WO2001022509A1 - Feuille conductrice poreuse et procede de fabrication - Google Patents

Feuille conductrice poreuse et procede de fabrication Download PDF

Info

Publication number
WO2001022509A1
WO2001022509A1 PCT/JP2000/006382 JP0006382W WO0122509A1 WO 2001022509 A1 WO2001022509 A1 WO 2001022509A1 JP 0006382 W JP0006382 W JP 0006382W WO 0122509 A1 WO0122509 A1 WO 0122509A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
porous conductive
conductive sheet
organic substance
less
Prior art date
Application number
PCT/JP2000/006382
Other languages
English (en)
French (fr)
Inventor
Mikio Inoue
Takeji Nakae
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to KR1020017006439A priority Critical patent/KR20010080532A/ko
Priority to CA002351379A priority patent/CA2351379A1/en
Priority to EP00961082A priority patent/EP1139471A4/en
Publication of WO2001022509A1 publication Critical patent/WO2001022509A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a porous conductive sheet, which is preferably used as an electrode substrate of a conductive polymer electrolyte fuel cell or an electrolyzer and requires a fluid having good permeability and conductivity, and a method for producing the same.
  • Electrode substrates for fuel cells and electrolyzers are required to be permeable to fluids involved in reactions, such as hydrogen, oxygen, and water, in addition to conductivity.
  • the porous conductive sheet used to form the base material is required to have strength to withstand the forming process.
  • porous conductive sheet for forming such an electrode substrate examples include JP-A-6-20710, JP-A-7-32663-2, and JP-A-7-32662.
  • Japanese Patent Publication No. 220735 proposes a porous carbon plate in which carbon fibers having a short fiber length are bound with carbon.
  • the binding carbon of the porous carbon plate is reduced by the pressure applied when the electrode substrate is manufactured or when the electrode substrate is assembled into a device such as a battery. It is easily broken, and the porous carbon plate is easily broken by bending deformation. Therefore, demands for reducing the manufacturing cost of electrode substrates Since it is not possible to roll the obtained porous carbon plate into a roll and supply it to the production line, the porous carbon plate has a problem that the processing cost in the production process of the electrode base material increases.
  • WO 9287600 discloses a method of adding a conductive filler to a nonwoven fabric aggregate.
  • the fluid permeability required for the electrode base material is reduced. For this reason, there is a problem that the supply of fuel and oxygen and the water generated by the reaction are not sufficiently discharged.
  • the short carbon fiber aggregate in the form of paper has a high compression ratio, it is greatly deformed in the step of forming the electrode base material using the same and when the formed electrode base material is used as a battery, and the surface is hardly deformed. Due to the large roughness, short-circuits are likely to occur through an electrolyte layer such as a polymer electrolyte membrane, and there is a problem that the tensile strength is low.
  • the present invention has been made to solve the above-mentioned problems in the prior art, and has as its object the purpose of having low electric resistance, high fluid permeability, roll-up, and pressurization. It is an object of the present invention to provide a porous conductive sheet and a method for producing the same, which have a small change in thickness due to the following. Disclosure of the invention The porous conductive sheet according to the present invention,
  • the sheet has an electrical resistance value in the thickness direction of 50 mQ ′ cm 2 or less;
  • the porosity of the porous conductive sheet means that a substance involved in an electrode reaction such as hydrogen, oxygen, and water can move from one surface of the sheet to the other surface through the inside of the sheet. This means that a large number of voids (voids) exist in the sheet.
  • the degree of porosity can be described by the density of the sheet, which will be explained later.
  • Conductivity means electronic conductivity. Conductivity is obtained by the flow of electrons between carbon fibers. In order to use the porous conductive sheet according to the present invention as an electrode substrate, it is important that the conductivity is particularly high in the sheet thickness direction. In order to increase the conductivity, it is preferable that carbon particles such as carbon black, graphite, and expanded graphite are mixed in the sheet.
  • the maximum breaking radius of a sheet refers to the radius of the largest cylinder at the time when the sheet starts to break due to cracks or cracks in the sheet when the sheet is wound half a turn along the outside of the cylinder.
  • the carbon fibers used in the porous conductive sheet according to the present invention are preferably PAN (polyacrylonitrile) -based, pitch-based, and phenol-based carbon fibers.
  • PAN-based carbon fibers are particularly preferable because they are hardly broken when the sheet is pressed.
  • the thickness of the carbon fiber is preferably in the range of 1 to 15 m. More preferably, it is in the range of 3 to 10 wm.
  • the organic substance used in the porous conductive sheet according to the present invention has a role of increasing the strength of the porous conductive sheet and giving water repellency to the porous conductive sheet.
  • a fluororesin, polyvinyl alcohol (PVA), polyvinyl acetate (PVAc), cellulose, acrylic resin, phenol resin, epoxy resin, and polyimide are preferable.
  • the sheet is continuously connected to the process. It is preferred that a reliable supply be provided.
  • the sheet is preferably wound in a roll shape. That is, it is preferable that the sheet can be wound up in a roll without causing damage. This means that the sheet is not easily broken by bending deformation.
  • the tensile strength of the sheet is preferably 0.49 N / 10 mm or more in order to prevent the sheet from being broken by pulling in the subsequent steps such as application of the catalyst layer and integration with the electrolyte layer.
  • a width of at least 96 NZ10 mm is more preferable, and a width of at least 4.9 NZ10 mm is more preferable.
  • carbon fibers of the porous conductive sheet according to the present invention are preferably non-woven fabrics made of carbon fibers.
  • the sheet strength in all directions in the sheet surface can be increased.
  • the carbon fiber non-woven fabric is a non-woven fabric in which carbon fibers form a substantially random arrangement in the sheet surface direction. Some carbon fibers may be oriented in the sheet thickness direction. It is preferable that a large number of carbon fibers are arranged in the sheet surface direction in order to prevent a short circuit through the electrolyte layer when an electrode substrate is formed using a sheet.
  • a method for producing a carbon fiber nonwoven fabric there are a method of converting carbon fiber into a nonwoven fabric and a method of carbonizing a nonwoven fabric of carbon fiber precursor fibers.
  • a method of forming a nonwoven fabric there are a dry method such as a so-called force-dipping method, a melt blow method, a spun bond method, and a flash method, and a wet method such as a papermaking method. Since nonwoven fabrics made of oxidized acrylic fibers (flammable fibers and carbon fiber precursor fibers) are commercially available, they are fired in an inert atmosphere at a temperature of about 1,500 ° C. A carbon fiber nonwoven fabric can be created.
  • the electric resistance in the thickness direction of the porous conductive sheet according to the present invention needs to be 50 mQ ⁇ cm 2 or less in order to reduce voltage loss due to electric resistance. More preferably, it is 30 ⁇ ⁇ cm 2 or less, and further preferably, it is 2 OmQ-cm 2 or less.
  • one side of a glassy carbon plate having a smooth surface with a width of 50 mm, a length of 200 mm and a thickness of 1.5 mm was placed on one side of a 50 mm wide, 200 mm long, 0 mm thick.
  • the maximum breaking radius of the porous conductive sheet according to the present invention needs to be 25 mm or less.
  • the maximum breaking radius is the maximum radius at which the sheet starts to break when a sheet is wound half a circumference along the outside of a radius R (mm) cylinder and cracks and cracks occur in the sheet. If the maximum breaking radius exceeds 25 mm, it is difficult to wind it into a roll, and the sheet is liable to break in later processes.
  • the maximum breaking radius is preferably 10 mm or less.
  • the compression ratio CR (%) of the porous conductive sheet according to the present invention is determined in order to prevent the sheet from being crushed by pressure during the application of the catalyst layer in a later step, making uniform application impossible. It must be 40% or less in order to prevent filling the grooves of the separator and the air flow path. It is more preferably at most 20%, further preferably at most 10%.
  • the compression ratio CR (%) is calculated as the thickness T (mm) when the sheet surface is pressed with a pressure of 0.15 ⁇ 4 Pa and the thickness t (when the sheet surface is pressed with a pressure of 0.024 MPa). mm) from the following equation.
  • the center line average roughness (Ra) of the surface roughness of the porous conductive sheet according to the present invention is preferably 30; m or less. More preferably at 20 m or less Yes, more preferably 10 im or less. If the center line average roughness is large, it becomes difficult to apply the catalyst uniformly, and the unevenness tends to cause a short circuit through the electrolyte layer.
  • the cutoff value for determining the center line average roughness is 2.5 mm, and the measurement length is 8 mm.
  • the thickness of the porous conductive sheet according to the present invention affects fluid permeability and electrical resistance. If the thickness is small, the fluid permeability in the plane direction is not sufficient, and if the thickness is large, the electrical resistance increases. These have opposing directions. Therefore, in order to satisfy both characteristics simultaneously, it is preferable that the thickness at the time of pressurization at a surface pressure of 0.15 MPa is in the range of 0.13 to 0.7 mm, more preferably, 0.2 to 0.5 mm.
  • the sheet When the sheet is used for an electrode of a fuel cell, it is pressurized at a pressure of about 0.3 to 3 MPa, and the thickness in that case is 30 to 100% at 0.15 MPa. Yes, if the thickness at 0.15 MPa is within the above range, good fluid permeability and electrical resistance can be provided.
  • the density of the porous conductive sheet according to the present invention affects fluid permeability and electric fan.
  • thermosetting resin is preferably a phenol resin, an epoxy resin, or a polyimide.
  • the porous conductive sheet containing the thermosetting resin In order to increase the chemical resistance of the resin, it is preferable to heat-treat the porous conductive sheet containing the thermosetting resin at a temperature of 300 ° C. or more.
  • the temperature is more preferably at least 400 ° C., even more preferably at least 450 ° C. If the heat treatment temperature is high, the carbonization of the resin proceeds, and the sheet becomes brittle. Therefore, the heat treatment temperature is preferably at most 700 ° C, more preferably at most 550 ° C.
  • organic substances having low heat resistance such as PVA, PVAc, and cellulose can be removed. This heat treatment is preferably performed in an inert atmosphere to prevent oxidative decomposition of the resin.
  • thermosetting resin It is preferable to press the sheet before the heat treatment to reduce the compressibility of the sheet, and it is more preferable to heat the sheet simultaneously with the pressurization to harden a part or all of the thermosetting resin.
  • the porous conductive sheet contains carbon particles such as carbon black, graphite, and expanded graphite in order to reduce the electric resistance of the sheet.
  • Carbon particles can be added to the sheet made of carbon fiber or added to the sheet after the sheet is made.
  • the porous conductive sheet according to the present invention contains a water-repellent polymer material.
  • a water-repellent polymer material can be.
  • the water-repellent polymer include a polymer containing fluorine and a polymer containing silicon.
  • PT FE, FEP, and PFA are more preferable because they have high water repellency and chemical resistance and can provide stable water repellency for a long period of time.
  • the carbon fiber penetrates the electrolyte layer and causes a short circuit.
  • a surface smoothing layer containing carbon fibers or carbon particles may be provided on the surface of the porous conductive sheet.
  • Metals (excluding noble metals such as platinum, gold, ruthenium, and rhodium) contained in the porous conductive sheet are ionized and enter the polymer electrolyte membrane to lower the conductivity of the membrane.
  • the amounts of sodium, calcium, and aluminum, which are typical metals contained in the porous conductive sheet, are preferably 500 ppm or less, and 3 ⁇ ⁇ ⁇ m or less for all three elements. Is more preferred.
  • Sulfur and halogen contained in the porous conductive sheet lower the catalytic activity, and therefore are preferably small.
  • the amounts of typical halogens, chlorine and sulfur, contained in the porous conductive sheet are 200 ppm Or less, more preferably 100 ppm or less.
  • Methods for reducing the amount of metals, halogens and sulfur elements include a method of reducing the amount contained in raw materials, a method of reducing the amount mixed in the process, and a method of removing a porous conductive sheet by washing it with warm water or the like.
  • porous conductive sheet according to the present invention described above can be suitably used, for example, as an electrode substrate for a fuel cell.
  • the electrode substrate is a material that constitutes a part of the electrode, and fulfills the function of supplying and discharging substances involved in the electrode reaction, the function of collecting current, and the function of maintaining the shape and strength of the electrode. A thing.
  • An electrode may be formed by providing a catalyst layer on the porous conductive sheet according to the present invention, and an electrochemical unit may be formed by further providing an electrolyte layer, particularly a polymer electrolyte membrane. These electrodes and electrochemical units are used in fuel cells, batteries, and electrolyzers.
  • a unit is formed by arranging the electrode base material and the catalyst layer in layers, or by arranging the electrode base material, the catalyst layer and the polymer electrolyte membrane, and the fuel is formed by a laminate including a plurality of the units.
  • a battery is formed, and the fuel cell drives a moving body such as a car, a ship, and a submarine.
  • the porous conductive sheet is incorporated into the electrode or the electrochemical unit as an electrode substrate, and serves to transmit electrode reactants such as hydrogen, oxygen, and water, and to flow an electric current.
  • the catalyst layer is composed of a mixture of a catalyst powder in which fine particles of noble metal such as platinum are supported on carbon black and a polymer electrolyte or a fluororesin, and is applied on the electrode substrate and the polymer electrolyte membrane.
  • the polymer electrolyte membrane many proton conductive membranes are used, and there are fluororesins and hydrocarbons. Among them, fluororesins having high chemical resistance are often used.
  • the method for producing the porous conductive sheet according to the present invention will be described. The wet papermaking method will be described as an example.
  • a carbon fiber with a fiber diameter of about 3 to 20 m is cut to a length of about 5 to 13 mm, dispersed in water, and the dispersed short carbon fiber is formed on a wire mesh to be composed of short carbon fiber Form the sheet.
  • An organic substance serving as a binder such as PVA or acrylic resin is attached to the obtained sheet.
  • the sheet with the organic matter attached is dried to obtain a porous conductive sheet.
  • a binder made of an organic substance is mixed, and the carbon fiber and the binder are formed on a wire mesh, and dried at a temperature of 100 ° C or more for about 10 minutes.
  • a porous conductive sheet can also be obtained.
  • Pressing by a roll press is also preferably used.
  • the clearance at the time of performing a single press is less than 300 / xm. This clearance is preferably in the range from 100 to 25 Om. If the clearance is too small, the porous conductive sheet may be broken, and if the clearance is too large, the effect of lowering the compressibility of the porous conductive sheet is not sufficient.
  • Roll press rather than a predetermined clearance at one time, It is preferable to set the predetermined clearance a plurality of times while reducing the clearance, since the porous conductive sheet is less likely to be broken.
  • an impregnation step can be provided as necessary.
  • a fluororesin such as PFA, FEP and PTFE is adhered to the obtained porous conductive sheet, and heat-treated at a temperature of 300 to 400 ° C. to obtain a water-repellent material. Obtain a porous conductive sheet.
  • thermosetting resin included in the wet papermaking method as an example
  • the method for producing the porous conductive sheet in that case is as follows.
  • a carbon fiber having a fiber diameter of about 3 to 20 / xm is forced to a length of about 5 to 13 mm, dispersed in water, and the dispersed short carbon fiber is formed on a wire mesh, and the short carbon fiber is formed.
  • An organic substance serving as a binder such as PVA or acrylic resin is adhered to the obtained sheet.
  • the sheet with the organic matter attached is dried to obtain a porous conductive sheet.
  • a binder consisting of organic matter is mixed, and the carbon fiber and binder are formed on a wire mesh, dried at a temperature of 100 ° C or more for about 10 minutes, and A high quality conductive sheet can also be obtained.
  • thermosetting resin solution such as a phenol resin, an epoxy resin, or a polyimide
  • the solvent is removed. At this time, about 2.5 to 40% by weight of the resin is attached.
  • the porous conductive sheet impregnated with the thermosetting resin is pressed. With this press, the compressibility and surface roughness of the porous conductive sheet can be reduced.
  • the surface pressure is in a range of 0.49 to 9.8 MPa. This surface pressure is preferably 0.98 to 4.9 MPa. If the pressing pressure is low, the effect of lowering the compressibility of the porous conductive sheet is not sufficient, and if the pressing pressure is high, the porous conductive sheet is broken.
  • the clearance at the time of performing roll pressing is 300 m or less. This clearance is preferably in the range of 100 to 250 zxm. If the clearance is too small, the porous conductive sheet may be broken, and if the clearance is too large, the effect of lowering the compressibility of the porous conductive sheet is not sufficient.
  • thermosetting resin it is preferable to perform heating at the same time as pressing to cure part or all of the thermosetting resin.
  • the porous conductive sheet obtained in the pressing step is heat-treated.
  • the heat treatment temperature is preferably at least 300 ° C.
  • an electrochemical device such as a fuel cell or an electrolyzer
  • many units including a porous conductive sheet are stacked.
  • This pressure is preferably 1.2 to 20 times the normal pressure, more preferably 1.5 to 10 times, and even more preferably 2 to 5 times. If the pressure is too high, the material constituting the laminate will be destroyed, and the effect of reducing electrical resistance will not be sufficient at a low pressure that is not different from the normal pressure. About 1 second to about 10 minutes is sufficient to increase the pressure.
  • Comparative Example 1 is a porous conductive sheet before impregnation with Ketjen black powder.
  • the basis weight of the porous conductive sheet was 30 g / m 2 , and the content of the mixture of PVA and PVAc was 22%.
  • Comparative Example 2 is a porous conductive sheet before impregnation with Ketjen black powder.
  • the basis weight of the porous conductive sheet was 30 g / m 2
  • the content of the mixture of PVA and PVAc was 22%.
  • a porous conductive sheet was obtained in the same manner as in Comparative Example 1, except that the basis weight of the porous conductive sheet was changed to 15 gZm 2 .
  • the porous conductive sheet of Comparative Example 3 was pressed in the thickness direction with a surface pressure of 2.9 MPa, and the pressure was released to obtain a porous conductive sheet.
  • the porous conductive sheet of Comparative Example 3 was impregnated with PFA disposable (AD-2CR, manufactured by Daikin Industries, Ltd.) and dried, and then sandwiched between two graphite plates to obtain 35 gZ cm 2 While pressurizing at the surface pressure, heat treatment was performed at 350 ° C. for 1 hour to obtain a porous conductive sheet.
  • the basis weight of the porous conductive sheet was 55 g / m 2 , and the PFA content was 11%.
  • a porous conductive sheet was obtained in the same manner as in Example 3 except that the porous conductive sheet was roll-pressed before impregnation with the PFA dispersion.
  • Roll press is set to a linear pressure of 3900 NZ cm9, and the clearance is 350 m, 300 m, 250 m, once each and clearance 20 m Performed 5 times, 2 times at 0.
  • the basis weight of the porous conductive sheet was 63 g / m 2 , and the PFA content was 12%.
  • a porous conductive sheet was obtained in the same manner as in Example 3, except that the roll press performed in Example 4 before impregnation with the PFA dispersion was performed after impregnation with the PFA dispersion and drying.
  • the basis weight of the porous conductive sheet was 61 g / m 2 , and the PFA content was 12%.
  • the porous conductive sheet of Comparative Example 3 was impregnated with a methanol solution of a resol type phenol resin and dried.
  • the adhesion amount of the phenolic resin was calculated from the solution concentration so as to be 11% of the weight of the porous conductive sheet to be impregnated.
  • the dried sheet was pressed at a temperature of 144 ° C. and a surface pressure of 0.98 MPa for 30 minutes. Further, the pressed sheet was heat-treated in air at a temperature of 400 ° C. for 1 hour to obtain a porous conductive sheet.
  • the porous conductive sheet of Comparative Example 3 was impregnated with a mixed solvent solution of an epoxy resin in methanol and acetone, and dried.
  • the adhesion amount of the epoxy resin was calculated from the solution concentration, and was adjusted to 25% of the porous conductive sheet to be impregnated.
  • Bisphenol A type liquid epoxy resin (Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.), novolak type phenolic resin (PSM 43 226, Gunei Chemical Co., Ltd.) Co., Ltd.) and imidazole (Epicure EM 124, manufactured by Yuka Shell Epoxy Co., Ltd.) are mixed and dissolved at a weight ratio of 186: 105: 1.
  • the dried sheet was pressed at a temperature of 170 ° C. and a surface pressure of 0.98 MPa for 30 minutes. Further, the pressed sheet was heat-treated in air at a temperature of 400 ° C. for 1 hour to obtain a porous conductive sheet. Comparative Example 4
  • the porous conductive sheet of Comparative Example 3 was heat-treated in air at a temperature of 400 ° C. for 30 minutes to obtain a porous conductive sheet.
  • the basis weight was 51 gZm 2 . Comparative Example 5
  • Acetylene black powder (denka black powder, manufactured by Denki Kagaku Kogyo KK) was dispersed in water in which PVA was dissolved, impregnated into the porous conductive sheet of Comparative Example 1, and dried to remove water. A porous conductive sheet was obtained. The weight of the porous conductive sheet was 55 g / m 2 , the content of acetylene black was 41%, and the content of PVA and PVAc was 17%.
  • a porous conductive sheet was obtained in the same manner as in Comparative Example 5.
  • the basis weight of the porous conductive sheet was 62 gZm 2 , the content of acetylene black was 47%, and the content of PVA and PVAc was 16%.
  • a liquid in which acetylene black powder is dispersed in water in which PVA is dissolved is impregnated into a cooled sheet after heating the porous conductive sheet of Comparative Example 1 at 800 ° C. in a nitrogen atmosphere. Was. Thereafter, water was removed by drying, and roll pressing was performed at a linear pressure of 490 Ncm and a clearance of 0 to obtain a porous conductive sheet.
  • the basis weight of the porous conductive sheet was 56 g / m 2 , the acetylene black content was 53%, and the PVA content was 6%. Comparative Example 8
  • a porous conductive sheet was obtained in the same manner as in Comparative Example 6, except that Ketjen black powder was used instead of acetylene black powder.
  • the weight of the porous conductive sheet was 44 gZm 2 , the content of Ketjen Black was 37%, and the content of PVA was 12%.
  • Comparative Example 9 A porous conductive sheet was obtained in the same manner as in Example 4 except that the roll press was performed at a temperature of 150, the clearance was set to 0, and the linear pressure was set to 39 ON / cm. The weight of the porous conductive sheet was 58 gZm 2 , and the content of PFA was 8%.
  • the porous conductive sheet of Comparative Example 1 was impregnated with a mixed methanol solution of a novolak-type phenolic resin and a resole-type phenolic resin and then dried. Parts by weight were attached. Two sheets of the phenolic resin-containing sheet were stacked and press-molded at a temperature of 145 ° C. and a surface pressure of 0.4 MPa to cure the phenolic resin. Next, the plate obtained by curing the phenol resin was heated at a temperature of 2,200 in an inert atmosphere to carbonize the phenol resin, thereby obtaining a porous conductive sheet.
  • a commercially available carbon fiber fabric (manufactured by E-TEK, Inc.) is used as the porous conductive sheet of Comparative Example 10.
  • the fabric indicated as "A" c 1 oth in the catalog, plain weave, basis weight 1 1 6 g Zm 2, the thickness that is a 0. 3 5 mm.
  • Table 1 shows the physical properties of the porous conductive sheets obtained in Examples 1 to 7 and Comparative Examples 1 to 11 described above.
  • Electrodes for fuel cells were prepared using the porous conductive sheets of Comparative Examples 1 and 2, and hydrogen was supplied to the fuel electrode and air was supplied to the air electrode to measure the electrode characteristics. The results are shown in Table 2.
  • Comparative Example 2 Although the electric resistance was low, the voltage was low, and the electrode substrate made of a porous conductive sheet was thin, so that the fluid permeability in the direction of the electrode substrate surface was low, To the catalyst layer facing the mountain part forming the gas flow path It is estimated that the supply of hydrogen and oxygen was not sufficient.
  • the electric resistance of the porous conductive sheet directly affects the power generation efficiency.
  • a decrease in power generation efficiency exceeding 10% is a problem.
  • the following tests were performed using the porous conductive sheets of Example 6, Comparative Example 10 and Comparative Example 11.
  • Nafion 112 (E.I.du Pontde Nemours & Co., Inc.), a polymer electrolyte membrane, between two porous conductive sheets of 1 cm x 1 cm ), Pressurize at 110 ° C at a surface pressure of 2.4MPa for 10 minutes, release the pressure, cool, and place two porous conductive layers sandwiching the polymer electrolyte membrane.
  • the resistance between conductive sheets was measured with a tester. The results are shown in Table 4.
  • the resistance value measured with a tester should originally be infinite due to Nafion 112, which does not have electronic conductivity, but the porous conductive sheet of Comparative Example 11 has a large surface roughness As a result, a short circuit occurs through the polymer electrolyte membrane, and the electrical resistance is reduced. In contrast, in the porous conductive sheets of Example 6 and Comparative Example 10, no short circuit occurred.
  • the porous conductive sheets of Examples 1 to 7 have balanced pressure difference, thickness, density, electric fan, surface roughness, and tensile strength at the time of air permeation. In other words, the electrode substrate has a good balance of fluid permeability and electrical resistance in the thickness and plane directions, and can exhibit good battery characteristics. Since the compression ratio is low, uniform application of the catalyst layer is easy, and it is difficult to fill the grooves in Separee, which are the flow paths for fuel and air. Furthermore, the maximum breaking radius is small and it is possible to wind up in a roll shape.
  • the electrical resistance in the thickness direction of the porous conductive sheet of Example 5 was measured at a surface pressure of 0.98 MPa. This is referred to as Comparative Example 12.
  • Comparative Example 12 Using the porous conductive sheet of Example 5 and a similar measuring device, after pressing for 2 minutes at a surface pressure of 2.9 MPa, the pressure was reduced to 0.98 MPa and the resistance was measured. .
  • Comparative Example 15 and Example 11 were obtained in the same manner as in Comparative Example 12 and Example 8, except that the porous conductive sheet of Comparative Example 9 was used. Using the porous conductive sheet of Comparative Example 9 and a similar measuring device, a pressure was applied at a surface pressure of 0.98 MPa, and the resistance value was measured after 2 hours. This is referred to as Comparative Example 16.
  • Table 5 shows the physical properties of the porous conductive sheets obtained in Examples 8 to 11 and Comparative Examples 12 to 16.
  • the electrical resistance could be reduced by 15 to 30% by temporarily increasing the pressure applied to the resistance measurement laminate including the porous conductive sheet and the carbon plate. This reduction effect is much greater than that of Comparative Example 16 over time.
  • the electric resistance in the thickness direction, the maximum breaking radius, and the compressibility are in specific ranges, the electric resistance is low, the fluid permeability is high, and the sheet can be made into a roll.
  • a porous conductive sheet with a small thickness change due to pressure is provided. This porous conductive sheet is preferably used for the production of an electrode substrate because it has a small voltage drop due to electric resistance and fluid permeability and can be easily processed into an electrode.
  • a carbon fiber dispersed in a liquid is formed into a net-like form, an organic substance serving as a binder is attached thereto, and the resultant is dried.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

明 細 書 多孔質導電性シ一トおよその製造方法 技術分野
本発明は、 導電性固体高分子型燃料電池や電気分解装置の電極基材と して用いられる好ましい流体の透過性と導電性が要求される多孔質導電 性シ一トおよびその製造方法に関する。 背景技術
燃料電池や電気分解装置の電極基材には、 導電性に加えて反応に関与 する、 例えば、 水素、 酸素、 水などの流体の透過性が要求される。 また、 当該電極基材を成形するに当たり、 基材を形成するために用いられる多 孔質導電性シートには、 成形加工に耐えるための強度が要求される。
このような電極基材を形成する多孔質導電性シ一トとして、 特開平 6 - 2 0 7 1 0号公報、 特開平 7— 3 2 6 3 6 2号公報、 あるいは、 特開 平 7— 2 2 0 7 3 5号公報に、 繊維長が短い炭素繊維が炭素で結着せし められた多孔質炭素板が提案されている。
しかしながら、 このような多孔質炭素板は、 炭素繊維またはその前駆 体繊維からなる短繊維の集合体を作り、 これに樹脂を含浸または混合し、 さらに焼成することによって作られるため、 製造コストが高いという問 題がある。
また、 多孔質炭素板の密度が低い場合には、 電極基材の製造時や電極 基材を装置、 例えば、 電池に組んだときに作用する加圧力により、 多孔 質炭素板の結着炭素が壊れやすく、 また、 曲げ変形により多孔質炭素板 は容易に破壊する。 そのため、 電極基材の製造コスト低減のために要求 される多孔質炭素板をロール状に巻いて製造ラインに供給することがで きないため、 多孔質炭素板は、 電極基材の製造工程での加工コストが増 大するという問題を有する。
一方、 特開平 7— 1 0 5 9 5 7号公報、 あるいは、 特開平 8— 7 8 9 7号公報に、 紙状の炭素短繊維集合体を電極基材として用いることが提 案されている。 このような電極基材は、 厚さ方向の電気抵抗が高いため、 電圧低下が大きいという問題を有している。
厚さ方向の電気抵抗を改善する方法として、 W O 9 8 2 7 6 0 6号公 報に、 不織布状の繊維集合体に導電性フィラ一を添加する方法が示され ている。 しかし、 フイラーゃフイ ラ一を固定するためのバインダ一を多 く加えた場合、 電極基材として要求される流体の透過性が低くなる。 こ のため、 燃料や酸素の供給、 反応によって生成した水の排出が十分に行 われないという問題がある。 紙状の炭素短繊維集合体は、 更に、 圧縮率 が高いため、 それを用いた電極基材の成形工程や成形された電極基材を 電池として使用する際に、 変形が大きく、 また、 表面粗さが大きいため、 高分子電解質膜等の電解質層を貫通して短絡が起こり易く、 更に、 引張 強さが弱いと云う問題を有する。
織物状の繊維集合体を用いる方法もあるが、 この場合は、 加圧による 厚さ変化が大きいことや、 糸束間の隙間や凹凸が大きいことのため、 触 媒塗布等の後工程における処理の実施が難しくなる問題がある。
本発明は、 従来の技術における上述した諸問題を解決するためになさ れたもので、 その目的は、 電気抵抗が低く、 流体の透過性が高く、 ロー ル状の巻き上げが可能で、 加圧による厚さ変化が少ない多孔質導電性シ ートおよびその製造方法を提供することにある。 発明の開示 本発明に係る多孔質導電性シートは、
(a) 有機物が付着された多数本の炭素繊維にて形成されたシー卜か らなり、
(b) 該シートの厚さ方向の電気抵抗値が、 5 0mQ ' c m2以下であ り、
(c ) 該シ一卜の最大破壊半径が、 2 5 mm以下であり、
(d) 該シートの圧縮率が、 40 %以下である。
ここで、 多孔質導電性シートにおける多孔質とは、 シートの一方の表 面からシート内を通り他方の表面に至る、 水素、 酸素、 水等の電極反応 に関与する物質の移動を可能とする、 多数の空隙 (空孔) がシートに存 在することを意味する。 多孔質の程度は、 シートの密度により表すこと ができ、 この密度は、 後に説明される。
導電性とは、 電子導電性を意味する。 炭素繊維間を電子が流れること により導電性が得ちれる。 本発明に係る多孔質導電性シートを電極基材 として用いるには、 特にシート厚さ方向の導電性が高いことが重要であ る。 この導電性を高くするために、 カーボンブラックや黒鉛、 膨張黒鉛 等の炭素粒子がシートに混在していることが好ましい。
シ一卜の最大破壊半径とは、 シートを円筒の外側に沿わせて半周分巻 いたときに、 シートに亀裂ゃヒビなどが生じて破壊が始まるときの最大 の円筒の半径を云う。
本発明に係る多孔質導電性シートの製造方法は、
(a) 液体中に分散している多数本の炭素繊維を網上に抄造すること により炭素繊維シートを形成するシート成形工程と、
(b) 抄造された炭素繊維シートに、 有機物を該炭素繊維のバインダ 一として付着する有機物付着工程と、
(c ) 有機物が付着したシートを乾燥する乾燥工程と、 (d) 乾燥したシートを、 0. 4 9乃至 9. 8 AlP aの面圧で加圧す る加圧工程、 および Zまたは、 3 0 0 zm以下のクリアランスでロール プレスする加圧工程とからなる。 発明を実施するための最良の形態
本発明の好ましい実施の態様を説明する。
本発明に係る多孔質導電性シートに用いられる炭素繊維としては、 P AN (ポリアクリロニトリル) 系、 ピッチ系、 フエノール系の炭素繊維 が好ましい。 これらの中でも、 PAN系炭素繊維は、 シートを加圧した 場合に壊れにくいため、 特に好ましい。
炭素繊維の太さが細いと、 流体の透過性が低くなる傾向がある。 炭素 繊維の太さが太いと、 多孔質導電性シート上に触媒層を塗布するときに、 塗布液のシートへのしみ込みが多くなる傾向がある。 このため、 炭素繊 維の太さは、 1乃至 1 5 mの範囲が好ましい。 より好ましくは、 3乃 至 1 0 w mの範囲である。
本発明に係る多孔質導電性シートに用いられる有機物は、 多孔質導電 性シートの強度を高めるためや、 多孔質導電性シー卜に撥水性を与える ための役目を有する。 有機物としては、 フッ素樹脂、 ポリビニルアルコ ール (PVA) 、 ポリ酢酸ビニル (PVA c) 、 セルロース、 アクリル 樹脂、 フエノール樹脂、 エポキシ樹脂、 ポリイミ ドが好ましい。
多孔質導電性シートに含まれる有機物は、 その量があまり多いと、 電 気抵抗を増大させ、 流体の透過性を低下させるので、 多孔質導電性シー 卜に含まれる有機物は、 3 5重量%以下が好ましく、 より好ましくは、 2 5重量%以下である。
多孔質導電性シートは、 これを用いた製品、 例えば、 電極基材を製造 するための工程の生産効率を高めるために、 当該工程へのシートの連続 的な供給がなされることが好ましい。 その際、 シートは、 ロール状に巻 かれていることが好ましい。 すなわち、 シートは、 損傷が発生すること 無く、 ロール状に巻き上げられることが可能であることが好ましい。 こ のことは、 シート力 曲げ変形によっても壊れにくいことを意味する。 シートの引張強さは、 触媒層塗布、 電解質層との一体化等の後工程で、 シートが引っ張りによって壊れないようにするため、 0 . 4 9 N / 1 0 mm幅以上が好ましく、 1 . 9 6 N Z 1 0 mm幅以上がより好ましく、 4 . 9 N Z 1 0 m m幅以上が更に好ましい。
本発明に係る多孔質導電性シートの多数本の炭素繊維は、 炭素繊維か らなる不織布であることが好ましい。 炭素繊維不織布を用いることによ り、 シ一ト面内全ての方向のシ一卜強度を高くすることができる。
炭素繊維不織布とは、 炭素繊維がシート面方向において概ねランダム な配列をなしている不織布を云う。 一部の炭素繊維は、 シート厚さ方向 に向いていても構わない。 多数の炭素繊維がシー卜面方向に配列されて いることは、 シートを用いて電極基材を作成した場合、 電解質層を通し ての短絡を防止する上で好ましい。
炭素繊維不織布の製造方法としては、 炭素繊維を不織布にする方法と、 炭素繊維前駆体繊維の不織布を炭化する方法がある。 不織布化の方法と しては、 いわゆる、 力一ディ ング法、 メルトブロー法、 スパンボンド法、 フラッシュ法のような乾式法、 あるいは、 抄紙法のような湿式法がある。 なお、 アクリル系の酸化繊維 (耐炎化繊維、 炭素繊維前駆体繊維) か らなる不織布は、 市販されているので、 これを不活性雰囲気中で約 1, 5 0 0 °Cの温度で焼成し、 炭素繊維不織布を作成することができる。 こ の場合、 市販のァクリル系の酸化繊維不織布を適切に選ぶことにより、 例えば、 目付が 8 0 g Zm 2、 厚さが 0 . 3 m mの炭素繊維不織布を得る ことができる。 シートが、 炭素繊維からなる織布を含むことによって、 シート強度を 高くすることができるが、 織布の場合、 炭素繊維の配列方向が揃ってい るため、 不織布に比べ多くの炭素繊維を必要とし、 コス ト高になること、 糸束間の隙間や凹凸により後工程の触媒層塗布が難しくなること、 シー ト端部でほつれが発生すること、 斜め方向の引っ張りによって目ずれや シートの変形が起こりやすい問題がある。 この点から、 シートを形成す る炭素繊維の集合体は、 炭素繊維不織布であることが最も好ましいと云 える。
本発明に係る多孔質導電性シー卜の厚さ方向の電気抵抗は、 電気抵抗 による電圧ロスを小さくするために、 5 0 mQ · c m2以下であることが 必要である。 より好ましくは、 3 0ιηΩ · c m2以下、 更に好ましくは 2 OmQ - c m2以下である。
この電気抵抗の測定に当たり、 幅 5 0mm、 長さ 2 0 0 mm、 厚み 1. 5 mmの平滑表面を有するガラス状炭素板の片面に、 幅 5 0 mm、 長さ 2 0 0 mm, 厚み 0. 1 mmの銅箔を貼り付けた試験電極を 2枚用意す る。 2枚の試験電極を、 ガラス状炭素板同士を向かい合わせて、 中央部 で直交するように重ねる。
電気抵抗を測定しょうとする多孔質導電性シートを、 直径 48 mmの 円形にカッ トし、 前記向かい合うガラス状炭素板の間に挟み、 多孔質導 電性シ一卜の面積に対して 0. 9 8 MP aの圧力となるよう加圧する。
2枚の試験電極の一端に電流用の端子を設け、 他端に電圧用の端子を 設ける。 電流用の端子を用いて 2枚の試験電極の間に 1 Aの電流を流す。 電圧用端子間の電圧 V (V) を測定し、 次式により電気抵抗 R (mQ - c m2) を算出する。 ここで πは円周率である。 電圧の読みとりは、 前記 加圧力をかけた後、 電圧値が安定するまで待ってから行う。 安定するま での時間は、 1乃至 3分程度である。 R = V X 2. 4 X 2. 4 X π X 1 , 0 0 0
本発明に係る多孔質導電性シートの最大破壊半径は、 2 5 mm以下で あることが必要である。
最大破壊半径とは、 シートを半径 R (mm) の円筒の外側に沿わせて 半周分巻いたときに、 シー卜に亀裂ゃヒビなどが生じて破壊が始まると きの最大の半径を云う。 最大破壊半径が 2 5 mmを越えるとロール状に 巻く ことが難しく、 また、 シートが後工程で壊れやすい。 最大破壊半径 は、 好ましくは 1 0mm以下である。
本発明に係る多孔質導電性シートの圧縮率 C R (%) は、 後工程にお ける触媒層塗布時に圧力によってシートがつぶれて均一な塗布ができな くなるのを防止するため、 更に、 燃料や空気の流路であるセパレー夕の 溝を埋めるのを防止するために、 4 0 %以下であることが必要である。 より好ましくは 2 0 %以下、 更に好ましくは 1 0 %以下である。
圧縮率 C R (%) は、 シート面を 0. 1 5 λ4 P aの圧力で加圧した時 の厚み T (mm) と 0. 0 2 4 M P aの圧力で加圧した時の厚み t (m m) とから次式により算出される。
C R (%) = [ ( t - T) / t ] X 1 0 0
本発明に係る多孔質導電性シートは、 その厚さ方向に 1 4 cmZ秒で 空気を透過させたときの圧力損失が、 2 0 mmA Q以下であることが好 ましい。 圧力損失が低いということは、 空気の透過性が高いことを意味 する。 この範囲内にあることにより、 燃料電池等の電気化学装置の電極 基材として求められる流体の透過性を満たすことができる。 このような 見地から言うと、 圧力損失は、 より好ましくは 1 0 mmA Q、 更に好ま しくは 5 mmA qである。
本発明に係る多孔質導電性シートの表面粗さの中心線平均粗さ (Ra) が 3 0 ; m以下であることが好ましい。 より好ましくは 2 0 m以下で あり、 更に好ましくは 1 0 i m以下である。 中心線平均粗さが大きいと 触媒を均一に塗ることが難しくなるとともに、 その凹凸により電解質層 を通しての短絡が起こりやすくなる。
中心線平均粗さを求める時のカッ トオフ値は、 2. 5mm、 測定長さ は、 8 m mである。
本発明に係る多孔質導電性シー卜の厚みは、 流体の透過性と電気抵抗 に影響をもたらす。 厚みが薄いと、 面方向の流体透過性が十分でなく、 厚いと、 電気抵抗増大の原因になる。 これらは、 相反する方向性を有す る。 よって、 両特性を同時に満足せしめるには、 0. 1 5MP aの面圧 での加圧時の厚みが、 0. 1 3乃至 0. 7 mmの範囲であることが好ま しく、 より好ましくは、 0. 2乃至 0. 5mmである。
シートが燃料電池の電極に用いられる場合、 約 0. 3乃至 3 MP aの 圧力で加圧されるが、 その場合の厚みは、 0. 1 5MP aの場合の 3 0 乃至 1 0 0 %であり、 0. 1 5 M P aでの厚みが上記範囲にあれば良好 な流体の透過性と電気抵抗を具備せしめることができる。
本発明に係る多孔質導電性シートの密度は、 流体の透過性と電気抵枋 に影響をもたらす。 密度が高いと、 流体の透過性が低くなり、 低いと、 電気抵抗が高くなる。 これらは、 相反する方向性を有する。 よって、 両 特性を同時に満足せしめるには、 0. 1 5 MP aの面圧での加圧時の密 度が、 0. 0 5乃至 0. 6 gZ c m3の範囲であることが好ましい。 より 好ましくは 0. 1 5乃至 0. 5 gZ c m3であり、 更に好ましくは 0. 2 5乃至 0. 4 g/c m3である。
シートが燃料電池の電極に用いられる場合、 約 0. 3乃至 3MP aの 圧力で加圧されるが、 その場合の密度は、 0. 1 5MP aの場合の 1 0 0〜 3 0 0 %であり、 0. 1 5 P aでの密度が上記範囲にあれば良好 な流体の透過性と電気抵抗を具備せしめることができる。 本発明に係る多孔質導電性シートに含まれる有機物には、 熱硬化性榭 脂が含まれていることが好ましい。 多孔質導電性シートは、 撥水処理な どの目的で、 3 0 0乃至 4 5 0 °Cの温度で熱処理されることがある。 熱 硬化性樹脂を含むことで、 熱処理後においても、 シートの機械強度、 形 態保持性を保つことが出来る。
熱硬化樹脂は、 この熱処理を考慮すると、 フエノール樹脂、 エポキシ 樹脂、 ポリイミ ドが好ましい。
樹脂の耐薬品性を高めるため、 熱硬化性樹脂を含む多孔質導電性シー トを、 3 0 0 °C以上の温度で熱処理することが好ましい。 より好ましく は 4 0 0 °C以上の温度、 更に好ましくは 4 5 0 °C以上の温度である。 熱 処理温度が高いと、 樹脂の炭化が進み、 シートがもろくなるので、 熱処 理温度は 7 0 0 °C以下の温度が好ましく、 更に好ましくは 5 5 0 °C以下 温度である。 この熱処理により、 P V A、 P V A c、 セルロース等の耐 熱性の低い有機物を除去することができる。 樹脂の酸化分解を防止する ため、 この熱処理は不活性雰囲気下で行うことが好ましい。
熱処理前にシートを加圧することは、 シートの圧縮率を下げるために 好ましく、 加圧と同時に加熱して、 熱硬化性樹脂の一部または全部を硬 化させることは更に好ましい。
上述した通り、 多孔質導電性シートが力一ボンブラックや黒鉛、 膨張 黒鉛等の炭素粒子を含むことは、 シー卜の電気抵抗低減のために好まし い。 炭素粒子は、 炭素繊維からなるシート作成時に加えることや、 シー ト作成後にシートに加えることが可能である。
特に、 力一ボンブラックは、 そのシートとの接着を高めるため、 上述 の熱硬化性樹脂や後述の撥水性高分子等の樹脂と混合して、 シー卜に含 ませることが好ましい。
本発明に係る多孔質導電性シートは、 撥水性の高分子材料を含むこと ができる。 撥水性の高分子としては、 フッ素を含む高分子やケィ素を含 む高分子がある。 ポリテトラフルォロエチレン (PT F E) 、 テトラフ ルォロエチレン—へキサフルォロプロピレン共重合体 (F E P) 、 テト ラフルォロエチレン一パーフルォロアルキルビニルエーテル共重合体 (P F A) 、 フッ素含有ゴムなどが好ましく用いられる。 この内、 PT F E、 F E P, P FAは、 撥水性、 耐薬品性が高く長期間安定した撥水 性が得られるため、 より好ましい。
撥水性の高分子材料が多いとシートの電気抵抗が増大し、 少ないと十 分な撥水性が得られないため、 多孔質導電性シートに含まれる撥水性の 高分子材料の量は、 3乃至 3 5重量%が好ましく、 8乃至 2 5重量%が 更に好ましい。 撥水性は水の接触角で評価することができる。 接触角は、 1 1 0度以上が好ましい。
シート成形後のシート処理工程 (後工程) において、 多孔質導電性シ ートに触媒層を塗布するときの触媒層しみ込みを防止するため、 更に、 炭素繊維が電解質層を貫通して短絡を起こすのを防止するために、 多孔 質導電性シートの表面に炭素繊維や、 炭素粒子を含む表面平滑化層を設 けてもよい。
多孔質導電性シートに含まれる金属 (白金、 金、 ルテニウム、 ロジゥ ムなどの貴金属を除く) は、 イオン化して高分子電解質膜に入り、 膜の 導電性を低下させるので、 少ない方がよい。 多孔質導電性シートに含ま れる代表的な金属であるナトリウム、 カルシウム、 アルミニウムの量は、 3元素合わせて、 5 0 0 p pm以下であることが好ましく、 Ι Ο Ο ρ ρ m以下であることが更に好ましい。
多孔質導電性シートに含まれる硫黄およびハロゲンは、 触媒活性を低 下させるので、 少ない方がよい。 多孔質導電性シートに含まれる代表的 なハロゲンである塩素と硫黄の量は、 これらを合わせて、 2 00 p pm 以下であることが好ましく、 1 0 0 p p m以下であることが更に好まし い。
金属、 ハロゲン、 硫黄元素を少なくする方法は、 原材料に含まれる量 を減らす方法、 工程途中で混入する量を減らす方法、 多孔質導電性シー トを温水等で洗浄して取り除く方法等がある。
上述した本発明に係る多孔質導電性シートは、 例えば、 燃料電池用の 電極基材として好適に用いることができる。
ここで、 電極基材とは、 電極の一部を構成する材料との意味で、 電極 反応に関与する物質の供給、 排出の機能や集電機能、 電極の形態保持や 強度維持の機能を果たすものをいう。
本発明に係る多孔質導電性シート上に、 触媒層を設けて、' 電極とした り、 更に、 電解質層、 特に、 高分子電解質膜を設けて、 電気化学ュニッ トとすることができる。 これらの電極や電気化学ユニッ トは、 燃料電池 や、 電池、 電気分解装置に用いられる。
電極基材と触媒層とを層状に配置したり、 電極基材と触媒層と高分子 電解質膜を配置したりして、 ユニッ トを構成し、 そのユニッ トの複数個 を含む積層体により燃料電池が構成され、 この燃料電池によって、 例え ば、 自動車、 船舶、 潜水艦などの移動体が駆動される。
この時、 多孔質導電性シートは、 電極基材として、 電極や電気化学ュ ニッ トに組み込まれており、 水素や酸素、 水等の電極反応物質を透過さ せたり、 電流を流す役目を果たす。 触媒層は、 白金などの貴金属微粒子 をカーボンブラックに担持した触媒粉末と高分子電解質やフッ素樹脂の 混合物からなり、 電極基材ゃ高分子電解質膜上に塗布される。 高分子電 解質膜は、 プロ トン伝導性のものが多く用いられ、 フッ素樹脂系や炭化 水素系のものがあるが、 中でも、 耐薬品性が高いフッ素樹脂系のものが 多く用いられる。 本発明に係る多孔質導電性シートの製造方法について説明する。 湿式 の抄紙法を例に説明する。
(a) シート成形工程 (抄造工程)
繊維径が約 3乃至 2 0 mの炭素繊維を、 約 5乃至 1 3 mmの長さに カッ トし、 水中に分散せしめ、 分散した炭素短繊維を金網上に抄造し、 炭素短繊維からなるシー卜を成形する。
(b) 有機物付着工程
得られたシートに、 P VA、 アクリル樹脂等のバインダーとなる有機 物を付着させる。
(c ) 乾燥工程
有機物が付着したシート乾燥させ、 多孔質導電性シートを得る。
炭素繊維を水中で分散させる際に、 有機物からなるバインダ一を混合 して、 炭素繊維とバインダーを金網上に抄造して、 1 0 0°C以上の温度 にて、 約 1 0分乾燥させ、 多孔質導電性シートを得ることもできる。
(d) 加圧工程
シートの圧縮率を低下させるために、 プレスを行う。 プレス方法は、 0. 49乃至 9. 8 M P aの範囲の面圧でシートをプレスする。 この面 圧は、 0. 9 8乃至 4. 9MP aの範囲であることが好ましい。 プレス 圧力が低いと、 多孔質導電性シー卜の圧縮率を低下させる効果が十分で なく、 プレス圧力が高いと、 多孔質導電性シートが破壊される。
ロールプレスによる加圧も好ましく用いられる。 口一ルプレスを行う 際のクリアランスは、 3 0 0 /xm以下である。 このクリアランスは、 1 0 0乃至 2 5 O mの範囲であることが好ましい。 クリァランスが小さ すぎると、 多孔質導電性シートが破壊される可能性があり、 クリアラン スが大きすぎると、 多孔質導電性シー卜の圧縮率を低下させる効果が十 分ではない。 ロールプレスは、 1回で所定のクリアランスにするよりも、 クリアランスを小さくしながら複数回で所定のクリアランスにする方が 多孔質導電性シ一卜が壊れにくいため好ましい。
この加圧工程の前または後、 あるいは、 後に述べる熱処理工程の前に、 必要に応じて、 含浸工程を設けることができる。
(e) 含浸工程
得られた多孔質導電性シートに、 P FA、 F E P, P T F E等のフッ 素樹脂を約 5乃至 40重量%付着させ、 3 0 0乃至 40 0 °Cの温度で熱 処理して、 撥水性の多孔質導電性シートを得る。
湿式抄紙法で、 熱硬化性樹脂を含む場合を例にすると、 その場合の多 孔質導電性シートの製造方法は、 次の通りである。
(a) シート成形工程 (抄造工程)
繊維径が約 3乃至 2 0 /xmの炭素繊維を約 5乃至 1 3 mmの長さに力 ッ トし、 水中に分散せしめ、 分散した炭素短繊維を金網上に抄造し、 炭 素短繊維からなるシ一トを成形する。
(b) 有機物付着工程
得られたシートに、 PVA、 アクリル樹脂等のバインダーとなる有機 物を付着させる。
(c ) 乾燥工程
有機物が付着したシート乾燥させ、 多孔質導電性シー卜を得る。
炭素繊維を水中で分散させる際に、 有機物からなるバインダーを混合 して、 炭素繊維とバインダーを金網上に抄造して、 1 0 0°C以上の温度 にて、 約 1 0分乾燥させ、 多孔質導電性シートを得ることもできる。
(d) 含浸工程
得られた多孔質導電性シートに、 フエノール樹脂、 エポキシ樹脂、 ポ リイミ ド等の熱硬化性樹脂溶液を含浸させた後、 溶媒を除去する。 この 際、 樹脂が、 約 2. 5乃至 4 0重量%付着するようにする。 ( e ) 加圧工程
熱硬化性樹脂を含浸した多孔質導電性シートをプレスする。 このプレ スによって、 多孔質導電性シートの圧縮率、 表面粗さを小さくすること ができる。 面圧によるプレスを行う場合は、 面圧は、 0 . 4 9乃至 9 . 8 M P aの範囲とする。 この面圧は、 0 . 9 8乃至 4 . 9 M P aである ことが好ましい。 プレス圧力が低いと、 多孔質導電性シートの圧縮率を 低下させる効果が十分でなく、 プレス圧力が高いと、 多孔質導電性シー 卜が破壊される。
ロールプレスによる加圧も好ましく用いられる。 ロールプレスを行う 際のクリアランスは、 3 0 0 m以下である。 このクリアランスは、 1 0 0乃至 2 5 0 zx mの範囲が好ましい。 クリアランスが小さすぎると多 孔質導電性シートが破壊される可能性があり、 クリアランスが大きすぎ ると多孔質導電性シート圧縮率を低下させる効果が十分ではない。
プレスと同時に加熱を行って、 熱硬化樹脂の一部または全部を硬化さ せることが好ましい。 熱硬化性樹脂の一部または全部を硬化させること で、 後工程における多孔質導電性シートの変形、 すなわち、 厚みの増加 を抑制することができる。
( f ) 熱処理工程
熱硬化性樹脂の硬化を完全に行うため、 また、 熱硬化性樹脂の耐薬品 性を高めるため、 加圧工程で得られた多孔質導電性シートを熱処理する。 熱処理温度は、 3 0 0 °C以上が好ましい。 この熱処理に先立って、 フ ッ素樹脂等の撥水材料の含浸を行い、 撥水材料の熱処理と兼ねることも 工程削減のために好ましい。
燃料電池や電気分解装置等の電気化学装置において、 多孔質導電性シ ートを含むユニッ トは、 多数積層される。 この積層体の電気抵抗を低減 するために、 積層体にかかる圧力を一時的に高くすることが好ましい。 この圧力は、 常用圧力の 1. 2乃至 2 0倍が好ましく、 より好ましくは 1. 5乃至 1 0倍、 更に好ましくは 2乃至 5倍である。 圧力を高く しす ぎると、 積層体構成材料の破壊が起こり、 常用圧力と変わらない低い圧 力では、 電気抵抗低減効果が十分ではない。 圧力を高くする時間は、 約 1秒乃至約 1 0分で十分である。
常用圧力を高くすると、 電解質層や触媒層の経時的な変形や破壊が起 こりやすく、 その結果、 電気的短絡や流体の拡散性低下などの問題が発 生する。 常用時には、 温度や湿度も高いため、 変形、 破壊が一層起こり やすい。 これに対し、 一時的に圧力を高くすることは、 経時的な変形や 破壊にはつながらず、 電気抵抗を低減させる目的を達成することが出来 る。
実施例 1
長さ 1 2 mmにカツ トした繊維径が 7 mの P A N系炭素繊維の短繊 維を水中で分散し、 網上に抄造した。 抄造して得られた炭素短繊維から なるシートに、 PVAと PVA cの混合物 (混合比 1 : 3) からなるェ マルジヨンを含浸させ、 次いで乾燥させ、 多孔質導電性シートを得た。 次に、 ケッチェンブラック粉末 (E C 6 0 0 J D, ライオン株式会社 製) を、 P VAを溶解させた水中に分散させた溶液を、 得られた多孔質 導電性シートに含浸させた後、 乾燥により水を除去して、 多孔質導電性 シートを得た。 得られた多孔質導電性シートの目付は 4 2 gZm2、 ケッ チェンブラックの含有率は 2 2 %、 P V Aおよび P V A cの含有率は 2 3 %であった。
比較例 1
実施例 1において、 ケッチェンブラック粉末を含浸させる前の多孔質 導電性シ一トを比較例 1 とする。 多孔質導電性シ一卜の目付は 3 0 g/ m2、 P V Aと P V A cの混合物の含有率は 2 2 %であった。 比較例 2
多孔質導電性シー卜の目付を 1 5 gZm2とした以外は比較例 1と同様 にして多孔質導電性シートを得た。
比較例 3 :
長さ 1 2 mmにカツ トした PAN系炭素繊維の短繊維と膨張黒鉛粉末 (嵩密度 0. 1 4 gZc m3、 平均粒径約 1 5 0 m) を、 重量比で 2 : 3に混合し、 水中に分散させた。 この分散液を用いて、 炭素繊維の短繊 維に膨張黒鉛粉末が付着したシートを、 金網上に抄造した。 抄造した炭 素短繊維からなるシートに、 ? 八と? 八じの混合物 (混合比 1 : 3) からなるェマルジヨンを含浸させ、 乾燥させ、 多孔質導電性シートを得 た。 多孔質導電性シートの目付は 5 6 gZm2、 ? 八と? 八じの混合 物の含有率は 1 0 %であった。
実施例 2
比較例 3の多孔質導電性シートを、 厚さ方向に 2. 9 MP aの面圧で 加圧し、 圧力を解除して多孔質導電性シートを得た。
実施例 3
比較例 3の多孔質導電性シートに、 P F Aデイスパージヨン (AD— 2 CR、 ダイキン工業株式会社製) を含浸させて乾燥した後、 2枚の黒 鉛板で挟んで、 3 5 gZ c m2の面圧で加圧しながら、 3 5 0 °Cの温度で 1時間熱処理して、 多孔質導電性シートを得た。 多孔質導電性シートの 目付は 5 5 g/m2、 P F A含有率は 1 1 %であった。
実施例 4
実施例 3で P F Aデイスパージョンの含浸前に、 多孔質導電性シー卜 のロールプレスを行った以外は実施例 3と同様にして多孔質性導電シ一 トを得た。 ロールプレスは、 線圧 3 9 0 NZ c mに設定 9、 クリアラン スを 3 5 0 m、 3 0 0 m、 2 5 0 ^ mで各 1回とクリアランス 2 0 0 で 2回の合計 5回行った。 多孔質導電性シー卜の目付は 6 3 g/ m2、 P F A含有率は 1 2 %であった。
実施例 5
実施例 4で P F Aデイスパージョ ンの含浸前に行ったロールプレスを、 P F Aディスパージョンを含浸させて乾燥した後に行った以外は実施例 3と同様にして多孔質導電性シートを得た。 多孔質導電性シー卜の目付 は 6 1 g/m2、 P F A含有率は 1 2 %であった。
実施例 6
比較例 3の多孔質導電性シートに、 レゾ一ル型フエノール樹脂のメタ ノール溶液を含浸し乾燥した。 フエノール樹脂の付着量は、 溶液濃度か ら計算して、 含浸する多孔質導電性シート重量の 1 1 %になるようにし た。 乾燥後のシートを、 1 4 5°Cの温度で、 0. 9 8 MP aの面圧で、 3 0分プレスした。 更に、 プレス後のシートを、 空気中 40 0 °Cの温度 で 1時間熱処理して、 多孔質導電性シートを得た。
実施例 7
比較例 3の多孔質導電性シートに、 エポキシ樹脂のメタノール、 ァセ トン混合溶媒溶液を含浸し乾燥した。 エポキシ樹脂の付着量は、 溶液濃 度から計算して、 含浸する多孔質導電性シ一卜の 2 5 %になるようにし た。 エポキシ樹脂のメタノール、 アセトン混合溶媒溶液には、 ビスフエ ノール A型液状エポキシ樹脂 (ェピコート 8 2 8, 油化シェルエポキシ (株)製) 、 ノボラック型フエノール樹脂 (P SM 43 2 6, 群栄化学(株) 製) 、 イミダゾール (ェピキュア E M l 24, 油化シェルエポキシ(株) 製) が 1 8 6 : 1 0 5 : 1の重量比で混合、 溶解されている。 乾燥後の シートを、 1 7 0 °Cの温度で、 0. 9 8 M P aの面圧で 3 0分プレスし た。 更に、 プレス後のシートを、 空気中 40 0 °Cの温度で 1時間熱処理 して、 多孔質導電性シートを得た。 比較例 4
比較例 3の多孔質導電性シートを、 空気中、 400 °Cの温度で 3 0分 熱処理して、 多孔質導電性シートを得た。 目付は 5 1 gZm2であった。 比較例 5
アセチレンブラック粉末 (デンカブラック粉状, 電気化学工業株式会 社製) を P VAを溶解させた水中に分散させ、 比較例 1の多孔質導電性 シートに含浸させた後乾燥により水を除去して多孔質導電性シ一トを得 た。 多孔質導電性シートの目付は 5 5 g/m2、 アセチレンブラックの含 有率は 4 1 %、 PVAおよび PVA cの含有率は 1 7 %であった。
比較例 6
比較例 5と同様にして多孔質導電性シ一トを得た。 多孔質導電性シー トの目付は 62 gZm2、 アセチレンブラックの含有率は 4 7 %、 P V A および P V A cの含有率は 1 6 %であった。
比較例 7
アセチレンブラック粉末を P V Aを溶解させた水中に分散させた液を、 比較例 1の多孔質導電性シートを窒素雰囲気中 8 0 0 °Cの温度で加熱し た後冷却したシ一トに含浸させた。 その後乾燥により水を除去した後、 線圧49 0 Nノc m、 かつ、 クリアランス 0で、 ロールプレスして多孔 質導電性シートを得た。 多孔質導電性シートの目付は 5 6 g/m2、 ァセ チレンブラックの含有率は 5 3 %、 PV Aの含有率は 6 %であった。 比較例 8
アセチレンブラック粉末の代わりにケッチェンブラック粉末を用いた 他は比較例 6と同様にして、 多孔質導電性シートを得た。 多孔質導電性 シートの目付は 44 gZm 2、 ケッチェンブラックの含有率は 3 7 %、 P V Aの含有率は 12 %であった。
比較例 9 実施例 4でロールプレスを、 1 5 0 の温度に、 クリアランスを 0に、 線圧を 3 9 O N/ cmにした以外は実施例 4と同様にして多孔質導電性 シートを得た。 多孔質導電性シートの目付は 5 8 gZm2、 P FAの含有 率は 8 %であった。
比較例 1 0
比較例 1の多孔質導電性シートにノボラック型フエノール樹脂とレゾ ール型フエノール樹脂の混合メタノール溶液を含浸後乾燥して、 多孔質 導電性シ一ト 4 5重量部に対してフヱノール樹脂 5 5重量部を付着させ た。 このフエノール樹脂含有シートを 2枚重ね、 145°Cの温度、 0. 4MP aの面圧でプレス成形し、 フエノール樹脂を硬化させた。 次に、 このフエノール樹脂を硬化させた板を、 不活性雰囲気中にて、 2, 2 0 0 の温度で加熱して、 フエノール樹脂を炭素化させ、 多孔質導電性シ ートを得た。
比較例 1 1
市販の炭素繊維織物 (E— TEK, I n c . 製) を比較例 1 0の多孔 質導電性シ一トとする。 この織物は、 カタログ中で" A " c 1 o t hと 示され、 平織で、 目付は 1 1 6 g Zm2、 厚さは 0. 3 5 mmとされてい る。
以上の実施例 1乃至 7、 および、 比較例 1乃至 1 1において得られた 多孔質導電性シー卜の物性が表 1に示される。
比較例 1および比較例 2の多孔質導電性シ一トを用いて燃料電池用電 極を作成し、 燃料極には水素、 空気極には空気を供給して電極特性を測 定した。 その結果が、 表 2に示される。
比較例 2は、 電気抵抗が低いにも拘わらず、 電圧が低く、 多孔質導電 性シ一トからなる電極基材が薄いため、 電極基材面方向の流体の透過性 が低く、 セパレー夕のガス流路を形成する山部分と対向する触媒層への 水素や酸素の供給が十分行われなかったと推定される。
実施例 3、 比較例 9、 および、 比較例 5の多孔質導電性シートの電気 抵抗値が発電効率に与える影響を試算した。 その結果が表 3に示される。 ここで、 電圧低下率は、 発電効率低下率に相当する。
このように、 多孔質導電性シートの電気抵抗は、 発電効率の低下に直 接的に影響する。 特に、 1 0 %を超える発電効率の低下は問題である。 実施例 6、 比較例 1 0、 および、 比較例 1 1の多孔質導電性シートを 用いて次の試験を行った。 1 c mx 1 c mの多孔質導電性シ一ト 2枚の 間に、 高分子電解質膜である N a f i o n 1 1 2 (E. I . d u P o n t d e N e mo u r s & C o. , I n c製) を挟み、 1 1 0 °Cの温度、 2. 4MP aの面圧で、 1 0分加圧した後、 圧力を解除して 冷却し、 高分子電解質膜を挟んだ 2枚の多孔質導電性シート間の抵抗を テスタ一で測った。 その結果が表 4に示される。
テスターで測る抵抗値は、 電子導電性を有しない N a f i o n 1 1 2 のために、 本来は無限大となるはずであるが、 比較例 1 1の多孔質導電 性シートは、 表面粗さが大きいため、 高分子電解質膜を貫通した短絡が 起こり、 電気抵抗が小さくなつている。 これに対し、 実施例 6、 比較例 1 0の多孔質導電性シートでは、 短絡は起こっていないことが分かる。 実施例 1乃至 7の多孔質導電性シートは、 空気透過時の差圧、 厚み、 密度、 電気抵枋、 表面粗さ、 引張強さのバランスが取れている。 すなわ ち、 電極基材として、 厚さ方向および面方向の流体の透過性、 電気抵抗 のバランスが取れており、 良好な電池特性を発揮できるものである。 こ れらは、 圧縮率も低いため、 触媒層の均一な塗布が容易で、 燃料、 空気 の流路となるセパレ一夕の溝部分を埋めにくい。 更に、 最大破壊半径が 小さくロール状に卷き上げることが可能である。
比較例 3と実施例 2との比較、 ならびに、 比較例 3および比較例 9と 実施例 3、 実施例 4、 実施例 5および比較例 9との比較から、 多孔質導 電性シ一トを加圧することで、 圧縮率が減少する効果が得られているこ とが分かる。
比較例 1 2、 実施例 8
実施例 5の多孔質導電性シー卜の厚さ方向の電気抵抗を、 面圧が 0 . 9 8 M P aの状態で測定した。 これを比較例 1 2 とする。 実施例 5の多 孔質導電性シートおよび同様の測定装置を用いて、 面圧 2 . 9 M P aで 2分加圧した後、 圧力を 0 . 9 8 M P aに下げて抵抗値を測定した。 こ れを実施例 8とする。
比較例 1 3、 比較例 1 4、 実施例 9、 実施例 1 0
実施例 6、 比較例 1 0の多孔質導電性シートを用いた他は比較例 1 2、 実施例 8と同様にして、 比較例 1 3、 比較例 1 4、 実施例 9、 実施例 1 0を得た。
比較例 1 5、 比較例 1 6、 実施例 1 1
比較例 9の多孔質導電性シートを用いた他は比較例 1 2、 実施例 8と 同様にして比較例 1 5、 実施例 1 1 を得た。 比較例 9の多孔質導電性シ ートおよび同様の測定装置を用いて、 面圧 0 . 9 8 M P aで加圧し 2時 間後の抵抗値を測定した。 これを比較例 1 6とする。
以上の実施例 8乃至 1 1、 および、 比較例 1 2乃至 1 6において得ら れた多孔質導電性シー卜の物性が表 5に示される。
多孔質導電シ一トと炭素板を含む、 抵抗測定用積層体にかかる圧力を 一時的に高くすることで、 電気抵抗を 1 5〜 3 0 %低減できた。 この低 減効果は、 比較例 1 6の経時的抵抗低減効果よりずっと大きい。 表 1
Figure imgf000024_0001
表中 *印 : 強度が低いため測定不能 表 1 (続き)
Figure imgf000025_0001
表中 *印 : 強度が低いため測定不能 表 2
Figure imgf000026_0001
Figure imgf000026_0002
表 4
電気抵抗 実施例 6 1 0 ΜΩ以上 比較例 1 0 1 0 ΜΩ以上 比較例 1 1 1 5 0 Ω 表 5
Figure imgf000027_0001
産業上の利用可能性
本発明によれば、 厚さ方向の電気抵抗、 最大破壊半径、 圧縮率が特定 の範囲にあるため、 電気抵抗が低く、 流体の透過性が高く、 シートの口 ール化が可能で、 加圧による厚さ変化が少ない多孔質導電性シー卜が提 供される。 この多孔質導電性シートは、 電気抵抗や、 流体の透過性によ る電圧低下が少なく、 加工により電極とすることが容易なため、 電極基 材の製造に好ましく用いられる。
本発明によれば、 液体中に分散せしめた炭素繊維を、 網状に抄造し、 バインダーとなる有機物を付着させ、 乾燥させた後、 得られたシートを
0 . 4 9乃至 9 . 8 M P aの範囲の面圧で加圧すること、 および Zまた は、 得られたシートを 3 0 0 z m以下のクリアランスでロールプレスす ることにより、 上記特性を有する多孔質導電性シートが、 安定して、 低 コストで、 製造できる。

Claims

請 求 の 範 囲
1. (a) 有機物が付着された多数本の炭素繊維にて形成されたシー トからなり、 ( b ) 該シートの厚さ方向の電気抵抗値が、 5 0mQ , c m2以下であり、 ( c ) 該シートの最大破壊半径が、 2 5mm以下であり
(d) 該シートの圧縮率が、 40 %以下である多孔質導電性シート。
2. 前記シートの圧力損失が、 2 OmmAQ以下である請求の範囲第 1項に記載の多孔質導電性シート。
3. 前記シートの表面粗さが、 3 0 以下である請求の範囲第 2項 に記載の多孔質導電性シート。
4. 前記シートの引張強さが、 0. 49 NZ 1 Omm幅以上である請 求の範囲第 3項に記載の多孔質導電性シート。
5. 前記シートの厚さ力 0. 1 3乃至0. 7 mmであり、 密度が、
0. 0 5乃至 0. 6 g/c m3である請求の範囲第 4項に記載の多孔質導 電性シート。
6. 前記シートを形成する多数本の炭素繊維が、 不織布の形態をなし ている請求の範囲第 1乃至 5項のいずれかに記載の多孔質導電性シート。
7. 前記有機物が、 熱硬化性樹脂を含む有機物である請求の範囲第 1 乃至 5項のいずれかに記載の多孔質導電性シート。
8. 前記有機物が、 熱硬化性樹脂を含む有機物である請求の範囲第 6 項に記載の多孔質導電性シー卜。
9. 前記シートが、 炭素粒子を含むシートである請求の範囲第 1乃至 5項のいずれかに記載の多孔質導電性シート。
1 0. 前記シートが、 炭素粒子を含むシートである請求の範囲第 6項 に記載の多孔質導電性シート。
1 1. 前記シートが、 撥水性の高分子材料を含むシートである請求の 範囲第 1乃至 5項のいずれかに記載の多孔質導電性シート。
1 2. 前記シートが、 撥水性の高分子材料を含むシートである請求の 範囲第 6項に記載の多孔質導電性シ一ト。
1 3. ( a) 液体中に分散している多数本の炭素繊維を網上に抄造す ることにより炭素繊維シートを形成するシート成形工程と、 (b) 抄造 された炭素繊維シートに、 有機物を該炭素繊維のバインダ一として付着 する有機物付着工程と、 (c ) 有機物が付着したシートを乾燥する乾燥 工程と、 (d) 乾燥したシートを、 0. 49乃至 9. 8 MP aの面圧で 加圧する加圧工程、 および/または、 3 0 0 m以下のクリアランスで ロールプレスする加圧工程とからなる多孔質導電性シー卜の製造方法。
1 4. 前記有機物が、 熱硬化性樹脂を含む有機物である請求の範囲第 1 3項に記載の多孔質導電性シートの製造方法。
1 5 . 前記加圧工程により加圧されたシートを、 3 0 0 °C以上の温度 で熱処理する熱処理工程を有する請求の範囲第 1 3あるいは 1 4項に記 載の多孔質導電性シー卜の製造方法。
PCT/JP2000/006382 1999-09-22 2000-09-19 Feuille conductrice poreuse et procede de fabrication WO2001022509A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020017006439A KR20010080532A (ko) 1999-09-22 2000-09-19 다공질, 도전성시트 및 그 제조방법
CA002351379A CA2351379A1 (en) 1999-09-22 2000-09-19 Porous, electrically conductive sheet and method for production thereof
EP00961082A EP1139471A4 (en) 1999-09-22 2000-09-19 POROUS, ELECTRICALLY CONDUCTIVE SHEET AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/268221 1999-09-22
JP26822199 1999-09-22

Publications (1)

Publication Number Publication Date
WO2001022509A1 true WO2001022509A1 (fr) 2001-03-29

Family

ID=17455604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006382 WO2001022509A1 (fr) 1999-09-22 2000-09-19 Feuille conductrice poreuse et procede de fabrication

Country Status (5)

Country Link
EP (1) EP1139471A4 (ja)
KR (1) KR20010080532A (ja)
CN (1) CN1338126A (ja)
CA (1) CA2351379A1 (ja)
WO (1) WO2001022509A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208424A (ja) * 2001-01-12 2002-07-26 Toyota Motor Corp 燃料電池用微短検出方法
EP1273685A1 (en) * 2000-11-24 2003-01-08 Toho Tenax Co., Ltd. Carbon fiber sheet and method for producing the same
WO2004085728A1 (ja) * 2003-03-26 2004-10-07 Toray Industries, Inc. 多孔質炭素基材、その製造方法、ガス拡散体、膜-電極接合体、および、燃料電池
JP2005158324A (ja) * 2003-11-21 2005-06-16 Honda Motor Co Ltd 燃料電池
WO2005081339A1 (ja) * 2004-02-23 2005-09-01 Matsushita Electric Industrial Co., Ltd. ガス拡散層およびこれを用いた燃料電池
WO2009107891A1 (en) * 2008-02-26 2009-09-03 Ju Seong Jeong Acryl carbide fiber incombustible material
WO2011045889A1 (ja) * 2009-10-13 2011-04-21 パナソニック株式会社 燃料電池及びその製造方法
JP2011189309A (ja) * 2010-03-16 2011-09-29 Yoshida Skt:Kk フッ素樹脂材の製造方法及びフッ素樹脂材
JP2012018882A (ja) * 2010-07-09 2012-01-26 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材の製造方法
WO2012026498A1 (ja) * 2010-08-27 2012-03-01 東邦テナックス株式会社 導電シート及びその製造方法
JP2012204068A (ja) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd 多孔質電極基材とその製造方法
WO2013084712A1 (ja) 2011-12-07 2013-06-13 フタムラ化学株式会社 導電性連通多孔質フィルム及びその製造方法
JP2015118944A (ja) * 2011-01-27 2015-06-25 三菱レイヨン株式会社 多孔質電極基材、その製造方法、前駆体シート、膜−電極接合体及び固体高分子型燃料電池
JP2016091996A (ja) * 2014-11-04 2016-05-23 三菱レイヨン株式会社 多孔質電極基材およびそれを用いた膜−電極接合体並びにそれを用いた固体高分子型燃料電池
JP2016219136A (ja) * 2015-05-15 2016-12-22 帝人株式会社 固体高分子電解質膜の補強部材
JPWO2015146984A1 (ja) * 2014-03-27 2017-04-13 日本バイリーン株式会社 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法
US9716278B2 (en) 2012-03-30 2017-07-25 Mitsubishi Chemical Corporation Porous electrode base material, method for manufacturing same, and precursor sheet
JP2018178183A (ja) * 2017-04-11 2018-11-15 三洋展創工業株式会社 電極、電気分解機能付き浴槽、及び電極の製造方法
JP2018204150A (ja) * 2017-06-06 2018-12-27 日本バイリーン株式会社 炭素繊維シ−ト、ガス拡散電極、膜−電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JP2020133048A (ja) * 2019-02-19 2020-08-31 阿波製紙株式会社 炭素繊維シート材、成形体、炭素繊維シート材の製造方法および成形体の製造方法
WO2021200215A1 (ja) 2020-03-30 2021-10-07 東レ株式会社 ガス拡散電極基材の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144476B2 (en) 2002-04-12 2006-12-05 Sgl Carbon Ag Carbon fiber electrode substrate for electrochemical cells
US20060166075A1 (en) * 2002-09-30 2006-07-27 Toray Industries , Inc., A Corporation Of Japan, Flame-resistant acrylic fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for production thereof
CN1323455C (zh) * 2004-10-10 2007-06-27 上海河森电气有限公司 一种电化学发电装置中导电与气体扩散层材料的制造方法
US20070259244A1 (en) * 2004-12-09 2007-11-08 Yutaka Araki Sheet Produced by Paper Making Methods, Multilayered Sheet, and Separator for Fuel Cell
CN101277912B (zh) * 2005-09-29 2013-03-27 东丽株式会社 多孔碳片及其制造方法
EP2829569A4 (en) * 2012-03-19 2015-09-09 Toray Industries CARBON FIBER REINFORCED CARBON FIBER PREFORM, AND CARBON FIBER PREFORM MANUFACTURING METHOD
GB201311261D0 (en) * 2013-06-25 2013-08-14 Technical Fibre Products Ltd Dissipation of static electricity
CN110541174B (zh) * 2018-05-28 2021-11-12 丰田自动车株式会社 聚酰亚胺/碳纤维布分解水制氧电极及其制备方法
CN114000263B (zh) * 2021-11-22 2022-09-27 江苏英伟医疗有限公司 全自动生产抗落絮无纺布的方法及临床全防护医用手术单

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184638A2 (en) * 1984-10-17 1986-06-18 Hitachi, Ltd. Process of producing a flexbile fuel cell electrode from a carbon paper
US4759989A (en) * 1985-11-25 1988-07-26 Kureha Kagaku Kogyo Kabushiki Kaisha Electrode substrate for fuel cell
JPH09278558A (ja) * 1996-04-09 1997-10-28 Osaka Gas Co Ltd 炭素質多孔体およびその製造方法
JPH10125334A (ja) * 1996-08-28 1998-05-15 Tokai Carbon Co Ltd リン酸型燃料電池用多孔質炭素材およびその製造方法
JPH10162838A (ja) * 1996-11-29 1998-06-19 Toray Ind Inc 固体高分子型燃料電池用集電体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184638A2 (en) * 1984-10-17 1986-06-18 Hitachi, Ltd. Process of producing a flexbile fuel cell electrode from a carbon paper
US4759989A (en) * 1985-11-25 1988-07-26 Kureha Kagaku Kogyo Kabushiki Kaisha Electrode substrate for fuel cell
JPH09278558A (ja) * 1996-04-09 1997-10-28 Osaka Gas Co Ltd 炭素質多孔体およびその製造方法
JPH10125334A (ja) * 1996-08-28 1998-05-15 Tokai Carbon Co Ltd リン酸型燃料電池用多孔質炭素材およびその製造方法
JPH10162838A (ja) * 1996-11-29 1998-06-19 Toray Ind Inc 固体高分子型燃料電池用集電体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1139471A4 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273685A1 (en) * 2000-11-24 2003-01-08 Toho Tenax Co., Ltd. Carbon fiber sheet and method for producing the same
EP1273685A4 (en) * 2000-11-24 2006-05-24 Toho Tenax Co Ltd CARBON FIBERS AND MANUFACTURING METHOD
JP2002208424A (ja) * 2001-01-12 2002-07-26 Toyota Motor Corp 燃料電池用微短検出方法
US7410719B2 (en) 2003-03-26 2008-08-12 Toray Industries, Inc. Porous carbon base material, method for preparation thereof, gas-diffusing material film-electrode jointed article, and fuel cell
WO2004085728A1 (ja) * 2003-03-26 2004-10-07 Toray Industries, Inc. 多孔質炭素基材、その製造方法、ガス拡散体、膜-電極接合体、および、燃料電池
JP2005158324A (ja) * 2003-11-21 2005-06-16 Honda Motor Co Ltd 燃料電池
KR100745935B1 (ko) * 2004-02-23 2007-08-02 마쯔시다덴기산교 가부시키가이샤 가스 확산층 및 이것을 이용한 연료전지
US7560180B2 (en) 2004-02-23 2009-07-14 Panasonic Corporation Gas diffusion layer and fuel cell using the same
WO2005081339A1 (ja) * 2004-02-23 2005-09-01 Matsushita Electric Industrial Co., Ltd. ガス拡散層およびこれを用いた燃料電池
WO2009107891A1 (en) * 2008-02-26 2009-09-03 Ju Seong Jeong Acryl carbide fiber incombustible material
US8361673B2 (en) 2009-10-13 2013-01-29 Panasonic Corporation Fuel cell and method for manufacturing same
WO2011045889A1 (ja) * 2009-10-13 2011-04-21 パナソニック株式会社 燃料電池及びその製造方法
JP4717160B2 (ja) * 2009-10-13 2011-07-06 パナソニック株式会社 燃料電池及びその製造方法
JP2011189309A (ja) * 2010-03-16 2011-09-29 Yoshida Skt:Kk フッ素樹脂材の製造方法及びフッ素樹脂材
JP2012018882A (ja) * 2010-07-09 2012-01-26 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材の製造方法
JPWO2012026498A1 (ja) * 2010-08-27 2013-10-28 東邦テナックス株式会社 導電シート及びその製造方法
JP5537664B2 (ja) * 2010-08-27 2014-07-02 東邦テナックス株式会社 導電シート及びその製造方法
US8916310B2 (en) 2010-08-27 2014-12-23 Toho Tenax Co., Ltd. Conductive sheet and production method for same
WO2012026498A1 (ja) * 2010-08-27 2012-03-01 東邦テナックス株式会社 導電シート及びその製造方法
US9705137B2 (en) 2011-01-27 2017-07-11 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
US9825304B2 (en) 2011-01-27 2017-11-21 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
JP2015118944A (ja) * 2011-01-27 2015-06-25 三菱レイヨン株式会社 多孔質電極基材、その製造方法、前駆体シート、膜−電極接合体及び固体高分子型燃料電池
JP2012204068A (ja) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd 多孔質電極基材とその製造方法
WO2013084712A1 (ja) 2011-12-07 2013-06-13 フタムラ化学株式会社 導電性連通多孔質フィルム及びその製造方法
KR20140105719A (ko) 2011-12-07 2014-09-02 후타무라 가가쿠 가부시키가이샤 도전성 연통 다공질 필름 및 그 제조 방법
US9716278B2 (en) 2012-03-30 2017-07-25 Mitsubishi Chemical Corporation Porous electrode base material, method for manufacturing same, and precursor sheet
JPWO2015146984A1 (ja) * 2014-03-27 2017-04-13 日本バイリーン株式会社 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法
JP2016091996A (ja) * 2014-11-04 2016-05-23 三菱レイヨン株式会社 多孔質電極基材およびそれを用いた膜−電極接合体並びにそれを用いた固体高分子型燃料電池
JP2016219136A (ja) * 2015-05-15 2016-12-22 帝人株式会社 固体高分子電解質膜の補強部材
JP2018178183A (ja) * 2017-04-11 2018-11-15 三洋展創工業株式会社 電極、電気分解機能付き浴槽、及び電極の製造方法
JP2018204150A (ja) * 2017-06-06 2018-12-27 日本バイリーン株式会社 炭素繊維シ−ト、ガス拡散電極、膜−電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JP2021143454A (ja) * 2017-06-06 2021-09-24 日本バイリーン株式会社 炭素繊維シ−ト、ガス拡散電極、膜−電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JP7021869B2 (ja) 2017-06-06 2022-02-17 日本バイリーン株式会社 炭素繊維シ-ト、ガス拡散電極、膜-電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JP2022125104A (ja) * 2017-06-06 2022-08-26 日本バイリーン株式会社 炭素繊維シ-ト、ガス拡散電極、膜-電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JP7145274B2 (ja) 2017-06-06 2022-09-30 日本バイリーン株式会社 炭素繊維シ-ト、ガス拡散電極、膜-電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JP7394923B2 (ja) 2017-06-06 2023-12-08 日本バイリーン株式会社 炭素繊維シ-ト、ガス拡散電極、膜-電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JP2020133048A (ja) * 2019-02-19 2020-08-31 阿波製紙株式会社 炭素繊維シート材、成形体、炭素繊維シート材の製造方法および成形体の製造方法
WO2021200215A1 (ja) 2020-03-30 2021-10-07 東レ株式会社 ガス拡散電極基材の製造方法
KR20220160544A (ko) 2020-03-30 2022-12-06 도레이 카부시키가이샤 가스 확산 전극 기재의 제조 방법

Also Published As

Publication number Publication date
CA2351379A1 (en) 2001-03-29
EP1139471A1 (en) 2001-10-04
KR20010080532A (ko) 2001-08-22
EP1139471A4 (en) 2002-09-04
CN1338126A (zh) 2002-02-27

Similar Documents

Publication Publication Date Title
WO2001022509A1 (fr) Feuille conductrice poreuse et procede de fabrication
JP5140898B2 (ja) 膜−電極接合体の製造方法
JP2000299113A (ja) 導電シートおよびそれを用いた燃料電池用電極基材
JP5702218B2 (ja) 固体高分子型燃料電池用の多孔質電極基材
WO2001056103A1 (fr) Materiau d'electrode a base de carbone poreux, son procede de fabrication, et papier a fibres de carbone
JP2002343379A (ja) 燃料電池、燃料電池用電極、燃料電池用電極の処理方法
JPWO2004031465A1 (ja) アクリル耐炎繊維不織布、炭素繊維不織布、および、それらの製造方法
JP2001283865A (ja) 電極触媒層、膜−電極複合体およびそれらの製造方法並びにそれらを用いた燃料電池
JP2000353528A (ja) 電極触媒層およびその製造方法並びに電極触媒層を用いた燃料電池
JP6743805B2 (ja) 炭素シート、ガス拡散電極基材、および燃料電池
JP3627412B2 (ja) 固体高分子型燃料電池用集電体
CN110024193B (zh) 气体扩散电极及其制造方法
JP4409211B2 (ja) 固体高分子型燃料電池用多孔質電極基材の製造方法
WO2000030195A1 (en) Porous conductive sheet and method for producing the same
JP5484777B2 (ja) 多孔質電極基材およびその製造方法
JP7355143B2 (ja) 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
JP5336804B2 (ja) 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池
JP2001196085A (ja) 多孔質導電シート
JP4559767B2 (ja) 炭素電極基材の製造方法
JP2003286085A (ja) 多孔質炭素板およびその製造方法
JP5336911B2 (ja) 多孔質電極基材、その製造方法、膜−電極接合体、および燃料電池
JP2009234851A (ja) 多孔質炭素シートおよびその製造方法
JP5322213B2 (ja) 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池
JP2006004858A (ja) 多孔質電極基材およびその製造方法
JP2006004858A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802976.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000961082

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2351379

Country of ref document: CA

Ref document number: 2351379

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09856380

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017006439

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 525781

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020017006439

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000961082

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017006439

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000961082

Country of ref document: EP