WO2004085728A1 - 多孔質炭素基材、その製造方法、ガス拡散体、膜-電極接合体、および、燃料電池 - Google Patents

多孔質炭素基材、その製造方法、ガス拡散体、膜-電極接合体、および、燃料電池 Download PDF

Info

Publication number
WO2004085728A1
WO2004085728A1 PCT/JP2004/004158 JP2004004158W WO2004085728A1 WO 2004085728 A1 WO2004085728 A1 WO 2004085728A1 JP 2004004158 W JP2004004158 W JP 2004004158W WO 2004085728 A1 WO2004085728 A1 WO 2004085728A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon substrate
substrate according
resin
producing
Prior art date
Application number
PCT/JP2004/004158
Other languages
English (en)
French (fr)
Inventor
Takashi Chida
Kenya Okada
Mikio Inoue
Shinya Isoi
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003334743A external-priority patent/JP4389535B2/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to CNB2004800080388A priority Critical patent/CN100480451C/zh
Priority to US10/550,709 priority patent/US7410719B2/en
Priority to CA2520025A priority patent/CA2520025C/en
Priority to KR1020057017818A priority patent/KR101094566B1/ko
Priority to EP04723333A priority patent/EP1612313B1/en
Publication of WO2004085728A1 publication Critical patent/WO2004085728A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a porous carbon substrate.
  • the porous carbon substrate of the present invention is composed of carbon short fibers and a resin carbide, and the carbon short fibers are bound by the resin carbide.
  • the present invention also relates to the method for producing a porous carbon substrate of the present invention.
  • the present invention relates to a gas diffuser, a membrane-electrode assembly, and a fuel cell, wherein the porous carbon substrate of the present invention is used as a material for forming a gas diffuser.
  • the porous carbon substrate of the present invention has good handling properties.
  • the porous carbon substrate of the present invention can be wound up in a roll. Therefore, when manufacturing a product using the porous carbon base material of the present invention, the porous carbon base material of the present invention is drawn out of a required length and roll-shaped package, and the product is extracted from the product. It can be supplied to the manufacturing process.
  • porous carbon substrate of the present invention is characterized in that the carbon short fibers and the resin carbide are less likely to peel off at the binding surface and that the resin carbide is less cracked. .
  • the porous carbon substrate of the present invention is preferably used as a gas diffuser for a polymer electrolyte fuel cell.
  • a porous carbon substrate obtained by binding carbon fibers with a resin carbide as a substrate constituting a gas diffuser of a fuel cell is disclosed in JP, 06-20710, A, JP, 07 — 3 2 6 3 6 2, A or JP, 0 7-2 2 0 7 3 5, A Has been described.
  • this known porous carbon substrate has a problem that it has poor handling properties and is difficult to form into a continuous and long form.
  • the known porous carbon base material includes a papermaking step of forming a carbon fiber paper, a resin impregnation step of impregnating a carbon fiber paper with a thermosetting resin, a compression step of compressing and molding a carbon fiber paper impregnated with a resin, and Manufactured through a carbonization process in which a precursor fiber sheet made of compression-molded resin-impregnated carbon fiber paper is fired.
  • the sheet from the papermaking process to the resin impregnation process has a continuous and long form. I have.
  • the sheets are cut to length before being fed into the compression process.
  • the cut sheet that is, a sheet-shaped sheet, is supplied to the compression step, and a patch-type flat plate press is performed for each sheet-shaped sheet.
  • the resin is carbonized by a patch-type heating furnace.
  • the compression process and the carbonization process are performed in a batch process because the porous carbon substrate obtained has poor handling properties. That is, it was difficult to produce a continuous long porous carbon substrate. Therefore, it was not possible to produce a porous carbon base material wound up in a roll shape.
  • patch processes have lower product productivity than continuous processes. Also in the above carbonization step, the rate of temperature increase that can be taken by the patch-type heating furnace is at most about several ° C / min. Therefore, there is a problem that the productivity of the porous carbon substrate is low and the production cost is high.
  • WO, 01/5610, A1 discloses an electrode substrate that can be wound into a roll and a method for producing the same.
  • This document proposes to improve the sheet bending strength and the like by using carbon fibers having a small fiber diameter.
  • the fiber diameter of the carbon fiber is reduced, the bending elastic modulus of the obtained porous carbon base material tends to increase. In other words, this There is a problem that a larger force is required to wind the base material into a roll.
  • the pore diameter of pores formed in the substrate becomes small. Therefore, when the base material is used as a gas diffuser, there is a problem that the gas diffusivity and drainage properties are reduced.
  • this document proposes to use a continuous heating press device having a pair of endless belts or a continuous roll press device to make the compression process continuous.
  • a continuous heating press device having a pair of endless belts or a continuous roll press device to make the compression process continuous.
  • it is necessary to maintain the heating and pressurizing state for a period of time during which the curing reaction of the resin proceeds to some extent, usually for several minutes to several tens of minutes. is there.
  • the precursor fiber sheet is compression-molded with the same thickness accuracy as a patch-type flat plate press. There is a problem that is difficult.
  • this document proposes that the carbonization process be made continuous by firing the sheet in a continuous firing furnace.
  • a continuous firing furnace By performing continuous firing, it is possible to significantly improve productivity as compared with the patch type.
  • the thermosetting resin contained in the precursor fiber sheet is rapidly carbonized. Therefore, if a continuous firing furnace is simply used, a rapid carbonization shrinkage of the resin causes a large amount of peeling at the bonding surface between the resin carbide and the carbon fiber, and significant cracking of the resin carbide portion There is a problem of reliance.
  • the present invention has been made in view of the above-described problems in the conventional technology, and has as its object the purpose of the present invention is to have a high handling property, to be able to supply in a roll form, and to use a carbon fiber. It is an object of the present invention to provide a porous carbon base material which is free from peeling of a resin carbide at a binding surface and cracking of the resin carbide. It is another object of the present invention to provide a porous carbon base material having a structure optimized from the viewpoints of gas and water diffusion and transport, and providing high battery characteristics.
  • the porous carbon substrate of the present invention is composed of a sheet containing carbon short fibers and resin carbonized dispersed in random directions, wherein the carbon short fibers are bound by the resin carbide. And the sheet has pores, and the pores having a pore diameter of 10 / im or less among the pores have a volume per unit weight of the sheet of 0.05. To 0.16 cc Z g.
  • the thickness of the porous carbon base material of the present invention is preferably 0.10 to 0.25 mm.
  • the porosity of the porous carbon substrate of the present invention is preferably 70 to 90%.
  • the average carbon fiber diameter of the short carbon fibers of the porous carbon substrate of the present invention is preferably 5 to 20 ⁇ m.
  • the porous carbon substrate of the present invention preferably contains a carbonaceous powder.
  • the maximum bending load of the porous carbon substrate of the present invention measured by a three-point bending test is preferably from 0.25 to 2. ON / cm.
  • the maximum bending load displacement of the porous carbon substrate of the present invention measured by a three-point bending test is preferably 0.7 to 2.3 mm.
  • the porous carbon substrate of the present invention preferably has a flexural modulus measured by a three-point bending test of 1 to 15 GPa.
  • the particle size of the carbonaceous powder contained in the porous carbon substrate of the present invention is 0.0 It is preferably 10 / xm.
  • the carbonaceous powder contained in the porous carbon substrate of the present invention is preferably graphite or carbon black powder.
  • the weight fraction of the carbonaceous powder contained in the porous carbon base material of the present invention is preferably 1 to 60%.
  • the average fiber length of the short carbon fibers of the porous carbon substrate of the present invention is preferably 3 to 20 m ⁇ .
  • the density of the porous carbon substrate of the present invention is preferably from 0.3 to 0.7 g / cm 3 .
  • the pore peak diameter of the pores of the porous carbon substrate of the present invention is preferably 25 to 55 ⁇ m.
  • the gas diffuser of the present invention comprises the porous carbon substrate of the present invention and a water-repellent substance provided to the substrate.
  • the gas diffuser of the present invention comprises the porous carbon substrate of the present invention and a conductive gas diffusion layer formed on at least one surface of the substrate.
  • the gas diffuser of the present invention comprises the porous carbon substrate of the present invention to which a water-repellent substance is provided, and a conductive gas diffusion layer formed on at least one surface of the substrate.
  • the membrane-electrode assembly of the present invention comprises a solid polymer electrolyte membrane, a catalyst layer containing catalyst-carrying carbon provided on both surfaces of the membrane, and a gas diffuser provided in contact with both catalyst layers, At least one of these gas diffusers comprises the gas diffuser of the present invention.
  • the membrane-electrode assembly of the fuel cell of the present invention comprises the membrane-electrode assembly of the present invention.
  • the method for producing a porous carbon substrate of the present invention includes a compression step of compressing a precursor fiber sheet comprising short carbon fibers and a resin, and a carbonizing step of carbonizing the resin of the compressed precursor fiber sheet. And the compression step intermittently passes between the hot plates positioned parallel to each other while being conveyed, and while the conveyance is stopped, the precursor stopped by the hot plates.
  • the body fiber sheet is heated and pressurized, and after the heating and pressurization, conveyance of the precursor fiber sheet is started again, and the conveyance and the stop are alternately performed. This is called the first manufacturing method.
  • the precursor fiber sheet contains a carbonaceous powder.
  • the resin is preferably made of a thermosetting resin.
  • the precursor fiber sheet contains a carbonaceous powder, and the resin is a thermosetting resin.
  • a post-curing step is provided between the compression step and the carbonizing step, in which the post-curing of the thermosetting resin is aimed.
  • the method for producing a porous carbon substrate of the present invention includes a compression step of compressing a precursor fiber sheet comprising short carbon fibers and a resin, and a carbonizing step of carbonizing the resin of the compressed precursor fiber sheet.
  • the step is a step in which the precursor fiber sheet contains carbonaceous powder. This is called the second manufacturing method.
  • the resin is preferably made of a thermosetting resin.
  • thermosetting resin In the second manufacturing method, it is preferable that a post-curing step of post-curing the thermosetting resin is provided between the compression step and the carbonizing step.
  • the method for producing a porous carbon substrate of the present invention comprises a short carbon fiber and a resin.
  • a compression step of compressing the precursor fiber sheet and a carbonization step of carbonizing the resin of the compressed precursor fiber sheet are performed, and the resin is made of a thermosetting resin. This is called a third manufacturing method.
  • thermosetting resin In the third manufacturing method, it is preferable that a post-curing step of post-curing the thermosetting resin is provided between the compression step and the carbonizing step.
  • the precursor fiber sheet is continuously conveyed in the carbonization step.
  • the value of LF / LP is 0. It is preferably from 1 to 0.98.
  • the temperature of the hot plate is 140 to 300 ° C. and the pressure is 0.1 to 40 MPa.
  • the precursor fiber sheet is paper formed by binding short carbon fibers with a binder.
  • the amount of the thermosetting resin is 20 to 300 parts by weight, based on 100 parts by weight of carbon short fibers of the precursor fiber sheet; It is preferable that the amount of the porous powder is 1 to 200 parts by weight.
  • the precursor fiber sheet is heated to a temperature of at least 1,200 ° C. at a heating rate of 100 to 1,000 ° C.Z.
  • the thermosetting resin is carbonized.
  • the carbonaceous powder preferably has a particle size of 0.01 to 10 / xm.
  • the carbonaceous powder is graphite or carbon black powder.
  • an average fiber of the short carbon fibers is used.
  • the diameter is between 5 and 20 ⁇ .
  • the average fiber length of the short carbon fibers is 3 to 2 Omm.
  • the thermosetting resin is preferably a phenol resin. Further, it is preferable that the phenol resin is a phenol resin in which a metal catalyst or an alcohol catalyst is not used when the phenol resin is synthesized.
  • thermosetting resin preferably has a degree of curing of 70% or more.
  • the heating temperature of the precursor fiber sheet in the post-curing step is 140 to 300 ° C.
  • the precursor fiber sheet is heated at a heating rate of 500 to 10 minutes, and at least up to 1,200 ° C.
  • the thermosetting resin is preferably carbonized.
  • the maximum heating temperature in the carbonization step is preferably from 1,200 to 2,500 ° C.
  • the definition of various characteristic values of the porous carbon substrate and / or the measurement method thereof are as follows.
  • the volume of the pores having a pore diameter of 10 m or less among the pores formed in the porous carbon substrate is obtained from the following pore diameter distribution measurement by the mercury intrusion method.
  • the pore diameters of all the pores of the porous carbon substrate having a cell volume of 5 cm 3 are values typically represented using the values of the peak diameters obtained by the pore diameter distribution measurement described above. Therefore, this representative value is called a pore peak diameter.
  • the thickness of the porous carbon substrate is measured by applying a surface pressure of 0.15 MPa in the thickness direction of the substrate using a micrometer.
  • the number of measurements shall be 20 times, and the average value shall be the thickness.
  • the porosity of the porous carbon substrate is calculated from the true density and the apparent density of the substrate.
  • the true density can be measured by the well-known floating method, pycnometer method, or the like.
  • the apparent density is calculated from the thickness of the base material and the basis weight (weight per unit area). The true density is measured twice and the average value is used.
  • the basis weight is obtained by measuring the weight of a 10 cm ⁇ 10 cm square porous carbon substrate 10 times, and calculating from the average value.
  • the density in the present invention refers to an apparent density.
  • the average fiber diameter of the short carbon fiber is determined by selecting any 10 short carbon fibers from a cross-sectional photograph of the base material with a 5,000-fold electron microscope and measuring the fiber diameter. Obtain it as the simple average. If the cross-sectional shape of the fiber is not circular, for example, elliptical, the average value of the major axis and minor axis is defined as the fiber diameter. In addition, the presence or absence of conductive powder (for example, carbonaceous powder) can be confirmed by checking the resin carbide portion of the electron micrograph. The particle size of the carbonaceous powder is determined as the number average particle size of the obtained particle size distribution by performing dynamic light scattering measurement of the carbonaceous powder added when manufacturing the porous carbon substrate.
  • the average fiber length of short carbon fibers is 600 ° C Of the 30 carbon short fibers obtained by burning off the other binders etc. while leaving the carbon short fibers, and taking 5 times magnification optical micrographs. Measure the length of the staple fiber and determine the average value.
  • the maximum bending load, maximum bending load displacement, and bending elastic modulus of the porous carbon substrate are obtained from the following three-point bending test.
  • the three-point bending test is performed in accordance with the method specified in JIS K6911. At this time, the width of the test piece is 15 mm, the length is 40 mm, and the distance between fulcrums is 15 mm. The radius of curvature between the fulcrum and the indenter is 3 mni, and the load application speed is 2 mmZ.
  • the maximum load and flexural modulus if the base material has anisotropy, the direction with the highest flexural modulus is defined as the length direction of the test piece.
  • the length direction of the long porous carbon substrate obtained by the method described below is defined as the length direction of the test piece.
  • the load and displacement at the point where the load becomes maximum are the maximum bending load and the maximum bending load displacement, respectively.
  • the degree of cure of the thermosetting resin contained in the precursor fiber sheet is calculated assuming that the thermosetting resin is uniformly adhered to the precursor fiber sheet, after impregnation of the resin and before heating and pressing.
  • the residual curing calorific value per unit weight of the precursor fiber sheet and the precursor fiber sheet for which the degree of curing is to be determined are determined as Qa and Qb, respectively, by the following equation ( ⁇ ).
  • the residual calorific value of the precursor fiber sheet was measured by the differential scanning using the equipment and conditions shown in Table 2. ⁇ Measure using the calorimeter method (DSC method: Differential Scanning Ca1 orimetry).
  • the heating rate during firing of the precursor fiber sheet depends on the temperature at the furnace inlet, the maximum temperature inside the furnace, and the time required for the sheet introduced from the furnace inlet to move to the maximum temperature range (moving). Time) and the following equation (m).
  • the heating furnace entrance is a part on the heating furnace entrance side where the atmosphere switches from the atmosphere to the inert atmosphere.
  • V heating rate (° C / min)
  • T1 temperature at the furnace inlet (° C)
  • T2 maximum temperature in the furnace (° C)
  • t travel time (minutes) ,.
  • the number of heating furnaces does not need to be one, and multi-stage firing using two or more heating furnaces can be performed.
  • the heating rate of the first heating furnace is obtained from the above equation (m), and the heating rate of the second heating furnace is calculated by T in the above equation (m).
  • i is determined as the maximum temperature of the former heating furnace, that is, the maximum temperature of the first heating furnace. The same applies when three or more heating furnaces are used.
  • FIG. 1 is an electron micrograph (magnification: 250 times) showing the state of fibers on the surface of an example of the porous carbon substrate of the present invention.
  • FIG. 2 is an electron micrograph (magnification: 2000 ⁇ ) showing the state of fibers on the surface of another example of the porous carbon substrate of the present invention.
  • FIG. 3 is a graph showing the relationship between the pore volume and the pore diameter of an example of the porous carbon substrate of the present invention.
  • Fig. 4 is an electron micrograph (magnification: ⁇ 4,000) showing the state of the fiber at the peeled portion formed on the binding surface between the short carbon fiber and the resin carbide in the conventional porous carbon substrate. .
  • FIG. 5 is an electron micrograph (magnification: 250 times) showing a fiber state at a crack portion of a resin carbide in a conventional porous carbon substrate.
  • FIG. 6 is a graph showing an example of a measurement result of a residual curing calorific value of a precursor fiber sheet by a DSC method.
  • FIG. 7 is a process diagram illustrating one embodiment of a process for producing a porous carbon substrate of the present invention.
  • FIG. 8 is a schematic longitudinal sectional view for explaining one embodiment of a compression step in one embodiment of the production process of the porous carbon substrate of the present invention.
  • FIG. 9 is a schematic longitudinal sectional view for explaining one embodiment of a carbonization step in one embodiment of the production process of the porous carbon substrate of the present invention.
  • FIG. 1 shows an electron micrograph of the surface of the porous carbon substrate 1 of the present invention.
  • the porous carbon substrate 1 is composed of a sheet containing short carbon fibers 2 and resin carbides 3 which look linear.
  • the short carbon fibers 2 are dispersed and located in random directions.
  • the short carbon fibers 2 are bound by the resin carbide 3.
  • the particulate matter dispersed in the resin carbide 3 is the carbonaceous powder 4.
  • the condition where the short carbon fibers are dispersed in a random direction can be formed by randomly dispersing the short carbon fibers by the papermaking method described below. You.
  • the sheet obtained by subjecting the carbon short fiber sheet in this state to, for example, hydroentanglement treatment has a short fiber not only in the sheet surface direction but also in the sheet thickness direction. Oriented. Such a state is also included in a state in which the short carbon fibers are dispersed in a random direction.
  • the volume per unit weight of the substrate 1 of pores having a pore diameter of 10 ⁇ ⁇ ⁇ or less among pores formed in the substrate 1 is 0.05. To 0.16 cc / g.
  • FIG. 2 shows an electron micrograph of the surface of the porous carbon substrate 11 of the present invention.
  • the generation of pores having a pore diameter of 10 / im or less is caused by the peeled portion 15 at the bonding surface between the short carbon fiber 12 and the resin carbide 13 shown in FIG. It is considered to be due to the crack 16.
  • Carbon powder 14 is observed in the base material 11.
  • FIG. 3 shows the result of measuring the pore size distribution of the porous carbon substrate of the present invention obtained in Example 2 described later by a mercury intrusion method.
  • the horizontal axis is the pore diameter (m)
  • the vertical axis is the pore volume (cc / g).
  • Curve 21 represents the integrated pore volume from small pore size to large pore size.
  • the volume of pores having a pore diameter of 10 m or less is 0.16 cc or g or less
  • a large conductivity of the substrate 1 is obtained. Reduction can be suppressed.
  • the volume of pores having a pore diameter of 10 m or less is 0.05 cc / g or more, the binding portion between the short carbon fibers 2 and the resin carbide 3 is reduced, so that the flexibility of the base material 1 is improved.
  • the substrate 1 can be easily rolled.
  • a more preferable range of the volume of the pore having a pore diameter of 10 m or less is from 0.06 to 0.15 cc / g, and a more preferable range is from 0.07 to 0.14 cc Z. g.
  • Porous carbon base material 1 that is easy to make Production is possible, and the productivity of base materials is greatly improved compared to patch-type production, and costs can be reduced.
  • the thickness of the porous carbon substrate 1 is preferably from 0.10 to 0.25 mm.
  • the thickness of substrate 1 is related to the cracking and flexibility of substrate 1 when a shear force is applied.
  • the thickness is less than 0.1 mm, in a fuel cell made using a gas diffuser made using the base material 1, when the base material 1 is subjected to a shearing force from the separator, Material 1 is easily destroyed.
  • the thickness exceeds 0.25 mm, the flexibility of the substrate 1 is greatly reduced, and it is difficult to wind the substrate 1 into a roll.
  • the more preferable thickness of the substrate 1 is from 0.11 to 0.22 mm, and the more preferable thickness is from 0.12 to 0.16 mm.
  • the density of the porous carbon substrate 1 is preferably from 0.3 to 0.7 g / cm 3 , more preferably from 0.32 to 0.6 g / C m 3 , More preferably, it is 0.34 to 0.60 g / cm 3 . If the density exceeds 0.70 g / cm 3 , the drainage of water when used as a gas diffuser for a fuel cell is deteriorated, which causes water clogging and lowers the cell performance. If it is less than 0.30 g / cm 3 , the gas diffusivity becomes too high, causing drying of the solid polymer membrane, and the resistance of the membrane becomes high, which lowers battery performance and is not preferred.
  • the porosity of the porous carbon substrate 1 is preferably 70 to 90%.
  • the porosity of the base material 1 is 90% or less, the discharge of water inside the fuel cell can be further suppressed, and the solid polymer electrolyte dries and the proton conductivity decreases. Can be suppressed.
  • the porosity of the base material 1 is 70% or more, gas diffusivity is improved, and power generation efficiency is improved.
  • a more preferable range of the porosity is 72 to 88%, and a further preferable range is 75 to 85%.
  • the average fiber diameter (average fiber diameter of a single fiber) of the short carbon fibers 2 constituting the porous carbon substrate 1 of the present invention is preferably 5 to 20 m.
  • the average fiber diameter is less than 5 m, the flexibility of the base material 1 may be reduced depending on the type of the carbon fiber. When the average fiber diameter exceeds 20 m, the mechanical strength of the substrate 1 may be reduced. A more preferred range for the average fiber diameter is 6 to 13 ⁇ , and a still more preferred range is 6 to 10 / zm.
  • the short carbon fiber 2 is usually obtained by cutting a long carbon fiber to a desired length.
  • the average fiber length of the short carbon fibers 2 is preferably 3 to 20 mm. If the average fiber length is less than 3 mm, the mechanical properties such as the maximum load for bending of the substrate 1 may decrease. Further, when the average fiber length exceeds 20 mm, the dispersibility of the fibers during the papermaking described later deteriorates, and the basis weight of the short carbon fibers 2 in the base material 1 increases.
  • a more preferable range of the average fiber length is 4 to 17 mm, and a still more preferable range is 5 to 15 mm.
  • the pore peak diameter of the porous carbon substrate 1 is preferably 25 to 55 / zm. More preferably, it is in the range of 27 to 50 m, more preferably 30 to 45 / z m. If the pore peak diameter is less than 25 / xm, the drainage of water when used as a gas diffuser in a fuel cell becomes poor, causing water clogging and deteriorating cell performance. If the pore peak diameter exceeds 55/1 m, the gas permeability becomes too high, causing drying of the solid polymer membrane, increasing the membrane resistance and deteriorating the battery performance. Therefore, a preferable range of the peak diameter of the pores that can have both the functions of maintaining the proton conductivity and the gas permeability of the contradictory solid polymer membrane is 25 to 55 ⁇ .
  • carbon fibers constituting the short carbon fibers carbon fibers such as polyacrylonitrile (PAN) -based, pitch-based, and rayon-based can be used.
  • PAN polyacrylonitrile
  • PAN-based and pitch-based, particularly PAN-based, carbon fibers are preferred because they provide a substrate 1 having excellent mechanical strength and appropriate flexibility.
  • the porous carbon substrate 1 preferably contains the carbonaceous powder 4.
  • the conductivity of the base material 1 itself is improved, cracking of the resin carbide 3 can be reduced, and a decrease in conductivity due to water repellent treatment can be suppressed. .
  • carbonaceous powder 4 powders such as carbon black, graphite, expanded graphite, and carbonaceous milled fiber are preferably used. Of these, carbon black and graphite powder are more preferred, and graphite powder is most preferred.
  • the carbonaceous powder 4 is preferably used in a weight fraction of 1 to 60%, more preferably 10 to 55%, more preferably 20 to 55%. More preferably, it is 50% to 50%. The most preferred range is 15 to 35%.
  • the conductivity of the base material 1 becomes low. If the amount is too large, the density of the base material 1 becomes high, so that a suitable pore peak diameter cannot be obtained, and the battery characteristics deteriorate.
  • the base material 1 contains the carbonaceous powder 4, the conductivity in the thickness direction of the base material 1 can be improved. If the rate of temperature rise is high during carbonization of the resin, cracks may occur in the resin portion, which may cause a decrease in the conductivity of the obtained base material 1 in the thickness direction and a decrease in bending strength. However, since the base material 1 contains the carbonaceous powder 4, it is possible to prevent cracking of the resin when the heating rate is high.
  • the particle size of the carbonaceous powder 4 is preferably 0.11 to 10 m, more preferably 0.1 to 7 / zm, and more preferably 1 to 5 m. This is more preferable in order to improve the bending strength of the substrate 1 and to obtain a suitable pore peak diameter.
  • the maximum bending load of the porous carbon substrate 1 is preferably 0.25 to 2.ON / cm, more preferably 0.27 to 1.O NZ cm, More preferably 30 to 0.70 NZ cm. When the maximum bending load is 0.25 NZ cm or more, the porous carbon substrate 1 is less likely to loom, and the handling properties are improved. However, since the bending elastic modulus of the base material 1 tends to increase with an increase in the maximum bending load, the maximum bending load is preferably not more than 2.O NZ cm.
  • the maximum bending load displacement of the porous carbon substrate 1 is preferably from 0.7 to 2.3 mm, more preferably from 1.0 to 2.0 mm, and more preferably from 1.3 to 1 mm. More preferably, it is 8 mm.
  • the maximum bending load displacement is 0.7 mm or more, the base material 1 becomes hard to get loose when wound up in a roll shape, so that it is easy to wind up the base material 1 in a roll shape.
  • the maximum bending load displacement is preferably 2.3 mm or less.
  • the flexural modulus of the porous carbon substrate 1 is preferably from 1 to 15 GPa, more preferably from 3 to 14 GPa, and more preferably from 5 to 13 GPa. More preferred. When the flexural modulus is 15 GPa or less, the flexibility of the substrate 1 is increased, so that it is easy to wind the substrate 1 into a roll. However, if the flexural modulus is less than 1 GPa, the base material 1 becomes too soft and the function as a support decreases, and the life of the fuel cell is shortened.
  • FIG. 7 is a process chart illustrating one embodiment of a process for producing the porous carbon substrate 1 of the present invention.
  • the production process of the porous carbon substrate of the present invention comprises the steps sequentially provided from the upstream side to the downstream side of the step.
  • a papermaking step 61 for forming a sheet in which short carbon fibers are dispersed in random directions
  • a resin impregnation step 62 for impregnating the obtained sheet with a resin
  • a resin impregnation sheet (precursor) for impregnating the obtained sheet with a resin
  • a resin impregnation sheet (precursor) for impregnating the obtained sheet with a resin
  • Compression process 63 for compressing body fiber sheet
  • post-curing process 64 for curing the resin provided as necessary
  • carbonization process for carbonizing the resin of the compressed precursor fiber sheet It consists of 6 5.
  • the first method for producing the porous carbon substrate 1 of the present invention is characterized by a compression step 63 shown in FIG.
  • FIG. 8 shows an example of a compression device (hot press) used in the compression step 63.
  • the first manufacturing method comprises a compression step 633 for compressing a precursor fiber sheet composed of short carbon fiber and resin, and the precursor fiber sheet compressed in this compression step continuously passes through a heating furnace. During this process, the precursor fiber sheet is fired to carbonize the resin.
  • a porous carbon substrate 1 having a thickness of 0.1 to 0.25 mm and a density of 0.3 to 0.7 g / cm 3 is manufactured.
  • a precursor fiber sheet 72 intermittently guided by a predetermined length from a precursor fiber sheet roll mounted on a sheet unwinding machine 71 is used. Is continuously heated and pressed by a hot plate 75a attached to the upper surface of the hot press 74a and a hot plate 75b attached to the lower surface of the hot press 74b.
  • the facing surfaces of the hot plate 75 a and the hot plate 75 b are arranged in parallel with each other, and the precursor fiber sheet 72 is heated and pressed while receiving a surface pressure by these.
  • Precursor fiber sheet 72 When moving, the hot plate 75a and the hot plate 75b are moved apart to allow the sheet 72 to move.
  • the continuous heating and pressurizing means that the longitudinal movement of the precursor sheet 72 is stopped during the heating and pressurizing treatment by the hot presses 74a and 74b.
  • the precursor fiber sheet 72 moved in the longitudinal direction and was mounted on the sheet winder 73.
  • continuous heating and pressurization means that the precursor fiber sheet intermittently moves a predetermined length and stops moving while undergoing the heating and pressurizing treatment.
  • the heating and pressurizing is performed in a state where the precursor fiber sheet subjected to the compression treatment is continuous from the unwinding machine 71 to the winding machine 73.
  • the precursor fiber sheet undergoes pressurization while moving continuously in the longitudinal direction, and the form of pressure applied to the precursor fiber sheet there is linear pressure. is there.
  • this conventional method it was difficult to form a precursor fiber sheet with the same thickness accuracy as in the case of a batch type flat plate press in which a sheet-shaped precursor fiber sheet was subjected to pressure treatment. . This difficulty is solved by the first manufacturing method.
  • the precursor fiber sheet 72 is intermittently conveyed, that is, while the movement and the stop of the precursor fiber sheet 72 in the compression step 63 are alternately repeated. Since the precursor fiber sheet 72 is heated and pressurized, the long precursor fiber sheet 72 continuous in the transport direction is continuously heated without being cut into a single sheet. Pressure treatment (Dense Process).
  • the value of LF / LP is 0.04 to 0. It is preferably 98, more preferably from 0.05 to 0.45. If the value of LF / LP is small, the densification effect by heating and pressurizing can be averaged more, but the opening and closing of the hot presses 74a and 74b, the precursor fiber sheet 7 in the processing time The time ratio required for feeding 2 increases, resulting in poor production efficiency. Also, if the value of L FZ L P exceeds 0.98, there will be a problem that when the L F / L P value exceeds 1, there will be a part that is not pressurized due to an error in the feed amount.
  • the effective pressurized length L P refers to the length of the portion where the precursor fiber sheet 72 comes into contact with the hot plates 75 a and 75 b and is heated and pressurized.
  • the feed amount LF is the feed amount of the precursor fiber sheet 72 sent out (or taken off) in the feed direction when the hot presses 74a and 74b are opened. say.
  • the heating and pressurizing conditions for the hot plates 75a and 75b parallel to each other are as follows: temperature: 140 to 300 ° C, surface pressure: 0.1 to 4 OMPa, heat and pressurization
  • the time is preferably between 0.2 and 15 minutes.
  • the hot plates 75a and 75b parallel to each other are those having a parallelism of 1 mm or less in at least an area of 50% or more thereof.
  • the degree of parallelism refers to the difference between the maximum and minimum thickness of a deformed lead slab, which is formed by deforming a lead slab placed on a hot plate under heat and pressure.
  • the materials of both the hot plates 75a and 75b may be the same, but different materials may be used.
  • one hot plate may be made of stainless steel, and the other hot plate may be made of silicon rubber.
  • the treatment temperature in the heating and pressurizing treatment is preferably from 160 to 300 ° C., and more preferably from 170 to 230 ° C. Temperature too low In the case of breaking, the effect of densification of the precursor fiber sheet by heating and pressurizing is insufficient, especially at a temperature lower than 140 ° C. If the temperature is too high, oxidation of the precursor fiber sheet in air proceeds, causing problems such as a decrease in strength.
  • the surface pressure in the heating and pressurizing treatment is preferably from 2 to 25 MPa, more preferably from 3 to 15 MPa, even more preferably from 4 to 8 MPa. . If the pressure is low, the effect of densifying the precursor fiber seed becomes insufficient. If the pressure is high, a linear pattern is generated when the precursor fiber sheet is bent or bended, probably due to buckling of fibers or separation between fibers.
  • the gas permeability of the porous carbon base material after firing is reduced, and good characteristics as a gas diffuser of a fuel cell cannot be exhibited.
  • the precursor fiber sheet adheres to a press surface, which is a pressing surface, or release paper.
  • the press equipment requires a pressing force of 2,550 tf to pressurize lm 2 at 25 MPa, which reduces the production efficiency using a large-scale press system and reduces
  • the heating and pressurizing time required to reduce the treatment area is preferably 1.5 to 10 minutes, more preferably 3.5 to 6 minutes. If the heating and pressurizing time is short, the effect of heating and pressurizing to densify the precursor fiber sheet cannot be sufficiently obtained. Further, even if the heating and pressurization is performed for more than 6 minutes, further increase in the densification effect cannot be expected.
  • the precursor fiber sheet there is paper formed by binding chopped carbon fiber (short fibers) with a binder such as phenol resin or PVA resin.
  • the resins contained in the precursor fiber sheet include epoxy resin, unsaturated polyester resin, phenol resin, polyimide resin, and melamine resin.
  • thermosetting resins thermoplastic resins such as acrylic resin, polyvinylidene chloride resin, and polytetrafluoroethylene resin.
  • the resin may be in an uncured or unsolidified state, but if uncured or unsolidified, a resin that cures or solidifies simultaneously with the compression treatment is preferred. If the resin is uncured or unsolidified, the surface pressure during heating and pressurization with a parallel hot plate is preferably 0.1 to 3 MPa, to prevent the resin from flowing out during heating and pressurizing. More preferably, it is 0.2 to 1.5 MPa.
  • FIG. 9 An example of the carbonization step 65 is shown in FIG.
  • the precursor fiber sheet 81 (the precursor fiber sheet accommodated in the winding machine 73 in FIG. 8) that has been subjected to the compression processing is unwound from the unwinding machine 82. After that, it is conveyed by a transfer port 83 and introduced into a heating furnace (heating furnace for pre-carbonization treatment) 85 by an endless conveyor belt 84.
  • the inside of the heating furnace 85 is maintained under an inert gas atmosphere at a temperature of 300 to 1,200 ° C., and the compressed precursor fiber sheet 81 is removed by an endless conveyor belt 84. It is pre-carbonized while being transported under tension.
  • the pre-carbonized precursor fiber sheet 86 is then introduced into the next heating furnace (heating furnace for carbonization processing) 89 by a transport roll 87 and an endless conveyor belt 88.
  • the heating furnace 89 has the same configuration as the heating furnace 85, but the atmosphere is maintained in an inert gas atmosphere at a temperature of 1,200 to 3,000 ° C.
  • the pre-carbonized precursor fiber sheet 86 is carbonized while being transported under tension by an endless conveyor 88 to become a porous carbon substrate 90.
  • the porous carbon base material 90 is conveyed by a conveying roll 91 to, for example, a winder 92.
  • heating furnace for pre-carbonization and carbonization The carbonization process 65, which consists of a heating furnace for processing, is performed independently of each other.This is because the process can be performed at an acceleration rate suitable for each process by making each process independent. This is because it is easy to perform optimization.
  • the present invention is not limited to this, and the sheet may be continuously passed without winding the sheet in each step.
  • the second method for producing the porous carbon substrate 1 of the present invention is characterized in that the carbonaceous powder is added in the resin impregnation step 62 in FIG. 7 and the firing conditions in the carbonization step 65 are optimized.
  • the second production method comprises a papermaking step 61, a resin impregnation step 62, and a compression step 64, and a carbonization step 65 for carbonizing the obtained intermediate substrate (precursor fiber sheet).
  • Consists of In the resin impregnation step 62 a short carbon fiber sheet obtained by dispersing the short carbon fibers obtained in the paper making step 61 in a random direction is impregnated with a mixture of a thermosetting resin and carbonaceous powder. It is characterized by The carbonization step 65 is characterized in that the sheet containing the thermosetting resin and the carbonaceous powder is heated to carbonize the thermosetting resin.
  • the intermediate base material manufacturing step includes a first step of manufacturing a short carbon fiber sheet and a second step of impregnating the obtained short carbon fiber sheet with a resin.
  • the first step is a step of uniformly dispersing carbon fibers (short carbon fibers) cut to a suitable length in water, a step of forming the dispersed carbon fibers on a wire mesh, and a step of forming the formed short carbon fiber sheet. It consists of a step of dipping in an aqueous solution of polyvinyl alcohol, and a step of pulling up the dipped sheet and drying.
  • the polyvinyl alcohol in the first step serves as a pinda for binding short carbon fibers.
  • the first step in a state where the short carbon fibers are dispersed in a random direction, a sheet of the short carbon fibers in a state where they are bound by the binder is produced.
  • the second step is a step of immersing the short carbon fiber sheet produced in the first step in a liquid obtained by dispersing carbonaceous powder in a solution of a thermosetting resin, and pulling up the crushed sheet. Drying the sheet at 90 ° C for 3 minutes, and applying a pressure of 0.69 MPa at a temperature of 144 ° C for 25 minutes to a thermosetting resin (for example, , A resol type phenol resin).
  • a thermosetting resin for example, , A resol type phenol resin
  • the thermosetting resin has a relationship of 200 to 300 parts by weight, and the carbonaceous powder has a relationship of 1 to 200 parts by weight, based on 100 parts by weight of the carbon fiber. Is preferred. More preferably, the relationship is 30 to 250 parts by weight of the thermosetting resin and 10 to 160 parts by weight of the carbonaceous powder. It is more preferable that the thermosetting resin has a relationship of 40 to 200 parts by weight and the carbonaceous powder has a relationship of 20 to 1,20 parts by weight.
  • the amount of the thermosetting resin is too small, the obtained porous carbon substrate becomes too thick, and the conductivity in the thickness direction decreases.
  • the amount of the thermosetting resin is too large, the density of the obtained porous carbon base material is too high, the pore diameter is too small, and the drainage of water when used as a gas diffuser for a fuel cell is poor. Battery performance is reduced.
  • the length of the short carbon fiber is preferably from 0.3 to 2 Omm, more preferably from 5 to 15 mm. Thereby, the dispersibility of the short carbon fiber in the liquid is improved when the short carbon fiber is dispersed in the liquid and the paper is made into a short carbon fiber sheet.
  • the fiber diameter of the short carbon fiber is preferably 5 to 20 ⁇ , more preferably 5 to 13 / ⁇ , and particularly when the fiber diameter is 5 to 10 m, Pores having a suitable pore diameter are easily formed in the resulting porous carbon substrate.
  • carbonaceous powder powder such as graphite, carbon black, carbonaceous milled fiber, and expanded graphite can be used.
  • graphite or carbon black powder it is preferable to use graphite or carbon black powder, and it is more preferable to use graphite powder.
  • the weight fraction of the carbonaceous powder is preferably from 1 to 60%, more preferably from 10 to 55%, and even more preferably from 20 to 50%. If the amount of the carbonaceous powder is too small, the conductivity of the obtained porous carbon base material will be low. If the amount is too large, the density of the obtained porous carbon base material will be high, and a suitable pore size cannot be obtained, and the battery characteristics will be low.
  • the conductivity of the porous carbon substrate in the thickness direction can be improved.
  • the heating rate in the carbonization step is high, cracks occur in the resin part, causing a decrease in conductivity in the thickness direction of the base material and a decrease in bending strength.
  • the use can prevent the resin from cracking when the heating rate is high.
  • the particle size of the carbonaceous powder is from 0.01 to
  • the particle size of the carbonaceous powder is more preferably from 0.01 to 5 xm in order to improve the bending strength of the base material and to obtain a suitable pore size.
  • a thermosetting resin a phenol resin, an epoxy resin, or the like can be used. It is more preferable to use a phenol resin which has high bending strength due to a large amount of resin carbide after carbonization and high conductivity in the thickness direction.
  • phenol resin that does not use a metal catalyst or an alkaline catalyst at the time of synthesis.
  • phenolic resins include novolac-type phenolic resins that use an acid catalyst in the synthesis, Al-resole-type phenolic resins that use an Al catalyst, and ammonia-resole-type phenol resins that use an ammonia catalyst. There is.
  • the amount of the carbonaceous powder is preferably at most 300 parts by weight, more preferably at most 200 parts by weight, and preferably at most 150 parts by weight, based on 100 parts by weight of the phenol resin. More preferably, the amount is not more than part by weight. If the amount of the carbonaceous powder is too large with respect to the amount of the resin, the resin carbide cannot sufficiently bind the carbon fiber and the carbonaceous powder, and a problem of powder dropping of the carbonaceous powder occurs.
  • the obtained sheet-like intermediate base material is used as a precursor fiber sheet in a carbonizing step. At 65, it undergoes carbonization. During this time, the thermosetting resin is heated and carbonized.
  • the heating rate in the carbonization step 65 is preferably from 10 to 1,000 ° C./min, more preferably from 50 to 75 ° C./min, and from 100 to 1,000 ° C./min. More preferably, it is 500 ° C./min. If the heating rate is too slow, productivity will decrease. If the speed is too high, the contraction rate due to carbonization is small, so that the porous carbon base material becomes thick, and the conductivity in the thickness direction decreases.
  • the heating temperature in the carbonization step 65 is preferably at least 1,200 ° C, more preferably at least 1,500 ° C, and at least 1,800 ° C. Is more preferable. If the heating temperature is too low, many impurities remain in the heated porous carbon substrate, and when used as a gas diffuser for a fuel cell, impede the proton conduction of the polymer electrolyte membrane and improve the battery performance. Lower.
  • the heating temperature is preferably 2,500 ° C or less, more preferably 2,200 ° C or less, and even more preferably 2,000 ° C or less. .
  • the third method for producing a porous carbon substrate of the present invention is characterized in that it has a post-curing step 64 in FIG. 7 and an improvement in the rate of temperature rise in the carbonizing step 65.
  • a precursor fiber sheet containing paper (sheet) produced by binding short carbon fibers with a binder and a thermosetting resin is continuously conveyed in a heating furnace.
  • the curing degree of the thermosetting resin contained in the precursor fiber sheet before firing is set to 70% or more.
  • the degree of cure of the thermosetting resin is 70% or more
  • the formation of a three-dimensional network of covalent bonds in the resin is promoted, so that thermal decomposition of the resin during firing is suppressed, and the carbonization yield of the resin is improved. I do.
  • carbonization shrinkage of the resin during firing is suppressed, so that the carbon fibers in the porous carbon base material are not bonded to the resin carbide. It can prevent peeling at the contact surface and cracking of the resin carbide.
  • the curing degree of the thermosetting resin contained in the precursor fiber sheet is more preferably 80% or more, further preferably 90% or more, and more preferably 100%. Most preferred. A degree of cure of 100% refers to a state in which the curing reaction of the resin has completely progressed, and means that no peak due to the residual curing heat of the resin is observed in the above-described DSC method.
  • FIG. 6 shows an example of the measurement result of the residual curing heat value of the precursor fiber sheet by the DSC method.
  • the horizontal axis represents temperature (° C.)
  • the vertical axis represents heat flow (mW).
  • the upper side is the endothermic side and the lower side is the exothermic side.
  • an upwardly convex peak 51 observed at a temperature of 50 to 60 ° C. indicates an endothermic peak due to volatilization of the residual solvent contained in the precursor fiber sheet, and the peak is at around 200 ° C.
  • the peak 52 protruding downward shown in FIG. 2 indicates an exothermic peak due to a curing reaction of the thermosetting resin contained in the precursor fiber sheet.
  • An auxiliary line 54 indicated by a broken line is drawn so as to connect the upper ends on both sides of the valley drawn by the partial curve 53 including the downwardly convex peak 52. Based on the area of the hatched area 55 surrounded by the curve 53 and the broken line 54, the heating rate (at 10 ° C) and the sample amount (2.6 mg) shown in Table 2, the residual curing heat was generated.
  • the residual curing calorific value Qb per unit weight of the precursor fiber sheet for which the degree of curing is to be determined can also be determined in the same manner. From the obtained Qa and Qb, the degree of curing is determined using the above equation ( ⁇ ). be able to.
  • a precursor fiber sheet obtained by impregnating a thermosetting resin into short carbon fiber paper and then heating and pressurizing the paper is used. It is preferable to interpose a post-curing step 64 consisting of further heating at a temperature of 0 to 300 ° C. between the compression step 63 and the carbonizing step 65.
  • the heating temperature in the post-curing step 64 is more preferably from 160 to 280 ° C, even more preferably from 180 to 260 ° C.
  • the heating temperature in the post-curing step 64 is preferably set to a temperature higher than the temperature at which the precursor fiber sheet is compression-molded by heating and pressing. . If the heating temperature in the post-curing step 64 is lower than 140 ° C, the progress of the curing reaction is slow, and if it is higher than 300 ° C, the oxidation of the precursor fiber sheet proceeds, Causes problems such as reduced strength.
  • the heating time of the precursor fiber sheet in the post-curing step 64 is preferably from 1 to 180 minutes, more preferably from 2 to 120 minutes, and from 3 to 60 minutes. Is more preferred. If the heating time is less than 1 minute, the progress of curing becomes insufficient. If the heating time is more than 180 minutes, the strength of the precursor fiber sheet is reduced by oxidation, and the porous carbon base Decreases wood productivity.
  • the heating in the post-curing step 64 may be performed by continuously running the precursor fiber sheet in an oven set to the above temperature, or may be performed by winding the precursor fiber sheet wound up in a roll shape.
  • the patch may be placed in an oven set at the above temperature as it is, and the patch may be used.
  • the third manufacturing method increases the degree of curing of the thermosetting resin contained in the precursor fiber sheet, and suppresses carbonization shrinkage during firing, thereby increasing the rate of continuous firing.
  • a method for producing a porous carbon substrate 1 that can maintain sufficient physical properties even when the temperature rate is increased.
  • the heating rate is preferably 500 to 100,000 minutes, more preferably 700 to 6,000 minutes, and more preferably 1,000 to 4 minutes. , 000 ° C / min.
  • the rate of temperature rise in continuous firing can be increased, that is, the productivity of the porous carbon substrate can be improved, and the production cost can be reduced.
  • the porous carbon substrate was immersed in a water-based dispersion of PTFE and then pulled up and dried. The amount of PTFE adhered to the porous carbon substrate was 20% by weight.
  • the obtained substrate was heat-treated at 380 ° C. From the heat-treated base material, a base material having a size of 2.0 cm X 2.5 cm was cut out and used as a test piece. The test piece was sandwiched between two gold-plated stainless steel electrodes, a current of 1 A was passed between the electrodes under a pressure of 1. OMPa, and the voltage drop at that time was measured. Using the measured voltage drop, the electrical resistance was calculated based on the following equation (W).
  • R electric resistance ( ⁇ ⁇ cm 2 )
  • V voltage drop (V).
  • a porous carbon substrate When a porous carbon substrate is used as a gas diffuser for a fuel cell, it is general to impart water repellency using a fluorine resin or the like.
  • the electric resistance in the thickness direction of the gas diffuser obtained by subjecting the porous carbon base material to the water repellent treatment was an index indicating the voltage drop due to the ohmic loss of the fuel cell, and it was determined that the electric resistance having a low electric resistance was excellent.
  • a gas diffuser is prepared as follows. Porous carbon substrate After being immersed in an aqueous PTFE dispersion, it was pulled up and dried. The amount of PTFE adhered to the porous carbon substrate was 20% by weight. A mixture of carbon black and PTFE was applied on the obtained base material, and heat-treated at 38O 0 C to form a gas diffusion layer on the base material.
  • the ratio of each in the mixture of carbon black and PTFE is 8: 2, and the amount applied to the substrate is about 2 mg / cm 2 .
  • the supported amount of platinum as a catalyst is about 0.5 mg / cm 2 .
  • the membrane-catalyst sheet is sandwiched between two carbon-layered substrates with the carbon layer facing inward, and heated and pressurized at a temperature of 130 ° C and a pressure of 3 MPa to integrate the membrane-electrode assembly. (MEA).
  • the MEA was sandwiched between grooved separators, and the voltage at a current density of 1 Acm 2 was measured by a conventional method.
  • Battery temperature is 70 ° C
  • hydrogen gas is 80 ° C
  • the gas pressure is atmospheric pressure.
  • the hydrogen utilization is 70% and the air utilization is '40%. Those with higher measured voltages were judged to be superior.
  • Carbon fiber (Toray Co., Ltd. polyacrylonitrile-based carbon fiber
  • the amount of polyvinyl alcohol attached is short carbon It corresponds to 200 parts by weight with respect to 100 parts by weight of fiber paper.
  • a dispersion was prepared by mixing graphite powder (flaky graphite BF-5A manufactured by Chuetsu Graphite Co., Ltd., average particle size 5 / zm), phenolic resin, and methanol in a weight ratio of 1: 4: 16. . Continuously impregnate the dispersion into short carbon fiber paper so that the phenolic resin is 110 parts by weight with respect to 100 parts by weight of short carbon fiber paper, and dry at 90 ° C for 3 minutes. As a result, a resin-impregnated carbon fiber paper was obtained, and this was wound into a roll.
  • the phenol resin a resin in which a resole phenol resin and a novolac phenol resin were mixed at a weight ratio of 1: 1 was used.
  • thermosetting resin contained in the carbon fiber paper is post-cured by heating the roll wound with the compression-molded resin-impregnated carbon fiber paper in an oven set at 200 ° C for 2 hours. Processed. The degree of cure of the thermosetting resin after the post-curing treatment was 100%.
  • the post-cured carbon fiber paper of the resin was used as a precursor fiber sheet 81 and introduced into a heating furnace 89 maintained at a maximum temperature of 2,000 and maintained in a nitrogen gas atmosphere. While running continuously through the inside, about 550 ° CZ (650 ° C Until the temperature exceeds 400 ° CZ, the temperature exceeds 550 ° C at 550 ° CZ).
  • a porous carbon substrate 1 was produced in the same manner as in Example 1 except that the post-curing treatment of the compression-molded resin-impregnated carbon fiber paper was not performed.
  • the heating rate in the carbonization process is about 1,600 at ⁇ / min (1,300 ° C / min up to 650 ° C, 1,70 ° C at temperatures over 650 ° C).
  • a porous carbon substrate 1 was produced in the same manner as in Example 1 except that the temperature was 0 ° CZ). The specifications, production conditions and evaluation results of the obtained porous carbon substrate 1 are shown below.
  • Thickness 0.14 mm
  • Porosity 80% Average fiber diameter of short carbon fiber: ⁇ ⁇ .m
  • Average fiber length of short carbon fiber 1 2 mm
  • Heating rate of carbonization process 160 ° C Z min
  • thermosetting resin 100%
  • the dispersion liquid impregnated in the short carbon fiber paper was a dispersion liquid in which graphite, phenol resin, and methanol were mixed at a weight ratio of 1: 40: 160.
  • the carbon fiber short paper was continuously impregnated with the dispersion so that the phenol resin was 14.7 parts by weight with respect to 100 parts by weight of the carbon short fiber paper.
  • Average fiber length of short carbon fiber 1 2 mm
  • Heating rate of carbonization process 500 ° C min
  • Carbon fiber (Toray Co., Ltd. polyacrylonitrile-based carbon fiber "Tre-force" T-300--6K, average single fiber diameter: 7, number of single fibers: 6,000) Cut to a length of 12 mm, continuously make paper using water as a papermaking medium, dipped in a 10% by weight aqueous dispersion of polyvinyl alcohol, dried, and dried to obtain a short carbon fiber basis weight.
  • the adhesion amount of polybutyl alcohol is equivalent to 20 parts by weight with respect to 100 parts by weight of carbon short fiber paper.
  • a solution was prepared by mixing a phenol resin and methanol at a weight ratio of 1: 4.
  • the carbon staple paper is continuously impregnated with the liquid so that the phenolic resin becomes 150 parts by weight with respect to 100 parts by weight of the short carbon fiber paper, and dried at 90 for 3 minutes.
  • a resin-impregnated carbon fiber paper is obtained, which is formed into a roll. I wound it up.
  • the phenol resin a resin obtained by mixing a resole phenol resin and a novolak phenol resin in a weight ratio of 1: 1 was used.
  • the resin-impregnated carbon fiber paper was drawn out of the roll and cut, and a resin-impregnated carbon fiber paper having a predetermined size was cut out from the obtained cut pieces.
  • a desired number of sheet-fed carbon fiber papers were prepared.
  • the hot plates 75a and 75b were set so as to be parallel to each other.
  • the sheet carbon fiber paper was placed between the hot plates one by one so as to be heated and pressurized for 30 minutes at a hot plate temperature of 150 ° C. and a surface pressure of 0.5 MPa, and was subjected to a compression treatment.
  • a patch-type heating furnace maintained in a nitrogen gas atmosphere has a maximum temperature of 2,000 ° C and a temperature of approximately 1.4 ° C / The firing was performed at a heating rate of 1 ° C / minute (up to 800 ° C, 2 ° C / minute above 800 ° C).
  • Average fiber length of short carbon fiber 1 2 mm
  • Heating rate of carbonization process 1.4 ° C min Included in precursor fiber sheet
  • thermosetting resin 55%
  • Carbon fiber (Toray Co., Ltd. polyacrylonitrile-based carbon fiber "Tre-force" T-800H-6K, average single fiber diameter: 5; um, number of single fibers: 6,000
  • a porous carbon substrate was produced in the same manner as in Comparative Example 1 except that) was used. The specifications, manufacturing conditions and evaluation results of the obtained porous carbon substrate are shown below.
  • Average fiber length of short carbon fiber 1 2 mm
  • thermosetting resin 6 3%
  • Comparative Example 3 In the carbonization process, a continuous firing furnace was used, and the temperature was raised at a rate of about 500 ° CZ (400 ° CZ for up to 650 ° C, and 550 ° C for temperatures exceeding 650 ° C.
  • the production conditions were the same as in Example 1 except that the porous carbon substrate was manufactured.
  • thermosetting resin 57%
  • a porous carbon base material was obtained in the same manner as in Comparative Example 1 except that a long carbon short fiber paper having a basis weight of short carbon fibers of about 25 g ⁇ 2 was obtained.
  • Average fiber length of short carbon fiber 1 2 mm
  • a porous carbon substrate was obtained in the same manner as in Comparative Example 1, except that a long carbon short fiber paper having a short carbon fiber weight of about 25 g Zm 2 was obtained.
  • Heating rate of carbonization process 1.4 ° C Z min
  • thermosetting resin 58%
  • Table 3 summarizes the main specifications, production conditions and evaluation results of the porous carbon substrate for the above Examples and Comparative Examples.
  • Example 1 38 0.07 0.13 7 0.59 1.70
  • Example 2 39 0.07 0. 16 7 0.49 1.7
  • Example 3 39 0.05 0. 14 7 0.67 1.46
  • Example 4 41 0.11 0.15 7 0.31 1.71 Comparative example 1 36 0.04 0.19 7 0.86 1.03 Comparative example 2 24 0.04 0.18 5 0.64 1.53 Comparative example 3 40 0.17 0.25 7 0.44 0.77 Comparative example 4 37 0.03 0.10 7 0.21 2.45 Comparative Example 5 36 0.04 0.28 7 2.19 0.64
  • the volume of pores having a pore diameter of 10 / i in or less was in the range of 0.05 to 0.16 cc / g, so that the water-repellent treatment was performed.
  • the electrical resistance in the thickness direction of the substrate when applied is as low as 30 m ⁇ ⁇ cm 2 or less, and the conductivity is high.
  • the porous carbon substrate of the present invention can be produced with high productivity and low cost.
  • the substrate obtained in Comparative Example 1 has a high electric resistance and a high battery voltage, but is in a single-wafer form, and has low productivity of the substrate.
  • the base material obtained in Comparative Example 3 in which the patch-type carbonizing step of Comparative Example 1 was simply replaced with the continuous carbonizing step had a large number of peelings and cracks as shown in FIGS.
  • the pore volume below m is as large as 0.17 cc / g. Therefore, the electric resistance of the base material is large and the battery voltage is low.
  • FIG. 4 An electron micrograph of the porous carbon substrate 31 produced in Comparative Example 3 is shown in FIG.
  • the porous carbon substrate 31 has a peeled portion 35 on the bonding surface between the short carbon fiber 32 and the resin carbide 33.
  • the porous carbon substrate 41 is composed of a resin carbide 43 and carbon short fibers 42 bonded thereto, and the resin carbide 43 has a cracked portion 46. .
  • the base material obtained in Comparative Example 2 using carbon fibers having an average fiber diameter of 5 m has a high flexural modulus and a small pore diameter because of using a small fiber diameter. Therefore, it is inferior in handling properties in roll form, and has low drainage and gas diffusion properties, so the battery voltage is low.
  • the substrate obtained in Comparative Example 4 has a small thickness and a large maximum bending load displacement, but tends to get loose due to a small maximum bending load.
  • the base material obtained in Comparative Example 5 is thick and has a large maximum bending load, but is difficult to be rolled because the maximum bending load displacement is small. In addition, the drainage is low due to the thickness, and the battery voltage is low.
  • the porous carbon base material of the present invention is characterized in that it has a high handleability, can be supplied in a roll form, and has little peeling of the carbon fiber and the resin carbide at the binding surface and little cracking of the resin carbide. And Since the structure of the porous carbon substrate of the present invention is optimized from the viewpoint of gas and water diffusion and transport, the polymer electrolyte fuel cell used as a material for forming the gas diffuser has a high cost. Indicates battery characteristics.
  • the method for producing a porous carbon substrate of the present invention for the purpose of producing the porous carbon substrate of the present invention comprises the steps of continuously heating and pressing with a hot plate parallel to each other while intermittently transporting the substrate. And producing a precursor fiber sheet, and firing the produced precursor fiber sheet while continuously transporting the same in a heating furnace. Therefore, the method for producing a porous carbon substrate according to the present invention provides a conventional method for producing a porous carbon substrate having high productivity.

Description

明 細 書 多孔質炭素基材、 その製造方法、 ガス拡散体、 膜—電極接合体、 および、 燃料電池 技術分野
本発明は、 多孔質炭素基材に関する。 本発明の多孔質炭素基材は、 炭 素短繊維と樹脂炭化物からなり、 炭素短繊維は、 樹脂炭化物によ り結着 されている。 また、 本発明は、 本発明の多孔質炭素基材の製造方法に関 する。 更に、 本発明は、 本発明の多孔質炭素基材がガス拡散体の形成材 と して用いられているガス拡散体、 膜一電極接合体、 および、 燃料電池 に関する。
本発明の多孔質炭素基材は、 良好なハン ドリ ング性を有する。 本発明 の多孔質炭素基材は、 ロール状に巻き上げることが可能である。 そのた め、 本発明の多孔質炭素基材を用いた製品を製造する際に、 本発明の多 孔質炭素基材を、 必要な長さ、 ロール状のパッケージから引き出し、 そ れを製品の製造工程に供給することが可能である。
また、 本発明の多孔質炭素基材は、 炭素短繊維と樹脂炭化物の結着面 での剥離や、 樹脂炭化物のひび割れが少ないことを特徴とする。 .
本発明の多孔質炭素基材は、 固体高分子型燃料電池のガス拡散体と して好ましく用いられる。 背景技術
燃料電池のガス拡散体を構成する基材と して、 炭素繊維を樹脂炭化物 で結着してなる多孔質炭素基材が、 J P , 0 6 - 2 0 7 1 0 , A, J P , 0 7— 3 2 6 3 6 2, A、 あるいは、 J P , 0 7 - 2 2 0 7 3 5 , Aに 記載されている。 しかしながら、 この公知の多孔質炭素基材は、 ハンド リ ング性が悪く 、 連続した長尺の形態とすることが難しいと云う問題を 有している。
この公知の多孔質炭素基材は、 炭素繊維紙を抄造する抄紙工程、 炭素 繊維紙に熱硬化性樹脂を含浸する樹脂含浸工程、 樹脂が含浸された炭素 繊維紙を圧縮成形する圧縮工程、 および、 圧縮成形された樹脂含浸炭素 繊維紙からなる前駆体繊維シー トを焼成する炭化工程を経て製造される, 抄紙工程から樹脂含浸工程までのシー トは、 連続した長尺の形態を有 している。 しかし、 シー トは、 圧縮工程に供給される前において、 所定 の長さにカッ ト される。 カッ ト されたシー ト、 すなわち、 枚葉形態のシ ー トが、 圧縮工程に供給され、 そこで、 枚葉形態のシー ト毎に、 パッチ 式の平板プレスが行われる。 その後の炭化工程では、 パッチ式の加熱炉 によ り 、 樹脂の炭素化が行われる。 圧縮行程、 炭化工程がバッチプロセ スで行われるのは、 得られる多孔質炭素基材のハンドリ ング性が悪いた めである。すなわち、連続した長尺の多孔質炭素基材を製造することが、 困難であったからである。 従って、 また、 ロール状に卷き上げられてい る多孔質炭素基材を製造することが、 できなかったからである。
一般に、 パッチプロセスは、 連続プロセスに比べて、 製品の生産性が 低い。 上記炭化工程においても、 パッチ式の加熱炉で採り得る昇温速度 は、 せいぜい数 °C /分程度までである。 従って、 多孔質炭素基材の生産 性は低く 、 製造コス トが髙いと云う問題があった。
他方、 W O, 0 1 / 5 6 1 0 3, A 1 には、 ロール状に卷く ことがで きる電極基材ならびにその製造方法が開示されている。 この文献には、 繊維径の細い炭素繊維を用いることで、 シー トの曲げ強さ等の向上を図 ることが提案されている。 しかし、 炭素繊維の繊維径を細くする と、 得 られる多孔質炭素基材の曲げ弾性率が高く なる傾向がある。 つま り、 こ の基材をロール状に卷き取るために、 よ り大きな力が必要になる と云う 問題がある。 また、 繊維径の細い炭素繊維を用いた多孔質炭素基材は、 基材に形成される細孔の孔径が小さく なる。 従って、 基材をガス拡散体 と して用いた場合には、 ガス拡散性や排水性などが低く なる と云う問題 がある。
また、 この文献には、 一対のエン ドレスベルトを備えた連続式加熱プ レス装置、 あるいは、 連続式ロールプレス装置を用いる こ と で、 圧縮ェ 程の連続化を図ることが提案されている。 しかし、 熱硬化性樹脂を含む 炭素繊維紙を圧縮成形するためには、 樹脂の硬化反応がある程度進行す る時間、 通常、 数分から数十分程度の間、 加熱加圧状態を保持する必要 がある。 そのため、 上記ベル トプレス、 ロールプレスのよ う に、 線圧で シー トに圧力がかかる装置では、 パッチ式の平板プレス と同等の厚さ精 度で、 前駆体繊維シー トを圧縮成形する こ とは困難であると云う問題が ある。
更に、 この文献には、 連続焼成炉でシー トの焼成を行う こ とで、 炭化 工程の連続化を図ることが提案されている。 確かに、 連続焼成を行う こ とによ り、 パッチ式と比べて大幅な生産性の向上を図ることができる。 しかし、 生産性が向上するに従って、 前駆体繊維シー トに含まれる熱硬 化性樹脂は急激に炭化される。 そのため、 単に連続焼成炉を用いただけ では、 樹脂の急激な炭化収縮によ り、 樹脂炭化物と炭素繊維との結着面 での剥離が大量に生じたり、 樹脂炭化物部分に著しいひぴ割れが生じた りすると云う問題がある。
本発明は、 従来の技術における上述した問題点に鑑みてなされたもの で、 その目的とするところは、 ハン ドリ ング性が高く 、 ロール状での供 給が可能であり、 かつ、 炭素繊維と樹脂炭化物の結着面での剥離や、 樹 脂炭化物にひび割れが少ない多孔質炭素基材を提供することにある。 また、 ガスや水の拡散、 輸送の観点から構造が最適化され、 高い電池 特性をもたらす多孔質炭素基材を提供することを目的とする。
更に、 多孔質炭素基材を高い生産性、 低コス トで.製造することが可能 な多孔質炭素基材の製造方法を提供するこ とを目的とする。 発明の開示
本発明の多孔質炭素基材は、 無作為な方向に分散している炭素短繊維 と樹脂炭化 とを含むシー トからなり、 該シー トにおいて、 前記炭素短 繊維は、 前記樹脂炭化物で結着されており、 かつ、 前記シー トは、 細孔 を有し、 該細孔の内の細孔径が 1 0 /i m以下の細孔の前記シー ト単位重 量当たり の容積が、 0. 0 5乃至 0. 1 6 c c Z gである。
本発明の多孔質炭素基材の厚さが、 0. 1 0乃至 0. 2 5 mmである ことが好ましい。
本発明の多孔質炭素基材の空孔率が、 7 0乃至 9 0 %であるこ とが好 ましい。
本発明の多孔質炭素基材の炭素短繊維の平均繊維径が、 5乃至 2 0 μ mであることが好ましい。
本発明の多孔質炭素基材に、 炭素質粉末が含まれていることが好まし い
本発明の多孔質炭素基材の 3点曲げ試験によ り測定される曲げ最大 荷重が、 0. 2 5乃至 2. O N/ c mであるこ とが好ま しい。
本発明の多孔質炭素基材の 3点曲げ試験によ り測定される曲げ最大 荷重変位が、 0. 7乃至 2. 3 mmであるこ とが好ましい。
本発明の多孔質炭素基材の 3点曲げ試験によ り測定される曲げ弾性 率が、 1乃至 1 5 G P aであることが好ま しい。
本発明の多孔質炭素基材に含まれる炭素質粉末の粒径が、 0. 0 1乃 至 1 0 /x mであることが好ま しい。
本発明の多孔質炭素基材に含まれる炭素質粉末が、 黒鉛またはカーボ ンプラックの粉末であることが好ま しい。
本発明の多孔質炭素基材に含まれる炭素質粉末の重量分率が、 1乃至 6 0 %であることが好ま しい。
本発明の多孔質炭素基材の炭素短繊維の平均繊維長が、 3乃至 2 0 m πιであることが好ましい。
本発明の多孔質炭素基材の密度が、 0 . 3乃至 0 . 7 g / c m 3であ ることが好ましい。
本発明の多孔質炭素基材が有する細孔の細孔ピーク径が、 2 5乃至 5 5 μ mであることが好ま しい。
本発明のガス拡散体は、 本発明の多孔質炭素基材と この基材に付与さ れた撥水性物質とからなる。
本発明のガス拡散体は、 本発明の多孔質炭素基材と この基材の少なく と も片面に形成された導電性を有するガス拡散層とからなる。
本発明のガス拡散体は、 撥水性物質が付与されている本発明の多孔質 炭素基材と この基材の少なく とも片面に形成された導電性を有するガス 拡散層とからなる。
本発明の膜一電極接合体は、 固体高分子電解質膜と この膜の両表面に 設けられた触媒担持炭素を含む触媒層と この両触媒層に接して設けられ たガス拡散体とからなり 、 これらのガス拡散体の少なく とも片方が、 本 発明のガス拡散体からなる。
本発明の燃料電池における膜一電極接合体は、 本発明の膜—電極接合 体からなる。
次に、 本発明の多孔質炭素基材を製造するための本発明の多孔質炭素 基材の製造方法が説明される。 本発明の多孔質炭素基材の製造方法は、 炭素短繊維と樹脂とからなる 前駆体繊維シートを圧縮処理する圧縮工程と圧縮処理された前駆体繊維 シー トの前記樹脂を炭化処理する炭化工程とならなり、前記圧縮工程が、 互いに平行に位置する熱板間を、 間欠的に搬送されながら通過し、 搬送 が停止している間に、 前記熱板によ り、 停止している前記前駆体繊維シ ー トが加熱加圧され、 加熱加圧後、 再び、 前記前駆体繊維シー トの搬送 が開始され、 これらの搬送と停止とを交互に行う ことからなる。 これを 第 1 の製造方法と呼称する。
第 1 の製造方法において、 前記前駆体繊維シー トに炭素質粉末が含ま れているこ とが好ましい。
第 1 の製造方法において、 前記樹脂が、 熱硬化性樹脂からなるこ とが 好ましい。
第 1 の製造方法において、 前記前駆体繊維シー トに炭素質粉末が含ま れ、 前記樹脂が、 熱硬化性樹脂からなることが好ましい。
第 1 の製造方法において、 前記圧縮工程と前記炭化工程との間に、 前 記熱硬化性樹脂の後硬化をざせる後硬化工程を有することが好ましい。
本発明の多孔質炭素基材の製造方法は、 炭素短繊維と樹脂とからなる 前駆体繊維シー トを圧縮処理する圧縮工程と圧縮処理された前駆体繊維 シー トの前記樹脂を炭化処理する炭化工程とならなり 、 前記前駆体繊維 シー トに炭素質粉末が含まれていることからなる。 これを第 2の製造方 法と呼称する。
第 2の製造方法において、 前記樹脂が、 熱硬化性樹脂からなるこ とが 好ましい。
第 2の製造方法において、 前記圧縮工程と前記炭化工程との間に、 前 記熱硬化性樹脂の後硬化をさせる後硬化工程を有することが好ましい。
本発明の多孔質炭素基材の製造方法は、 炭素短繊維と樹脂とからなる 前駆体繊維シー トを圧縮処理する圧縮工程と圧縮処理された前駆体繊維 シー トの前記樹脂を炭化処理する炭化工程とならなり、 前記樹脂が、 熱 硬化性樹脂からなる。 これを第 3の製造方法と呼称する。
第 3の製造方法において、 前記圧縮工程と前記炭化工程との間に、 前 記熱硬化性樹脂の後硬化をさせる後硬化工程を有するこ とが好ま しい。
第 1 、 2あるいは 3の製造方法において、 前記炭化工程において、 前 記前駆体繊維シー トが、 連続的に搬送されてなることが好ま しい。
第 1 の製造方法において、 前記熱板の搬送方向の有効加圧長を L P、 間欠的に搬送する際の前駆体繊維シー トの送り量を L F とする とき、 L F/ L Pの値が、 0. 1乃至 0. 9 8であることが好ま しい。
第 1 の製造方法において、 前記熱板の温度が、 1 4 0乃至 3 0 0 °じ、 加圧力が、 0. 1 乃至 4 0 M P a であるこ とが好ましい。
第 1 、 2あるいは 3の製造方法において、 前記前駆体繊維シー トが、 炭素短繊維がパイ ンダで結着されてなる紙であることが好ましい。
第 1 、 2あるいは 3の製造方法において、 前記前駆体繊維シー トの炭 素短繊維 1 0 0重量部に対して、 前記熱硬化性樹脂の量が 2 0乃至 3 0 0重量部、 前記炭素質粉末の量が 1乃至 2 0 0重量部であるこ とが好ま しい。
第 1 、 2 あるいは 3の製造方法において、 前記前駆体繊維シー トが、 昇温速度 1 0乃至 1、 0 0 0 °CZ分で、 少なく とも 1、 2 0 0 °Cの温度 まで加熱されるこ とによ り 、 前記熱硬化性樹脂が炭素化されてなること が好ましい。
第 1 、 2あるいは 3 の製造方法において、 前記炭素質粉末の粒径が、 0. 0 1乃至 1 0 /x mであることが好ましい。また、前記炭素質粉末が、 黒鉛またはカーボンブラックの粉末であることが好ましい。
第 1、 2あるいは 3の製造方法において、 前記炭素短繊維の平均繊維 径が、 5乃至 2 0 μ πιであることが好ま しい。
第 1、 2 あるいは 3の製造方法において、 前記炭素短繊維の平均繊維 長が、 3乃至 2 O mmであることが好ましい。
第 1、 2あるいは 3の製造方法において、 前記熱硬化性樹脂が、 フ エ ノール樹脂であることが好ましい。 また、 前記フエノール樹脂が、 それ が合成される際に金属触媒も しく はアル力 リ触媒が使用されていないフ ェノール樹脂であることが好ましい。
第 1、 2 あるいは 3の製造方法において、 前記熱硬化性樹脂の硬化度 が、 7 0 %以上であることが好ましい。
第 1、 2あるいは 3の製造方法において、 前記後硬化工程における前 記前駆体繊維シー トの加熱温度が、 1 4 0乃至 3 0 0 °Cであるこ とが好 ましい。
第 1、 2あるいは 3の製造方法において、 前記前駆体繊維シー トが、 昇温速度 5 0 0乃至 1 0, Ο Ο Ο ΐ 7分で、 少なく と も 1, 2 0 0 °Cま で加熱されることによ り、 前記熱硬化性樹脂が炭素化されてなることが 好ま しい。
第 1、 2 あるいは 3の製造方法において、 前記炭化工程における加熱 温度の最高温度が、 1, 2 0 0乃至 2, 5 0 0 °Cであることが好ましい。 多孔質炭素基材に関する各種特性値の定義、 および/または、 その測 定方法は、 次の通りである。
多孔質炭素基材に形成される細孔の内の細孔径が 1 0 m以下の細孔 の容積は、 次に示す水銀圧入法による細孔径分布測定から求める。
多孔質炭素基材から約 1 2 mm X 2 0 mm角の試料片を 3枚切り 出し, 精枰した後、 重ならないよ う に測定用セルに入れ、 減圧下に水銀を注入 する。 その後、 表 1 に示す装置、 条件で細孔径分布測定を行う。 測定回 数は 1回とする。 マイク ロメ リテック社製 ポアサイザ一 9 3 2 0 測定圧力 約 3 . 7 K P a乃至 2 0 7 M P a
範囲 (細孔直径約 7 0 n m乃至 4 0 0 μ m )
測定モー ド 上記圧力範囲の昇圧過程
セル容積 5 c m 3 多孔質炭素基材が有する全ての細孔の孔径は、 上記の細孔径分布測定 により得られるピーク径の値を用いて代表的に表される値である。 従つ て、 この代表値は、 細孔ピーク径と呼称される。
多孔質炭素基材の厚さは、 マイク ロメーターを用いて、 基材の厚さ方 向に 0 . 1 5 M P a の面圧を付与して測定する。測定回数は 2 0回と し、 その平均値を厚さ とする。 多孔質炭素基材の空孔率は、基材の真密度と見掛密度とから算出する。 真密度の測定は、 よく知られた浮遊法やピク ノ メータ法等によることが できる。 また、 見掛密度は、 基材の厚さ と 目付 (単位面積当たりの重さ) とから算出する。 真密度は 2回測定し、 その平均値を用いる。 目付は、 1 0 c m X 1 0 c m角の多孔質炭素基材の重さを 1 0回測定し、 その平 均値から算出する。本発明における密度とは、見かけ密度のことを指す。 炭素短繊維の平均繊維径は、 基材の 5, 0 0 0倍の電子顕微鏡による 繊維の断面写真から任意の 1 0本の炭素短繊維を選択して、 それらの繊 維径を測定し、 その単純平均値と して求める。 繊維の横断面の形状が円 形でない、 例えば、 楕円形である場合には、 長径と短径の平均値を繊維 径とする。 また、 電子顕微鏡写真の樹脂炭化物部分を確認するこ とによ り導電性粉末 (例えば、 炭素質粉末) の有無を確認することができる。 炭素質粉末の粒径は、 多孔質炭素基材を製造する際に添加する炭素質 粉末の動的光散乱測定を行い、 求めた粒径分布の数平均粒径とする。 炭素短繊維の平均繊維長は、 炭素短繊維シー トを大気中にて 6 0 0 °C で加熱し、 炭素短繊維を残してそれ以外のパイ ンダ等を焼き飛ばすこと によって得られた任意の 3 0本の炭素短繊維について、 倍率 5倍の光学 顕微鏡写真を撮影し、 写真から各炭素短繊維の長さを測定し、 その数平 均値と して求める。
炭素質粉末の重量分率の測定は、 多孔質炭素基材中の炭素質粉末の重 量を、 多孔質炭素基材製造時に使用した炭素質粉末の重量 (W c ) から 求め、 多孔質炭素基材の重量 (W a ) から、 次の ( I ) 式によ り求める。 炭素質粉末の重量分率 (%) =W c ÷W a X 1 0 0 ( I )
多孔質炭素基材の曲げ最大荷重、 曲げ最大荷重変位、 および、 曲げ弾 性率は、 次に示す 3点曲げ試験から求める。
3点曲げ試験は、 J I S K 6 9 1 1 に規定される方法に準拠して 行う。 このとき、 試験片の幅は 1 5 mm、 長さは 4 0 mm、 支点間距離 は 1 5 mmとする。 また、 支点と圧子の曲率半径は 3 mni、 荷重印加速 度は 2 m m Z分とする。 なお、 最大荷重や曲げ弾性率の測定において、 基材が異方性を有している場合には、 曲げ弾性率の最も高い方向を試験 片の長さ方向と し、 等方性の場合には、 後述する方法によって得られる 長尺の多孔質炭素基材の長さ方向を試験片の長さ方向とする。 3点曲げ 試験において、 荷重が最大となる点における荷重おょぴ変位が、 それぞ れ曲げ最大荷重おょぴ曲げ最大荷重変位である。
前駆体繊維シー トに含まれる熱硬化性樹脂の硬化度は、 前駆体繊維シ 一トには熱硬化性樹脂が均一に付着している と仮定して、 樹脂含浸後加 熱加圧前の前駆体繊維シー ト、 および、 硬化度を求める前駆体繊維シー トの単位重量当たりの残存硬化発熱量をそれぞれ Q a、 Q b と して、 次 の ( Π ) 式によ り求める。
硬化度 (%) = (0 & — Q b ) ÷Q a X l O O ( Π )
前駆体繊維シー トの残存発熱量は、 表 2に示す装置、 条件で、 示差走 查熱量計法 (D S C法 : D i f f e r e n t i a l S c a n n n g C a 1 o r i m e t r y ) を用いて測定する。
表 2
Figure imgf000013_0001
前駆体繊維シー トの焼成における昇温速度は、 加熱炉入口の温度と、 加熱炉内の最高温度と、 加熱炉入口から導入されるシー トが最高温度域 まで移動するのに要する時間 (移動時間) とから次の式 (m) によって 求める。 こ こで、 加熱炉入口 とは、 雰囲気が大気から不活性雰囲気へと 切り替わる加熱炉入口側の部位である。
ν= (Τ 2 -τ ΐ ) / X (m)
こ こで、 V : 昇温速度 (°C /分)、 T 1 : 加熱炉入口の温度 (°C)、 T 2 : 加熱炉内の最高温度 (°C)、 t : 移動時間 (分)、 である。
なお、 加熱炉はただ 1個である必要はなく、 2個以上の加熱炉による 多段焼成を行う こ ともできる。 2個の加熱炉を用いる場合には、 1段目 の加熱炉の昇温速度は上記式 (m) から求め、 2段目の加熱炉の昇温速 度は、 上記式 (m) における T i を、 前段の加熱炉の最高温度、 すなわ ち 1段目の加熱炉の最高温度と して求める。 3個以上の加熱炉を用いる 場合にも同様である。 図面の簡単な説明
第 1 図は、 本発明の多孔質炭素基材の一例の表面の繊維の状態を示す 電子顕微鏡写真 (倍率 2 5 0倍) である。 第 2図は、 本発明の多孔質炭素基材の他の一例の表面の繊維の状態を 示す電子顕微鏡写真 (倍率 2, 0 0 0倍) である。
第 3図は、 本発明の多孔質炭素基材の一例の細孔容積と細孔径と の関 係を示すグラフである。
第 4図は、 従来の多孔質炭素基材における炭素短繊維と樹脂炭化物の 結着面に生じた剥離部分における繊維の状態を示す電子顕微鏡写真 (倍 率 : 4, 0 0 0倍) である。
第 5図は、 従来の多孔質炭素基材における樹脂炭化物のひび割れ部分 における繊維の状態を示す電子顕微鏡写真 (倍率 : 2 5 0倍) である。 第 6 図は、 D S C法による前駆体繊維シー トの残存硬化発熱量の測定 結果の一例を示すグラフである。
第 7図は、 本発明の多孔質炭素基材の製造工程の一形態を説明するェ 程図である。
第 8図は、 本発明の多孔質炭素基材の製造工程の一形態における圧縮 工程の一形態を説明する概略縦断面図である。
第 9図は、 本発明の多孔質炭素基材の製造工程の一形態における炭化 工程の一形態を説明する概略縦断面図である。 発明を実施するための最良の形態
第 1 図に、 本発明の多孔質炭素基材 1 の表面の電子顕微鏡写真が示さ れる。 多孔質炭素基材 1 は、 線状に見える炭素短繊維 2 と樹脂炭化物 3 とを含むシー トからなる。 炭素短繊維 2は、 無作為な方向に分散して位 置している。 炭素短繊維 2は、 樹脂炭化物 3で結着されている。 樹脂炭 化物 3 の中に分散している粒状物質は、 炭素質粉末 4である。 ' 炭素短繊維が無作為な方向に分散している状態は、 後述する抄造法に より炭素短繊維を無作為に分散させることによ り、 形成するこ とができ る。 この状態の炭素短繊維シー トに、 例えば、 水流交絡処理を施すこ と によ り得られるシー トは、 シー トの面方向のみならず、 シー トの厚さ方 向にも、 短繊維が配向している。 このよ う な状態も、 炭素短繊維が無作 為な方向に分散している状態に含まれる。
本発明の多孔質炭素基材 1 において、 基材 1 に形成される細孔の内 の細孔径が 1 0 μ ΐη以下の細孔の基材 1の単位重量当たりの容積は、 0 . 0 5乃至 0 . 1 6 c c / gである。
第 2図に、 本発明の多孔質炭素基材 1 1 の表面の電子顕微鏡写真が示 される。 細孔径が 1 0 /i m以下の細孔の発生は、 第 2図に示す炭素短繊 維 1 2 と樹脂炭化物 1 3 の結着面での剥離部分 1 5や、 樹脂炭化物 1 3 のひぴ割れ部分 1 6 に起因するものと考えられる。 基材 1 1 中には、 炭 素質粉末 1 4が観察される。
一例と して、 後述する実施例 2において得られた本発明の多孔質炭素 基材の細孔径分布を水銀圧入法によ り測定した結果が、 第 3図に示され る。第 3図のグラフにおいて、横軸が細孔径( m)、縦軸が細孔容積( c c / g ) である。 曲線 2 1 は、 小さい細孔径から大きい細孔径への積算 した細孔容積を表している。 剥離部分 1 5やひび割れ部分 1 6が多く な ると、 細孔径が 1 0 /Z m以下の細孔の合計の細孔容積が大き く なる。 細 孔径が 1 0 ; m以下の細孔の容積が 0 . 1 6 c c , g以下である と、 基 材 1 にフッ素樹脂等による撥水処理を施したとき、 基材 1 の大幅な導電 性低下を抑制するこ とができる。 細孔径が 1 0 m以下の細孔の容積が 0. 0 5 c c / g以上であると、 炭素短繊維 2 と樹脂炭化物 3の結着部 分が減少するため基材 1 の柔軟性が向上し、 基材 1 のロール化が容易と なる。 細孔径が 1 0 m以下の細孔の容積のよ り好ましい範囲は、 0 . 0 6乃至 0 . 1 5 c c / gであり、 更に好ましい範囲は、 0 . 0 7乃至 0 . 1 4 c c Z gである。 口ール化が容易な多孔質炭素基材 1 は、 連続 生産が可能であり、 パッチ式の生産と比べて、 基材の生産性が大幅に向 上し、 コス トダウンが図れる。
多孔質炭素基材 1 の厚さは、 0 . 1 0乃至 0 . 2 5 mmであるこ と が好ましい。 基材 1 の厚さは、 せん断力が作用したときの基材 1 の割れ や柔軟性に関係する。 厚さが 0 . l O mm未満では、 基材 1 を用いて作 成されたガス拡散体を用いて作成された燃料電池において、 セパ レータ から基材 1 がせん断力を受けたときに、 基材 1 が容易に破壊される。 ま た、 厚さが 0 . 2 5 mmを超える場合は、 基材 1 の柔軟性が大き く低下 し、ロール状への卷き取りが難しく なる。基材 1 のよ り好ましい厚さは、 0 . 1 1乃至 0 . 2 2 mmであり、 更に好ましい厚さは、 0 . 1 2乃至 0 . 1 6 mmである。
多孔質炭素基材 1 の密度は、 0 . 3乃至 0 . 7 g / c m 3であることが 好ましく 、 0 . 3 2乃至 0 . 6 0 g /C m 3であるこ とがよ り好ま しく 、 0 . 3 4乃至 0 . 6 0 g / c m 3であるこ とが更に好ま しい。 密度が 0 . 7 0 g / c m 3を超える場合は、 燃料電池のガス拡散体と して用いたとき の水の排水性が悪く なり、 水詰ま り を起こし電池性能を低下させるため 好ましく ない。 0 . 3 0 g / c m 3未満の場合は、 ガス拡散性が高く なり すぎて固体高分子膜の乾燥を引き起こし、 膜の抵抗が高く なるため電池 性能が低下し、 好ま しく ない。
多孔質炭素基材 1 の空孔率は、 7 0乃至 9 0 %であることが好ま しい。 基材 1 の空孔率が 9 0 %以下である と、 燃料電池内部の水の排出をよ り 抑制するこ とができて、 固体高分子電解質が乾燥してプロ トン伝導性が 低下するのを抑制することができる。 基材 1 の空隙率が 7 0 %以上であ ると、 ガス拡散性が向上し、 発電効率が向上する。 よ り好ましい空孔率 の範囲は、 7 2乃至 8 8 %であり、更に好ましい範囲は、 7 5乃至 8 5 % である。 本発明の多孔質炭素基材 1 を構成する炭素短繊維 2の平均繊維径 (単 繊維の平均繊維径) は、 5乃至 2 0 mであることが好ましい。 平均繊 維径が 5 m未満の場合、 炭素繊維の種類等にもよるが、 基材 1 の柔軟 性が低下することがある。 また、 平均繊維径が 2 0 mを超える場合、 基材 1 の機械的強度が低下することがある。 よ り好ま しい平均繊維径の 範囲は、 6乃至 1 3 μ πιであり、 更に好ま しい範囲は、 6乃至 1 0 /z m である。
炭素短繊維 2は、 通常、 長尺の炭素繊維を所望の長さにカツ トするこ とによって得られる。 炭素短繊維 2の平均繊維長は、 3乃至 2 0 mmで あることが好ましい。 平均繊維長が 3 mm未満の場合、 基材 1 の曲げに 対する最大荷重等の機械的特性が低下することがある。 また、 平均繊維 長が 2 0 m mを超える場合、 後述する抄造時における繊維の分散性が悪 く なり 、 基材 1 における炭素短繊維 2の目付のばらつきが大きく なる。 よ り好ましい平均繊維長の範囲は、 4乃至 1 7 mmであり、 更に好ま し い範囲は、 5乃至 1 5 mmである。
多孔質炭素基材 1の細孔ピーク径は、 2 5乃至 5 5 /z mであることが 好ま しい。 よ り好ましく は、 2 7乃至 5 0 mの範囲であり、 更に好ま しく は、 3 0乃至 4 5 /z mである。 細孔ピーク径が 2 5 /x m未満である 場合は、 燃料電池のガス拡散体と して用いたときの水の排水性が悪く な り 、 水詰ま り を起こし、 電池性能を低下させる。 細孔ピーク径が 5 5 /1 mを越える場合は、 ガス透過性が高く なり過ぎて、 固体高分子膜の乾燥 を引き起こ し、 膜の抵抗が高く なり、 電池性能が低下する。 よって、 相 反する固体高分子膜のプロ トン伝導性維持とガス透過性の両機能を兼備 できる好ましい細孔ピーク径の範囲は、 2 5乃至 5 5 πιである。
炭素短繊維 2を構成する炭素繊維と しては、ポリアク リ ロニ ト リル( P AN) 系、 ピッチ系、 レーヨ ン系等の炭素繊維を用いることができる。 なかでも、 機械的強度に優れ、 しかも、 適度な柔軟性を有する基材 1が 得られるこ とから、 P A N系やピッチ系、 特に P A N系の炭素繊維が好 ましい。
多孔質炭素基材 1 は、 炭素質粉末 4を含むこ とが好ましい。 炭素質粉 末 4を含むことによ り、 基材 1 自体の導電性が向上し、 また、 樹脂炭化 物 3のひぴ割れを軽減でき、 撥水処理による導電性低下を抑制すること ができる。
炭素質粉末 4 と しては、 カーボンブラック、 黒鉛、 膨張黒鉛、 炭素質 ミルド繊維等など粉末が好ま しく用いられる。 これらの内で、 カーボン ブラックや黒鉛の粉末が更に好ましく 、 黒鉛粉末が最も好ま しい。
炭素質粉末 4は、 重量分率で、 1乃至 6 0 %の範囲で用いられている こ とが好ましく 、 この範囲は、 1 0乃至 5 5 %であることがよ り好まし く 、 2 0乃至 5 0 %であるこ とが更に好ましい。 最も好ましい範囲は、 1 5乃至 3 5 %である。
炭素質粉末 4の量が少な過ぎる と、 基材 1 の導電性が低く なる。 多過 ぎる場合には、 基材 1 の密度が高く なり 、 好適な細孔ピーク径が得られ ず、 電池特性が低く なる。 基材 1 が炭素質粉末 4を含むこ とで、 基材 1 の厚さ方向の導電性を向上させることができる。また、樹脂の炭化時に、 昇温速度が早い場合には、 樹脂部分にひぴ割れが起こ り、 得られる基材 1 の厚さ方向の導電性の低下、 曲げ強度の低下を引き起こす問 がある が、 基材 1 が炭素質粉末 4を含むこ とで、 昇温速度が速い場合の樹脂の ひぴ割れを防ぐことができる。
かかる効果を得るには、 炭素質粉末 4 の粒径は、 0 . 0 1乃至 1 0 mであるこ とが好ましく 、 0 . 1乃至 7 /z mであることがよ り好ましく 、 1乃至 5 mであることが、 基材 1 の曲げ強度向上や、 好適な細孔ピー ク径を得るために、 更に好ま しい。 多孔質炭素基材 1 の曲げ最大荷重は、 0 . 2 5乃至 2 . O N/ c mで あるこ とが好ましく、 0 . 2 7乃至 1 . O NZ c mであるこ とがよ り好 ま しく 、 0 . 3 0乃至 0 . 7 0 NZ c mであることが更に好ましい。 曲 げ最大荷重が 0 . 2 5 NZ c m以上である と、 多孔質炭素基材 1 が壌れ 難く なり、 ハン ドリ ング性が向上する。 しかし、 曲げ最大荷重の増加に 従って、 基材 1 の曲げ弾性率が高く なる傾向があるため、 曲げ最大荷重 は 2. O NZ c m以下であることが好ましい。
多孔質炭素基材 1 の曲げ最大荷重変位は、 0 . 7乃至 2. 3 mmであ ることが好ましく 、 1 . 0乃至 2. O mmであることがよ り好ま しく 、 1 . 3乃至 1 . 8 mmであることが更に好ましい。 曲げ最大荷重変位が 0 . 7 mm以上であると、 ロール状に卷き取る ときに、 基材 1 が壌れに く く なるため、 基材 1 をロール状に卷き上げることが容易になる。 しか し、 曲げ最大荷重変位の増加に従って、 曲げ最大荷重が低く なる傾向が あるため、 曲げ最大荷重変位は 2 . 3 mm以下であることが好ま しい。 多孔質炭素基材 1 の曲げ弾性率は、 1乃至 1 5 G P aであるこ とが好 ま しく 、 3乃至 1 4 G P aであるこ とがよ り好ましく 、 5乃至 1 3 G P aであるこ とが更に好ましい。 曲げ弾性率が 1 5 G P a以下である と、 基材 1 の柔軟性が增すため、 基材 1 をロール状に卷き取るこ とが容易と なる。 しかし、 曲げ弾性率が 1 G P a未満となる と、 基材 1 が柔らか過 ぎて支持体と しての機能が低下し、 燃料電池の寿命を早めるため、 好ま しく ない。
これらの曲げ最大荷重、 曲げ最大荷重変位、 曲げ弾性率は、 多孔質炭 素基材 1 のハン ドリ ング性を示す指標である。 これらの特性を満足する 本発明の多孔質炭素基材 1 は、 基材 1 の厚さ、 密度、 基材 1 を構成する 炭素短繊維の平均繊維径などを以下に示す条件に基づき、 それぞれを選 択することによ り、 製造される。 次に、 本発明の多孔質炭素基材 1 の製造方法について説明する。 第 7 図は、 本発明の多孔質炭素基材 1 の製造工程の一形態を説明する工程図 である。 第 7図において、 本発明の多孔質炭素基材の製造工程は、 工程 の上流側から下流側方向に順次設けられた各工程からなる。 すなわち、 炭素短繊維が無作為な方向に分散しているシー トを形成する抄紙工程 6 1、 得られたシー トに樹脂を含浸せしめる樹脂含浸工程 6 2、 得られた 樹脂含浸シー ト (前駆体繊維シー ト) を圧縮処理する圧縮工程 6 3、 必 要に応じて設けられる樹脂を硬化せしめる後硬化工程 6 4、 および、 圧 縮処理された前駆体繊維シー トの樹脂を炭化せしめる炭化工程 6 5から なる。
本発明の多孔質炭素基材 1 の第一の製造方法は、 第 7図に示される圧 縮工程 6 3に特徴がある。 第 8図に、 その圧縮工程 6 3 において用いら れる圧縮装置 (ホッ トプレス) の一例が示される。
第一の製造方法は、 炭素短繊維と樹脂とからなる前駆体繊維シー トを 圧縮する圧縮工程 6 3 と この圧縮工程で圧縮処理された前駆体繊維シー トが加熱炉中を連続的に通過する間に、 前駆体繊維シー トを焼成し、 樹 脂を炭化させる炭化工程 6 5 とからなる。この製造方法により、例えば、 厚さが 0 . 1 0乃至 0 . 2 5 m m、 密度が 0 . 3乃至, 0 . 7 g / c m 3 の多孔質炭素基材 1 が製造される。
この製造方法において、 第 8図に示されるよ う に、 シート卷出し機 7 1 に装着された前駆体繊維シー トロールから所定の長さずつ間欠的に導 出された前駆体繊維シー ト 7 2は、 ホッ トプレス 7 4 a の上面に取り付 けられた熱板 7 5 a とホッ トプレス 7 4 b の下面に取り付けられた熱板 7 5 b とによ り連続加熱加圧される。 熱板 7 5 a と熱板 7 5 b との対向 面は、 互いに平行に配置され、 前駆体繊維シー ト 7 2は、 これらによ り 面圧を受けながら加熱加圧される。 前駆体繊維シー ト 7 2が所定の長さ 移動するときは、 熱板 7 5 a と熱板 7 5 bは離反せしめられ、 シー ト 7 2の移動を可能にする。
こ こで、 連続加熱加圧とは、 ホッ トプレス 7 4 a、 7 4 b によ り 、 加 熱加圧処理を受ける間は、 前駆体シー ト 7 2の長手方向の移動は停止す るが、 加熱加圧処理が完了し、 ホッ トプレス 7 4 a、 7 4 bが開放され た時点で、 前駆体繊維シー ト 7 2は、 長手方向に移動し、 シー ト卷取り 機 7 3 に装着されている前駆体繊維シー ト ロールに所定の長さ卷き取ら れ、 一方、 次の加熱加圧処理が行われる所定の長さの前駆体繊維シー ト 7 2が、 卷出し機 7 1 に装着されている前駆体繊維シー トロールから引 き出される工程における加熱加圧を云う。
換言すれば、 連続加熱加圧とは、 前駆体繊維シー トが、 間欠的に所定 の長さ移動し、 加熱加圧処理を受ける間は、 その移動を停止するが、 圧 縮工程全体において、 圧縮処理を受ける前駆体繊維シー トは、 卷出し機 7 1から卷取り機 7 3に至るまで連続している状態で行われる加熱加圧 を云う。
従来のベルトプレス、 ロールプレスでは、 前駆体繊維シー トは、 長手 方向に連続して移動しながら加圧処理を受けるが、 そこにおける前駆体 繊維シー トが受ける加圧の形態は、 線圧である。 この従来の手法では、 枚葉形態の前駆体繊維シー トを加圧処理するバッチ式の平板プレスの場 合と同等の厚さ精度で、 前駆体繊維シー トを成形することは困難であつ た。 この困難は、 第一の製造方法によ り解決される。
この第一の製造方法によれば、 前駆体繊維シー ト 7 2が間欠的に搬送 されながら、 すなわち、 前駆体繊維シー ト 7 2 の圧縮工程 6 3 における 移動と停止が交互に操り返されながら、 前駆体繊維シー ト 7 2の加熱加 圧処理が行われるため、 搬送方向に連続している長尺の前駆体繊維シー ト 7 2は、 枚葉状に切断されることなく 、 連続的に加熱加圧処理 (緻密 化処理) される。
この際、 搬送方向の有効加圧長を L P、 間欠的に搬送する際の前駆体 繊維シー ト 7 2の送り量を L F とする とき、 L F/L Pの値は、 0. 0 4乃至 0. 9 8であることが好ま しく 、 0. 0 5乃至 0. 4 5であるこ とがよ り好ましい。 L F / L Pの値が小さいと、 加熱加圧による緻密化 効果をよ り平均化することができるが、 処理時間における、 ホッ トプレ ス 7 4 a、 7 4 bの開閉、 前駆体繊維シー ト 7 2の送り に要する時間比 率が増大し、 生産効率が悪く なる。 また、 L FZ L Pの値が 0. 9 8 を 越える と、 送り量の誤差などによって、 L F/ L P値が 1 を越えた場合 に、 加圧されない部分が生じる問題が発生する。
ここで、 有効加圧長 L P とは、 前駆体繊維シー ト 7 2が熱板 7 5 a、 7 5 b と接し、 加熱加圧される部分の長さを云う。 また、 送り量 L F と は、 ホッ トプレス 7 4 a、 7 4 b を開いた際に、 搬送方向に送り 出され る (または引き取られる) 前駆体繊維シー ト 7 2の 1 回当たりの搬送量 を云う。
互いに平行な熱板 7 5 a、 7 5 bでの加熱加圧条件と しては、 温度が 1 4 0乃至 3 0 0 °C、面圧が 0. 1乃至 4 O MP a、加熱加圧時間が 0. 2乃至 1 5分であるこ とが好ましい。
互いに平行な熱板 7 5 a、 7 5 b とは、 少なく ともその 5 0 %以上の 面積において、 平行度が 1 mm以下であるものを云う。 平行度どは、 熱 板上に配した鉛片を加熱加圧変形させ、 変形後の鉛片の厚さの最大値と 最小値の差を云う。 両方の熱板 7 5 a、 7 5 bの材質は同じであっても 良いが、 違う ものを用いるこ と もできる。 例えば、 片方の熱板をステン レス製と し、 も う片方の熱板をシリ コンゴム製と しても良い。
加熱加圧処理における処理温度は、 1 6 0乃至 3 0 0 °Cであることが 好ましく 、 1 7 0乃至 2 3 0 °Cであることが更に好ましい。 温度が低過 ぎる場合、 加熱加圧による前駆体繊維シー トの緻密化効果が不十分で、 特に 1 4 0 °C未満ではその効果が小さい。 温度が高過ぎる場合、 空気中 での前駆体繊維シー トの酸化が進行し、 強度低下などの問題を起こす。 加熱加圧処理における面圧は、 2乃至 2 5 M P aであることが好まし く、 3乃至 1 5 M P aであることがよ り好ましく 、 4乃至 8 M P a であ るこ とが更に好ましい。 圧力が低いと、 前駆体繊維シー ドの緻密化効果 が不十分となる。 圧力が髙いと、 前駆体繊維シー トを曲,げたときに繊維 の座屈ないしは繊維間の剥離による と思われる線状の模様が発生する。
また、 焼成後の多孔質炭素基材の気体透過性が低下して燃嵙電池のガ ス拡散体と して良好な特性が発揮されなく なる。 更に、 また、 加圧面で あるプレス面や離型紙に、 前駆体繊維シー トが接着する等の問題が起こ る。 更に、 プレス設備も、 2 5 M P aで l m 2を加圧するためには、 2 , 5 5 0 t f の加圧力が必要となり、大規模なプレスシステムを用いるカ 生産効率を落と し 1 回当たり の処理面積を小さ くするこ とが必要となる, 加熱加圧時間は、 好ま しく は 1 . 5乃至 1 0分、 更に好ましく は 3 . 5乃至 6分である。 加熱加圧時間が短いと、 加熱加圧による前駆体繊維 シー ト の緻密化効果が十分得られない。 また、 6分を超える加熱加圧を 行っても、 それ以上の緻密化効果の増大はあま り期待できない。
このよ う に焼成前の前駆体繊維シー トを、 間欠的に搬送しながら互い に平行な熱板で連続加熱加圧するこ とで、 今まで願望されていたが具体 的な手段がなかつたために行う こ とができなかった焼成前の前駆体繊維 シー トの連続緻密化処理が可能となつた。
前駆体繊維シー ト と しては、 炭素繊維のチョ ップド糸 (短繊維) 等を フエノ ール樹脂、 P V A樹脂等のパインダで結着してなる紙がある。 前駆体繊維シー トに含まれる樹脂と しては、 エポキシ樹脂、 不飽和ポ リエステル樹脂、 フエノール樹脂、 ポリイ ミ ド樹脂、 メ ラミ ン樹脂等の 熱硬化性樹脂や、 アク リ ル樹脂、 ポリ塩化ビニリデン榭脂、 ポリテ トラ フルォロェチレン樹脂等の熱可塑性榭脂がある。 前駆体繊維シー トに含 まれるこれらの樹脂は、 シー トに含浸された状態で含まれているのがー 般的であるが、 繊維状の形態でシー トに含まれていても良い。
樹脂は、 未硬化または未固化の状態であっても良いが、 未硬化または 未固化の場合は、 圧縮処理と同時に、 硬化または固化するものが好まし い。 樹脂が未硬化または未固化の場合には、 平行な熱板での加熱加圧に おける面圧は、 加熱加圧中の樹脂流出を防ぐため、 好ま しく は 0 . 1乃 至 3 M P a 、 よ り好ましく は 0 . 2乃至 1 . 5 M P aである。
炭化工程 6 5の一例は、 第 9図に示される。 第 9図において、 圧縮処 理された前駆体繊維シー ト 8 1 (第 8図における卷取り機 7 3に収容さ れた前駆体繊維シー ト) は、 卷出し機 8 2から卷き出された後、 搬送口 ール 8 3によって運ばれ、 無端コンペャベルト 8 4によって加熱炉 (前 炭化処理用加熱炉) 8 5内に導入される。 加熱炉 8 5内は、 温度 3 0 0 乃至 1, 2 0 0 °Cの不活性ガス雰囲気下に保たれていて、 圧縮処理され た前駆体繊維シー ト 8 1 は、 無端コンペャベルト 8 4によって無緊張下 に搬送されている間に、 前炭化処理される。
前炭化処理された前駆体繊維シー ト 8 6 は、 次いで搬送ロール 8 7、 無端コンペャベルト 8 8 によって次の加熱炉 (炭化処理用加熱炉) 8 9 内に導入される。 加熱炉 8 9 も加熱炉 8 5 と同様に構成されているが、 雰囲気は、 温度 1, 2 0 0乃至 3, 0 0 0 °Cの不活性ガス雰囲気下に保 たれている。 前炭化処理された前駆体繊維シー ト 8 6 は、 無端コンべャ ベル ト 8 8 によって無緊張下に搬送されている間に、 炭化処理され、 多 孔質炭素基材 9 0 となる。 多孔質炭素基材 9 0は、 搬送ロール 9 1 によ つて、 たとえば、 卷取り機 9 2へと搬送される。
互いに平行な熱板での圧縮工程 6 3、 前炭化処理用加熱炉および炭化 処理用加熱炉からなる炭化工程 6 5をそれぞれ独立して行っているが、 これは、 各工程を独立させることによって、 それぞれの工程に適した加 ェ速度で処理を行う ことができ、 設備規模の最適化が行い易くするため である。 しかしながら、 これに限られたものではなく 、 それぞれの工程 でシー トを卷取らずに、 それぞれの工程を連続して通過するよ う にして も い
本発明の多孔質炭素基材 1 の第二の製造方法は、 第 7図における樹脂 含浸工程 6 2での炭素質粉末の添加と、 炭化工程 6 5 における焼成条件 の適正化に特徴がある。
第二の製造方法は、 抄紙工程 6 1、 樹脂含浸工程 6 2および圧縮工程 6 4からなる中間基材製造工程と得られた中間基材(前駆体繊維シー ト) を炭化する炭化工程 6 5 とからなる。 この樹脂含浸工程 6 2は、 抄紙ェ 程 6 1で得られた炭素短繊維が無作為な方向に分散した炭素短繊維シー トに、 熱硬化性樹脂と炭素質粉末を混合したものを含浸せしめることを 特徴とする。 また、 炭化工程 6 5は、 熱硬化性樹脂と炭素質粉末を含む シー トを加熱して熱硬化性樹脂を炭素化せしめることを特徴とする。 炭 化工程において、 単に連続焼成炉を用いただけでは、 樹脂の急激な炭化 収縮により 、 樹脂炭化物と炭素繊維と の結着面での剥離が大量に生じた り、 樹脂炭化物部分に著しいひび割れが生じたりする場合がある。 この 問題が、 第二の製造方法によ り解決される。
中間基材製造工程は、 炭素短繊維シー トを製造する第 1工程と得られ た炭素短繊維シー トに樹脂を含浸せしめる第 2工程を有する。
第 1工程は、 好適な長さに切断した炭素繊維 (炭素短繊維) を水中に 均一に分散させる工程、分散している炭素繊維を金網上に抄造する工程、 抄造した炭素短繊維シー トをポリ ビニルアルコールの水溶液に浸漬する 工程、および、浸漬したシー トを引き上げて乾燥させる工程とからなる。 第 1工程におけるポリ ビニルアルコールは、 炭素短繊維同士を結着する パインダの役目を果たす。 第 1工程によ り、 炭素短繊維が無作為な方向 に分散した状態において、 それらがバインダーによ り結着された状態の 炭素短繊維のシー トが製造される。
第 2工程は、熱硬化性樹脂の溶液中に炭素質粉末を分散せしめた液に、 第 1工程で製造された炭素短繊維シー トを浸漬する工程、 浸潰されたシ ー トを引き上げて、 9 0 °Cで 3分間乾燥させる工程、 および、 乾燥後の シー トを 1 4 5 °Cの温度下に 0 . 6 9 M P aの圧力を 2 5分間加えて、 熱硬化性樹脂 (例えば、 レゾール型フエノール樹脂) を硬化させる工程 からなる。 第 2工程の終了によ り、 シー ト状の中間基材の製造が完了す る。
中間基材においては、 炭素繊維 1 0 0重量部に対して、 熱硬化性樹脂 が 2 0乃至 3 0 0重量部、 およぴ、 炭素質粉末が 1乃至 2 0 0重量部の 関係にあることが好ましい。 熱硬化性樹脂が、 3 0乃至 2 5 0重量部、 炭素質粉末が、 1 0乃至 1 6 0重量部の関係であるこ とがよ り好ましい。 また、 熱硬化性樹脂が 4 0乃至 2 0 0重量部、 炭素質粉末が 2 0乃至 1 , 2 0重量部の関係であることが更に好ましい。
熱硬化性樹脂の量が少なく なり過ぎると、 得られる多孔質炭素基材が 厚く なり過ぎ、 厚さ方向の導電性が低下する。 熱硬化性樹脂の量が多く なり過ぎる と、 得られる多孔質炭素基材の密度が高く 、 細孔径が小さく なり過ぎ、 燃料電池のガス拡散体と して用いたときの水の排水性が悪く なり、 電池性能が低下する。
炭素質粉末の量が少なく なり過ぎる と、 得られる多孔質炭素基材の導 電性向上の効果が得られない。 炭素質粉末の量が多く なり過ぎる と、 熱 硬化性樹脂の場合と同様に、 得られる多孔質炭素基材の密度が高く 、 細 孔径が小さ く なり過ぎる。 炭素短繊維の長さは、 .3乃至 2 O mmであるこ とが好ましく 、 5乃至 1 5 mmであることがよ り好ましい。 これによ り、 炭素短繊維を液中に 分散させ、 それを抄紙して炭素短繊維シー トを得る際に、 炭素短繊維の 液中での分散性が向上する。
炭素短繊維の繊維径は、 5乃至 2 0 μ πιであることが好ましく 、 5乃 至 1 3 / πιであることがより好ましく 、 特に、 繊維径が、 5乃至 1 0 mである場合、 得られる多孔質炭素基材に好適な細孔径を有する細孔が 形成され易く なる。
炭素質粉末と しては、 黒鉛、 カーボンブラック、 炭素質ミル ド繊維、 膨張黒鉛等の粉末を用いることができる。 導電性向上や好適な細孔径を 得るために、 黒鉛あるいはカーボンブラックの粉末を用いることが好ま しく 、 黒鉛の粉末を用いることがよ り好ま しい。
炭素質粉末の重量分率は、 1乃至 6 0 %であることが好ましく 、 1 0 乃至 5 5 %であることがよ り好ま しく 、 2 0乃至 5 0 %であるこ とが更 に好ましい。 炭素質粉末が少な過ぎる と、 得られる多孔質炭素基材の導 電性が低く なる。 多過ぎる場合には、 得られる多孔質炭素基材の密度が 高く なり、 好適な細孔径が得られず、 電池特性が低く なる。
炭素質粉末の使用によ り、 多孔質炭素基材の厚さ方向の導電性を向上 させることができる。また、炭化工程における昇温速度が速い場合には、 樹脂部分にひび割れが起こ り、 基材の厚さ方向の導電性の低下、 曲げ強 度の低下を引き起こす問題があるが、 炭素質粉末の使用によ り 、 昇温速 度が速い場合の樹脂のひび割れを防ぐことができる。
かかる効果を得るには、 炭素質粉末の粒径は、 0 . 0 1乃至
であることが好ましく、 0 . 0 1乃至 7 ιηであることがより好ましい。 炭素質粉末の粒径は、 0 . 0 1乃至 5 x mであることが、 基材の曲げ強 度向上や、 好適な細孔径を得るために、 更に好ましい。 熱硬化性樹脂には、 フエノール樹脂、 エポキシ樹脂等を用いるこ とが できる。 炭化後の樹脂炭化物量が多いため曲げ強度が高く 、 厚さ方向の 導電性が高く なるフヱノール樹脂を用いるこ とがよ り好ましい。
フエノール樹脂は、 合成の際に金属触媒やアル力 リ触媒を用いていな いものを使用するのが好ましい。 フエノール樹脂には、 合成の際に酸触 媒を用いるノボラ ック型フエノール樹脂、 アル力 リ触媒を用いるアル力 リ レゾール型フエノール樹脂、 アンモニア触媒を用いるアンモニア レゾ ール型フエノ一ル榭脂等がある。
フエノール樹脂中にナ ト リ ゥムゃカルシウムなどのイオンが存在す る と、 これらの金属イオンが固体高分子型電解質膜のプロ ト ン伝導性の 低下を引き起こし、 電池性能が低下する と云う問題がある。
そこで、 フエノール樹脂と しては、 アンモニア レゾール型フエノール 樹脂 Rゃノポラック型フヱノール樹脂 Nを用いることが好ま しく 、 両者 の混合物を用いるのが曲げ強度向上のために好ましい。 両者の混合比率 は、 Rが多く なり過ぎると、 基材の曲げ強さが低く なり、 厚さ方向の電 気抵抗が髙く なること、 Nが多く なり過ぎる と、 後の加熱工程における 混合樹脂が充分固く ならず扱い難く なること、 また、 樹脂の炭素化時に 残る炭素分が少なく なつてしま う。 このことから、 R : N = 2 : 1乃至 1 : 3であることがよ り好ましく、 R : N = 3 : 2乃至 1 : 2であるこ とが更に好ましい。
フエノール樹脂 1 0 0重量部に対して、 炭素質粉末の量は、 3 0 0重 量部以下であることが好ましく 、 2 0 0重量部以下であるこ とがよ り好 ま しく 、 1 5 0重量部以下であることが更に好ましい。 樹脂の量に対し て炭素質粉末の量が多過ぎると、 樹脂炭化物が、 炭素繊維と炭素質粉末 と を充分に結着できず、 炭素質粉末の粉落ちの問題が起こる。
得られたシー ト状の中間基材は、 前駆体繊維シ" トと して、 炭化工程 6 5において、 炭化処理を受ける。 この間に、 熱硬化性樹脂は、 加熱さ れ、 炭素化される。
炭化工程 6 5 における昇温速度は、 1 0乃至 1, 0 0 0 °C /分であるこ とが好ましく 、 5 0乃至 7 5 0 °C /分であるこ とがよ り好ましく 、 1 0 0 乃至 5 0 0 °C /分であることが更に好ましい。 昇温速度が遅過ぎる場合、 生産性が低下する。速過ぎる場合には、炭化に伴う収縮率が小さいため、 多孔質炭素基材が厚く なり、 厚さ方向の導電性が低下する。
炭化工程 6 5 における加熱温度は、 1, 2 0 0 °C以上であるこ とが好 ましく 、 1, 5 0 0 °C以上であることがよ り好ましく 、 1, 8 0 0 °C以 上であることが更に好ましい。 加熱温度が低過ぎると、 加熱後の多孔質 炭素基材中に不純物が多く残り、 燃料電池のガス拡散体と して用いた際 に、 固体高分子膜のプロ ト ン伝導を妨げ、 電池性能を低下させる。 加熱 温度は、 2, 5 0 0 °C以下であることが好ましく 、 2, 2 0 0 °C以下で あることがよ り好ま しく 、 2 , 0 0 0 °C以下であることが更に好ま しい。 本発明の多孔質炭素基材の第三の製造方法は、 第 7図における後硬化 工程 6 4を有すること、 および、 炭化工程 6 5 における昇温速度の向上 に特徴がある。
第三の製造方法は、 炭素短繊維をパインダで結着して製造された紙 (シー ト) と熱硬化性樹脂とを含む前駆体繊維シー トを、 加熱炉中を連 続的に搬送しながら焼成して多孔質炭素基材を製造する方法において、 焼成前の前駆体繊維シー トに含まれる熱硬化性樹脂の硬化度を 7 0 %以 上とすることからなる。
熱硬化性樹脂の硬化度を 7 0 %以上とする と、 樹脂中の共有結合の三 次元ネッ トワーク化が進むため、 焼成時の樹脂の熱分解が抑制されて、 樹脂の炭化収率が向上する。 これによ り、 焼成時における樹脂の炭化収 縮が抑制されるため、 多孔質炭素基材中の、 炭素繊維と樹脂炭化物の結 着面での剥離や、 樹脂炭化物のひぴ割れを抑えることができる。
硬化度が 7 0 %未満であると、 樹脂の炭化収率が低下し、 樹脂炭化物 の剥離やびぴ割れが増大する。 前駆体繊維シー トに含まれる熱硬化性樹 脂の硬化度は、 8 0 %以上であることがよ り好ましく 、 9 0 %以上であ ることが更に好ましく 、 1 0 0 %であるこ とが最も好ま しい。 硬化度が 1 0 0 %とは、 樹脂の硬化反応が完全に進行した状態を云い、 前述した D S C法において、 樹脂の残存硬化発熱によるピークが見られないこと を云う。
D S C法による前駆体繊維シー トの残存硬化発熱量の測定結果の一例 が、 第 6図に示される。 第 6図において、 横軸は温度 ( °C )、 縦軸は熱流 ( m W ) を示している。 縦軸において、 上方が吸熱側、 下方が発熱側で ある。 サンプルと して、 後述する実施例 1 の樹脂含浸後で加熱加圧前の 前駆体繊維シー トを用いた。
第 6図において、 温度 5 0乃至 6 0 °Cに見られる上に凸のピーク 5 1 は、 前駆体繊維シー トに含まれる残存溶媒の揮発による吸熱ピークを示 し、 2 0 0 °C付近に見られる下に凸のピーク 5 2は、 前駆体繊維シー ト に含まれる熱硬化性樹脂の硬化反応による発熱ピークを示している。 下 に凸のピ一ク 5 2を含む部分曲線 5 3によ り描かれる谷部の両側上端を 結ぶよ うに、 破線で示す補助線 5 4 を引く。 曲線 5 3 と破線 5 4で囲ま れた斜線で示す部分 5 5 の面積と、表 2に示した昇温速度 ( 1 0 °C 分) および試料量 ( 2 . 6 m g ) から、 残存硬化発熱量 Q a を算出したとこ ろ、 4 6 Jノ gであった。 硬化度を求める前駆体繊維シー トの単位重量 当たり の残存硬化発熱量 Q b も同様に求めることができ、得られた Q a、 Q bから、 前記式 ( Π ) を用いて硬化度を求めることができる。
硬化度を 7 0 %以上とするために、 炭素短繊維紙に熱硬化性樹脂を含 浸した後、 加熱加圧することにより得られた前駆体繊維シー トを、 1 4 0乃至 3 0 0 °Cの温度で更に加熱することからなる後硬化工程 6 4を、 圧縮工程 6 3 と炭化工程 6 5 との間に、 介在させるこ とが好ましい。
後硬化工程 6 4における加熱温度は、 1 6 0乃至 2 8 0 °Cであるこ と がよ り好ましく 、 1 8 0乃至 2 6 0 °Cであることが更に好ま しい。 硬化 反応を効率的に促進させるために、後硬化工程 6 4における加熱温度は、 前駆体繊維シー トを加熱加圧によ り圧縮成形する ときの温度よ り も高い 温度に設定するのが好ましい。 後硬化工程 6 4における加熱温度が 1 4 0 °Cよ り も低いと、硬化反応の進行が遅く なり、 3 0 0 °Cよ り も髙いと、 前駆体繊維シー トの酸化が進行し、 強度低下などの問題を起こす。
後硬化工程 6 4における前駆体繊維シー トの加熱時間は、 1乃至 1 8 0分であることが好ましく 、 2乃至 1 2 0分であることがよ り好ましく 、 3乃至 6 0分であることが更に好ましい。加熱時間が 1分未満であると、 硬化の進行が不十分となり、 1 8 0分よ り大きいと、 酸化によ り前駆体 繊維シー トの強度低下を引き起こ し、 また、 多孔質炭素基材の生産性を 低下させる。
後硬化工程 6 4における加熱は、 前駆体繊維シートを上記温度に設定 したオーブンの中を連続的に走行させることによ り、 行っても良いし、 ロール状に卷き取つた前駆体繊維シー トをそのまま、 上記温度に設定し たオーブンに入れて、 パッチ式で行っても良い。
このよ う に、 第三の製造方法によ り、 前駆体繊維シー トに含まれる熱 硬化性樹脂の硬化度を高め、 焼成時の炭化収縮を抑制するこ とによ り、 連続焼成における昇温速度を向上させても、 十分な物性を維持すること ができる多孔質炭素基材 1 の製造方法が提供される。
昇温速度は、 5 0 0乃至 1 0, 0 0 0 ¾ 分であることが好ましく 、 7 0 0乃至 6 , 0 0 0で 分であることがよ り好ましく 、 1 , 0 0 0乃 至 4, 0 0 0 °C /分であることが更に好ましい。 以上のよ う に、 熱硬化性樹脂の硬化度を 7 0 %以上とすることで、 連 続焼成における熱硬化性樹脂の急激な炭化収縮による樹脂炭化物の剥離 やひび割れが防止され、 更には、 連続焼成における昇温速度を上げる、 つま り、 多孔質炭素基材の生産性を向上させ、 製造コス トを低減させる ことができる。
実施例
以下の実施例における電気抵抗、 燃料電池電圧は、 次の方法を用いて 測定した。
電気抵抗の測定 :
多孔質炭素基材を P T F E水系ディスパージョ ンに浸漬後引き上げ て乾燥した。 多孔質炭素基材への P T F Eの付着量は、 2 0重量%と し た。得られた基材を 3 8 0 °Cで熱処理した。熱処理された基材から、 2. 0 c m X 2. 5 c mの大き さの基材を切り 出し、 これを試験片と した。 試験片を、 金メ ッキを施したステンレス製の 2枚の電極で挟み、 1 . O M P aの加圧下に、 電極間に 1 Aの電流を流し、 そのときの電圧降下 を測定した。 測定された電圧降下値を用い、 次の式 (W) に基づき、 電 気抵抗値を求めた。
R = V X 2. 0 X 2. 5 X 1 , 0 0 0 (IV)
ここで、 R : 電気抵抗 (πι Ω · c m2), V : 電圧降下 (V) である。 燃料電池のガス拡散体と して多孔質炭素基材を用いる場合、 フッ素樹 脂等を用いて撥水性を付与するのが一般的である。 多孔質炭素基材を撥 水処理したガス拡散体の厚さ方向の電気抵抗は、 燃料電池のオーム損に よる電圧降下を示す指標となり、 電気抵抗が低いものが、 優れている と 判定した。
燃料電池電圧の測定 :
まず、 以下のよ うにして、 ガス拡散体を用意する。 多孔質炭素基材を P T F E水系ディスパージョ ンに浸漬後引き上げて乾燥した。 多孔質炭 素基材への P T F Eの付着量は、 2 0重量%と した。得られた基材上に、 カーボンブラック と P T F E との混合物を塗布し、 3 8 0 °Cで熱処理す るこ とによ り、 基材にガス拡散層を形成した。
カーボンブラック と P T F Eとの混合物におけるそれぞれの比率は、 8 : 2、 基材への塗布量は、 約 2 m g / c m2である。
次に、 N a f i o n l l 2 ( E . I . d u P o n t d e N e m o u r s a n d C o m p a n y製) の膜の両面に、 触媒である白金 担持カーボンと N a f i o n との混合物を付着させ、 膜一触媒シー トを 用意した。
触媒である白金の担持量は、 約 0. 5 m g / c m 2である。 膜—触媒 シー トを、 カーボン層を内側に向けた 2枚のカーボン層付き基材で挟ん で、 温度 1 3 0 °C、 圧力 3 M P aで加熱加圧して一体化し、 膜—電極接 合体 ( M E A ) を得た。
この ME Aを、 溝付きセパレータに挟んで、 常法によ り、 電流密度 1 A c m 2における電圧を測定した。電池温度は 7 0 °C、水素ガス 8 0 °C で加湿し、 ガス圧力は大気圧である。 1 A / c m 2における水素利用率 は 7 0 %、 空気利用率は' 4 0 %である。 測定された電圧が高いものが、 優れている と判定した。
実施例 1
炭素繊維 (東レ株式会社製ポリ アク リ ロニ ト リル系炭素繊維 " ト レ力"
T— 3 0 0 — 6 K、 平均単繊維径 : 7 ju m、 単繊維数 : 6, 0 0 0本) を 1 2 mniの長さにカッ ト し、 水を抄造媒体と して連続的に抄造し、 更 にポリ ビュルアルコールの 1 0重量%水性分散液に浸漬し、 乾燥して、 炭素短繊維の目付が約 3 2 g / m 2の長尺の炭素短繊維紙を製造し、 こ れをロール状に卷き取った。 ポリ ビニルアルコールの付着量は、 炭素短 繊維紙 1 0 0重量部に対して 2 0重量部に相当する。
黒鉛粉末 (中越黒鉛工業所社製鱗片状黒鉛 B F— 5 A、 平均粒径 5 /z m), フエノール樹脂、 メ タ ノールを 1 : 4 : 1 6の重量比で混合した分 散液を用意した。 炭素短繊維紙 1 0 0重量部に対してフエノール樹脂が 1 1 0重量部になるよ う に、 炭素短繊維紙に分散液を連続的に含浸し、 9 0 °Cで 3分間乾燥することによ り、 樹脂含浸炭素繊維紙を得て、 これ をロール状に巻き取った。 フエノール樹脂と しては、 レゾール型フエノ ール樹脂と ノボラ ック型フエノール樹脂とを 1 : 1 の重量比で混合した 樹脂を用いた。
ホッ トプレス 7 4 a 、 7 4 b (株式会社力ヮジリ社製 1 0 0 t プレス) を用い、 熱板 7 5 a、 7 5 bが互いに平行となるよ うセッ ト した。 熱板 温度 1 7 0 °C、 面圧 0. 8 MP aで、 プレスの開閉を繰り返しながら、 樹脂含浸炭素繊維紙を、 熱板間に、 間欠的に搬送しつつ、 同じ箇所が延 ぺ 6分間加熱加圧されるよ う圧縮処理した。 この際、 熱板 7 5 a、 7 5 bの有効加圧長 L Pは 1 , 2 0 0 mmで、 間欠的に搬送する際の前駆体 繊維シー ト 7 2の送り量: L Fは 1 0 0 mmと し、 L F/ L P = 0. 0 8 と した。 すなわち、 3 0秒の加熱加圧、 型開き、 炭素繊維紙の送り ( 1 2 O mm), を繰り返すことによって、 圧縮処理を行った。 圧縮成形され たシー トは、 卷取り機 7 3によ り、 ロール状に卷き取られた。
圧縮成形した樹脂含浸炭素繊維紙を卷き取ったロールを、 2 0 0 °Cに 設定したオーブン中で 2時間加熱することによ り、 炭素繊維紙に含まれ る熱硬化性樹脂の後硬化処理を行つた。 後硬化処理後の熱硬化性樹脂の 硬化度は 1 0 0 %であった。
樹脂の後硬化処理をした炭素繊維紙を前駆体繊維シー ト 8 1 と して、 窒素ガス雰囲気に保たれた、 最高温度が 2, 0 0 0 の加熱炉 8 9 に導 入し、 加熱炉内を連続的に走行させながら、 約 5 0 0 °CZ分 ( 6 5 0 °C までは、 4 0 0 °CZ分、 6 5 0 °Cを超える温度では、 5 5 0 °CZ分) の 昇温速度で焼成し、 ロール状に巻き取った。
得られた多孔質炭素基材 1 の諸元、 製造条件および評価結果を以下に 示す。
細孔径が 1 0 /i m以下の細孔の容積 0 . 0 7 c c g
厚さ 0 . 1 3 m m
空隙率 7 8 %
炭素短繊維の平均繊維径 7 μ m
曲げ最大荷重 0 . 5 9 N / c m
曲げ最大荷重変位 1 . 7 0 m m
曲げ弾性率 1 2 G P a
炭素質粉末の粒径 5 μ m
炭素質粉末の重量分率 1 3 %
炭素短繊維の平均繊維長 1 2 m m
密度 0 . 4 4 g c m
細孔ピーク径 3 8 ^ m
炭化工程の昇温速度 5 0 0 °C /分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 1 0 0 %
電気抵抗 9 m Ω · c m
燃料電池電圧 0 . 4 9 V
実施例 2
圧縮成形した樹脂含浸炭素繊維紙の後硬化処理を行わなかった以外は 実施例 1 と同様にして、 多孔質炭素基材 1 を製造した。
得られた多孔質炭素基材 1 の諸元、 製造条件および評価結果を以下に 示す。 細孔径が 1 0 /z m以下の細孔の容積 0 . 0 7 c c / g
厚さ 0. 丄 6 m m
空隙率 8 3 %
炭素短繊維の平均繊維径 7 μ m
曲げ最大荷重 0 . 4 9 N / c m
曲げ最大荷重変位 1 . 4 7 mm
曲げ弾性率 9 G P a
炭素質粉末の粒径 5 /z m
炭素質粉末の重量分率 1 3 %
炭素短繊維の平均繊維長 1 2 m m
密度 0 . 3 5 g / c m
細孔ピーク径 3 9 ^ m
炭化工程の昇温速度 5 0 0。CZ分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 7 8 %
電気抵抗 1 2 m Ω · c m
燃料電池電圧 0 . 4 7 V
実施例 3
炭化工程における昇温速度を約 1, 6 0 0で^ /分 ( 6 5 0 °Cまでは、 1 , 3 0 0 °C/分、 6 5 0 °Cを超える温度では、 1, 7 0 0 °CZ分) と した以外は、 実施例 1 と同様にして、 多孔質炭素基材 1 を製造した。 得られた多孔質炭素基材 1 の諸元、 製造条件および評価結果を以下に 示す。
細孔径が l O /z m以下の細孔の容積 : 0 . 0 5 c c g
厚さ : 0 . 1 4 m m
空隙率 : 8 0 % 炭素短繊維の平均繊維径 : ί μ. m
曲げ最大荷重 : 0 . 6 7 N / c m
曲げ最大荷重変位 '· 1 . 4 6 m m
曲げ弾性率 : 1 2 G P a
炭素質粉末の粒径 '· 5 μ m
炭素質粉末の重量分率 : 1 3 %
炭素短繊維の平均繊維長 : 1 2 mm
密度 : 0 . 4 1 g / c m 3 細孔ピーク径 : 3 9 /x m
炭化工程の昇温速度 : 1 6 0 0 °C Z分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 : 1 0 0 %
電気抵抗 '· 1 0 m Ω · c m 2
燃料電池電圧 ' : 0 . 4 9 V
実施例 4
次に説明される以外の製造条件は 実施例 2 と同様にして、 多孔質炭 素基材 1 を得た。
炭素短繊維紙に含浸する分散液を 黒鉛、 フエノール樹脂、 メ タノー ルを 1 : 4 0 : 1 6 0の重量比で混合した分散液と した。 炭素短繊維紙 1 0 0重量部に対してフエノール樹脂が 1 4 7重量部になるよ う に、 炭 素短繊維紙に分散液を連続的に含浸した。
得られた多孔質炭素基材 1 の諸元、 製造条件および評価結果を以下に 示す。
細孔径が 1 0 i m以下の細孔の容積 0 . 1 1 c c / g
厚さ 0 . 1 5 m m
空隙率 8 0 % 炭素短繊維の平均繊維径 : 7 μ m
曲げ最大荷重 : 0. 3 1 N/ C m
曲げ最大荷重変位 : 1 . 7 1 mm
曲げ弾性率 : 6 G P a
炭素質粉末の粒径 '· 5 μ
炭素質粉末の重量分率 : 1 %
炭素短繊維の平均繊維長 : 1 2 mm
密度 : 0. 3 6 g / c m
細孔ピーク径 • 4 1 μ m.
炭化工程の昇温速度 : 5 0 0 °C 分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 8 1 %
電気抵抗 2 3 m Ω · c m
燃料電池電圧 0. 4 6 V
比較例 1
炭素繊維 (東レ株式会社製ポリ アク リ ロニ ト リ ル系炭素繊維 " ト レ力 " T一 3 0 0 — 6 K、 平均単繊維径 : 7 、 単繊維数 : 6, 0 0 0本) を 1 2 mmの長さにカッ ト し、 水を抄造媒体と して連続的に抄造し、 更 にポリ ビニルアルコールの 1 0重量%水性分散液に浸漬し、 乾燥して、 炭素短繊維の目付が約 5 0 g Zm 2の長尺の炭素短繊維紙を製造し、 こ れをロール状に卷き取った。 ポリ ビュルアルコールの付着量は、 炭素短 繊維紙 1 0 0重量部に対して 2 0重量部に相当する。
フエノール樹脂とメタノールを 1 : 4の重量比で混合した溶液を用意 した。 炭素短繊維紙 1 0 0重量部に対してフエノール樹脂が 1 5 0重量 部になるよ う に、 炭素短繊維紙に容液を連続的に含浸し、 9 0でで 3分 間乾燥するこ と によ り 、 樹脂含浸炭素繊維紙を得て、 これをロール状に 卷き取った。 フエノール樹脂と しては、 レゾール型フエノール樹脂と ノ ボラック型フエノール樹脂とを 1 : 1 の重量比で混合した樹脂を用いた。 ロールから樹脂含浸炭素繊維紙を引き出して裁断し、 得られた裁断片 から所定の大きさを有する樹脂含浸炭素繊維紙を切り 出した。 こ こに、 所望の枚数の枚葉炭素繊維紙が用意された。
ホッ トプレス 7 4 a 、 7 4 b (株式会社力ヮジリ社製 1 0 0 t プレス) を用い、 熱板 7 5 a 、 7 5 bが互いに平行となるよ うセッ ト した。 熱板 温度 1 5 0 °C、 面圧 0 . 5 M P aで、 3 0分間加熱加圧されるよ う、 枚 葉炭素繊維紙を一枚毎に熱板間に位置せしめ、 圧縮処理した。
圧縮成形した炭素繊維紙を前駆体繊維シー ト と して、 窒素ガス雰囲気 に保たれたパッチ式の加熱炉で、 最髙温度が 2 , 0 0 0 °Cで、 約 1 . 4 °C /分 ( 8 0 0 °Cまでは、 1 °C/分、 8 0 0 °Cを超える温度では、 2 °C/ 分) の昇温速度で焼成した。
得られた多孔質炭素基材の諸元、 製造条件およぴ評価結果を以下に示 す。
細孔径が 1 0 m以下の細孔の容積 0 . 0 4 c c g
厚さ 0 . 丄 9 m m
空隙率 7 8 %
炭素短繊維の平均繊維径 / μ m
曲げ最大荷重 0 . 8 6 N / c m
曲げ最大荷重変位 1 . 0 3 m m
曲げ弾性率 1 2 G P a
炭素短繊維の平均繊維長 1 2 mm
密度 0 . 4 5 g / c m 3 細孔ピーク径 S 6 μ m
炭化工程の昇温速度 1 . 4 °C 分 前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 : 5 5 %
電気抵抗 : 9 m Ω · c m
燃料電池電圧 : 0 . 4 9 V
比較例 2
炭素繊維 (東レ株式会社製ポリ アク リ ロニ ト リル系炭素繊維 " ト レ力" T - 8 0 0 H - 6 K , 平均単繊維径 : 5 ;u m、 単繊維数 : 6, 0 0 0本) を用いた以外は、 比較例 1 と同様にして、 多孔質炭素基材を製造した。 得られた多孔質炭素基材の諸元、 製造条件および評価結果を以下に示 す。
細孔径が 1 0 μ m以下の細孔の容積 0 . 0 4 c c g
厚さ 0 . 1 8 m m
空隙率 7 6 %
炭素短繊維の平均繊維径 o i m
曲げ最大荷重 0 . 6 4 N/ c m
曲げ最大荷重変位 1 . 5 3 mm
曲げ弾性率 1 6 G P a
炭素短繊維の平均繊維長 1 2 mm
密度 0 . 4 8 g / c m
細孔ピーク径 2 A m
炭化工程の昇温速度 1 . 4 °C 分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 6 3 %
電気抵抗 9 m Ω · c m 2
燃料電池電圧 0 . 3 3 V
比較例 3 炭化工程において連続焼成炉を用い、 昇温速度を約 5 0 0 °CZ分 ( 6 5 0 °Cまでは、 4 0 0 °C Z分、 6 5 0 °Cを超える温度では、 5 5 0 °C Z 分) と した以外の製造条件は、 実施例 1 と同様にして、 多孔質炭素基材 を製造した。
得られた多孔質炭素基材の諸元、 製造条件および評価結果を以下に示 す。
細孔径が 1 0 μ m以下の細孔の容積 0 . 1 7 c c / g
厚さ 0 . 2 5 m m
空隙率 8 4 %
炭素短繊維の平均繊維径 /' μ m.
曲げ最大荷重 0 . 4 4 N / c m
曲げ最大荷重変位 0 . 7 7 m m
曲げ弾性率 6 G P a
炭素短繊維の平均繊維長 1 2 m m
密度 0 . 3 2 g c m
細孔ピーク径 4 0 μ m
炭化工程の昇温速度 5 0 0 °C Z分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 5 7 %
電気抵抗 3 9 m Ω · c m
燃料電池電圧 0 . 4 2 V
比較例 4
炭素短繊維の目付が約 2 5 g Ζπι 2の長尺の炭素短繊維紙を得た以外 は、 比較例 1 と同様にして、 多孔質炭素基材を得た。
得られた多孔質炭素基材の諸元、 製造条件および評価結果を以下に示 す。 細孔径が 1 0 μ m以下の細孔の容積 0 . 0 3 c c / g
厚さ 0 . 1 0 m m
空隙率 7 9 %
炭素短繊維の平均繊維径 7 μ m
曲げ最大荷重 0 . 2 1 N/ c m
曲げ最大荷重変位 2 . 4 5 mm
曲げ弾性率 9 G P a
炭素短繊維の平均繊維長 1 2 mm
密度 0 . 4 3 g / c m
細孔ピーク径 3 7 μ
炭化工程の昇温速度 1 . 4 °C /分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 6 2 %
違 抵饥 9 m Ω · c m 2
燃料電池電圧 0 . 4 9 V
比較例 5
炭素短繊維の目付が約 2 5 g Zm 2の長尺の炭素短繊維紙を得た以外 は、 比較例 1 と同様にして、 多孔質炭素基材を得た。
得られた多孔質炭素基材の諸元、 製造条件および評価結果を以下に示 す。
細孔径が 1 0 μ m以下の細孔の容積 0 . 0 4 c c
厚さ 0 . 2 8 m m
空隙率 7 8 %
炭素短繊維の平均繊維径 7 μ m
曲げ最大荷重 2 . 1 9 N/ c m
曲げ最大荷重変位 0 . o 4 m m 曲げ弾性率 : 1 2 G P a 炭素短繊維の平均繊維長 ·· 1 2 mm
密度 : 0 . 4 5 g / c m 3 細孔ピーク径 '· 3 6 μ m
炭化工程の昇温速度 : 1 . 4 °C Z分
前駆体繊維シー トに含まれる
熱硬化性樹脂の硬化度 : 5 8 %
電気抵抗 : 1 1 m Ω · c m "
燃料電池電圧 : 0 . 0 3 V
以上の実施例おょぴ比較例について 多孔質炭素基材の諸元、 製造条 件および評価結果のう ちの主要なものを表 3 にまとめて示す。
表 3
細孔 10 m以下 厚さ 平均
ピーク径 の細孔 繊維径 荷重 荷重 容積 変位
C m] [cc/ g] Lmm] [ μ m] [N/cm] Lmm] 実施例 1 38 0.07 0.13 7 0.59 1.70 実施例 2 39 0.07 0. 16 7 0.49 1. 7 実施例 3 39 0.05 0. 14 7 0.67 1.46 実施例 4 41 0. 11 0.15 7 0.31 1.71 比較例 1 36 0.04 0. 19 7 0.86 1.03 比較例 2 24 0.04 0. 18 5 0.64 1.53 比較例 3 40 0. 17 0.25 7 0.44 0.77 比較例 4 37 0.03 0.10 7 0.21 2.45 比較例 5 36 0.04 0.28 7 2. 19 0.64
表 3 (続き)
Figure imgf000044_0001
実施例 1 乃至 4の多孔質炭素基材は、 細孔径が 1 0 /i in以下の細孔の 容積が 0. 0 5乃至 0 . 1 6 c c / gの範囲内にあるため、 撥水処理を 施したときの基材の厚さ方向の電気抵抗が 3 0 m Ω · c m 2以下と低く 導電性が高い。 また、 適切な曲げ最大荷重、 曲げ最大荷重変位、 曲げ弾 性率を有するため、 製造工程において、 ロール状での基 の供給が可能 である。 また、 本発明の多孔質炭素基材の製造方法によれば、 本発明の 多孔質炭素基材を高い生産性、 低コス トで製造するこ とができ る。
一方、 比較例 1 で得られた基材は、 電気抵抗、 電池電圧は高いが、 枚 葉の形態であり、 基材の生産性は低い。 比較例 1 のパッチ式炭化工程を 単に連続式炭化工程に置き換えた比較例 3において得られた基材は、 第 4および 5 図に示すとおり、 剥離やひび割れを多数有しており、 1 0 / m以下の細孔容積も 0 . 1 7 c c / g と大きい。 従って、 基材の電気抵 抗も大きく 、 電池電圧も低い。
比較例 3 において製造された多孔質炭素基材 3 1 の電子顕微鏡写真が 第 4図に示される。 第 4図において、 多孔質炭素基材 3 1 は、 炭素短繊 維 3 2 と樹脂炭化物 3 3 との結着面に、 剥離部分 3 5 を有する。 また、 比較例 3において製造された多孔質炭素基材 4 1 の電子顕微鏡写真が第 5図に示される。 第 5図において、 多孔質炭素基材 4 1 は、 樹脂炭化物 4 3 とそれによ り結着された炭素短繊維 4 2 とからなるが、 樹脂炭化物 4 3は、 ひぴ割れ部分 4 6 を有する。
平均繊維径 5 mの炭素繊維を用いた比較例 2で得られた基材は、 細 い繊維径を用いたため、 曲げ弾性率が高く 、 細孔径も小さい。 従って、 ロール状でのハンドリ ング性に劣り、 低い排水性、 ガス拡散性のため電 池電圧も低い。
比較例 4で得られた基材は、 厚さが薄く 、 曲げ最大荷重変位が大きい が、 曲げ最大荷重が小さいため壌れやすい。
比較例 5で得られた基材は、 厚さが厚く 、 曲げ最大荷重が大きいが、 曲げ最大荷重変位が小さいため、 ロール化が困難である。 また、 厚さの 影響で排水性が低く 、 電池電圧も低い。 産業上の利用可能性
本発明の多孔質炭素基材は、 ハンドリ ング性が高く ロール状での供給 が可能であり、 かつ、 炭素繊維と樹脂炭化物の結着面での剥離や、 樹脂 炭化物のひび割れが少ないことを特徴とする。 本発明の多孔質炭素基材 は、 ガスや水の拡散、 輸送の観点から構造が最適化されているため、 ガ ス拡散体の形成材料と して用いた固体高分子型燃料電池は、 高い電池特 性を示す。
本発明の多孔質炭素基材の製造を目的とする本発明の多孔質炭素基材 の製造方法は、 基材を間欠的に搬送しながら互いに平行な熱板で連続加 熱加圧することによ り、 前駆体繊維シー トを製造し、 製造された前駆体 繊維シー トを加熱炉中を連続的に搬送しながら焼成することからなる。 そのため、 本発明の多孔質炭素基材の製造方法によ り、 従来にはなかつ た生産性の高い多孔質炭素基材の製造方法が提供される。

Claims

請 求 の 範 囲
1 . 無作為な方向に分散している炭素短繊維と樹脂炭化物とを含むシ ー トからなり、 該シー トにおいて、 前記炭素短繊維は、 前記樹脂炭化物 で結着されており、 かつ、 前記シー トは、 細孔を有し、 該細孔の内の細 孔径が 1 以下の細孔の前記シー ト単位重量当たり の容積が、 0. 0 5乃至 0. 1 6 c c Z gである多孔質炭素基材。 '
2. 前記多孔質炭素基材の厚さが、 0. 1 0乃至 0. 2 5 mmである 請求の範囲第 1項に記載の多孔質炭素基材。
3. 前記多孔質炭素基材の空孔率が、 7 0乃至 9 0 %である'請求の範 囲第 1項に記載の多孔質炭素基材。
4. 前記炭素短繊維の平均繊維径が、 5乃至 2 0 /X mである請求の範 囲第 1項に記載の多孔質炭素基材。
5. 前記多孔質炭素基材が、 炭素質粉末を含んでいる請求の範囲第 1 項に記載の多孔質炭素基材。
6. 前記多孔質炭素基材の 3点曲げ試験によ り測定される曲げ最大荷 重が、 0. 2 5乃至 2. O N c mである請求の範囲第 1項に記載の多 孔質炭素基材。
7. 前記多孔質炭素基材の 3点曲げ試験によ り測定される曲げ最大荷 重変位が、 0. 7乃至 2. 3 mmである請求の範囲第 1項に記載の多孔 質炭素基材。
8. 前記多孔質炭素基材の 3点曲げ試験によ り測定される曲げ弾性率 が、 1乃至 1 5 G P aである請求の範囲第 1項に記載の多孔質炭素基材。
9. 前記炭素質粉末の粒径が、 0. 0 1乃至 1 0 mである請求の範 囲第 5項に記載の多孔質炭素基材。
1 0. 前記炭素質粉末が、 黒鉛またはカーボンブラックの粉末である 請求の範囲第 5項に記載の多孔質炭素基材。
1 1 . 前記炭素質粉末の重量分率が、 1乃至 6 0 %である請求の範囲 第 5項に記載の多孔質炭素基材。
1 2 . 前記炭素短繊維の平均繊維長が、 3乃至 2 0 mmである請求の 範囲第 1項に記載の多孔質炭素基材。
1 3 . 前記多孔質炭素基材の密度が、 0 . 3乃至 0 . 7 g Z c m 3で ある請求の範囲第 1項に記載の多孔質炭素基材。
1 4 . 前記多孔質炭素基材が有する前記細孔の細孔ピーク径が、 2 5 乃至 5 5 / mである請求の範囲第 1項に記載の多孔質炭素基材。
1 5 . 請求の範囲第 1乃至 1 4項のいずれかに記載の多孔質炭素基材 と該基材に付与された撥水性物質とからなるガス拡散体。
1 6 . 請求の範囲第 1乃至 1 4項のいずれかに記載の多孔質炭素基材 の少なく と も片面に、 導電性を有するガス拡散層が形成されてなるガス 拡散体。
1 7 . 請求の範囲第 1 5項に記載のガス拡散体の少なく と も片面に、 導電性を有するガス拡散層が形成されてなるガス拡散体。
1 8. 固体高分子電解質膜と該膜の両表面に設けられた触媒担持炭素 を含む触媒層と該両触媒層に接して設けられたガス拡散体とからなる膜 一電極接合体であって、 該ガス拡散体の少なく と も片方が、 請求の範囲 第 1 5乃至 1 7項のいずれかに記載のガス拡散体である膜—電極接合体,
1 9 . 膜一電極接合体が、 請求の範囲第 1 8項に記載の膜一電極接合 体からなる燃料電池。
2 0. 炭素短繊維と樹脂とからなる前駆体繊維シー トを圧縮処理する 圧縮工程と圧縮処理された前駆体繊維シー トの前記樹脂を炭化処理する 炭化工程とならなり、前記圧縮工程が、互いに平行に位置する熱板間を、 間欠的に搬送されながら通過し、 搬送が停止している間に、 前記熱板に よ り、停止している前記前駆体繊維シー トが加熱加圧され、加熱加圧後、 再び、 前記前駆体繊維シー トの搬送が開始され、 これらの搬送と停止と を交互に行う ことからなる請求の範囲第 1項に記載の多孔質炭素基材の 製造方法。
2 1 . 前記前駆体繊維シー トに炭素質粉末が含まれている請求の範囲 第 2 0項に記載の多孔質炭素基材の製造方法。
2 2 . 前記樹脂が、 熱硬化性樹脂からなる請求の範囲第 2 0項に記载 の多孔質炭素基材の製造方法。
2 3 . 前記前駆体繊維シー トに炭素質粉末が含まれ、 前記樹脂が、 熱 硬化性樹脂からなる請求の範囲第 2 0項に記載の多孔質炭素基材の製造 方法。
2 4 . 前記圧縮工程と前記炭化工程との間に、 前記熱硬化性樹脂の後 硬化をさせる後硬化工程を有する請求の範囲第 2 2項に記載の多孔質炭 素基材の製造方法。
2 5 . 前記圧縮工程と前記炭化工程との間に、 前記熱硬化性樹脂の後 硬化をさせる後硬化工程を有する請求の範囲第 2 3項に記載の多孔質炭 素基材の製造方法。
2 6 . 炭素短繊維と樹脂とからなる前駆体繊維シー トを圧縮処理する 圧縮工程と圧縮処理された前駆体繊維シー トの前記樹脂を炭化処理する 炭化工程とならなり、 前記前駆体繊維シー トに炭素質粉末が含まれてい る請求の範囲第 1項に記載の多孔質炭素基材の製造方法。
2 7 . 前記樹脂が、 熱硬化性樹脂からなる請求の範囲第 2 6項に記載 の多孔質炭素基材の製造方法。
2 8 . 前記圧縮工程と前記炭化工程との間に、 前記熱硬化性樹脂の後 硬化をさせる後硬化工程を有する請求の範囲第 2 7項に記載の多孔質炭 素基材の製造方法。
2 9. 炭素短繊維と樹脂とからなる前駆体繊維シー トを圧縮処理する 圧縮工程と圧縮処理された前駆体繊維シー トの前記樹脂を炭化処理する 炭化工程とならなり 、 前記樹脂が、 熱硬化性樹脂からなる請求の範囲第 1項に記載の多孔質炭素基材の製造方法。
3 0. 前記圧縮工程と前記炭化工程との間に、 前記熱硬化性樹脂の後 硬化をさせる後硬化工程を有する請求の範囲第 2 9項に記載の多孔質炭 素基材の製造方法。
3 1. 前記炭化工程において、 前記前駆体繊維シー トが、 連続的に搬 送されてなる請求の範囲第 2 0、 2 6あるいは 2 9項に記載の多孔質炭 素基材の製造方法。
3 2. 前記熱板の搬送方向の有効加圧長を L P、 間欠的に搬送する際 の前駆体繊維シー トの送り量を L F とする とき、 L F Z L Pの値が、 0.
1乃至 0. 9 8である請求の範囲第 2 0項に記載の多孔'質炭素基材の製 造方法。
3 3. 前記熱板の温度が、 1 4 0乃至 3 0 0 °C、 加圧力が、 0. 1乃 至 4 0 M P aである請求の範囲第 2 0項に記載の多孔質炭素基材の製造 方法。
3 4. 前記前駆体繊維シー トが、 炭素短繊維がパイ ンダで結着されて なる紙である請求の範囲第 2 0、 2 6 あるいは 2 9項に記載の多孔質炭 素基材の製造方法。
3 5. 前記前駆体繊維シー トの炭素短繊維 1 0 0重量部に対.して、 前 記熱硬化性樹脂の量が 2 0乃至 3 0 0重量部、 前記炭素質粉末の量が 1 乃至 2 0 0重量部である請求の範囲第 2 3項に記載の多孔質炭素基材の 製造方法。
3 6. 前記前駆体繊維シー トの炭素短繊維 1 0 0重量部に対して、 前 記熱硬化性樹脂の量が 2 0乃至 3 0 0重量部、 前記炭素質粉末の量が 1 乃至 2 0 0重量部である請求の範囲第 2 7項に記載の多孔質炭素基材の 製造方法。
3 7. 前記前駆体繊維シー トが、 昇温速度 1 0乃至 1 、 0 0 0 °C/分 で、 少なく とも 1 、 2 0 0 °Cの温度まで加熱されることによ り、 前記熱 硬化性樹脂が炭素化されてなる請求の範囲第 3 5 あるいは 3 6項に記载 の多孔質炭素基材の製造方法。
3 8. 前記炭素質粉末の粒径が、 0. 0 1 乃至 1 0 /i Kiである請求の 範囲第 2 1、 2 3、あるいは 2 6項に記載の多孔質炭素基材の製造方法。
3 9. 前記炭素質粉末が、 黒鉛または力 ボンブラックの粉末である 請求の範囲第 2 1 、 2 3、 あるいは 2 6項に記載の多孔質炭素基材の製 造方法。
4 0. 前記炭素短繊維の平均繊維径が、 5乃至 2 0 μ mである請求の 範囲第 2 0、 2 6 あるいは 2 9項に記載の多孔質炭素基材の製造方法。
4 1. 前記炭素短繊維の平均繊維長が、 3乃至 2 0 mmである請求の 範囲第 2 0、 2 6 あるいは 2 9項に記載の多孔質炭素基材の製造方法。
4 2. 前記熱硬化性樹脂が、フエノール樹脂である請求の範囲第 2 2、 2 3、 2 7あるいは 2 9項に記載の多孔質炭素基材の製造方法。
4 3. 前記フエノール樹脂が、 それが合成される際に金属触媒もしく はアルカ リ触媒が使用されていないフエノール樹脂である請求の範囲第 4 2項に記載の多孔質炭素基材の製造方法。
4 4. 前記熱硬化性樹脂の硬化度が、 7 0 %以上である請求の範囲第 2 2、 2 3、 2 7あるいは 2 9項に記載の多孔質炭素基材の製造方法。
4 5. 前記後硬化工程における前記前駆体繊維シー トの加熱温度が、 1 4 0乃至 3 0 0 °Cである請求の範囲第 2 4、 2 5、 2 8あるいは 3 0 項に記載の多孔質炭素基材の製造方法。
4 6. 前記前駆体繊維シ^ " トが、 昇温速度 5 0 0乃至 1 0, 0 0 0 °C 分で、 少なく と も 1, 2 0 0 °Cまで加熱されるこ とによ り、 前記熱硬 化性樹脂が炭素化されてなる請求の範囲 2 5項に記載の多孔質炭素基材 の製造方法。
4 7. 前記前駆体繊維シー トが、 昇温速度 5 0 0乃至 1 0, 0 0 0 °C 分で、 少なく とも 1, 2 0 0 °Cまで加熱されるこ とによ り、 前記熱硬 化性樹脂が炭素化されてなる請求の範囲 2 8項に記載の多孔質炭素基材 の製造方法。
4 8. 前記炭化工程における加熱温度の最高温度が、 1, 2 0 0乃至 2, 5 0 0 °Cである請求の範囲第 2 0、 2 6 あるいは 2 9項に記載の多 孔質炭素基材の製造方法。
PCT/JP2004/004158 2003-03-26 2004-03-25 多孔質炭素基材、その製造方法、ガス拡散体、膜-電極接合体、および、燃料電池 WO2004085728A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CNB2004800080388A CN100480451C (zh) 2003-03-26 2004-03-25 多孔碳基材及其制备方法和应用
US10/550,709 US7410719B2 (en) 2003-03-26 2004-03-25 Porous carbon base material, method for preparation thereof, gas-diffusing material film-electrode jointed article, and fuel cell
CA2520025A CA2520025C (en) 2003-03-26 2004-03-25 Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell
KR1020057017818A KR101094566B1 (ko) 2003-03-26 2004-03-25 다공질 탄소 기재, 가스 확산체, 막-전극 접합체, 및 연료 전지
EP04723333A EP1612313B1 (en) 2003-03-26 2004-03-25 Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003084644 2003-03-26
JP2003-084644 2003-03-26
JP2003-087223 2003-03-27
JP2003087223 2003-03-27
JP2003334743A JP4389535B2 (ja) 2003-09-26 2003-09-26 多孔質炭素基材ならびに該基材を用いてなるガス拡散体、膜−電極接合体および燃料電池
JP2003-334743 2003-09-26

Publications (1)

Publication Number Publication Date
WO2004085728A1 true WO2004085728A1 (ja) 2004-10-07

Family

ID=33101952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004158 WO2004085728A1 (ja) 2003-03-26 2004-03-25 多孔質炭素基材、その製造方法、ガス拡散体、膜-電極接合体、および、燃料電池

Country Status (6)

Country Link
US (1) US7410719B2 (ja)
EP (1) EP1612313B1 (ja)
KR (1) KR101094566B1 (ja)
CN (1) CN100480451C (ja)
CA (1) CA2520025C (ja)
WO (1) WO2004085728A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939156A1 (en) * 2005-09-29 2008-07-02 Toray Industries, Inc. Porous carbon sheet and process for production thereof
CN101163828B (zh) * 2005-04-19 2011-06-08 帝人株式会社 碳纤维复合片材、其传热体用途及其中所使用的沥青类碳纤维毡用片
US9023556B2 (en) 2006-03-17 2015-05-05 GM Global Technology Operations LLC Method of preparing gas diffusion media for a fuel cell
CN105970728A (zh) * 2016-05-09 2016-09-28 蚌埠昆仑彩印包装有限公司 一种表面碳化复古书册的浸润方法
CN105970731A (zh) * 2016-05-09 2016-09-28 蚌埠昆仑彩印包装有限公司 一种书册增加复古感的方法
CN105970725A (zh) * 2016-05-09 2016-09-28 蚌埠昆仑彩印包装有限公司 一种复古书册碳化处理用的碳化浸润液
WO2017082276A1 (ja) * 2015-11-09 2017-05-18 日本バイリーン株式会社 導電性多孔シート、固体高分子形燃料電池、及び導電性多孔シートの製造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788651B1 (en) * 2004-06-21 2019-04-03 Mitsubishi Chemical Corporation Porous electrode base material and process for producing the same
KR20100045501A (ko) * 2007-09-19 2010-05-03 유티씨 파워 코포레이션 고 열전도도 전극 기판
CN101939868B (zh) * 2008-04-14 2013-08-14 松下电器产业株式会社 具备具有表面纳米结构的氧电极的燃料电池
JP2010146965A (ja) * 2008-12-22 2010-07-01 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法
US20100209823A1 (en) * 2009-02-18 2010-08-19 Feng Chia University Porous carbonized substrate, its preparation method and uses
US8574758B2 (en) * 2009-07-08 2013-11-05 Mitsubishi Rayon Co., Ltd. Porous electrode substrate and method for producing the same
US20110065026A1 (en) * 2009-09-17 2011-03-17 Ford Motor Company Fuel cell with catalyst layer supported on flow field plate
WO2011065349A1 (ja) * 2009-11-24 2011-06-03 三菱レイヨン株式会社 多孔質電極基材およびその製造方法
CN102361090B (zh) * 2010-05-20 2014-09-10 株式会社协进I&C 聚合物电解质燃料电池气体扩散层碳基材制备方法,其制备的碳基材及该碳基材制备系统
KR101578985B1 (ko) 2011-01-21 2015-12-18 미쯔비시 레이온 가부시끼가이샤 다공질 전극 기재, 그 제조 방법, 막-전극 접합체, 고체 고분자형 연료 전지, 전구체 시트, 및 피브릴상 섬유
TWI432378B (zh) 2011-07-13 2014-04-01 Ind Tech Res Inst 燃料電池、碳材複合結構與其形成方法
TWI568888B (zh) * 2011-09-15 2017-02-01 第諾拉工業公司 氣體擴散電極及其製法和電化電解池
ITMI20112005A1 (it) * 2011-11-04 2013-05-05 Industrie De Nora Spa Elettrodo a diffusione gassosa
US9825315B2 (en) 2012-01-27 2017-11-21 University Of Kansas Hydrophobized gas diffusion layers and method of making the same
WO2013147174A1 (ja) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 多孔質電極基材、その製造方法及び前駆体シート
EP2876714B1 (en) * 2012-07-20 2017-08-30 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane-electrode assembly, and solid-polymer fuel cell
US20140045081A1 (en) * 2012-08-10 2014-02-13 Ph Matter, Llc Bifunctional electrode design and method of forming same
KR20150082366A (ko) * 2012-11-02 2015-07-15 아사히 유키자이 고교 가부시키가이샤 수지 조성물 및 그것을 사용하여 얻어지는 탄소 섬유 강화 복합 재료의 전구체, 탄소 섬유 강화 복합 재료 그리고 탄소 섬유 강화 탄소 재료
KR20140078402A (ko) * 2012-12-17 2014-06-25 삼성전자주식회사 막-전극 접합체 및 이를 포함한 연료전지
DE102013109772A1 (de) * 2013-09-06 2015-03-12 RESO GmbH & Co. KG Papiergefüge und dessen Herstellung im Nassverfahren aus Carbonfasern
KR102356254B1 (ko) * 2014-10-17 2022-01-28 도레이 카부시키가이샤 탄소 시트, 가스 확산 전극 기재 및 연료 전지
EP3225735A4 (en) * 2014-11-26 2018-04-18 Toray Industries, Inc. Carbon fiber mat, preform, sheet material, and molded article
US10957916B2 (en) * 2015-01-28 2021-03-23 Toray Industries, Inc. Porous carbon sheet and precursor fiber sheet thereof
KR102234017B1 (ko) * 2016-12-29 2021-03-29 코오롱인더스트리 주식회사 펴짐성이 우수한 롤 타입 가스확산층의 제조방법
JP7327406B2 (ja) * 2018-08-23 2023-08-16 凸版印刷株式会社 膜電極接合体
WO2020116877A1 (ko) * 2018-12-05 2020-06-11 주식회사 제이앤티지 일방향으로 배향된 탄소 섬유를 포함하는 탄소 기재 및 이를 채용한 기체확산층
KR102169124B1 (ko) * 2018-12-19 2020-10-22 주식회사 제이앤티지 흑연화 탄소 기재 및 이를 채용한 기체확산층
US11757103B2 (en) 2019-04-19 2023-09-12 Toray Industries, Inc. Gas diffusion electrode medium and method for producing the same, gas diffusion electrode, membrane electrode assembly, and polymer electrolyte fuel cell
CN110499646B (zh) * 2019-08-26 2021-12-24 西北工业大学 调控界面空化效应一步制备CuO@碳布柔性电极材料的方法
CN111175342A (zh) * 2020-01-19 2020-05-19 太尔化工(南京)有限公司 利用示差扫描量热仪检测树脂在铸造砂型板中固化度的方法
JP7368283B2 (ja) * 2020-03-13 2023-10-24 帝人株式会社 炭素繊維電極基材の製造方法及び製造装置
CN113882186B (zh) * 2020-07-01 2023-04-07 中国石油化工股份有限公司 碳纤维纸及其制备方法和应用
CN115249817B (zh) * 2021-04-28 2024-01-19 华南理工大学 一种燃料电池气体扩散层用碳纸材料的催化石墨化方法
CN114023978B (zh) * 2021-10-28 2024-02-02 中汽创智科技有限公司 一种气体扩散层基材的制备方法
WO2023097008A1 (en) * 2021-11-23 2023-06-01 The Trustees Of Princeton University Method, system, and devices for water, organics, and/or mineral recovery
CN114976048A (zh) * 2022-05-12 2022-08-30 上海碳际实业集团有限公司 一种燃料电池气体扩散层专用碳纤维纸的连续化生产工艺
CN114953635B (zh) * 2022-05-30 2023-09-15 安徽天富环保科技材料有限公司 一种用于新能源电池气体扩散的活性碳纤维布

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477625A (en) * 1987-09-16 1989-03-23 Toray Industries Production of porous carbon fiber
JPH09157052A (ja) * 1995-12-06 1997-06-17 Toray Ind Inc 多孔質炭素板とその製造方法
JPH09324390A (ja) * 1996-06-07 1997-12-16 Toray Ind Inc 炭素繊維紙および多孔質炭素板
WO2001022509A1 (fr) * 1999-09-22 2001-03-29 Toray Industries, Inc. Feuille conductrice poreuse et procede de fabrication
JP2001196085A (ja) * 2000-01-14 2001-07-19 Toray Ind Inc 多孔質導電シート

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636376B2 (ja) * 1982-08-09 1994-05-11 東洋紡績株式会社 金属−ハロゲン二次電池
US4740434A (en) * 1985-11-29 1988-04-26 Kabushiki Kaisha Meidensha Surface treated electrodes applicable to zinc-halogen secondary batteries
JP3492385B2 (ja) 1992-07-01 2004-02-03 クロリンエンジニアズ株式会社 燃料電池用ガス拡散電極の製造方法
EP0651452A1 (en) * 1993-11-01 1995-05-03 Osaka Gas Co., Ltd. Porous carbonaceous material and a method for producing the same
JPH07220735A (ja) 1994-01-26 1995-08-18 Nippon Carbon Co Ltd 燃料電池電極用カーボンペーパーおよびその製造 方法
JPH07326362A (ja) 1994-05-30 1995-12-12 Aisin Seiki Co Ltd ガス拡散電極及びその製造方法
CA2294803A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fibre paper for a polymer electrolyte fuel cell
CA2347432C (en) * 2000-01-27 2007-08-21 Mitsubishi Rayon Co., Ltd. Porous carbon electrode substrate and its production method and carbon fiber paper
CA2419783A1 (en) * 2000-09-12 2002-03-21 Lydall, Inc. Electrical conductive substrate
DE60129118T2 (de) * 2000-11-24 2008-02-28 Toho Tenax Co., Ltd. Kohlenstofffasern und herstellungsverfahren
US20030008195A1 (en) * 2001-06-28 2003-01-09 Chiem Bien Hung Fluid diffusion layers for fuel cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477625A (en) * 1987-09-16 1989-03-23 Toray Industries Production of porous carbon fiber
JPH09157052A (ja) * 1995-12-06 1997-06-17 Toray Ind Inc 多孔質炭素板とその製造方法
JPH09324390A (ja) * 1996-06-07 1997-12-16 Toray Ind Inc 炭素繊維紙および多孔質炭素板
WO2001022509A1 (fr) * 1999-09-22 2001-03-29 Toray Industries, Inc. Feuille conductrice poreuse et procede de fabrication
JP2001196085A (ja) * 2000-01-14 2001-07-19 Toray Ind Inc 多孔質導電シート

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163828B (zh) * 2005-04-19 2011-06-08 帝人株式会社 碳纤维复合片材、其传热体用途及其中所使用的沥青类碳纤维毡用片
EP1939156A1 (en) * 2005-09-29 2008-07-02 Toray Industries, Inc. Porous carbon sheet and process for production thereof
EP1939156A4 (en) * 2005-09-29 2010-11-10 Toray Industries POROUS CARBON AREA PATTERN AND MANUFACTURING METHOD THEREFOR
US8142883B2 (en) 2005-09-29 2012-03-27 Takashi Chida Porous carbon sheet and process for production thereof
US8641939B2 (en) 2005-09-29 2014-02-04 Toray Industries, Inc. Porous carbon sheet and process for production thereof
US9023556B2 (en) 2006-03-17 2015-05-05 GM Global Technology Operations LLC Method of preparing gas diffusion media for a fuel cell
WO2017082276A1 (ja) * 2015-11-09 2017-05-18 日本バイリーン株式会社 導電性多孔シート、固体高分子形燃料電池、及び導電性多孔シートの製造方法
JPWO2017082276A1 (ja) * 2015-11-09 2018-08-23 日本バイリーン株式会社 導電性多孔シート、固体高分子形燃料電池、及び導電性多孔シートの製造方法
CN105970728A (zh) * 2016-05-09 2016-09-28 蚌埠昆仑彩印包装有限公司 一种表面碳化复古书册的浸润方法
CN105970731A (zh) * 2016-05-09 2016-09-28 蚌埠昆仑彩印包装有限公司 一种书册增加复古感的方法
CN105970725A (zh) * 2016-05-09 2016-09-28 蚌埠昆仑彩印包装有限公司 一种复古书册碳化处理用的碳化浸润液

Also Published As

Publication number Publication date
KR20050116153A (ko) 2005-12-09
US20060180798A1 (en) 2006-08-17
EP1612313A4 (en) 2008-12-10
CN100480451C (zh) 2009-04-22
CN1764752A (zh) 2006-04-26
EP1612313B1 (en) 2012-08-22
CA2520025C (en) 2012-01-03
EP1612313A1 (en) 2006-01-04
KR101094566B1 (ko) 2011-12-19
US7410719B2 (en) 2008-08-12
CA2520025A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
WO2004085728A1 (ja) 多孔質炭素基材、その製造方法、ガス拡散体、膜-電極接合体、および、燃料電池
KR100594535B1 (ko) 탄소 섬유지 및 그것을 이용한 연료 전지용 다공질 탄소전극 기재
US6713034B2 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP4591128B2 (ja) 多孔質炭素板の製造方法
JPWO2004031465A1 (ja) アクリル耐炎繊維不織布、炭素繊維不織布、および、それらの製造方法
JP2003183994A (ja) 炭素繊維紙およびそれを用いた燃料電池用多孔質炭素電極基材
JP4266699B2 (ja) 固体高分子型燃料電池用多孔質電極基材及びその製造方法
JP5055682B2 (ja) 多孔質炭素板およびその製造方法
JPH09157052A (ja) 多孔質炭素板とその製造方法
JP5544960B2 (ja) 固体高分子型燃料電池用多孔質炭素シートおよびその製造方法
JP4345538B2 (ja) 炭素繊維シートの製造方法
JP2002270191A (ja) 炭素電極基材及びその製造方法
JP2006040885A (ja) 多孔質電極基材およびその製造方法
JP2009234851A (ja) 多孔質炭素シートおよびその製造方法
JP5484777B2 (ja) 多孔質電極基材およびその製造方法
JP5728802B2 (ja) 多孔質炭素電極基材およびその製造方法
JP2007176750A (ja) 多孔質炭素繊維シートおよびその製造方法
JP2003286085A (ja) 多孔質炭素板およびその製造方法
JP2010192379A (ja) 多孔質炭素電極基材及びその製造方法
JP2004134108A (ja) 多孔質炭素電極基材前駆体シート状物の製造方法
JP2009280437A (ja) 多孔質炭素シートの製造方法
JP2003151568A (ja) 固体高分子型燃料電池用の電極基材とその製造方法
JP2006089331A (ja) 炭素繊維基材の製造方法
JP2006004858A (ja) 多孔質電極基材およびその製造方法
JP2006004858A5 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004723333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2520025

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057017818

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006180798

Country of ref document: US

Ref document number: 10550709

Country of ref document: US

Ref document number: 20048080388

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057017818

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004723333

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10550709

Country of ref document: US