JP5702218B2 - 固体高分子型燃料電池用の多孔質電極基材 - Google Patents
固体高分子型燃料電池用の多孔質電極基材 Download PDFInfo
- Publication number
- JP5702218B2 JP5702218B2 JP2011097213A JP2011097213A JP5702218B2 JP 5702218 B2 JP5702218 B2 JP 5702218B2 JP 2011097213 A JP2011097213 A JP 2011097213A JP 2011097213 A JP2011097213 A JP 2011097213A JP 5702218 B2 JP5702218 B2 JP 5702218B2
- Authority
- JP
- Japan
- Prior art keywords
- porous electrode
- carbon
- electrode substrate
- resin
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Paper (AREA)
- Ceramic Products (AREA)
Description
(1)平面状に分散せしめられた平均繊維径3〜9μmの炭素短繊維同士が不定形の樹脂炭化物で結着されてできる大きい孔であって、水銀圧入法により細孔径分布を測定したときに20μm以上50μm以下の範囲に1つのピークを有する大きい孔と、前記炭素短繊維同士が網状の樹脂炭化物で架橋されて形成される小さい孔であって、水銀圧入法により細孔径分布を測定したときに5μm以上20μm未満の範囲に1つのピークを有する小さい孔とが混在した構造を有する多孔質電極基材であって、周期加熱法により測定された厚み方向の見かけの熱拡散率が0.05〜0.50mm2/sである固体高分子型燃料電池用の多孔質電極基材。
(2)前記熱拡散率が、0.30〜0.50mm2/sである前記(1)に記載の多孔質電極基材。
(3)平面状に分散せしめられた平均繊維径が3〜9μmで長さが3mm以上12mm以下の炭素短繊維と、フィブリル化された合成パルプとを含む炭素繊維紙に、炭素前駆体樹脂を付着させた樹脂付着炭素繊維紙を得る工程;前記樹脂付着炭素繊維紙を加熱プレス硬化して、中間基材を得る工程;および前記中間基材を最高温度1000〜1800℃で加熱して、前記炭素前駆体樹脂を炭素化する工程;によって製造される、前記(1)または(2)に記載の多孔質電極基材。
(4)前記フィブリル化された合成パルプのJIS P8121(パルプ濾水度試験法:カナダ標準型)で定義される濾水度が400〜900mlである前記(3)に記載の多孔質電極基材。
(5)前記炭素繊維紙に付着させる前記炭素前駆体樹脂の量が、前記炭素短繊維100質量部に対して70〜120質量部である前記(3)または(4)に記載の多孔質電極基材。
(6)前記中間基材を加熱する最高温度が、1400〜1700℃である前記(3)〜(5)のいずれかに記載の多孔質電極基材。
(7)前記炭素短繊維が、ポリアクリロニトリル系炭素繊維である前記(3)〜(6)のいずれかに記載の多孔質電極基材。
本発明の多孔質電極基材は、後述する製造方法より製造されたものである。この多孔質電極基材においては、平面状に分散せしめられた平均繊維径3〜9μmの炭素短繊維同士が、不定形の樹脂炭化物で結着され、さらに前記炭素短繊維同士が網状の樹脂炭化物により架橋された構造が形成されている。
本発明で使用する炭素短繊維の平均繊維径は、表面平滑性、導電性の付与に好適な3〜9μmであり、好ましくは4〜7μmである。また、表面平滑性および導電性の両立のため、異なる平均繊維径の炭素短繊維を2種類以上用いることも好ましい。異なる平均繊維径の炭素短繊維を2種以上用いるにあたっては、用いた炭素短繊維全体の平均繊維径が上記範囲に入ればよいが、各炭素短繊維の平均繊維径がそれぞれ上記範囲に入ることが好ましい。炭素短繊維の長さは、特に限定されないが、抄紙時の分散性および機械的強度を高めるために、3mm以上12mm以下が好ましい。
本発明において、樹脂炭化物とは、後述する炭素前駆体樹脂を炭化してできた、炭素短繊維同士を結着する物質である。
本発明では、炭素短繊維同士が、不定形の樹脂炭化物で結着されていることが必要である。
本発明では、炭素短繊維同士を結着する不定形の樹脂炭化物とともに、機械強度と反応ガス・水分管理を両立させるという観点から、炭素短繊維同士を架橋する網状の樹脂炭化物の存在が必要である。
炭素短繊維同士が不定形の樹脂炭化物で結着され、かつ網状の樹脂炭化物で架橋されている様子を図1に示した。図1に示すように、炭素短繊維同士を不定形の樹脂炭化物で結着させると共に、網状の樹脂炭化物を架橋させることにより、直径2μm程度の小さな孔と直径50μm程度の大きな孔両方を混在させることができる。細い網状の樹脂炭化物は、炭素繊維に比して補強効果はあまり大きくないが、細孔を細分化するため、ガス透過度を小さくする傾向にある。しかし、高加湿条件下で小さな孔が生成水を吸収しても比較的大きな孔が存在しているため、ガスが流れなくなり性能が急に低下する(いわゆるフラッディング)ことはない。ガス透過度の高い従来の多孔質電極基材では、その上に形成される触媒層や高分子膜が乾きやすいという問題があったが、網状の樹脂炭化物の架橋を有する本発明の多孔質電極基材では、網状の樹脂炭化物が多数の小さい孔を形成しているので、保水性が良く、反応ガスの供給および排出のバランスも安定なので、固体高分子型燃料電池に組んだときの性能を向上させることができる。
本発明の多孔質電極基材は、水銀圧入法により細孔径分布を測定したとき、5μm以上20μm未満の範囲と、20μm以上50μm以下の範囲とにそれぞれ1つずつ分布のピークを有することが好ましく、10μm以上18μm以下の範囲と、25μm以上40μm以下の範囲とにそれぞれ1つずつ分布のピークを有することがより好ましい。これにより、多孔質電極基材が、反応ガスを反応部(触媒層)に効率よく送り届ける機能だけでなく、反応ガスに含まれている水や発電により発生する水を効率よく排出する機能も有することとなる。反応ガスを効率よく反応部(触媒層)に送り届けるためには20μm以上50μm以下の範囲にピークを有する細孔の存在が有効であり、効率よく水を排出するためには、大量に水分が発生した時に水分を一時的に取り込むための孔として5μm以上20μm未満の範囲にピークを有する細孔の存在が有効である。
周期加熱法(温度波熱分析法、交流法、交流加熱法、交流ジュール熱法、acカロリーメータ法等とも称される)とは、膜状または平板状試料の厚み方向の熱拡散率を測定するのに適した非定常熱拡散率測定方法の一種であり、例えば特許第4093333号公報に開示されている。
Δθ=−d・√(ω/2α)−π/4
この式より、厚みdが既知の試料について、一方の面で変調周波数ωを変化させて交流状に加熱し、そのときの裏面における温度変化の位相遅れΔθを測定することにより、熱拡散率αを求めることができる。この測定においては、試料の加熱面と裏面における温度変化の位相差により熱拡散率を求めるため、温度の絶対値を必要とせず、高精度な測定が可能となる。
熱拡散率は、温度勾配により運ばれる温度(熱エネルギー)の拡散係数を意味し、熱伝導率(媒質中の温度勾配に沿って運ばれる熱流束の大きさを規定する量)と次式の関係にある。
(熱伝導率)=(熱拡散率)×(定圧比熱容量)×(密度)
単位は拡散係数と共通であり、m2/sあるいはmm2/s等が用いられる。本発明の多孔質電極基材における熱伝導媒体は、炭素短繊維、不定形の樹脂炭化物、網状の樹脂炭化物、および空孔中の空気である。従って、多孔質電極基材の熱拡散率は、均質材料の熱拡散率とは異なり、炭素質と空気の熱拡散率からなる見かけの熱拡散率である。
本発明の多孔質電極基材の製造方法は、平面状に分散せしめられた平均繊維径が3〜9μmの炭素短繊維と、フィブリル状物とを含む炭素繊維紙に、炭素前駆体樹脂を含む樹脂付着炭素繊維紙を得る工程;前記樹脂付着炭素繊維紙を加熱プレス硬化して、中間基材を得る工程;および前記中間基材を最高温度1000〜1800℃で加熱して、前記炭素前駆体樹脂を炭素化する工程;を有する。製造コストの低下ができるという点から、全工程にわたり連続的に行われることが好ましい。
本発明では、多孔質電極基材中で、
1)炭素短繊維同士が不定形の樹脂炭化物で結着され、
2)炭素短繊維同士が網状の樹脂炭化物によりで架橋された
構造を形成するために、フィブリル状物(フィブリル化された合成パルプ)を使用する。
本発明の多孔質電極機材の製造方法では、炭素繊維紙の構成材料として、有機高分子化合物を加えることができる。有機高分子化合物は、炭素繊維紙中で各成分をつなぎとめるバインダーとしてはたらく。有機高分子化合物としては、ポリビニルアルコール(PVA)、ポリアクリロニトリル、セルロース、ポリ酢酸ビニル等を用いることができる。その中でも、ポリビニルアルコール、ポリ酢酸ビニル等が好ましく用いられる。特にポリビニルアルコールは抄紙工程での結着力に優れるため、炭素短繊維の脱落が少なく、バインダーとしての有機高分子化合物として好適である。本発明では、繊維状の有機高分子化合物を用いることも可能である。
炭素繊維紙は、抄紙によって好適に得られる。抄紙方法としては、液体の媒体中に炭素短繊維を分散させて抄造する湿式法や、空気中に炭素短繊維を分散させて降り積もらせる乾式法が適用できる。中でも、湿式法が好ましい。また、前述したように、炭素短繊維同士の開繊、および再収束を防止する役割を果たすフィブリル状物を適当量混ぜることが必要であり、炭素短繊維同士を結着させるバインダーとして適当量の有機高分子化合物を混ぜることが好ましい。
炭素繊維紙に付着させる炭素前駆体樹脂は、常温において粘着性または流動性を示す樹脂で、かつ炭素化後も導電性物質(樹脂炭化物)として残存する物質が好ましく、フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、イミド樹脂、ウレタン樹脂、アラミド樹脂、ピッチ等を単独または混合物として用いることができる。中でも、炭素短繊維との結着力が強く、炭化時の残存重量が大きいことから、フェノール樹脂が好ましい。
炭素繊維紙に付着させる炭素前駆体樹脂の量は、炭素短繊維100質量部に対して70〜120質量部の範囲が好ましく、80〜100質量部の範囲がさらに好ましい。炭素前駆体樹脂の種類や炭素繊維紙への付着量により、最終的に多孔質電極基材に炭化物として残る割合が異なるが、炭素繊維紙に付着させる炭素前駆体樹脂の量を上記範囲とすることで、炭素前駆体樹脂を炭化した樹脂炭化物の残存量が所望の値となりやすい。
炭素繊維紙に炭素前駆体樹脂を付着させる方法としては、特段の制限はないが、コーターを用いて炭素繊維紙表面に炭素前駆体樹脂を均一にコートする方法、絞り装置を用いるdip−nip方法、または炭素繊維紙と炭素前駆体樹脂フィルムを重ねて炭素前駆体樹脂を炭素繊維紙に転写する方法が、連続的に行うことができ、生産性および長尺ものも製造できるという点で好ましい。
続いて、樹脂付着炭素繊維紙を加熱プレス硬化して、炭素繊維紙表面を平滑にした中間基材を得る。この工程がない場合でも良好な強度とガス透過度とを共に有する多孔質電極基材が得られるが、その多孔質電極基材に大きな起伏が生じるため、セルを組んだときに多孔質電極基材と周辺基材との接触が十分でなくなる。
続いて、中間基材を炭素化することで、多孔質電極基材を得る。多孔質電極基材の導電性を高めるために、不活性ガス中で炭素化することが好ましい。炭素化は、中間基材の全長にわたって連続で行うことが好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなるだけでなく、その後工程のMembrane Electrode Assembly(MEA)製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。
本発明の多孔質電極基材を、触媒を担持した炭素粉末を主体とする触媒層を介して高分子電解質膜の片面または両面に接合して、膜−電極接合体とすることができる。本発明の多孔質電極基材を接合する面は、アノード側でもカソード側でもよい。
前述のような多孔質電極基材または膜−電極接合体は、固体高分子型燃料電池に好適である。
多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ7321(商品名、株式会社ミツトヨ製)を使用して測定した。使用した測定子の大きさは直径10mmであり、測定圧力は1.5kPaとした。
多孔質電極基材の厚み方向の見かけの熱拡散率は、ISO規格22007−3に準拠した方法によって求めた。具体的には、周期加熱法熱拡散率測定装置FTC−1(商品名、アルバック理工株式会社製)を用い、10mm四方に切り取った多孔質電極基材の試料片を、12mm四方に切り取った厚さ7.6μmのポリイミドフィルム2枚で挟み、5kgの錘による荷重下、大気中、室温にて測定した。ヒーター電流は10mAとし、ヒーター電圧は16Vとした。測定周波数は5〜30Hzとし、同装置付属の解析ソフトウェアを使用して熱拡散率を求めた。
水銀ポロシメーターとしてPore Master−60(商品名、Quantachrome社製)を用い、水銀圧入法により細孔容積を測定し、そのデータから細孔径の分布を求めた。
多孔質電極基材のガス透過度は、JIS−P8117に準拠した方法によって求めた。具体的には、ガーレー式デンソメーター(熊谷理機工業株式会社製)を使用し、ガス流通部の径が3mmφの冶具(圧縮部面積:0.0707cm2)を有するセルに多孔質電極基材の試験片を挟み、孔から1.29kPaの圧力で200mLのガス(空気)を流し、ガスが通過する時間を測定することで、以下の式より算出した。
(5)貫通抵抗
多孔質電極基材の厚さ方向の貫通抵抗は、試料を銅板に挟み、銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
<実施例1>
平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維の短繊維束を、湿式短網連続抄紙装置のスラリータンクで水中に均一に分散させて解繊させた。炭素短繊維が十分に分散したところに、バインダーであるポリビニルアルコール(PVA)の短繊維(クラレ株式会社製、商品名:VBP105−1、カット長3mm)、およびフィブリル状物であるポリエチレンパルプ体(三井化学株式会社製、商品名:SWP、濾水度:450ml)を、炭素短繊維に対してそれぞれ18質量%および77質量%となるように均一に分散させ、送り出した。送り出されたウェブを短網板に通し、ドライヤー乾燥することで、坪量43g/m2、長さ100mの炭素繊維紙Aを得た。
連続焼成炉での炭素化処理において、窒素ガス雰囲気中にて5分間加熱する温度を1450℃としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材を評価した結果を表1に示す。
連続焼成炉での炭素化処理において、窒素ガス雰囲気中にて5分間加熱する温度を1100℃としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材を評価した結果を表1に示す。
連続焼成炉での炭素化処理において、窒素ガス雰囲気中にて5分間加熱する温度を1700℃としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材を評価した結果を表1に示す。
連続焼成炉での炭素化処理において、窒素ガス雰囲気中にて5分間加熱する温度を1900℃としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材を評価した結果を表1に示す。
連続焼成炉での炭素化処理において、窒素ガス雰囲気中にて5分間加熱する温度を2400℃としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材を評価した結果を表1に示す。
連続焼成炉での炭素化処理において、窒素ガス雰囲気中にて5分間加熱する温度を900℃としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材を評価した結果を表1に示す。
フィブリル状物であるポリエチレンパルプ体を使用せずに炭素繊維紙Bを得たこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材を評価した結果を表1に示す。
(1)膜−電極接合体(MEA)の作製
実施例1で得られた多孔質電極基材を、アノード用およびカソード用としてそれぞれ5cm四方にカットし、アノード用多孔質電極基材のみに撥水処理を行った。撥水処理としては、市販のPTFE水溶液(三井・デュポンフロロケミカル社製)を水で20質量%まで希釈したものに多孔質電極基材を浸漬し、乾燥後360℃で焼結させることで行った。そして、両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm2、Pt付着量:0.3mg/cm2)を形成したパーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)を、カソード用、アノード用の多孔質電極基材で挟持し、これらを接合してMEAを得た。
前記(1)で作製したMEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。
実施例2で得られた多孔質電極基材を用いたこと以外は、実施例5と同様にしてMEAおよび単セルを形成し、電流密度−電圧特性を測定した。結果を表2に示す。いずれのガス加湿温度でも良好な特性を示した。
実施例3で得られた多孔質電極基材を用いたこと以外は、実施例5と同様にしてMEAおよび単セルを形成し、電流密度−電圧特性を測定した。結果を表2に示す。いずれのガス加湿温度でも良好な特性を示した。
実施例4で得られた多孔質電極基材を用いたこと以外は、実施例5と同様にしてMEAおよび単セルを形成し、電流密度−電圧特性を測定した。結果を表2に示す。いずれのガス加湿温度でも良好な特性を示した。
比較例1で得られた多孔質電極基材を用いたこと以外は、実施例5と同様にしてMEAおよび単セルを形成し、電流密度−電圧特性を測定した。結果を表2に示す。ガス加湿温度80℃(凝縮水存在)の条件では、電流密度が0.8A/cm2以上でフラッディングが起こった。
比較例2で得られた多孔質電極基材を用いたこと以外は、実施例5と同様にしてMEAおよび単セルを形成し、電流密度−電圧特性を測定した。結果を表2に示す。ガス加湿温度60℃(相対湿度100%)の条件では、電流密度が0.75A/cm2以上でフラッディングが起こった。また、ガス加湿温度80℃(凝縮水存在)の条件では、電流密度が0.6A/cm2以上でフラッディングが起こった。
比較例3で得られた多孔質電極基材を用いたこと以外は、実施例5と同様にしてMEAおよび単セルを形成し、電流密度−電圧特性を測定した。結果を表2に示す。いずれのガス加湿温度でもフラッディングは起こらなかったが、高い内部抵抗のためにセル電圧は低かった。
比較例4で得られた多孔質電極基材を用いたこと以外は、実施例5と同様にしてMEAおよび単セルを形成し、電流密度−電圧特性を測定した。結果を表2に示す。ガス加湿温度80℃(凝縮水存在)の条件では、電流密度が0.8A/cm2以上でフラッディングが起こった。5μm以上20μm未満の範囲にピークを有する細孔が存在しないため、大量の水分を一時的に取り込むことができなかったためと考えられる。
2:不定形の樹脂炭化物
3:網状の樹脂炭化物
4:5μm以上20μm未満の細孔径分布ピークに相当する孔
5:20μm以上50μm以下の細孔径分布ピークに相当する孔
Claims (7)
- 平面状に分散せしめられた平均繊維径3〜9μmの炭素短繊維同士が不定形の樹脂炭化物で結着されてできる大きい孔であって、水銀圧入法により細孔径分布を測定したときに20μm以上50μm以下の範囲に1つのピークを有する大きい孔と、前記炭素短繊維同士が網状の樹脂炭化物で架橋されて形成される小さい孔であって、水銀圧入法により細孔径分布を測定したときに5μm以上20μm未満の範囲に1つのピークを有する小さい孔とが混在した構造を有する多孔質電極基材であって、周期加熱法により測定された厚み方向の見かけの熱拡散率が0.05〜0.50mm2/sである固体高分子型燃料電池用の多孔質電極基材。
- 前記熱拡散率が、0.30〜0.50mm2/sである請求項1に記載の多孔質電極基材。
- 平面状に分散せしめられた平均繊維径が3〜9μmで長さが3mm以上12mm以下の炭素短繊維と、フィブリル化された合成パルプとを含む炭素繊維紙に、炭素前駆体樹脂を付着させた樹脂付着炭素繊維紙を得る工程;前記樹脂付着炭素繊維紙を加熱プレス硬化して、中間基材を得る工程;および前記中間基材を最高温度1000〜1800℃で加熱して、前記炭素前駆体樹脂を炭素化する工程;によって製造される、請求項1または2に記載の多孔質電極基材。
- 前記フィブリル化された合成パルプのJIS P8121(パルプ濾水度試験法:カナダ標準型)で定義される濾水度が400〜900mlである請求項3に記載の多孔質電極基材。
- 前記炭素繊維紙に付着させる前記炭素前駆体樹脂の量が、前記炭素短繊維100質量部に対して70〜120質量部である請求項3または4に記載の多孔質電極基材。
- 前記中間基材を加熱する最高温度が、1400〜1700℃である請求項3〜5のいずれかに記載の多孔質電極基材。
- 前記炭素短繊維が、ポリアクリロニトリル系炭素繊維である請求項3〜6のいずれかに記載の多孔質電極基材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011097213A JP5702218B2 (ja) | 2009-12-22 | 2011-04-25 | 固体高分子型燃料電池用の多孔質電極基材 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009290743 | 2009-12-22 | ||
JP2009290743 | 2009-12-22 | ||
JP2011097213A JP5702218B2 (ja) | 2009-12-22 | 2011-04-25 | 固体高分子型燃料電池用の多孔質電極基材 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010281932A Division JP2011151009A (ja) | 2009-12-22 | 2010-12-17 | 多孔質電極基材の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011181511A JP2011181511A (ja) | 2011-09-15 |
JP5702218B2 true JP5702218B2 (ja) | 2015-04-15 |
Family
ID=44156772
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010281932A Pending JP2011151009A (ja) | 2009-12-22 | 2010-12-17 | 多孔質電極基材の製造方法 |
JP2011097213A Active JP5702218B2 (ja) | 2009-12-22 | 2011-04-25 | 固体高分子型燃料電池用の多孔質電極基材 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010281932A Pending JP2011151009A (ja) | 2009-12-22 | 2010-12-17 | 多孔質電極基材の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP2011151009A (ja) |
CN (1) | CN102104152B (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103329323B (zh) * | 2011-01-27 | 2018-04-27 | 三菱化学株式会社 | 多孔电极基材、其制造方法、前体片材、膜-电极接合体及固体高分子型燃料电池 |
CN102683042B (zh) * | 2011-07-20 | 2015-07-22 | 袁永 | 一种电解电容器阴极电极箔及其制造方法 |
CN103975470B (zh) * | 2011-12-26 | 2017-08-25 | 东丽株式会社 | 燃料电池用气体扩散电极基材、膜电极接合体和燃料电池 |
KR101425305B1 (ko) | 2013-01-15 | 2014-07-31 | 전북대학교산학협력단 | Pan 피브리드를 이용한 탄소섬유 페이퍼의 제조방법 |
JP5548296B1 (ja) * | 2013-09-06 | 2014-07-16 | ペルメレック電極株式会社 | 電解用電極の製造方法 |
KR20210079410A (ko) * | 2016-07-22 | 2021-06-29 | 미쯔비시 케미컬 주식회사 | 다공질 기재, 다공질 전극, 탄소 섬유지, 탄소 섬유지의 제조 방법, 다공질 기재의 제조 방법 |
JP7058947B2 (ja) * | 2017-04-28 | 2022-04-25 | 日本製紙株式会社 | 無機粒子複合繊維の製造方法 |
CN108520950A (zh) * | 2018-04-13 | 2018-09-11 | 刘文会 | 一种电动汽车用电极新材料的生产方法 |
WO2020202819A1 (ja) * | 2019-04-04 | 2020-10-08 | ナミックス株式会社 | 多孔質炭素及び樹脂組成物 |
CN112663189A (zh) * | 2020-12-08 | 2021-04-16 | 中国科学院山西煤炭化学研究所 | 混合纱及其制造方法、炭纸及其制造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004027435A (ja) * | 2002-06-26 | 2004-01-29 | Toho Tenax Co Ltd | 炭素繊維シート及びその製造方法 |
JP4461695B2 (ja) * | 2003-03-24 | 2010-05-12 | 東レ株式会社 | 多孔質炭素電極基材およびその製造方法 |
JP2006004709A (ja) * | 2004-06-16 | 2006-01-05 | Nissan Motor Co Ltd | 固体高分子電解質型燃料電池 |
CN100527496C (zh) * | 2004-06-21 | 2009-08-12 | 三菱丽阳株式会社 | 多孔质电极基材及其制造方法 |
JP2006040886A (ja) * | 2004-06-21 | 2006-02-09 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
JP2006012476A (ja) * | 2004-06-23 | 2006-01-12 | Nissan Motor Co Ltd | 燃料電池用膜−電極接合体 |
JP2006040767A (ja) * | 2004-07-28 | 2006-02-09 | Nissan Motor Co Ltd | 固体高分子型燃料電極 |
JP2006089331A (ja) * | 2004-09-24 | 2006-04-06 | Toray Ind Inc | 炭素繊維基材の製造方法 |
JP2009280437A (ja) * | 2008-05-21 | 2009-12-03 | Mitsubishi Rayon Co Ltd | 多孔質炭素シートの製造方法 |
-
2010
- 2010-12-17 JP JP2010281932A patent/JP2011151009A/ja active Pending
- 2010-12-22 CN CN201010620007.5A patent/CN102104152B/zh active Active
-
2011
- 2011-04-25 JP JP2011097213A patent/JP5702218B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
CN102104152A (zh) | 2011-06-22 |
JP2011151009A (ja) | 2011-08-04 |
CN102104152B (zh) | 2015-04-22 |
JP2011181511A (ja) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5702218B2 (ja) | 固体高分子型燃料電池用の多孔質電極基材 | |
JP5844760B2 (ja) | 多孔質電極基材 | |
JP3612518B2 (ja) | 多孔質炭素電極基材およびその製造方法並びに炭素繊維紙 | |
JP2006040886A (ja) | 多孔質電極基材およびその製造方法 | |
WO2005124907A1 (ja) | 多孔質電極基材およびその製造方法 | |
JP7136252B2 (ja) | レドックスフロー電池用電極、およびレドックスフロー電池 | |
CA3006426A1 (en) | Carbon sheet, gas diffusion electrode substrate, and fuel cell | |
JP2009129634A (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP2004235134A (ja) | 固体高分子型燃料電池用多孔質電極基材及びその製造方法 | |
JP4730888B2 (ja) | 多孔質電極基材およびその製造方法 | |
JP2016012558A (ja) | 固体高分子形燃料電池用ガス拡散層 | |
JP5484777B2 (ja) | 多孔質電極基材およびその製造方法 | |
JP4559767B2 (ja) | 炭素電極基材の製造方法 | |
JP5250328B2 (ja) | 炭素質電極基材の製造方法 | |
JP5416990B2 (ja) | 多孔質炭素電極基材、並びにそれを用いた膜−電極接合体及び固体高分子型燃料電池 | |
JP5336911B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および燃料電池 | |
JP5336804B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP2018014275A (ja) | 多孔質電極基材 | |
JP6183065B2 (ja) | 多孔質炭素電極とその製造方法 | |
JP5322213B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP2006004858A (ja) | 多孔質電極基材およびその製造方法 | |
JP2016157653A (ja) | ガス拡散電極基材、それを用いたガス拡散層 | |
JP2006004858A5 (ja) | ||
JP5336912B2 (ja) | 多孔質電極基材の製造方法、それを用いた膜−電極接合体、および燃料電池 | |
JP5322212B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130827 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20131129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131129 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150219 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5702218 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |