WO2001023935A1 - Procede et dispositif d'exposition par projection, et systeme optique de projection - Google Patents

Procede et dispositif d'exposition par projection, et systeme optique de projection Download PDF

Info

Publication number
WO2001023935A1
WO2001023935A1 PCT/JP2000/006706 JP0006706W WO0123935A1 WO 2001023935 A1 WO2001023935 A1 WO 2001023935A1 JP 0006706 W JP0006706 W JP 0006706W WO 0123935 A1 WO0123935 A1 WO 0123935A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection
projection optical
lens group
light
Prior art date
Application number
PCT/JP2000/006706
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Omura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP1999/005329 external-priority patent/WO2001023933A1/ja
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP00962924A priority Critical patent/EP1139138A4/en
Publication of WO2001023935A1 publication Critical patent/WO2001023935A1/ja
Priority to US10/252,426 priority patent/US6606144B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Definitions

  • the present invention relates to a projection exposure apparatus and method used for manufacturing a microdevice such as a semiconductor integrated circuit, an imaging device such as a CCD, a liquid crystal display, or a thin-film magnetic head using a lithography technique, and a method thereof.
  • a projection optical system suitable for such a projection exposure apparatus is also relates to a method for manufacturing the projection exposure apparatus and the projection optical system.
  • the wavelength of exposure illumination light (exposure light) used in exposure apparatuses such as steppers has become shorter year by year.
  • KrF excimer laser light (wavelength: 248 nm) has become the mainstream of exposure light instead of the i-line (wavelength: 365 nm) of mercury lamps that have been mainly used in the past.
  • ArF excimer laser light (wavelength: 19.3 ⁇ m) is being put to practical use.
  • F 2 laser wavelength: 1 5 7 nm
  • a halogen molecular laser has also been attempted, such as.
  • the light source in the vacuum ultraviolet region having a wavelength of 200 nm or less there are the above-described excimer laser and halogen molecule laser, but there is a limit in their practical narrowing.
  • the material that transmits this vacuum ultraviolet radiation is limited, only limited materials can be used for the lens elements constituting the projection optical system.
  • the transmittance of this limited material is not very high.
  • the performance of the anti-reflection coating provided on the surface of the lens element is not as high as that of long-wavelength coatings.
  • a first object of the present invention is to suppress chromatic aberration of a projection optical system and reduce a load on a light source.
  • a second object of the present invention is to perform chromatic aberration correction on exposure light having a certain spectral width by adding a single type of glass material or a small number of color correction glass materials.
  • a third object of the present invention is to obtain a very miniaturized circuit pattern of a micro device while simplifying the configuration of a projection optical system.
  • a fourth object of the present invention is to obtain a circuit pattern of an extremely miniaturized micro device without lowering the throughput. Disclosure of the invention
  • a first projection optical system forms an image of a pattern on a first surface on a second surface by the action of a light-transmitting refraction member.
  • a refraction type projection optical system for imaging which is disposed in an optical path between the first surface and the second surface, and has a front lens group having a positive refractive power;
  • the first manufacturing method of the projection optical system according to the present invention is a refraction type projection optical system that forms an image of a pattern on the first surface on the second surface by the action of the light transmitting refraction member.
  • the front lens group, the subsequent lens group, and the aperture stop include the first surface and the second surface.
  • the second projection optical system provides an image of the pattern on the first surface on the second surface by the action of the light transmitting refraction member.
  • a refraction-type projection optical system for forming an image when three or more lenses having a refractive power are provided, and three lenses having the refractive power are sequentially selected from the first surface side, the three lenses are selected. At least one surface of the lens has an aspherical shape having a negative refractive power.
  • a third projection optical system provides an image of a pattern on a first surface on a second surface by the action of a light transmitting refraction member.
  • a refraction-type projection optical system that forms an image, it has a plurality of lenses having a refractive power, and when two lenses having the refractive power are selected in order from the first surface, the two lenses are selected.
  • At least one surface of the aspheric surface is an aspheric surface, and the local principal curvature near the optical axis center of the aspheric surface is C a, and the local principal curvature in the meridional direction of the outermost peripheral portion of the effective diameter of the aspheric surface is C b,
  • the aspherical surface has a negative refractive power, the following condition is satisfied.
  • a fourth projection optical system provides an image of a pattern on a first surface, which is formed by an action of a light transmitting refraction member.
  • a refraction-type projection optical system that forms an image on the second surface by, when four or more lenses with refractive power are selected and four lenses with that refractive power are selected in order from the first surface
  • At least one surface of the four lenses is aspherical, and the local principal curvature near the optical axis center of the aspheric surface is Ca, and the local principal curvature in the meridional direction of the outermost peripheral portion of the lens effective diameter of the aspheric surface is
  • C b the following condition is satisfied when the aspheric surface has a negative refractive power.
  • the local principal curvatures C a and C b can be represented by the above-mentioned equations (b ⁇ 4) and (b ⁇ 5) as an example.
  • the aspheric surface satisfies the above-mentioned conditional expression (c-11) or (c-12)
  • distortion can be satisfactorily corrected even if the numerical aperture increases and the image field becomes large.
  • a fifth projection optical system is a projection optical system that forms a reduced image of a pattern on a first surface on a second surface.
  • the composite lateral magnification of the first lens group and the second lens group is 31 and the second lens group from the first surface.
  • a second method for manufacturing a projection optical system according to the present invention is a method for manufacturing a projection optical system for forming a reduced image of a pattern on a first surface on a second surface, wherein the negative refractive Preparing a first lens group having a positive power, preparing a second lens group having a positive refractive power, preparing a third lens group having a negative refractive power, and positive refraction.
  • the combined lateral magnification of the two lens groups is i31, and the first lens unit is located at the position closest to the second surface of the second lens unit.
  • L 1 the distance to the lens surface, when the distance from the first surface to the second surface is L, is to prepare the first and the second lens group to satisfy the following conditions.
  • the first and second lens groups are arranged so as to satisfy the following condition.
  • a sixth projection optical system is a projection optical system that forms a reduced image of a pattern on a first surface on a second surface. And at least one light-transmissive refraction member arranged in the optical path of the projection optical system, wherein the sum of the thicknesses along the optical axis of the light-transmissive refraction members arranged in the optical path of the projection optical system is defined as Assuming that C is the distance from the first surface to the second surface is L, the following condition is satisfied.
  • the third manufacturing method of the projection optical system includes the steps of: A method of manufacturing a projection optical system that forms a reduced image of a lens on a second surface, comprising: preparing a first lens group having a negative refractive power; and a second lens group having a positive refractive power. Providing a lens group; providing a third lens group having a negative refractive power; providing a fourth lens group having a positive refractive power; providing an aperture stop; A step of preparing a fifth lens group having a refractive power; and, in order from the first surface side, the first lens group, the second lens group, the third lens group, the fourth lens group, and the aperture stop.
  • a seventh projection optical system is a projection optical system that forms a reduced image of a pattern on a first surface on a second surface.
  • At least three or more aspherical lens surfaces, and the sum of the number of optically transmissive refractive members in the projection optical system having refractive power is E, and the aspherical lens surface is
  • E a the sum of the number of members provided with
  • a fourth method for manufacturing a projection optical system according to the present invention is a method for manufacturing a projection optical system that forms a reduced image of a pattern on a first surface on a second surface, the method comprising: A lens having an aspherical shape such that at least three or more of the lens surfaces of the refractive member have an aspherical surface shape, and the sum of the number of members having a refractive power among the light-transmitting refractive members is E. Assuming that the total number of members provided with surfaces is Ea, the method includes a step of preparing the light transmitting member so as to satisfy the following conditions, and a step of assembling the light transmitting member. It is.
  • a first projection exposure apparatus is a projection exposure apparatus for projecting and exposing a reduced image of a pattern provided on a projection original onto a work, and a light source for supplying exposure light; An illumination optical system for guiding the exposure light to the pattern on the projection master; and a projection optical system according to any of the above, wherein the projection master can be arranged on the first surface of the projection optical system.
  • the work can be placed on the second surface.
  • a second projection exposure apparatus is a projection exposure apparatus that performs projection exposure while scanning a reduced image of a pattern provided on a projection original on a work, and a light source that supplies exposure light;
  • An illumination optical system that guides exposure light from a light source to the pattern on the projection master;
  • a projection optical system according to any of the above; and the projection master can be arranged on the first surface of the projection optical system.
  • a second stage for allowing the work to be placed on the second surface, wherein the first and second stages have a speed ratio corresponding to the projection magnification of the projection optical system. Can be moved.
  • a third projection exposure apparatus is a projection exposure apparatus that projects and exposes a reduced image of a pattern provided on a projection original onto a work, and A light source that supplies exposure light in a wavelength range of 80 nm or less, an illumination optical system that guides the exposure light from the light source to the pattern on the projection master, and an optical path between the projection master and the workpiece. And a projection optical system for guiding a light amount of 25% or more of the exposure light amount through the projection master to the work and forming a reduced image of the pattern on the work. is there.
  • a first projection exposure method is a projection exposure method for projecting and exposing a pattern formed on a projection original onto a work.
  • the projection master is placed on the first surface, the work is placed on the second surface, and the image of the pattern is placed on the work via the projection optical system. To form.
  • the fourth projection exposure apparatus and the second projection exposure method according to the present invention each include a projection exposure apparatus and a projection exposure method for projecting and exposing a reduced image of a pattern provided on a projection original onto a work.
  • a light source that supplies exposure light in a wavelength range of 0 nm or less
  • an illumination optical system that guides the exposure light from this light source to the pattern on the projection master
  • an optical path between the projection master and the workpiece A projection optical system that guides the exposure light through the projection master to the work to form a reduced image of the pattern on the work, and that the exposure light travels from the light source to the illumination optical system.
  • the light amount is E n 1
  • the light amount of the exposure light from the illumination optical system toward the projection master is E n 2
  • the light amount of the exposure light incident on the projection optical system is E n 3
  • the projection optical system is From that wa
  • a first method for manufacturing a micro device is a method for manufacturing a micro device having a predetermined circuit pattern, wherein an image of the pattern is projected and exposed on the work using the above-described exposure method. And developing the projection-exposed work.
  • a fifth projection exposure apparatus includes: a projection exposure apparatus for projecting and exposing a pattern on a projection original onto a workpiece; An illumination optical system for supplying exposure light having the following wavelengths to the projection master, and a projection optical system for forming an image of a pattern on the projection master on the workpiece at a predetermined projection magnification of 3; The projection optical system is disposed between the aperture stop and the original plate.
  • the amount of fluorite in the light transmitting optical material in the projection optical system is recorded on the disk material.
  • the converted amount is y (kg)
  • the focal length of the lens group is f 2 (mm)
  • the maximum numerical aperture on the image side of the projection optical system is NAw
  • the parameter X is defined as follows:
  • a sixth projection exposure apparatus is a scanning projection exposure apparatus which performs projection exposure while scanning a pattern on a projection original on a work, wherein a wavelength of 200 nm or less is provided.
  • An illumination optical system that supplies the exposure light to the projection master, and a projection optical system that forms an image of a pattern on the projection master on the workpiece at a predetermined projection magnification of 3.
  • the amount of fluorite in the light-transmitting optical material in the optical system converted to the disk material is y (kg), then the focal length of the lens group is ⁇ 2 (mm), and the image side of the projection optical system
  • NAw be the maximum numerical aperture of, and define the parameter X as follows:
  • a seventh projection exposure apparatus is a projection exposure apparatus for projecting and exposing a pattern on a projection original onto a workpiece, wherein the illumination optical system supplies exposure light having a wavelength of 200 nm or less to the projection original.
  • the amount of fluorite converted to disk material is y (kg)
  • the focal length of the lens group is f2 (mm)
  • the maximum number of apertures on the image side of the projection optical system is NAw, and Evening
  • An eighth projection exposure apparatus is a projection exposure apparatus for projecting and exposing a pattern on a projection original onto a workpiece, wherein the illumination optical system supplies exposure light having a wavelength of 200 nm or less to the projection original. And a projection optical system for forming an image of a pattern on the projection original on the workpiece at a predetermined projection magnification of 3.
  • the projection optical system includes an aperture stop, the aperture stop, and the aperture stop. It has a front lens group arranged between the projection original and a rear lens group arranged between the aperture stop and the work, and includes a light-transmitting optical material in the projection optical system.
  • Y (kg) is the amount of the first material converted to the disk material. Then, when the focal length of the lens group is f 2 (mm), the maximum numerical aperture on the image side of the projection optical system is N Aw, and the parameter X is defined as follows,
  • a third projection exposure method of the present invention is a projection exposure method for projecting and exposing a pattern on a projection original onto a work, An illumination step of supplying exposure light having the following wavelengths to the projection master, and using a projection optical system including a front lens group, an aperture stop, and a rear lens group to form an image of a pattern on the projection master in a predetermined manner.
  • y ⁇ (4 xZl 3) + (1 000/1 3), y ⁇ 4x-440, and a fourth projection exposure method according to the present invention is a projection exposure method for projecting and exposing a pattern on a projection original onto a work, wherein the exposure light having a wavelength of 200 nm or less is used.
  • the image forming step includes a first auxiliary step of guiding light from the projection original plate to the front lens group, and a first auxiliary step of guiding light passing through the front lens group to the aperture stop.
  • a method for manufacturing a projection exposure apparatus is a method for manufacturing a fifth, sixth, or seventh projection exposure apparatus according to the present invention, wherein the exposure light having a wavelength of 200 nm or less is projected.
  • the steps are: an auxiliary step of preparing a front lens group, an aperture stop, and a rear lens group; an auxiliary step of arranging the front lens group between the aperture stop and a position where the projection original is arranged; An auxiliary step of arranging the group between the aperture stop and the position where the work is arranged.
  • a second method for manufacturing a micro device of the present invention is a method for manufacturing a micro device having a predetermined circuit pattern, wherein the third or fourth projection exposure method of the present invention
  • the method includes a step of projecting and exposing the image of the pattern, and a step of developing the work thus projected and exposed.
  • the eighth projection optical system of the present invention uses a light having a wavelength of 200 nm or less to convert the image of the pattern on the first surface into a second image.
  • a refraction type projection optical system formed on a surface, an aperture stop, a front lens group arranged between the aperture stop and its first surface, and an arrangement between the aperture stop and its second surface
  • the amount of fluorite in the light-transmitting optical material in the projection optical system converted to the disk material is y (kg)
  • the focal length of the lens group is f 2 ( mm)
  • the projection magnification of the projection optical system is / 3
  • the maximum numerical aperture on the image side of the projection optical system is N Aw
  • the parameter X is defined as follows:
  • a ninth projection optical system is a refraction projection optical system that forms an image of a pattern on a first surface on a second surface using light having a wavelength of 200 nm or less.
  • the amount of the first material of the optically transparent optical material in the optical system converted to the disk material is y (kg)
  • the focal length of the lens group is i2 (mm)
  • the projection optical system is If the projection magnification is 3, the maximum numerical aperture on the image side of the projection optical system is N Aw, and the parameter X is defined as follows,
  • the fifth and sixth manufacturing methods of the projection optical system according to the present invention are the manufacturing methods of the eighth and ninth projection optical systems of the present invention, respectively, wherein the front lens group, the aperture stop, and the rear Preparing a lens group, arranging the front lens group between the aperture stop and the first surface, and then arranging the lens group between the aperture stop and the second surface And a process.
  • FIG. 1 is an optical path diagram of a projection optical system according to a first numerical example of the present invention.
  • FIG. 2 is an optical path diagram of a projection optical system according to a second numerical example of the present invention.
  • FIG. 3 is a lateral aberration diagram of the projection optical system according to the first numerical example.
  • FIG. 4 is a lateral aberration diagram of the projection optical system according to the second numerical example.
  • FIG. 5 is a diagram showing a schematic configuration of a projection exposure apparatus according to the embodiment of the present invention.
  • FIG. 6 is a flow chart showing an example of the method for manufacturing a micro device of the present invention. It is a bird.
  • FIG. 7 is a flowchart showing another example of the micro device manufacturing method of the present invention. In FIG.
  • FIG. 8 shows the relationship between the parameter X and the amount y of fluorite used in the fifth embodiment of the projection optical system of the present invention, and (b) shows the relationship between the lens and the disk material. It is a figure showing a relation.
  • FIG. 9 is a diagram showing the relationship between the parameter X and the usage amount y of the first material in the sixth embodiment of the projection optical system of the present invention.
  • FIG. 10 is an optical path diagram of a projection optical system according to a third numerical example of the present invention.
  • FIG. 11 is an optical path diagram of a projection optical system according to a fourth numerical example of the present invention.
  • FIG. 12 is an optical path diagram of a projection optical system according to a fifth numerical example of the present invention.
  • FIG. 13 is an optical path diagram of a projection optical system according to a sixth numerical example of the present invention.
  • FIG. 14 is an optical path diagram of a projection optical system according to a seventh numerical example of the present invention.
  • FIG. 15 is a lateral aberration diagram of the projection optical system according to the third numerical example of the present invention.
  • FIG. 16 is a lateral aberration diagram of the projection optical system according to the fourth numerical example of the present invention.
  • FIG. 17 is a lateral aberration diagram of the projection optical system according to the fifth numerical example of the present invention.
  • FIG. 18 is a lateral aberration diagram of the projection optical system according to the sixth numerical example of the present invention.
  • FIG. 19 is a lateral aberration diagram of the projection optical system according to the seventh numerical example of the present invention.
  • FIG. 20 is a lateral aberration diagram of the projection optical system according to the eighth numerical example (second numerical example) of the present invention.
  • FIGS. 1 and 2 are optical path diagrams of a projection optical system (hereinafter, also referred to as “projection optical system P L”) according to an example of the first to seventh projection optical systems of the present invention.
  • projection optical system P L projection optical system
  • a projection optical system PL of the present invention is a refraction type projection optical system that forms a reduced image of a pattern on a first surface A on a second surface B.
  • the projection optical system PL includes a front lens group GF having a positive refractive power and a positive It has a rear lens group GR.
  • An aperture stop AS is arranged near the rear focal point of the front lens group GF. Note that the position of the aperture stop AS is not necessarily limited to the paraxial rear focal position of the front lens group GF.
  • the position of the aperture stop AS is shifted from the rear focal position on the paraxial axis of the front lens group GF (after the paraxial rear focal position). (Lens group side) in some cases.
  • the vicinity of the rear focal position is a concept including such a deviated position.
  • the rear lens group GR (fifth lens group) indicates a group of lenses located from the paraxial pupil position of the projection optical system PL to the second surface.
  • the aperture stop AS is disposed between the front lens group GF and the rear lens group GR.
  • the front lens group GF includes, in order from the first surface side, a first lens group Gl having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and It has a fourth lens group with positive refractive power. Therefore, the projection optical system PL of the present invention is also a five-group projection optical system including the first lens group G1 to the fifth lens group G5 having negative, positive, negative, positive, and positive refractive power.
  • the projection optical system PL according to the embodiment shown in FIGS. 1 and 2 is a substantially telecentric optical system on the first surface A side and the second surface B side.
  • the term “substantially telecentric on the first surface side and the second surface side” means that a ray parallel to the optical axis AX of the projection optical system is incident on the projection optical system PL from the second surface B side.
  • the angle formed with the optical axis when this light ray is emitted to the first surface side is 50 minutes or less.
  • the reticle as the projection master Even if the photosensitive substrate (wafer, plate, etc.) as a mask or a workpiece is displaced in the optical axis direction or changes in shape due to deflection of the projection master and the workpiece, magnification errors and distortions of the image due to such changes are caused. Can be reduced.
  • the focal length of the rear lens group GR (or the fifth lens group G5) is f2
  • the distance from the first surface A to the second surface B (distance between object and image) is L. It is preferable that the following condition be satisfied.
  • the conditional expression (1) is an expression defined to reduce chromatic aberration of the projection optical system, particularly, axial chromatic aberration. If the lower limit of conditional expression (1) is not reached, the focal length of the rear lens group GR (or the fifth lens group G5) will be too short. For this reason, the amount of axial chromatic aberration generated from the rear lens group GR (or the fifth lens group G5) is extremely small, but monochromatic aberration is excessively generated, which makes correction thereof difficult, which is not preferable.
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, the focal length of the rear lens group GR (or the fifth lens group G5) will be too long. In this case, the monochromatic aberration can be corrected well, but the axial chromatic aberration generated from the rear lens group GR (or the fifth lens group G5) is undesirably large. In this case, it is necessary to reduce the wavelength width of the exposure light from the light source, or to add a refractive optical member for correcting chromatic aberration to the projection optical system PL, so that the load on the light source increases, or the projection optical system PL May lead to increased costs.
  • the condition It is preferable to set the upper limit of the expression (1) to 0.12.
  • the type of the light-transmitting refraction member that transmits the exposure light in this wavelength range is limited, so that the value exceeds the upper limit of the conditional expression (1).
  • the projection optical system PL itself may not be realized.
  • the projection optical system PL preferably has at least one or more aspheric surfaces ASP1 to ASP6. Further, when conditional expression (1) is satisfied, the projection optical system PL further includes at least six or more lenses having a refractive power, and the lenses having the refractive power are sequentially arranged from the first surface A side. When six lenses are selected (Lens L1, L12, L21, L22, L23, L24 in Figs. 1 and 2), at least one of the six lenses has negative refraction. It is preferably an aspherical shape having a force.
  • the measurement of the surface of an aspheric surface is performed by a null test using an element (hereinafter, referred to as a “null element”) that creates a specific wavefront such as a so-called null lens.
  • a null element an element that creates a specific wavefront such as a so-called null lens. If the wavefront matched to the aspheric surface to be inspected is made of a null element, the refractive power of the aspheric surface is negative, that is, a concave surface can prevent the null element from increasing in size and create an aspheric surface The degree of freedom of the shape wavefront can be increased.
  • the projection optical system PL includes at least three lenses having a refractive power, and the lens having the refractive power is connected to the first surface A side.
  • the lens having the refractive power is connected to the first surface A side.
  • three lenses are selected in this order (lenses L 11, L 12, L 21 in FIGS. 1 and 2), at least one of the three lenses has an aspherical shape with a negative refractive power.
  • the refractive power of the aspheric surface is negative, that is, the concave surface is the null element. Can be prevented from becoming larger and The degree of freedom of the aspherical wavefront can also be increased.
  • the projection optical system PL of each embodiment has a negative * positive * negative • positive • positive refractive power arrangement, which is the same as the conventional positive, negative, positive, negative, positive. This has the advantage that the number of lenses can be greatly reduced compared to a six-unit projection optical system having a refractive power arrangement.
  • a composite optical system of the negative first lens group G1 and the positive second lens group G2 is considered, and the lateral magnification (first and second magnifications) of this composite optical system is considered.
  • the combined lateral magnification of the lens groups G 1 and G 2) is / 31, the distance from the first surface A to the lens surface of the second lens group G 2 closest to the second surface B is L l, and the first surface A When the distance from to the second surface B is L, it is preferable to satisfy the following conditional expressions (2) and (3).
  • conditional expression (2) is a conditional expression defined to achieve good aberration correction over the entire screen (the entire image field) of the projection optical system PL.
  • the combined optical system of the first and second lens groups G 1 and G 2 in the projection optical system PL of each embodiment converts the divergent light beam from the first surface A into a slightly convergent light beam. Has been converted to.
  • the value exceeds the upper limit of the conditional expression (2) when the value exceeds the upper limit of the conditional expression (2), the negative refractive power of the first lens unit G1 becomes too weak, so that the Petzval sum of the projection optical system PL deteriorates. And it is not preferable because the image field of the projection optical system PL cannot be sufficiently secured. In order to further satisfactorily correct the Petzval sum of the projection optical system PL, it is preferable to set the upper limit of conditional expression (2) to 0.42.
  • Conditional expression (3) is a prerequisite for conditional expression (2), and defines the positions of the combined optical systems G 1 and G 2 of the first and second lens groups.
  • the lower limit of conditional expression (3) is preferably set to 0.1
  • the upper limit of conditional expression (3) is preferably set to 0.15.
  • the combined optical systems G 1 and G 2 of the first and second lens groups have at least two aspheric lens surfaces ASP 1 to ASP 3.
  • the aspherical surfaces ASP1 to ASP3 in the combined optical systems Gl and G2 it is possible to satisfactorily correct field curvature, distortion, spherical aberration of the pupil, and the like.
  • the combined optical systems G 1 and G 2 of the first and second lens groups include 10 or less lenses.
  • the sum of the thicknesses along the optical axis of the light-transmitting refraction members (lenses, parallel plane plates) arranged in the optical path of the projection optical system PL is C.
  • the distance from the first surface A to the second surface B is L, it is preferable that the following condition is satisfied.
  • conditional expression (4) is an expression defined to achieve both the securing of the transmittance as the projection optical system PL and the stabilization of the imaging performance of the projection optical system PL. If the lower limit of conditional expression (4) is not reached, the gas gap between the light-transmitting refraction members constituting the projection optical system PL will be too long, and the characteristics of this gas will fluctuate. (E.g., a change in the refractive index due to a temperature change, a pressure change, or the like, a fluctuation, etc.) tends to cause a change in the imaging performance, which is not preferable. In order to further improve the stability of the imaging performance against environmental changes, it is preferable to set the lower limit of conditional expression (4) to 0.52.
  • the value exceeds the upper limit of the conditional expression (4) the resistance of the projection optical system PL to environmental changes is improved, but it is not preferable because it is difficult to obtain a sufficient transmittance.
  • the projection optical system PL has at least one aspheric surface ASP1 to ASP6. As a result, it is possible to secure stability against environmental fluctuations and sufficient transmittance while sufficiently improving the initial imaging performance.
  • the projection optical system PL of each embodiment preferably has at least three or more aspherical lens surfaces ASP1 to ASP6. With this configuration, excellent aberration correction over the entire screen (the entire image field) can be realized with a configuration in which the number of lenses (that is, the amount of glass material) is relatively reduced.
  • the above conditional expression (5) is an expression that specifies the optimal range of the number of aspherical lens surfaces ASP 1 to ASP 6 in consideration of the production of the projection optical system PL.
  • Aspheric lenses are more difficult to manufacture than spherical lenses, The eccentricity error and the surface accuracy error between the front and back surfaces of a surface lens tend to be large. Therefore, when manufacturing the projection optical system PL, it is necessary to optimize the imaging performance of the projection optical system PL by adjusting the position and orientation of the spherical lens and adjusting the surface shape of the spherical lens to correct the error of the aspheric lens. Is preferred.
  • conditional expression (5) When the value exceeds the upper limit of the conditional expression (5), not only the aberrations due to the errors of the aspherical lens surfaces ASP 1 to ASP 6 become too large, but also the number of the spherical lenses decreases, so that the aspherical ASP It is difficult to correct the aberrations caused by the errors of 1 to ASP 6 by adjusting the position, posture, and shape of the spherical lens.
  • the value is below the lower limit of the conditional expression (5), the number of aspherical lens surfaces decreases and the production of the projection optical system PL becomes easy, but the entire screen (the entire image field) is reduced. It is not preferable because it becomes difficult to satisfactorily correct aberrations, and the amount of glass material required for manufacturing the projection optical system PL is increased. In order to achieve further aberration correction and reduce the amount of glass material, it is preferable to set the lower limit of conditional expression (5) to 0.2.
  • the sum of the members (lens elements) having a refractive power among the light-transmitting refraction members constituting the projection optical system PL is preferably 16 or more. .
  • the image side (second surface B side) numerical aperture of the projection optical system PL it is possible to project and expose a finer pattern.
  • the projection optical system PL of each embodiment is configured. It is preferable that the sum of the members (lens elements) having a refractive power among the light-transmitting refraction members to be used is 26 or less. This not only improves the transmittance by reducing the thickness of the light transmissive refraction member that constitutes the projection optical system PL, but also reduces the number of optical interfaces (lens surfaces) and reduces light loss at this optical interface. Thus, the transmittance as a whole can be improved.
  • the light-transmitting refraction member in the projection optical system PL is formed of a single type of material. For this reason, the manufacturing cost of the projection optical system PL can be reduced. In particular, when optimizing the projection optical system PL for exposure light having a wavelength of 180 nm or less, glass materials having a good transmittance for exposure light in this wavelength range are limited. It is.
  • the light-transmitting refraction member in the projection optical system PL includes a first light-transmitting refraction member formed of the first material and a second light-transmission refraction member formed of the second material. And a light-transmitting refraction member.
  • the number of the second light-transmitting refraction members with respect to the number of the light-transmitting refraction members having the refractive power is preferably 32% or less.
  • the types of glass materials having good transmittance for exposure light in this wavelength region are limited to some types.
  • the manufacturing cost is high and the processing cost for making a lens is also included. It is difficult to increase the precision of the glass material having a high cost when processing it into a lens, which is a problem in improving the precision of the projection optics PL, that is, in improving the imaging performance.
  • the manufacturing cost can be reduced and the imaging performance can be improved by suppressing the above percentage to 32% or less.
  • the above percentage is preferably 16% or less, and more preferably 11% or less.
  • FIG. 1 is an optical path diagram of the projection optical system PL according to the first embodiment.
  • the projection optical system PL of the first embodiment uses a wavelength of 15.7.62 nm supplied by the narrowed F 2 laser as a reference wavelength, and has a wavelength width of ⁇ 0.2 with respect to the reference wavelength.
  • the chromatic aberration is corrected in the range of pm.
  • all of the light transmissive refractive members in the projection optical system PL (lenses L 1 1 to L 5 7) is formed of fluorite (calcium fluoride, C a F 2) ing.
  • the projection optical system PL of the first embodiment includes, in order from the first surface A side, a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power.
  • the projection optical system PL of the first embodiment includes, in order from the first surface A side, a negative first lens group Gl, a positive second lens group G2, and a negative second lens group G2. It has a third lens group G3, a positive fourth lens group G4, an aperture stop AS, and a positive fifth lens group G5.
  • the first lens group G 1 includes, in order from the first surface A side, a biconcave negative lens L 11, and a meniscus-shaped negative lens L 12 having a concave surface facing the first surface A side.
  • These negative lenses L11 and L12 form a biconvex gas lens.
  • the lens surface on the first surface A side of the negative lens L11 and the lens surface on the second surface B side of the negative lens L12 are aspherical.
  • the second lens group G2 has four biconvex positive lenses L21 to L24.
  • the lens surface on the first surface A side of the positive lens L24 on the second surface B side is formed in an aspherical shape.
  • the third lens group G3 has three biconcave negative lenses L31 to L33, and these negative lenses L31 to L33 form two biconvex gas lenses. are doing.
  • the second of the negative lens L 3 3 on the second surface B side The lens surface on the surface B side is formed in an aspherical shape.
  • the fourth lens group G4 includes, in order from the first surface A side, two meniscus-shaped positive lenses L41 and L42 with concave surfaces facing the first surface A side, and a biconvex positive lens L43 And
  • the fifth lens group G5 includes, in order from the first surface A side, a biconcave negative lens L51, two biconvex positive lenses L52, L53, and a first surface A side. It has three meniscus-shaped positive lenses with convex surfaces facing: L54 to L56, and a plano-convex positive lens L57.
  • the lens surface on the second surface B side of the positive lens L56 is formed in an aspherical shape.
  • FIG. 2 is an optical path diagram of the projection optical system PL according to the second embodiment.
  • the projection optical system PL of the second embodiment uses a wavelength of 93.306 nm supplied by the narrowed ArF laser as a reference wavelength, and has a wavelength width with respect to the reference wavelength.
  • the chromatic aberration is corrected in the range of 0.4 pm on soil.
  • the light-transmitting refraction member in the projection optical system PL is formed of quartz glass (synthetic quartz) and fluorite.
  • the projection optical system PL of the second embodiment includes, in order from the first surface A, a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power.
  • the projection optical system PL of the first embodiment includes, in order from the first surface A side, a negative first lens group Gl, a positive second lens group G2, and a negative second lens group G2. It has a third lens group G3, a positive fourth lens group G4, an aperture stop AS, and a positive fifth lens group G5.
  • the first lens group G 1 includes, in order from the first surface A side, a biconcave negative lens L 11, and a meniscus-shaped negative lens L 12 having a concave surface facing the first surface A side.
  • These negative lenses L11 and L12 form a biconvex gas lens.
  • the lens surface on the second surface B side of the negative lens L 11 and the lens surface on the second surface B side of the negative lens L 12 are formed in aspherical shapes. I have. Note that these two negative lenses L 11 and L 12 are both formed of quartz glass.
  • the second lens group G2 includes, in order from the first surface A side, three biconvex positive lenses L21 to L23, and a meniscus-shaped positive lens with the convex surface facing the first surface A side. L 24.
  • the lens surface on the second surface side of the positive lens L 21 closest to the first surface A is formed in an aspherical shape.
  • the three biconvex positive lenses L21 to L23 are formed of quartz glass, and the meniscus-shaped positive lens L24 is formed of fluorite.
  • the third lens group G3 has three biconcave negative lenses L31 to L33, and these two negative lenses L31 to L33 form two biconvex gas lenses. Has formed.
  • the lens surface on the first surface A side of the negative lens L33 closest to the second surface B is formed in an aspherical shape. All the negative lenses L31 to L33 in the third lens group G3 are formed of quartz glass.
  • the fourth lens group G 4 has, in order from the first surface A side, a meniscus-shaped positive lens L 4 1 having a concave surface facing the first surface A side, and a plano-convex shape having a convex surface facing the second surface B side. It has a positive lens L 42 and a meniscus-shaped positive lens L 43 with the convex surface facing the first surface A side.
  • all three positive lenses L41 to L43 are formed of quartz glass.
  • the fifth lens group G5 includes, in order from the first surface A side, a meniscus-shaped negative lens L51 having a convex surface facing the first surface A side, a biconvex positive lens L52, and a first surface It has four meniscus-shaped positive lenses L53 to L56 with the convex surface facing the A side, and a plano-concave negative lens L57 with the concave surface facing the first surface A side.
  • the lens surface on the second surface B side of the meniscus-shaped negative lens L51 and the lens surface on the second surface side of the meniscus-shaped positive lens L56 are formed in an aspheric shape.
  • the biconvex positive lens L52 is formed of fluorite, and the remaining lenses L51, L53 And 57 are formed of quartz glass.
  • the aspherical lens surface is formed of a lens made of quartz glass. Is preferred.
  • Tables 1 and 2 below show the specifications of the projection optical system PL of the first and second embodiments.
  • the leftmost column is the number of each lens surface from the first surface A
  • the second column is the radius of curvature of each lens surface
  • the third column is from each lens surface to the next lens surface.
  • the fourth column shows the lens material
  • the fifth column shows the symbol of the aspheric surface
  • the sixth column shows the symbol of each lens.
  • the radius of curvature in the second row for the aspheric lens surface indicates the vertex radius of curvature.
  • ⁇ eff in Table 2 indicates the effective diameter of each lens surface.
  • the aspheric shape is represented by the following equation (a).
  • Height from optical axis
  • Distance in the optical axis direction from the tangent plane to the aspherical surface at the apex of the aspherical surface
  • the projection optical system of the first embodiment uses fluorite as a lens material (glass material), and the second embodiment uses quartz glass (synthetic quartz) and fluorite.
  • the refractive index of the fluorite at the reference wavelength (155.62 nm) of the first embodiment is 1.55930967, and the change in the refractive index per wavelength + 1 pm (dispersion) is one 2. 6 X 1 0- 6.
  • the refractive index of quartz glass (synthetic quartz) at the reference wavelength (193.306 nm) of the second embodiment is 1.5603261, which is equivalent to the wavelength + 1 pm the amount of change in refractive index (variance) is an 1. 5 9 X 1 0- 6.
  • the fluorite has a refractive index of 1.5 at the reference wavelength (193.306 nm).
  • Si represents quartz glass
  • CaF 2 represents fluorite
  • d0 is the distance from the first surface A to the first surface A
  • WD is the most.
  • Distance from the surface on the second surface B side to the second surface B (working distance) 3 is the projection magnification
  • NA is the numerical aperture on the second surface B side
  • is the image cycle on the second surface B. Indicates the diameter.
  • Table 3 shows numerical values corresponding to the conditions of each embodiment.
  • FIGS. 3 and 4 show lateral aberration diagrams on the second surface B of the projection optical system PL according to the first and second examples, respectively.
  • Is the lateral aberration diagram in the meridional direction when the image height ⁇ 0 (on the optical axis)
  • the projection optical system PL of the first embodiment has a wavelength of ⁇ 0.2 pm even though only a single type of glass material is used in a wavelength range of 180 ⁇ m or less. Chromatic aberration correction has been achieved satisfactorily over this wavelength range.
  • the projection optical system PL of the second embodiment has a small number of chromatic aberration correcting lens elements (about 10% of all lens elements) in the vacuum ultraviolet wavelength range of 200 nm or less. Despite using only), chromatic aberration correction has been successfully achieved over a wavelength range of ⁇ 0.4 pm.
  • the projection optical system PL of the first embodiment has a circular image field having a diameter of 23 mm, and has a rectangular shape having a width of 6.6 mm in the scanning direction and a width of 22 mm in the scanning orthogonal direction in the image field. Exposure area can be secured.
  • the projection optical system PL of the second embodiment has a circular image field with a diameter of 26.6 mm, and within the image field, a width in the running direction of 8.8 mm and a width in the running orthogonal direction of 2 mm. A 5 mm rectangular exposure area can be secured.
  • FIGS. 10 to 14 are optical path diagrams of the projection optical systems according to the eighth and ninth embodiments of the projection optical system of the present invention.
  • the projection optical systems of FIGS. 1 and 2 described above may be included in the eighth and ninth embodiments of the projection optical system of the present invention.
  • the projection optical system of this example forms a reduced image of the pattern on the first surface A on the second surface B.
  • This is a refraction type projection optical system.
  • a pattern surface of a reticle R as a projection master (mask) is arranged on a first surface A, and a work is formed on a second surface B as a work.
  • the coated surface (exposure surface) of the wafer registry of the wafer W to be exposed is arranged.
  • the projection optical system has a front lens group GF having a positive refractive power and a rear lens group GR having a positive refractive power, and an aperture stop AS is arranged near the rear focal position of the front lens group GF.
  • the position of the aperture stop AS is not necessarily limited to the paraxial rear focal position of the front lens group GF. This is the same as in the embodiment of FIGS. 1 and 2.
  • the rear lens group GR indicates a group of lenses located from the paraxial pupil position of the projection optical system to the second surface B.
  • the aperture stop AS is disposed between the front lens group GF and the rear lens group GR.
  • the projection optical systems in the examples of FIGS. 10 to 14 are substantially telecentric on the first surface A side and the second surface B side, as in the examples of FIGS.
  • the displacement of the reticle (mask) as the projection master and the photosensitive substrate (wafer, plate, etc.) as the work in the optical axis direction, the deflection of the projection master and the work, and the like Even if a shape change occurs due to, the magnification error and distortion of the image due to the change can be reduced.
  • the wavelength is not more than 200 nm. Exposure light is used, and the amount of fluorite (C a F 2 ) of the light-transmitting optical material in the projection optical system (used amount) converted to a disk material is expressed as y (kg).
  • the focal length of the lens group GR is f 2 (mm)
  • the maximum numerical aperture on the image side of the projection optical system is NAw
  • the parameter X (mm) is defined as follows.
  • the disk material D of the lens L used in the projection optical system is a columnar member used when manufacturing the lens L.
  • the effective radius of the lens L (the larger effective radius on the entrance side and the exit side)
  • the width for holding the lens L stably is d S
  • the radius r d of the disc material D is (ref f + d S)
  • the length of the disc material D is the length of the cylinder circumscribing the lens L. Therefore, the amount y in which the used amount of the fluorite is converted to the disk material indicates the total amount of the fluorite used in manufacturing the projection optical system.
  • the holding width dS is set to 8 mm. At this time, in this example, the following conditional expressions are satisfied.
  • FIG. 8A shows the relationship between the parameter X and the amount of fluorite y (the amount used in terms of disk material) in the embodiment of the present invention.
  • chromatic aberration of an optical system is corrected by appropriately combining optical materials having different dispersions (ordinary correction method).
  • a lens including a parallel plate for aberration correction
  • the types of optical materials are becoming limited. Concretely, quartz glass (synthetic quartz) and fluorite are practical combinations of a plurality of optical materials having different dispersions in a wavelength range of about 170 to 200 nm. Since the amount is small and expensive, in order to reduce the manufacturing cost of the projection optical system and, consequently, the projection exposure apparatus having the same, it is desirable to reduce the amount y of fluorite used as much as possible.
  • the present inventor has conceived of applying a method of correcting chromatic aberration for light having a predetermined wavelength width by proportionally reducing the optical system (correction method by proportional reduction) in the case of this example.
  • a method of correcting chromatic aberration for light having a predetermined wavelength width by proportionally reducing the optical system (correction method by proportional reduction) in the case of this example.
  • the above-mentioned normal correction method which can be controlled by the amount of fluorite y
  • the proportional reduction It was found that the optimal combination with the correction method (which can be controlled by the parameter X) is the area B5 in Fig. 8 (a).
  • conditional expression (1 2) is not satisfied, that is, in the region B 2 e on the straight line B 2, it is not preferable because the absolute usage of fluorite increases.
  • conditional expression (13) is not satisfied, that is, in the area B 3 e outside the straight line B 3, it is easy to correct the monochromatic aberration of the projection optical system, but the correction amount of the chromatic aberration is significantly insufficient. As a result, the imaging performance deteriorates, which is not preferable. Since the amount y of fluorite is 0 or a positive value, conditional expression (14) is always satisfied.
  • the maximum numerical aperture N Aw on the image side of the projection optical system and the amount of fluorite y (the amount used in terms of the disk material) further satisfy the following two conditional expressions. Is preferred.
  • conditional expression (d_l) If the conditional expression (d_l) is not satisfied, sufficient resolution cannot be obtained. Furthermore, since mass production of fluorite is difficult at present, if the conditional expression (d-2) is not satisfied, the supply of the projection optical system PL (and the projection exposure apparatus equipped with the same) according to demand. May be difficult to increase. In the present embodiment, it is desirable that the focal length f 2 (mm) of the lens group GR and the maximum numerical aperture NAw on the image side of the projection optical system thereafter satisfy the following conditions.
  • condition that is narrower than the conditional expressions (11) to (14) is required. Matter in which the following conditional expressions (1 5) ⁇ (1 8 ) c y ⁇ it is desirable to satisfy the (9 x / 2) - 2 7 0 ⁇ (1 5)
  • the exposure light has a wavelength of 200 nm or less and a wavelength width of 0.5 pm or less in full width at half maximum.
  • the narrower the wavelength width the easier it is to correct the color difference.
  • the configuration of the exposure light source becomes more complicated and the manufacturing cost increases accordingly, and a decrease in the amount of exposure light is inevitable, resulting in a decrease in throughput.
  • an ArF excimer laser light source (wavelength 1993 nm) as the exposure light source
  • the wavelength width from 0.5 pm or less to about 0.3 pm is reasonable due to the band narrowing technology. It is feasible, and chromatic aberration can be easily corrected by the correction method of this example.
  • a correction method based on proportional reduction is used.
  • a projection optical system is configured. It is desirable that a predetermined lens surface of the plurality of lenses be an aspheric surface. However, since aspherical lenses are expensive to manufacture, it is desirable to minimize the number of aspherical surfaces as long as the desired imaging performance is obtained.
  • conditional expressions (11) to (14) are satisfied, but the amount of fluorite
  • the number A of the aspherical surfaces in the projection optical system is preferably 2 or more.
  • the focal length f of the rear lens group GR is determined from the conditional expressions (11) to (14) because the amount y of the fluorite is relatively small. 2 is set relatively short. That is, chromatic aberration correction by proportional reduction tends to be dominant.
  • the number of aspherical surfaces is less than two, the range of the image-side visual field in which the aberration is well corrected becomes too narrow, and when applied to a projection exposure apparatus, the throughput is reduced. It is desirable to use two or more aspheric surfaces in order to favorably correct aberrations within the field of view. In order to favorably correct aberrations in a wider image-side field of view, it is more preferable that the number of aspherical surfaces is three or more.
  • the number A of the aspherical surface in the projection optical system is preferably 1 to 5.
  • conditional expression (21) when this conditional expression (21) is satisfied, since the amount y of the fluorite increases, the focal length of the rear lens group GR GR2 force conditional expression (1 9) is obtained from the conditional expressions (11) to (14). ) Can be set longer than in the case where In other words, since chromatic aberration is corrected by proportional reduction in addition to the correction method that combines multiple materials, the use of at least one and no more than five aspheric surfaces enables good aberration correction within the desired image-side field of view. Can be done. Deviating from conditional expression (22) and not using an aspherical surface, it is difficult to maintain the proportionally reduced image-side field of view before the proportional reduction, which is not preferable. Also, aspheric If the number exceeds 5, the manufacturing cost is unnecessarily increased, which is not preferable.
  • the aspherical surface be provided on a lens surface of a lens made of a material different from fluorite (for example, quartz glass).
  • fluorite for example, quartz glass
  • an aspherical surface is to be provided for a lens made of fluorite, it is difficult to perform aspherical processing on the fluorite because of the high degree of wear of the fluorite, resulting in a significant increase in manufacturing cost and manufacturing time. Further, there is a possibility that the accuracy of the aspherical surface is reduced.
  • the image-side field of view of the projection optical system of this example is preferably 20 mm or more in diameter (more preferably 25 mm or more).
  • the maximum numerical aperture NAw of the projection optical system on the image side is as follows. It is desirable to satisfy
  • the resolution Res of the image transferred by the projection optical system is as follows.
  • the resolution Res is about 154. nm. Therefore, by setting the exposure wavelength to 2 O O nm or less and satisfying the conditional expression (23), a sufficient resolution for manufacturing a next-generation semiconductor device or the like can be obtained.
  • the projection optical system according to the ninth projection optical system (sixth projection exposure apparatus or fourth projection exposure method) of the present invention
  • exposure light having a wavelength of 200 nm or less is used.
  • the amount obtained by converting the amount (used amount) of the first material among the light transmitting optical materials in the projection optical system into a disk material is represented by y. (kg).
  • the focal length of the rear lens group GR be f 2 (mm) and the maximum numerical aperture on the image side of the projection optical system be NAw.
  • FIG. 9 shows the relationship between the parameter X (mm) and the amount y of the first material (used amount in terms of disk material) (kg) in this embodiment.
  • B4 and the straight lines C1 to C4 are the same as those in Fig. 8 (a), and the area satisfying the conditional expressions (11) to (14) is the area surrounded by the straight lines B1 to B4.
  • a second material different from the first material is first used as a main material (light transmitting optical material) of the lens constituting the projection optical system, and chromatic aberration correction is performed. Add the first material as needed to do so. Further, a correction method for achromatizing by proportionally reducing the optical system is also used.
  • this example describes the range of the optimal combination of the correction method for achromatization by adding a chromatic aberration correction material (first material) to the main material (second material) and the correction method by proportional reduction. What I found ". In this example, not only quartz but also fluorite can be used as the main material (second material).
  • the first material is fluorite (this corresponds to the embodiment of FIG. 8 (a)), barium fluoride (BaF), lithium fluoride ( L i F) etc. can be used.
  • the exposure wavelength is 17 O nm or less (for example, an F 2 laser with a wavelength of 157 nm)
  • fluorite may be used as the main material to increase the transmittance.
  • the first material is a material different from fluorite (quartz, BaF, LiF, etc.).
  • conditional expression (11) is not satisfied, the rear lens group GR It can be said that the first material is used more than necessary for the focal length f2. If conditional expression (1 2) is not satisfied, an absolute increase in the amount of the second material will be caused. For example, if the exposure wavelength is 17 O nm or less, the transmittance will decrease too much. It is not preferable.
  • conditional expression (13) If conditional expression (13) is not satisfied, it is easy to correct the monochromatic aberration of the projection optical system, but the correction amount of the chromatic aberration is significantly insufficient, resulting in deterioration of the imaging performance, which is not preferable. .
  • conditional expression (e) it is preferable to satisfy the conditional expressions (d-1) and (d-2) in order to obtain a sufficient resolution and suppress the amount of fluorite used within a practical range.
  • conditional expression (e) it is desirable to satisfy conditional expression (e).
  • conditional expressions (11) to (14) it is narrower than the conditional expressions (11) to (14). It is desirable that the above-mentioned conditional expressions (15) to (18) are satisfied. This is the case where (X, y) is in the area C5 surrounded by the straight lines C1 to C4 in FIG.
  • the data A1 corresponds to the first embodiment described above.
  • the material of the lens are all quartz
  • the amount y of the first material 0 It is.
  • the focal length f2 of GR is 1 10.6 nm
  • the projection magnification 3 is 0.25
  • the maximum numerical aperture NAw on the image side is 0.75
  • the parameter X 110.64
  • the projection optical systems of the eighth to eighth embodiments all use the reference wavelength of 193.3 nm provided by the narrowed ArF laser, and the FWHM (full width at half maximum) is centered on the reference wavelength.
  • the chromatic aberration is corrected in the range of 0.35 pm, that is, in the range of 93.3 nm ⁇ 0.175 pm.
  • FIG. 10 is an optical path diagram of a projection optical system according to the third embodiment.
  • the third real ⁇ , optically transparent refractive member in the projection optical system (lens LI 1 to L 5 7) are all quartz: is formed by (synthetic quartz S i ⁇ 2). That is, no achromatic material (first material) is used.
  • the projection optical system of the third example includes, in order from the first surface A side, a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power.
  • the projection optical system of the third embodiment includes, in order from the first surface A side, a negative first lens group Gl, a positive second lens group G2, and a negative third lens. It has a group G3, a positive fourth lens group G4, an aperture stop AS, and a positive fifth lens group G5, and the first lens group G1 to the fourth lens group G4 constitute the front lens group GF.
  • the fifth lens group G5 constitutes the rear lens group GR.
  • the first lens group G 1 includes, in order from the first surface A side, a meniscus-shaped negative lens L 11 having a convex surface facing the first surface A side and a meniscus-shaped negative lens L 1 having a concave surface facing the first surface A side. It has a negative lens L12, and a biconvex gas lens is formed by these negative lenses L11 and L12.
  • the lens surface on the first surface A side of the negative lens L11 and the lens surface on the second surface B side of the negative lens L12 are formed as aspheric surfaces ASP1 and ASP2, respectively.
  • the second lens group G 2 includes a meniscus negative lens 21 having a concave surface facing the first surface A side, a meniscus positive lens L 2 2 having a concave surface facing the first surface A side, and a biconvex lens. It has three positive lenses L 23 to L 25 in shape. Most positive lens L 2 5 on the second surface B side The first lens surface on the first side A side is aspherical AS P 3 Is formed.
  • the third lens group G 3 includes, in order from the first surface A side, a convex surface facing the first surface A side, a meniscus negative lens L 31, and two biconcave negative lenses L 3 2, L 3 3 These two negative lenses L 31 to L 33 form two biconvex gas lenses.
  • the lens surface on the second surface B side of the negative lens L33 closest to the second surface B is formed as an aspheric surface ASP4.
  • the fourth lens group G4 includes, in order from the first surface A side, two meniscus-shaped positive lenses L41 and L42 with concave surfaces facing the first surface A side, and a biconvex positive lens L43.
  • the fifth lens group G5 which is also the rear lens group GR, includes, in order from the first surface A side, a biconcave negative lens L51 and two biconvex positive lenses L52 and L53. It has three meniscus-shaped positive lenses L54 to L56 with the convex surface facing the first surface A side, and a plano-concave negative lens L57 with the concave surface facing the first surface A side.
  • the lens surface on the first surface A side of the positive lens L52 and the lens surface on the second surface B side of the positive lens L56 are formed as aspheric surfaces ASP5 and ASP6, respectively. .
  • FIG. 11 is an optical path diagram of a projection optical system according to the fourth embodiment.
  • quartz is used as a main material (second material) of the light-transmitting refraction member in the projection optical system.
  • Glass synthetic quartz
  • fluorite is used as the achromatizing material (first material).
  • the projection optical system of the fourth example includes, in order from the first surface A side, a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power.
  • the projection optical system PL of the fourth embodiment includes, in order from the first surface A side, a negative first lens group Gl, a positive second lens group G2, and a negative third lens group G1.
  • a first lens group G1 to a fourth lens group G, including a lens group G3, a positive fourth lens group G4, an aperture stop AS, and a positive fifth lens group G5. 4 corresponds to the front lens group GF
  • 5th lens group G5 corresponds to the rear lens group GR.
  • the first lens group G 1 includes, in order from the first surface A side, a meniscus-shaped negative lens L 11 having a convex surface facing the first surface A side and a meniscus-shaped negative lens L 1 having a concave surface facing the first surface A side. It has a negative lens L12, and a biconvex gas lens is formed by these negative lenses L11 and L12.
  • the lens surface on the first surface A side of the negative lens L I 1 and the lens surface on the second surface B side of the negative lens L 12 are formed as aspheric surfaces ASP 1 and ASP 2, respectively.
  • These two negative lenses L 11 and L 12 are both formed of quartz glass.
  • the second lens G 2 includes, in order from the first surface A side, a meniscus-shaped positive lens L 21 having a concave surface facing the first surface A side, and three biconvex positive lenses L 22 to L 24. And a meniscus-shaped positive lens L25 having a convex surface facing the first surface A side.
  • the lens surface on the first surface A side of the positive lens L 25 on the second surface B side is formed as an aspheric surface ASP 3. All the lenses of the second lens group G2 are made of quartz glass.
  • the third lens group G 3 includes, in order from the first surface A side, a meniscus-shaped negative lens L 31 having a convex surface facing the first surface A side, and two biconcave negative lenses L 3 2, L 3
  • the negative lenses L 31 to L 33 form two biconvex gas lenses.
  • the lens surface on the second surface B side of the negative lens L33 closest to the second surface B is formed as an aspheric surface ASP4.
  • All the negative lenses L31 to L33 in the third lens group G3 are formed of quartz glass.
  • the fourth lens group G 4 includes, in order from the first surface A side, a meniscus-shaped positive lens L 41 having a concave surface facing the first surface A side, and a meniscus-shaped positive lens L 4 having a concave surface facing the first surface A side. It has a positive lens L42 and a biconvex positive lens L43.
  • the two positive lenses L 41 and L 42 are formed of quartz glass
  • the positive lens L 43 on the second side B is made of fluorite.
  • the fifth lens group G5 includes, in order from the first surface A side, a biconcave negative lens L51, two biconvex positive lenses L52, L53, and a first surface A side. It has three meniscus-shaped positive lenses L54 to L56 with their convex surfaces facing, and a biconcave negative lens L57.
  • the lens surface on the second surface B side of the negative lens L51 and the lens surface on the second surface B side of the positive lens L56 are formed as aspheric surfaces ASP5 and ASP6, respectively.
  • only the negative lens L57 closest to the second surface B is formed of fluorite, and the remaining lenses L51 to L56 are formed of quartz glass. .
  • quartz glass synthetic quartz
  • fluorite fluorite
  • the aspherical lens surface is entirely formed of a lens made of quartz glass. I have.
  • FIG. 12 is an optical path diagram of a projection optical system according to the fifth embodiment.
  • quartz is used as a main material (second material) of the light-transmitting refraction member in the projection optical system.
  • Glass synthetic quartz
  • fluorite is used as the achromatizing material (first material).
  • the projection optical system of the fifth embodiment includes, in order from the first surface A side, a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power.
  • the projection optical system of the fifth embodiment includes, in order from the first surface A side, a negative first lens group Gl, a positive second lens group G2, and a negative third lens.
  • Group G3, Positive fourth lens group G4, Aperture stop AS, and Positive fifth lens group G5 with the first to fourth lens groups G1 to G4 corresponding to the front lens group GF
  • the fifth lens group G5 corresponds to the rear lens group GR.
  • the first lens group G 1 includes, in order from the first surface A side, a plano-concave negative lens L 11 having a flat surface facing the first surface A side, and a meniscus having a concave surface facing the first surface A side.
  • a negative lens L12 having a shape is provided, and a biconvex gas lens is formed by the negative lenses L11 and L12.
  • the lens surface on the second surface B side of the negative lens L11 is formed as an aspherical surface ASP1.
  • These two negative lenses L 11 and L 12 are both made of quartz glass.
  • the second lens G 2 has, in order from the first surface A side, a meniscus-shaped negative lens L 21 having a concave surface facing the first surface A side and a meniscus-shaped positive lens L 21 having a concave surface facing the first surface A side. It has a lens L22, a biconvex positive lens L23, and two meniscus-shaped positive lenses L24 and L25 with the convex surface facing the first surface A side.
  • the lens surface on the first surface A side of the negative lens L 21 closest to the first surface A is formed as an aspheric surface ASP 2. All the lenses in the second lens group G2 are made of quartz glass.
  • the third lens group G 3 includes, in order from the first surface A side, a meniscus-shaped negative lens L 31 having a convex surface facing the first surface A side, and two biconcave negative lenses L 3 2, L 3
  • the negative lenses L 31 to L 33 form two biconvex gas lenses.
  • the lens surface on the second surface B side of the negative lens L 31 on the first surface A side and the lens surface on the second surface B side of the negative lens L 33 on the second surface B side are respectively Formed on aspheric ASP3 and ASP4. All the negative lenses L31 to L33 in the third lens group G3 are formed of quartz glass.
  • the fourth lens group G 4 includes, in order from the first surface A side, a meniscus-shaped positive lens L 41 having a concave surface facing the first surface A side, and a meniscus-shaped positive lens L 4 having a concave surface facing the first surface A side. It has a positive lens L42 and a biconvex positive lens L43.
  • the two positive lenses L 41 and L 42 on the first surface A side are formed of fluorite
  • the positive lens L 43 on the second surface B side is formed of quartz glass.
  • the fifth lens unit G5 includes, in order from the first surface A side, a biconcave negative lens L51, two biconvex positive lenses L52, L53, and a first surface A side.
  • convex There are three meniscus-shaped positive lenses L54 to L56 facing the first lens, and a plano-concave negative lens L57 with the concave surface facing the first surface A side.
  • the lens surface on the second surface B side of the negative lens L51 and the lens surface on the second surface B side of the positive lens L55 are formed as aspheric surfaces ASP5 and ASP6, respectively.
  • the fifth lens group G5 only the two lenses L56 and L57 closest to the second surface B are formed of fluorite, and the remaining lenses: L51 to L55 are stones. Made of glass.
  • quartz glass synthetic quartz
  • fluorite fluorite
  • the aspherical lens surface is entirely formed of a lens made of quartz glass. I have.
  • FIG. 13 is an optical path diagram of a projection optical system according to the sixth embodiment.
  • quartz is used as a main material (second material) of the light-transmitting refraction member in the projection optical system.
  • Glass synthetic quartz
  • fluorite is used as the achromatizing material (first material).
  • the projection optical system of the sixth example includes, in order from the first surface A side, a double lens having a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power. It is a waist type imaging optical system.
  • the front lens group GF includes, in order from the first surface A side, a biconcave negative lens L11, three biconvex positive lenses L12 to L14, and a convex surface on the first surface.
  • a meniscus-shaped negative lens L 26 with the convex surface facing A biconcave negative lens L27, a meniscus-shaped negative lens L28 with the concave surface facing the first surface A side, and a meniscus-shaped
  • the rear lens group GR includes, in order from the first surface A side, two biconvex positive lenses L 51 and L 52, and a meniscus negative lens L 5 3 having a concave surface facing the first surface A side. And a biconvex positive lens L54, three meniscus-shaped positive lenses L55 to L57 with the convex surface facing the first surface A side, and a meniscus with the convex surface facing the first surface A side It has a negative lens L58 having a shape and a positive lens L59 having a biconvex shape.
  • four lenses L53, L54, L58, L59 are formed of quartz lenses, and the other five lenses L51, L52, L55, L56. , L57 are formed from fluorite.
  • quartz glass synthetic quartz
  • fluorite fluorite
  • the aspherical lens surface is entirely formed of a lens made of quartz glass. I have.
  • FIG. 14 is an optical path diagram of a projection optical system according to the seventh embodiment.
  • quartz is used as a main material (second material) of the light-transmitting refraction member in the projection optical system.
  • Glass synthetic quartz
  • fluorite is used as the achromatizing material (first material).
  • the projection optical system of the seventh embodiment includes, in order from the first surface A side, a double lens having a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power. It is a waist type imaging optical system.
  • the front lens group GF includes, in order from the first surface A side, a biconcave negative lens L11, three biconvex positive lenses L12 to L14, and a convex surface on the first surface.
  • the lens surface on the first surface A side of the negative lens L20, the lens surface on the first surface A side of the negative lens L27, and the lens surface on the second surface B side of the negative lens L28 are respectively non-
  • the spheres are formed as ASP1, ASP2 and ASP3.
  • Only the positive lens L 29 on the second surface B side and the middle positive lens L 24 are formed of fluorite, and the other lenses L 11 to L 23 and L 25 to L 28 Are all formed from quartz glass.
  • the rear lens group GR includes, in order from the first surface A side, two biconvex positive lenses L 51 and L 52, and a meniscus negative lens L 53 having a concave surface facing the first surface A side.
  • a biconvex positive lens L54 three meniscus positive lenses L55 to L57 with the convex surface facing the first surface A side, and a biconcave negative lens L58.
  • a biconvex positive lens L59 is formed of quartz lenses, and the other five lenses L51, L52, L55, L55 6, L57 are formed from fluorite.
  • quartz glass (synthetic quartz) and fluorite are used as the lens material (glass material), but the aspherical lens surface is entirely formed of a lens made of quartz glass. I have.
  • the lens configuration of the projection optical system of the eighth embodiment of the present example is the same as the lens configuration of the second embodiment of FIG.
  • the chromatic aberration was corrected in the range of the wavelength width ⁇ 0.4 pm with respect to the reference wavelength of 13.3.06 nm.
  • Chromatic aberration is corrected in the range of 0.3 pm FWHM (full width at half maximum) around 3.3 nm, that is, in the range of 193.3 nm ⁇ 0.175 pm. This range is substantially equivalent to the chromatic aberration correction range (the range of the wavelength width ⁇ 0.4 pm with respect to the reference wavelength) of the second embodiment.
  • Tables 4 to 8 below show the specifications of the projection optical systems of the third to seventh embodiments, respectively.
  • the leftmost column is the number of each lens surface from the first surface A
  • the second column is the radius of curvature of each lens surface
  • the third column is the lens surface from each lens surface to the next lens surface.
  • the fourth column shows the lens material
  • the fifth column shows the sign of the aspheric surface
  • the sixth column shows the sign of each lens
  • the seventh column shows the effective diameter of each lens surface.
  • the radius of curvature in the second row for the aspheric lens surface indicates the radius of curvature of the vertex.
  • the aspheric shape is represented by the above equation (a).
  • the conic coefficient ⁇ and aspheric coefficients A, B, C, D, E, and F are shown for each aspheric surface as [aspheric data].
  • the refractive index of quartz glass (synthetic quartz) at the reference wavelength (193.3 nm), the change amount (dispersion) of the refractive index per wavelength + 1 pm, and The specific gravity is as follows.
  • Refractive index of quartz glass 1.56 0 3 2 6
  • Si0 2 is a quartz glass
  • CaF 2 represents fluorite
  • d 0 is the distance to the lens surface closest to the first surface A side from the first surface A
  • WD most Indicates the distance (working distance) from the lens surface on the second surface B side to the second surface B.
  • the third embodiment to the seventh embodiment have in common the numerical aperture NA of the projection optical system (the maximum numerical aperture NAw on the second surface B side), the projection magnification 3, and the image circle on the second surface B.
  • the diameter ⁇ is as follows.
  • Table 9 shows the third to seventh embodiments and the eighth embodiment (second embodiment).
  • f 2 is the focal length of the rear lens group GR
  • ⁇ > is the image circle Diameter (mm)
  • 3 is the projection magnification
  • y is the amount of fluorite disc material used (kg)
  • y P is the amount of fluorite lens itself (shape material) used (kg)
  • A is the aspheric surface It represents a number.
  • Table 11 shows the values corresponding to the conditional expressions (b_1), (b-2), (c-1), and (c-12) of the aspheric surface conditions in the above embodiment.
  • the lens number is the number of the lens having the first aspherical surface from the first surface side in the projection optical system of each embodiment, and the surface number of the aspherical surface is the aspherical surface number. Is the number from the first side of
  • the principal curvature C a is the local principal curvature of the aspheric surface near the center of the optical axis, and is calculated by equation (b-4).
  • the principal curvature Cb is the local principal curvature in the meridional direction at the outermost peripheral portion of the lens effective diameter, and is calculated by the equation (b_5).
  • Effective diameter (ram) 65.8 67.5 67.8 66.6
  • Principal curvature C a -0.00014 -0.00118-0.00318 0.00329
  • Principal curvature C b -0.00308 -0.00507 0.00000-0.00234
  • FIGS. 15 to 20 show lateral aberration diagrams on the second surface B of the projection optical system according to the third to eighth embodiments (second embodiment), respectively.
  • Figs. 15 ( ⁇ ) to 19 ( ⁇ ) are image heights
  • FIG. 19 (F) show lateral aberrations in the sagittal direction at 75.
  • FIG. 7 is a lateral aberration diagram in the sagittal direction at 0 (on the optical axis).
  • Aberration curve due to 75 pm reference wavelength tens: 0.175 pm
  • the projection optical system of each embodiment achieves good chromatic aberration correction over the wavelength range of 0.175 pm on each soil.
  • the projection optical systems of the third to seventh embodiments each have a circular image field with a diameter of 27.5 mm, and within the image field, for example, a width of about 8 mm in the scanning direction, A rectangular exposure area with a width of about 26 mm in the scanning orthogonal direction can be secured. Therefore, when the projection optical system of these embodiments is used as a projection optical system of a scanning exposure type projection exposure apparatus such as a step-and-scan method and a stitch-and-scan method, the cost is high. You can get throughput.
  • the rectangular exposure area is used in consideration of applying the projection optical system PL of each embodiment to the scanning exposure apparatus.
  • the shape of the exposure area is included in the circular image field. If the area is It can be in various shapes such as trapezoidal trapezoid, trapezoidal trapezoid, rhombus, square, and arc.
  • the projection optical system PL of the first to seventh embodiments can be applied to the projection exposure apparatus of the embodiment shown in FIG.
  • FIG. 5 has been described an example using the first embodiment with the projection optical system PL has described an example using an F 2 laser light source as a light source, A r F excimer
  • the basic configuration of the exposure apparatus except for the light source is the same as that of FIG.
  • FIG. 5 an embodiment of an exposure apparatus according to the present invention will be described.
  • FIG. 5 is a diagram illustrating a schematic configuration of a projection exposure apparatus according to the embodiment.
  • the XYZ coordinate system is adopted.
  • Exposure apparatus using the F 2 laser light source as the exposure light source, it is obtained by applying the present invention to a projection exposure apparatus using a refractive optical system as the projection optical system.
  • the reticle and the substrate are synchronously scanned in a predetermined direction relative to an illumination area of a predetermined shape on the reticle, so that a reticle is formed on one shot area on the substrate.
  • It adopts a step-and-scan method in which pattern images are sequentially transferred.
  • the laser light source 2 has, for example, a combination of a fluorine dimer laser (F 2 laser) having an oscillation wavelength of 157 nm and a band narrowing device.
  • the F 2 laser has a full width at half maximum of about 1.5 pm in spontaneous oscillation.
  • a laser beam having a full width at half maximum of about 0.2 pm to 0.25 pm is obtained.
  • the laser light source 2 in the present embodiment is a light source that emits light belonging to the vacuum ultraviolet region having a wavelength of about 120 nm to about 180 nm, for example, a krypton dimer laser (Kr) having an oscillation wavelength of 146 nm. laser) and the like oscillation wavelength 1 2 6 nm argon dimer laser (a r 2 laser) can and Mochiiruko.
  • the pulse laser light (illumination light) from the laser light source 2 is deflected by the deflecting mirror 3 and travels toward the optical path delay optical system 41, where the coherence length of the illumination light from the laser light source 2 (coherence length)
  • the light beam is divided into a plurality of light beams with the above-mentioned optical path length difference.
  • an optical path delay optical system is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-198759 and Japanese Patent Application Laid-Open No. 11-174365.
  • the illumination light emitted from the optical path delay optical system 41 is deflected by the optical path deflecting mirror 42, and then passes through the first fly-eye lens 43, the zoom lens 44, and the oscillating mirror 45 in that order. Reach fly eye lens 4 6.
  • a switching reporter 5 for the aperture stop of the illumination optical system for setting the size and shape of the effective light source as desired is arranged.
  • the size of the light beam to the second fly-eye lens 46 by the zoom lens 44 is variable in order to reduce the light amount loss at the aperture stop of the illumination optical system.
  • the light beam emitted from the aperture of the illumination optical system aperture stop illuminates the illumination field stop (reticle blind) 11 via the condenser lens group 10.
  • the illumination field stop 11 is disclosed in Japanese Patent Application Laid-Open No. Hei 4-19613 and US Patent No. 5,473,410 corresponding thereto. .
  • An illumination area which is an image of the opening of the illumination field stop 10, is formed on the reticle R via a lined imaging system).
  • Light from the illumination area on reticle R is guided onto wafer W via projection optical system PL, and a reduced image of the pattern in the illumination area on reticle R is formed on wafer W.
  • an exposure light When light having a wavelength in the vacuum ultraviolet region is used as exposure light, a gas having a strong absorption characteristic for light in such a wavelength band, such as oxygen, water vapor, or a hydrocarbon-based gas, is referred to as an exposure light. (Referred to as “absorptive gas”).
  • the illumination optical path (the optical path from the laser light source 2 to the reticle R) and the projection optical path (the optical path from the reticle R to the wafer W) are cut off from the outside atmosphere, and those optical paths are changed to the vacuum ultraviolet region.
  • the optical path from the laser light source 2 to the optical delay optical system 41 is cut off from the external atmosphere by a casing 30, and the optical path from the optical delay optical system 41 to the illumination field stop 11 is provided by a casing 40.
  • the illumination field stop imaging optical system is shielded from the external atmosphere by a casing 150, and the optical path is filled with the specific gas.
  • the projection optical system P L itself has a lens barrel serving as a casing, and the internal optical path is filled with the specific gas.
  • the casing 170 is a reticle stage that holds the space between the casing 150 containing the illumination field stop imaging optical system and the projection optical system PL from the external atmosphere, and holds the reticle R inside. RS is housed.
  • the casing 170 is provided with a door 173 for loading / unloading the reticle R. Outside the door 173, the casing 170 is provided when loading / unloading the reticle R.
  • a gas exchange chamber 174 is provided to prevent contamination of the atmosphere.
  • the gas replacement chamber 174 is also provided with a door 177, and reticle delivery to and from a reticle storage force 210 storing a plurality of types of reticles is performed via the door 177.
  • the casing 200 shields the space between the projection optical system PL and the wafer W from the external atmosphere, and inside the wafer stage 22 for holding the wafer W and the wafer W as a substrate.
  • An oblique incidence type auto focus sensor 26, off-axis type alignment sensor 28, and a wafer stage 22 are mounted to detect the Z-direction position (focus position) and tilt angle of the surface.
  • Table 2 23 is stored.
  • the casing 200 is provided with a door 203 for loading and unloading the wafer W. The outside of the door 203 prevents the atmosphere inside the casing 200 from being contaminated.
  • a gas replacement chamber 204 is provided for this purpose.
  • the gas replacement chamber 204 is provided with a door 207 through which the wafer W is loaded into the apparatus and unloaded from the apparatus.
  • each of the casings 40, 150, 170, and 200 is provided with an air supply valve 147, 156, 171 and 201, respectively.
  • the air valves 147, 156, 171 and 201 are connected to an air supply line connected to a gas supply device (not shown).
  • the casings 40, 150, 170, 200 have exhaust valves 148, 157, 172, 202, respectively, and these exhaust valves 148, 1 5 7, 1 7 2, 2 0 2
  • Each is connected to the gas supply device via an exhaust pipe (not shown).
  • the specific gas from the gas supply device is controlled to a predetermined target temperature by a temperature adjustment device (not shown).
  • a temperature adjustment device not shown
  • the temperature adjusting device is disposed near each casing.
  • the gas replacement chambers 174 and 204 are also provided with air supply valves 175 and 205 and exhaust valves 176 and 206, respectively. 5 is connected to the gas supply device via an air supply line, and the exhaust valves 176 and 206 are connected via an exhaust line.
  • an air supply valve 18 1 and an exhaust valve 18 2 are provided also in the joint of the projection optical system PL, and the air supply valve 18 1 is connected via an air supply pipe (not shown), and the exhaust valve 18 2 It is connected to the gas supply device via an exhaust pipe not shown.
  • the air supply line provided with the air supply valves 14 7, 15 6, 17 1, 17 5, 18 1, 21, 20 25, and the exhaust valves 14 48, 15 , 1772, 176, 182, 202, and 206 are provided with an exhaust pipe for removing dust (particles) such as HEPA filter or UL PA filter.
  • dust particles
  • the gas replacement chambers 174 and 204 it is necessary to perform gas replacement each time the reticle is replaced or the wafer is replaced. For example, when replacing the reticle, open the door 174 and carry the reticle into the gas replacement chamber 174 from the reticle storage force 210, close the door 174 and close the door 174 to the specific gas inside the gas replacement chamber 174. After that, the door 173 is opened and the reticle is placed on the reticle stage RS. When replacing the wafer, the door 207 is opened, the wafer is carried into the gas replacement chamber 204, and the door 207 is closed to fill the gas replacement chamber 204 with the specific gas. Then open the door 203 and place the wafer in the wafer holder Place on top of 20. The procedure is the reverse for reticle unloading and wafer unloading. When the gas is replaced in the gas replacement chambers 174 and 204, the specific gas may be supplied from the air supply valve after the pressure in the gas replacement chamber is reduced.
  • gas that has undergone gas replacement by 04 may be mixed in, and a considerable amount of absorbing gas such as oxygen may be mixed in the gas in the gas replacement chambers 1 74 and 204. Therefore, it is desirable to perform the gas replacement at the same timing as the gas replacement in the gas replacement chambers 174 and 204. Further, it is preferable to fill the casing and the gas replacement chamber with a specific gas having a pressure higher than the pressure of the external atmosphere.
  • At least one of the plurality of lens elements constituting the projection optical system PL can be changed in at least one of its position and orientation. It is held in. Thereby, the imaging characteristics of the projection optical system PL can be changed.
  • Such an adjusting means is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 4-192173, Japanese Patent Application Laid-Open No. Hei 4-127514 (and corresponding US Pat. No. 5,117, No. 255), Japanese Patent Application Laid-Open No. Hei 5-4-13344, and Japanese Patent Application Laid-open No. Hei 6-184527 (and corresponding US Pat. No. 5,424,5552) No.).
  • At least one of the lens elements whose at least one of the position and the posture can be changed is a spherical lens.
  • the projection optical system PL of the second to seventh embodiments optimized for the ArF excimer laser is disclosed in Japanese Patent Application Laid-Open No. Hei 6-260386 (US Pat. Nos. 5,559, No. 584), Japanese Unexamined Patent Publication No.
  • the present invention can be applied to the projection exposure apparatus disclosed in Japanese Patent Application Laid-Open Nos. 8/5 7 21 13, W 9/109 9 17 and W 9 9 5 0 9 92 .
  • a light source for supplying exposure light in a wavelength range of 180 nm or less, an illumination optical system for guiding exposure light from the light source to the pattern on the projection original, and It is placed in the optical path between the projection master and the work, and guides the work at least 25% of the light intensity of the exposure light through the projection master to the work to reduce the reduced image of the pattern.
  • a projection optical system formed on the work is placed in the optical path between the projection master and the work, and guides the work at least 25% of the light intensity of the exposure light through the projection master to the work to reduce the reduced image of the pattern.
  • the projection exposure apparatus employs the projection optical system PL according to the embodiment shown in FIG. 5 according to the embodiment shown in FIG.
  • the glass material constituting the projection optical system PL is fluorite as described above, and the transmittance per cm for exposure light of 157 nm is 99 to 99.5%.
  • the antireflection film for the exposure light of 157 nm has a light loss of 1% per lens surface.
  • the projection exposure method according to the present invention is directed to a projection exposure method for projecting and exposing a reduced image of a pattern provided on a projection original onto a workpiece.
  • the light amount of the exposure light toward the projection master is E n 2
  • the light amount of the exposure light incident on the projection optical system is E n 3
  • the light amount from the projection optical system is E n 2.
  • the step of guiding the exposure light to the pattern includes an auxiliary step of passing the exposure light through a space filled with a gas atmosphere having a characteristic of little absorption of light in the wavelength range.
  • the step of forming a reduced image of the pattern on the work preferably includes an auxiliary step of passing the exposure light through a space filled with a gas atmosphere having a characteristic of little absorption of light in the wavelength range. It is preferred to include.
  • a metal film is placed on one lot of wafers. Is deposited.
  • a photoresist is applied on the metal film on the one-lot wafer.
  • the image of the pattern on the reticle R is projected onto the projection light using the projection exposure apparatus of FIG. 5 including the projection optical system PL of any of the first and second embodiments. Exposure is sequentially transferred to each shot area on that one lot wafer via the science PL.
  • the photo resist on the one-lot wafer is developed, and in step 305, etching is performed on the one-lot wafer using the resist pattern as a mask.
  • a circuit pattern corresponding to the pattern on the reticle R is formed in each shot area on each wafer.
  • devices such as semiconductor elements are manufactured by forming a circuit pattern of the upper layer.
  • a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined circuit pattern on a plate (glass substrate).
  • a plate glass substrate.
  • a so-called optical lithography step of transferring and exposing a reticle pattern onto a photosensitive substrate (a glass substrate coated with a resist or the like) using the exposure apparatus of the present embodiment is performed. Be executed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to a developing process, an etching process, a reticle peeling process and the like to form a predetermined pattern on the substrate. Move to 2.
  • a color filter in which a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix. To form Then, after the color filter forming step 402, a cell assembling step 403 is performed.
  • a liquid crystal panel (liquid crystal) is formed using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. (Cell).
  • liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402.
  • Manufacture liquid crystal panels (liquid crystal cells).
  • a module assembling step 404 components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • liquid crystal display element manufacturing method a liquid crystal display element having an extremely fine circuit pattern can be obtained with good throughput.
  • the fly-eye lenses 43 and 46 as optical integrators (uniformizers and homogenizers) in the illumination optical system are provided by etching a plurality of micro lens surfaces on a single substrate.
  • a micro fly's eye lens formed by such a method may be used.
  • diffractive optics that diverge incident light by diffraction to form a circular, orbicular, or multipole illumination field in its far field (Fraunhofer diffraction region).
  • An element may be used.
  • a diffractive optical element for example, those disclosed in US Pat. No. 5,850,300 can be used.
  • the optical path delay optical system 41 may be omitted.
  • an internal reflection type integrator (rod, integrator, light pipe, light tunnel, etc.) can be used.
  • the exit surface of the internal reflection type integer and the pattern surface of the reticle are almost shared. Therefore, when applied to the above-described embodiment, for example, the illumination field stop (reticle blind) 11 is arranged close to the exit surface of the internal reflection type integer gray, and the exit surface of the first fly-eye lens 43 is arranged.
  • the zoom lens 44 is configured such that the incident surface of the internal reflection type integer gray is approximately conjugate with the incident surface.
  • a micro lens array When the wavelength of the exposure light is 180 nm or less, at least one of a micro lens array, a diffractive optical element, an internal reflection type integer, and a lens element in the illumination optical system is used.
  • fluorite, fluorine-de-loop quartz glass, fluorine and hydrogen doped quartz glass, structure determination temperature is 1 2 0 0 K and the hydrogen molecule concentration less 1 X 1 0 1 mo l ecu les / cm 3 or more, quartz glass whose structure determination temperature is 1200 K or less and chlorine concentration is 50 ppm or less, and whose structure determination temperature is 1200 K or less and hydrogen molecule concentration Is preferably 1 ⁇ 10 17 moles / cm 3 or more and a chlorine concentration is 50 ppm or less.
  • the structure determination temperature is lower than 1200 K and the OH group Quartz glass having a concentration of 1000 ppm or more can also be used.
  • the quartz glass having a structure determination temperature of 1200 K or less and a ⁇ H group concentration of 1000 ppm or more is described in Japanese Patent No. 27770224 by the present applicant. It is disclosed that the structure determination temperature is less than 1200 K
  • each lens element constituting the projection optical system is formed of fluorite.
  • each lens element constituting the projection optical system is composed of calcium fluoride (C). a F ”, fluorite), barium fluoride (B a F 2 ), lithium fluoride (L i F), magnesium fluoride (Mg F 2 ), lithium / calcium / aluminum / fluoride (L i C a a 1 F fi), lithium strontium aluminum Furorai de (L i S r a l F fi), and is at least one material is selected from the group consisting of strontium fluoride (S r F 2) Is preferred.
  • a laser light source in which a fluorine dimer laser (F laser) having an oscillation wavelength of 157 nm is narrowed is used.
  • the present invention is not limited to the F 2 laser.
  • a narrow band of an ArF excimer laser having an oscillation wavelength of 193 nm or a KrF excimer laser having an oscillation wavelength of 248 nm can be used.
  • the degree of narrowing of the laser light source can be reduced by applying the present invention. There is an advantage that the burden of achromaticity of the projection optical system can be reduced.
  • a F 2 laser as the light source
  • Y AG laser having an oscillation scan Bae-vector to 1 5 7 nm
  • a harmonic of a solid-state laser may be used.
  • a single-wavelength laser beam in the infrared or visible region emitted from a DFB semiconductor laser or a fiber laser is doped with, for example, erbium (Er) (or both erbium and ytterbium (Yb)). It is also possible to use harmonics that have been amplified by a fiber-optic amplifier and wavelength-converted to ultraviolet light using a nonlinear optical crystal.
  • the oscillation wavelength of the single-wavelength laser light is in the range of 1.51 to 1.59 ⁇ m
  • the 10-fold higher harmonic whose generated wavelength is in the range of 151 to 159 nm Is output.
  • the oscillation wavelength 1.5 from 7 to 1.5 8 - in the range of m and Then, 1 0 harmonic in the range of 1 5. 7 to 1 5 8 nm is generated wavelength, ie F 2 laser beam UV light having substantially the same wavelength is obtained.
  • the oscillation wavelength is in the range of 1.03 to 1.12 m, a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output.
  • the harmonic when a harmonic from a laser light source is used, the harmonic itself has a sufficiently narrow spectral width (for example, 0.3 pm or less), and therefore can be used instead of the light source 2 described above. it can.
  • the projection optical system is configured using a single type of material, but the type of material is not limited to a single type.
  • synthetic quartz and fluorite can be used as materials, assuming that exposure light in the vacuum ultraviolet region or the far ultraviolet region close to the deep ultraviolet region can be used.
  • a diffractive optical element may be added to the projection optical system, and the chromatic aberration correction effect of the diffractive optical element may be used together.
  • a prism made of a birefringent material for preventing speckles may be arranged on the incident side of the first fly-eye lens 43.
  • a prism for preventing speckle is disclosed in, for example, US Pat. No. 5,253,110.
  • magnesium fluoride (MgFg) is used instead of the quartz prism disclosed in US Pat. No. 5,253,110. 2
  • a prism made of a crystal can be used.
  • the wedge-shaped prism made of the magnesium fluoride crystal is arranged so that its thickness gradually changes in a direction intersecting the optical axis of the illumination optical system.
  • the wedge prism for optical path correction is arranged so as to face the wedge prism made of the magnesium fluoride crystal so that their apical angles are opposite to each other.
  • This wedge prism for optical path correction has the same apex angle as the prism made of the magnesium fluoride crystal, and is made of a light transmissive material having no birefringence.
  • Examples of the material for the optical path correcting prism include fluorite, fluorine-doped quartz glass, fluorine and hydrogen-doped quartz glass, a structure determination temperature of 1200 K or less and a ⁇ H group concentration of 1 Quartz glass having a temperature of not less than 0 0 0 p pm, quartz glass having a structure determination temperature of not more than 1200 K and a hydrogen molecule concentration of not less than 1 X 10 17 molecules / cni 3 , and having a structure determination temperature of 1 200 Less than K Under a and chlorine concentration and at the 5 0 ppm or less is quartz glass, and structure determination temperature is 1 2 0 0 K and the hydrogen molecule concentration less 1 X 1 0 1 7 mo l ecu les / cm 3 or more on It is preferable to use a material selected from the group consisting of quartz glass having a chlorine concentration of 50 ppm or less.
  • the exposure apparatus of the embodiment may be a stitching and slit-scan exposure apparatus.
  • the stitching and slit scanning methods are adopted, the reticle and the substrate are synchronously scanned in a predetermined first direction relative to an illumination area of a predetermined shape on the reticle, so that the first row on the substrate is obtained. Exposure to the eye area is performed. Thereafter, the reticle is replaced, or the reticle is moved by a predetermined amount along a second direction orthogonal to the first direction of the illumination area, and the substrate is conjugated with the second direction of the illumination area. Sideways. Then, the reticle and the substrate are again scanned synchronously in the first direction relative to the illumination area of the predetermined shape on the reticle, thereby exposing the area of the second row on the substrate.
  • a reticle pattern can be exposed in a region on a substrate having a wide exposure field of a projection optical system.
  • a stitching and slit scan type exposure apparatus is disclosed in U.S. Pat. No. 5,477,304, Japanese Patent Laid-Open No. 8-330202, Japanese Patent Publication No. It is disclosed in, for example, Japanese Unexamined Patent Publication No. Hei 10-28484.
  • a collective exposure method in which a pattern image on a reticle is collectively transferred to a predetermined shot area on a substrate can be adopted.
  • one wafer stage for holding a wafer as a work is provided.
  • Japanese Patent Application Laid-Open No. 50-98 Japanese Patent Application Laid-Open No. 10-16-97, Japanese Patent Application Laid-Open No. 1016-9898, Japanese Patent Application No. 10-16-3
  • two sets of wafer stages may be provided.
  • the present invention can also be applied to an exposure apparatus for transferring a device pattern onto a ceramic wafer, an exposure apparatus used for manufacturing an imaging device (such as a CCD), and the like.
  • the present invention can be applied to an exposure apparatus that transfers a circuit pattern onto a glass substrate, a silicon wafer, or the like in order to manufacture a reticle or a mask.
  • the chromatic aberration of the projection optical system can be suppressed, and the burden on the light source can be reduced. Further, by adding a single type of glass material or a small number of color correction glass materials, it is possible to perform chromatic aberration correction on exposure light having a certain spectral width.
  • the configuration of the projection optical system is simplified while the circuit of the microdevice is extremely miniaturized. You can get a pattern.
  • an extremely fine circuit pattern of a micro device can be obtained without lowering the throughput.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

明 細 書 投影露光方法及び装置、 並びに投影光学系 技術分野
本発明は、 例えば半導体集積回路、 C C D等の撮像素子、 液晶ディス プレイ、 または薄膜磁気へッド等のマイクロデバイスをリソグラフィ技 術を用いて製造する際に用いられる投影露光装置及び方法、 並びにその ような投影露光装置に好適な投影光学系に関する。 また、 本発明は、 上 記投影露光装置及び投影光学系を製造する方法に関する。 背景技術
近年、 半導体集積回路等のマイクロデバイスの回路パターンの微細化 に伴い、 ステツパ等の露光装置で使用される露光用の照明光 (露光光) の波長は年々短波長化してきている。 すなわち、 露光光としては、 従来 主に使用されていた水銀ランプの i線 (波長: 3 6 5 n m) に代わって K r Fエキシマレ一ザ光 (波長: 2 4 8 n m) が主流となってきており、 さらに、 それよりも短波長の A r Fエキシマレ一ザ光 (波長: 1 9 3 η m) も実用化されつつある。 また、 さらなる露光光の短波長化を目的と して、 F 2 レーザ (波長: 1 5 7 n m) のようなハロゲン分子レーザ等 の使用も試みられている。
さて、 波長 2 0 0 n m以下の真空紫外域の光源としては、 上述したェ キシマレーザやハロゲン分子レーザ等があるが、 それらの実用的な狭帯 化には限界がある。
また、 この真空紫外域の放射光を透過させる材料が限定されるた 、 投影光学系を構成するレンズ素子の材料は限られたものしか使用できず、 この限られた材料の透過率もそれほど高いものではない。 そして、 現状 では、 レンズ素子の表面に設けられる反射防止コートの性能も、 長波長 用のものと比べるとあまり高性能なものが得られていない。
本発明は、 投影光学系の色収差を抑え、 光源への負担を低減させるこ とを第 1の目的とする。
また、 本発明は、 単一種類の硝材、 或いは少数の色補正用硝材の追加 により、 ある程度のスぺクトル幅を有する露光光に対する色収差補正を 行うことを第 2の目的とする。
また、 本発明は、 投影光学系の構成の簡素化を図りつつも、 極めて微 細化されたマイクロデバイスの回路パターンを得ることを第 3の目的と する。
また、 本発明は、 極めて微細化されたマイクロデバイスの回路パター ンを、 スループットを低下させずに得ることを第 4の目的とする。 発明の開示
上述の第 1又は第 2の目的を達成するために、 本発明による第 1の投 影光学系は、 第 1面上のパターンの像を光透過性屈折部材の作用により 第 2面上に結像させる屈折型の投影光学系であって、 その第 1面とその 第 2面との間の光路中に配置されて、 正の屈折力を有する前レンズ群と、 その前レンズ群とその第 2面との間の光路中に配置されて、 正の屈折力 を有する後レンズ群と、 その前レンズ群の後側焦点位置近傍に配置され た開口絞りとを有し、 その投影光学系は、 その第 1面及びその第 2面側 がテレセントリックであり、 その後レンズ群の焦点距離を f 2とし、 そ の第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足す るものである。
0 . 0 6 5 < f 2 / L < 0 . 1 2 5 また、 本発明による投影光学系の第 1の製造方法は、 第 1面上のパ夕 一ンの像を光透過性屈折部材の作用により第 2面上に結像させる屈折型 の投影光学系の製造方法であって、 正の屈折力を有する前レンズ群を配 置する工程と、 この前レンズ群とその第 2面との間に、 正の屈折力を有 する後レンズ群を配置する工程と、 その前レンズ群とその後レンズ群と の間に、 開口絞りを配置する工程を含み、 その前レンズ群、 その後レン ズ群、 及びその開口絞りは、 その第 1面及びその第 2面側がテレセント リックであるように配置し、 その後レンズ群の焦点距離を ί 2とし、 そ の第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足す るものを用いるものである。
0 . 0 6 5 < f 2 / L < 0 . 1 2 5
また、 上述の第 1又は第 2の目的を達成するために、 本発明による第 2の投影光学系は、 第 1面上のパターンの像を光透過性屈折部材の作用 により第 2面上に結像させる屈折型の投影光学系において、 屈折力を持 つ 3個以上のレンズを有し、 その屈折力を持つレンズをその第 1面側か ら順に 3個選択したときに、 この 3個のレンズの少なくとも一面が負の 屈折力を持つ非球面形状であるものである。
また、 上述の第 1又は第 2の目的を達成するために、 本発明による第 3の投影光学系は、 第 1面上のパターンの像を光透過性屈折部材の作用 により第 2面上に結像させる屈折型の投影光学系において、 屈折力を持 つ複数個のレンズを有し、 その屈折力を持つレンズをその第 1面から順 に 2個選択したときに、 この 2個のレンズの少なくとも一面が非球面で あり、 この非球面の光軸中心付近のローカル主曲率を C a、 この非球面 のレンズ有効径最周辺部のメリジォナル方向のローカル主曲率を C bと するとき、 その非球面が負の屈折力を有する場合に、 次の条件が成立す るものである。 C b/C a < 0. 7 … (b— 1 )
一方、 本発明において、 その非球面が正の屈折力を有する場合には、 次の条件が成立する。
C b/C a > 1. 6 … (b— 2)
この発明において、 その非球面の光軸中心付近のローカル主曲率 C a、 及びその非球面のレンズ有効径最周辺部のメリジォナル方向のローカル 主曲率 C bは、 一例として以下のように表すことができる。 即ち、 その 非球面の光軸からの高さを Y、 非球面頂点における接平面から非球面ま での光軸方向の距離を ζ、 頂点曲率半径を r、 円錐係数を / 、 非球面係 数を A, B, C, D, E, Fとして、 その非球面を次式 (b— 3) で表 す。 z(Y)=—— , Y r -+AY4+BY6+CY+DY10
1+ V l-(l+A )Y2/r2 +Εγΐ2+ργΐ4 〜(b-3) このときに、 ローカル主曲率 C a及び C bはそれぞれ次のようになる。 C a = 1 / r … (b— 4)
d 2 z /d 2 Y
C b= "- (b - 5)
{ 1 + (d z /d Y) 2 } 3/2
投影光学系の開口数の増大、 及び像視野の大型化に伴い、 歪曲収差を できるだけ小さくすることに対する要求は益々高まっている。 他の収差 への影響を抑えて歪曲収差のみを補正するためには、 できるだけ物体面 (マスク) に近い位置に歪曲収差補正のための非球面を配置することが 好ましい。 この際に、 その非球面が上記の条件式 (b_ l) 又は (b— 2) を満たすことによって、 開口数が増大し、 像視野が大型化しても、 歪曲収差を良好に補正することができる。
また、 上述の第 1又は第 2の目的を達成するために、 本発明による第 4の投影光学系は、 第 1面上のパターンの像を光透過性屈折部材の作用 により第 2面上に結像させる屈折型の投影光学系において、 屈折力を持 つ 4個以上のレンズを有し、 その屈折力を持つレンズをその第 1面から 順に 4個選択したときに、 この 4個のレンズの少なくとも一面が非球面 であり、 この非球面の光軸中心付近のローカル主曲率を C a、 この非球 面のレンズ有効径最周辺部のメリジォナル方向のローカル主曲率を C b とするとき、 その非球面が負の屈折力を有する場合に、 次の条件が成立 するものである。
C b/C a< 0. 4 5 ··· ( c - 1 )
一方、 本発明において、 その非球面が正の屈折力を有する場合には、 次の条件が成立する。
C bZC a〉 2. 3 ··· ( c - 2 )
本発明においても、 ローカル主曲率 C a , C bは一例として上記の (b - 4) 式、 (b— 5 ) 式で表すことができる。 そして、 非球面が上 記の条件式 (c一 1 ) 又は (c一 2 ) を満たすことによって、 開口数が 増大し、 像視野が大型化しても、 歪曲収差を良好に補正することができ る。
また、 上述の第 3の目的を達成するために、 本発明による第 5の投影 光学系は、 第 1面上のパターンの縮小像を第 2面上に結像させる投影光 学系であって、 第 1面側より順に、 負の屈折力を有する第 1レンズ群、 正の屈折力を有する第 2レンズ群、 負の屈折力を有する第 3レンズ群、 正の屈折力を有する第 4レンズ群、 開口絞り、 及び正の屈折力を有する 第 5レンズ群を有し、 その第 1 レンズ群及びその第 2レンズ群の合成横 倍率を 3 1とし、 その第 1面からその第 2レンズ群の最もその第 2面側 のレンズ面までの距離を L 1、 その第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足するものである。
一 1. 3 < 1 / β 1 < 0 0. 0 8 <L 1 ZLく 0. 1 7
また、 本発明による投影光学系の第 2の製造方法は、 第 1面上のパ夕 ーンの縮小像を第 2面上に結像させる投影光学系の製造方法であって、 負の屈折力を有する第 1 レンズ群を準備する工程と、 正の屈折力を有す る第 2レンズ群を準備する工程と、 負の屈折力を有する第 3レンズ群を 準備する工程と、 正の屈折力を有する第 4レンズ群を準備する工程と、 開口絞りを準備する工程と、 正の屈折力を有する第 5レンズ群を準備す る工程と、 その第 1面側より順に、 その第 1 レンズ群、 その第 2レンズ 群、 その第 3レンズ群、 その第 4レンズ群、 その開口絞り、 及びその第 5レンズ群の順に配置する工程とを含み、 その第 1第 1レンズ群及びそ の第 2レンズ群の合成横倍率を i3 1とし、 その第 1面からその第 2レン ズ群の最もその第 2面側のレンズ面までの距離を L 1、 その第 1面から その第 2面までの距離を Lとするとき、 次の条件を満足するようにその 第 1及び第 2レンズ群を準備するものである。
— 1. 3 < 1 / β 1 < 0
そして、 次の条件を満足するようにその第 1及び第 2レンズ群を配置 するものである。
0. 0 8 <L 1 ZLく 0. 1 7
また、 上述の第 3の目的を達成するために、 本発明による第 6の投影 光学系は、 第 1面上のパターンの縮小像を第 2面上に結像させる投影光 学系であって、 その投影光学系の光路中に配置される少なくとも 1つの 光透過性屈折部材を含み、 その投影光学系の光路中に配置される光透過 性屈折部材の光軸に沿った厚さの総和を Cとし、 その第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足するものである。
0. 4 6 <C/L< 0. 6 4
また、 本発明による投影光学系の第 3の製造方法は、 第 1面上のパ夕 ーンの縮小像を第 2面上に結像させる投影光学系の製造方法であって、 負の屈折力を有する第 1 レンズ群を準備する工程と、 正の屈折力を有す る第 2レンズ群を準備する工程と、 負の屈折力を有する第 3レンズ群を 準備する工程と、 正の屈折力を有する第 4レンズ群を準備する工程と、 開口絞りを準備する工程と、 正の屈折力を有する第 5レンズ群を準備す る工程と、 その第 1面側より順に、 その第 1レンズ群、 その第 2レンズ 群、 その第 3レンズ群、 その第 4レンズ群、 その開口絞り、 及びその第 5レンズ群の順に配置する工程と、 を含み、 その投影光学系の光路中に 配置される光透過性屈折部材の光軸に沿った厚さの総和を Cとし、 その 第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足する ようにその第 1 レンズ群〜第 5レンズ群を準備するものである。
0 . 4 6 < C / L < 0 . 6 4
また、 上述の第 3の目的を達成するために、 本発明による第 7の投影 光学系は、 第 1面上のパターンの縮小像を第 2面上に結像させる投影光 学系であって、 少なくとも 3面以上の非球面形状のレンズ面を有し、 そ の投影光学系中の光透過性屈折部材のうち屈折力を有する部材の数の総 和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総和を E a とするとき、 を満足するものである。
0 . 1 5く E a / Eく 0 . 7
また、 本発明による投影光学系の第 4の製造方法は、 第 1面上のパ夕 ーンの縮小像を第 2面上に結像させる投影光学系の製造方法であって、 光透過性屈折部材が有するレンズ面のうち、 少なくとも 3面以上が非球 面形状となるように、 且つその光透過性屈折部材のうち屈折力を有する 部材の数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数 の総和を E aとするとき、 次の条件を満足するようにその光透過性部材 を準備する工程と、 この光透過性部材を組み上げる工程とを有するもの である。
0 . 1 5く E a Z Eく 0 . 7
また、 本発明による第 1の投影露光装置は、 投影原版に設けられたパ ターンの縮小像をワーク上へ投影露光する投影露光装置であって、 露光 光を供給する光源と、 この光源からの露光光をその投影原版上のそのパ ターンへ導く照明光学系と、 上述の何れかにかかる投影光学系とを備え、 その投影光学系のその第 1面にその投影原版を配置可能とし、 その第 2 面にそのワークを配置可能としたものである。
また、 本発明による第 2の投影露光装置は、 投影原版に設けられたパ ターンの縮小像をワーク上で走査させつつ投影露光する投影露光装置で あって、 露光光を供給する光源と、 この光源からの露光光をその投影原 版上のそのパターンへ導く照明光学系と、 上述の何れかにかかる投影光 学系と、 その投影光学系のその第 1面にその投影原版を配置可能とする ための第 1ステージと、 その第 2面にそのワークを配置可能とするため の第 2ステージとを備え、 その第 1及び第 2ステージは、 その投影光学 系の投影倍率に対応した速度比で移動可能であるものである。
また、 上述の第 4の目的を達成するために、 本発明による第 3の投影 露光装置は、 投影原版に設けられたパターンの縮小像をワーク上へ投影 露光する投影露光装置であって、 1 8 0 n m以下の波長域の露光光を供 給する光源と、 この光源からの露光光をその投影原版上のそのパターン へ導く照明光学系と、 その投影原版とそのワークとの間の光路中に配置 されて、 その投影原版を介したその露光光の光量の 2 5 %以上の光量を そのワークへ導いてそのパターンの縮小像をそのワーク上に形成する投 影光学系とを備えるものである。
また、 本発明による第 1の投影露光方法は、 投影原版上に形成される パターンをワーク上へ投影露光する投影露光方法であって、 上述の何れ かにかかる投影露光装置を用い、 その投影原版をその第 1面に配置する と共に、 そのワークをその第 2面に配置し、 その投影光学系を介してそ のパターンの像をそのワーク上に形成するものである。
また、 本発明による第 4の投影露光装置、 及び第 2の投影露光方法は、 投影原版に設けられたパターンの縮小像をワーク上へ投影露光する投影 露光装置及び投影露光方法において、 それぞれ 2 0 0 n m以下の波長域 の露光光を供給する光源と、 この光源からの露光光をその投影原版上の そのパターンへ導く照明光学系と、 その投影原版とそのワークとの間の 光路中に配置されて、 その投影原版を介したその露光光をそのワークへ 導いてそのパターンの縮小像をそのワーク上に形成する投影光学系とを 備え、 その光源からその照明光学系へ向かうその露光光の光量を E n 1 とし、 その照明光学系からその投影原版へ向かうその露光光の光量を E n 2とし、 その投影光学系へ入射するその露光量の光量を E n 3とし、 その投影光学系からそのワークへ向かって射出するその露光光の光量を E n 4とするとき、 次の条件を満足するものである。
( E n 4 / E n 3 ) > ( E n 2 / E n 1 )
また、 本発明による第 1のマイクロデバイスの製造方法は、 所定の回 路パターンを有するマイクロデバイスの製造方法であって、 上述の露光 方法を用いてそのワーク上にそのパターンの像を投影露光する工程と、 この投影露光されたそのワークを現像処理する工程とを含むものである。 次に、 上述の第 1又は第 2の目的を達成するために、 本発明による第 5の投影露光装置は、 投影原版上のパターンをワーク上に投影露光する 投影露光装置において、 2 0 0 n m以下の波長の露光光をその投影原版 へ供給する照明光学系と、 その投影原版上のパターンの像を所定の投影 倍率 3のもとでそのワーク上に形成する投影光学系とを備え、 その投影 光学系は、 開口絞りと、 この開口絞りとその投影原版との間に配置され た前レンズ群と、 その開口絞りとそのワークとの間に配置された後レン ズ群とを有し、 その投影光学系中の光透過性光学材料のうちの螢石の量 をディスク材に換算した量を y (k g) 、 その後レンズ群の焦点距離を f 2 (mm) 、 その投影光学系の像側の最大開口数を NAwとし、 パラ メータ Xを次のように規定するときに、
X == f 2 · 4 I 3 I · NAw2
以下の条件式を満足するものである。
y≤4 x— 2 0 0 ,
y≤ (4 x/ 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥4 x— 440, 及び また、 本発明による第 6の投影露光装置は、 投影原版上のパターンを ワーク上で走査させつつ投影露光する走査型投影露光装置において、 2 0 0 nm以下の波長の露光光をその投影原版へ供給する照明光学系と、 その投影原版上のパターンの像を所定の投影倍率 3のもとでそのワーク 上に形成する投影光学系とを備え、 その投影光学系は、 開口絞りと、 こ の開口絞りとその投影原版との間に配置された前レンズ群と、 その開口 絞りとそのワークとの間に配置された後レンズ群とを有し、 その投影光 学系中の光透過性光学材料のうちの螢石の量をディスク材に換算した量 を y (k g) 、 その後レンズ群の焦点距離を ί 2 (mm) 、 その投影光 学系の像側の最大開口数を NAwとし、 パラメ一夕 Xを次のように規定 するときに、
X = f 2 · 4 I /3 I · NAw2
以下の条件式を満足するものである。
y≤4 x - 2 0 0 ,
y≤ (4 xZl 3) + ( 1 0 0 0 / 1 3 ) , y≥4 x - 440 , 及び
y≥ 0
また、 本発明による第 7の投影露光装置は、 投影原版上のパターンを ワーク上に投影露光する投影露光装置において、 2 0 0 nm以下の波長 の露光光をその投影原版へ供給する照明光学系と、 その投影原版上のパ ターンの像を所定の投影倍率 /3のもとでそのワーク上に形成する投影光 学系とを備え、 その投影光学系は、 開口絞りと、 この開口絞りとその投 影原版との間に配置された前レンズ群と、 その開口絞りとそのワークと の間に配置された後レンズ群とを有し、 その投影光学系中の光透過性光 学材料のうちの螢石の量をディスク材に換算した量を y (k g) 、 その 後レンズ群の焦点距離を f 2 (mm) 、 その投影光学系の像側の最大開 口数を NAwとし、 パラメ一夕 Xを次のように規定するとき、
X = f 2 · 4 I j3 I · NAw2
以下の条件式を満足するものである。
y≤ (9 x/2) - 2 7 0,
y≤ 9 0 ,
y≥ (9 χΖ2) — ( 8 5 5 / 2 ) , 及び
y≥ 0
また、 本発明による第 8の投影露光装置は、 投影原版上のパターンを ワーク上に投影露光する投影露光装置において、 2 0 0 nm以下の波長 の露光光をその投影原版へ供給する照明光学系と、 その投影原版上のパ ターンの像を所定の投影倍率 3のもとでそのワーク上に形成する投影光 学系とを備え、 その投影光学系は、 開口絞りと、 この開口絞りとその投 影原版との間に配置された前レンズ群と、 その開口絞りとそのワークと の間に配置された後レンズ群とを有し、 その投影光学系中の光透過性光 学材料のうちの第 1の材料の量をディスク材に換算した量を y (k g) 、 その後レンズ群の焦点距離を f 2 (mm) 、 その投影光学系の像側の最 大開口数を N Awとし、 パラメ一夕 Xを次のように規定するとき、
X = f 2 · 4 I j3 I · N Aw2
以下の条件式を満足するものである。
y≤4 x - 20 0 ,
y≤ ( 4 xX 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥4 x— 440 , 及び
y≥ 0
次に、 上述の第 1又は第 2の目的を達成するために、 本発明の第 3の 投影露光方法は、 投影原版上のパターンをワーク上に投影露光する投影 露光方法において、 2 0 0 nm以下の波長の露光光をその投影原版へ供 給する照明工程と、 前レンズ群、 開口絞り、 及び後レンズ群を備えた投 影光学系を用いてその投影原版上のパターンの像を所定の投影倍率 3の もとでそのワーク上に形成する像形成工程とを含み、 その像形成工程は、 その投影原版からの光をその前レンズ群へ導く第 1補助工程と、 この前 レンズ群を経た光をその開口絞りへ導く第 2補助工程と、 この開口絞り を経た光をその後レンズ群へ導く第 3補助工程と、 この後レンズ群を経 た光を用いてそのワーク上にそのパターンの像を形成する第 4補助工程 とを含み、 その投影光学系中の光透過性光学材料のうちの螢石の量をデ イスク材に換算した量を y (k g) 、 その後レンズ群の焦点距離を f 2 (mm) 、 その投影光学系の像側の最大開口数を NAwとし、 パラメ一 夕 Xを次のように規定するとき、
X = f 2 · 4 I 3 I · NAw2
以下の条件式を満足するものである。
y≤4 x- 200,
y≤ (4 xZl 3) + ( 1 000 / 1 3 ) , y≥4 x— 440, 及び また、 本発明による第 4の投影露光方法は、 投影原版上のパターンを ワーク上に投影露光する投影露光方法において、 2 0 0 nm以下の波長 の露光光をその投影原版へ供給する照明工程と、 前レンズ群、 開口絞り、 及び後レンズ群を備えた投影光学系を用いてその投影原版上のパターン の像を所定の投影倍率 )3のもとでそのワーク上に形成する像形成工程と を含み、 その像形成工程は、 その投影原版からの光をその前レンズ群へ 導く第 1補助工程と、 この前レンズ群を経た光をその開口絞りへ導く第 2補助工程と、 この開口絞りを経た光をその後レンズ群へ導く第 3補助 工程と、 この後レンズ群を経た光を用いてそのワーク上にそのパターン の像を形成する第 4補助工程とを含み、 その投影光学系中の光透過性光 学材料のうちの第 1の材料の量をディスク材に換算した量を y (k g) 、 その後レンズ群の焦点距離を f 2 (mm) 、 その投影光学系の像側の最 大開口数を NAwとし、 パラメ一夕 Xを次のように規定するとき、
X = f 2 · 4 I 3 I · NAw2
以下の条件式を満足するものである。
y≤4 x - 20 0 ,
y≤ (4 x/ 1 3 ) + ( 1 0 00 / 1 3 ) ,
y≥4 x - 440 , 及び
y≥ 0
次に、 本発明による投影露光装置の製造方法は、 本発明の第 5、 第 6、 又は第 7の投影露光装置の製造方法であって、 2 0 0 nm以下の波長の 露光光をその投影原版へ供給する照明光学系を準備する工程と、 その投 影原版上のパターンの像を所定の投影倍率 /3のもとでそのワーク上に形 成する投影光学系を準備する工程とを含み、 その投影光学系を準備する 工程は、 前レンズ群、 開口絞り、 及び後レンズ群を準備する補助工程と、 その前レンズ群をその開口絞りとその投影原版が配置される位置との間 に配置する補助工程と、 その後レンズ群をその開口絞りとそのワークが 配置される位置との間に配置する補助工程とを有するものである。
次に、 本発明の第 2のマイクロデバイスの製造方法は、 所定の回路パ ターンを有するマイクロデバイスの製造方法において、 本発明の第 3又 は第 4の投影露光方法を用いてそのワーク上にそのパターンの像を投影 露光する工程と、 このように投影露光されたそのワークを現像処理する 工程とを含むものである。
次に、 上述の第 1又は第 2の目的を達成するために、 本発明の第 8の 投影光学系は、 波長 2 0 0 nm以下の光を用いて第 1面のパターンの像 を第 2面上に形成する屈折型の投影光学系において、 開口絞りと、 この 開口絞りとその第 1面との間に配置される前レンズ群と、 その開口絞り とその第 2面との間に配置される後レンズ群とを備え、 その投影光学系 中の光透過性光学材料のうちの螢石の量をディスク材に換算した量を y (k g) 、 その後レンズ群の焦点距離を f 2 (mm) 、 その投影光学系 の投影倍率を /3、 その投影光学系の像側の最大開口数を N Awとし、 パ ラメ一夕 Xを次のように規定するとき、
X = f 2 · 4 I /3 I · NAw2
以下の条件式を満足するものである。
y≤4 x - 2 0 0 ,
y≤ (4 x/ 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥4 x— 440 , 及び
y≥ 0
また、 本発明による第 9の投影光学系は、 波長 2 0 0 nm以下の光を 用いて第 1面のパターンの像を第 2面上に形成する屈折型の投影光学系 において、 開口絞りと、 この開口絞りとその第 1面との間に配置される 前レンズ群と、 その開口絞りとその第 2面との間に配置される後レンズ 群とを備え、 その投影光学系中の光透過性光学材料のうちの第 1の材料 の量をディスク材に換算した量を y (k g) 、 その後レンズ群の焦点距 離を i 2 (mm) 、 その投影光学系の投影倍率を 3、 その投影光学系の 像側の最大開口数を N Awとし、 パラメ一夕 Xを次のように規定すると さ、
X = f 2 · 4 I 3 I · N Aw2
以下の条件式を満足するものである。
y≤4 x - 20 0 ,
y≤ (4 x/ 1 3 ) + ( 1 0 0 0/ 1 3 ) ,
y≥4 x - 440 , 及び
y≥ 0
また、 本発明による投影光学系の第 5及び第 6の製造方法は、 それぞ れ本発明の第 8及び第 9の投影光学系の製造方法であって、 前レンズ群、 開口絞り、 及び後レンズ群を準備する工程と、 その前レンズ群をその開 口絞りとその第 1面との間に配置する工程と、 その後レンズ群をその開 口絞りとその第 2面との間に配置する工程とを有するものである。 図面の簡単な説明
図 1は、 本発明の第 1の数値実施例にかかる投影光学系の光路図であ る。 図 2は、 本発明の第 2の数値実施例にかかる投影光学系の光路図で ある。 図 3は、 第 1の数値実施例の投影光学系の横収差図である。 図 4 は、 第 2の数値実施例にかかる投影光学系の横収差図である。 図 5は、 本発明の実施形態にかかる投影露光装置の概略的な構成を示す図である。 図 6は、 本発明のマイクロデバイス製造方法の一例を示すフローチヤ一 卜である。 図 7は、 本発明のマイクロデバイス製造方法の別の一例を示 すフローチャートである。 図 8において、 (a ) は本発明の第 5の投影 光学系の実施の形態におけるパラメ一夕 Xと螢石の使用量 yとの関係を 示す図、 (b ) はレンズとディスク材との関係を示す図である。 図 9は、 本発明の第 6の投影光学系の実施の形態におけるパラメ一夕 Xと第 1の 材料の使用量 yとの関係を示す図である。 図 1 0は、 本発明の第 3の数 値実施例にかかる投影光学系の光路図である。 図 1 1は、 本発明の第 4 の数値実施例にかかる投影光学系の光路図である。 図 1 2は、 本発明の 第 5の数値実施例にかかる投影光学系の光路図である。 図 1 3は、 本発 明の第 6の数値実施例にかかる投影光学系の光路図である。 図 1 4は、 本発明の第 7の数値実施例にかかる投影光学系の光路図である。 図 1 5 は、 本発明の第 3の数値実施例にかかる投影光学系の横収差図である。 図 1 6は、 本発明の第 4の数値実施例にかかる投影光学系の横収差図で ある。 図 1 7は、 本発明の第 5の数値実施例にかかる投影光学系の横収 差図である。 図 1 8は、 本発明の第 6の数値実施例にかかる投影光学系 の横収差図である。 図 1 9は、 本発明の第 7の数値実施例にかかる投影 光学系の横収差図である。 図 2 0は、 本発明の第 8の数値実施例 (第 2 の数値実施例) にかかる投影光学系の横収差図である。 発明を実施するための最良の形態
本発明の好適な実施の形態を図面によって説明する。 図 1及び図 2は、 本発明の第 1〜第 7の投影光学系の実施の形態の一例にかかる投影光学 系 (以下、 「投影光学系 P L」 とも言う。)の光路図である。
図 1及び図 2において、 本発明の投影光学系 P Lは、 第 1面 A上のパ 夕一ンの縮小像を第 2面 B上に結像させる屈折型の投影光学系である。 そして、 投影光学系 P Lは、 正屈折力の前レンズ群 G Fと、 正屈折力の 後レンズ群 G Rとを有する。 そして、 前レンズ群 G Fの後側焦点位置近 傍に開口絞り A Sが配置される。 なお、 開口絞り A Sの位置は、 必ずし も前レンズ群 G Fの近軸上の後側焦点位置には限定されない。 例えば投 影光学系 P Lの瞳の像面湾曲が存在する場合には、 開口絞り A Sの開口 径を変化させた際に生じるイメージフィールド内でのビクネッティング (口径触) 差が起こることがあり、 このようなビクネッティング差を防 止或いは低減させるために、 開口絞り A Sの位置を前レンズ群 G Fの近 軸上の後側焦点位置から外れた位置 (近軸上の後側焦点位置よりも後レ ンズ群側) に設定する場合もある。 上記後側焦点位置の近傍とは、 この ような外れた位置も含む概念である。 このような場合、 後レンズ群 G R (第 5レンズ群) は、 投影光学系 P Lの近軸瞳位置から第 2面までに位 置する一群のレンズの集合を指す。
なお、 図 1及び図 2の例では、 開口絞り A Sは前レンズ群 G Fと後レ ンズ群 G Rとの間に配置される。
そして、 前レンズ群 G Fは、 第 1面側より順に、 負屈折力の第 1 レン ズ群 G l、 正屈折力の第 2レンズ群 G 2、 負屈折力の第 3レンズ群 G 3、 及び正屈折力の第 4レンズ群を有する。 従って、 本発明の投影光学系 P Lは、 負 ·正 ·負 ·正 ·正の屈折力の第 1 レンズ群 G 1〜第 5レンズ群 G 5を有する 5群構成の投影光学系でもある。
さて、 図 1及び図 2の実施例にかかる投影光学系 P Lは、 第 1面 A側 及び第 2面 B側において実質的にテレセントリックな光学系である。 こ こで、 第 1面側及び第 2面側で実質的にテレセントリックとは、 投影光 学系 P Lに対して第 2面 B側から投影光学系の光軸 A Xと平行な光線を 入射させた場合、 この光線が第 1面側へ射出されるときのときの光軸と のなす角度が 5 0分以下であることを指す。
このように、 各実施例の投影光学系では、 投影原版としてのレチクル (マスク) やワークとしての感光性基板 (ウェハ、 プレート等) の光軸 方向における位置ずれや、 これら投影原版及びワークのたわみ等による 形状変化が発生したとしても、 それによる像の倍率誤差や歪みを小さく することできる。
各実施例の投影光学系では、 後レンズ群 GR (または第 5レンズ群 G 5) の焦点距離を f 2とし、 第 1面 Aから第 2面 Bまでの距離 (物像間 距離) を Lとするとき、 次の条件を満足することが好ましい。
0. 0 6 5< f 2/L<0. 1 2 5 ·'· ( 1 )
上記条件式 ( 1 ) は、 投影光学系の色収差、 特に軸上色収差を低減さ せるために規定された式である。 ここで、 条件式 ( 1 ) の下限を下回る 場合、 後レンズ群 GR (または第 5レンズ群 G 5) の焦点距離が短くな り過ぎる。 このため、 後レンズ群 GR (または第 5レンズ群 G 5 ) から 発生する軸上色収差量は極めて少なくなるが、 単色収差の発生が大きく なり過ぎ、 それらの補正が困難になるため好ましくない。 ここで、 色収 差を除く単色収差をさらに良好に補正するためには、 条件式 ( 1 ) の下 限を 0. 0 7 5に設定することが好ましく、 その単色収差をより良く補 正するためには、 その条件式 ( 1 ) の下限を 0. 0 9に設定することが より好ましい。
また、 条件式 ( 1 ) の上限を上回る場合、 後レンズ群 GR (または第 5レンズ群 G 5) の焦点距離が長く成り過ぎる。 この場合、 単色収差の 補正を良好とすることができるが、 後レンズ群 GR (または第 5レンズ 群 G 5) から発生する軸上色収差が大きく発生してしまうため好ましく ない。 この場合には、 光源からの露光光の波長幅を狭くするか、 投影光 学系 P Lに色収差補正用の屈折光学部材を付加する必要があり、 光源へ の負担が増す、 または投影光学系 P Lのコストアップを招く恐れがある。 ここで、 投影光学系の軸上色収差の発生をさらに抑えるためには、 条件 式 ( 1 ) の上限を 0. 1 2に設定することが好ましい。
なお、 露光光として 1 8 0 nm以下の露光光を用いる場合には、 この 波長域の露光光を透過する光透過性屈折部材の種類が限られるため、 条 件式 ( 1 ) の上限を上回る場合には投影光学系 P Lそのものが成立しな い恐れがある。
なお、 上記構成において、 投影光学系 P Lは、 少なくとも 1面以上の 非球面 A S P 1〜A S P 6を有することが好ましい。 また、 条件式 ( 1 ) が成立する場合に、 更に、 投影光学系 P Lは、 少なくとも 6枚以上の屈 折力を持つレンズを備え、 その屈折力を持つレンズを第 1面 A側から順 に 6枚 (図 1及び図 2ではレンズ L 1 1 , L 1 2 , L 2 1 , L 2 2 , L 2 3, L 24) 選択したときに、 その 6枚のレンズの少なくとも一面が 負の屈折力を持つ非球面形状であることが好ましい。
この作用につき説明すると、 一般に非球面の面計測はいわゆるヌルレ ンズ等の特定の波面を作り出す素子 (以下、 「ヌル素子」 と言う) を用 いるヌルテスト (Null Test ) によって行われる。 検査対象の非球面に 合わせた波面をヌル素子で作る場合、 その非球面の屈折力が負である、 即ち凹面である方が、 そのヌル素子の大型化を防ぐことができると共に、 作り出す非球面形状の波面の自由度も大きくできる。
また、 仮に条件式 ( 1 ) が必ずしも成立していない場合において、 投 影光学系 P Lは、 少なくとも 3枚以上の屈折力を持つレンズを備え、 そ の屈折力を持つレンズを第 1面 A側から順に 3枚 (図 1及び図 2ではレ ンズ L 1 1 , L 1 2 , L 2 1 ) 選択したときに、 その 3枚のレンズの少 なくとも一面が負の屈折力を持つ非球面形状であることが好ましい。 こ の場合にも、 ヌルテストを行うために、 検査対象の非球面に合わせた波 面をヌル素子で作る場合、 その非球面の屈折力が負である、 即ち凹面で ある方が、 そのヌル素子の大型化を防ぐことができると共に、 作り出す 非球面形状の波面の自由度も大きくできる。
さて、 前述したように、 各実施例の投影光学系 P Lでは、 負 *正 *負 •正 ·正の屈折力配置を有しており、 従来の正 ·負 ·正 ·負 ·正 .正の 屈折力配置を有する 6群構成の投影光学系に比べて、 レンズ枚数を大幅 に削減できる利点がある。
そして、 各実施例の投影光学系 P Lにおいては、 負の第 1 レンズ群 G 1及び正の第 2レンズ群 G 2の合成光学系を考え、 この合成光学系の横 倍率 (第 1及び第 2レンズ群 G 1, G 2の合成横倍率) を /3 1とし、 第 1面 Aから第 2レンズ群 G 2の最も第 2面 B側のレンズ面までの距離を L l、 第 1面 Aから第 2面 Bまでの距離を Lとするとき、 以下の条件式 ( 2) 及び ( 3) を満足することが好ましい。
一 1. 3 < 1 / β 1 < 0 -" (2)
0. 0 8 <L 1 /L< 0. 1 7 … ( 3)
上記条件式 (2) は、 投影光学系 P Lの画面全域 (イメージフィール ド全域) において良好なる収差補正を達成するために規定した条件式で ある。 条件式 (2) より明らかな通り、 各実施形態の投影光学系 P Lに おける第 1及び第 2レンズ群 G 1 , G 2の合成光学系は、 第 1面 Aから の発散光束をやや収斂光束に変換している。
条件式 (2 ) の下限を下回るときには、 この合成光学系 G l, G 2で の光束の収斂作用が強くなり過ぎて、 収差、 特に画角に関する収差の発 生が大きくなり、 投影光学系 P Lのイメージフィ一ルドを十分に確保で きなくなるため好ましくない。 なお、 画角に関する収差の発生をさらに 抑えるためには、 条件式 (2 ) の下限を一 1. 1 0に設定することが好 ましい。
一方、 条件式 (2) の上限を上回るときには、 第 1 レンズ群 G 1の負 屈折力が弱くなり過ぎるため、 投影光学系 P Lのペッツバール和の悪化 を招き、 投影光学系 P Lのイメージフィールドを十分に確保できなくな るため好ましくない。 なお、 投影光学系 P Lのペッツバール和をさらに 良好に補正するためには、 条件式 (2) の上限を一 0. 42に設定する ことが好ましい。
条件式 (3) は、 上記条件式 (2) の前提となる式であって、 第 1及 び第 2レンズ群の合成光学系 G 1 , G 2の位置を規定するものである。 ここで、 条件式 (3) の下限値を 0. 1とすることが好ましく、 条件式 (3) の上限値を 0. 1 5とすることが好ましい。
さて、 第 1及び第 2レンズ群の合成光学系 G 1 , G 2は、 少なくとも 2つの非球面形状のレンズ面 A S P 1〜A S P 3を有することが好まし レ 。 この合成光学系 G l, G 2中の非球面 A S P 1〜A S P 3の作用に より、 像面湾曲、 歪曲収差、 及び瞳の球面収差等を良好に補正すること が可能である。
また、 第 1及び第 2レンズ群の合成光学系 G 1 , G 2は、 1 0枚以下 のレンズで構成されることが好ましい。 この構成により、 投影光学系 P Lの透過率の確保、 フレア発生の低減、 及び製造時のコストダウンを達 成することが可能となる。
さて、 各実施例の投影光学系 P Lにおいては、 投影光学系 P Lの光路 中に配置される光透過性屈折部材 (レンズ、 平行平面板) の光軸に沿つ た厚さの総和を Cとし、 第 1面 Aから第 2面 Bまでの距離を Lとすると き、 次の条件を満足することが好ましい。
0. 46く C/Lく 0. 64 … (4)
上記条件式 (4) は、 投影光学系 P Lとしての透過率確保と、 投影光 学系 P Lの結像性能の安定化とを両立させるために規定した式である。 上記条件式 (4) の下限を下回る場合、 投影光学系 PLを構成する光 透過性屈折部材間の気体間隔が長くなりすぎ、 この気体の特性が変動す ること (例えば温度変動や気圧変動などに起因する屈折率の変動の発生, ゆらきの発生等) による結像性能の変動を招きやすくなるため好ましく ない。 なお、 環境変動に対する結像性能の安定性をさらに向上させるた めには、 条件式 (4) の下限値を 0. 5 2に設定することが好ましい。 また、 上記条件式 (4) の上限を上回る場合、 投影光学系 P Lの環境 変動への耐性は向上するが、 十分なる透過率を得ることが困難になるた め好ましくない。 なお、 さらなる透過率の確保を達成するためには、 条 件式 (4) の上限値を 0. 6 2 5に設定することが好ましい。
上記条件式 (4) を満足する構成においては、 投影光学系 P Lは少な くとも 1つの非球面 A S P 1〜A S P 6を有することが好ましい。 これ により、 初期の結像性能を十分に高めつつ、 環境変動に対する安定性と 十分なる透過率とを確保することが可能である。
さて、 各実施例の投影光学系 P Lにおいては、 少なくとも 3面以上の 非球面形状のレンズ面 AS P 1〜AS P 6を有することが好ましい。 こ の構成により、 比較的にレンズ枚数 (すなわち硝材量) を抑えた構成の もとで、 画面全域 (イメージフィールド全域) での良好なる収差補正を 実現することができる。
但し、 非球面形状のレンズ面 AS P 1〜AS P 6の数は増やし過ぎて も好ましくなく、 投影光学系 P L中の光透過性屈折部材のうち屈折力を 有する部材 (レンズ素子) の数の総和を Eとし、 非球面形状のレンズ面 A S P 1〜A S P 6が設けられた部材の数の総和を E aとするとき、 次 の条件を満足することが好ましい。
0. 1 5く E aZEく 0. 7 ··· (5)
上記条件式 ( 5) は、 投影光学系 P Lの製造を考慮した上での非球面 形状のレンズ面 AS P 1〜AS P 6の数の最適な範囲を規定した式であ る。 球面レンズに比べて、 非球面レンズの製造難易度は高く、 また非球 面レンズの表面と裏面との偏心誤差や面精度誤差は大きくなりがちであ る。 従って、 投影光学系 P Lの製造にあたっては、 非球面レンズの誤差 を球面レンズの位置 ·姿勢の調整や球面レンズの面形状を調整すること により、 投影光学系 P Lの結像性能を最適化することが好ましい。
上記条件式 ( 5 ) の上限を上回る場合には、 非球面形状のレンズ面 A S P 1〜A S P 6の誤差による収差発生が大きくなり過ぎるばかりでは なく、 球面レンズの数も少なくなるため、 非球面 A S P 1〜A S P 6の 誤差による収差発生を球面レンズの位置 ·姿勢調整、 形状調整により補 正することが困難になる。 ここで、 投影光学系 P Lの製造をさらに容易 にするためには、 条件式 ( 5 ) の上限を 0 . 4 2に設定することが好ま しい。
一方、 上記条件式 ( 5 ) の下限を下回る場合には、 非球面形状のレン ズ面の数が少なくなり、 投影光学系 P Lの製造は容易となるが、 画面全 域 (イメージフィールド全域) での良好な収差補正が困難になり、 かつ 投影光学系 P Lを製造するために必要な硝材量の増加を招くため好まし くない。 なお、 さらなる収差補正の達成及び硝材量の削減を図るために は、 条件式 ( 5 ) の下限を 0 . 2に設定することが好ましい。
さて、 各実施例の投影光学系 P Lにおいては、 投影光学系 P Lを構成 する光透過性屈折部材のうちの屈折力を有する部材 (レンズ素子) の総 和は、 1 6以上であることが好ましい。 これにより、 投影光学系 P Lの 像側 (第 2面 B側) 開口数の増大を図ることができ、 さらに微細なパ夕 —ンを投影露光することが可能となる。 なお、 上記条件式 (5 ) を満足 する場合には、 レンズ素子の総和が 1 6以上であると、 非球面レンズの 誤差による収差発生を補正するための球面レンズの数を十分に確保する ことができる利点がある。
また、 各実施例の投影光学系 P Lにおいては、 投影光学系 P Lを構成 する光透過性屈折部材のうちの屈折力を有する部材 (レンズ素子) の総 和は、 2 6以下であることが好ましい。 これにより、 投影光学系 P Lを 構成する光透過性屈折部材の厚みが削減できることによる透過率の向上 のみならず、 光学界面 (レンズ面) の数が削減され、 この光学界面での 光量損失を低減させて、 全体としての透過率向上を図ることができる。
さて、 図 1の実施例では、 投影光学系 P L中の光透過性屈折部材は、 単一種類の材料から形成されている。 このため、 投影光学系 P Lの製造 コストの削減を図ることができる。 特に、 1 8 0 n m以下の露光光に対 して投影光学系 P Lを最適化する場合には、 この波長域の露光光に対し て良好なる透過率を有する硝材が限定されるため、 効果的である。
また、 図 2の実施例では、 投影光学系 P L中の光透過性屈折部材は、 第 1の材料から形成された第 1の光透過性屈折部材と、 第 2の材料から 形成された第 2の光透過性屈折部材とを有している。 ここで、 光透過性 屈折部材のうちの屈折力を有する部材の数に対するその第 2の光透過性 屈折部材の数は、 3 2 %以下であることが好ましい。
特に、 2 0 0 n m以下の真空紫外域の露光光を用いる場合、 この波長 域の露光光に対して良好なる透過率を有する硝材の種類が幾つかに限定 される。 この幾つかの硝材の中には、 製造コストが高くかつレンズにす るための加工コス卜が硝材も含まれている。 上記コス卜の高い硝材に関 しては、 レンズに加工する際の精度を高めることが困難であり、 投影光 学系 P Lの精度向上、 すなわち結像性能の向上を図る際の難点となる。 この観点に立つと、 複数種類の硝材を用いて投影光学系 P Lを製造する 場合には、 上記のパーセンテージを 3 2 %以下に抑えることで、 製造コ ストの低減と結像性能の向上とを両立させることができる。 なお、 上記 のパーセンテージは、 1 6 %以下であることが好ましく、 1 1 %以下で あるとさらに好ましい。 次に、 数値実施例について説明する。
図 1は、 第 1実施例による投影光学系 P Lの光路図である。
第 1実施例の投影光学系 P Lは、 狭帯化された F 2 レーザが供給する 波長 1 5 7. 6 2 nmを基準波長としたものであり、 基準波長に対して 波長幅 ± 0. 2 pmの範囲で色収差補正を行っているものである。 なお、 第 1実施例において、 投影光学系 P L中の全ての光透過性屈折部材 (レ ンズ L 1 1〜L 5 7 ) は、 螢石 (フッ化カルシウム, C a F2)で形成さ れている。
図 1に示す通り、 第 1実施例の投影光学系 P Lは、 第 1面 A側から順 に、 正屈折力の前レンズ群 GF、 開口絞り AS、 及び正屈折力の後レン ズ群 GRを有する。 また、 別の群分けによると、 第 1実施例の投影光学 系 P Lは、 第 1面 A側から順に、 負の第 1 レンズ群 G l、 正の第 2レン ズ群 G 2、 負の第 3レンズ群 G 3、 正の第 4レンズ群 G4、 開口絞り A S、 及び正の第 5レンズ群 G 5を有する。
第 1 レンズ群 G 1は、 第 1面 A側から順に、 両凹形状の負レンズ L 1 1 と、 凹面を第 1面 A側に向けたメニスカス形状の負レンズ L 1 2とを 有し、 これらの負レンズ L 1 1 , L 1 2によって、 両凸形状の気体レン ズを形成している。 ここで、 負レンズ L 1 1の第 1面 A側のレンズ面と 負レンズ L 1 2の第 2面 B側のレンズ面とは非球面形状に形成されてい る。
第 2レンズ群 G 2は、 両凸形状の 4つの正レンズ L 2 1〜L 24を有 する。 ここで、 最も第 2面 B側の正レンズ L 24の第 1面 A側のレンズ 面は非球面形状に形成されている。
第 3レンズ群 G 3は、 両凹形状の 3つの負レンズ L 3 1〜L 3 3を有 し、 これら負レンズ L 3 1〜L 3 3によって、 両凸形状の 2つの気体レ ンズを形成している。 ここで、 最も第 2面 B側の負レンズ L 3 3の第 2 面 B側のレンズ面は非球面形状に形成されている。
第 4レンズ群 G4は、 第 1面 A側より順に、 第 1面 A側に凹面を向け たメニスカス形状の 2つの正レンズ L 4 1 , L 42と、 両凸形状の正レ ンズ L 4 3とを有する。
第 5レンズ群 G 5は、 第 1面 A側かから順に、 両凹形状の負レンズ L 5 1と、 両凸形状の 2つの正レンズ L 5 2, L 5 3と、 第 1面 A側に凸 面を向けたメニスカス形状の 3つの正レンズ: L 54〜L 5 6と、 平凸形 状の正レンズ L 5 7とを有する。 ここで、 正レンズ L 5 6の第 2面 B側 のレンズ面は非球面形状に形成されている。
図 2は、 第 2実施例による投影光学系 P Lの光路図である。
第 2実施例の投影光学系 P Lは、 狭帯化された A r Fレーザが供給す る波長 1 9 3. 3 0 6 nmを基準波長としたものであり、 基準波長に対 して波長幅土 0. 4 pmの範囲で色収差補正を行っているものである。 なお、 第 2実施例において、 投影光学系 P L中の光透過性屈折部材は、 石英ガラス (合成石英) と螢石とから形成される。
図 2に示す通り、 第 2実施例の投影光学系 P Lは、 第 1面 A側から順 に、 正屈折力の前レンズ群 GF、 開口絞り AS、 及び正屈折力の後レン ズ群 GRを有する。 また、 別の群分けによると、 第 1実施例の投影光学 系 P Lは、 第 1面 A側から順に、 負の第 1 レンズ群 G l、 正の第 2レン ズ群 G 2、 負の第 3レンズ群 G 3、 正の第 4レンズ群 G4、 開口絞り A S、 及び正の第 5レンズ群 G 5を有する。
第 1 レンズ群 G 1は、 第 1面 A側から順に、 両凹形状の負レンズ L 1 1 と、 凹面を第 1面 A側に向けたメニスカス形状の負レンズ L 1 2とを 有し、 これらの負レンズ L 1 1 , L 1 2によって、 両凸形状の気体レン ズを形成している。 ここで、 負レンズ L 1 1の第 2面 B側のレンズ面と 負レンズ L 1 2の第 2面 B側のレンズ面とは、 非球面形状に形成されて いる。 なお、 これら 2つの負レンズ L 1 1, L 1 2は共に石英ガラスか ら形成されている。
第 2レンズ群 G 2は、 第 1面 A側から順に、 両凸形状の 3つの正レン ズ L 2 1〜L 2 3と、 凸面を第 1面 A側に向けたメニスカス形状の正レ ンズ L 2 4とを有する。 ここで、 最も第 1面 A側の正レンズ L 2 1の第 2面側のレンズ面は非球面形状に形成されている。 第 2レンズ群 G 2に おいては、 3つの両凸正レンズ L 2 1〜L 2 3が石英ガラスから形成さ れており、 メニスカス形状の正レンズ L 2 4が螢石から形成されている 第 3レンズ群 G 3は、 両凹形状の 3つの負レンズ L 3 1〜: L 3 3を有 し、 これら負レンズ L 3 1〜L 3 3によって、 両凸形状の 2つの気体レ ンズを形成している。 ここで、 最も第 2面 B側の負レンズ L 3 3の第 1 面 A側のレンズ面は非球面形状に形成されている。 第 3レンズ群 G 3中 の全ての負レンズ L 3 1〜L 3 3は石英ガラスで形成されている。
第 4レンズ群 G 4は、 第 1面 A側より順に、 第 1面 A側に凹面を向け たメニスカス形状の正レンズ L 4 1 と、 第 2面 B側に凸面を向けた平凸 形状の正レンズ L 4 2と、 第 1面 A側に凸面を向けたメニスカス形状の 正レンズ; L 4 3とを有する。 ここで、 3つの正レンズ L 4 1〜L 4 3は 共に石英ガラスから形成されている。
第 5レンズ群 G 5は、 第 1面 A側から順に、 第 1面 A側に凸面を向け たメニスカス形状の負レンズ L 5 1 と、 両凸形状の正レンズ L 5 2と、 第 1面 A側に凸面を向けた 4つのメニスカス形状の正レンズ L 5 3〜L 5 6と、 第 1面 A側に凹面を向けた平凹形状の負レンズ L 5 7とを有す る。 ここで、 メニスカス形状の負レンズ L 5 1の第 2面 B側のレンズ面 とメニスカス形状の正レンズ L 5 6の第 2.面側のレンズ面とは非球面形 状に形成されている。 なお、 第 5レンズ群 G 5においては、 両凸形状の 正レンズ L 5 2が螢石で形成されており、 残りのレンズ L 5 1 , L 5 3 〜し 5 7が石英ガラスで形成されている。
第 2実施例の投影光学系 P Lのように、 石英ガラス (合成石英) と螢 石とをレンズ材料 (硝材) として用いる場合には、 非球面形状のレンズ 面は石英ガラスからなるレンズに形成することが好ましい。
以下の表 1及び表 2に第 1及び第 2実施例の投影光学系 P Lの諸元を 示す。 表 1及び表 2において、 左端の列には第 1面 Aからの各レンズ面 の番号、 第 2列には各レンズ面の曲率半径、 第 3列には各レンズ面から 次のレンズ面までの面間隔、 第 4列にはレンズ材料、 第 5列には非球面 の符号、 第 6列には各レンズの符号を示す。 また、 非球面レンズ面につ いての第 2列の曲率半径は頂点曲率半径を示す。 また、 表 2の φ e f f は 各レンズ面の有効な直径を示している。
非球面形状は以下の式 (a) で示される。
Figure imgf000030_0001
Υ :光軸からの高さ
ζ :非球面頂点における接平面から非球面までの光軸方向の距離 r : 頂点曲率半径
κ : 円錐係数
A, B, C, D, E, F :非球面係数
表 1及び表 2の最後に [非球面データ] として各非球面についての円 錐係数/ c、 非球面係数 A, B, C, D, E, Fを示した。
第 1実施例の投影光学系ではレンズ材料 (硝材) として螢石を用い、 第 2実施例では石英ガラス (合成石英) 及び螢石を用いている。
第 1実施例の基準波長 ( 1 5 7. 6 2 nm) での螢石の屈折率は 1. 5 5 9 3 0 6 7であり、 波長 + 1 p m当たりの屈折率の変化量 (分散) は一 2. 6 X 1 0— 6である。 また、 第 2実施例の基準波長 ( 1 9 3. 3 0 6 nm) での石英ガラス (合成石英) の屈折率は 1. 5 6 0 32 6 1であり、 波長 + l pm当た りの屈折率の変化量 (分散) は一 1. 5 9 X 1 0— 6である。 そして、 上 記基準波長基準波長 ( 1 9 3. 3 0 6 nm) での螢石の屈折率は 1. 5
0 1 4 548であり、 波長 + 1 pm当たりの屈折率の変化量 (分散) は — 0. 9 8 X 1 0—6である。
なお、 以下の表 1及び表 2において、 Si( は石英ガラスを、 CaF2は螢 石をそれぞれ表し、 d 0は第 1面 Aから最も第 1面 A側の面までの距離、 WDは最も第 2面 B側の面から第 2面 Bまでの距離 (作動距離) 、 3は 投影倍率、 NAは第 2面 B側の開口数、 φは第 2面 B上でのイメージサ 一クルの直径を示す。
《表 1》
第 1実施例 (図 1 )
d 0 = 40.6446 (mm)
WD = 10.8134
I β I = 1 /4
Ν A = 0. 7 5
φ = 23 (mm)
曲率半径 面間隔 ガラス 非球面 レンズ
(mm) (mm)
1: -446.6132 12.0000 CaF2 ASP1 L11
2: 554.7232 22.5800
3: -92.3259 46.8618 CaF2 L12
4: -6695.3973 1.1105 ASP2
5: 3832.9930 50.0000 CaF2 L21
6: -179.0867 2. 1599 en
< 5
c H CD
CT5 <n n oo
n c O CO
^ O cn O CD
^ CO oo oo
^
o
tr— t— · t— ' t— ' cn cn
CO
Figure imgf000033_0001
Figure imgf000034_0001
' 9dSV z '8 •90Z : c
"89 951 20!S C80 Z9Z8 •zu :9S
608Z ·8 9ZS6 'LIZ :SC
SST 20!S •in ■K
Z6C9 ■ ξζ
OLLQLZ ' Ol z0IS LU '5C 'III ■ n imu 'CII 56C0 -K C061 -6I I ■ u OS
C6CZ1S '511 20iS S5i6 ·οε H69 :oc
80S615 'SU 9^8 "9 • zc- :6Z
117C869 Ί7Π OSIZ '8 68 HZ ■ u m \\ 5dSV 0000 Ί 9C05 ■11
rn -z\\ 1ST :9Z 51
^i 'zoi SV CO :
9Π 6 -toi 9 '9Z2I
\i i 'ooi z0iS 660 -6C 0000 '002 :
mm 6 ecu - 6 'COS- '-ιι mm '88 in z0iS oo ■ \z 01
SZ0Z60 "8 0Z 9 Ί 19 9 •8CI- ■QZ
0986^1 '69 in Z0!S 608C "0C Z086 :61
8I9CSI "89 IZS ' 99^ :81
SV Z0!S i "9C •o - ■L\
SZ ·0Ζ 0C0C 19Z :91
916CCS 'Z9 zn z0iS S998 'C8 mo •90 - : SI
i iz nu 'C0I ■ n
96 -0Z \n Z0!S 91 "H ■C8C- : ει
10^156 "SOI ΖΠ0 s ^6 8 ■ ζι
90Z.90/00df/IDd S£6€Z/I0 OAV 8
t— '
Figure imgf000036_0001
F — 0.806708 X 1 0 F -0.321978X 1 0
さて、 以下の表 3に各実施例の条件対応数値を掲げる
《表 3》
f 2 /L 1 //3 1 L 1 /L C/L E a/E
( 1 ) (2) (3) (4) (5) 第 1実施例 0.108 - 0.74 0.120 0.604 0.316 第 2実施例 0. Ill -0.88 0.121 0.576 0.316 上記表 3に示す通り、 第 1及び第 2実施例とも上記条件式を満足して いる。
次に、 図 3及び図 4にそれぞれ第 1及び第 2実施例にかかる投影光学 系 P Lの第 2面 B上での横収差図を示す。
ここで、 図 3 (A) は像高 Y= l l . 5におけるメリジォナル方向の 横収差図、 図 3 (Β) は像高 Υ= 5. 7 5におけるメリジォナル方向の 横収差図、 図 3 (C) は像高 Υ= 0 (光軸上) におけるメリジォナル方 向の横収差図、 図 3 (D) は像高 Y= l l . 5におけるサジタル方向の 横収差図、 図 3 (Ε) は像高 Υ= 5. 7 5におけるサジタル方向の横収 差図、 図 3 (F) は像高 Υ= 0 (光軸上) におけるサジタル方向の横収 差図である。 また、 図 3 (Α) 〜図 3 (F) の各横収差図において、 実 線は波長 λ = 1 5 7. 6 2 nm (基準波長) による収差曲線、 破線は波 長 λ = 1 5 7. 6 2 nm+ 0. 2 m (基準波長 + 0. 2 pm) による 収差曲線、 一点鎖線は波長 λ = 1 5 7. 6 2 nm- 0. 2 pm (基準波 長— 0. 2 pm) による収差曲線を表している。
また、 図 4 (A) は像高 Y== 1 3. 3におけるメリジォナル方向の横 収差図、 図 4 (Β) は像高 Υ= 6. 6 5におけるメリジォナル方向の横 収差図、 図 4 (C) は像高 Υ= 0 (光軸上) におけるメリジォナル方向 の横収差図、 図 4 (D) は像高 Υ= 1 3. 3におけるサジタル方向の横 収差図、 図 4 (E) は像高 Y= 6. 6 5におけるサジタル方向の横収差 図、 図 4 (F) は像高 Υ= 0 (光軸上) におけるサジタル方向の横収差 図である。 また、 図 4 (Α) 〜図 4 (F) の各横収差図において、 実線 は波長 λ = 1 9 3. 3 0 6 nm (基準波長) による収差曲線、 破線は波 長 λ = 1 9 3. 3 0 6 + 0. 4 pm (基準波長 + 0. 4 pm) による収 差曲線、 一点鎖線は波長 λ = 1 9 3. 3 0 6 nm- 0. 4 pm (基準波 長— 0. 4 pm) による収差曲線を表している。
図 3から明らかな通り、 第 1実施例の投影光学系 P Lでは、 1 8 0 η m以下の波長域において、 単一種類の硝材しか用いていないのにも関わ らず、 ± 0. 2 pmという波長域にわたり良好に色収差補正が達成され ている。
また、 図 4から明らかな通り、 第 2実施例の投影光学系 P Lでは、 2 0 0 nm以下の真空紫外の波長域において、 色収差補正用のレンズ素子 を少数 (全レンズ素子の 1 0 %程度) しか用いていないにも関わらず、 ± 0. 4 pmという波長域にわたり、 良好に色収差補正が達成されてい る。
さて、 第 1実施例の投影光学系 P Lは、 直径 2 3mmの円形イメージ フィールドを有し、 そのイメージフィールド内で、 走査方向の幅 6. 6 mm、 走査直交方向の幅 2 2 mmの長方形状の露光領域を確保すること ができる。 また、 第 2実施例の投影光学系 P Lは、 直径 2 6. 6mmの 円形イメージフィールドを有し、 そのイメージフィールド内で、 走查方 向の幅 8. 8 mm, 走查直交方向の幅 2 5 mmの長方形状の露光領域を 確保することができる。
次に、 本発明の第 8及び第 9の投影光学系の好適な実施の形態の一例 にっき説明する。 図 1 0〜図 1 4は、 本発明の第 8及び第 9の投影光学 系の実施の形態にかかる投影光学系の光路図である。 但し、 後述のよう に上述の図 1及び図 2の投影光学系も、 本発明の第 8及び第 9の投影光 学系の実施の形態に含まれる場合がある。
図 1· 0〜図 1 4において、 本例の投影光学系 (以下、 「投影光学系 P L」 とも言う。)は、 第 1面 A上のパターンの縮小像を第 2面 B上に結像 させる屈折型の投影光学系である。 これらの投影光学系を例えば半導体 デバイス製造用の投影露光装置に適用した場合、 第 1面 A上に投影原版 (マスク) としてのレチクル Rのパターン面が配置され、 第 2面 B上に ワークとしての被露光基板であるウェハ Wのフ才 トレジス卜の塗布面 (露光面) が配置される。 そして、 その投影光学系は、 正屈折力の前レ ンズ群 G Fと、 正屈折力の後レンズ群 G Rとを有し、 前レンズ群 G Fの 後側焦点位置近傍に開口絞り A Sが配置される。 なお、 開口絞り A Sの 位置は、 必ずしも前レンズ群 G Fの近軸上の後側焦点位置には限定され ない。 これは図 1及び図 2の実施の形態の場合と同様である。 この場合、 後レンズ群 G Rは、 投影光学系の近軸瞳位置から第 2面 Bまでに位置す る一群のレンズの集合を指す。
また、 図 1 0〜図 1 4の例では、 開口絞り A Sは前レンズ群 G Fと後 レンズ群 G Rとの間に配置される。
そして、 図 1 0〜図 1 4の例の投影光学系は、 図 1、 図 2の例と同様 に第 1面 A側及び第 2面 B側において実質的にテレセントリックな光学 系である。 この結果、 本例の投影光学系においても、 投影原版としての レチクル (マスク) やワークとしての感光性基板 (ウェハ、 プレート等) の光軸方向における位置ずれや、 これら投影原版及びワークのたわみ等 による形状変化が発生したとしても、 それによる像の倍率誤差や歪みを 小さくすることできる。
本発明の第 8の投影光学系 (第 5の投影露光装置又は第 3の投影露光 方法) の実施の形態にかかる投影光学系では、 波長が 2 0 0 n m以下の 露光光が使用されると共に、 その投影光学系中の光透過性光学材料のう ちの螢石 (C a F 2 ) の量 (使用量) をディスク材に換算した量を y (k g) 、 その後レンズ群 GRの焦点距離を f 2 (mm) 、 その投影光 学系の像側の最大開口数を NAwとし、 パラメ一夕 X (mm) を次のよ うに規定する。
X = f 2 · 4 I 3 I · NAw2 ··· ( 1 0)
この場合、 図 8 (b) に示すように、 その投影光学系中で使用される レンズ Lのディスク材 Dとは、 そのレンズ Lを製造する際に使用される 円柱状の部材である。 レンズ Lの有効半径 (入射側と射出側とで大きい 方の有効半径) を r e f f 、 レンズ Lを安定に保持するための保持用の幅 を d Sとすると、 ディスク材 Dの半径 r d は ( r e f f + d S) となり、 ディスク材 Dの長さはレンズ Lに外接する円柱の長さとなる。 従って、 その螢石の使用量をディスク材に換算した量 yとは、 その投影光学系を 製造する際に使用される螢石の全体の量を表すことになる。
本例ではその保持用の幅 d Sを 8 mmとしている。 このとき、 本例で は以下の各条件式を満足するようにしている。
y≤4 x - 2 0 0 - ( 1 1 )
y≤ (4 x/ 1 3 ) + ( 1 0 0 0 / 1 3 ) … ( 1 2)
y≥4 x - 440 "- ( 1 3)
y≥ 0 … ( 1 4)
図 8 (a) は、 本発明の実施の形態におけるパラメ一夕 Xと螢石の量 y (ディスク材に換算した使用量) との関係を示し、 この図 8 (a) に おいて、 直線 B l , B 2 , B 3 , 及び B 4はそれぞれ直線 (y = 4 x— 2 0 0 ) 、 直線 (y= ( 4 x/ 1 3 ) + ( 1 0 0 0 / 1 3 ) ) 、 直線 (y = 4 x - 44 0 ) 、 及び直線 (y= 0 ) を示している。 従って、 ( 1 1 ) 式〜 ( 1 4) 式の各条件を満たす (X , y ) の範囲は、 図 8 ( a ) の直線 B l , B 2 , B 3 , B 4で囲まれた四角形の領域 B 5であ る。
通常、 光学系の色収差の補正は、 異なる分散の光学材料を適宜組み合 わせること (通常の補正手法) によって行われる。 しかしながら、 本例 のように 2 0 0 n m以下の波長域の光 (真空紫外光) を露光光として用 いる場合、 この露光光を透過するレンズ (収差補正用の平行平板等を含 む) の光学材料 (光透過性光学材料) の種類が限られて来る。 具体的に 1 7 0〜 2 0 0 n m程度の波長域で互いに異なる分散の複数の光学材料 の組み合わせとして実用的なものは、 石英ガラス (合成石英) 及び螢石 であるが、 螢石は生産量が少なく高価であるため、 投影光学系、 ひいて はそれを備えた投影露光装置の製造コス卜を低減するためには、 できる だけ螢石の使用量 yを少なくすることが望ましい。
そこで、 本発明者は、 光学系を比例縮小することによって所定の波長 幅の光に対する色収差の補正を行う手法 (比例縮小による補正手法) を、 本例の場合に適用することに想到し、 波長 2 0 0 n m以下の光に対して 螢石の量 yをできるだけ抑えて色収差の補正を良好に行うために、 上記 の通常の補正手法 (螢石の量 yで制御できる) と、 比例縮小による補正 手法 (パラメ一夕 Xによって制御できる) との最適な組み合わせが、 図 8 ( a ) の領域 B 5であることを見いだしたものである。
条件式 ( 1 1 ) を満足しない場合、 即ち直線 B 1の上の領域 B 1 eで は、 螢石の量 yに対して後レンズ群 G Rの焦点距離 f 2が短すぎる。 こ の場合には、 投影光学系全系のパワーが強すぎ、 単色収差の補正自体が 困難になるため好ましくない。 又は、 後レンズ群 G Rの焦点距離 f 2に 対して必要以上に螢石を使用しているとも言うことができる。 即ち、 比 例縮小の手法による色収差補正をあまり行わないことになつて、 無駄に 螢石の使用量が増えるため好ましくない。 そして、 条件式 ( 1 2) を満足しない場合、 即ち直線 B 2の上の領域 B 2 eでは、 螢石の絶対的な使用量の増加を招くために好ましくない。 また、 条件式 ( 1 3) を満足しない場合、 即ち直線 B 3の外側の領域 B 3 eでは、 投影光学系の単色収差の補正は容易となるが、 色収差の補 正量が大幅に不足するため、 結果として結像性能の悪化を招き好ましく ない。 なお、 螢石の量 yは 0又は正の値であるため、 条件式 ( 1 4) は 常に満たされている。
また、 本実施の形態において、 投影光学系の像側の最大開口数 N Aw と螢石の量 y (ディスク材に換算した使用量) とは、 更に次の 2つの条 件式を満足することが好ましい。
N Aw> 0. 7 2 ··· (d - 1 )
y< 7 5 … (d - 2)
条件式 (d _ l ) が満たされない場合には、 十分な解像度が得られな レ 。 更に、 螢石の大量生産は現状では困難であるため、 条件式 (d— 2) が満たされない場合には、 需要に応じて投影光学系 P L (及びこれを備 えた投影露光装置) の供給量を増大するのが困難になる恐れがある。 また、 本実施の形態において、 その後レンズ群 GRの焦点距離 f 2 (mm) と、 その投影光学系の像側の最大開口数 NAwとは、 以下の条 件を満足することが望ましい。
1 1 0 < f 2 /N Aw< 2 0 0 "- (e)
f 2ZNAwの値が条件式 (e) の下限以下になると、 コマ収差、 非 点収差、 ディストーション等の軸外収差の補正が困難となり、 f 2ZN Awの値が条件式 (e) の上限以上になると、 色収差の補正が困難とな る。
次に、 螢石の量 yを更に少なくして、 かつ比例縮小による色収差の補 正を良好に行うためには、 条件式 ( 1 1 ) 〜 ( 1 4) よりも更に狭い条 件である以下の各条件式 ( 1 5) 〜 ( 1 8 ) を満足することが望ましい c y≤ ( 9 x/ 2) - 2 7 0 ··· ( 1 5)
y≤ 9 0 ··· ( 1 6 )
y≥ ( 9 x 2 ) - ( 8 5 5/2 ) ■·· ( 1 7 )
y≥ 0 ··· ( 1 8)
図 8 (a) において、 直線 C l, C 2, C 3, 及び C 4はそれぞれ直 線 ( y = ( 9 x/ 2 ) — 2 7 0 ) 、 直線 ( y = 9 0 ) 、 直線 ( y = ( 9 x / 2 ) 一 ( 8 5 5 /2) ) 、 及び直線 (y= 0) を示している。 従つ て、 条件式 ( 1 5) 〜 ( 1 8) を満たす (X , y ) の範囲は、 直線 C 1 , C 2 , C 3 , C 4で囲まれた四角形の領域 C 5であり、 この領域 C 5は 領域 B 5の範囲内に収まっている。
また、 露光光は波長が 2 0 0 nm以下であると共に、 波長幅が半値全 幅で 0. 5 pm以下であることが望ましい。 波長幅が狭くなるほど色収 差の補正は容易になるが、 それに応じて露光光源の構成が複雑化して製 造コストが上昇し、 また露光光量の低下が避けられず、 スループットの 低下を招く。 露光光源として例えば A r Fエキシマレ一ザ光源 (波長 1 9 3 nm) を使用する場合、 狭帯化技術によって 0. 5 pm以下で 0. 3 pm程度までの波長幅は合理的なコス卜で実現可能であり、 かつ本例 の補正手法によって色収差も容易に補正できる。
次に、 本例では、 比例縮小による補正手法を用いているが、 この際に 像面側で諸収差を許容範囲内に抑えて広い視野を確保するためには、 投 影光学系を構成する複数のレンズのうちの所定のレンズ面を非球面とす ることが望ましい。 しかしながら、 非球面レンズは製造コストが高いた め、 非球面の数は所望の結像性能が得られる範囲内で最小限にすること が望ましい。
本例では、 条件式 ( 1 1 ) 〜 ( 1 4) が満たされているが、 螢石の量 yについて更に次の条件を課した場合には、 投影光学系中の非球面の数 Aとしては 2以上が望ましい。
0≤y<40 - ( 1 9)
2≤A … (2 0)
これについて説明すると、 条件式 ( 1 9) が成立する場合には、 螢石 の量 yが比較的少ないために、 条件式 ( 1 1 ) 〜 ( 1 4) より後レンズ 群 GRの焦点距離 f 2が比較的短めに設定される。 即ち、 比例縮小によ る色収差補正が支配的になる傾向にある。 このときには、 非球面の面数 が 2面より少ないと、 良好に収差補正された像側視野の範囲が狭くなり すぎ、 投影露光装置に適用した場合にスループットの低下を招くため、 所望の像側視野の範囲内での収差補正を良好に行うために 2面以上の非 球面を用いることが望ましい。 また、 より広い像側視野で収差補正を良 好に行うためには、 その非球面の数は 3面以上であることがさらに好ま しい。
また、 螢石の量 yについて条件式 ( 1 9) とは異なる次の条件を課し た場合には、 投影光学系中の非球面の数 Aとしては 1〜 5が望ましい。
4 0≤y < 7 0 ·'· (2 1 )
1≤Α≤ 5 … (2 2)
この条件式 (2 1 ) が成立する場合には、 螢石の量 yが増加したため、 条件式 ( 1 1 ) 〜 ( 1 4) より後レンズ群 GRの焦点距離 ί 2力 条件 式 ( 1 9) が成立する場合に比べて長く設定できる。 即ち、 複数の材料 を組み合わせる補正手法に加えて比例縮小による色収差補正がなされる ため、 1面以上で 5面以下の非球面を用いることで、 所望の像側視野の 範囲内で収差補正を良好に行うことができる。 条件式 (2 2) から外れ て、 非球面を用いない場合には、 比例縮小された像側視野を、 比例縮小 する前の状態に維持するのが困難となり、 好ましくない。 また、 非球面 が 5面を超える場合には、 必要以上に製造コストが上昇することになつ て好ましくない。
また、 投影光学系に非球面を設ける場合、 この非球面は螢石とは異な る材料 (例えば石英ガラス) からなるレンズのレンズ面に設けられるこ とが望ましい。 これに対して、 螢石からなるレンズに非球面を設けよう とすると、 螢石への非球面加工は螢石の摩耗度が大きいため困難であり、 製造コスト及び製造時間の大幅な増大を招き、 更には非球面精度の低下 を招く恐れがある。
また、 本例の投影光学系の像側視野は直径 2 0mm以上であることが 望ましく (直径 2 5mm以上であることがより望ましい) 、 投影光学系 の像側の最大開口数 NAwは以下の条件を満足することが望ましい。
N Aw≥ 0. 6 5 ··· (2 3)
露光波長え、 最大開口数 NAw及びプロセス係数 k 1を用いると、 投 影光学系によって転写される像の解像度 R e sは次のようになる。
R e s = k 1 · λ /NAw … (24)
従って、 露光波長 λを 2 0 0 nm、 最大開口数 NAwを 0. 6 5とし て、 例えば変形照明法を適用するものとしてプロセス係数 k 1を 0. 5 とすると、 解像度 R e sは約 1 54 nmとなる。 従って、 露光波長を 2 O O nm以下として、 条件式 (2 3) を満足することによって、 次世代 の半導体デバイス等を製造するために十分な解像度が得られる。
また、 像側視野の直径を 2 Omm以上にすることで、 高い解像度を得 た状態で高いスループッ 卜で露光を行うことができる。
次に、 本発明の第 9の投影光学系 (第 6の投影露光装置又は第 4の投 影露光方法) の実施の形態にかかる投影光学系では、 波長が 2 O O nm 以下の露光光が使用されると共に、 その投影光学系中の光透過性光学材 料のうちの第 1の材料の量 (使用量) をディスク材に換算した量を y ( k g) としている。 そして、 後レンズ群 GRの焦点距離を f 2 (m m) 、 その投影光学系の像側の最大開口数を NAwとし、 パラメ一夕 X
(mm) を ( 1 0) 式のように規定したときに、 条件式 ( 1 1 ) 〜 ( 1 4) が満足されている。
図 9は、 この実施の形態におけるパラメ一夕 X (mm) と第 1の材料 の量 y (ディスク材に換算した使用量) (k g) との関係を示し、 この 図 9の直線 B 1〜B 4, 直線 C 1〜C 4は図 8 (a) と同じであり、 条 件式 ( 1 1 ) 〜 ( 1 4) が満足される領域は、 直線 B 1〜B 4で囲まれ た領域 B 5である。
この図 9の実施の形態では、 投影光学系を構成するレンズの主要な材 料 (光透過性光学材料) として先ずその第 1の材料とは異なる第 2の材 料を使用し、 色収差補正を行うために必要に応じてその第 1の材料を付 加する。 更に光学系を比例縮小して色消しを行う補正手法を併用する。 即ち、 本例は、 「主要な材料 (第 2の材料) に色収差補正用材料 (第 1 の材料) を付加して色消しする補正手法と、 比例縮小による補正手法と の最適な組み合わせの範囲を見いだしたもの」 と言うことができる。 本例において、 その主要な材料 (第 2の材料) としては、 石英のみな らず、 螢石等を使用することができる。 その主要な材料が例えば石英で あれば、 その第 1の材料としては螢石 (これは図 8 (a) の実施の形態 に対応する) やフッ化バリゥム (B a F) 、 フッ化リチウム (L i F) 等を使用できる。 一方、 例えば露光波長が 1 7 O nm以下 (例えば波長 1 5 7 nmの F2 レーザ) になると、 透過率を高めるためにその主要な 材料としては螢石を使用することも考えられるが、 この場合にその第 1 の材料としては、 螢石とは異なる材料 (石英、 B a F, L i F等) が使 用される。
図 9において、 条件式 ( 1 1 ) を満足しない場合、 後レンズ群 GRの 焦点距離 f 2に対して必要以上に第 1の材料を使用していると言うこと ができる。 そして、 条件式 ( 1 2) を満足しない場合、 第 2の材料の絶 対的な使用量の増加を招き、 例えば露光波長が 1 7 O nm以下の場合に は透過率が低下しすぎることになって好ましくない。
また、 条件式 ( 1 3) を満足しない場合、 投影光学系の単色収差の補 正は容易となるが、 色収差の補正量が大幅に不足するため、 結果として 結像性能の悪化を招き好ましくない。
また、 本例においても、 十分な解像度を得て、 螢石の使用量を実用的 な範囲内に抑えるためには、 条件式 (d— 1 ) , (d— 2) を満たすこ とが望ましい。 また、 コマ収差、 非点収差、 ディストーション等の軸外 収差を容易に補正して、 色収差を容易に補正するためには、 条件式 (e) を満たすことが望ましい。
そして、 本例においても、 第 1の材料の量 yを更に少なくして、 かつ 比例縮小による色収差の補正を良好に行うためには、 条件式 ( 1 1 ) 〜 ( 1 4) よりも更に狭い条件である上記の各条件式 ( 1 5) 〜 ( 1 8) を満足することが望ましい。 これは、 図 9の直線 C 1〜C 4で囲まれた 領域 C 5に (X , y ) がある場合である。
また、 図 9において、 デ一夕 A 1は、 上記の第 1実施例に対応してい る。 その第 1実施例において、 露光波長は F2 レーザの 1 5 7 nm ( 1 7 O nm以下) 、 レンズの材料 (第 2の材料) は全て石英であり、 第 1 の材料の量 yは 0である。 また、 その第 1実施例において、 後レンズ群
GRの焦点距離 f 2は 1 1 0. 6 nm、 投影倍率 3は一 0. 2 5、 像側 の最大開口数 NAwは 0. 7 5であるため、 パラメ一夕 X = 110.6·4·卜
0.251-0.752 = 6 2. 2 (mm) となり、 デ一夕 A 1はより望ましい領 域 C 5に収まっている。
次に、 本例の複数の数値実施例について説明する。 以下の第 3実施例 〜第 8実施例の投影光学系は、 何れも狭帯化された A r Fレーザが供給 する波長 1 9 3. 3 nmを基準波長としたものであり、 基準波長を中心 として FWHM (半値全幅) 0. 3 5 pmの範囲、 即ち 1 9 3. 3 n m ± 0. 1 7 5 pmの範囲で色収差補正を行っているものである。
図 1 0は、 第 3実施例による投影光学系の光路図である。 この第 3実 施例において、 投影光学系中の光透過性屈折部材 (レンズ L I 1〜L 5 7 ) は、 全て石英 (合成石英: S i 〇2 ) で形成されている。 即ち、 色 消し用の材料 (第 1の材料) は使用されていない。
図 1 0に示す通り、 第 3実施例の投影光学系は、 第 1面 A側から順に、 正屈折力の前レンズ群 GF、 開口絞り AS、 及び正屈折力の後レンズ群 GRを有する。 また、 別の群分けによると、 第 3実施例の投影光学系は、 第 1面 A側から順に、 負の第 1 レンズ群 G l、 正の第 2レンズ群 G 2、 負の第 3レンズ群 G 3、 正の第 4レンズ群 G4、 開口絞り AS、 及び正 の第 5レンズ群 G 5を有し、 第 1 レンズ群 G 1〜第 4レンズ群 G 4が前 レンズ群 GFを構成し、 第 5レンズ群 G 5が後レンズ群 GRを構成して いる。
第 1 レンズ群 G 1は、 第 1面 A側から順に、 凸面を第 1面 A側に向け たメニスカス形状の負レンズ L 1 1 と、 凹面を第 1面 A側に向けたメニ スカス形状の負レンズ L 1 2とを有し、 これらの負レンズ L 1 1 , L 1 2によって、 両凸形状の気体レンズを形成している。 負レンズ L 1 1の 第 1面 A側のレンズ面、 及び負レンズ L 1 2の第 2面 B側のレンズ面は それぞれ非球面 A S P 1及び A S P 2に形成されている。
第 2レンズ群 G 2は、 凹面を第 1面 A側に向けたメニスカス形状の負 レンズし 2 1 と、 凹面を第 1面 A側に向けたメニスカス形状の正レンズ L 2 2と、 両凸形状の 3つの正レンズ L 2 3〜L 2 5とを有する。 最も 第 2面 B側の正レンズ L 2 5の第 1面 A側のレンズ面は非球面 AS P 3 に形成されている。
第 3レンズ群 G 3は、 第 1面 A側より順に凸面を第 1面 A側に向けた メニスカス形状の負レンズ L 3 1と、 両凹形状の 2つの負レンズ L 3 2 , L 3 3とを有し、 これら負レンズ L 3 1〜L 3 3によって、 両凸形状の 2つの気体レンズを形成している。 最も第 2面 B側の負レンズ L 3 3の 第 2面 B側のレンズ面は非球面 A S P 4に形成されている。
第 4レンズ群 G 4は、 第 1面 A側より順に、 第 1面 A側に凹面を向け たメニスカス形状の 2つの正レンズ L 4 1, L 42と、 両凸形状の正レ ンズ L 43とを有する。
後レンズ群 GRでもある第 5レンズ群 G 5は、 第 1面 A側かから順に、 両凹形状の負レンズ L 5 1と、 両凸形状の 2つの正レンズ L 5 2 , L 5 3と、 第 1面 A側に凸面を向けたメニスカス形状の 3つの正レンズ L 5 4〜L 5 6と、 第 1面 A側に凹面を向けた平凹形状の負レンズ L 5 7と を有する。 ここで、 正レンズ L 5 2の第 1面 A側のレンズ面、 及び正レ ンズ L 5 6の第 2面 B側のレンズ面はそれぞれ非球面 AS P 5及び AS P 6に形成されている。
図 1 1は、 第 4実施例による投影光学系の光路図であり、 この第 4実 施例において、 投影光学系中の光透過性屈折部材の主要な材料 (第 2の 材料) としては石英ガラス (合成石英) が使用され、 色消し用の材料 (第 1の材料) としては螢石が使用されている。
図 1 1に示す通り、 第 4実施例の投影光学系は、 第 1面 A側から順に、 正屈折力の前レンズ群 GF、 開口絞り AS、 及び正屈折力の後レンズ群 GRを有する。 また、 別の群分けによると、 第 4実施例の投影光学系 P Lは、 第 1面 A側から順に、 負の第 1 レンズ群 G l、 正の第 2レンズ群 G 2、 負の第 3レンズ群 G 3、 正の第 4レンズ群 G 4、 開口絞り AS、 及び正の第 5レンズ群 G 5を有し、 第 1 レンズ群 G 1〜第 4レンズ群 G 4が前レンズ群 G Fに対応し、 第 5レンズ群 G 5が後レンズ群 G Rに対 応している。
第 1 レンズ群 G 1は、 第 1面 A側から順に、 凸面を第 1面 A側に向け たメニスカス形状の負レンズ L 1 1と、 凹面を第 1面 A側に向けたメニ スカス形状の負レンズ L 1 2とを有し、 これらの負レンズ L 1 1 , L 1 2によって、 両凸形状の気体レンズを形成している。 負レンズ L I 1の 第 1面 A側のレンズ面、 及び負レンズ L 1 2の第 2面 B側のレンズ面は、 それぞれ非球面 A S P 1及び A S P 2に形成されている。 これら 2つの 負レンズ L 1 1, L 1 2は共に石英ガラスから形成されている。
第 2レンズ G 2は、 第 1面 A側から順に、 凹面を第 1面 A側に向けた メニスカス形状の正レンズ L 2 1と、 両凸形状の 3つの正レンズ L 2 2 〜L 2 4と、 凸面を第 1面 A側に向けたメニスカス形状の正レンズ L 2 5とを有する。 最も第 2面 B側の正レンズ L 2 5の第 1面 A側のレンズ 面は非球面 A S P 3に形成されている。 第 2レンズ群 G 2の全てのレン ズは石英ガラスから形成されている。
第 3レンズ群 G 3は、 第 1面 A側から順に、 凸面を第 1面 A側に向け たメニスカス形状の負レンズ L 3 1 と、 両凹形状の 2つの負レンズ L 3 2, L 3 3とを有し、 これら負レンズ L 3 1〜L 3 3によって、 両凸形 状の 2つの気体レンズを形成している。 ここで、 最も第 2面 B側の負レ ンズ L 3 3の第 2面 B側のレンズ面は非球面 A S P 4に形成されている。 第 3レンズ群 G 3中の全ての負レンズ L 3 1〜L 3 3は石英ガラスで形 成されている。
第 4レンズ群 G 4は、 第 1面 A側より順に、 第 1面 A側に凹面を向け たメニスカス形状の正レンズ L 4 1 と、 第 1面 A側に凹面を向けたメニ スカス形状の正レンズ L 4 2と、 両凸形状の正レンズ L 4 3とを有する。 ここで、 2つの正レンズ L 4 1 , L 4 2は石英ガラスから形成され、 第 2面 B側の正レンズ L 4 3は螢石から形成されている。
第 5レンズ群 G 5は、 第 1面 A側から順に、 両凹形状の負レンズ L 5 1 と、 両凸形状の 2つの正レンズ L 5 2 , L 5 3と、 第 1面 A側に凸面 を向けた 3つのメニスカス形状の正レンズ L 5 4〜L 5 6と、 両凹形状 の負レンズ L 5 7とを有する。 ここで、 負レンズ L 5 1の第 2面 B側の レンズ面、 及び正レンズ L 5 6の第 2面 B側のレンズ面はそれぞれ非球 面 A S P 5及び A S P 6に形成されている。 第 5レンズ群 G 5において は、 最も第 2面 B側の負レンズ L 5 7のみが螢石で形成されており、 残 りのレンズ L 5 1〜L 5 6が石英ガラスで形成されている。
このように第 4実施例では、 レンズ材料 (硝材) として石英ガラス (合成石英) と螢石とが使用されているが、 非球面形状のレンズ面は全 て石英ガラスからなるレンズに形成されている。
図 1 2は、 第 5実施例による投影光学系の光路図であり、 この第 5実 施例において、 投影光学系中の光透過性屈折部材の主要な材料 (第 2の 材料) としては石英ガラス (合成石英) が使用され、 色消し用の材料 (第 1の材料) としては螢石が使用されている。
図 1 2に示す通り、 第 5実施例の投影光学系は、 第 1面 A側から順に、 正屈折力の前レンズ群 G F、 開口絞り A S、 及び正屈折力の後レンズ群 G Rを有する。 また、 別の群分けによると、 第 5実施例の投影光学系は、 第 1面 A側から順に、 負の第 1 レンズ群 G l、 正の第 2レンズ群 G 2、 負の第 3レンズ群 G 3、 正の第 4レンズ群 G 4、 開口絞り A S、 及び正 の第 5レンズ群 G 5を有し、 第 1 レンズ群 G 1〜第 4レンズ群 G 4が前 レンズ群 G Fに対応し、 第 5レンズ群 G 5が後レンズ群 G Rに対応して いる。
第 1 レンズ群 G 1は、 第 1面 A側から順に、 平面を第 1面 A側に向け た平凹形状の負レンズ L 1 1と、 凹面を第 1面 A側に向けたメニスカス 形状の負レンズ L 1 2とを有し、 これらの負レンズ L 1 1 , L 1 2によ つて、 両凸形状の気体レンズを形成している。 負レンズ L 1 1の第 2面 B側のレンズ面は非球面 A S P 1に形成されている。 これら 2つの負レ ンズ L 1 1, L 1 2は共に石英ガラスから形成されている。
第 2レンズ G 2は、 第 1面 A側から順に、 凹面を第 1面 A側に向けた メニスカス形状の負レンズ L 2 1と、 凹面を第 1面 A側に向けたメニス カス形状の正レンズ L 2 2と、 両凸形状の正レンズ L 2 3と、 凸面を第 1面 A側に向けたメニスカス形状の 2つの正レンズ L 24, L 2 5とを 有する。 最も第 1面 A側の負レンズ L 2 1の第 1面 A側のレンズ面は非 球面 A S P 2に形成されている。 第 2レンズ群 G 2の全てのレンズは石 英ガラスから形成されている。
第 3レンズ群 G 3は、 第 1面 A側から順に、 凸面を第 1面 A側に向け たメニスカス形状の負レンズ L 3 1と、 両凹形状の 2つの負レンズ L 3 2, L 3 3とを有し、 これら負レンズ L 3 1〜L 3 3によって、 両凸形 状の 2つの気体レンズを形成している。 ここで、 最も第 1面 A側の負レ ンズ L 3 1の第 2面 B側のレンズ面、 及び最も第 2面 B側の負レンズ L 3 3の第 2面 B側のレンズ面はそれぞれ非球面 A S P 3及び A S P 4に 形成されている。 第 3レンズ群 G 3中の全ての負レンズ L 3 1〜L 3 3 は石英ガラスで形成されている。
第 4レンズ群 G 4は、 第 1面 A側より順に、 第 1面 A側に凹面を向け たメニスカス形状の正レンズ L 4 1 と、 第 1面 A側に凹面を向けたメニ スカス形状の正レンズ L 42と、 両凸形状の正レンズ L 43とを有する。 ここで、 第 1面 A側の 2つの正レンズ L 4 1 , L 42は螢石から形成さ れ、 第 2面 B側の正レンズ L 43は石英ガラスから形成されている。 第 5レンズ群 G 5は、 第 1面 A側から順に、 両凹形状の負レンズ L 5 1と、 両凸形状の 2つの正レンズ L 5 2 , L 5 3と、 第 1面 A側に凸面 を向けた 3つのメニスカス形状の正レンズ L 5 4〜L 5 6と、 第 1面 A 側に凹面を向けた平凹形状の負レンズ L 5 7とを有する。 ここで、 負レ ンズ L 5 1の第 2面 B側のレンズ面、 及び正レンズ L 5 5の第 2面 B側 のレンズ面はそれぞれ非球面 A S P 5及び A S P 6に形成されている。 第 5レンズ群 G 5においては、 最も第 2面 B側の 2つのレンズ L 5 6 , L 5 7のみが螢石で形成されており、 残りのレンズ: L 5 1〜L 5 5が石 英ガラスで形成されている。
このように第 5実施例でも、 レンズ材料 (硝材) として石英ガラス (合成石英) と螢石とが使用されているが、 非球面形状のレンズ面は全 て石英ガラスからなるレンズに形成されている。
図 1 3は、 第 6実施例による投影光学系の光路図であり、 この第 6実 施例において、 投影光学系中の光透過性屈折部材の主要な材料 (第 2の 材料) としては石英ガラス (合成石英) が使用され、 色消し用の材料 (第 1の材料) としては螢石が使用されている。
図 1 3に示す通り、 第 6実施例の投影光学系は、 第 1面 A側から順に、 正屈折力の前レンズ群 G F、 開口絞り A S、 及び正屈折力の後レンズ群 G Rを有するダブルウェスト型の結像光学系である。
そして、 前レンズ群 G Fは、 第 1面 A側から順に、 両凹形状の負レン ズ L 1 1と、 両凸形状の 3つの正レンズ L 1 2〜L 1 4と、 凸面を第 1 面 A側に向けたメニスカス形状の負レンズ L 1 5と、 両凸形状の正レン ズ L 1 6と、 両凹形状の負レンズ L 1 7と、 両凹形状の 2つの負レンズ L 1 8 , L 1 9と、 第 1面 A側に凹面を向けたメニスカス形状の負レン ズ L 2 0と、 第 1面 A側に凹面を向けたメニスカス形状の正レンズ L 2 1と、 両凸形状の正レンズ L 2 2と、 第 1面 A側に凹面を向けたメニス カス形状の正レンズ L 2 3と、 両凸形状の 2つの正レンズ L 2 4, L 2 5と、 第 1面 A側に凸面を向けたメニスカス形状の負レンズ L 2 6と、 両凹形状の負レンズ L 2 7と、 第 1面 A側に凹面を向けたメニスカス形 状の負レンズ L 2 8と、 第 1面 A側に凹面を向けたメニスカス形状の正 レンズ L 2 9とを有している。 そして、 負レンズ L 2 0の第 1面 A側の レンズ面、 負レンズ L 2 7の第 1面 A側のレンズ面、 及び負レンズ L 2 8の第 2面 B側のレンズ面がそれぞれ非球面 A S P 1, A S P 2 , A S P 3に形成されている。 そして、 最も第 2面 B側の正レンズ L 2 9のみ が螢石より形成され、 それ以外のレンズ L 1 1〜; L 2 8は全て石英ガラ スから形成されている。
後レンズ群 G Rは、 第 1面 A側より順に、 両凸形状の 2つの正レンズ L 5 1 , L 5 2と、 第 1面 A側に凹面を向けたメニスカス形状の負レン ズ L 5 3と、 両凸形状の正レンズ L 5 4と、 第 1面 A側に凸面を向けた 3つのメニスカス形状の正レンズ L 5 5〜L 5 7と、 第 1面 A側に凸面 を向けたメニスカス形状の負レンズ L 5 8と、 両凸形状の正レンズ L 5 9とを有する。 ここで、 4枚のレンズ L 5 3, L 5 4 , L 5 8 , L 5 9 が石英レンズより形成され、 その他の 5枚のレンズ L 5 1 , L 5 2 , L 5 5 , L 5 6 , L 5 7が螢石より形成されている。
このように第 6実施例でも、 レンズ材料 (硝材) として石英ガラス (合成石英) と螢石とが使用されているが、 非球面形状のレンズ面は全 て石英ガラスからなるレンズに形成されている。
図 1 4は、 第 7実施例による投影光学系の光路図であり、 この第 7実 施例において、 投影光学系中の光透過性屈折部材の主要な材料 (第 2の 材料) としては石英ガラス (合成石英) が使用され、 色消し用の材料 (第 1の材料) としては螢石が使用されている。
図 1 4に示す通り、 第 7実施例の投影光学系は、 第 1面 A側から順に、 正屈折力の前レンズ群 G F、 開口絞り A S、 及び正屈折力の後レンズ群 G Rを有するダブルウェスト型の結像光学系である。 そして、 前レンズ群 GFは、 第 1面 A側から順に、 両凹形状の負レン ズ L 1 1と、 両凸形状の 3つの正レンズ L 1 2〜L 1 4と、 凸面を第 1 面 A側に向けたメニスカス形状の負レンズ L 1 5と、 凹面を第 1面 A側 に向けたメニスカス形状の正レンズ L 1 6と、 凸面を第 1面 A側に向け たメニスカス形状の負レンズ L 1 7と、 両凹形状の 2つの負レンズ L 1 8, L 1 9と、 第 1面 A側に凹面を向けたメニスカス形状の負レンズ L 2 0と、 第 1面 A側に凹面を向けたメニスカス形状の正レンズ L 2 1と、 両凸形状の正レンズ L 2 2と、 第 1面 A側に凹面を向けたメニスカス形 状の正レンズ L 2 3と、 第 1面 A側に凸面を向けたメニスカス形状の正 レンズ L 24と、 両凸形状の正レンズ L 2 5と、 第 1面 A側に凸面を向 けたメニスカス形状の負レンズ L 2 6と、 両凹形状の 2枚の負レンズ L 2 7, L 2 8と、 第 1面 A側に凹面を向けたメニスカス形状の正レンズ L 2 9とを有している。 そして、 負レンズ L 2 0の第 1面 A側のレンズ 面、 負レンズ L 2 7の第 1面 A側のレンズ面、 及び負レンズ L 2 8の第 2面 B側のレンズ面がそれぞれ非球面 AS P 1 , A S P 2 , AS P 3に 形成されている。 そして、 最も第 2面 B側の正レンズ L 2 9、 及び中程 の正レンズ L 24のみが螢石より形成され、 それ以外のレンズ L 1 1〜 L 2 3 , L 2 5〜L 2 8は全て石英ガラスから形成されている。
後レンズ群 GRは、 第 1面 A側より順に、 両凸形状の 2つの正レンズ L 5 1, L 5 2と、 第 1面 A側に凹面を向けたメニスカス形状の負レン ズ L 5 3と、 両凸形状の正レンズ L 54と、 第 1面 A側に凸面を向けた 3つのメニスカス形状の正レンズ L 5 5〜L 5 7と、 両凹形状の負レン ズ L 5 8と、 両凸形状の正レンズ L 5 9とを有する。 ここで、 4枚のレ ンズ L 5 3, L 54, L 5 8 , L 5 9が石英レンズより形成され、 その 他の 5枚のレンズ L 5 1, L 5 2 , L 5 5 , L 5 6 , L 5 7が螢石より 形成されている。 このように第 7実施例でも、 レンズ材料 (硝材) として石英ガラス (合成石英) と螢石とが使用されているが、 非球面形状のレンズ面は全 て石英ガラスからなるレンズに形成されている。
次に、 本例の第 8実施例の投影光学系のレンズ構成は、 図 2の第 2実 施例のレンズ構成と同一である。 但し、 その第 2実施例では、 基準波長 である 1 9 3. 3 0 6 nmに対して波長幅 ± 0. 4 pmの範囲で色収差 補正を行っていたが、 この第 8実施例では 1 9 3. 3 nmを中心として FWHM (半値全幅) 0. 3 5 p mの範囲、 即ち 1 9 3. 3 nm± 0. 1 7 5 pmの範囲で色収差補正を行っている。 なお、 この範囲は第 2実 施例の色収差補正範囲 (基準波長に対して波長幅 ± 0. 4 pmの範囲) と実質的に同等である。
以下の表 4〜表 8に第 3実施例〜第 7実施例の投影光学系の諸元をそ れぞれ示す。 表 4〜表 8において、 左端の列には第 1面 Aからの各レン ズ面の番号、 第 2列には各レンズ面の曲率半径、 第 3列には各レンズ面 から次のレンズ面までの面間隔、 第 4列にはレンズ材料、 第 5列には非 球面の符号、 第 6列には各レンズの符号、 第 7列には各レンズ面の有効 な直径 を示す。 また、 非球面レンズ面についての第 2列の曲率半 径は頂点曲率半径を示す。 非球面形状は上述の式 (a) で示されている。 表 4〜表 8の最後にそれぞれ [非球面データ] として各非球面につい ての円錐係数 κ、 非球面係数 A, B, C, D, E, Fを示した。
第 3実施例〜第 7実施例において、 石英ガラス (合成石英) の基準波 長 ( 1 9 3. 3 nm) での屈折率、 波長 + 1 pm当たりの屈折率の変化 量 (分散) 、 及び比重は以下の通りである。
石英ガラスの屈折率: 1. 5 6 0 3 2 6
石英ガラスの分散 : — 1. 5 9 1 X 1 0— 6/pm
石英ガラスの比重 : 2. 2 そして、 螢石の上記基準波長 (1 93. 3 nm) での屈折率、 波長 + 1 pm当たりの屈折率の変化量 (分散) 、 及び比重は以下の通りである, 螢石の屈折率 1. 50 1455
螢石の分散 — 0. 980 X 1 0 "Vpm
螢石の比重 3. 1 8
なお、 以下の表 4〜表 8において、 Si02は石英ガラスを、 CaF2は螢石 を表し、 d 0は第 1面 Aから最も第 1面 A側のレンズ面までの距離、 W Dは最も第 2面 B側のレンズ面から第 2面 Bまでの距離 (作動距離) を 示す。
また、 第 3実施例〜第 7実施例について共通に、 投影光学系の開口数 NA (第 2面 B側の最大開口数 NAw) 、 投影倍率 3、 及び第 2面 B上 でのイメージサークルの直径 φは以下の通りである。
N A= 0. 75
Figure imgf000057_0001
φ = 27. 5 mm
《表 4》
第 3実施例 (図 1 0)
d 0 = 55.000001 (醒) 曲率半径 面間隔 ガラス 非球面 レンズ φ e f f
(mm) (mm) (ram)
1: 7091.42905 ASP1 L11 65.764267
2: 355.28402 26.433708 67.469398 3: -130.38826 25.918810 Si02 L12 67.725563
4: -754.54900 17.524438 ASP2 83.206055 c^
' ~ ^ ^ >
—3 — Ϊ _3
C
o
Figure imgf000058_0001
- o
oo 8
Figure imgf000059_0001
Figure imgf000060_0001
8
CO C O CO
CO DO DO
t—
cn
O cn
n
G
o
CO en n CO CO CO C
cn cn ト一 CO CO
C OO つ n c ζ (L
Figure imgf000061_0001
O
0 T X 00C81 -0- : V 8 _ 0 T i ti 'o - : V
000000 "0 : Ή 000000 ·0 : Ή
9dSV CdSV ε-0 T xio 9 'o - : d 6z-0 τ m ·ο : Λ
LZ- 0 I xs ss 'o : Ά 9 Z - 0 T XSZI6^Z ·0 : Ή ε ε-0 ΐ X 1866 ,0 - : α 0 3-0 I Χ61ΖΖ Ι ,0 - : a
I X866 Ό- : 3 9【_ 0 I X88S9 S ·0 : 0 QZ ト 0 τ x z9i ·ο - : a 2 t— 0 T XVLZU "0- : 9
L- 0 T X6SCZSI ·0 : V 8 - 0 τ ·ο : V
f
000000 0 : y 000000 ·0 :
SdSV ZdSV
8 2-0 Τ XI7 09S8 0 ·' Λ L Z - 0 Τ Χ 098Ι82 Ό ·· Λ Si
, ζ- τ χε 9ΐ ο - : 3 z z- 0 ι
Figure imgf000062_0001
·ο- : 3
6 1 - 0 I Χ08Π02 ·0 : σ 02 - 0 Τ XZS|CC6 ·0 : a
9い 0 I Χ00609Α "0 : 0 S I - 0 Τ X9Z9C0I ·0 : D
【い 0 ι L Ό- : a t【— 0 I '0 - : 9 ζ一 0 Τ Χ9Ζ2Ζ09 ,0 : V Τ X 006CZ6 ·0 : V 01
000000 '0 : 000000 ·0 : Ή
WSV IdSV
Z299Z6 Ζ (a ) Z^IZZ 'C988 ■ n
6099^6 000000 Ό5 IZCZ9 Mm一 :0 9
· 9JSV 966692 '9 9ίί ·96Ζ :6C
-oz S0!S 6^SZS6 ' 06088 '6ΖΪ :8C
Z8S899 ·08 6 ^S9 ·ί Z9C06 'ΐ : C
•96 Z0!S 000000 'OS 8C181 ·05ΐ :9C
09
90,90/00df/XOd o ω
o
X X
o O
Figure imgf000063_0001
14144 1/ (5厶ム G J L 1 a° J UUUUUU u□ U 0 Uo 6 LvvL •• f Ui V
GO Π o nフ
I UU 0 UO V L J GUD6 •c Όυυΐ / Ό '0 U(D^ •
o ' 0 G
U L o 0 L L U L Q y GT i 0707 T Q 'O C T T op -fr T T • op
G J 06 G 61 y O V • 00
J I 0 G l しし
Figure imgf000064_0001
F 0 UU J 66 • L G
Q
y UU L o 60 G 1 s n U ί '
! UUUUUU 'nc UUUUU U□ I * y G
U
Figure imgf000064_0002
Do oy oil L I
(? 1 Λ7 'Πフ T T n n 7 C-
L G 0フ6フ601フ0 ' 7 01 • QQ
• G O
•QQ
L I OT CQ oHU 'T L 7 T
0 3 6 L OCT
00 L OVG UD J • 6 G
) 0000 / 'nフ T * T
L0000L Uo L UUUUUU I 8906 "C^5- - T Q ί?00 T 0 c
Abut) D I 1 6 vv 96^69 ·9Ι - Uo
Q » T 0 n C '0 T T p joy T O T! 00 •n 8Ζ Π '9 • aフ n T
0 T Π Ω Π T o 7
I uyu • n *
L VG - 06
V IZ8598 '22 CO - 17
- L 6
20Z916 "01 988ZI 'S16- • Qフ
T T Q β Ω P 'M7 T ίν s
I r\ T C 000000 '09 00000 -QU • c 7
10 A770 *nc ZSS66S '6 1 S^CSZ TO- • V G U I
T Q T Π 0 Ώ 0
GF 1 dK J 000000 'SC • 07
- G O
Q Π Π T T 7 'ΠΟ 629086 •ε '6 Z- • 7
• 076 ビ " - - τフ
o ΐ
Figure imgf000065_0001
·ο : d 82— 0 I Ό : ή
0 Τ X 1090ZC ·0_ : 3 0 T '0 : Η
0 0 ΐ xZO i Ό- : α oz-o T χοο99εε 'ο ·■ α
l一 ο τ /ΐ ^ ·ο - : 9【_ 0 T X0U588 "0 : 0
【 一 0 ΐ XS9 I ·0 - : a 0 ΐ Χ9 61 Ό : e
一 ο τ x m ·ο : V 8- 0 I X00CC6Z Ό : V
οοοοοο ·ο : 000000 ·0 : y 02
9dSV CdSV z ε - 0 I Χ60196δ ·0 - : Λ 8 3-0 τ
Figure imgf000065_0002
"0- : Λ
0 I Χ 1 Π ·0 : H sz - 0 I XS8Z8 8 ·0 - : 3 zz- 0 Τ ·0- : α 0 3 - 0 Τ Χ8 Η6£ ·0 - : α
【一 ο ι x z ·ο- : 0 91- 0 Τ XU8659 ·0 - : 3 31 ε t一 0 I ·0 : a 【【_0 I XPUOZI Ό- : a
ο τ xoi i ·ο : V L— ο τ ^mzu ·ο- : V
000000 ·0 : ¾ 000000 ·0 :
SdSV ZdSV
0 I ΧίίΙ^ΖΙ ·0 : Λ ο τ x m^ ·ο - : Λ 01 ο ι xii z ·ο- : 3 ο τ
Figure imgf000065_0003
Ό : 3 t - 0 I Χ869Ζ0 "0 : α οζ- 0 I x^StC i7 ,0 : α 【 0 Τ Χ0 Ζ6Ζ ·0 : D -0 1 X6S0 6 ·0 - ·■ 0 l - 0 Τ Χ0籠 6 ·0 - : a 【い ο τ xziQ ·ο : a
0 I X06090S ·0 : V 0 I X8Z2696 ·0— : V S
000000 Ό : Ή 000000 Ό : Ή
(Q ) oo
C9 i90/00df/XDd S£6£Z/10 OAV Ί8 0ΖΊ IdSV Z0!S 000000 '5ΐ Ζ960Ζ - CC- :61
'92 Q Ζ 007 ■Ϊ,ΟΡ
Ο 0 :81
"C9 6Π 000000 '51 Z 1i C ΠU ΠU Τ ί 'C M— ■ί\
C0 Z88 •29 6se e9 n 7
' π 0 Ο f? ϊ ■ :91
Ί9 8Π 20iS 000000 '5ΐ ΐ,Π Τ 7 ■p n 7
y 6 :91
•19 ^zn 0 hO } •n P T :
ΌΖ ΖΠ Z0!S 01996Z 'ie 'G Q C 7—
6 OOG : CI 02
CZ88I6 'li 000000 Ί 6Ζ2Ϊ0 •9ZC- ■Zl
11 9ΙΊ S0!S 6S 810 ■ιε ^6186 •OZZ : Π
•01 \im m :0ί
•6 Z0!S 000000 '51 :6
96Z 000000 •ί 0CC9S 'ί - •'8 SI
"28 20IS 90S6Z - ι 69CZ9 ' 0 ■ί
OZZt66 'Z8 000000 Ί ICS9S '16卜 ■'9
■S8 Z0!S 6160 ' 1 P9£6S '8C8 :9
Z60I S •6 000000 -\ Ρ6 16 ικ- :
^so c ' Z0!S 808ΪΖ6 - ζ Z L •8 : S 01
Ί C588Z6 'ΐΐ Ί Ζ ■Z
586866 '59 in Z0!S 000000 ' 'SI 9019Z ' - ■ \
(UIUI) (OIUI) (UIUI)
Φ mtiii ^ m w
(■) \Qzm -n = α
09Z6^Z 'S9 = O P
Figure imgf000066_0001
《 L
90.90/00Jf/X3J SC6eZ/I0 O . n
I
CD C O CM
8 n C cn
O
CO O
t
oo
Figure imgf000067_0001
! ~ ^ CO C co 4^ 4^ ^· O
CD
― C OO C OO
CD OO
Figure imgf000067_0002
(
o oo
(
t— ' E— ' t— ' t— ' t— ' t D 丄 O o CO c o oo C C C o CO c ' ~~ ' o¾ oo
Figure imgf000067_0003
oo oo C
—a D C CTD ― O n oo
CO OO <L n oo c_ ― ■J C era —J ' い —J O D Cs^ C
O OO CJ5 OO - 1 oo ^ oo c ID CO OO i> oo c CO c。 O i—■ C C cn - j t- cn co O oo oo cn CO 4^ CD T5 CO cn CD n Z> — d
2884 0 T XL^LLZ Ό- : 0
ο τ x "0 : a
0 I
Figure imgf000068_0001
"0 : V
CC6CC Ό : ^
SV
- 0 ΐ X8 ^S59 "0- : ά 62— 0 I X8 I8^ '0 : Λ
- 0 Τ ·0— : 3 0 I X0SC10C '0 : 3 02
- 0 Τ XLZQL "0 : α ο,- 0 I X0Z0ZZI Ό : α
― 0 I X 85891 ·0— : 0 91— 0 ΐ XZ0696C "0 : つ
- o i xic iC9 ·ο : a ·, - 0 I x8 60i Ό : a
- 0 I X8 60ZI ·0- : V — 0 I Χ8Ι99Π ,0 : V
.0 : •0 : Ή
CdSV IdSV
[ 一 埋翁 ]
(α ) 80 69
m 65Ί S59I0 "C9S
6 o 9 T O oo 9 z cG 7υn - 1 ' TF T XF T cn
SZ860C - 9 Ι^Ιΐ '6Z 01 Z 98C9 8 891 :0!S 000000 Ό 96i^9 Ή
C
n Όΐ5
9Z908S 'ΖΖ 09210 •691
9IZ6Z0 ' 01 CZ9ZS0 Ί 89 9 •6 S
S 0 'ΠΙ 9^1 ; 0 6 9 "ZC 09 05 •8ΖΙ
'CC
Figure imgf000068_0002
'80Ζ- Ι68 ΙΙ ·6Π :0!S 89Ζ05 -8C 99
90^90/OOdf/XDd D : 0.454850 X 1 0
E : -0.183005 X 1 0
F : 0.寸 121371X 1 0
。し
《表 8》
第 7実施例 (図 14)
d 0 = 63.749746 (mm)
WD = 13.389654 (ram)
曲率半径 面間隔 ガラス 非球面 レンズ
(mm) (腿) (mm)
1: -396. 81755 15.164101 S1O2 Lll 66.032784
2: 318. 45576 29.207879 71.297302
3: 732. 28117 25.666287 Si02 L12 83.471970
L
4: -379. 10485 86.041710
0: 525. 04598 29.799021 SiO: L13 90.425125
6: -386. 12241 91.317108
7: 296. 71481 27.521447 SiO: L14 91.079468
8: - 1834. 92841 1.000000 89.757446
9: 178. 21689 84.396111
10: 128. 82838 30.507210 77.857750
11: -912. 34305 18.141324 SiO: L16 77.741890
12: -290. 65675 77.271347
13: 47.405470 SiO: L17 74.290833
14: 188. 39849 24.667168 65.022842
15: -180. 63293 L18 64.974625
16: 308. 32087 19.189943 68.677689 ,—5
CD CD CD CD tin
Figure imgf000071_0001
A : 0.472957 x 1 0
B : 0.240757 X 1 0
C : -0.215896 X 1 0
D : 0.217268 X 1 0
E : -0.736783 X 1 0
F : 0.336149 X 1 0 さて、 以下の表 9に第 3実施例〜第 7実施例、 及び第 8実施例 (第 2
7
実施例と同一) の条件対応数値を掲 oげる。 表 9において、 f 2は後レン ズ群 GRの焦点距離、 MAは投影光学系の第 2面 B側の開口数 (=像面 側の最大開口数 N Aw) 、 (ί>はイメージサークルの直径 (mm) 、 3は 投影倍率、 yは螢石のディスク材に換算した使用量 (k g) 、 y Pは螢 石のレンズ自体 (シエイプ材) の使用量 (k g) 、 Aは非球面の数を表 している。
《表 9》
f 2 N A 0 β ! y y P A
(mm) ( Aw) (ram) (kg) (kg) 第 3実施例 128.0 '0.75 27.5 0. 25 0.0 0.0 6 第 4実施例 134.2 0.75 27.5 0. 25 8.6 5.8 6 第 5実施例 140.2 0.75 27.5 0. 2δ 13. δ 10.3 6 第 6実施例 141.6 0.75 27.5 0. 25 45.2 24.7 3 第 7実施例 156.4 0.75 27.5 0. .25 6δ.9 37.3 3 第 8実施例 128.3 0.75 26.6 0. 25 14.1 7.9 6 次に、 この表 9に基づいて、 各実施例について、 図 8及び図 9におけ る螢石の量 y、 及びパラメ一夕 X ( = ί 2 · 4 I )3 I · N Aw2 ) を計 算した結果を、 表 1 0に示す。 表 1 0には更に、 各実施例について、 後 レンズ群 GRの焦点距離 f 2を投影光学系の像面側の最大開口数 N Aw (=N A) で割って得られる値 f 2 / N Awも示している。
《表 1 0》
X (=f2 •4! β 1 •NAw2 ) ( ¾·σ"の莖) f 2 /NAw
(mm) (k g) (mm) 第 3実施例 7 2. 0 0 0 0 . 0 1 7 0. 6 7 第 4実施例 7 5. 4 8 8 8 . 6 1 7 8. 9 3 第 5実施例 7 8. 8 6 3 1 3 . 5 1 8 6. 9 3 第 6実施例 7 9. 6 δ 0 4 δ . 2 1 8 8. 8 0 第 7実施例 8 7. 9 7 5 6 δ . 9 2 0 8. 5 3 第 8実施例 7 2. 1 6 9 1 4 . 1 1 7 1. 0 7 表 1 0より得られる第 3実施例〜第 8実施例 (第 2実施例) の (x, y ) のデ一夕 A 3〜A 8 (A 2 ) が図 8及び図 9にプロッ トされている これらのデ一夕 A 3〜A 8は何れも領域 B 5及び領域 C 5の範囲内に収 まっており、 これらの実施例は、 条件式 ( 1 1 ) 〜 ( 1 4) 、 及び条件 式 ( 1 5 ) 〜 ( 1 8 ) を満たしている。 更に、 これらの実施例は全て条 件式 (d— 1 ) , (d - 2) を満たしている。 また、 第 3実施例〜第 6 実施例、 及び第 8実施例 (第 2実施例) が条件式 (e ) を満たしている c また、 第 3実施例〜第 5実施例、 及び第 8実施例 (第 2実施例) が条 件式 ( 1 9 ) , ( 2 0) を満たしており、 第 6実施例、 及び第 7実施例 が条件式 (2 1 ) , (2 2) を満たしている。
次に、 非球面形状の条件式 (b _ 1 ) , (b— 2) 及び (c— 1 ) , (c一 2 ) に関する上記の実施例の条件対応値を表 1 1に示す。 表 1 1 において、 レンズ番号は、 各実施例の投影光学系中の、 第 1面側から最 初に非球面を持つレンズの番号であり、 非球面の面番号は、 その非球面 の第 1面からの番号である。 また、 主曲率 C aは、 非球面の光軸中心付 近のローカル主曲率であり、 式 (b— 4) より計算される。 そして、 主 曲率 C bは、 レンズ有効径最周辺部のメリジォナル方向のローカル主曲 率であり、 式 (b _ 5 ) より計算される。
《表 1 1》
第 3実施例 第 4実施例 第 5実施例 第 8実施例 レンズ番号 1 1 1 1 非球面の面番号 1 1 2 2 屈折力の正 ·負 正 正
有効径 (ram) 65.8 67.5 67.8 66.6 主曲率 C a -0.00014 -0.00118 - 0.00318 0.00329 主曲率 C b -0.00308 -0.00507 0.00000 一 0.00234
C b/C a 21.860 4.309 0.000 -0.711 この表 1 1より、 第 3実施例〜第 5実施例、 及び第 8実施例 (第 2実 施例) では、 それぞれ非球面形状に関する条件式 ( b— 1 ) , ( b - 2 ) 、 及び ( c _ l ) , (c — 2 ) が満たされていることが分かる。 次に、 図 1 5〜図 2 0にそれぞれ第 3実施例〜第 8実施例 (第 2実施 例) にかかる投影光学系の第 2面 B上での横収差図を示す。
ここで、 図 1 5 (A) 〜図 1 9 (A) は像高 Y= 1 3. 7 5における メリジォナル方向の横収差図、 図 1 5 (Β) 〜図 1 9 (Β) は像高 Υ = 6. 8 7 5におけるメリジォナル方向の横収差図、 図 1 5 (C) 〜図 1 9 (C) は像高 Υ= 0 (光軸上) におけるメリジォナル方向の横収差図、 図 1 5 (D) 〜図 1 9 (D) は像高 Υ= 1 3. 7 5におけるサジタル方 向の横収差図、 図 1 5 (Ε) 〜図 1 9 (Ε) は像高 Υ= 6. 8 7 5にお けるサジタル方向の横収差図、 図 1 5 (F) 〜図 1 9 (F) は像高 Υ = 0 (光軸上) におけるサジタル方向の横収差図である。 また、 図 2 0 (A) は像高 Y= 1 3. 3におけるメリジォナル方向の横収差図、 図 2 0 (Β) は像高 Υ= 6. 6 5におけるメリジォナル方向の横収差図、 図 2 0 (C) は像高 Υ= 0 (光軸上) におけるメリジォナル方向の横収差 図、 図 2 0 (D) は像高 Υ= 1 3. 3におけるサジタル方向の横収差図、 図 2 0 (Ε) は像高 Υ= 6. 6 5におけるサジタル方向の横収差図、 図 2 0 (F) は像高 Υ= 0 (光軸上) におけるサジタル方向の横収差図で ある。
そして、 図 1 5〜図 2 0の各横収差図において、 実線は波長え = 1 9 3. 3 nm (基準波長) による収差曲線、 破線は波長 λ = 1 9 3. 3 η m+ 0. 1 7 5 pm (基準波長十 0. 1 7 5 p m) による収差曲線、 一 点鎖線は波長 λ = 1 9 3. 3 nm- 0. 1 7 5 p m (基準波長— 0. 1 7 5 m) による収差曲線を表している。
図 1 5〜図 2 0から明らかな通り、 各実施例の投影光学系では、 それ ぞれ土 0. 1 7 5 pmという波長域にわたり良好に色収差補正が達成さ れている。
さて、 第 3実施例〜第 7実施例の投影光学系は、 それぞれ直径 2 7. 5 mmの円形ィメ一ジフィールドを有し、 そのイメージフィールド内で、 例えば走査方向の幅約 8 mm、 走査直交方向の幅約 2 6 mmの長方形状 の露光領域を確保することができる。 従って、 これらの実施例の投影光 学系を、 ステップ · アンド · スキャン方式ゃスティツチ · アンド · スキ ャン方式等の走査露光型の投影露光装置の投影光学系として使用した場 合には、 高いスループッ トを得ることができる。
なお、 上述の例では、 走査型露光装置に各実施例の投影光学系 P Lを 適用することを考えて長方形状の露光領域としたが、 露光領域の形状と しては、 円形イメージフィールドに包含される領域であれば、 六角形状, 等脚台形状、 不等脚台形状、 菱形形状、 正方形状、 円弧形状など様々な 形状とすることができる。
上記第 1実施例〜第 7実施例の投影光学系 P Lは、 図 5に示す実施形 態の投影露光装置に適用することができる。 なお、 図 5の説明では、 光 源として F 2 レーザ光源を使用した例を説明しており投影光学系 P Lと して第 1実施例を用いた例を説明しているが、 A r Fエキシマレーザに 最適化された第 2〜第 7実施例の投影光学系 P Lを適用する場合につい ても、 光源を除く露光装置の基本的な構成は図 5のものと同様である。 図 5を参照して、 本発明にかかる露光装置の実施の形態について説明 する。
図 5は、 実施形態にかかる投影露光装置の概略構成を示す図である。 図 5においては X Y Z座標系を採用している。
実施形態にかかる露光装置は、 露光光源として F 2 レーザ光源を使用 し、 投影光学系として屈折型光学系を使用する投影露光装置に本発明を 適用したものである。 本実施形態の投影露光装置では、 レチクル上の所 定形状の照明領域に対して相対的に所定の方向へレチクル及び基板を同 期して走査することにより、 基板上の 1つのショッ 卜領域にレチクルの パターン像を逐次的に転写するステツプ · アンド · スキヤン方式を採用 している。 このようなステップ · アンド · スキャン型の露光装置では、 投影光学系の露光フィールドょりも広い基板上の領域にレチクルのパ夕 ーンを露光することができる。
図 5において、 レーザ光源 2は、 例えば発振波長 1 5 7 n mのフッ素 ダイマーレーザ (F 2 レーザ) に狭帯化装置を組み合わせたものを有す る。 F 2 レーザは、 自然発振で 1 . 5 p m程度の半値全幅であり、 当該 F 2 レーザに狭帯化装置を組み合わせることによって、 0 . 2 p m〜0 . 2 5 p m程度の半値全幅のレーザ光を得ている。 なお、 本実施形態におけるレーザ光源 2としては、 波長約 1 2 0 n m 〜約 1 8 0 n mの真空紫外域に属する光を発する光源、 例えば発振波長 1 4 6 n mのクリプトンダイマ一レーザ (K r レーザ) や、 発振波長 1 2 6 n mのアルゴンダイマーレーザ (A r 2 レーザ) などを用いるこ とができる。
さて、 レーザ光源 2からのパルスレーザ光 (照明光) は、 偏向ミラー 3にて偏向されて、 光路遅延光学系 4 1へ向かい、 レーザ光源 2からの 照明光の時間的可干渉距離 (コヒーレンス長) 以上の光路長差が付けら れた時間的に複数の光束に分割される。 なお、 このような光路遅延光学 系は例えば日本国特開平 1 一 1 9 8 7 5 9号公報や日本国特開平 1 1 一 1 7 4 3 6 5号公報に開示されている。
光路遅延光学系 4 1から射出される照明光は、 光路偏向ミラー 4 2に て偏向された後に、 第 1フライアイレンズ 4 3、 ズームレンズ 4 4、 振 動ミラー 4 5を順に介して第 2フライアイレンズ 4 6に達する。 第 2フ ライアイレンズ 4 6の射出側には、 有効光源のサイズ ·形状を所望に設 定するための照明光学系開口絞り用の切り替えレポルバ 5が配置されて いる。 本例では、 照明光学系開口絞りでの光量損失を低減させるために、 ズームレンズ 4 4による第 2フライアイレンズ 4 6への光束の大きさを 可変としている。
照明光学系開口絞りの開口から射出した光束は、 コンデンサレンズ群 1 0を介して照明視野絞り (レチクルブラインド) 1 1を照明する。 な お、 照明視野絞り 1 1については、 日本国特開平 4 一 1 9 6 5 1 3号公 報、 及びこれに対応する米国特許第 5, 4 7 3 , 4 1 0号に開示されて いる。
照明視野絞り 1 1からの光は、 偏向ミラー 1 5 1, 1 5 4、 レンズ群
1 5 2 , 1 5 3 , 1 5 5からなる照明視野絞り結像光学系 (レチクルプ ラインド結像系) を介してレチクル R上へ導かれ、 レチクル R上には、 照明視野絞り 1 0の開口部の像である照明領域が形成される。 レチクル R上の照明領域からの光は、 投影光学系 P Lを介してウェハ W上へ導か れ、 ウェハ W上には、 レチクル Rの照明領域内のパターンの縮小像が形 成される。
さて、 真空紫外域の波長の光を露光光とする場合には、 その光路から 酸素、 水蒸気、 炭化水素系のガス等の、 かかる波長帯域の光に対し強い 吸収特性を有するガス (以下、 適宜 「吸収性ガス」 と呼ぶ) を排除する 必要がある。
従って、 本実施形態では、 照明光路 (レーザ光源 2〜レチクル Rへ至 る光路) 及び投影光路 (レチクル R〜ウェハ Wへ至る光路) を外部雰囲 気から遮断し、 それらの光路を真空紫外域の光に対する吸収の少ない特 性を有する特定ガスとしての窒素、 ヘリウム、 アルゴン、 ネオン、 クリ プトンなどのガス、 またはそれらの混合ガス (以下、 適宜 「低吸収性ガ ス」 あるいは 「特定ガス」 と呼ぶ) で満たしている。
具体的には、 レーザ光源 2から光遅延光学系 4 1までの光路をケーシ ング 3 0により外部雰囲気より遮断し、 光遅延光学系 4 1から照明視野 絞り 1 1までの光路をケーシング 4 0により外部雰囲気より遮断し、 照 明視野絞り結像光学系をケーシング 1 5 0により外部雰囲気から遮断し、 それらの光路内に上記特定ガスを充填している。 また、 投影光学系 P L 自体もその鏡筒がケーシングとなつており、 その内部光路に上記特定ガ スを充填している。
なお、 各光路に充填される特定ガスとしては、 ヘリウムを用いること が好ましい。 但し、 レーザ光源 2〜レチクル Rまでの照明光学系の光路 (ケーシング 3 0 , 4 0, 1 5 0 ) については特定ガスとして窒素を用 いても良い。 ケーシング 1 7 0は、 照明視野絞り結像光学系を納めたケーシング 1 5 0と投影光学系 P Lとの間の空間を外部雰囲気から遮断しており、 そ の内部にレチクル Rを保持するレチクルステージ R Sを収納している。 このケーシング 1 7 0には、 レチクル Rを搬入 ·搬出するための扉 1 7 3が設けられており、 この扉 1 7 3の外側には、 レチクル Rを搬入 ·搬 出時にケーシング 1 7 0内の雰囲気が汚染されるのを防ぐためのガス置 換室 1 74が設けられている。 このガス置換室 1 74にも扉 1 7 7が設 けられており、 複数種のレチクルを保管しているレチクルストツ力 2 1 0との間でレチクルの受け渡しは扉 1 7 7を介して行う。
ケ一シング 2 0 0は、 投影光学系 P Lとウェハ Wとの間の空間を外部 雰囲気から遮断しており、 その内部に、 ウェハ Wを保持するウェハステ ージ 2 2、 基板としてのウェハ Wの表面の Z方向の位置 (フォーカス位 置) や傾斜角を検出するための斜入射形式のォー卜フォーカスセンサ 2 6、 オフ · ァクシス方式のァライメントセンサ 2 8、 ウェハステージ 2 2を載置している定盤 2 3を収納している。 このケーシング 2 0 0には、 ウェハ Wを搬入 ·搬出するための扉 2 0 3が設けられており、 この扉 2 0 3の外側にはケーシング 2 0 0内部の雰囲気が汚染されるのを防ぐた めのガス置換室 2 04が設けられている。 このガス置換室 2 04には扉 2 0 7が設けられており、 装置内部へのウェハ Wの搬入、 装置外部への ウェハ Wの搬出はこの扉 2 0 7を介して行う。
ここで、 ケーシング 4 0, 1 5 0 , 1 7 0 , 2 0 0のそれぞれには、 給気弁 1 4 7 , 1 5 6 , 1 7 1, 2 0 1が設けられており、 これらの給 気弁 1 4 7, 1 5 6 , 1 7 1 , 2 0 1は図示なきガス供給装置に接続さ れた給気管路に接続されている。 また、 ケーシング 40, 1 5 0 , 1 7 0, 2 0 0のそれぞれには、 排気弁 1 48, 1 5 7 , 1 7 2 , 2 0 2が 設けられており、 これらの排気弁 1 48 , 1 5 7 , 1 7 2 , 2 0 2は、 それぞれ図示なき排気管路を介して上記ガス供給装置に接続されている。 なお、 ガス供給装置からの特定ガスは不図示の温度調整装置により所定 の目標温度に制御されている。 ここで、 特定ガスとしてヘリウムを用い る場合には、 温度調整装置は各ケーシングの近傍に配置されることが好 ましい。
同様に、 ガス置換室 1 74 , 2 0 4にも給気弁 1 7 5, 2 0 5と排気 弁 1 7 6 , 2 0 6とが設けられており、 給気弁 1 7 5 , 2 0 5は給気管 路を介して、 排気弁 1 7 6, 2 0 6は排気管路を介してそれぞれ上記ガ ス供給装置に接続されている。 さらに、 投影光学系 P Lの共同にも給気 弁 1 8 1及び排気弁 1 8 2が設けられており、 給気弁 1 8 1は図示なき 給気管路を介して、 排気弁 1 8 2は図示なき排気管路を介して上記ガス 供給装置に接続されている。
なお、 給気弁 1 4 7, 1 5 6, 1 7 1 , 1 7 5, 1 8 1 , 2 0 1 , 2 0 5が設けられた給気管路と、 排気弁 1 4 8, 1 5 7, 1 7 2 , 1 7 6 , 1 8 2 , 2 0 2 , 2 0 6が設けられた排気管路とには、 H E P Aフィル 夕あるいは UL P Aフィル夕等の塵 (パーティクル) を除去するための フィル夕と、 酸素等の吸収性ガスを除去するケミカルフィル夕とが設け られている。
なお、 ガス置換室 1 7 4, 2 0 4においては、 レチクル交換又はゥェ ハ交換毎にガス置換を行う必要がある。 例えば、 レチクル交換の際には、 扉 1 74を開いてレチクルストツ力 2 1 0からレチクルをガス置換室 1 7 4内に搬入し、 扉 1 7 4を閉めてガス置換室 1 74内を特定ガスで満 たし、 その後、 扉 1 7 3を開いて、 レチクルをレチクルステージ R S上 に載置する。 また、 ウェハ交換の際には、 扉 2 0 7を開いてウェハをガ ス置換室 2 0 4内に搬入し、 この扉 2 0 7を締めてガス置換室 2 04内 を特定ガスで満たす。 その後、 扉 2 0 3を開いてウェハをウェハホルダ 2 0上に載置する。 なお、 レチクル搬出、 ウェハ搬出の場合はこの逆の 手順である。 なお、 ガス置換室 1 7 4 , 2 0 4へのガス置換の際には、 ガス置換室内の雰囲気を減圧した後に、 給気弁から特定ガスを供給して も良い。
また、 ケーシング 1 7 0, 2 0 0においては、 ガス置換室 1 7 4 , 2
0 4によるガス置換を行った気体が混入する可能性があり、 このガス置 換室 1 7 4, 2 0 4のガス中にはかなりの量の酸素などの吸収ガスが混 入している可能性が高いため、 ガス置換室 1 7 4 , 2 0 4のガス置換と 同じタイミングでガス置換を行うことが望ましい。 また、 ケーシング及 びガス置換室においては、 外部雰囲気の圧力よりも高い圧力の特定ガス を充填しておくことが好ましい。
また、 図 5では不図示ではあるが、 本実施形態では、 投影光学系 P L を構成する複数のレンズ素子のうちの少なくとも 1つのレンズ素子は、 その位置及び姿勢の少なくとも一方が変更可能であるように保持されて いる。 これにより、 投影光学系 P Lの結像特性を変更可能である。 この ような調整手段は、 例えば日本国特開平 4 一 1 9 2 3 1 7号公報、 日本 国特開平 4 一 1 2 7 5 1 4号公報 (及び対応する米国特許第 5, 1 1 7 , 2 5 5号) 、 日本国特開平 5— 4 1 3 4 4号公報、 及び日本国特開平 6 一 8 4 5 2 7号公報 (及び対応する米国特許第 5 , 4 2 4 , 5 5 2号) に開示されている。
本実施形態においては、 位置及び姿勢の少なくとも一方が変更可能な レンズ素子のうちの少なくとも 1つは、 球面レンズであることが好まし い。
なお、 A r Fエキシマレーザに最適化された第 2〜第 7実施例の投影 光学系 P Lは、 日本国特開平 6— 2 6 0 3 8 6号公報 (米国特許第 5 , 5 5 9 , 5 8 4号) 、 日本国特開平 1 1— 2 3 3 4 4 7号公報、 W〇 9 8 / 5 7 2 1 3号公報、 W〇 9 9 / 1 0 9 1 7号公報、 及び W〇 9 9 / 5 0 8 9 2号公報等に開示された投影露光装置に適用することができる。 さて、 本発明の投影露光装置においては、 1 8 0 n m以下の波長域の 露光光を供給する光源と、 この光源からの露光光をその投影原版上のそ のパターンへ導く照明光学系と、 その投影原版とそのワークとの間の光 路中に配置されて、 その投影原版を介したその露光光の光量の 2 5 %以 上の光量をそのワークへ導いてそのパターンの縮小像をそのワーク上に 形成する投影光学系と、 を備えることが好ましい。
1 8 0 n m以下の波長域に対応した感光性樹脂 (レジスト) 材料とし ては、 長波長のものに比べて感度を高めることが困難であり、 投影光学 系が投影原版からの露光光の 2 5 %以下の光量しかワークへ導かない場 合、 レジス トへの必要露光量を確保するためには、 露光時間の増大を図 る必要があり、 スループッ トの低下を招くため好ましくない。 また、 こ の場合、 投影光学系に蓄積される熱が増大し、 投影光学系の熱収差、 す なわち投影光学系を熱を蓄積することによるレンズまたは気体の屈折率 変動や屈折率分布の変動による収差が発生し、 安定した結像性能のもと で投影露光を実現できなくなるため好ましくない。
図 5の実施形態にかかる投影露光装置では、 図 1の実施例にかかる投 影光学系 P Lを採用している。 この投影光学系 P Lを構成する硝材は前 述の通り螢石であり、 1 5 7 n mの露光光に対する 1 c m当たりの透過 率は 9 9〜 9 9 . 5 %である。 そして、 1 5 7 n mの露光光に対する反 射防止膜は、 レンズ面 1面当たりの光量損失が 1 %のものを用いている 図 1の実施例の投影光学系を備えた図 5の投影露光装置では、 以上の値 より、 透過率が 3 7 %であり、 上記条件を満足している。
さて、 本発明による投影露光方法においては、 投影原版に設けられた パターンの縮小像をワーク上へ投影露光する投影露光方法であって、 2 0 0 n m以下の波長域の露光光を供給する工程と ; 照明光学系を介して この光源からの露光光をその投影原版上のそのパターンへ導く工程と、 その投影光学系を介してその投影原版からのその露光光をそのワークへ 導きそのパターンの縮小像をそのワーク上に形成する工程と、 その照明 光学系へ入射するその露光光の光量を E n 1 とし、 その照明光学系から その投影原版へ向かうその露光光の光量を E n 2とし、 その投影光学系 へ入射するその露光量の光量を E n 3とし、 その投影光学系からそのヮ
—クへ向かって射出するその露光光の光量を E n 4とするとき、 次の条 件を満足することが好ましい。
E n 4 E n 2
> … ( 6 )
ϋ n 3 E n 1
上記条件式 ( 6 ) を満足しない場合には、 照明光学系として必要な機 能、 例えばワーク上における均一照明など、 を達成することが不可能に なり、 結果として微細な回路パターンをワーク上に転写できなくなるた め好ましくない。
また、 上述の投影露光方法において、 その露光光をそのパターンへ導 く工程は、 その波長域の光に対する吸収の少ない特性を有するガス雰囲 気で満たされた空間にその露光光を通す補助工程を含むことが好ましく、 そのパターンの縮小像をそのワーク上に形成する工程は、 その波長域の 光に対する吸収の少ない特性を有するガス雰囲気で満たされた空間にそ の露光光を通す補助工程を含むことが好ましい。
次に、 上記の実施の形態の投影露光装置を用いてウェハ上に所定の回 路パターンを形成することによって、 マイクロデバイスとしての半導体 デバイスを得る際の動作の一例につき図 6のフローチヤ一トを参照して 説明する。
先ず、 図 6のステップ 3 0 1において、 1ロッ トのウェハ上に金属膜 が蒸着される。 次のステップ 3 0 2において、 その 1ロッ トのウェハ上 の金属膜上にフォトレジストが塗布される。 その後、 ステップ 3 0 3に おいて、 第 1又は第 2実施例のうち何れかの投影光学系 P Lを備えた図 5の投影露光装置を用いて、 レチクル R上のパターンの像がその投影光 学系 P Lを介して、 その 1ロッ トのウェハ上の各ショッ ト領域に順次露 光転写される。 その後、 ステップ 3 0 4において、 その 1ロッ トのゥェ ハ上のフォ トレジス卜の現像が行われた後、 ステップ 3 0 5において、 その 1 ロッ 卜のウェハ上でレジストパターンをマスクとしてエッチング を行うことによって、 レチクル R上のパターンに対応する回路パターン 力 各ウェハ上の各ショッ ト領域に形成される。 その後、 更に上のレイ ャの回路パターンの形成等を行うことによって、 半導体素子等のデバィ スが製造される。
上述の半導体デバイス製造方法によれば、 極めて微細な回路パターン を有する半導体デバイスをスループッ 卜良く得ることができる。
また、 上記の実施の形態の投影露光装置では、 プレート (ガラス基板) 上に所定の回路パターンを形成することによって、 マイクロデバィスと しての液晶表示素子を得ることもできる。 以下、 図 7のフローチャート を参照して、 このときの動作の一例につき図 7のフローチヤ一トを参照 して説明する。
図 7において、 パターン形成工程 4 0 1では、 本実施形態の露光装置 を用いてレチクルのパターンを感光性基板 (レジス卜が塗布されたガラ ス基板等) に転写露光する、 所謂光リソグラフィー工程が実行される。 この光リソグラフィー工程によって、 感光性基板上には多数の電極等を 含む所定パターンが形成される。 その後、 露光された基板は、 現像工程、 エッチング工程、 レチクル剥離工程等の各工程を経ることによって、 基 板上に所定のパターンが形成され、 次のカラーフィルター形成工程 2 0 2へ移行する。
次に、 カラ一フィルタ一形成工程 4 0 2では、 R (Red) 、 G ( Green) 、 B ( B l ue) に対応した 3つのドッ トの組がマトリックス状に多数配列さ れたカラーフィルターを形成する。 そして、 カラ一フィルター形成工程 4 0 2の後に、 セル組み立て工程 4 0 3が実行される。
セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた 所定パターンを有する基板、 およびカラーフィルター形成工程 4 0 2に て得られたカラ一フィルタ一等を用いて液晶パネル (液晶セル) を組み 立てる。 セル組み立て工程 4 0 3では、 例えば、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板とカラーフィルター形成工程 4 0 2にて得られたカラーフィルターとの間に液晶を注入して、 液晶パ ネル (液晶セル) を製造する。
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パ ネル (液晶セル) の表示動作を行わせる電気回路、 バックライ ト等の各 部品を取り付けて液晶表示素子として完成させる。
上述の液晶表示素子製造方法によれば、 極めて微細な回路パターンを 有する液晶表示素子をスループッ ト良く得ることができる。
さて、 上記図 5の実施形態では、 照明光学系中のオプティカルインテ グレー夕 (ュニフォマイザ、 ホモジナイザ) としてのフライアイレンズ 4 3 , 4 6は、 1枚の基板の上に複数の微少レンズ面をエッチング等の 手法により形成したマイクロ · フライアイレンズであっても良い。 また、 第 1フライアイレンズ 4 3の代わりに、 回折作用により入射光を発散さ せてそのファーフィールド (フラウンホーファー回折領域) において円 形状、 輪帯状、 多重極状の照野を形成する回折光学素子を用いても良い。 なお、 このような回折光学素子としては例えば米国特許第 5 , 8 5 0 , 3 0 0号公報に開示されているものを用いることができる。 ここで、 回 折光学素子を用いる場合には、 光路遅延光学系 4 1を省略しても良い。 また、 オプティカルインテグレー夕としては、 内面反射型インテグレ 一夕 (ロッ ド , インテグレー夕、 光パイプ、 光トンネルなど) を用いる こともできる。 このような内面反射型ィンテグレー夕を用いる場合には、 内面反射型ィンテグレー夕の射出面とレチクルのパターン面とがほぼ共 役となる。 従って、 上述の実施形態に適用する場合には、 例えば内面反 射型ィンテグレー夕の射出面に近接させて照明視野絞り (レチクルブラ インド) 1 1を配置し、 第 1 フライアイレンズ 4 3の射出面と内面反射 型ィンテグレー夕の入射面とをほぼ共役とするように、 ズームレンズ 4 4を構成する。
また、 露光光の波長として 1 8 0 n m以下のものを用いる際には、 照 明光学系中のマイクロ · レンズ · アレイ、 回折光学素子、 内面反射型ィ ンテグレー夕、 及びレンズ素子の少なくとも何れかを螢石、 フッ素がド ープされた石英ガラス、 フッ素及び水素がドープされた石英ガラス、 構 造決定温度が 1 2 0 0 K以下で且つ水素分子濃度が 1 X 1 0 1 mo l ecu l e s/cm3 以上である石英ガラス、 構造決定温度が 1 2 0 0 K以下でかつ塩 素濃度が 5 0 p p m以下である石英ガラス、 及び構造決定温度が 1 2 0 0 K以下で且つ水素分子濃度が 1 X 1 0 1 7 mo l ecu l e s/cm3 以上で且つ塩 素濃度が 5 0 p p m以下である石英ガラスのグループから選択される材 料で形成することが好ましい。 また、 露光波長が 1 8 0 n m〜 2 0 0 n mの範囲内 (例えば A r Fエキシマレ一ザ) であれば、 これらの材料の 他に構造決定温度が 1 2 0 0 K以下で且つ O H基濃度が 1 0 0 0 p p m 以上である石英ガラスも使用できる。
なお、 構造決定温度が 1 2 0 0 K以下で且つ〇H基濃度が 1 0 0 0 p p m以上である石英ガラスについては、 本願出願人による日本国特許第 2 7 7 0 2 2 4号公報に開示されており、 構造決定温度が 1 2 0 0 K以 下で且つ水素分子濃度が 1 X 1 0 '' 7 molecules/cm3 以上である石英ガラ ス、 構造決定温度が 1 2 0 0 K以下でかつ塩素濃度が 5 0 p pm以下で ある石英ガラス、 及び構造決定温度が 1 2 0 0 K以下で且つ水素分子濃 度が 1 X 1 0 ' 7 molecules/cm3 以上で且つ塩素濃度が 5 0 p p m以下で ある石英ガラスについては本願出願人による日本国特許第 2 9 3 6 1 3 8号公報に開示されている。
また、 上記第 1実施例にかかる投影光学系 P Lでは、 投影光学系を構 成する各レンズ素子を螢石で形成したが、 投影光学系を構成する各レン ズ素子は、 フッ化カルシウム (C a F」,螢石) 、 フッ化バリウム (B a F2)、 フッ化リチウム (L i F) 、 フッ化マグネシウム (Mg F2)、 リ チウム · カルシウム · アルミニウム · フローライ ド (L i C a A 1 Ffi)、 リチウム · ストロンチウム · アルミニウム · フローライ ド (L i S r A l Ffi)、 及びフッ化ストロンチウム ( S r F 2)からなるグループから選 択された少なくとも 1種類の材料であることが好ましい。
また、 上記図 5の実施形態では第 1実施例の投影光学系 P Lの適用を 考えて、 レーザ光源として発振波長 1 5 7 nmのフッ素ダイマーレ一ザ (F」 レーザ) を狭帯化したものを用いたが、 本発明は F2 レーザには 限定されない。 例えば、 発振波長 1 9 3 nmの A r Fエキシマレーザを 狭帯化したものや発振波長 248 nmの K r Fエキシマレ一ザを用いる こともできる。
なお、 波長 2 0 0 nm以下の波長域では、 レーザ光源の狭帯化を行う ことが困難ではあるが、 本発明を適用することによりレーザ光源の狭帯 化の程度を緩和することができ、 投影光学系の色消しの負担を削減する ことができる利点がある。
さらに、 上述の実施形態では、 光源として F 2 レーザを用いているが, その代わりに、 1 5 7 n mに発振スぺク トルを持つ Y AGレーザなどの 固体レーザの高調波を用いるようにしても良い。 また、 D F B半導体レ 一ザまたはファイバーレーザから発振される赤外域または可視域の単一 波長レーザ光を、 例えばエルビウム (E r ) (またはエルビウムとイツ テルビウム (Y b) との両方) がドープされたファイバ一アンプで増幅 し、 非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良 い。
例えば、 単一波長レーザ光の発振波長を 1. 5 1〜 1. 5 9 ^mの範 囲内とすると、 発生波長が 1 5 1〜 1 5 9 nmの範囲内である 1 0倍高 調波が出力される。 特に発振波長を 1. 5 7〜 1. 5 8 - mの範囲内と すると、 発生波長が 1 5 7〜 1 5 8 nmの範囲内の 1 0倍高調波、 すな わち F 2 レーザ光とほぼ同一波長となる紫外光が得られる。 また、 発振 波長を 1. 0 3〜 1. 1 2 mの範囲内とすると、 発生波長が 1 47〜 1 6 0 nmの範囲内である 7倍高調波が出力され、 特に発振波長を 1. 0 9 9〜 1. 1 0 6 imの範囲内とすると、 発生波長が 1 5 7〜 1 5 8 imの範囲内の 7倍高調波、 すなわち F2 レーザ光とほぼ同一波長とな る紫外光が得られる。 なお、 単一波長発振レーザとしては、 イッ トリビ ゥム ' ドープ · ファイバーレーザを用いる。
このように、 レーザ光源からの高調波を使用する場合には、 この高調 波自体が十分に狭いスペク トル幅 (例えば 0. 3 pm以下) であるので、 上述の光源 2の代わりに用いることができる。
また、 第 1実施例では、 単一の種類の材料を用いて投影光学系を構成 したが、 材料の種類は単一には限られない。 第 2実施例に示すように、 遠紫外域に近い真空紫外域や遠紫外域の露光光を前提にすれば、 材料と して合成石英及び螢石を用いることができ、 真空紫外域の露光光を前提 にすれば、 材料として、 フッ化カルシウム (C a F2,螢石) 、 フッ化バ リウム ( B a F 2)、 フッ化リチウム ( L i F ) 、 フッ化マグネシウム (Mg F2)、 リチウム · カルシウム · アルミニウム · フローライ ド (L i C a A 1 F 6)、 リチウム · ストロンチウム · アルミニウム · フローラ イ ド (L i S r A 1 F6)、 及びフッ化ストロンチウム (S r F2)からな るグループから選択された少なくとも 2種類の材料を用いることができ る。 また、 投影光学系に回折光学素子を加えて、 回折光学素子による色 収差補正効果も併せて利用しても良い。
また、 図 5の実施形態において、 第 1フライアイレンズ 4 3の入射側 に、 スペックル防止のための複屈折性材料からなるプリズムを配置して も良い。 このようなスペックル防止用のプリズムとしては、 例えば米国 特許第 5 , 2 5 3 , 1 1 0号に開示されている。 なお、 露光波長として 1 8 0 nm以下の波長の光を用いる場合、 米国特許第 5, 2 5 3 , 1 1 0号公報に開示されている水晶プリズムに代えて、 フッ化マグネシウム (M g F 2)の結晶からなるプリズムを用いることができる。
このフッ化マグネシゥムの結晶からなるくさび型プリズムは、 照明光 学系の光軸に交差する方向で厚さが次第に変化するように配置される。 そして、 このフッ化マグネシウムの結晶からなるくさび型プリズムに対 向して、 それらの頂角が互いに反対側を向くように光路補正用くさび型 プリズムを配置する。 この光路補正用くさび型プリズムは、 当該フッ化 マグネシゥムの結晶からなるプリズムと同じ頂角を有し、 複屈折性を有 しない光透過性材料からなる。 これにより、 プリズムの対に入射した光 と、 そこから射出する光とを同一進行方向にそろえることができる。 光路補正用プリズムの材料としては、 例えば螢石、 フッ素をドープし た石英ガラス、 フッ素及び水素がドープされた石英ガラス、 構造決定温 度が 1 2 0 0 K以下で且つ〇H基濃度が 1 0 0 0 p pm以上である石英 ガラス、 構造決定温度が 1 2 0 0 K以下で且つ水素分子濃度が 1 X 1 0 17molecules/cni3 以上である石英ガラス、 構造決定温度が 1 2 0 0 K以 下でかつ塩素濃度が 5 0 p p m以下である石英ガラス、 及び構造決定温 度が 1 2 0 0 K以下で且つ水素分子濃度が 1 X 1 0 1 7 mo l ecu l e s/cm3 以 上で且つ塩素濃度が 5 0 p p m以下である石英ガラスのグループから選 択される材料で形成することが好ましい。
また、 図 5の実施形態では、 ステップ · アンド · スキャン方式を採用 したが、 実施形態の露光装置をスティツチング及びスリッ トスキヤン型 の露光装置としても良い。 スティ ツチング及びスリッ トスキヤン方式を 採用する場合、 レチクル上の所定形状の照明領域に対して相対的に所定 の第 1の方向にレチクル及び基板を同期して走査することにより、 基板 上の第 1列目の領域への露光が行われる。 その後、 そのレチクルを交換 するか、 又はそのレチクルを上記照明領域の第 1の方向と直交する第 2 の方向に沿って所定量だけ移動させて、 基板を照明領域の第 2の方向と 共役な方向に横ずれさせる。 そして、 再びレチクル上の所定形状の照明 領域に対して相対的に第 1の方向にレチクル及び基板を同期して走査す ることにより、 基板上の第 2列目の領域への露光を行う。
このようなスティ ツチング及びスリッ トスキヤン型の露光装置では、 投影光学系の露光フィールドょりも広い基板上の領域にレチクルのパ夕 ーンを露光することができる。 なお、 このようなステイッチング及びス リッ トスキャン型の露光装置は、 米国特許第 5 , 4 7 7, 3 0 4号、 日 本国特開平 8— 3 3 0 2 2 0号公報、 日本国特開平 1 0— 2 8 4 4 0 8 号公報などに開示されている。
なお、 上記実施形態では、 基板上の所定のショッ ト領域に対してレチ クル上のパターン像を一括転写する一括露光方式も採用することができ る。
また、 図 5の実施形態では、 ワーク (感光性基板) としてのウェハを 保持するウェハステージを 1つ設けたが、 例えば日本国特開平 5— 1 7 5 0 9 8号公報、 日本国特開平 1 0— 1 6 3 0 9 7号公報、 日本国特開 平 1 0 _ 1 6 3 0 9 8号公報、 日本国特開平 1 0— 1 6 3 0 9 9号公報、 または日本国特開平 1 0— 2 1 4 7 8 3号公報などに開示されるように、 2組のウェハステージを設ける構成であっても良い。
さらに、 半導体素子の製造に用いられる露光装置だけでなく、 液晶表 示素子などを含むディスプレイの製造に用いられる、 デバイスパターン をガラスプレート上に転写する露光装置、 薄膜磁気へッ ドの製造に用い られる、 デバイスパターンをセラミックウェハ上に転写する露光装置、 撮像素子 (C C Dなど) の製造に用いられる露光装置などにも本発明を 適用することができる。 また、 レチクルまたはマスクを製造するために ガラス基板またはシリコンウェハなどに回路パターンを転写する露光装 置にも、 本発明を適用することができる。
以上の通り、 本発明は前述した実施形態に限られず種々の構成をとり 得る。 また、 それぞれ明細書、 請求の範囲、 図面、 及び要約を含む 1 9 9 9年 9月 2 9日付提出の国際出願 P C T Z J P 9 9 / 0 5 3 2 9号、 及び 1 9 9 9年 1 1月 1 6 日付提出の国際出願 P C T / J P 9 9 / 0 6 3 8 7号の全ての開示内容は、 そつく りそのまま引用してここに組み込 まれている。 産業上の利用の可能性
以上説明したように、 本発明の投影光学系によれば、 投影光学系の色 収差を抑え、 光源への負担を低減させることができる。 また、 単一種類 の硝材、 或いは少数の色補正用硝材の追加により、 ある程度のスぺク ト ル幅を有する露光光に対する色収差補正を行うことができる。
また、 本発明による投影露光装置及び方法によれば、 投影光学系の構 成の簡素化を図りつつも、 極めて微細化されたマイクロデバイスの回路 パターンを得ることができる。
また、 本発明によるデバイス製造方法によれば、 極めて微細化された マイクロデバイスの回路パターンを、 スループッ トを低下させずに得る ことができる。

Claims

請 求 の 範 囲
1 . 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面上 に結像させる屈折型の投影光学系において、
前記第 1面と前記第 2面との間の光路中に配置されて、 正の屈折力を 有する前レンズ群と ;
前記前レンズ群と前記第 2面との間の光路中に配置されて、 正の屈折 力を有する後レンズ群と ;
前記前レンズ群の後側焦点位置近傍に配置された開口絞りと : を有し、 前記投影光学系は、 前記第 1面及び前記第 2面側がテレセントリック であり、
前記後レンズ群の焦点距離を f 2 とし、 前記第 1面から前記第 2面ま での距離を Lとするとき、 次の条件を満足することを特徴とする投影光 学系。
0 . 0 6 5 < f 2 / L < 0 . 1 2 5
2 . 前記投影光学系は、 少なく とも 1つの非球面形状のレンズ面を有す る二とを特徴とする請求の範囲 1記載の投影光学系。
3 . 前記投影光学系に含まれる屈折力を持つレンズを前記第 1面側から 順に 6個選択したときに、 該 6個のレンズの少なく とも一面が負の屈折 力を持つ非球面形状であることを特徴とする請求の範囲 2記載の投影光 学系。
4 . 前記前レンズ群は、 第 1面側より順に、 負屈折力の第 1 レンズ群、 正屈折力の第 2 レンズ群、 負屈折力の第 3 レンズ群、 及び正屈折力の第 4 レンズ群を有し、
前記第 1 レンズ群及び前記第 2 レンズ群の合成横倍率を /3 1 とし、 前 記第 1面から前記第 2 レンズ群の最も前記第 2面側のレンズ面までの距 離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の 条件を満足することを特徴とする請求の範囲 1、 2、 又は 3記載の投影 光学系。
— 1. 3 < 1 / β 1 < 0 及び
0. 0 8 < L 1 /Lく 0. 1 7
5. 前記第 1及び第 2 レンズ群は、 少なくとも 2つの非球面形状のレン ズ面を含み、 かつ 1 0枚以下のレンズを有することを特徴とする請求の 範囲 4記載の投影光学系。
6. 前記前レンズ群は、 第 1面側より順に、 負屈折力の第 1 レンズ群、 正屈折力の第 2 レンズ群、 負屈折力の第 3レンズ群、 及び正屈折力の第 4レンズ群を有することを特徴とする請求の範囲 1〜 5の何れか一項記 載の投影光学系。
7. 前記投影光学系の光路中に配置される光透過性屈折部材の光軸に沿 つた厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を Lと するとき、 次の条件を満足することを特徴とする請求の範囲 4〜 6の何 れか一項記載の投影光学系。
0. 4 6 < C/L< 0. 6 4
8. 前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材の 数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総和 を E aとするとき、 次の条件を満足することを特徴とする請求の範囲 1
〜 7の何れか一項記載の投影光学系。
0. 1 5く E a/Eく 0. 7
9. 前記屈折力を有する部材の総和は 1 6以上であることを特徴とする 請求の範囲 8記載の投影光学系。
1 0. 前記屈折力を有する部材の総和は 2 6以下であることを特徴とす る請求の範囲 8又は 9記載の投影光学系。
1 1 . 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 8、 9、 又は 1 0記載の投影光学 系。
1 2 . 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 3 2 %以下であることを特徴とする請 求の範囲 8〜 1 1の何れか一項記載の投影光学系。
1 3 . 前記投影光学系は、 前記第 1面上の前記パターンの縮小像を前記 第 2面上に形成することを特徴とする請求の範囲 1 〜 1 2の何れか一項 記載の投影光学系。
1 4 . 前記開口絞りは、 前記前レンズ群と前記後レンズ群との間の光路 中に配置されることを特徴とする請求の範囲 1 〜 1 3の何れか一項記載 の投影光学系。
1 5 . 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面 上に結像させる屈折型の投影光学系の製造方法において、
正の屈折力を有する前レンズ群を配置する工程と ;
該前レンズ群と前記第 2面との間に、 正の屈折力を有する後レンズ群 を配置する工程と :
前記前レンズ群と前記後レンズ群との間に、 開口絞りを配置する工程 と ; を含み、
前記前レンズ群、 前記後レンズ群、 及び前記開口絞りは、 前記第 1面 及び前記第 2面側がテレセントリックであるように配置し、
前記後レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面ま での距離を Lとするとき、 次の条件を満足するものを用いることを特徴 とする投影光学系の製造方法。
0 . 0 6 5 < f 2 / L < 0 . 1 2 5
1 6 . 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面 上に結像させる屈折型の投影光学系において、
屈折力を持つ 3個以上のレンズを有し、
前記屈折力を持つレンズを前記第 1面側から順に 3個選択したときに、 該 3個のレンズの少なくとも一面が負の屈折力を持つ非球面形状である ことを特徴とする投影光学系。
1 7 . 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面 上に結像させる屈折型の投影光学系において、
屈折力を持つ複数個のレンズを有し、
前記屈折力を持つレンズを前記第 1面から順に 2個選択したときに、 該 2個のレンズの少なくとも一面が非球面であり、 該非球面の光軸中心 付近のローカル主曲率を C a、 該非球面のレンズ有効径最周辺部のメリ ジォナル方向のローカル主曲率を C bとするとき、
前記非球面が負の屈折力を有する場合に、 次の条件
C b / C a < 0 . 7
が成立し、 前記非球面が正の屈折力を有する場合に、 次の条件
C b / C a > 1 . 6
が成立することを特徴とする投影光学系。
1 8 . 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面 上に結像させる屈折型の投影光学系において、
屈折力を持つ 4個以上のレンズを有し、
前記屈折力を持つレンズを前記第 1面から順に 4個選択したときに、 該 4個のレンズの少なくとも一面が非球面であり、 該非球面の光軸中心 付近のローカル主曲率を C a、 該非球面のレンズ有効径最周辺部のメリ ジォナル方向のローカル主曲率を C bとするとき、
前記非球面が負の屈折力を有する場合に、 次の条件
C bZC aく 0. 4 5
が成立し、 前記非球面が正の屈折力を有する場合に、 次の条件
C b/C a > 2. 3
が成立することを特徴とする投影光学系。
1 9. 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面 上に結像させる屈折型の投影光学系の製造方法において、
屈折力を持つ 4個以上のレンズを配置する工程を有し、
前記屈折力を持つレンズを前記第 1面から順に 4個選択したときに、 該 4個のレンズの少なくとも一面が非球面であり、 該非球面の光軸中心 付近のローカル主曲率を C a、 該非球面のレンズ有効径最周辺部のメリ ジォナル方向のローカル主曲率を C bとするとき、
前記非球面が負の屈折力を有する場合に、 次の条件
C b/C aく 0. 4 5
が成立し、 前記非球面が正の屈折力を有する場合に、 次の条件 C b C a > 2. 3
が成立するように前記非球面を選択することを特徴とする投影光学系 の製造方法。
2 0. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 において、
第 1面側より順に、
負の屈折力を有する第 1 レンズ群 ;
正の屈折力を有する第 2レンズ群 ;
負の屈折力を有する第 3レンズ群 ;
正の屈折力を有する第 4レンズ群 ; 開口絞り ;
及び正の屈折力を有する第 5レンズ群 ; を有し、
前記第 1 レンズ群及び前記第 2レンズ群の合成横倍率を /3 1とし、 前 記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの距 佳を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の 条件を満足することを特徴とする投影光学系。
- 1. 3 < 1 / 3 1 < 0 及び
0. 0 8 <L 1 /L< 0. 1 7
2 1. 前記投影光学系に含まれる屈折力を持つレンズを前記第 1面側か ら順に 6個選択したときに、 該 6個のレンズの少なくとも一面が負の屈 折力を持つ非球面形状であることを特徴とする請求の範囲 2 0記載の投 影光学系。
2 2. 前記第 1及び第 2 レンズ群は、 少なくとも 2つの非球面形状のレ ンズ面を含み、 かつ 1 0枚以下のレンズを有することを特徴とする請求 の範囲 2 0又は 2 1記載の投影光学系。
2 3. 前記投影光学系の光路中に配置される光透過性屈折部材の光軸に 沿った厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を L とするとき、 次の条件を満足することを特徴とする請求の範囲 2 0、 2 1、 又は 2 2記載の投影光学系。
0. 4 6 <CZL< 0. 6 4
2 4. 前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材 の数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総 和を E aとするとき、 次の条件を満足することを特徴とする請求の範囲 2 0〜 2 3の何れか一項記載の投影光学系。
0. 1 5 < E aZE< 0. 7
2 5. 前記屈折力を有する部材の総和は 1 6以上であることを特徴とす る請求の範囲 2 4記載の投影光学系。
2 6. 前記屈折力を有する部材の総和は 2 6以下であることを特徴とす る請求の範囲 2 4又は 2 5記載の投影光学系。
2 7. 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 2 4、 2 5、 又は 2 6記載の投影 光学系。
2 8. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 3 2 %以下であることを特徴とする請 求の範囲 2 4、 2 5、 又は 2 6記載の投影光学系。
2 9. 前記投影光学系に対して前記第 2面側から前記投影光学系の光軸 と平行な光線を入射させた場合、 該光線が前記第 1面側へ射出されると きの前記光軸となす角度は、 5 0分以下であることを特徴とする請求の 範囲 2 0〜 2 8の何れか一項記載の投影光学系。
3 0. 前記第 5 レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の条件を満足することを特徴とする 請求の範囲 2 0〜 2 8の何れか一項記載の投影光学系。
0. 0 6 5 < f 2 /L< 0. 1 2 5
3 1. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 の製造方法において、
負の屈折力を有する第 1 レンズ群を準備する工程と
正の屈折力を有する第 2レンズ群を準備する工程と
負の屈折力を有する第 3レンズ群を準備する工程と
正の屈折力を有する第 4レンズ群を準備する工程と 開口絞りを準備する工程と ;
正の屈折力を有する第 5レンズ群を準備する工程と ;
前記第 1面側より順に、 前記第 1 レンズ群、 前記第 2レンズ群、 前記 第 3レンズ群、 前記第 4レンズ群、 前記開口絞り、 及び前記第 5レンズ 群の順に配置する工程と ; を含み、
前記第 1第 1 レンズ群及び前記第 2レンズ群の合成横倍率を /3 1とし、 前記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの 距離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次 の条件を満足するように前記第 1及び第 2 レンズ群を準備し、
— 1. 3 < 1 / 1 < 0
次の条件を満足するように前記第 1及び第 2 レンズ群を配置すること を特徴とする投影光学系の製造方法。
0. 0 8 <L 1 /L< 0. 1 7
3 2. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 において、
前記投影光学系の光路中に配置される少なくとも 1つの光透過性屈折 部材を含み、
前記投影光学系の光路中に配置される光透過性屈折部材の光軸に沿つ た厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を Lとす るとき、 次の条件を満足することを特徴とする投影光学系。
0. 4 6 <C/L< 0. 6 4
3 3. 前記光透過性部材のうちの屈折力を有する部材の総和は 1 6以上 であることを特徴とする請求の範囲 3 2記載の投影光学系。
3 4. 前記光透過性部材のうちの屈折力を有する部材の総和は 2 6以下 であることを特徴とする請求の範囲 3 2又は 3 3記載の投影光学系。
3 5. 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 3 2、 3 3、 又は 3 4記載の投影 光学系。
3 6. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 δ 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 3 2 %以下であることを特徴とする請 求の範囲 3 2、 3 3、 又は 34の何れか一項記載の投影光学系。
3 7. 前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材0 の数の総和を Εとし、 非球面形状のレンズ面が設けられた部材の数の総 和を E aとするとき、 次の条件を満足することを特徴とする請求の範囲 3 2〜 3 6の何れか一項記載の投影光学系。
0. 1 5く E aZE< 0. 7
3 8. 前記投影光学系は、 第 1面側から順に、
5 負屈折力を有する第 1 レンズ群と
正屈折力を有する第 2 レンズ群と
負屈折力を有する第 3 レンズ群と
正屈折力を有する第 4レンズ群と
開口絞りと ;
0 正屈折力を有する第 5 レンズ群と ; を備えることを特徴とする請求の 範囲 3 2〜 3 7の何れか一項記載の投影光学系。
3 9. 前記第 5 レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の条件を満足することを特徴とする 請求の範囲 3 8記載の投影光学系。
5 0. 0 6 5 < f 2/L< 0. 1 2 5
40. 前記第 1 レンズ群及び前記第 2レンズ群の合成横倍率を /3 1 とし、 前記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの 距離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次 の条件を満足することを特徴とする請求の範囲 3 8又は 3 9記載の投影 光学系。
- 1. 3 < 1 / β 1 < 0 及び
0. 0 8 <L 1 /L< 0. 1 7
4 1. 前記投影光学系に対して前記第 2面側から前記投影光学系の光軸 と平行な光線を入射させた場合、 該光線が前記第 1面側へ射出されると きの前記光軸となす角度は、 5 0分以下であることを特徴とする請求の 範囲 3 2〜 3 7の何れか一項記載の投影光学系。 '
4 2. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 の製造方法において、
少なくとも 1つの光透過性部材を準備する工程と ;
前記投影光学系の光路中に沿って少なくとも 1つの前記光透過性部材 を配置する工程と ; を含み、
前記投影光学系の光路中に配置される光透過性屈折部材の光軸に沿つ た厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を Lとす るとき、 次の条件を満足するように前記光透過性部材を準備することを 特徴とする投影光学系の製造方法。
0. 4 6 <C/L< 0. 6 4
4 3. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 において、
少なくとも 3面以上の非球面形状のレンズ面を有し、
前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材の数 の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総和を E aとするとき、 次の条件を満足することを特徴とする投影光学系。
0 . 1 5 < E a / E < 0 . 7
4 4 . 前記屈折力を有する部材の総和は 1 6以上であることを特徴とす る請の範囲 4 3記載の投影光学系。
4 5 . 前記屈折力を有する部材の総和は 2 6以下であることを特徴とす る請求の範囲 4 3又は 4 4記載の投影光学系。
4 6 . 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 4 3 、 4 4、 又は 4 5記載の投影 光学系。
4 7 . 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 3 2 %以下であることを特徴とする請 求の範囲 4 3 、 4 4、 又は 4 5記載の投影光学系。
4 8 . 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1 の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 1 6 %以下であることを特徴とする請 求の範囲 4 3 、 4 4、 又は 4 5記載の投影光学系。
4 9 . 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 1 1 %以下であることを特徴とする請 求の範囲 4 3 、 4 4、 又は 4 5記載の投影光学系。
5 0. 前記投影光学系の光路中に配置される光透過性屈折部材の光軸に 沿った厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を L とするとき、 次の条件を満足することを特徴とする請求の範囲 4 3〜4 9の何れか一項記載の投影光学系。
0. 4 6 <C/L< 0. 64
5 1. 前記投影光学系は、 開口絞りと、 該開口絞りと前記第 2面との間 に配置されたレンズ群とを含み、
該レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面までの 距離を Lとするとき、 次の条件を満足することを特徴とする請求の範囲 43〜 5 0の何れか一項記載の投影光学系。
0. 0 6 5< f 2/L< 0. 1 2 5
5 2. 前記投影光学系は、
負屈折力を有する第 1 レンズ群と ;
該第 1 レンズ群と前記第 2面との間に配置されて正の屈折力を有する 第 2 レンズ群と ;
該第 2レンズ群と前記第 2面との間に配置されて負の屈折力を有する 第 3レンズ群と ;
該第 3レンズ群と前記第 2面との間に配置されて正の屈折力を有する 第 4レンズ群と ;
該第 4レンズ群と前記第 2面との間に配置された開口絞りと ; 該開口絞りと前記第 2面との間に配置されて正の屈折力を有する第 5 レンズ群と ; を備えることを特徴とする請求の範囲 4 3〜 5 1の何れか 一項記載の投影光学系。
5 3. 前記第 1 レンズ群及び前記第 2レンズ群の合成横倍率を /3 1とし、 前記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの 距離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次 の条件を満足することを特徴とする請求の範囲 5 2記載の投影光学系。 一 1. 3 < 1 //3 1 < 0 及び
0. 0 8 <L 1 /L< 0. 1 7
5 4. 前記投影光学系に対して前記第 2面側から前記投影光学系の光軸 と平行な光線を入射させた場合、 該光線が前記第 1面側へ射出されると きの前記光軸となす角度は、 5 0分以下であることを特徴とする請求の 範囲 4 3〜 5 0の何れか一項記載の投影光学系。
5 5. 前記投影光学系中の前記光透過性屈折部材のうち、 前記非球面形 状のレンズ面が設けられていない部材のうちの少なくとも一つは、 位置 及び姿勢のうちの少なくとも一方が変更可能に配置されることを特徴と する請求の範囲 4 3〜 5 4の何れか一項記載の投影光学系。
5 6. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 の製造方法において、
光透過性屈折部材が有するレンズ面のうち、 少なくとも 3面以上が非 球面形状となるように、 且つ前記光透過性屈折部材のうち屈折力を有す る部材の数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の 数の総和を E aとするとき、 次の条件を満足するように前記光透過性部 材を準備する工程と ;
0. 1 5く E aZEく 0. 7
該光透過性部材を組み上げる工程と ; を有することを特徴とする投影 光学系の製造方法。
5 7. 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光装置において、
露光光を供給する光源と ;
該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ; 請求の範囲 1〜 5 6の何れか一項記載の投影光学系と ; を備え、 前記投影光学系の前記第 1面に前記投影原版を配置可能とし、 前記第 2面に前記ワークを配置可能としたことを特徴とする投影露光装置。
5 8 . 投影原版に設けられたパターンの縮小像をワーク上で走査させつ δ つ投影露光する投影露光装置において、
露光光を供給する光源と ;
該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ;
請求の範囲 1〜 5 6の何れか一項記載の投影光学系と ;
0 前記投影光学系の前記第 1面に前記投影原版を配置可能とするための 第 1ステージと ;
前記第 2面に前記ワークを配置可能とするための第 2ステージと ; を 備え、
前記第 1及び第 2ステージは、 前記投影光学系の投影倍率に対応した5 速度比で移動可能であることを特徴とする投影露光装置。
5 9 . 前記光源は 1 8 0 n m以下の波長域の露光光を供給し、 前記投影 光学系は、 前記投影原版からの露光光の光量の 2 5 %以上の光量を前記 ワークへ導くことを特徴とする請求の範囲 5 7又は 5 8記載の投影露光 0 6 0 . 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光装置において、
1 8 0 n m以下の波長域の露光光を供給する光源と ;
該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ;
5 前記投影原版と前記ワークとの間の光路中に配置されて、 前記投影原 版を介した前記露光光の光量の 2 5 %以上の光量を前記ワークへ導いて
ΐ
105 前記パターンの縮小像を前記ワーク上に形成する投影光学系と ; を備え ることを特徴とする投影露光装置。
6 1 . 前記投影原版を保持する第 1ステージと、 前記ワークを保持する 第 2ステージとをさらに含み、
前記第 1及び第 2ステージは、 前記投影光学系の投影倍率に対応した 速度比で移動可能であることを特徴とする請求の範囲 6 0記載の投影露 光装置。
6 2 . 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光装置において、
10 2 0 0 n m以下の波長域の露光光を供給する光源と ;
該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ;
前記投影原版と前記ワークとの間の光路中に配置されて、 前記投影原 版を介した前記露光光を前記ワークへ導いて前記パターンの縮小像を前 記ワーク上に形成する投影光学系と ; を備え、
前記光源から前記照明光学系へ向かう前記露光光の光量を E n 1 とし、 前記照明光学系から前記投影原版へ向かう前記露光光の光量を E n 2と し、 前記投影光学系へ入射する前記露光量の光量を E n 3とし、 前記投 影光学系から前記ワークへ向かって射出する前記露光光の光量を E n 4
20 とするとき、 次の条件を満足することを特徴とする投影露光装置。
E n 4 E n 2
>
E n 3 E n 1
6 3 . 投影原版上に形成されるパターンをワーク上へ投影露光する投影 露光方法において、
25 請求の範囲 5 7 5 8、 又は 5 9記載の投影露光装置を用い、
前記投影原版を前記第 1面に配置すると共に、 前記ワークを前記第 2 面に配置し、
前記投影光学系を介して前記パターンの像を前記ワーク上に形成する ことを特徴とする露光方法。
6 4 . 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光方法において、
2 0 0 n m以下の波長域の露光光を供給する工程と ;
照明光学系を介して該光源からの露光光を前記投影原版上の前記パ夕 ーンへ導く工程と ;
前記投影光学系を介して前記投影原版からの前記露光光を前記ワーク へ導き前記パターンの縮小像を前記ワーク上に形成する工程と ; を有し、 前記照明光学系へ入射する前記露光光の光量を E n 1 とし、 前記照明光 学系から前記投影原版へ向かう前記露光光の光量を E n 2とし、 前記投 影光学系へ入射する前記露光量の光量を E n 3とし、 前記投影光学系か ら前記ワークへ向かって射出する前記露光光の光量を E n 4とするとき、 次の条件を満足することを特徴とする投影露光方法。
E n 4 E n 2
>
E n 3 E n 1
6 5 . 前記露光光を前記パターンへ導く工程は、 前記波長域の光に対す る吸収の少ない特性を有するガス雰囲気で満たされた空間に前記露光光 を通す補助工程を含み、
前記パターンの縮小像を前記ワーク上に形成する工程は、 前記波長域 の光に対する吸収の少ない特性を有するガス雰囲気で満たされた空間に 前記露光光を通す補助工程を含むことを特徴とする請求の範囲 6 4記載 の投影露光方法。
6 6 . 所定の回路パターンを有するマイクロデバイスの製造方法におい て、 請求の範囲 6 3、 64、 又は 6 5記載の投影露光方法を用いて前記ヮ —ク上に前記パターンの像を投影露光する工程と ;
該投影露光された前記ワークを現像処理する工程と ; を含むことを特 徴とするマイクロデバイスの製造方法。
6 7. 投影原版上のパターンをワーク上に投影露光する投影露光装置に おいて、
2 0 0 nm以下の波長の露光光を前記投影原版べ供給する照明光学系 と :
前記投影原版上のパターンの像を所定の投影倍率 /3のもとで前記ヮー ク上に形成する投影光学系と ; を備え、
前記投影光学系は、 開口絞りと、 該開口絞りと前記投影原版との間に 配置された前レンズ群と、 前記開口絞りと前記ワークとの間に配置され た後レンズ群とを有し、
前記投影光学系中の光透過性光学材料のうちの螢石の量をディスク材 に換算した量を y ( k g) 、 前記後レンズ群の焦点距離を f 2 (mm) , 前記投影光学系の像侧の最大開口数を N A wとし、
X = f 2 · 4 I β I - NAw2
とするとき、 以下の条件式を満足することを特徴とする投影露光装置。
≤ 4 x - 2 0 0 ,
y≤ ( 4 X / 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
≥ 4 x - 440 , 及び
y≥ 0
6 8. 前記最大開口数 NAw、 及び螢石の量 yについて、
A\v> 0. 7 2 及び
ν< 7 δ o
108 の条件を満足することを特徴とする請求の範囲 6 7記載の投影露光装置。
6 9 . 前記投影光学系の後レンズ群の焦点距離 f 2及び最大開口数 N A wは、
1 1 0 < f 2 / A w < 2 0 0
の条件を満足することを特徴とする請求の範囲 6 7記載の投影露光装置。
7 0 . 前記照明光学系は、 0 . 5 p m以下の半値全幅の光を供給するこ とを特徴とする請求の範囲 6 7記載の投影露光装置。
7 1 . 前記投影光学系中の非球面の数を Aとして、 前記投影光学系は以 下の条件を満足することを特徴とする請求の範囲 6 7記載の投影露光装0 置。
0≤ y < 4 0 及び
2≤ A
7 2 . 前記投影光学系中の非球面の数を Aとして、 前記投影光学系は以 下の条件を満足することを特徴とする請求の範囲 7 0記載の投影露光装5
0≤ y < 4 0 及び
2≤ A
7 3 . 前記投影光学系中の非球面の数を Aとして、 前記投影光学系は以 下の条件を満足することを特徴とする請求の範囲 6 7記載の投影露光装
4 0≤ y < 7 0 及び
1≤ Α≤ δ
7 4 . 前記投影光学系中の非球面の数を Αとして、 前記投影光学系は以 下の条件を満足することを特徴とする請求の範囲 7 0記載の投影露光装
4 0≤ y < 7 0 及び 1≤ A≤ δ
7 5. 前記照明光学系は、 2 0 0 nm以下で 1 7 0 nm以上の波長の光 を供給することを特徴とする請求の範囲 6 7〜 7 4の何れか一項記載の 投影露光装置。
7 6. 前記投影光学系は、 直径 2 O mm以上の像側視野を有することを 特徴とする請求の範囲 6 7〜 7 4の何れか一項記載の投影露光装置。 7 7. 前記投影光学系の像側の最大開口数 N Awは以下の条件を満足す ることを特徴とする請求の範囲 6 7、 6 9〜 7 4の何れか一項記載の投 影露光装置。
N A w≥ 0. 6 5
7 8. 前記投影光学系は一つ又は複数個の非球面を有し、 かつ該非球面 は前記螢石とは異なる材料からなるレンズのレンズ面に設けられること を特徴とする請求の範囲 6 7〜 7 4の何れか一項記載の投影露光装置。
7 9. 前記非球面は石英ガラスからなるレンズのレンズ面に設けられる ことを特徴とする請求の範囲 7 8記載の投影露光装置。
8 0. 前記前レンズ群、 前記開口絞り、 及び前記後レンズ群は、 直線状 に延びた光軸に沿って配置されることを特徴とする請求の範囲 6 7〜 7 4の何れか一項記載の投影露光装置。
8 1. 前記投影光学系は、 直径 2 O mm以上の像側視野を確保するため の非球面を有することを特徴とする請求の範囲 6 7〜 7 4の何れか一項 記載の投影露光装置。
8 2. 更に以下の条件式を満足することを特徴とする請求の範囲 6 Ί〜 7 4の何れか一項記載の投影露光装置。
y≤ ( 9 X / 2 ) - 2 7 0
8 3. 更に以下の条件式を満足することを特徴とする請求の範囲 6 7、 6 9〜 7 4の何れか一項記載の投影露光装置。 y≤ 9 0
8 4. 更に以下の条件式を満足することを特徴とする請求の範囲 6 Ί〜
7 4の何れか一項記載の投影露光装置。
y≥ ( 9 X / 2 ) ― ( 8 5 5 / 2 )
8 5. 投影原版上のパターンをワーク上に投影露光する投影露光方法に おいて、
2 0 0 nm以下の波長の露光光を前記投影原版へ供給する照明工程と 前レンズ群、 開口絞り、 及び後レンズ群を備えた投影光学系を用いて 前記投影原版上のパターンの像を所定の投影倍率 /3のもとで前記ワーク 上に形成する像形成工程と ; を含み、
前記像形成工程は、 前記投影原版からの光を前記前レンズ群へ導く第 1補助工程と、 該前レンズ群を経た光を前記開口絞りへ導く第 2補助ェ 程と、 該開口絞りを経た光を前記後レンズ群へ導く第 3補助工程と、 該 後レンズ群を経た光を用いて前記ワーク上に前記パターンの像を形成す る第 4補助工程とを含み、
前記投影光学系中の光透過性光学材料のうちの螢石の量をディスク材 に換算した量を y ( k g) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の像側の最大開口数を N A wとし、
X = f 2 · 4 I ;3 I - X Aw2
とするとき、 以下の条件式を満足することを特徴とする投影露光方法。
y≤ 4 x - 2 0 0 ,
y≤ ( 4 x/ 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥4 x - 44 0 , 及び
y≥ 0
8 6. 前記最大開口数 NAw、 及び螢石の量 yについて、 N Aw> 0. 7 2 及び
y < 7 5
の条件を満足することを特徴とする請求の範囲 8 5記載の投影露光方法。
8 7. 前記投影光学系の後レンズ群の焦点距離 ί 2及び最大開口数 ΝΑ 0 wは、
1 1 0 < f 2 /N Awぐ 2 0 0
の条件を満足することを特徴とする請求の範囲 8 5記載の投影露光方法。
8 8. 前記照明工程では、 0. 5 pm以下の半値全幅の光を供給するこ とを特徴とする請求の範囲 8 5記載の投影露光方法。
0 8 9. 前記投影光学系中の非球面の数を Aとして、 前記投影光学系は以 下の条件を満足することを特徴とする請求の範囲 8 5記載の投影露光方 法。
0≤ y < 40 及び
2≤ A
δ 9 0. 前記投影光学系中の非球面の数を Aとして、 前記投影光学系は以 下の条件を満足することを特徴とする請求の範囲 8 8記載の投影露光方 法。
0≤ y < 4 0 及び
2≤ A
0 9 1. 前記投影光学系中の非球面の数を Aとして、 前記投影光学系は以 下の条件を満足することを特徴とする ί青求の範囲 8 5記載の投影露光方 法。
4 0≤ y < 7 0 及び
1≤ A≤ 5
5 9 2. 前記投影光学系中の非球面の数を Aとして、 前記投影光学系は以 下の条件を満足することを特徴とする請求の範囲 8 8記載の投影露光方 法。
40≤ y < 7 0 及び
1≤A≤ 5
9 3. 前記照明工程では、 2 0 0 nm以下で 1 7 0 nm以上の波長の光 を供給することを特徴とする請求の範囲 8 5〜 9 2の何れか一項記載の 投影露光方法。
9 4. 前記像形成工程において形成される前記像の領域は、 直径 2 0m m以上の円に内接することを特徴とする請求の範囲 8 5〜 9 2の何れか 一項記載の投影露光方法。
9 5. 前記投影光学系の像側の最大開口数 N Awは以下の条件を満足す ることを特徴とする請求の範囲 8 5、 8 7〜9 2の何れか一項記載の投 影露光方法。
N A w≥ 0. 6 5
9 6. 前記像形成工程は、 前記螢石とは異なる材料からなるレンズに設 けられた非球面に前記光を導く補助工程を含むことを特徴とする請求の 範囲 8 5〜 9 2の何れか一項記載の投影露光方法。
9 7. 前記前レンズ群、 前記開口絞り、 及び前記後レンズ群は、 直線状 に延びた光軸に沿って配置されることを特徴とする請求の範囲 8 5〜 9
2の何れか一項記載の投影露光方法。
9 8. 前記投影光学系は、 直径 2 0 mm以上の像側視野を確保するため の非球面を有することを特徴とする請求の範囲 8 5〜9 2の何れか一項 記載の投影露光方法。
9 9. 所定の回路パターンを有するマイクロデバイスの製造方法におい て、
請求の範囲 8 5〜 9 2の何れか一項記載の投影露光方法を用いて前記 ワーク上に前記パターンの像を投影露光する工程と ; 該投影露光された前記ワークを現像処理する工程と ; を含むことを特 徴とするマイクロデバイスの製造方法。
1 0 0. 投影原版上のパターンをワーク上に投影露光する投影露光装置 の製造方法において、
2 0 0 nm以下の波長の露光光を前記投影原版へ供給する照明光学系 を準備する工程と ;
前記投影原版上のパターンの像を所定の投影倍率 |3のもとで前記ヮー ク上に形成する投影光学系を準備する工程と ; を含み、
前記投影光学系を準備する工程は、 前レンズ群、 開口絞り、 及び後レ ンズ群を準備する補助工程と、 前記前レンズ群を前記開口絞りと前記投 影原版が配置される位置との間に配置する補助工程と、 前記後レンズ群 を前記開口絞りと前記ワークが配置される位置との間に配置する補助ェ 程とを有し、
前記投影光学系中の光透過性光学材料のうちの螢石の量をディスク材 に換算した量を y (k g) 、 前記後レンズ群の焦点距離を ί 2 (mm) 、 前記投影光学系の像側の最大開口数を N A wとし、
X = f 2 · 4 I 3 ! · N Aw2
とするとき、 以下の条件式を満足することを特徴とする投影露光装置の 製造方法。
y≤ 4 X - 2 0 0 ,
y≤ ( 4 x / 1 3 ) + ( 1 0 0 0/ 1 3) ,
y≥ 4 x - 440 , 及び
y≥ 0
1 0 1. 投影原版上のパターンをワーク上で走査させつつ投影露光する 走査型投影露光装置において、
2 0 0 nm以下の波長の露光光を前記投影原版へ供給する照明光学系 と ;
前記投影原版上のパターンの像を所定の投影倍率 |3のもとで前記ヮー ク上に形成する投影光学系と ; を備え、
前記投影光学系は、 開口絞りと、 該開口絞りと前記投影原版との間に 配置された前レンズ群と、 前記開口絞りと前記ワークとの間に配置され た後レンズ群とを有し、
前記投影光学系中の光透過性光学材料のうちの螢石の量をディスク材 に換算した量を y (k g) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の像側の最大開口数を NAwとし、
X = f 2 · 4 I 3 I · NAw2
とするとき、 以下の条件式を満足することを特徴とする走査型投影露光 y≤ 4 X - 2 0 0 ,
y≤ ( 4 x / 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥ 4 X— 440 , 及び
y≥ 0
1 0 2. 波長 2 0 0 nm以下の光を用いて第 1面のパターンの像を第 2 面上に形成する屈折型の投影光学系において、
開口絞りと ;
該開口絞りと前記第 1面との間に配置される前レンズ群と ;
前記開口絞りと前記第 2面との間に配置される後レンズ群と ; を備え、 前記投影光学系中の光透過性光学材料のうちの螢石の量をディスク材 に換算した量を y (k g) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の投影倍率を /3、 前記投影光学系の像側の最大開口数を NAwとし、
X = f 2 · 4 I 3 ! · NAw2 とするとき、 以下の条件式を満足することを特徴とする投影光学系。 y≤ 4 x - 2 0 0 ,
y≤ ( 4 x / 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥ 4 X - 44 0 , 及び
ν≥ 0
1 0 3. 波長 2 0 0 nm以下の光を用いて第 1面のパターンの像を第 2 面上に形成する屈折型の投影光学系の製造方法において、
前レンズ群、 開口絞り、 及び後レンズ群を準備する工程と ;
前記前レンズ群を前記開口絞りと前記第 1面との間に配置する工程と 前記後レンズ群を前記開口絞りと前記第 2面との間に配置する工程と ; を有し、
前記投影光学系中の光透過性光学材料のうちの螢石の量をディスク材 に換算した量を y ( k g) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の投影倍率を /3、 前記投影光学系の像側の最大開口数を A wとし、
X = f 2 · 4 I /3 · N A\v- '
とするとき、 以下の条件式を満足することを特徴とする投影光学系の製 造方法。
y≤ 4 x - 2 0 0 ,
y≤ { x / I 3 ) ÷ ( 1 0 0 0 / 1 3 ) ,
y≥ 4 x - 44 0 , 及び
y≥ 0
1 0 4. 投影原版上のパターンをワーク上に投影露光する投影露光装置 において、
2 0 0 nm以下の波長の露光光を前記投影原版へ供給する照明光学系 と ;
前記投影原版上のパターンの像を所定の投影倍率 /3のもとで前記ヮー ク上に形成する投影光学系と ; を備え、
前記投影光学系は、 開口絞りと、 該開口絞りと前記投影原版との間に 配置された前レンズ群と、 前記開口絞りと前記ワークとの間に配置され た後レンズ群とを有し、
前記投影光学系中の光透過性光学材料のうちの螢石の量をディスク材 に換算した量を y (k g) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の像側の最大開口数を N A wとし、
X = f 2 · 4 I 3 I · N A w 2
とするとき、 以下の条件式を満足することを特徴とする投影露光装置。 y≤ ( 9 X / 2 ) - 2 7 0 ,
y≤ 9 0 ,
y≥ ( 9 x/ 2 ) 一 ( 8 5 5 / 2 ) , 及び
y≥ 0
1 0 5. 前記最大開口数 ΝΑλν、 及び螢石の量 yについて、
X Aw> 0. 7 2 及び
y < 7 5
の条件を満足することを特徴とする請求の範囲 1 04記載の投影露光
1 0 6. 前記投影光学系の後レンズ群の焦点距離 f 2及び最大開口数 N A wは、
1 1 0 < f 2 /N Aw< 2 0 0
の条件を満足することを特徴とする請求の範囲 1 04記載の投影露光
1 0 7. 投影原版上のパターンをワーク上に投影露光する投影露光装置 において、
2 0 0 nm以下の波長の露光光を前記投影原版へ供給する照明光学系 と ;
前記投影原版上のパターンの像を所定の投影倍率 3のもとで前記ヮー ク上に形成する投影光学系と ; を備え、
前記投影光学系は、 開口絞りと、 該開口絞りと前記投影原版との間に 配置された前レンズ群と、 前記開口絞りと前記ワークとの間に配置され た後レンズ群とを有し、
前記投影光学系中の光透過性光学材料のうちの第 1の材料の量をディ スク材に換算した量を y ( k g ) 、 前記後レンズ群の焦点距離を f 2
(mm) 、 前記投影光学系の像側の最大開口数を N Awとし、
= f 2 · 4 I β I · Ν A w L>
とするとき、 以下の条件式を満足することを特徴とする投影露光装置。
y≤ 4 x - 2 0 0 ,
y≤ ( 4 x / 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
≥ 4 X - 440 , 及び
y≥ 0
1 0 8. 前記最大開口数 NA v、 及び螢石の量 yについて、
Aw> 0. 7 2 及び
y< 7 5
の条件を満足することを特徴とする請求の範囲 1 0 7記載の投影露光
1 0 9. 前記投影光学系の後レンズ群の焦点距離 f 2及び最大開口数 N Awは、
1 1 0 < f 2 ZN Aw< 2 0 0
の条件を満足することを特徴とする請求の範囲 1 0 7記載の投影露光
1 1 0. 以下の条件を満足することを特徴とする請求の範囲 1 0 7記載 の投影露光装置。
y = 0
1 1 1. 前記照明光学系は 2 0 0 nm以下で 1 7 0 nm以上の波長の光 を供給し、 前記投影光学系中の前記光透過性材料のうちの前記第 1の材 料は石英であることを特徴とする請求の範囲 1 1 0記載の投影露光装置。
1 1 2. 前記照明光学系は 1 7 0 nm以下の波長の光を供給し、 前記投 影光学系中の前記光透過性材料のうちの前記第 1の材料は螢石であるこ とを特徴とする請求の範囲 1 1 0記載の投影露光装置。
1 1 3. 前記投影光学系中の前記光透過性材料は、 前記第 1の材料とは 異なる第 2の材料を更に有することを特徴とする請求の範囲 1 0 7記載 の投影露光装置。
1 1 4. 前記第 2の材料は石英ガラスであることを特徴とする請求の範 囲 1 1 3記載の投影露光装置。
1 1 5. 前記第 1の材料は螢石であることを特徴とする請求の範囲 1 1 4記載の投影露光装置。
1 1 6. 前記照明光学系は、 0. 5 pm以下の半値全幅の光を供給する ことを特徴とする請求の範囲 1 0 7〜 1 1 5の何れか一項記載の投影露 光装置。
1 1 7. 前記投影光学系は、 直径 2 Omm以上の像側視野を有すること を特徴とする請求の範囲 1 0 7〜 1 1 5の何れか一項記載の投影露光装
1 1 8. 前記投影光学系は、 直径 2 0 mm以上の像側視野を確保するた めの非球面を有することを特徴とする請求の範囲 1 0 7〜 1 1 5の何れ か一項記載の投影露光装置。
1 1 9. 前記前レンズ群、 前記開口絞り、 及び前記後レンズ群は、 直線 状に延びた光軸に沿って配置されることを特徴とする請求の範囲 1 0 7 〜 1 1 5の何れか一項記載の投影露光装置。
1 2 0. 投影原版上のパターンをワーク上に投影露光する投影露光方法 において、
2 0 0 nm以下の波長の露光光を前記投影原版へ供給する照明工程と 前レンズ群、 開口絞り、 及び後レンズ群を備えた投影光学系を用いて 前記投影原版上のパターンの像を所定の投影倍率 3のもとで前記ワーク 上に形成する像形成工程と ; を含み、
前記像形成工程は、 前記投影原版からの光を前記前レンズ群へ導く第 1補助工程と、 該前レンズ群を経た光を前記開口絞りへ導く第 2補助ェ 程と、 該開口絞りを経た光を前記後レンズ群へ導く第 3補助工程と、 該 後レンズ群を経た光を用いて前記ワーク上に前記パターンの像を形成す る第 4補助工程とを含み、
前記投影光学系中の光透過性光学材料のうちの第 1の材料の量をディ スク材に換算した量を y ( k g ) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の像側の最大開口数を N Awとし、
X = f 2 · 4 I /3 I · N A w
とするとき、 以下の条件式を満足することを特徴とする投影露光方法。
y≤ 4 X - 2 0 0 ,
y≤ (4 x/ 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥4 x— 440 , 及び
Υ≥ 0
1 2 1. 前記最大開口数 NAw、 及び螢石の量 yについて、
Aw> 0. 7 2 及び y < 7 5
の条件を満足することを特徴とする請求の範囲 1 2 0記載の投影露光 方法。
1 2 2. 前記投影光学系の後レンズ群の焦点距離 f 2及び最大開口数 N A wは、
1 1 0 < f 2 / N A w < 2 0 0
の条件を満足することを特徴とする請求の範囲 1 2 0記載の投影露光 方法。
1 2 3. 波長 2 0 0 n m以下の光を用いて第 1面のパターンの像を第 2 面上に形成する屈折型の投影光学系において、
開口絞りと ;
該開口絞りと前記第 1面との間に配置される前レンズ群と ;
前記開口絞りと前記第 2面との間に配置される後レンズ群と ; を備え、 前記投影光学系中の光透過性光学材料のうちの第 1の材料の量をディ スク材に換算した量を y ( k g) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の投影倍率を /3、 前記投影光学系の像側の最 大開口数を X Awとし、
X = f 2 · 4 ! /3 ί · N A w 2
とするとき、 以下の条件式を満足することを特徴とする投影光学系。 y≤ 4 X - 2 0 0 ,
y≤ ( 4 x / 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥ 4 X - 440 , 及び
y≥ 0
1 2 4. 波長 2 0 0 nm以下の光を用いて第 1面のパターンの像を第 2 面上に形成する屈折型の投影光学系の製造方法において、
前レンズ群、 開口絞り、 及び後レンズ群を準備する工程と ; 前記前レンズ群を前記開口絞りと前記第 1面との間に配置する工程と 前記後レンズ群を前記開口絞りと前記第 2面との間に配置する工程と ; を有し、
前記投影光学系中の光透過性光学材料のうちの第 1の材料の量をディ スク材に換算した量を y ( k g ) 、 前記後レンズ群の焦点距離を f 2 (mm) 、 前記投影光学系の投影倍率を /3、 前記投影光学系の像側の最 大開口数を N Awとし、
X = f 2 · 4 I /3 I · X A \\- J
とするとき、 以下の条件式を満足することを特徴とする投影光学系の製 造方法。
y≤ 4 X - 2 0 0 ,
y≤ ( 4 x/ 1 3 ) + ( 1 0 0 0 / 1 3 ) ,
y≥ 4 χ - 440 , 及び
y≥ 0
PCT/JP2000/006706 1999-09-29 2000-09-28 Procede et dispositif d'exposition par projection, et systeme optique de projection WO2001023935A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00962924A EP1139138A4 (en) 1999-09-29 2000-09-28 PROJECTION EXPOSURE PROCESS, DEVICE AND OPTICAL PROJECTION SYSTEM
US10/252,426 US6606144B1 (en) 1999-09-29 2002-09-24 Projection exposure methods and apparatus, and projection optical systems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP99/05329 1999-09-29
PCT/JP1999/005329 WO2001023933A1 (fr) 1999-09-29 1999-09-29 Systeme optique de projection
PCT/JP1999/006387 WO2001023934A1 (fr) 1999-09-29 1999-11-16 Procede et appareil d'exposition par projection et systeme optique de projection
JPPCT/JP99/06387 1999-11-16

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US09856959 A-371-Of-International 2001-05-29
US10/252,426 Division US6606144B1 (en) 1999-09-29 2002-09-24 Projection exposure methods and apparatus, and projection optical systems
US10/252,427 Division US6674513B2 (en) 1999-09-29 2002-09-24 Projection exposure methods and apparatus, and projection optical systems
US10/406,223 Continuation US6864961B2 (en) 1999-09-29 2003-04-04 Projection exposure methods and apparatus, and projection optical systems

Publications (1)

Publication Number Publication Date
WO2001023935A1 true WO2001023935A1 (fr) 2001-04-05

Family

ID=26440187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006706 WO2001023935A1 (fr) 1999-09-29 2000-09-28 Procede et dispositif d'exposition par projection, et systeme optique de projection

Country Status (3)

Country Link
US (1) US6606144B1 (ja)
EP (1) EP1139138A4 (ja)
WO (1) WO2001023935A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013734A1 (ja) * 2004-08-03 2006-02-09 Nikon Corporation 投影光学系、露光装置、および露光方法
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
JP2007515773A (ja) * 2003-10-29 2007-06-14 カール ツアイス エスエムティー アーゲー フォトリソグラフィにおける光学アセンブリ
JP2007515660A (ja) * 2003-10-22 2007-06-14 カール・ツァイス・エスエムティー・アーゲー 浸漬リソグラフィー用屈折性投影対物レンズ
EP1780570A3 (en) * 2001-06-01 2008-01-02 ASML Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US7495840B2 (en) 2002-03-08 2009-02-24 Karl-Heinz Schuster Very high-aperture projection objective
JP2010192914A (ja) * 2003-10-28 2010-09-02 Nikon Corp 照明光学装置及び投影露光装置
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
KR101337007B1 (ko) 2004-08-03 2013-12-06 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
JP2014030044A (ja) * 2006-05-05 2014-02-13 Corning Inc 疑似テレセントリック結像レンズの歪調整
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094350A3 (en) 1999-10-21 2001-08-16 Carl Zeiss Optical projection lens system
KR100866818B1 (ko) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
JP2002244034A (ja) 2001-02-21 2002-08-28 Nikon Corp 投影光学系および該投影光学系を備えた露光装置
JP2002323652A (ja) 2001-02-23 2002-11-08 Nikon Corp 投影光学系,該投影光学系を備えた投影露光装置および投影露光方法
JP2002323653A (ja) 2001-02-23 2002-11-08 Nikon Corp 投影光学系,投影露光装置および投影露光方法
WO2002093209A2 (de) 2001-05-15 2002-11-21 Carl Zeiss Objektiv mit fluorid-kristall-linsen
US7239447B2 (en) 2001-05-15 2007-07-03 Carl Zeiss Smt Ag Objective with crystal lenses
DE10123725A1 (de) 2001-05-15 2002-11-21 Zeiss Carl Projektionsbelichtungsanlage der Mikrolithographie, Optisches System und Herstellverfahren
WO2002093201A2 (en) 2001-05-16 2002-11-21 Corning Incorporated Preferred crystal orientation optical elements from cubic materials
US6683710B2 (en) 2001-06-01 2004-01-27 Optical Research Associates Correction of birefringence in cubic crystalline optical systems
KR20040035780A (ko) 2001-09-14 2004-04-29 코닝 인코포레이티드 포토리소그라피 방법 및 최소 공간분산을 갖는 유브이투과용 플루오라이드 결정
DE10151309A1 (de) * 2001-10-17 2003-05-08 Carl Zeiss Semiconductor Mfg S Projektionsbelichtungsanlage der Mikrolithographie für Lambda <200 nm
US6844972B2 (en) 2001-10-30 2005-01-18 Mcguire, Jr. James P. Reducing aberration in optical systems comprising cubic crystalline optical elements
US6995908B2 (en) 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US6970232B2 (en) 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US7453641B2 (en) 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US6669920B2 (en) 2001-11-20 2003-12-30 Corning Incorporated Below 160NM optical lithography crystal materials and methods of making
US7092069B2 (en) 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
US20030187369A1 (en) * 2002-03-28 2003-10-02 Lewis Stephen B. Optical pullback sensor for measuring linear displacement of a catheter or other elongate member
JP2004086128A (ja) 2002-07-04 2004-03-18 Nikon Corp 投影光学系、露光装置、およびデバイス製造方法
US7075720B2 (en) 2002-08-22 2006-07-11 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in optical systems
US7075905B2 (en) 2002-09-11 2006-07-11 Qualcomm Incorporated Quality indicator bit (QIB) generation in wireless communications systems
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US6906866B2 (en) 2003-10-15 2005-06-14 Carl Zeiss Smt Ag Compact 1½-waist system for sub 100 nm ArF lithography
EP1690139B1 (en) * 2003-12-02 2009-01-14 Carl Zeiss SMT AG Projection optical system
US20080151364A1 (en) 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
TWI259319B (en) 2004-01-23 2006-08-01 Air Prod & Chem Immersion lithography fluids
US8107162B2 (en) 2004-05-17 2012-01-31 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9223061B2 (en) * 2012-12-27 2015-12-29 Korea Basic Science Institute Method of reconstructing aspheric surface equations from measurements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329742A (ja) * 1996-06-10 1997-12-22 Nikon Corp 光学系の収差補正方法および収差補正光学系を備えた投影露光装置
US5808814A (en) * 1996-07-18 1998-09-15 Nikon Corporation Short wavelength projection optical system
JPH11133301A (ja) * 1997-08-29 1999-05-21 Nikon Corp 投影光学系、露光装置及び半導体デバイスの製造方法

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590510B2 (ja) 1988-02-03 1997-03-12 株式会社ニコン 照明装置
US5253110A (en) 1988-12-22 1993-10-12 Nikon Corporation Illumination optical arrangement
US5117225A (en) 1989-05-01 1992-05-26 Summit Micro Design Computer display screen monitoring system
JP3064366B2 (ja) 1990-09-19 2000-07-12 株式会社ニコン 投影露光装置、および該装置を用いる回路パターン製造方法
JP3047461B2 (ja) 1990-11-26 2000-05-29 株式会社ニコン 投影露光装置、投影露光方法、及び半導体集積回路製造方法
US5473410A (en) 1990-11-28 1995-12-05 Nikon Corporation Projection exposure apparatus
JP2691319B2 (ja) 1990-11-28 1997-12-17 株式会社ニコン 投影露光装置および走査露光方法
JPH0534593A (ja) 1991-05-22 1993-02-12 Olympus Optical Co Ltd 縮小投影レンズ
JPH0541344A (ja) 1991-08-05 1993-02-19 Nikon Corp 投影露光装置
JP3218478B2 (ja) 1992-09-04 2001-10-15 株式会社ニコン 投影露光装置及び方法
US5424552A (en) 1991-07-09 1995-06-13 Nikon Corporation Projection exposing apparatus
JP3203719B2 (ja) 1991-12-26 2001-08-27 株式会社ニコン 露光装置、その露光装置により製造されるデバイス、露光方法、およびその露光方法を用いたデバイス製造方法
US5477304A (en) 1992-10-22 1995-12-19 Nikon Corporation Projection exposure apparatus
US5559584A (en) 1993-03-08 1996-09-24 Nikon Corporation Exposure apparatus
JP3306962B2 (ja) 1993-03-08 2002-07-24 株式会社ニコン 露光装置
JPH06331941A (ja) 1993-05-19 1994-12-02 Olympus Optical Co Ltd 投影レンズ系
JP3429525B2 (ja) 1993-05-19 2003-07-22 オリンパス光学工業株式会社 投影レンズ系
JPH07128590A (ja) 1993-10-29 1995-05-19 Olympus Optical Co Ltd 縮小投影レンズ
JPH07128592A (ja) 1993-11-04 1995-05-19 Olympus Optical Co Ltd 縮小投影レンズ
US5850300A (en) 1994-02-28 1998-12-15 Digital Optics Corporation Diffractive beam homogenizer having free-form fringes
JPH0817719A (ja) 1994-06-30 1996-01-19 Nikon Corp 投影露光装置
US6087283A (en) 1995-01-06 2000-07-11 Nikon Corporation Silica glass for photolithography
JP2936138B2 (ja) 1995-01-06 1999-08-23 株式会社ニコン 石英ガラス、それを含む光学部材、並びにその製造方法
JP2770224B2 (ja) 1995-01-06 1998-06-25 株式会社ニコン 光リソグラフィ−用石英ガラス、それを含む光学部材、それを用いた露光装置、並びにその製造方法
US5707908A (en) 1995-01-06 1998-01-13 Nikon Corporation Silica glass
JPH11233437A (ja) 1997-12-08 1999-08-27 Nikon Corp 露光装置用光学系および露光装置
JP3711586B2 (ja) 1995-06-02 2005-11-02 株式会社ニコン 走査露光装置
JP3624973B2 (ja) * 1995-10-12 2005-03-02 株式会社ニコン 投影光学系
KR970067591A (ko) 1996-03-04 1997-10-13 오노 시게오 투영노광장치
JP3750123B2 (ja) 1996-04-25 2006-03-01 株式会社ニコン 投影光学系
JPH1079345A (ja) 1996-09-04 1998-03-24 Nikon Corp 投影光学系及び露光装置
JPH10142501A (ja) 1996-11-06 1998-05-29 Nikon Corp 投影露光装置および該投影露光装置を用いた半導体デバイスの製造方法
JP4029180B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4029181B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置
SG88824A1 (en) 1996-11-28 2002-05-21 Nikon Corp Projection exposure method
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JPH10197791A (ja) 1997-01-13 1998-07-31 Canon Inc 投影レンズ
JP3065017B2 (ja) 1997-02-28 2000-07-12 キヤノン株式会社 投影露光装置及びデバイスの製造方法
JP3823436B2 (ja) * 1997-04-03 2006-09-20 株式会社ニコン 投影光学系
JPH10284408A (ja) 1997-04-08 1998-10-23 Nikon Corp 露光方法
DE19818444A1 (de) * 1997-04-25 1998-10-29 Nikon Corp Abbildungsoptik, Projektionsoptikvorrichtung und Projektionsbelichtungsverfahren
JPH116957A (ja) 1997-04-25 1999-01-12 Nikon Corp 投影光学系および投影露光装置並びに投影露光方法
DE69732023T2 (de) * 1997-04-25 2005-12-15 Nikon Corp. Optisches Projektionssystem und Verfahren zu dessen Anwendung bei der Herstellung von Vorrichtungen
JPH10325922A (ja) 1997-05-26 1998-12-08 Nikon Corp 投影光学系
JPH10333030A (ja) 1997-06-04 1998-12-18 Nikon Corp 精密複写レンズ
KR100636451B1 (ko) 1997-06-10 2006-10-18 가부시키가이샤 니콘 광학 장치 및 그 세정 방법과 투영 노광 장치 및 그 제조방법
US5990926A (en) 1997-07-16 1999-11-23 Nikon Corporation Projection lens systems for excimer laser exposure lithography
JP3925576B2 (ja) * 1997-07-24 2007-06-06 株式会社ニコン 投影光学系、該光学系を備えた露光装置、及び該装置を用いたデバイスの製造方法
KR20010023314A (ko) 1997-08-26 2001-03-26 오노 시게오 노광 장치, 노광 방법, 투영 광학계의 압력 조정 방법 및노광 장치의 조립 방법
JPH1195095A (ja) 1997-09-22 1999-04-09 Nikon Corp 投影光学系
WO1999025008A1 (fr) 1997-11-07 1999-05-20 Nikon Corporation Dispositif d'exposition par projection, procede d'exposition par projection, et procede de fabrication d'un dispositif d'exposition par projection
JPH11219999A (ja) 1998-01-30 1999-08-10 Nikon Corp 基板の受け渡し方法、及び該方法を使用する露光装置
JPH11174365A (ja) 1997-12-15 1999-07-02 Nikon Corp 照明光学装置及び該照明光学装置を備えた露光装置並びに露光方法
JP3278407B2 (ja) 1998-02-12 2002-04-30 キヤノン株式会社 投影露光装置及びデバイス製造方法
US6198577B1 (en) 1998-03-10 2001-03-06 Glaxo Wellcome, Inc. Doubly telecentric lens and imaging system for multiwell plates
WO1999050892A1 (fr) 1998-03-31 1999-10-07 Nikon Corporation Dispositif optique et systeme d'exposition equipe du dispositif optique
JPH11307443A (ja) 1998-04-24 1999-11-05 Canon Inc 投影露光装置及びそれを用いたデバイスの製造方法
US6451507B1 (en) 1998-08-18 2002-09-17 Nikon Corporation Exposure apparatus and method
JP2000121934A (ja) 1998-10-16 2000-04-28 Nikon Corp 投影光学系
FR2785996B1 (fr) 1998-11-18 2001-02-23 Thomson Csf Adaptateur optique d'objectifs cinema sur camera video
SG97802A1 (en) 1998-11-27 2003-08-20 Nikon Corp Optical system for exposure apparatus and exposure apparatus
DE19855157A1 (de) 1998-11-30 2000-05-31 Zeiss Carl Fa Projektionsobjektiv
DE19855108A1 (de) 1998-11-30 2000-05-31 Zeiss Carl Fa Mikrolithographisches Reduktionsobjektiv, Projektionsbelichtungsanlage und -Verfahren
KR20000034967A (ko) 1998-11-30 2000-06-26 헨켈 카르스텐 수정-렌즈를 갖는 오브젝티브 및 투사 조명 장치
EP1141781B1 (de) 1998-11-30 2006-02-08 Carl Zeiss SMT AG Hochaperturiges projektionsobjektiv mit minimalem blendenfehler
DE19942281A1 (de) 1999-05-14 2000-11-16 Zeiss Carl Fa Projektionsobjektiv
EP1006388A3 (de) 1998-11-30 2002-05-02 Carl Zeiss Reduktions-Projektionsobjektiv der Mikrolithographie
US6867922B1 (en) 1999-06-14 2005-03-15 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus using the same
JP3359302B2 (ja) 1999-06-14 2002-12-24 キヤノン株式会社 投影露光装置
JP2000356741A (ja) 1999-06-14 2000-12-26 Canon Inc 投影光学系
EP1094350A3 (en) 1999-10-21 2001-08-16 Carl Zeiss Optical projection lens system
TW448307B (en) 1999-12-21 2001-08-01 Zeiss Stiftung Optical projection system
US6590715B2 (en) 1999-12-21 2003-07-08 Carl-Zeiss-Stiftung Optical projection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329742A (ja) * 1996-06-10 1997-12-22 Nikon Corp 光学系の収差補正方法および収差補正光学系を備えた投影露光装置
US5808814A (en) * 1996-07-18 1998-09-15 Nikon Corporation Short wavelength projection optical system
JPH11133301A (ja) * 1997-08-29 1999-05-21 Nikon Corp 投影光学系、露光装置及び半導体デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1139138A4 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780570A3 (en) * 2001-06-01 2008-01-02 ASML Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
US7382540B2 (en) 2002-03-01 2008-06-03 Carl Zeiss Smt Ag Refractive projection objective
US7495840B2 (en) 2002-03-08 2009-02-24 Karl-Heinz Schuster Very high-aperture projection objective
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
JP2007515660A (ja) * 2003-10-22 2007-06-14 カール・ツァイス・エスエムティー・アーゲー 浸漬リソグラフィー用屈折性投影対物レンズ
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2013191858A (ja) * 2003-10-28 2013-09-26 Nikon Corp 照明光学装置及び投影露光装置
JP2013211558A (ja) * 2003-10-28 2013-10-10 Nikon Corp 照明光学装置及び投影露光装置
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2011211230A (ja) * 2003-10-28 2011-10-20 Nikon Corp 照明光学装置及び投影露光装置
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2010192914A (ja) * 2003-10-28 2010-09-02 Nikon Corp 照明光学装置及び投影露光装置
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2007515773A (ja) * 2003-10-29 2007-06-14 カール ツアイス エスエムティー アーゲー フォトリソグラフィにおける光学アセンブリ
US8072700B2 (en) 2003-10-29 2011-12-06 Carl Zeiss Smt Gmbh Optical apparatus for use in photolithography
US9933707B2 (en) 2003-10-29 2018-04-03 Carl Zeiss Smt Ag Optical apparatus for use in photolithography
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8102508B2 (en) 2004-08-03 2012-01-24 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR101354801B1 (ko) 2004-08-03 2014-01-22 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
WO2006013734A1 (ja) * 2004-08-03 2006-02-09 Nikon Corporation 投影光学系、露光装置、および露光方法
KR101337007B1 (ko) 2004-08-03 2013-12-06 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
JP2014030044A (ja) * 2006-05-05 2014-02-13 Corning Inc 疑似テレセントリック結像レンズの歪調整

Also Published As

Publication number Publication date
EP1139138A1 (en) 2001-10-04
US6606144B1 (en) 2003-08-12
EP1139138A4 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
WO2001023935A1 (fr) Procede et dispositif d&#39;exposition par projection, et systeme optique de projection
KR100687035B1 (ko) 투영 광학계, 투영 광학계의 제조 방법, 투영 노광 장치, 투영 노광 방법, 마이크로 장치의 제조 방법 및 투영 노광 장치의 제조 방법
KR101647934B1 (ko) 투영 광학계, 노광 장치 및 노광 방법
JP2002287023A (ja) 投影光学系、該投影光学系を備えた投影露光装置及び投影露光方法
JP2002323652A (ja) 投影光学系,該投影光学系を備えた投影露光装置および投影露光方法
JP4706171B2 (ja) 反射屈折投影光学系、露光装置及び露光方法
JP5786919B2 (ja) 投影光学系、露光装置及び露光方法
JP2004004415A (ja) 投影光学系、露光装置および露光方法
JP2011049571A (ja) 反射屈折投影光学系、露光装置及び露光方法
JP2018010303A (ja) 露光装置およびデバイス製造方法
JP2016136273A (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2015132843A (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2014160274A (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2012073632A (ja) 反射屈折投影光学系、露光装置及び露光方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2001 526643

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020017006668

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09856959

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000962924

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000962924

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000962924

Country of ref document: EP