 こ の様な電力を必要とする 施設においては、 三相交流発電機等の自家用発電機を設置して、 停電時 に自家用発電機を緊急に稼働させて施設内に電力を供給するこ と によ り 、 停電時においても、 電力を安定的に供給する こ とが行われている。
こ の様な自家用発電機は常時運転操作される も のではなく 、 あく まで 緊急停電時に限られる ものであ り 、 しかもその と き には確実に動く こ と が要求される。このため、 自家甩発電機が緊急停電時に正常に運転出来る よ う 、 日頃から定期的に負荷試験を行う こ とが要求される。
こ の 自家用発電機の負荷試験の方法と しては、 自家用発電機を実際に 稼働させて電力を生成し、 工場あるいはデパー ト 内で実際に電力を使用 する機器 (室内の照明、 クーラー等の電気機器) に前記生成した電力を 供給して行う のがべス トである。 しかし、 当該負荷試験が長時間と な り 、 しかも十数回に及ぶ発電機電源の入り 切 り テス ト、 並びに急激な電力の 容量ア ップ試験もあるため、 実際に電力を必要とする機器 (例えば室内 の照明、 クーラー等の電気機器) を使用 して負荷試験を行 う のは困難で あ り 、 試験に適さない。
従って、 実際には、 発電機の容量に見合った容量を有する負荷抵抗を 備えた負荷試験用の抵抗装置を使用 して、 自家用発電機の負荷試験を行 う様にしているのが現状である。
ぐ負荷試験装置の従来例〉
また、 上述したよ う な 自家用発電機には三相交流発電機が用いられて いる。 こ のため、 特開平 6 — 3 4 7 2 5 号公報ゃ特開平 7 — 4 3 4 3 6 号公報等に開示された乾式負荷試験装置では、 三相交流発電機の R相、 S相、 T相に対応する負荷が得られる よ う に、 ス タ ー結線した 3つの固 定抵抗ュニッ トが用いられている。
しかも、 こ の各固定抵抗ユニ ッ ト は、 複数の棒状の抵抗素子からなる 抵抗組立体を備える と共に、 複数の抵抗素子の組み合わせで負荷容量を 設定する様にしている。
尚、 この公報に開示された装置以外にも、 負荷試験のための負荷容量 の切 り 替え設定を し得る様に している ものがある。 例えば特開平 9 — 1 5 3 0 7号公報, 特開平 9 — 1 5 3 0 8 号公報, 特開平 9 — 1 5 3 0 9 号公報等に開示された様なものもある。 これらの公報に開示された装置 では、 複数の棒状の抵抗素子からなる抵抗組立体を多数用意して、 こ の 多数の抵抗組立体を上下に多段に配置する こ と によ り 、 こ の多数の抵抗 組立体から負荷用抵抗回路を形成する よ う に している。 そ して、 こ の多 段の抵抗組立体の切 り 替え組み合わせによ り 、 負荷用抵抗回路の抵抗値 を変えるよ う.にしている。
また、 上述の様な負荷試験用の負荷抵抗の抵抗値を選択するための切 り 替え選択手段が設け られた負荷試験用抵抗装置と しては、 例えば特開 2 0 0 0 - 1 9 2 3 1 ( P 2 0 0 0 — 1 9 2 3 1 A) 号公報に開示され たよ う なも のもある。
<移動タイプの三相交流発電機用負荷試験装置 >
と こ ろで、 三相交流発電機の負荷試験用の抵抗装置には、 工場やデバ ー ト、 ポンプ場、 病院等に常設しておく 常設タイ プと、 車両に搭載して 負荷抵抗試験を行 う と きだけ負荷試験の必要とする施設まで搬送して使 用する移動タイ プと がある。 例えば、 こ の移動タイ プの負荷試験装置と しては、 図 5 O A (特開平 9 — 1 5 3 0 7号公報参照) に示したよ う に、 トラ ック 1 の荷台 2上に乾式負荷試験装置 3 を搭載したも のがある。
こ の乾式負荷試験装置 3 は、 荷台 2上に取り付けられたフ レーム 4 と、 フ レー ム 4上に隣接して取 り 付け られた R相, S相, T相用の抵抗ュニ ッ ト 5 , 6 , 7 を有する。 この各抵抗ユニッ ト 5 , 6 , 7 は同一の構成 となってレ、る。
各抵抗ユニ ッ ト 5 , 6 , 7 は、 図 5 0 B に示したよ う に、 フ レー ム 4 上に配設されたベース枠 1 0 と、 フ レー ム 4 とベース枠 1 0 間に介装さ れた防振ゴム 1 1 と、 フ レーム 4 ,ベース枠 1 0 , 防振ゴム 1 1 及び固定 ボル ト 1 2 と 、 固定ボル ト 1 2 の両端部に螺着された固定ナツ ト 1 3 , 1 4 を有する。
また、 各抵抗ユニッ ト 5 , 6 , 7 は、 ベース枠 1 0及ぴフ レーム 4 の 下方に配置され、 且つフ レー ム 4 に取 り 付け られた電動フ ァ ン 1 5 と 、 ベース枠 1 0 上に固定された碍子 (絶縁部材) 1 6 と、 碍子 1 6 上に固 定され且つ上下端が開放するハウジング 1 7 と 、 電動フ ァ ン 1 5 からの 冷却風をハウジング 1 7 に導く フー ド 1 8 を有する。 こ のハウジング 1 7 は、 図 5 1 に示 したよ う に、 アングルから形成された六面体状のフ レ ーム 1 8 の側面開 口 を絶縁板 1 9 a , 1 9 b , 1 9 c , 1 9 d で閉成し たものである。
更に、 各抵抗ユニ ッ ト 5 , 6, 7 は、 ノヽウジング 1 7 内に配設 した抵 抗本体 2 0 R , 2 0 S , 2 0 Tを有する。 この抵抗本体 2 0 R , 2 0 S , 2 0 Tは、 上下に多段に配設した抵抗組立体 R ,, S . , T i [ i = 1 , 2 , 3 · · · η ]を有する。 この抵抗組立体 R ,, S i, T iは、 図 5 1 に示したよ う に、 平面上に並設され且つ両端部が絶縁板に保持された複数の棒状の 抵抗素子 ( ヒータ) 2 1 と 、 複数の抵抗素子 2 1 を直列に接続している 導電性接続片 2 2 を有する。
しかも、 抵抗ユニッ ト 5, 6 , 7 の抵抗組立体 R i, S ,, T iは、 図 5 2 , 5 3 に示したよ う に、 高電圧スィ ッチである個別真空遮断器 ( V C B ) B i [ i = 1 , 2 , 3 · · · η ]を介して高電圧スィ ッチである メ イ ン真 空遮断器 (メイ ン V C B ) M Bに接続されている。
こ の様に多段の抵抗組立体 R i, S i, T iを個別真空遮断器 (個別 V C B ) B ,で O N ' O F Fでき るよ う にする ご とで、 三相交流発電機のきめ 細かな負荷投入試験を行う こ とができ る様になつている。
即ち、 こ の様な構成において、 三相交流発電機 2 3 の負荷抵抗投入試 験を行う手順と しては、 以下に示すものと なる。
最初に三相交流発電機 2 3 の運転を開始して、 次にメ イ ン真空遮断機 M B を O N操作する。 次に、 多数の個別真空遮断器 (個別 V C B ) Β ,の いく つかを O N操作する。 この場合、 例えば、 三相交流発電機 2 3 の発 電能力に対する負荷が最初の 1 0分は 2 5 %、 次の 1 0分は 5 0 %、 次 の 1 0 分は 7 5 %、 最後の 1 0分は 1 0 0 % と なる よ う に、 1 0分ごと に多数の個別真空遮断器 (個別 V C B ) B iのレ、く つかを O N . O F F操 作する。 こ の様に所定時間毎に三相交流発電機 2 3 の発電能力に対する 負荷の割合を変更 しなが ら、 三相交流発電機 2 3 の負荷試験によ るデー タ を取る こ と によ り 、 三相交流発電機のきめ細かな負荷投入試験を行 う こ とができ る様になってレ、る。
しかしなが ら、 高額な真空遮断器 ( V C B ) は、 抵抗組立体 R ,,
S i, T i [ i = l , 2, 3 · · · η ]毎に設けられているため、 乾式負荷試験 装置の大幅な価格上昇を招 く ものと なる。 また、 極間の電位の確保並ぴ に耐圧等を考慮して真空遮断器 ( V C B ) Β ,と抵抗組立体 R !, S ,, T , [ i = 1 , 2, 3 · · · η ]と をケーブルで接続する場合に、 こ の接続ケー プルと真空遮断器 ( V C B ) Β ,と配置間隔 Wを 10セ ンチメ ー トル以上 離さなければな らない。 よってその結果、 抵抗装置自体がきわめて大型 化せざるを得ないものとなる。
そこ で、 本発明は、 小型で、 負荷抵抗試験ための負荷抵抗の抵抗値を き め細かく 設定でき る と共に、 装置の製造コ ス ト を安価にする こ と が出 来る乾式負荷試験装置を提供する こ と を目的とする ものである。
発明の開示
この 目的を達成するため、 この請求項 1 の発明の乾式負荷試験装置は、 鬲平状に間隔をおいて並設され且つ端部において直列に接続された多数 の細長い抵抗素子からなる扁平状の多数の抵抗組立体を備え、 前記多数 の抵抗組立体を扁平面が平行になる よ う に間隔をおいて多段に並設する こ と によ り 、 前記多段の抵抗組立体の抵抗素子の対応する もの同士から なる抵抗素子列が多数設け られた多段の高電圧負荷試験用の抵抗本体と、 前記抵抗素子列の抵抗素子の端部に一端部がそれぞれ接続されてスイ ツ チング部材列を構成する複数の多段の第 1 のスィ ツチング部材と、 前記 ス ィ ツチング部材列の第 1 のス ィ ツチング部材列の他端部同士をそれぞ れ接続する多数の組立体間導電部材と 、 前記多数の組立体間導電部材の いく つかを被試験用電源に接続する一つの高電圧用スィ ツチを備える こ と を特徴とする。
また、 請求項 2 の発明は、 請求項 1 において、 少なく と もい く つかの 前記抵抗素子列の抵抗素子の各端部に前記第 1 の ス ィ ツチング部材のー 端部がそれぞれ接続されて ス ィ ツチング部材列を構成している こ と 特 徴とする。
更に、 請求項 3 の発明は、 請求項 1 において、 全ての前記抵抗素子列 の抵抗素子の各端部に前記第 1 のス ィ ツチング部材の一端部がそれぞれ 接続されて、 前記各抵抗素子列に対応する ス ィ ツチング部材列を構成し ている こ と を特徴とする。
請求項 4 の発明は、 請求項 1 において、 前記多数の組立体間導電部材 同士を選択的に短絡する短絡手段が設けられているこ と を特徴とする。 請求項 5 の発明は、 請求項 4 において、 前記短絡手段は第 2 のスイ ツ チング部材であるこ と を特徴とする。
請求項 6 の発明は、 請求項 5 において、 前記スイ ッ チング部材は第 1 , 第 2 固定接点で一組の複数の固定接点対と前記各固定接点対の第 1 , 第 2 固定接点を断続させる複数の可動接点と、 前記可動接点を前記各固定 接点対の第 1 , 第 2 固定接点に対し進退駆動 して前記各固定接点対の第 1 , 第 2 固定接点を同時に断続させる駆動手段を備える と共に、 前記複 数の第 1 固定接点同士及び第 2 固定接点同士はそれぞれ互いに接続され ている こ と を特徴とする。
請求項 7 の発明は、 請求項 6 において、 前記駆動手段は操作パネルと 制御回路によ り 作動制御される ソ レ ノイ ドであるこ と を特徴とする。 請求項 8 の発明は、 請求項 7 において、 前記ソ レノ ィ ドはコイルと前 記コイ ルの磁力によ り 駆動されるァクチユエータ を備える と共に、 前記 ソ レノ ィ ドは前記可動接点とその駆動方向と略同一直線上に配設されて いるこ と を特徴とする。
請求項 9 の発明は、 請求項 6 において、 前記駆動手段はエア制御回路 によ り 作動制御されるエアシリ ンダである こ と を特徴とする。
尚、 こ の発明において乾式負荷試験装置は乾式電気負荷試験装置を意 味する ものである。 すなわち乾式負荷試験装置は、 発熱する負荷と して の抵抗素子を水で冷却せずに、 乾いた空気で冷却する よ う に している。 以下、 乾式負荷試験装置は、 こ の意味で用いる。 図面の簡単な説明
図 1
図 1 Aは こ の発明に係る乾式負荷試験装置を搭載した ト ラ ッ ク の平面 図、 図 1 Bは図 1 Aの側面図である。
図 2
図 1 A、 図 1 B に示 した装置収納用のボッ ク ス粋を断面して内部の乾 式負荷試験装置を概略的に示した概略平面図である。
図 3
図 2 の乾式負荷試験装置を矢印 A方向から見た概略側面図である。 図 4
図 2 の乾式負荷試験装置を矢印 B方向から見た概略側面図である。 図 5
図 1 〜図 4 の乾式負荷試験装置と被試験用電源と の一例を示す概略説 明図である。 図 6
図 3 の一部を拡大して斜めから見た部分斜視図である。
図 7
図 7 Aは図 3 , 図 4 の電動フ ァ ンの一部を破断して示 した抵抗ュニ ッ トの側面図、 図 7 Bは図 7 Aの絶縁板の説明図である。
図 8
図 7 Aの抵抗ュニ ッ ト と スィ ツチング部材と の関係を示す拡大断面図 である。
図 9
図 9 Aは図 8 に示した抵抗素子の一部を破断する と共に詳細に図示 し た説明図、 図 9 B は図 9 Aの抵抗素子の端部拡大構造を示す説明図、 図 9 Cは図 9 Aの抵抗素子の端部保持構造の他の例を示す説明図である。 図 1 0
図 1 〜図 8 の乾式負荷試験装置の回路図である。
図 1 1
図 1 0の部分拡大説明図である。
図 1 2
図 2 の矢印 A方向から見たスィ ツチング部材と組立体間導電部材と の 配置関係を示す説明図である。
図 1 3
図 2 の矢印 B方向から見たスイ ッ チング部材と組立体間導電部材と の 配置関係を示す説明図である。
図 1 4
図 1 0 の抵抗組立体と その抵抗組立体の抵抗素子を短絡する部材と の 関係を示す説明図である。 図 1 5
図 1 4 の抵抗組立体と ス ィ ツチング部材と の関係を示す部分拡大説明 図である。
図 1 6
図 1 5 に示したスイ ッチング部材の正面図である。
図 1 7
図 1 6 のスィ ツチング部材の底面図である。
図 1 8
図 1 6 のスイ ッチング部材の縦断面図である。
図 1 9
図 1 8 のスイ ッチング部材の作用説明図である。
図 2 0
図 1 6 のスイ ッチング部材の接点保持ケースの平面図である。
図 2 1
図 1 8 の ソ レノ ィ ドの左側面図である。
図 2 2
図 2 1 の平面図である。
図 2 3
図 1 6 に示 したス ィ ツチング部材の作動制御のための概略回路図であ る。
図 2 4
図 1 5 に示したスイ ッチング部材の制御回路図である。 .
図 2 5
図 1 4 に示した抵抗組立体の抵抗素子の接続例を示す概略説明図であ る。 図 2 6
図 2 5 の部分拡大説明図である。
図 2 7
図 2 5 の接続による抵抗組立体の抵抗値説明図である。
図 2 8
図 1 4 に示した抵抗組立体の抵抗素子の他の接続例を示す概略説明図 である。
図 2 9
図 2 8 の部分拡大説明図である。
図 3 0
図 2 8 の接続による抵抗組立体の抵抗値説明図である。
図 3 1
図 1 4 に示した抵抗組立体の抵抗素子の更に他の接続例を示す概略説 明図である。
図 3 2
図 3 1 の部分拡大説明図である。
図 3 3
図 3 1 の接続による抵抗組立体の抵抗値説明図である。
図 3 4
図 1 5 に示 したスィ ツチング部材の制御回路の他の例を示す説明図で ある。
図 3 5
こ の発明の実施の形態 2 にかかる乾式負荷試験装置の概略回路図であ る。
図 3 6 図 3 4の部分拡大説明図である。
図 3 7
図 3 5 のスイ ッチング部材の制御回路図である。
図 3 8
図 3 5 のスィ ツチング部材の制御回路図の他の例を示す説明図である。 図 3 9
図 1 6 〜図 1 8 に示したスイ ッチング部材の他の例を示す平面図であ る。
図 4 0
図 3 9 の底面図である。
図 4 1
図 1 6 〜図 1 8 に示したス イ ッ チ ン グ部材の更に他の例を示す平面図 である。
図 4 2
図 4 1 のスイ ッチング部材のエア制御回路図である。
図 4 3
他の乾式負荷試験装置の説明図である。
図 4 4
図 4 3 の右側面図である。
図 4 5
図 4 5 Aはこの発明の実施形態 4 にかかる乾式負荷試験装置の一部を 破断して示した側面図、 図 4 5 Bは一部を破断して示した図 4 5 Aの変 形例を示す側面図である。
図 4 6
図 4 5 Aの乾式負荷試験装置の右側面図である。 図 4 7
図 4 6 の平面図である。
図 4 8
図 4 8 Aはこの発明の抵抗ュニ ッ ト の接続例を模式的に示す説明図、 図 4 8 Bは図 4 8 Aの抵抗ュニ ッ ト の接続状態を示す説明図である。 図 4 9
こ の発明にかかる乾式負荷試験装置を搭載した ト ラ ッ ク の他の例を示 す平面図である。
図 5 0
従来の乾式負荷試験装置を搭載した ト ラ ック の側面図、 図 5 O Aの電 動フ ァ ンの一部を破断して示した抵抗ュニッ トの側面図である。
図 5 1
図 5 0 の抵抗組立体の説明図である。
図 5 2
図 5 0 の抵抗組立体の接続例を示す説明図である。
図 5 3
図 5 2の抵抗組立体の回路図である。
発明を実施するための最良の形態
【発明の実施の形態 i 】
以下、 この発明の実施の形態 1 を図 1 〜図 3 4 に基づいて説明する。 図 1 ( a ) はこ の発明に係る移動式乾式負荷試験装置すなわち移動式 電気負荷試験装置の平面図、 図 1 ( b ) は図 1 ( a ) の側面図である。
[構成]
この移動式乾式負荷試験装置は、 ト ラ ック 3 0 と乾式負荷試験装置 (電 気負荷試験装置) 4 0 を有する。 こ の ト ラ ッ ク 3 0 は、 荷台 3 1 と 、 荷 台 3 1 上に設け られたボ ッ ク ス 3 2 を有する。 このボッ クス 3 2 内に、 荷室 3 3 が設け られている。 そ して、 荷室 3 2 内に乾式負荷試験装置 4 0 が配設されている。
ぐ乾式負荷試験装置 4 0の概略構成 >
こ の乾式負荷試験装置 4 0 は、 図 1 ( b ) , 図 2, 図 3 , 図 4 に示した よ う に、 荷室 3 2 内に設け られたフ レーム 4 1 と 、 フ レーム 4 1 上に隣 接して前後に配設された R相, S相, T相用の抵抗ユニッ ト 4 2, 4 3 , 4 4 を有する (図 1 ( a ), 図 5 , 図 6参照)。 こ の各抵抗ユニ ッ ト 4 2 , 4 3, 4 4ほ同一の構成と なっている。
<各抵抗ユニッ ト 4 2, 4 3, 4 4 >
各抵抗ユニ ッ ト 4 2 , 4 3 , 4 4 は、 図 7 ( a ) に示したよ う に、 フ レーム 4 1 上に配設されたベース枠 4 5 と、 フ レーム 4 1 とベース枠 4 5 間に介装された耐,熱性で絶縁性の防振絶縁ゴム 4 6 と 、 防振絶縁ゴム 4 6 の上下両端に焼き付け固着されたプレー ト 4 7 , 4 7 と 、 プレー ト 4 7 , 4 7 と一体に設け られ且つフ レーム 4 1 及びベース枠 4 5 をそれ ぞれ貫通する固定ボル ト 4 8 , 4 8 と 、 固定ボル ト 4 8 , 4 8 の両端部 にそれぞれ螺着された固定ナツ ト 4 9, 4 9 を有する。
また、 各抵抗ユニ ッ ト 4 2 , 4 3 , 4 4 は、 ベース枠 4 5及ぴフ レー ム 4 1 の下方に配置され、 且つフ レーム 4 1 に取 り 付け られた電動フ ァ ン 5 0 と、 ベース枠 4 5 上に固定された碍子 (絶縁部材) 5 1 と、 碍子 5 1 上に固定され且つ上下端が開放するハウジング 5 2 (図 6参照) と、 電動フ ァ ン 5 0 からの冷却風をハウジング 5 2 に導く 絶縁フー ド 5 3 を 有する。 こ のノヽウジング 5 2 は、 図 8 に示したよ う に、 アングルから形 成された六面体状のフ レー ム 5 4 の側面開口 をエポキシ系の耐熱性材料 から形成された絶縁板 5 5 a , 5 5 b , 5 5 c , 5 5 d 等の側部開 口 閉 塞板で閉成したものである。 こ の絶縁板 5 5 a , 5 5 , 5 5 c (図 6 参照), 5 5 d は、 ポル ト · ナッ ト等の固定具 5 6 でフ レーム 5 4 に固定 されている。 尚、 絶縁板 5 5 b , 5 5 d等の側部開 p 閉塞板は、 絶縁材 料以外の耐熱不燃材の側部開 口 閉塞板に代える こ と ができ る。 こ の材料 と しては、 例えばアルミ ニウム板や鉄板を用いるこ どができる。
こ の絶縁板 5 5 a , 5 5 c には、 図 7 ( b ) に示したよ う に、 多数の 取付孔列 H i [ i = 1 , 2, 3 · · · n ]が上下に多段に等ピッチで形成され ている。 この取付孔列 H iは、 左右に等ピッチで配列した多数の取付孔 h i [ j = 1 , 2, 3 · · · m ]から形成されている。 本実施例では、 取付孔列 Hヽは 2 2列 ( i = n = 2 2 )、 取付孔 h ,は 1 6列 ( j = m = 1 6 ) に設 けられている。 尚、 取付孔 h jは 1 6 に限られる も のではなく 、 取付孔列 H ,も 2 2列に限られる ものではない。 尚、 上下の取付孔列 H iの取付孔 h 5は左右に半ピッチずら して互い違いに設けられている。
<各抵抗ユニッ ト 4 2, 4 3, 4 4の抵抗本体〉
更に、 各抵抗ユニ ッ ト 4 2, 4 3 , 4 4 は、 図 2 , 図 5 , 図 7 ( a ) に示したよ う に、 ノヽウジング 5 2内に配設した抵抗本体 5 7 R , 5 7 S , 5 7 Tを有する。 こ の抵抗本体 5 7 R, 5 7 S , 5 7 Tは、 取付孔列 H , に対応させて上下に多段に配設した多数の扁平状の抵抗組立体 R i, S T i [ i = 1 , 2 , 3 · · · !! ]を有する (図 1 0 , 図 1 1 参照)。 本実施例で は取付孔列 H ,が 2 2列であるので、 抵抗組立体 R i, S . , T iも取付孔 列 H iに対応して 2 2段に設けられている。 尚、 図 1 1 は、 抵抗組立体 R S i, の全体の接続関係を示したものであ り 、 図示の便宜上、 大き な符号のみを付している。 また、 図 1 0の抵抗組立体 R i, S i, T iの構 成は同じであるので、 抵抗組立体 R i, S Τ ;の共通部分を図 1 1 に拡 大して示し、 図 1 0 では図示の関係上付すこ と ができなかった符号を図 1 1 に付して説明する。
こ の抵抗組立体 R i, S i, は、 図 8 に示したよ う に、 扁平状 (平面 状) に並設され且つ両端部が絶縁板た複数の棒状の抵抗素子 ( ヒータ) r s [ j = 1 , 2, 3 · ' ·πι ]と、 隣接する複数の抵抗素子 ( ヒータ) r iを 端部において直列に接続している導電性接続片 5 8 a i , 5 8 b i -i [ j = 1, 2, 3 · · ·πιΖ 2 ]を有する。 この複数の抵抗素子 (ヒータ) r jは、 取付孔 h iに対応して配列されているので、 本実施例では取付孔 h ,に対 応して 1 6本有する。 上述のよ う に上下の取付孔列 H iの取付孔 h iは左 右に半ピッチずら して設けられているので、 上下の取付孔列 H ,の取付孔 h iに取 り 付け られた抵抗素子 r iは互いに左右に半ピッチずれて、 縦方 向の抵抗素子 r jはジグザグに配列される こ と になる。 これによ り 、 電動 フ ァ ン 5 0 によ り 下方から絶縁板 5 5 a, 5 5 b , 5 5 c 間に供給され る冷却風は上下の取付孔列 H iの取付孔 h iに取り 付けられた抵抗素子 r s に効率的に当たって取付孔列 H iの抵抗素子 r i全てを効率的に冷却する こ とになる。
尚、 多段の抵抗組立体 R t R nの各導電性接続片 5 8 a ,は上下に一列 に接続片列を構成し、 多段の抵抗組立体 R ,〜R nの各導電性接続片 5 8 b i- ,は上下に一列に接続片列を構成し、 多段の抵抗組立体 R i~ R nの各 抵抗素子 (ヒータ) r iは上下方向に一列に整列されて抵抗素子列を構成 している。
(抵抗組立体 R i, S T iの抵抗素子)
こ の抵抗素子 は、 図 9 Aに示したよ う に、 熱伝導性の高い金属材料 或いはステ ン レス鋼等から形成された筒体 5 9 と 、 筒体 5 9 の外周に固 着された放熱フ ィ ン 6 0 と 、 简体 5 9 の両端部内に一端部が同心に挿入 された棒状電極 6 1 , 6 1 と 、 棒状電極 6 1, 6 1 の中間部外周に一体 且つ同心に固着された絶縁体 (絶縁部材) 6 2, 6 2 を有する。 こ の絶 縁体 6 2 は、 セラ ミ ッ ク製の絶縁碍子等からな り 、 周面にホコ リ が付着 するのを防止する環状溝 6 2 a が形成されている。
また、 抵抗素子 r iは、 筒体 5 9 の中央に配設され且つ棒状電極 6 1, 6 1 に両端部が接続された抵抗線 (ニク ロ ム線等の ヒータ線) 6 3 と 、 筒体 5 9 の内面と棒状電極 6 1, 6 1 の一端部及ぴ抵抗線 6 3 と の間に 充填されたマグネシア等の絶縁材料 (絶縁部材) 6 4 と 、 棒状電極 6 1 の他端部に螺着された固定ナツ ト 6 5, 6 5 a を有する。
そ して、 導電性接続片 5 8 は、 固定ナッ ト 6 5, 6 5 a 間で締め付け 固定するこ とによ り 、 抵抗素子 r iに固定されている。
更に、 図 9 A、 図 9 B に示したよ う に、 筒体 5 9 の端部と棒状電極 6 1 との間に環状又は筒状の耐熱コーキング材 (耐熱シール材) 6 4 a を 嵌着し、 絶縁体 (絶縁部材) 6 2 で押さ え付ける よ う にする こ とで、 耐 熱コーキング材 6 4 a によ り 絶縁体 6 4 内に湿気が入らないよ う になつ ている。 また、 高い電圧に耐え得る よ う にするために、 絶縁体 6 2 の長 さ は例えば約 1 0 m m程度或いはそれ以上に設定されていて、 導電性接 続片 5 8 と筒体 5 9 との間の絶縁距離が十分に確保されている。
こ の筒体 5 9 の両端部近傍には耐熱性で弾性を有する絶縁部材 6 6 が 固定されている。 こ の絶縁部材 6 6 は、 耐熱性があ り 且つ弾性を有する シ リ コ ンゴム (合成樹脂) 等から形成されている。 また絶縁部材 6 6 の 中央部には、 環状取付溝 6 6 a が形成されている。
こ の抵抗組立体 R i, S i , T iの抵抗素子 ( ヒータ) r jは、 上述した よ う に取付孔列 H iの取付孔 h iに対応して配設されている。 そ して、 抵 抗素子 (ヒータ) r iは、 両端側の絶緣部材 6 6, 6 6 を絶縁板 5 5 a , 5 5 c の取付孔 h i, h iに嵌合して、 絶縁部材 6 6 , 6 6 の環状取付溝
6 6 a , 6 6 a に絶縁板 5 5 a, 5 5 c を係合させる こ と によ り 、 絶縁 板 5 5 a, 5 5 c に固定 (保持) されてレ、る。
こ の様に弾性を有する耐熱性があ り 且つ弾性を有する絶縁部材 6 6 で 筒体 5 9 を絶縁板 5 5 a, 5 5 c に保持させる こ と で、 ト ラ ッ クの移動 時の振動衝撃が抵抗素子 r iに伝わって、 抵抗素子 r iが振動衝撃等によ り破損するのを防止でき る。 また、 抵抗素子 r iを支持する'絶縁板 5 5 a , 5 5 c がエポキシ樹脂系の比較的耐熱性のある材料から形成されている が、 絶縁部材 6 6 を耐熱性があるシ リ コ ンゴム (合成樹脂) 等から形成 して、 抵抗素子 r ;の熱が直接に絶縁板 5 5 a , 5 5 c に伝達されないよ う にする こ と で、 絶緣板 5 5 a, 5 5 c の耐久性を向上させる こ と がで さる。
更に、 本実施例では、 絶縁部材 6 6 を耐熱性があ り 且つ弾性のあるシ リ コ ンゴム (合成樹脂) 等から形成しているが、 必ずしも これに限定さ れる ものではない。 すなわち、 ^式負荷試験装置 4 0 を ト ラ ッ ク に搭載 して移動しないで設置して使用する場合には、 絶縁部材 6 6 を図 9 じ の 様にセラ ミ ッ ク製の絶縁碍子 6 6 ' から形成して、 絶縁部材 6 6 ' に絶 縁板 5 5 a , 5 5 c 等を保持させる様にしても良い。
くスィ ツチング部材〉
また、 乾式負荷試験装置 4 0 は、 図 1 , 図 2 , 図 8 に示 したよ う に、 抵抗ユニッ ト 4 2 , 4 3, 4 4 と間隔をおいた状態で、 抵抗ユニッ ト 4 2 , 4 3, 4 4 を挟む位置に配設された絶縁板 6 7, 6 8 を有する (図 3, 図 4, 図 6参照)。 こ の絶縁板 6 7, 6 8 は、 抵抗ユニ ッ ト 4 2, 4 3, 4 4 の配列方向に延びて、 抵抗ユニ ッ ト 4 2 , 4 3, 4 4 の側方全 体を覆 う大き さ に形成されている。 こ の絶縁板 6 7, 6 8 は、 下端部が 図示しないボル ト . ナツ ト等の取付手段でフ レーム 4 1 に取 り 付け られ ている。
こ の絶縁板 6 7 , 6 8 の抵抗ユニ ッ ト 4 2 , 4 3 , 4 4側と は反対側 の面 6 7 a , 6 8 a には、 図 2 に示 したよ う に、 第 1 のスイ ッチング部 材列 S W a i, S W b ■ [ i = 1 , 2 , 3 , · ' · η ]が抵抗組立体 R i, S i, T iに対応して多段に配設されている (図 3 , 図 4、 図 1 2, 図 1 3 , 図 1 4参照)。
各第 1 のス イ ッ チン グ部材列 S W a S W b ,は、 抵抗組立体 R i, S i, T iの抵抗素子 ( ヒータ) r iの半分の数の第 1 のスイ ッチング部材 S W a ■ i , S W b ■ 5 [ j = 1 , 2 , 3 , · ' ·πιΖ 2 ]を有する。 こ の第 1 のス イ ツチング部材 S W a i i, S W b は、 常開接点を有する と共に、 絶縁 板 6 7 , 6 8 にそれぞれ取り付けられている。
(スィ ツチング部材 S W a ■ i , S W b uの構造)
この第 1 のスイ ッチング部材 S W a , S W b i iは、 図 1 6 〜図 2 3 に示したよ う な構造を有する。 即ち、 第 1 のスイ ッチング部材 S W a i i , S W b uはケース 6 9 を有する。 こ のケース 6 9 は、 互いに分離可能に 結合された高電圧に耐え得るテ フ ロ ン等の絶縁材料性の接点ケース (分 割ケース) 7 0 と高電圧に耐え得るテ フ ロ ン等の絶縁材料性のソ レノ ィ ドケー ス (分割ケース ) 7 1 を有する。 こ の接点ケース 7 0 には、 図 2 0 に示 したよ う に第 1 , 第 2 の固定接点 P a , P b からなる固定接点対 が 2組設け られている。 そ して、 固定接点 P a , P a は接点ケース 7 0 の一側に並設され、 固定接点 P b , P b は接点ケース 7 0 の他側に並設 されている。
また、 こ の固定接点 P a , P a と 固定接点 P b , P b と を挟む位置に は、 合成樹脂等の絶縁材料からなる接点保持部材 7 2 が固定接点 P a , P a の配列方向 と平行に移動可能に配置されている。 こ の接点移動部材 7 2 はスプリ ング 7 3 によ り 長手方向の一方 (図 1 8 〜図 2 0 の左方) にバネ付勢されている。
こ の接点保持部材 7 2 には図 1 8 , 図 1 9 に示したよ う に長手方向に 間隔をおいて左右に貫通する接点移動ス リ ッ ト 7 2 a , 7 2 a が形成さ れ、 接点移動ス リ ッ ト 7 2 a , 7 2 a の端壁の一方にはスプリ ング保持 用の突起 7 2 b , 7 2 b が形成されてレ、る。 この突起 7 2 b , 7 2 b に はスプリ ング 7 4, 7 4 の一端部が嵌合保持され、 このスプリ ング 7 4, 7 4 の他端部には板状の可動接点 M, Mの中央に設けた突起 7 5, 7 5 が嵌合保持されている。 こ のス プ リ ング 7 4, 7 4 は、 可動接点 M, M を接点移動ス リ ッ ト 7 2 a , 7 2 a の端壁に押しつけている。
こ の可動接点 Mの両端接点部は、 固定接点 P a, P b に对向 させられ ている。 しかも、 可動接点板 Mの両端接点部はスプリ ング 7 3 のパネ力 によ り 固定接点 P a , P b から離反させられていて、 接点 P a, P b は 常開接点と なっている。 尚、 固定接点 P a, P a は端子板 7 6 によ り 接 続され、 固定接点 P b, P b は端子板 7 7 によ り 接続されている。 こ の 構成によ り 、 接点 P a, P a , P b , P b がある程度の高電圧に耐え得 る よ う になってレヽる。
ソ レノ ィ ドケース 7 1 の開 口部内にはテフ ロ ン等の高電圧に耐え得る ベース板 7 8 a が配設されていて、 こ のベース板 7 8 a は.ケース 7 1 内 の空間 とケース 7 2 内の空間 と を高電圧に対して絶縁している。 こ の ソ レ ノ ィ ドケース 7 1 内にはベース板 7 8 a に固定したソ レノ ィ ド保持枠 7 8 が固定され、 こ の ソ レノ ィ ド保持枠 7 8 にはソ レノ ィ ド S が駆動手 段と して取り付けられている。
こ の ソ レノ ィ ド S は、 ソ レノ ィ ド保持枠 7 8 に固定され且つ接点保持 部材 7 2 と平行に延びる鉄心 7 9 と 、 鉄心 7 9 に捲回されたコ イ ル ( ソ レノ ィ ド本体) 8 0 と 、 鉄心 7 9 に対して進退回動可能にソ レノィ ド保 持枠 7 8 に保持された可動鉄板 8 1 と 、 テ フ ロ ン等の高電圧に耐え得る 材料から形成され且つ可動鉄板 8 1 に固着した絶縁係合板 8 1 a を有す る。 こ の絶縁係合板 8 1 a は可動鉄板 8 1 から更に下方に突出していて、 絶縁係合板 8 1 a の先端 (下端) 部は接点保持部材 7 2 の係合凹部 7 2 b に係合している。 そ して、 コイ ル 8 0 には リ ー ド線 8 2, 8 3 を介し て通電制御回路 8 4 が接続されている。
この リ ー ド線 8 2 , 8 3 は、 接点ケース 7 0 から離れた側の縁部にお いてソ レノ ィ ドケース 7 1 力 ら外部に引き出 されている。 これによ り 、 固定接点 P a, P b や可動接点 Mから リ ー ド線 8 2, 8 3 が離れる よ う に設定される ので、 固定接点 P a, P b や可動接点 Mと リ ー ド線 8 2 , 8 3 と の耐電圧度が向上する。
そ して、 通電制御回路 8 4 によ り コイル 8 0 に通電させる と 、 可動鉄 板 8 1 が固定鉄心 7 9 に磁力で吸引移動されられて、 固定鉄心 7 9 に磁 着されて、 ソ レノ イ ド S が作動 ( O N ) した状態と なる。 しかも、 この 吸引移動によ り 可動鉄板 8 1 と一体に移動する絶縁係合板 8 1 a が接点- 保持部材 7 2 をスプリ ング 7 3 のパネ力に抗して図 1 8 〜図 2 0 中、 右 方に移動させる。 これによ り 、 可動接点 Mが固定接点 P a , P b に当接 (接触) させられ、 固定接点 P a , P b が導通 (短絡) させられる様に なっている。
(スィ ツチング部材 S W a .5 , S W b uの導電性接続片への接続)
また、 第 1 のス イ ッ チング部材 S W a は一端 (固定接点 P a ) が導 電性接続片 5 8 a iにそれぞれ接続され、 第 1 のスィ ツチング部材 S W b i ,は一端 (固定接点 P a ) が.抵抗素子 Γ ιの導電性接続片が取り付け られ ていない端部 F に接続され、 残 り の第 1 のスィ ツチング部材 S W b は 一端 (固定接点 P a ) が導電性接続片 5 8 b i-,にそれぞれ接続されてい る。
ぐ組立体間導電部材〉
また、 上下に多段に配設された多数の抵抗組立体 S i, T iの第 1 のスイ ッ チング部材 S W a iの他端 (固定接点 P b ) は、 組立体間導電部 材 C a i [ j = l , 2, 3 ' ' '^ 2 ]にそれぞれ接続されて、 互いに導通 している。 同様に上下に多段に配設された多数の抵抗組立体 R S >, Τ ,の第 1 のスィ ッ チング部材 S W b ,の他端 (固定接点 P b ) は、 組立 体間導電部材 C b i [ j = l, 2, 3 · · ·πιΖ 2 ]にそれぞれ接続されて、 互いに導通している。 また、 多数の抵抗組立体 R i, S i, T iの抵抗素子 r は導電性接続片が取り 付けられていない端部 Eは、 組立体間導電部材
C b (»/2) + 1に接続されて、 互いに導通している。
<抵抗組立体 R i, S i, T iの接続関係〉
抵抗組立体 R i, S i , T iの接続関係は図 1 4 に示したよ う になつてい る。 この図 1 4 は抵抗組立体 R i, S i, T ,を同時に図示しているので、 図 1 4 では図示の便宜上符号は必要最小限のものを付して説明 し、 詳細 な説明は図 1 5 で説明する。 尚、 図 1 4 , 1 5 では説明の便宜上、 図 8 に示した絶縁板 6 7, 6 8 の図示は省略してある。
こ の抵抗組立体 R ,の組立体間導電部材 C b /2) + 1は配線 8 5 Rを介 してメ イ ンの真空遮断器 ( V C B ) 8 6 の接点 8 6 R ,に接続され、 抵抗 組立体 S iの組立体間導電部材 C b (10/2) + 1は配線 8 5 S を介して高電圧 用スィ ッチであるメイ ンの真空遮断器 ( V C B ) 8 6 の接点 8 6 S ,に接 続され、 抵抗組立体 T iの組立体間導電部材 C b /2) + 1は配線 8 5 Tを 介してメ イ ンの真空遮断器 ( V C B ) 8 6 の接点 8 6 T ,に接続されてい る。 こ の真空遮断器 ( V C B ) 8 6 の接点 8 6 R 2, 8 6 S 2, 8 6 T 2は 配線 8 7 R, 8 7 S , 8 7 Τを介して三相交流発電機 8 8 の R, S, T 相の接点 8 8 R, 8 8 S , 8 8 Τに接続されている。
上述したよ う に、 スイ ッチング部材 S W a , S W b と組立体間導 電部材 C a C b j , C b ^/ +iを設ける こ とで、 従来は抵抗組立体 R S , , Τ ,の各段毎に真空遮断器 ( V C B ) で O N ' O F F していた構 造が不要と な り 、 真空遮断器 (V C B ) は一つのメ イ ンの真空遮断器 (V C B ) 8 6 のみで良く なる。
ぐ負荷切換接続部材〉
乾式負荷試験装置 4 0 は、 抵抗組立体 R i, S ,, T ,のい く つかの抵抗 素子 r iを短絡させる短絡手段を有する。 この短絡手段と しては、 短絡用 の接続線 8 9, 8 9 、 短絡用の接続線 9 0, 9 0, 9 0 、 導電板 (導電 性接続部材) 9 1, 9 1 , 9 1 及び互いに接続された導電板 (導電性接 続部材) 9 2, 9 2 , 9 2 を用意しておく 。
<通電制御回路 8 4 >
また、 上述の通電制御回路 8 4 には、 図 2 4 に示 したよ う に、 低電圧 負荷試験用の低圧スィ ツチ 9 3 、 高電圧負荷試験用の高圧スィ ツチ 9 4、 高電圧負荷試験用の高圧スィ ッ チ 9 5 が接続されている と共に、 電源 9 6 が電源スィ ッ チ 9 7 を介して接続されている。 また、 電動フ ァ ン 5 0 は通電制御回路 8 4 によ り 駆動制御される様になつている。
[作用]
次に、 こ の様な構成の乾式負荷試験装置 4 0 の作用を説明する。
こ の様な構成においては、 ト ラ ッ ク 3 0 によ り 乾式負荷試験装置 4 0 を負荷試験を行 う 現場まで移動させる。 本実施例では、 電圧負荷試験の 対象と なる電気機器と して三相交流発電機 8 8 が設置されている場所と なる。
尚、 上述したよ う に、 本実施例の各抵抗ユニ ッ ト 4 2 , 4 3 , 4 4 に 設けた抵抗本体 5 7 R , 5 7 S , 5 7 Tは、 2 2段の扁平状の抵抗組立 体 R ,, S T ,を有する。 しかも、 抵抗組立体 R i, S i, Τ ,の棒状の 抵抗素子 r ,は 1 6本設けられている。
しかも、 上述したスイ ッチング部材列 S W a ! , S W b ,のスィ ッチン グ部材 S W a u , S W b i iは各 8個設け られている。 従って、 スィ ッ チ ング部材 S W a の ソ レ ノ ィ ド本体である コ イ ル 8 0 を図 2 4 の S :! 〜 S 8 で示 したよ う に対応させ、 スイ ッチング部材 S W b i iのソ レノィ ド 本体である コイル 8 0 を S 9〜 S 1 6 で示したよ う に対応させて電圧負 荷試験の例を以下に説明する。
また、 本実施例では、 電圧負荷試験の対象と なる電気機器と して三相 交流発電機 8 8 を用いてい る ので、 こ の三相交流発電機 8 8 を乾式負荷 試験装置 4 0 の抵抗本体 5 7 R, 5 7 S , 5 7 Tに図 5 の如 く 接続した 場合について説明する。
( 1 ) 低電圧負荷試験
例えば 4 0 0 Vの低電圧負荷試験を行 う場合には、 まず、 図 2 5 , 図 2 6 に示したよ う に、 抵抗本体 5 7 Rの組立体間導電部材 C b 〜 C b (m ハ) + 1を導電板 9 1 で導通 (短絡) させ、 抵抗本体 5 7 Sの組立体間導電 部材 C b ! C b ^/ +!を導電板 9 1 で導通 (短絡) させる と共に、 抵 抗本体 5 ァ 丁の組立体間導電部材じ :〜じ (m/2) + 1を導電板 9 1 で導 通 (短絡) させる。
これに よ り 、 三相交流発電機 8 8 の R, S, T相には、 導電性接続片 5 8 b 】〜 5 8 b スィ ツチング部材列 S W b ,〜 S W b nの全ての スイ ッ チング部材 S W b i j , 抵抗本体 5 7 R, 5 7 S, 5 7 T の組立体 間導電部材 C b ! C b ^/ +!, 導電板 9 1 ', 配線 8 5 R, 8 5 S , 8 5 T及ぴ真空遮断器 8 6 を介して抵抗組立体 R ,, S ,, T ,の抵抗素子 r iが接続されている。
一方、 抵抗本体 5 7 Rの組立体間導電部材 C a ,〜 C a m/2を導電板 9 2 で導通 (短絡) させ、 抵抗本体 5 7 Sの組立体間 ¾電部材 C a i~ C a m/ 2を導電板 9 2で導通 (短絡) させ、 抵抗本体 5 7 Tの組立体間導電部 材 C a 2を導電板 9 2 で導通 (短絡) させる。 これによ り 、 抵 抗本体 5 7 R, 5 7 S , 5 7 Tを構成する抵抗組立体 R i, S T iの抵 抗素子 r ,は、 導電性接続片 5 8 a !~ 5 8 a (m/2), 組立体間導電部材 C a i - C a m/ 2 , スィ ツチング部材列 S W a ,〜 S W a nの全てのスィ ツチ ング部材 S W a 及び導電板 9 2 を介して電圧が 0 と なる 中性点に互い に接続される。
こ の状態では、 図 2 7 に示したよ う に、 抵抗組立体 R i, S i, Τ ,の 1 6本の抵抗素子 r iは全て並列に接続した状態と なる。 しかも、 三相交流 発電機 8 8 の R, S , T相には、 全ての抵抗素子 r iを並列に接続して負 荷抵抗値を小さ く した抵抗組立体 R i, S ., T i (即ち低抵抗値の抵抗素 子本体 5 7 R , 5 7 S , 5 7 T ) が接続される こ と になる。
こ の様な接続において、 三相交流発電機 8 8 を作動させる一方、 電源 スィ ッ チ 9 7 を O N させて通電制御回路 8 4 を作動させる。 こ の後、 低 圧用ス ィ ッ チ 9 3 を O N させる。 こ の O N操作によ り 通電制御回路 8 4 は、 まずメ イ ンの真空遮断器 8 6 を O N させた後、 スイ ッ チング部材 S W a . i , S W b uの コ イ ル 8 0 ( S 1 〜 S 1 6 ) の全てに通電させて、 スイ ッ チング部材 S W a i i, S W b i iの全てを O Nさせる。
これによ り 、 三相交流発電機 8 8 からめ出力 (電圧, 電流) がこの抵 抗組立体 R i, S i, T iの抵抗素子 r iに入力 され、 負荷試験が開始され る。 これによ り 、 抵抗組立体 R i, S i, Τ ,の抵抗素子 に通電されて、 抵抗素子 r iが発熱する。
この際、 通電制御回路 8 4 は、 抵抗ユニッ ト 4 2, 4 3, 4 4 の各電 動フ ァ ン 5 0 を作動させて、 各電動フ ァ ン 5 0 からの冷却風を抵抗ュニ ッ ト 4 2, 4 3, 4 4 のハウジング 5 2 に送風する。 そ して、 こ の冷却 風は、 抵抗ュニッ ト 4 2 , 4 3, 4 4 の抵抗素子 r iで発生した熱を放熱 フ ィ ン 6 0の周囲を流れる際に吸収して、 抵抗素子 r iを冷却した後、 荷 室 3 3 を形成するボッ ク ス 3 2 の図示しない排気口から外部に排気され る。
尚、 この場合でも、 各段のスイ ッチング部材 S W a i i, S W b i iの O Ν · O F F制御をする こ と で、 抵抗本体 5 7 R , 5 7 S , 5 7 T力、ら三 相交流発電機 8 8 にかける負荷抵抗値を所定時間毎に例えば 2 5 %, 5 0 % , 7 5 %, 1 0 0 %と変化させて、 負荷試験を行う 。 また、 本実施 例では、 扁平状の抵抗組立体 R i, S i, T ,が 2 2段設けられているので、 三相交流発電機 8 8 にかける負荷抵抗値の割合を更に細かく 設定する こ と もできる。 例えば、 5 %、 1 0 %ごとの負荷試験を行う こ と もでき る。 ( 2 ) 3 3 0 0. Vの高電圧負荷試験
例えば 3 3 0 0 Vの高電圧負荷試験を行 う 場合には、 まず、 図 2 8 に 示したよ う に、 抵抗本体 5 7 Rの組立体間導電部材 C b 5と抵抗本体 5 7 Sの組立体間導電部材 C b 5を接続線 8 9 で接続して短絡させ、 抵抗本体 5 7 Sの組立体間導電部材 C b 5と抵抗本体 5 7 Tの組立体間導電部材 C b 5を接続線 8 9 で接続して短絡させる。 また、 各抵抗本体 5 7 R, 5 7 S, 5 7 Tの組立体間導電部材 C b iと C b (m/2) + 1を接続線 9 0, 9 0, 9 0 でそれぞれ接続して短絡させる (図 2 9参照)。
こ の状態では、 図 3 0 に示したよ う に、 各抵抗組立体 R i, S T iの 各 1 6本の抵抗素子 r iは半分の 8本の抵抗素子 r iが並列に接続された 値の抵抗体 8 r , 8 r を 2つ並列に接続して、 並列な抵抗体 8 r, 8 r の一端側をスィ ツチング部材 S W b i 5及び接続線 8 9 , 8 9介して電圧 が 0 と なる中性点に互いに接続される。
また、 三相交流発電機 8 8 の R, S , T相には、 抵抗本体 5 7 R, 5
7 S , 5 7 Tの各組立体間導電部材 C b C b (m/2) + 1が配線 9 0, 9 0, 9 0 、 配線 8 5 1 , 8 5 S , 8 5 T及ぴ真空遮断器 8 6 を介して接 続されている。
従って、 三相交流発電機 8 8 の R, S, T相には、 並列に接続して抵 抗値を中 ぐらいの値にした抵抗体 8 r, 8 r を有する抵抗組立体 R i, S Τ , (即ち中抵抗値の抵抗本体 5 7 R, 5 7 S , 5 7 T ) が接続され るこ と になる。
こ の様な接続において、 三相交流発電機 8 8 を作動させる一方、 電源 スィ ッチ 9 7 を O N させて通電制御回路 8 4 を作動させる。 こ の後、 高 圧用スィ ツチ 9 4 を O N させる。 この O N操作によ り 通電制御回路 8 4 は、 まずメ イ ンの真空遮断器 8 6 を O N させた後、 スイ ッチング部材 S W b ■: , S W b i sの コ イ ル 8 0 ( S 1 , S 5 ) に通電させて、 スィ ッ チ ング部材 S W b i S W b i Sを O N させる。 これによ り 、 三相交流発電 機 8 8 か らの出力 (電圧, 電流) がこ の抵抗組立体 R ,, S i, T iの抵抗 体 8 r , 8 r に入力 され、 負荷試験が開始される。 これによ り 、 抵抗体
8 r, 8 r を構成する各抵抗素子 r iに通電されて、 抵抗素子 r iが発熱 する。
この際、 通電制御回路 8 4 は、 抵抗ユニッ ト 4 2, 4 3, 4 4 の各電 動ファ ン 5 0 を作動させて、 各電動フ ァ ン 5 0 からの冷却風を抵抗ュニ ッ ト 4 2, 4 3, 4 4 のハウジング 5 2 に送風する。 そ して、 この冷却 風は、 抵抗ユニッ ト 4 2 , 4 3, 4 4 の抵抗素子 Γ ,で発生した熱を放熱 フ ィ ン 6 0の周囲を流れる際に吸収して、 抵抗素子 r iを冷却した後、 荷 室 3 3 を形成するボッ ク ス 3 2 の図示 しない排気口から外部に排気され る。
尚、 この場合でも、 各段のスイ ッチング部材 S W a i i, S W b uの O Ν · O F F制御をする こ と で、 抵抗本体 5 7 R , 5 7 S , 5 7 T力、ら三 相交流発電機 8 8 にかける負荷抵抗値を所定時間毎に例えば 2 5 % , 5 0 % , 7 5 %, 1 0 0 %と変化させて、 負荷試験を行う。 また、 本実施 例では、 扁平状の抵抗組立体 R i, S i, T iが 2 2段設けられているので、 三相交流発電機 8 8 にかける負荷抵抗値の割合を更に細かく 設定する こ と もできる。 例えば、 5 %、 1 0 %ごとの負荷試験を行う こ と もでき る。
( 3 ) 6 6 0 0 Vの高電圧負荷試験
例えば 6 6 0 0 Vの高電圧負荷試験を行 う 場合には、 図 3 1 に示した よ う に、 各抵抗本体 5 7 R, 5 7 S , 5 7 Tの組立体間導電部材 C b C b C b ,を接続線 8 9 , 8 9, 8 9 でそれぞれ接続して短絡させる
(図 3 2参照)。 これに よ り 、 各抵抗組立体 R i, S ., Τ の各抵抗素子 r r i r 16はスイ ッチング部材, S W b i i e, S W b i l 6, S W b . 16及ぴ接続線 8 9, 8 9介して電圧が 0 と なる 中性点に互いに接続され る。
また、 三相交流発電機 8 8 の R, S , T相には、 抵抗本体 5 7 R, 5 7 S , 5 7 Tの各組立体間導電部材 C b (m/2) +1が配線 9 0, 9 0, 9 0、 配線 8 5 R, 8 5 S, 8 5 T及び真空遮断器 8 6 を介して接続されてい る。
この状態では、 図 3 3 に示したよ う に、 各抵抗組立体 R i, S i, T iは、 1 6本の抵抗素子 r jの全ての抵抗素子 r iが直列に接続されて、 抵抗値 が高抵抗となった状態となる。
従って、 三相交流発電機 8 8 の R, S , T相には、 全ての抵抗素子 r , を直列にに接続した髙抵抗値の抵抗組立体 R i, S . , T . (即ち高抵抗値 の抵抗本体 5 7 R, 5 7 S , 5 7 T ) が接続される こ とになる。
こ の様な接続において、 三相交流発電機 8 8 を作動させる一方、 電源 スィ ッ チ 9 7 を O N させて通電制御回路 8 4 を作動させる。 こ の後、 高 圧用スィ ッチ 9 5 を O N させる。 こ の O N操作によ り 通電制御回路 8 4 は、 まずメ イ ンの真空遮断器 8 6 を O N させた後、 スイ ッ チング部材 S W b Hのコイル 8 0 ( S 1 ) に通電させて、 スイ ッチング部材 S W b H を O N させる。 これによ り 、 三相交流発電機 8 8 からの出力 (電圧, 電 流) がこ の抵抗組立体 R i, S i, T iの抵抗素子 r iに通電されて、 抵抗 素子 r iが発熱する。
こ の際、 通電制御回路 8 4 は、 抵抗ユニッ ト 4 2, 4 3, 4 4 の各電 動フ ァ ン 5 0 を作動させて、 各電動フ ァ ン 5 0 からの冷却風を抵抗ュニ ッ ト 4 2, 4 3, 4 4 のハウジング 5 2 に送風する。 そ して、 こ の冷却 風は、 抵抗ユニッ ト 4 2, 4 3, 4 4 の抵抗素子 r !で発生した熱を放熱 フ ィ ン 6 0の周囲を流れる際に吸収して、 抵抗素子 r ,を冷却した後、 荷 室 3 3 を形成するボッ クス 3 2 の図示しない排気口 から外部に排気され る。
尚、 この場合でも、 各段のスイ ッチング部材 S W a i i, S W b i iの O Ν · O F F制御をする こ と で、 抵抗本体 5 7 R, 5 7 S , 5 7 T力、ら三 相交流発電機 8 8 にかける負荷抵抗値を所定時間毎に例えば 2 5 %, 5 0 %, 7 5 %, 1 0 0 %と変化させて、 負荷試験を行う 。 また、 本実施 例では、 扁平状の抵抗組立体 R i, S . , T ,が 2 2段設けられているので、 三相交流発電機 8 8 にかける負荷抵抗値の割合を更に細かく 設定する こ と もできる。 例えば、 5 % 、 1 0 %ごとの負荷試験を行う こ と もでき る。 尚、 この様な負荷試験は、 低電圧負荷試験用の低圧スィ ッチ 9 3 、 高 電圧負荷試験用の高圧スィ ツチ 9 4 、 高電圧負荷試験用の高圧スィ ツチ 9 5 をオン操作したと き に、 負荷試験のためのプロ グラ ムに従って 自動 的に通電制御回路 8 4 によ り 行われる よ う になつている。 こ のプロ ダラ ムは、 通電制御回路 8 4 の図示 しない R O M等の記憶手段に予め記憶さ せてお く こ と もでき る し、 ハ 一 ドディ ス ク等の記録媒体に記録させてお いて、 負荷検査開始時に通電制御回路 8 4 の図示しない C P Uに読み込 ませて用いるこ と もでき る。
(変形例)
以上説明 した実施例では、 低電圧負荷試験用の低圧スィ ッチ 9 3 、 髙 電圧負荷試験用の高圧スィ ツチ 9 4 、 高電圧負荷試験用の高圧スィ ツチ 9 5 をオン操作した と き に、 プロ グラムに従って負荷検査を行 う よ う に したが、 必ずしも これに限定される も のではない。 例えば、 図 3 4 に示 したよ う に、 S 1 〜 S 8 で示 したスィ ツチング部材 S W a のコイル 8 0及び S 9 〜 S 1 6 で示したスイ ッ チング部材 S W b i iの コ イ ル 8 0 に 対応させて 各段のスィ ツチング部材 S W a i i , S W b の O N · O F F操作用のスィ ッチ S W 1 〜 S W 1 6 を設け、 スィ ッチ S W 1 ~ S W 1 6 によ り S 1 ~ S 1 6 で示したコイル 8 0 への通電制御をそれぞれさせ る よ う にする こ と もでき る。 また、 真空遮断器 8 6 もスィ ッチ 9 8 で O N . O F F操作する よ う にする こ と もでき る。
(その他)
以上説明 した実施例では、 抵抗組立体 R i , S i, Τ ,の導電性接続片 5 8 a ,〜 5 8 a 5 8 a !〜 5 8 a (»/2) (抵抗素子 r iの端部に接続) の全てにスイ ッチング部材 S W a , S W b を接続しているが、 必ず しも これに限定される も のではない。 例えば、 本実施例の場合、 スイ ツ チング部材は、 C b C b C b + , (m = 1 6 故に C b 9) にの み設けた構成とするこ と もでき る。
【発明の実施の形態 2】
[構成]
発明の実施の形態 1 では、 低電圧負荷試験、 3 3 0 0 Vの電圧負荷試 験、 6 6 0 0 の高電圧負荷試験をする前には、 接続線 8 9, 9 0や導電 板 9 1, 9 2等を用いて予め抵抗組立体 R ,, S , , の抵抗素子 r iの いく つかを手作業で接続 (短絡) させる様に した実施例を示 したが、 必 ずしも これに限定される ものではない。
例えば、 図 3 5 に示したよ う に、 接続線 (短絡手段) 9 9, 9 9 で直 列に接続された 3 つの導電板 (短絡手段) 9 2 を設け、 各導電板 9 2 を 抵抗本体 5 7 R, 5 7 S , 5 7 Tの組立体間導電部材 C a ,に短絡手段で ある第 2 のスイ ッチング部材 S W C j [ ;j = l, 2 , 3 · · ·πιΖ 2 ]を介し て接続する と共に、 3 つの導電板 9 1 を抵抗本体 5 7 R, 5 7 S , 5 7 Tの組立体間導電部材 C b iに短絡手段である第 2のスィ ツチング部材 S W d 5 [ j = 1 , 2, 3 · · · ( m/ 2 ) + 1 ]を介して接続する (詳細は図 3 6 参照)。 尚、 短絡手段である第 2 のスイ ッチング部材 S W c i, S W d iは、 短絡手段である第 1 のスイ ッチング部材 S W a i ,, S W d と 同 じ構成 (図 1 6 〜図 2 3 の構成) のマグネ ッ トスィ ッチを用いる こ と が でき る。 しかも、 第 1 のスイ ッ チング部材 S W a , S W d の列は各 抵抗組立体 R ,, S i, T ,のごと に設け られて多段と なる。 し力 し、 第 2 のスィ ツチング部材 S W c i , S W d ;は、 組立体間導電部材 C a ,や組立 体間導電部材 C b iを短絡させる こ とができればよいので、 一列のみでよ い。 また、 抵抗本体 5 7 R , 5 7 S , 5 7 Tの組立体間導電部材 C b C b C b ,同士を高電圧スィ ッ チである真空遮断器 ( V C B ) 1 0 0 で 互いに導通 (短絡) 可能に接続し、 抵抗本体 5 7 R, 5 7 S , 5 7 Tの 組立体間導電部材 C b C b C b 同士を高電圧スィ ツチである真空 遮断器 ( V C B ) 1 0 1 で互いに導通 (短絡) 可能に接続する と共に、 抵抗本体 5 7 R , 5 7 S , 5 7 Tの組立体間導電部材 C b i, C b i, C と C b (m/2) + 1, C b + i , じ 3 /2) + 1 [本実施例では 2 = 8 であるので C b + 1 = C b 9]と を高電圧スィ ツチである真空遮断器 (V C B ) 1 0 2で接続する。
また、 第 2 のスイ ッチング部材 S W c iのコイル 8 0 を S I 7 〜 S 2 4 と し、 第 2のスイ ッチング部材 S W d jのコイル 8 0 を S 2 4〜 S 3 2 と する と 、 こ の ソ レノ ィ ド S 1 7 〜 S 3 2 も図 3 7 に示したよ う に通電制 御回路 8' 4 によ り 作動制御される よ う になってレ、る。 尚、 図 2 4 と 同 じ 部分については、 図 2 4 に付した符号を付してその説明は省略する。
[作用]
( 1 ) 低電圧負荷試験
こ の様な接続において、 例えば 4 0 0 Vの低電圧負荷試験を行う 場合 には、 まず、 三相交流発電機 8 8 を作動させる一方、 電源スィ ッチ 9 7 を O N させて通電制御回路 8 4 を作動させる。
こ の後、 低圧用スィ ッチ 9 3 を O N させる。 こ の O N操作によ り 通電 制御回路 8 4 は、 まずメ イ ンの真空遮断器 8 6 を O N させた後、 抵抗本 体 5 7 R, 5 7 S , 5 7 Tを構成する抵抗組立体 R i, S i, T iのスイ ツ チング部材 S W a uのコイル 8 0 ( S 1 〜 S 8 ) の全てに通電させて、 スィ ツチング部材 S W a を O N させる と共に、 抵抗本体 5 7 R , 5 7 S , 5 7 Tを構成する抵抗組立体 R i, S i, T ,のスイ ッチング部材 S W C jのコイル 8 0 ( S I 7 ~ S 2 4 ) の全てに通電させて、 スイ ッチング 部材 S W c iの全てを O Nさせる。
これによ り 、 抵抗本体 5 7 R , 5 7 S , 5 7 Tを構成する抵抗組立体 R , , S i, 丁 ,の抵抗素子 1" ,は、 導電性接続片 5 8 & 1〜 5 8 & (1»/2), 全てのスィ ツチング部材 S W a i ~ S W a , 組立体間導電部材 C a .~ C a スィ ツチング部材 S W c 1〜 S W c m/2及び導電板 9 2 を 介して電圧が 0 となる中性点に互いに接続される。
しかも、 これと共に電制御回路 8 4 は、 抵抗本体 5 7 R, 5 7 S , 5 7 Tを構成する抵抗組立体 R i, S T ,のスイ ッチング部材 S W b i iの コイル 8 0 ( S 9 ~ S 1 6 ) の全てに通電させて、 スイ ッチング部材 S W b i iの全てを O N させる と共に、 抵抗本体 5 7 R, 5 7 S , 5 7 Tを 構成する抵抗組立体 R ,, S >, のスイ ッチング部材 S W d iのコイル 8 0 ( S 2 5〜 S 3 2 ) の全てに通電させて、 スイ ッチング部材 S W d i の全てを O Nさせる。
これによ り 、 三相交流発電機 8 8 の R, S , T相には、 導電性接続片 5 8 b ,〜 5 8 b スィ ツ チング部材列 S W b S W b nの全ての スイ ッチング部材 S W b i i ( S W b i i S W b i im/ ) , 抵抗本体 5 7 R , 5 7 S , 5 7 Tの組立体間導電部材 C b 1〜 C b (ro/2) + 1, スイ ッチング 部材 S W c!,〜 S W d + 1及び導電板 9 1 , 配線 8 5 R, 8 5 S, 8 5 T及ぴ真空遮断器 8 6 を介して抵抗組立体 R i, S i, T ,の抵抗素子 r iが接続されている。
こ の状態では、 図 2 7 に示したよ う に、 抵抗組立体 R i, S Τ ,の 1 6本の抵抗素子 r iは全て並列に接続した状態と なる。 しかも、 三相交流 発電機 8 8 の R, S, T相には、 全ての抵抗素子 r iを並列に接続して負 荷抵抗値を小さ く した抵抗組立体 R , S i, T , (即ち低抵抗値の抵抗本 体 5 7 R, 5 7 S , 5 7 T ) が接続される こ と になる。 これによ り 、 三 相交流発電機 8 8 か らの出力 (電圧, 電流) がこの抵抗組立体 R ,, S i, T ,の抵抗素子 に入力 され、 負荷試験が開始される。 これによ り 、 抵 抗組立体 R i, S i, T ,の抵抗素子 r iに通電されて、 抵抗素子 が発熱 する。
こ の際、 通電制御回路 8 4 は、 抵抗ユニッ ト 4 2, 4 3, 4 4 の各電 動ファ ン 5 0 を作動させて、 各電動フ ァ ン 5 0 からの冷却風を抵抗ュニ ッ ト 4 2 , 4 3 , 4 4 のハウジング 5 2 に送風する。 そ して、 こ の冷却 風は、 抵抗ユニッ ト 4 2, 4 3, 4 4 の抵抗素子 r ,で発生した熱を放熱 フ ィ ン 6 0の周囲を流れる際に吸収して、 抵抗素子 を冷却した後、 荷 室 3 3 を形成するボ ッ ク ス 3 2 の図示しない排気口から外部に排気され る。
尚、 この場合でも、 各段のスイ ッチング部材 S W i i , S W b uの O N ' O F F制御をする こ と で、 抵抗本体 5 7 R, 5 7 S , 5 7 T力、ら三 相交流発電機 8 8 にかける負荷抵抗値を所定時間毎に例えば 2 5 %, 5 0 % , 7 5 %, 1 0 0 % と変化させて、 負荷試験を行 う。 また、 本実施 例では、 扁平状の抵抗組立体 R ,, S , , T!が 2 2段設けられているので、 三相交流発電機 8 8 にかける負荷抵抗値の割合を更に細かく 設定する こ と もできる。 例えば、 5 %、 1 0 %ごとの負荷試験を行う こ と もでき る。 ( 2 ) 3 3 0 0 Vの高電圧負荷試験
例えば 3 3 0 0 Vの高電圧負荷試験を行 う 場合には、 三相交流発電機 8 8 を作動させる一方、 電源スィ ッ チ 9 7 を O N させて通電制御回路 8 4 を作動させる。
こ の後、 高圧用スィ ッ チ 9 4 を O N させる。 こ の O N操作によ り 通電 制御回路 8 4 は、 まずメ イ ンの真空遮断器 8 6 , 真空遮断器 1 0 1 を O Nさせた後、 抵抗本体 5 7 R , 5 7 S , 5 7 Tを構成する抵抗組立体 R i, S i , Τ ,のスイ ッチング部材 S W b i iのコイル 8 0 ( S 5 ) に通電して、 スィ ツチング部材 S W b i 5を O N させる。 これによ り 、 抵抗本体 5 7 R , 5 7 S , 5 7 Tを構成する抵抗組立体 R i, S T ,の抵抗素子 r iは、 導電性接続片 5 8 b 5, スイ ッチング部材 S W b i 5, 組立体間導電部材 C b 及ぴ真空遮断器 1 0 1 を介して電圧が 0 となる中性点に互いに接続さ れる。
即ち、 この状態では、 図 3 0 に示したよ う に、 各抵抗組立体 R i, S 丁 ,の各 1 6.本の抵抗素子 r jは半分の 8本の抵抗素子 r iが並列に接続さ れた値の抵抗体 8 r , 8 r を 2つ並列に接続して、 並列な抵抗体 8 r , 8 r の一端側が導電性接続片 5 8 b 5, スイ ッチング部材 S W b 1 5, 組立 体間導電部材 C b 5及び真空遮断器 1 0 1 を介して電圧が 0 と なる 中性点 に互いに接続される。
しかも、 これと共に電制御回路 8 4 は、 真空遮断器 1 0 2 を O N させ る と共に、 抵抗本体 5 7 R, 5 7 S , 5 7 Tを構成する抵抗組立体 R ,, S i , T iのスイ ッチング部材 S W b i iのコイル 8 0 ( S 9 ) に通電して、 各抵抗組立体 R i, S のスイ ッチング部材 S W b uを O N させる。
これによ り 、 三相交流発電機 8 8 の R, S, T相には、 導電性接続片 5 8 〜 8 b スイ ッ チング部材列 S W b !〜 S W b nのスイ ツ チング部材 S W b i,, 抵抗本体 5 7 R, 5 7 S , 5 7 Tの組立体間導電 部材 C b !, C b ( = C b 9) , 真空遮断器 1 0 2 , 導電板 9 1 , 配線 8 5 R, 8 5 S , 8 5 T及ぴ真空遮断器 8 6 を介して抵抗組立体 R S i, T ,の抵抗素子 Γ ίが接続される。
これによ り 、 三相交流発電機 8 8 からの出力 (電圧, 電流) がこ の抵 抗組立体 R i, S i, T iの抵抗体 8 r, 8 r に入力され、 負荷試験が開始 される。 これによ り 、 抵抗体 8 r , 8 r を構成する各抵抗素子 r iに通電 されて、 抵抗素子 r iが発熱する。
尚、 この場合でも、 各段のスイ ッチング部材 S W a i i , S W b uの O N ' O F F制御をする こ と で、 抵抗本体 5 7 R, 5 7 S , 5 7 T力 ら三 相交流発電機 8 8 にかける負荷抵抗値を所定時間毎に例えば 2 5 % , 5 0 % , 7 5 %, 1 0 0 %と変化させて、 負荷試験を行 う。 また、 本実施 例では、 扁平状の抵抗組立体 R !, S ,, T iが 2 2段設けられているので、 三相交流発電機 8 8 にかける負荷抵抗値の割合を更に細かく 設定する こ と もでき る。 例えば、 5 %、 1 0 %ごとの負荷試験を行う こ と もでき る。 ( 3 ) 6 6 0 0 Vの高電圧負荷試験
例えば 6 6 0 0 Vの高電圧負荷試験を行う場合には、 三相交流発電機 8 8 を作動させる一方、 電源スィ ッ チ 9 7 を O N させて通電制御回路 8 4 を作動させる。
こ の後、 高圧用スィ ッ チ 9 5 を O N させる。 こ の O N操作によ り 通電 制御回路 8 4 は、 まずメ イ ンの真空遮断器 8 6 , 真空遮断器 1 0 0 を O Nさせた後、 抵抗本体 5 7 R, 5 7 S , 5 7 Tを構成する抵抗組立体 R i, S i, T iのスイ ッチング部材 S W b の コイル 8 0 ( S 1 ) に通電して、 スィ ツチング部材 $ W b を O Nさせる。
これに よ り 、 抵抗本体 5 7 R , 5 7 S , 5 7 Tを構成する抵抗組立体 R i , S i , T iの抵抗素子 r ,は、 導電性接続片 5 8 b i, スイ ッチング部 材 S W b 組立体間導電部材. C b t及び真空遮断器 1 0 0 を介して電圧 が 0 となる中性点に互いに接続される。
また、 三相交流発電機 8 8 の R , S , T相には、 抵抗本体 5 7 R , 5 7 S , 5 7 Tの各組立体間導電部材 C b (m/2) + 1が配線 9 0 , 9 0 , 9 0 、 配線 8 5 R, 8 5 S , 8 5 T及ぴ真空遮断器 8 6 を介して接続されてい る。
こ の状態では、 図 3 3 に示したよ う に、 各抵抗組立体 R ,, S T 'は、 1 6本の抵抗素子 r iの全ての抵抗素子 r iが直列に接続されて、 抵抗値 が髙抵抗となった状態となる。
従って、 三相交流発電機 8 8 の R , S , T相には、 全ての抵抗素子 Γ 』 を直列にに接続した髙抵抗値の抵抗組立体 R i, S i, T i (即ち高抵抗値 の抵抗本体 5 7 R , 5 7 S , 5 7 T ) が接続されるこ と になる。
こ の様な通電制御回路 8 4 による制御動作によ り 、 三相交流発電機 8 8 からの出力 (電圧, 電流) がこ の抵抗組立体 R ,, S <, Τ ,の抵抗素子 r iに通電されて、' 抵抗素子 r iが発熱する。
この際、 通電制御回路 8 4 は、 抵抗ユニ ッ ト 4 2 , 4 3 , 4 4 の各電 動フ ァ ン 5 0 を作動させて、 各電動フ ァ ン 5 0 からの冷却風を抵抗ュニ ッ ト 4 2 , 4 3 , 4 4 の ノヽウジング 5 2 に送風する。 そ して、 こ の冷却 風は、 抵抗ユニッ ト 4 2 , 4 3 , 4 4 の抵抗素子 r 〗で発生した熱を放熱 フィ ン 6 0 の周囲を流れる際に吸収して、 抵抗素子 r jを冷却した後、 荷 室 3 3 を形成するボ ッ ク ス 3 2 の図示 しない排気口から外部に排気され る。
尚、 この場合でも、 各段のスイ ッチング部材 S W a i i, S W b i iの O Ν · O F F制御をする こ と で、 抵抗本体 5 7 R, 5 7 S , 5 7 T力、ら三 相交流発電機 8 8 にかける負荷抵抗値を所定時間毎に例えば 2 5 % , 5 0 % , 7 5 %, 1 0 0 %と変化させて、 負荷試験を行う。 また、 本実施 例では、 扁平状の抵抗組立体 R i, S i, T ,が 2 2段設けられているので、 三相交流発電機 8 8 にかける負荷抵抗値の割合を更に細かく 設定する こ と もできる。 例えば、 5 %、 1 0 %ごとの負荷試験を行う こ と もでき る。 尚、 こ の様な負荷試験は、 低電圧負荷試験用の低圧スィ ッ チ 9 3 、 高 電圧負荷試験用の高圧スィ ツチ 9 4 、 高電圧負荷試験用の高圧スィ ツチ 9 5 をオン操作したと き に、 負荷試験のためのプロ グラムに従って 自動 的に通電制御回路 8 4 によ り 行われる よ う になつている。 こ のプロ ダラ ム.は、 通電制御回路 8 4 の図示 しない R O M等の記憶手段に予め記憶さ せてお く こ と もでき る し、 ハー ドディ ス ク等の記録媒体に記録させてお いて、 負荷検査開始時に通電制御回路 8 4 の図示 しない C P Uに読み込 ませて用レ、るこ と もできる。
こ の様に、 通電制御回路 8 4 は、 低圧用スィ ッ チ 9 3 , 高圧用スイ ツ チ 9 4., 高圧用スィ ッチ 9 5 をオン操作するのみで、 抵抗本体 5 7 R, 5 7 S , 5 7 Tの抵抗組立体 R i, S . , T iの抵抗値を自動的に設定して、 負荷試験を自動的に行 う。 これによ り 、 複雑なスィ ッチの切換を簡易且 つ迅速に最適に (正確に) 行う こ とができ る。 また、 本実施例によれば、 各抵抗本体 5 7 R , 5 7 S , 5 7 Tを構成する多数段 (本実施例では 2 2段) の抵抗組立体 R ,, S i, T i毎に真空遮断器を設ける必要がなく 、 真空遮断器は 1 0 0, 1 0 1 , 1 0 2 で示した 3 つが增ぇたのみである ので、 自動化 しても装置が大型化する こ と な く 、 コ ス ト も殆ど増加する こ と はない。
(変形例 1 )
本実施の形態 2 でも、 低電圧負荷試験用の低圧スィ ッ チ 9 3 、 高電圧 負荷試験用の高圧スィ ツチ 9 4 、 高電圧負荷試験用の高圧スィ ツチ 9 5 をオン操作したと き に、 プロ グラムに従って負荷検査を行 う よ う に した が、 必ずしも これに限定される も のではない。 例えば、 図 3 8 に示した よ う に、 S 1 〜 S 8 で示したスイ ッチング部材 S W a のコイル 8 0及 ぴ S 9〜 S 1 6 で示したスィ ツチング部材 S W b のコイル 8 0 に対応 させて、 各段のスィ ツチング部材 S W a i i , S W b の O N . O F F操 作用のスィ ッチ S W 1 〜 S W 1 6 を設け、 スィ ッチ S W 1 〜 S W 1 6 に よ り S 1 ~ S 1 6 で示したコイル 8 0 への通電制御それぞれさせる よ う にする こ と もでき る。 また、 真空遮断器 8 6 , 1 0 0, 1 0 1 , 1 0 2 もスィ ッチ 9 8 , 9 8 a , 6 8 b, 9 8 c で O N ' O F F操作する よ う にする こ と もできる。
(変形例 2 )
また、 真空遮断器 1 0 2 は必ずしも必要ではない。 即ち、 高圧用スィ ツチ 9 4 をオン操作したと き、 通電制御回路 8 4 がスィ ツチング部材 S W d t及び S W d <ra/2) + 1 ( = S W d 9) をオン操作すれば、 真空遮断器 1
0 2 を省略しでき る。 この場合には、 自動化 しても真空遮断器を上述し た実施例よ り 1 つ削減でき るの で、 よ り コ ス ト を低減でき る と共に小型 化が図れる。
(変形例 3 )
以上説明した発明の実施の形態 1 , 2 では、 スイ ッチング部材 S W a ,
1 , S W b i i , スイ ッチング部材 S W c 3 ¥ (1 〗等をソ レノィ ド 3 と可 動接点 Mを保持する接点保持部材 7 2 と を並設 したが、 必ずしも これに 限定される も のではない。
例えば、 図 3 9 に示 したよ う にコ イ ル 8 0 と コイル 8 0 の磁力によ り 駆動される可動鉄板 (ァクチユエータ) 8 1 を備える ソ レ ノ イ ド S を設 けて、 接点ケース 7 0 にソ レ ノ ィ ド取付部 7 0 a を設け、 ソ レ ノ ィ ド S を.接点保持部材 7 2 に対して可動接点 Mの駆動方向 と略同一直線上に配 設 して ソ レ ノ ィ ド取付部 7 0 a に取 り 付けた構成と して も良い (図 4 0 参照)。 この場合には、 固定接点 P I , P 2 と コイル 8 0 との距離は放電 しない程度離して設け られる。 また、 ソ レノ イ ド S の リ ー ド線 8 2, 8 3 が固定接点 P 1 , P 2 と離れた側の端部に設け られる。 これによ り 、 リ ー ド線 8 2 , 8 3 と 固定接点 P I , P 2 と の間での放電防止対策も図 る こ とができる。
尚、 この場合、 接点保持部材 7 2 はソ レ ノ イ ド S側の先端部に小孔 7 2 c が形成され、 この小孔 7 2 c に可動鉄板 8 1 が係合させられている。 そ して、 コ イ ル 8 0 に通電して鉄心 7 9 に磁力を発生させる と 、 可動鉄 板 8 1 が鉄心 7 9 に磁力で吸引 されて、 接点保持部材 7 2 が図 3 9 中右 方に移動させられて、 上述した発明の実施の形態 1 と同様に可動接点 M、 Mが固定接点 P a , P a 同士及ぴ P b , P b 同士を O N させる。 また、 図示したよ う に接点保持部材 7 2 のケース 7 0 と ソ レ ノ ィ ド S との間の 部分にフラ ンジ F を設ける こ と で、 ソ レ ノ イ ド S と接点 M、 P a , P b と の間の絶縁をよ り確実にでき る。 更に、 接点保持部材 7 2 をテ フ ロ ン 等から形成する こ と で、 よ り 高電圧に耐え得る よ う になる。 この点は、 上述した実施例や後述する実施例の全てに適用できる。
(変形例 4 )
以上説明 した発明の実施の形態 1 , 2 では、 スイ ッチング部材 S W a i i , S W b « j , スイ ッチング部材 S W C i, S W d i等をソ レノイ ド S を用 いたマグネ ッ ト タイ プのものを用いた例を示したが、 これに限定される も のではない。
例えば、 ス イ ッ チ ング部材 S W a i i, S W b i i, ス イ ッ チ ン グ部材 S W c j , S W d iを、 図 4 1 に示したよ う なエア式のスィ ッチと しても良 レヽ
本変形例では、 ス イ ッ チ ン グ部材 S W a i j, S W b i i, ス イ ッ チ ン グ 部材 S W c i, S W d iのソ レノ ィ ド S に変えてエアシ リ ンダ 2 0 0 が駆 動手段と して設けられる。
このエアシリ ンダ 2 0 0 は、 図 4 2 に示したよ う にシリ ンダ本体 2 0 1 と、 シリ ンダ本体 2 0 1 内に配設されたピス ト ン 2 0 2 と 、 ピス ト ン 2 0 2 と一体の ピス ト ンロ ッ ド 2 0 3 を有する。 そ して、 ピス ト ンロ ッ ド 2 0 3 は接点保持部材 7 2 に直列に係合している。 なお、 シリ ンダ本 体 2 0 1 には、 ピス ト ン 2 0 2 によ り 区画されたエア室 A, Bが形成さ れている と共に、 エア室 A, B にそれぞれ開 口するポー ト 2 0 1 a, 2 0 1 b が形成されている。 このポー ト 2 0 1 b は大気に開放されている。 このエアシリ ンダ 2 0 0 は、 エア制御回路 A Cによ り 作動制御される様 になっている。
こ のエア制御回路 A Cは、 エア コ ンプレ ッ サー 2 0 4 、 エア タ ンク 2 0 5及び電磁バルブ 2 0 6 を有する。 そ して、 エアシリ ンダ 2 0 0 のポ ー ト 2 0 1 a にはエア コ ンプレッサー 2 0 4 がエアタ ンク 2 0 5及び電 磁バルブ 2 0 6 を介して接続され、 電磁バルブ 2 0 6 と ポー ト 2 0 1 a を接続する配管 2 0 7 には電磁バルブ 2 0 8 及ぴ圧力センサ 2 0 9 が接 続されている。 こ の電磁バルブ 2 0 8 は、 作動時にエア室 Aを大気に開 放する様になっている。 また、 圧力センサ 2 0 9 からの圧力検出信号は 演算制御回路 2 1 0 に入力 され、 エア コ ンプ レ ッサー 2 0 4 、 電磁バル ブ 2 0 6, 2 0 8 は演算制御回路 2 1 0 によ り 作動制御される。 また、 エアタ ンク 2 0 5 には圧力センサ 2 1 1 が接続され、 こ の圧力センサ 2 1 1 からの圧力検出信号も演算制御回路 2 1 0 に入力 される。
こ の様な構成においては、 演算制御回路 2 1 は、 エア コ ンプレ ッ サー 2 0 4 を作動させて圧縮エアをエアタ ンク 2 0 5 に貯留させる。 これに 伴い、 圧力センサ 2 1 1 からの圧力が所定値になる と、 エアコ ンプレツ サー 2 0 4 の作動を停止させる。 .
また、 演算制御回路 2 1 0 は、 上述したスィ ッ チ 9 4, 9 5, 9 6 等 の操作によ り 、 電磁バルブ 2 0 6 を作動制御して開かせる。 これによ り .、 エアタ ンク 2 0 5 から圧縮エアが配管 2 0 7 を介してシリ ンダ本体 2 0 1 のエア室 Aに案内される。 こ の圧縮エアは、 ピス ト ン 2 0 2 を図 1 8 , 1 9 で示したスプリ ング 7 3 のパネ力に杭して右方に移動させ、 可動接 点 Mを固定接点 P l, P 2 に押圧接触させる。 そ して、 演算制御回路 2 1 0 は、 圧力センサー 2 0 9 からの圧力検出信号が所定値以上で且つ圧 力検出信号の変化が一定になったと き に、 電磁バルブ 2 0 6 を閉 じさせ る。 尚、 演算制御回路 2 1 0 は、 スイ ッチング部材 S W a i i, S W b . i , ス ィ ツチング部材 S W c i , S W d 5等が負荷試験において使用中、 圧力 センサ 2 0 8 からの圧力が所定値以下になる と 、 電磁バルブ 2 0 6 を開 いて再度エア室 Aに圧縮エアを供給する。
また、 演算制御回路 2 1 0 は、 負荷試験が終了 したと き、 電磁バルブ 2 0 8 を開いて、 エア室 Aを大気に開放する。 これによ り 、 スプリ ング 7 3 のパネ力によ り 接点保持部材 7 2 , ピス ト ンロ ッ ド 2 0 3 , 及びピ ス ト ン 2 0 2 が図 4 2 中左方に移動変位させられ、 エア室 Aのエアが電 磁バルブ 2 0 8 を介して大気に排気されて、 可動接点 Mが固定接点 P 1, P 2カゝら離反させられる。
この様なエアシリ ンダ 2 0 0 をスィ ツチング部材 S W a i j , S W b i s , スィ ツチング部材 S W c j , S W d i等の駆動手段と してソ レノ ィ ド S に 替えて用いる こ と によ り 、 スイ ッチング部材 S W a , S W b . i , スィ ツチング部材 S W c i , S W d 5等をよ り安全な状態で使用でき る。
【発明の実施の形態 3 】
以上説明 した実施例では、 .三相交流発電機に用いるタイ プの乾式負荷 試験装置の例を示 したが、 必ずしも本発明はこれに限定される ものでは ない。 例えば、 抵抗本体 5 7 R, 5 7 S, 5 7 Tの抵抗組立体 R i, S T ,の一つのみを単体で用いて、 発電機やパッテ リ 一等の被試験用電源の 電気負荷試験を行う よ う に しても良い。
【発明の実施の形態 4 】
また、 別々 に設けた抵抗ユニ ッ ト 4 2, 4 3, 4 4 を並設 して、 各抵 抗ユニ ッ ト 4 2, 4 3 , 4 4 に抵抗本体 5 7 R , 5 7 S , 5 7 Tの抵抗 組立体 R i, S i, T iをそれぞれ設けた構成と しているが、 必ずしも ^れ に限定される も のではない。
例えば、 被試験用電源の電圧が高電圧でも比較的小さい場合には、 抵 抗組立体 R i, S i, Τ ,の段数を少なく して、 例えば 2〜 3段にする と共 に、 図 4 3 , 4 4 に示したよ う に別々に設けた抵抗ユニッ ト 4 2, 4 3,
4 4 を上下に組み付けて、 一つの乾式負荷試験装置 3 0 0 と してもよい。 尚、 図 4 3, 4 4 では図示の便宜上抵抗組立体 R i, S i ( Τ ,の段数を 1 段にしたが、 実際には 2〜 3段となる。
この場合、 抵抗ユニ ッ ト 4 2, 4 3 , 4 4 は金属製の箱状のフ レー ム 3 0 1 、 3 0 1 , 3 0 1 をそれぞれ有するの で、 抵抗ユニ ッ ト 4 2, 4 3 , 4 4 間に絶縁部材 3 0 2 を配設する必要がある と共に、 フ レー ム 3 0 1 と抵抗組立体 R i, S i, Τ ,との間にある程度の絶縁距離を取る必要 がある。 このため、 抵抗本体 5 7 R, 5 7 S , 5 7 T間の間隔が大き く なって、 乾式負荷試験装置 3 0 0 の高さが高く なる傾向にあ り 、 望ま し く ない。
そこで、 図 4 5 A, 図 4 6, 図 4 7 に示したよ う に、 抵抗本体 5 7 R,
5 7 S , 5 7 丁の抵抗組立体1 S i, のみを組み込んだ乾式負荷試 験装置 4 0 0 と しても良い。 こ の乾式負荷試験装置 4 0 0 は、 側方の 4 面と上下の 2 面が開 口する直方体状 (箱状) の金属製 (例えば、 鉄製) のフ レーム 4 0 1 と 、 フ レーム 4 0 1 の側方への開 口 を閉成する絶縁板 4 0 2〜 4 0 5 を有する。 そ して、 上下に配設した抵抗本体 5 7 R, 5 7 S , 5 7 Tの抵抗組立体 R i, S . , T ,は、 絶緣板 4 0 2, 4 0 4 間に 渡架固定されている。
この場合には、 フ レーム 4 0 1 は一つであるので、 抵抗本体 5 7 R , 5 7 S , 5 7 Τ間の間隔を図 4 3 , 4 4 のものよ り 小さ く でき る。 こ の 結果、 乾式負荷試験装置 4 0 0 は、 乾式負荷試験装置 3 0 0 よ り も高 さ を遙かに小さ く でき る。 尚、 こ の例の場合も、 図示の便宜上抵抗組立体 R . , S i, T iの段数を 1段にしたが、 実際には 2〜 3段となる。
更に、 絶縁板 4 0 3, 4 0 5 をフ レーム 4 0 1 の側面力 ら取り外して、 フ レー ム 4 0 1 の絶縁板 4 0 2, 4 0 4 間に位置する 2 つの対向する側 面を開 口 させ、 この開 口の一方に図 4 5 Bの如く 電動フ ァ ン 5 0 を取 り 付ける と共に、 フ レーム 4 0 1 の上下の開 口 を閉成した構成と して も良 い。 この場合には、 電動フ ァ ン 5 0 からの冷却風が、 矢印 4 0 1 a で示 したよ う にフ レー ム 4 0 1 の側面の開 口から フ レーム 4 0 1 内に流入し て、 内部の抵抗素子を冷却した後、 他の側面の開口から排気される。 こ の構成とする こ とで、 乾式負荷試験装置 4 0 0 の高さ を更に小さ く でき るので、 乾式負荷試験装置 4 0 0 を小型の ト ラ ッ ク に組み込むこ と もで き る。 また、 設置場所によ っては、 高さが取れないよ う な場所にも容易 に設置でき る。 尚、 電動フ ァ ン 5 0 はフ レー ム 4 1 に取 り 付け られ、 電 動フ ァ ン 5 0 から発生する冷却風は絶緣フ ー ド 5 3 を介 して矢印 4 0 1 a で示 したよ う にフ レーム 4 0 1 の側面の開口力 らフ レーム 4 0 1 内に 流入する。
(その他 1 )
また、 上述した実施例では、 R相の抵抗ユニッ ト 4 2, S相の抵抗ュ ニ ッ ト 4 3, T相の抵抗ュニ ッ ト 4 4 を 1 つずつ設けた例を示したが、 必ずしも これに限定される も の ではない。 例えば、 図 3 1 ~ 3 3 に示 し たよ う に抵抗ユニ ッ ト 4 2, 4 3, 4 4の抵抗素子 r ,を 6 6 0 0 Vのた めの直列接続にする と共に、 との直列接続の抵抗ユニ ッ ト 4 2, 4 3, 4 4 を図 4 8 Aに示 した様に 2組設けて、 2組の各抵抗ュニ ッ ト 4 2,
4 2、 2組の各抵抗ユニ ッ ト 4 3, 4 3、 2組の各抵抗ユニ ッ ト 4 4,
4 4 を図 4 8 B に示したよ う に各々直列に接続した構成とする事によ り 、 1 3 2 0 0 Vの負荷試験を行 う よ う にする こ と ができ る。 尚、 こ の接続 例は一例で、 抵抗ユニ ッ ト 4 2 , 4 3, 4 4 の数を増やすこ と で、 負荷 試験が可能な電圧を高く するこ とができ る。
(その他 2 )
上述した発明の実施の形態 1 では、 抵抗ユニ ッ ト 4 2, 4 3, 4 4 が 設け られた乾式負荷試験装置 4 0 を ト ラ ッ ク 3 0 に搭載しておいて、 こ の乾式負荷試験装置 4 0 を ト ラ ック 3 0 によ り 電気負荷試験を行 う 現場 まで搬送した後、 乾式負荷試験装置 4 0 を ト ラ ッ ク 3 0 に搭載した状態 で電気負荷試験を行 う よ う に したが、 必ずしも これに限定される もので はない。
例えば、 図 4 9 に示 したよ う に、 R相, S相, T相に対応する抵抗ュ ニ ッ ト 4 2, 4 3, 4 4 を ト ラ ック 3 0 の荷台に着脱可能に積載してお く 。 そ して、 抵抗ユニ ッ ト 4 2, 4 3, 4 4 を、 ト ラ ッ ク 3 0 によ り 電 気負荷試験を行う 現場まで搬送して、 こ の現場で ト ラ ッ ク 3 0 から取 り 外して ト ラ ック 3 0 力 ら降ろす。 こ の後、 抵抗ユニ ッ ト 4 2, 4 3, 4 4 を、 発明の実施の形態 1 のよ う な構成で現場に設置して、 現場の発電 機等の電源の電気負荷試験を開始する。 尚、 図 4 5 〜図 4 7 では、 説明 の便宜上、 抵抗組立体 R i, S , , T iを一つのみ図示したが、 実際にはい く つかが多段に設け られる。 じかも、 発明の実施の形態 1 の 5 8 j, C a s , C b i等も抵抗組立体 R i, S i, T iに発明の実施の形態 1 と同様に組 み付けられるが、 本実施例では図示の便宜上その図示を省略している。 従って、 ト ラ ッ ク 3 0 は、 電気負荷試験中、 現場においておく 必要が ないので、 他の抵抗ユニッ ト 4 2, 4 3, 4 4 を他の現場に運搬した り 、 他の現場の抵抗ユニッ ト 4 2, 4 3 , 4 4 を回収した り するのに用いる こ と ができ る。 この結果、 ト ラ ッ ク 3 0 を有効且つ効果的に使用する こ とができ る。 発明の効果
以上説明 したよ う に、 請求項 1 の発明の乾式負荷試験装置は、 扁平状 に間隔をおいて並設され且つ端部において直列に接続された多数の細長 い抵抗素子からなる房平状の多数の抵抗組立体を備え、 前記多数の抵抗 組立体を M平面が平行になる よ う に間隔をおいて多^に並設する こ と に よ り 、 前記多段の抵抗組立体の抵抗素子の対応する もの同士からなる抵 抗素子列が多数設け られた多段の高電圧負荷試験用の抵抗本体と、 前記 抵抗素子列の抵抗素子の端部に一端部がそれぞれ接続されてス ィ ッ チ ン グ部材列を構成する複数の多段の第 1 の ス ィ ツチング部材と 、 前記ス ィ ツチング部材列の第 1 のスィ ツチング部材列の他端部同士をそれぞれ接 続する多数の組立体間導電部材と、 前記多数の組立体間導電部材のいく つかを被試験用電源に接続する一つの高電圧用ス ィ ッ チを備える構成と したので、 小型で、 負荷抵抗試験ための負荷抵抗の抵抗値をき め細かく 設定でき る と共に、 装置の製造コス ト を安価にするこ とが出来る。
また、 請求項 2 の発明は、 少なく と もい く つかの前記抵抗素子列の抵 抗素子の各端部に前記第 1 のス ィ ツチング部材の一端部がそれぞれ接続 されてス ィ ツチング部材列を構成している構成と したので、 部品点数を 必要最小限にできる。 請求項 3 の発明は、 全ての前記抵抗素子列の抵抗素子の各端部に前記 第 1 のスィ ツチング部材の一端部がそれぞれ接続されて、 前記各抵抗素 子列に対応する スィ ツチング部材列を構成している構成と したので、 多 数の組立体間導電部材同士の接続 (短絡) させかたによって、 抵抗組立 体の抵抗値をよ り細かに設定する こ とができる。
請求項 4 の発明は、 請求項 1 において、 前記多数の組立体間導電部材 同士を選択的に短絡する短絡手段が設け られている構成と したので、 多 数の組立体間導電部材同士の接続 (短絡) させかたによ って、 抵抗組立 体の抵抗値をよ り細かに設定するこ とができ る。
請求項 5 の発明は、 請求項 4 ^おいて、 前記短絡手段は第 2 のスイ ツ チング部材である構成と したので、 第 1 , 第 2 のスイ ッチング部材の O N · O F F操作によ り 、 短絡させる抵抗組立体の組み合わせを簡易且つ 迅速に選択でき る。
請求項 6 の発明は、 請求項 5 において、 前記スイ ッチング部材は第 1, 第 2 固定接点で一組の複数の固定接点対と前記各固定接点対の第 1 , 第 2 固定接点を断続させる複数の可動接点と、 前記可動接点を前記各固定 接点対の第 1 , 第 2 固定接点に対し進退駆動 して前記各固定接点対の第 1 , 第 2 固定接点を同時に断続させる駆動手段を備える と共に、 前記複 数の第 1 固定接点同士及び第 2 固定接点同士はそれぞれ互いに接続され ている構成と したので、 簡易な構造で高電圧に使用でき る。
請求項 7 の発明は、. 請求項 6 において、 前記駆動手段は操作パネルと 制御回路によ り 作動制御される ソ レノ ィ ドである構成と したので、 操作 パネルの操作によ り 短絡させる抵抗組立体の組み合わせを簡易且つ迅速 に自動的に選択でき る。
請求項 8 の発明は、 請求項 7 において、 前記ソ レノィ ドはコイルと前 記コイルの磁力によ り 駆動されるァクチユエータ を備える と共に、 前記 ソ レ ノ ィ ドは前記可動接点とその駆動方向 と略同一直線上に配設されて いる構成と したので、 コイルと 固定接点と の間の耐電圧を容易に確保で さる。
請求項 9 の発明は、 請求項 6 において、 前記駆動手段はエア制御回路 によ り 作動制御されるエアシリ ンダである構成と したので、 固定接点と 他の部分と耐電圧を容易に確保でき る。

Claims

請 求 の 範 囲
1 . 扁平状に間隔をおいて並設され且つ端部において直列に接続された 多数の細長い抵抗素子からなる扁平状の多数の抵抗組立体を備え、 前記 多数の抵抗組立体を扁平面が平行になる よ う に間隔をおいて多段に並設 する こ と によ り 、 前記多段の柢抗組立体の抵抗素子の対応する もの同士 からなる抵抗素子列が多数設け られた多段の高電圧負荷試験用の抵抗本 体と、
前記抵抗素子列の抵抗素子の端部に一端部がそれぞれ接続されてスィ ツチング部材列を構成する複数の多段の第 1 のスイ ッチング部材と、 前記スィ ツチング部材列の第 1 のスィ ツチング部材列の他端部同士を それぞれ接続する多数の組立体間導電部材と、
前記多数の組立体間導電部材のいく つかを被試験用電源に接続する一 つの高電圧用スィ ッチを備える こ と を特徴とする乾式負荷試験装置。
2 . 少なく と もい く つかの前記抵抗素子列の抵抗素子の各端部に前記第 1 のスィ ツチング部材の一端部がそれぞれ接続されてスィ ツチング部材 列を構成している こ と を特徴とする請求項 1 に記載の乾式負荷試験装置。
3 . 全ての前記抵抗素子列の抵抗素子の各端部に前記第 1 のスィ ッチン グ部材の一端部がそれぞれ接続されて、 前記各抵抗素子列に対応する ス ィ ツチング部材列を構成している こ と を特徴とする請求項 1 に記載の乾 式負荷試験装置。
4 . 請求項 1 において、 前記多数の組立体間導電部材同士を選択的に短 絡する短絡手段が設け られている こ と を特徴とする記載の乾式負荷試験 装置。
5 . 請求項 4 において、 前記短絡手段は第 2 のス イ ッ チ ン グ部材である こ と を特徴とする記載の乾式負荷試験装置。
6 . 請求項 5 において、 前記スイ ッチング部材は第 1 , 第 2 固定接点で 一組の複数の固定接点対と前記各固定接点対の第 1 , 第 2 固定接点を断 続させる複数の可動接点と 、 前記可動接点を前記各固定接点対の第 1 , 第 2 固定接点に対し進退駆動して前記各固定接点対の第 1 , 第 2 固定接 点を同時に断続させる駆動手段を備える と共に、 前記複数の第 1 固定接 点同士及び第 2 固定接点同士はそれぞれ互いに接続されている こ と を特 徴とする乾式負荷試験装置。
7 . 請求項 6 において、 前記駆動手段は操作パネルと制御回路によ り 作 動制御される ソ レノイ ドであるこ と を特徴とする乾式負荷試験装置。
8 . 請求項 7 において、 前記ソ レノィ ドはコイルと前記コ イ ルの磁力に よ り 駆動されるァクチユエータ を備える と共に、 前記ソ レノ ィ ドは前記 可動接点とその駆動方向 と略同一直線上に配設されている こ と を特徴と する乾式舞荷試験装置。
9 . 請求項 6 において、 前記駆動手段はエア制御回路によ り 作動制御さ れるエアシリ ンダである こ と を特徴とする乾式負荷試験装置。
PCT/JP2000/004992 1999-12-02 2000-07-26 Appareil d'essai de charge a bas niveau WO2001040817A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP00949910A EP1156342B1 (en) 1999-12-02 2000-07-26 Air cooled power load test apparatus
DE60031095T DE60031095T2 (de) 1999-12-02 2000-07-26 Testvorrichtung mit luftgekühlter Last
BRPI0007931A BRPI0007931B1 (pt) 1999-12-02 2000-07-26 aparelho com carga de teste a seco
CA002360817A CA2360817C (en) 1999-12-02 2000-07-26 Dry load test apparatus
AU63150/00A AU781869B2 (en) 1999-12-02 2000-07-26 Dry load test apparatus
US09/889,589 US6653928B1 (en) 1999-12-02 2000-07-26 Dry load test apparatus
NO20013648A NO320079B1 (no) 1999-12-02 2001-07-25 Testeapparat
HK02103809.3A HK1045731B (zh) 1999-12-02 2002-05-21 風冷式能量負荷試驗裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/343801 1999-12-02
JP34380199 1999-12-02

Publications (1)

Publication Number Publication Date
WO2001040817A1 true WO2001040817A1 (fr) 2001-06-07

Family

ID=18364350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004992 WO2001040817A1 (fr) 1999-12-02 2000-07-26 Appareil d'essai de charge a bas niveau

Country Status (15)

Country Link
US (1) US6653928B1 (ja)
EP (1) EP1156342B1 (ja)
KR (1) KR100516576B1 (ja)
CN (1) CN1220068C (ja)
AT (1) ATE341765T1 (ja)
AU (1) AU781869B2 (ja)
BR (1) BRPI0007931B1 (ja)
CA (1) CA2360817C (ja)
DE (1) DE60031095T2 (ja)
ES (1) ES2273712T3 (ja)
HK (1) HK1045731B (ja)
NO (1) NO320079B1 (ja)
RU (1) RU2212040C2 (ja)
TW (1) TW480341B (ja)
WO (1) WO2001040817A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003796A1 (ja) * 2003-07-08 2005-01-13 Kouken Company, Limited 乾式高圧負荷システム装置及び同装置の連鎖断線・アーク放電防止方法
JP2007265995A (ja) * 2006-03-13 2007-10-11 Visteon Global Technologies Inc 低電圧範囲用の電力スイッチ及び低電圧電気モータ用の階段型回転速度調整装置
JP2010025752A (ja) * 2008-07-18 2010-02-04 Tatsumi Ryoki:Kk 乾式負荷試験装置
CN106199092A (zh) * 2016-09-23 2016-12-07 广东志高暖通设备股份有限公司 一种组合式大功率电子负载装置
KR101813874B1 (ko) 2015-05-11 2018-01-04 가부시키가이샤다쓰미료키 부하 시험 장치, 부하 시험 장치의 캡
JP6906269B1 (ja) * 2021-01-25 2021-07-21 株式会社辰巳菱機 負荷試験装置
TWI752781B (zh) * 2020-12-31 2022-01-11 致茂電子股份有限公司 雷射二極體檢測系統及其檢測方法
JP2023052807A (ja) * 2018-03-13 2023-04-12 株式会社辰巳菱機 負荷試験装置、負荷試験装置の抵抗ユニット
JP7490292B1 (ja) 2023-02-02 2024-05-27 株式会社辰巳菱機 負荷試験システム
WO2024161968A1 (ja) * 2023-02-02 2024-08-08 株式会社辰巳菱機 負荷試験システム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675951B1 (ko) * 2003-06-03 2007-01-30 주식회사 코우켄 고압 저항체 소자
JP4385007B2 (ja) * 2005-06-08 2009-12-16 株式会社興研 高圧負荷演算制御方法及び装置
US7282807B2 (en) * 2005-12-20 2007-10-16 General Electric Company Systems and methods for testing a wind turbine
EP2228519B1 (de) 2008-06-12 2015-11-11 Siemens Aktiengesellschaft Physikalische Test-Vorrichtung für ein Inselkraftwerk und Inbetriebsetzung eines Inselkraftwerks
WO2011115522A1 (ru) * 2010-03-15 2011-09-22 КИСЕЛЕВ, Александр Михайлович Модуль нагрузочный испытательный резистивный (балластный)
JP5211198B2 (ja) 2011-06-09 2013-06-12 株式会社辰巳菱機 負荷システム
KR101413141B1 (ko) * 2013-01-21 2014-07-01 가부시키가이샤다쓰미료키 부하시험기
CN104062995A (zh) * 2013-03-08 2014-09-24 上海骏颉自动化设备有限公司 一种磁控无功负载箱
WO2015075761A1 (ja) * 2013-11-20 2015-05-28 株式会社辰巳菱機 負荷試験装置
SG11201604709SA (en) * 2014-02-24 2016-07-28 Tatsumi Ryoki Co Ltd Load testing apparatus
RU2614652C1 (ru) * 2014-02-24 2017-03-28 Тацуми Риоки Ко., Лтд Устройство нагрузочного тестирования и блок переключения соединения для устройства нагрузочного тестирования
TWI628445B (zh) * 2014-02-24 2018-07-01 辰巳菱機股份有限公司 負載測試機
CN105319517A (zh) * 2014-07-30 2016-02-10 中国广核集团有限公司 核电站应急电源设备的试验系统
CN105489327A (zh) * 2015-12-30 2016-04-13 丹东科亮电子有限公司 一种大功率、大电流、小体积复合型负载
JP6974913B2 (ja) * 2016-11-30 2021-12-01 株式会社辰巳菱機 負荷試験システム
KR200487300Y1 (ko) * 2017-06-07 2018-09-13 한국산업안전보건공단 과부하 차단기의 작동여부를 점검하기 위한 휴대용 과부하 테스터
WO2019175953A1 (ja) * 2018-03-13 2019-09-19 株式会社辰巳菱機 負荷試験装置
CN112567486B (zh) * 2018-08-17 2022-06-28 Ls电气株式会社 塔式支撑装置
JP7085790B2 (ja) * 2018-09-18 2022-06-17 株式会社辰巳菱機 負荷抵抗器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212778A (ja) * 1985-03-18 1986-09-20 Iseki Kaihatsu Koki:Kk 電動機の負荷電流監視装置
JPS62219901A (ja) * 1986-03-20 1987-09-28 西日本鉄道株式会社 三相交流発電機の負荷試験方法
JPH04115083U (ja) * 1991-03-26 1992-10-12 デンヨー株式会社 エンジン発電機の負荷試験用抵抗装置
JPH05215825A (ja) * 1992-02-06 1993-08-27 Tatsumi Riyouki:Kk 負荷器セット
JPH07298687A (ja) * 1994-04-26 1995-11-10 Toyo Electric Mfg Co Ltd 定数測定設定機能付きインバータ装置
JP2000121709A (ja) * 1998-10-14 2000-04-28 Kanto Denki Hoan Kyokai ユニット式発電機負荷試験装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US524382A (en) * 1894-08-14 Rheostat
US1002533A (en) * 1909-03-20 1911-09-05 Louis A De Mayo Resistance-box.
US1190780A (en) * 1913-03-01 1916-07-11 Cons Car Heating Co Electric heater.
US1217229A (en) * 1915-12-03 1917-02-27 Peter Smith Heater Company Electric air-heating system.
US1251507A (en) * 1916-09-08 1918-01-01 Wilbur A Gray Current-controlling mechanism for automobile-lights.
US1337826A (en) * 1917-08-23 1920-04-20 Homer L Dodge Rheostat
US1653070A (en) * 1925-04-20 1927-12-20 Smith Andrew Resistance-regulating apparatus for electric welding
US1709808A (en) * 1928-02-25 1929-04-16 Quern John Electric hot-air furnace
US2050220A (en) * 1935-06-06 1936-08-04 Monitor Controller Co Terminal for edge wound resistors
US2673957A (en) * 1951-07-06 1954-03-30 Joseph Weidenhoff Inc Shunt for low-voltage circuit testers
CA1192640A (en) * 1983-10-26 1985-08-27 Donald Reid Variable high-current electrical load bank with rapid adjustment over a wide range of currents
US4775775A (en) * 1987-06-16 1988-10-04 Srtechnologies, Inc. Programmable electrical heater
JP2700195B2 (ja) 1990-09-04 1998-01-19 株式会社ノダ 防火ドア
JPH04282479A (ja) * 1991-03-12 1992-10-07 Meidensha Corp 発電機の負荷試験制御装置
US5424588A (en) * 1992-04-07 1995-06-13 Cantor; Thomas L. Self-contained, portable compact load bank and testing method; compact load bank with improved power handling capability
JP2994144B2 (ja) 1992-07-21 1999-12-27 株式会社辰巳菱機 切り替え型負荷器セット
JP3155407B2 (ja) 1993-07-28 2001-04-09 株式会社辰巳菱機 自家用発電機の切り替え型試験装置
US5381088A (en) * 1993-10-12 1995-01-10 Tatsumi Corporation Change-over type of testing equipment for non-utility power generators or the like
JP3718874B2 (ja) 1995-06-30 2005-11-24 株式会社辰巳菱機 発電機通電試験用負荷抵抗器
JP3718875B2 (ja) 1995-06-30 2005-11-24 株式会社辰巳菱機 発電機通電試験用簡易型負荷抵抗器
JPH0915308A (ja) 1995-06-30 1997-01-17 Tatsumi Riyouki:Kk 負荷抵抗器用抵抗体
KR100215225B1 (ko) * 1995-11-07 1999-08-16 곤도도요시 발전기등통전 시험용 부하 저항체 및 저항기
US5949247A (en) * 1996-05-23 1999-09-07 Fremont/Dynamics Coporation Of America Method and apparatus for automatically testing and evaluating electric generator sets
KR100245255B1 (ko) * 1996-12-28 2000-02-15 에릭 발리베 차량용 발전기의 검사장치
JP4073550B2 (ja) 1998-07-06 2008-04-09 株式会社辰巳菱機 発電機通電試験用負荷抵抗器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212778A (ja) * 1985-03-18 1986-09-20 Iseki Kaihatsu Koki:Kk 電動機の負荷電流監視装置
JPS62219901A (ja) * 1986-03-20 1987-09-28 西日本鉄道株式会社 三相交流発電機の負荷試験方法
JPH04115083U (ja) * 1991-03-26 1992-10-12 デンヨー株式会社 エンジン発電機の負荷試験用抵抗装置
JPH05215825A (ja) * 1992-02-06 1993-08-27 Tatsumi Riyouki:Kk 負荷器セット
JPH07298687A (ja) * 1994-04-26 1995-11-10 Toyo Electric Mfg Co Ltd 定数測定設定機能付きインバータ装置
JP2000121709A (ja) * 1998-10-14 2000-04-28 Kanto Denki Hoan Kyokai ユニット式発電機負荷試験装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003796A1 (ja) * 2003-07-08 2005-01-13 Kouken Company, Limited 乾式高圧負荷システム装置及び同装置の連鎖断線・アーク放電防止方法
AU2004254316B2 (en) * 2003-07-08 2007-05-17 Kouken Company, Limited Dry-type high-voltage load system device and method for preventing chain disconnection/arc discharge of the device
US7535126B2 (en) 2003-07-08 2009-05-19 Kouken Company, Limited Dry-type high-voltage load system device and method for preventing chain disconnection/arc discharge of the device
US7847439B2 (en) 2003-07-08 2010-12-07 Kouken Company, Limited Dry-type high-voltage load system apparatus and method of preventing chain breaking and arc discharge for use therewith
US7884505B2 (en) 2003-07-08 2011-02-08 Kouken Company, Limited Dry-type high-voltage load system apparatus and method of preventing chain breaking and arc discharge for use therewith
JP2007265995A (ja) * 2006-03-13 2007-10-11 Visteon Global Technologies Inc 低電圧範囲用の電力スイッチ及び低電圧電気モータ用の階段型回転速度調整装置
JP2010025752A (ja) * 2008-07-18 2010-02-04 Tatsumi Ryoki:Kk 乾式負荷試験装置
KR101813874B1 (ko) 2015-05-11 2018-01-04 가부시키가이샤다쓰미료키 부하 시험 장치, 부하 시험 장치의 캡
CN106199092A (zh) * 2016-09-23 2016-12-07 广东志高暖通设备股份有限公司 一种组合式大功率电子负载装置
JP2023052807A (ja) * 2018-03-13 2023-04-12 株式会社辰巳菱機 負荷試験装置、負荷試験装置の抵抗ユニット
JP7564569B2 (ja) 2018-03-13 2024-10-09 株式会社辰巳菱機 負荷試験装置、負荷試験装置の抵抗ユニット
TWI752781B (zh) * 2020-12-31 2022-01-11 致茂電子股份有限公司 雷射二極體檢測系統及其檢測方法
JP6906269B1 (ja) * 2021-01-25 2021-07-21 株式会社辰巳菱機 負荷試験装置
WO2022157959A1 (ja) * 2021-01-25 2022-07-28 株式会社辰巳菱機 負荷試験装置
US12019121B2 (en) 2021-01-25 2024-06-25 Tatsumi Ryoki Co., Ltd Load testing device
JP7490292B1 (ja) 2023-02-02 2024-05-27 株式会社辰巳菱機 負荷試験システム
WO2024161968A1 (ja) * 2023-02-02 2024-08-08 株式会社辰巳菱機 負荷試験システム

Also Published As

Publication number Publication date
EP1156342A4 (en) 2005-03-09
AU781869B2 (en) 2005-06-16
EP1156342A1 (en) 2001-11-21
ES2273712T3 (es) 2007-05-16
NO320079B1 (no) 2005-10-17
BRPI0007931B1 (pt) 2016-06-07
CA2360817A1 (en) 2001-06-07
US6653928B1 (en) 2003-11-25
NO20013648L (no) 2001-09-20
DE60031095D1 (de) 2006-11-16
CA2360817C (en) 2007-11-20
TW480341B (en) 2002-03-21
EP1156342B1 (en) 2006-10-04
KR100516576B1 (ko) 2005-09-22
CN1339113A (zh) 2002-03-06
ATE341765T1 (de) 2006-10-15
NO20013648D0 (no) 2001-07-25
KR20010101914A (ko) 2001-11-15
RU2212040C2 (ru) 2003-09-10
HK1045731B (zh) 2007-05-04
AU6315000A (en) 2001-06-12
DE60031095T2 (de) 2007-06-06
HK1045731A1 (en) 2002-12-06
BR0007931A (pt) 2001-11-06
CN1220068C (zh) 2005-09-21

Similar Documents

Publication Publication Date Title
WO2001040817A1 (fr) Appareil d&#39;essai de charge a bas niveau
JP5265264B2 (ja) 乾式負荷試験装置
RU2554604C1 (ru) Машина для испытаний под нагрузкой
KR100723736B1 (ko) 건식 고압 부하 시스템 장치 및 동장치의 연쇄 단선 아크방전 방지 방법
JP7564569B2 (ja) 負荷試験装置、負荷試験装置の抵抗ユニット
JP6470231B2 (ja) 負荷試験装置、負荷システム
JP2020169966A (ja) 負荷試験装置
EP0208241A1 (en) A heating unit
KR20050043803A (ko) 고압 저항체 소자
JP7224654B2 (ja) 負荷試験装置
JP5805905B1 (ja) 負荷試験装置、負荷試験装置のキャップ
WO2018142448A1 (ja) 負荷試験装置に使用される抵抗器、負荷試験装置に使用される抵抗器セット、及び負荷試験装置
JP7085790B2 (ja) 負荷抵抗器
JP7226652B2 (ja) 配電盤
CN114730672A (zh) 电气开关装置和包括这种装置的交通工具
JPH05227618A (ja) 金属閉鎖形スイッチギヤ
JP2002033201A (ja) 中性点接地抵抗装置
TWI628445B (zh) 負載測試機
JPS59141252A (ja) 沸騰冷却式半導体装置
JPS6361782B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803342.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR NO RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2360817

Country of ref document: CA

Ref document number: 2360817

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000949910

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 542226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017009693

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 63150/00

Country of ref document: AU

Ref document number: 09889589

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000949910

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000949910

Country of ref document: EP