WO2020202819A1 - 多孔質炭素及び樹脂組成物 - Google Patents
多孔質炭素及び樹脂組成物 Download PDFInfo
- Publication number
- WO2020202819A1 WO2020202819A1 PCT/JP2020/005476 JP2020005476W WO2020202819A1 WO 2020202819 A1 WO2020202819 A1 WO 2020202819A1 JP 2020005476 W JP2020005476 W JP 2020005476W WO 2020202819 A1 WO2020202819 A1 WO 2020202819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- porous carbon
- peak
- varistor
- band
- resin composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
- H01C17/06506—Precursor compositions therefor, e.g. pastes, inks, glass frits
- H01C17/06513—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
- H01C17/0652—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component containing carbon or carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/105—Varistor cores
- H01C7/118—Carbide, e.g. SiC type
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
- H01C17/06506—Precursor compositions therefor, e.g. pastes, inks, glass frits
- H01C17/06573—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
- H01C17/06586—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/105—Varistor cores
Definitions
- the present invention relates to a porous carbon that can be used as a material for an electric element such as a varistor element, and a resin composition containing the porous carbon.
- Patent Documents 1 to 5 describe techniques using carbon airgel.
- Patent Document 6 describes a resin composition containing carbon nanotubes and containing 70% by weight or more of semiconductor-type single-walled carbon nanotubes in the carbon nanotubes. Further, Patent Document 6 describes a paste for forming a varistor element containing the resin composition.
- a varistor element is an element (electronic component) having a property that when the voltage between a pair of electrodes is low, the electric resistance is high, and when the voltage between the pair of electrodes becomes a predetermined value or more, the electric resistance suddenly decreases.
- a varistor element has a structure in which a material having non-linear resistance characteristics is arranged between a pair of electrodes. Examples of the material having non-linear resistance characteristics include silicon carbide, zinc oxide, strontium titanate and the like.
- the present invention has the following configuration.
- Constituent 1 of the present invention is porous carbon.
- the integrated intensity of the G band peak near 1590 cm -1 is IG and the integrated intensity of the D band peak near 1350 cm -1 is ID
- ID / IG is 2.0 or more
- Porous carbon has pores with dimensions less than 1 ⁇ m and The porous carbon is a porous carbon for a varistor device.
- the porous carbon of the constitution 1 of the present invention By using the porous carbon of the constitution 1 of the present invention, it is possible to obtain a resin composition for producing a varistor element having appropriate varistor characteristics and a paste for forming a varistor element.
- the configuration 2 of the present invention is the porous carbon of the configuration 1 in which the MD / MG is 0.80 or more when the maximum intensity of the peak of the G band is MG and the maximum intensity of the peak of the D band is MD. is there.
- a resin composition for producing a varistor element having appropriate varistor properties and a paste for forming a varistor element can be obtained more reliably.
- the configuration 3 of the present invention is the porous carbon of the configuration 1 or 2 in which the peak temperature of thermal decomposition in producing the porous carbon is 800 ° C. or higher and 1500 ° C. or lower.
- the porous carbon contained in the resin composition or the like for producing a varistor element having appropriate varistor characteristics can be obtained more reliably.
- Constituent 4 of the present invention is any of the porous carbons of configurations 1 to 3 produced by thermal decomposition of a mixture of raw materials containing furfural and phloroglucinol.
- the porous carbon contained in the resin composition or the like for producing a varistor element having appropriate varistor characteristics can be obtained more reliably.
- composition 5 of the present invention is the porous carbon of the composition 4 in which the amount of furfural is 100 to 500 parts by weight with respect to 100 parts by weight of phloroglucinol in the raw material.
- the porous carbon contained in the resin composition or the like for producing a varistor element having appropriate varistor characteristics can be obtained. , Can be obtained more easily.
- Constituent 6 of the present invention is any of the porous carbons of Constituents 1 to 3 produced by thermal decomposition of a raw material containing polyimide.
- Configuration 7 of the present invention is a resin composition containing the porous carbon according to any one of configurations 1 to 6 and a resin.
- the present invention it is possible to provide a resin composition for producing a varistor element having appropriate varistor characteristics using a material previously unknown to have varistor characteristics. Further, according to the present invention, it is possible to provide porous carbon contained in a resin composition for producing a varistor element.
- the porous carbon of this embodiment is a porous carbon for a varistor device.
- the porous carbon of the present embodiment has pores having a size of less than 1 ⁇ m.
- porous carbon means that the solvent contained in a gel-like mixture made from a material containing carbon is replaced with a gas by supercritical drying, and components other than carbon are removed by thermal decomposition. It is a porous carbon obtained by. In addition, such porous carbon is generally referred to as carbon aerogel.
- Porous carbon has a large number of pores due to its manufacturing method.
- the size of the vacancies is less than 1 ⁇ m, and the vacancies have nanometer-order dimensions (nanopores).
- the size of the nanopores of porous carbon is 200 to 300 nm.
- the size of the pores can be obtained as the average of the diameters of the plurality of pores in the SEM photograph using the SEM photograph obtained by taking a cross section of the porous carbon with a scanning electron microscope (SEM). The diameters of all the pores in the SEM photograph can be measured and averaged. Further, for example, the diameter of 10 to 20 holes can be measured and the average can be obtained to obtain the size of the holes.
- the porous carbon of the embodiment of the present invention has nanopores having a size on the order of nanometers, it may be referred to as “nanoporous carbon" to distinguish it from general porous carbon. ..
- the porous carbon of this embodiment can be preferably used as the porous carbon for varistor devices.
- FIG. 2 shows a schematic diagram of an example of the varistor element.
- the varistor element shown in FIG. 2 has a structure in which a material having varistor characteristics (for example, the resin composition of the present invention) is arranged on a pair of electrodes 14a and 14b as shown in FIG.
- the structure of the varistor element shown in FIG. 2 is merely an example, and any structure can be adopted as long as it has a structure in which a material having varistor characteristics is arranged between a pair of electrodes.
- a structure in which a material having varistor characteristics is arranged between electrodes arranged in parallel to a plane, a structure in which a pair of electrodes are three-dimensionally arranged in a comb shape, and the like can be adopted.
- the varistor element is an electronic element having a non-linear resistance characteristic.
- This ⁇ is called the non-linearity coefficient.
- ⁇ 1
- ⁇ 1
- ⁇ 6 or more
- the varistor element has appropriate varistor characteristics to withstand use.
- a varistor element having appropriate varistor characteristics that can withstand use that is, a varistor element having a non-linearity coefficient ⁇ of 6 or more.
- porous carbon of the porous carbon of the embodiment will be specifically described.
- the porous carbon of this embodiment is a porous carbon for a varistor device.
- Porous carbon of this embodiment in the Raman spectrum measured by using the porous carbon by Raman spectroscopy, the integrated intensity of the peak of the G band near 1590 cm -1 and I G, a peak of D band near 1350 cm -1 ID / IG is 2.0 or more when the integrated strength of is taken as ID .
- the porous carbon of the present invention it is possible to obtain a resin composition for producing a varistor element having appropriate varistor properties and a paste for forming a varistor element.
- the porous carbon of the present invention has a predetermined Raman spectrum when the intensity of Raman scattering with respect to the wave number (wave number, unit is usually cm -1 ) of Raman scattering (Raman shift) by Raman spectroscopy is measured.
- the bonding state of carbon having a peak near 1590 cm -1 and around 1350 cm -1.
- Peak around 1590 cm -1 is considered to be the peak of the G band derived from the sp 2 hybrid orbital, such as a binding state of graphite.
- Peak around 1350 cm -1 is considered to be the peak of the D band derived from the sp 3 hybrid orbital, such as coupling state of the diamond.
- the D band is considered to be due to the diamond-like amorphous carbon, it is considered that the strong strength of the D band is caused by the disorder from the bonded state of graphite.
- Porous carbon of the present invention the integrated intensity of the peak of the G band near 1590 cm -1 and I G, the integrated intensity of the peak of the D band near 1350 cm -1 is taken as I D, I D / I G Is 2.0 or more.
- I D / I G is preferably 2.1 to 3.0, more preferably 2.2 to 2.5.
- the integrated intensity of the G-band peak is the area of the peak after subtracting the background, which is noise, from the G-band peak in the Raman spectrum that plots the intensity of Raman scattering with respect to the wave number of Raman scattering.
- Porous carbon of the present invention the maximum intensity of the peak of G-band and M G, the maximum intensity of the peak of the D band is taken as M D, M D / M G it is preferably 0.80 or more ..
- Porous carbon of the present invention in the Raman spectrum obtained by plotting the intensity of the Raman scattering for the wave number of Raman scattering, the maximum intensity of the peak of G-band and M G, the maximum intensity of the peak of the D band is taken as M D it is preferable M D / M G is 0.80 or more.
- Maximum intensity M G of the peak of the G band, after background subtraction is the noise from the measured values of the wave number range which constitutes a peak of G-band is the maximum value of the peak intensity of Raman scattering in the G band. The same applies to the maximum intensity M D of the peak of the D band.
- M D / M G is more preferably more preferably 0.80 to 3.0, 0.90 to 1.5.
- the porous carbon can be produced by thermal decomposition of a mixture of raw materials containing furfural and phloroglucinol.
- the method 1 for producing porous carbon of the present embodiment includes a step of preparing a material.
- a predetermined amount of furfural and phloroglucinol are prepared.
- the amount of furfural in the raw material is preferably 100 to 500 parts by weight, more preferably 120 to 340 parts by weight, and 160 to 310 parts by weight with respect to 100 parts by weight of phloroglucinol. It is more preferably a part.
- the production method 1 includes a pretreatment step for dissolving phloroglucinol and furfural in ethanol to obtain an ethanol solution.
- phloroglucinol is first dissolved in ethanol.
- furfural is dissolved in an ethanol solution of phloroglucinol.
- the concentration of the total amount of phloroglucinol and furfural in the ethanol solution is 1 to 45% by weight, preferably 1.5 to 30% by weight, and more preferably 2 to 2 to.
- An amount of ethanol can be used such that it is 25% by weight.
- the concentration of the total amount of phloroglucinol and furfural in the ethanol solution (concentration of the raw material in the solvent) in the pretreatment step is referred to as an initial concentration (% by weight).
- the production method 1 includes a gelation step for gelling an ethanol solution of phloroglucinol and furfural.
- a gelled solid can be obtained by stirring the ethanol solution of phloroglucinol and furfural obtained as described above and then leaving it at room temperature.
- the production method 1 includes a cleaning step for cleaning the gelled solid.
- the gelled solid is washed.
- Ethanol can be used for cleaning, but is not limited to this. Other alcohols can also be used.
- the gelled product can be washed, for example, by repeatedly adding ethanol to the gelled product and discharging the added ethanol.
- the cleaning step can be performed until the discharged ethanol is no longer colored.
- the production method 1 includes a supercritical drying step for the washed solid. After washing, the gelled solid is taken out and supercritically dried. Specifically, the gelled solid is placed in a sealed container, and the supercritical liquid CO 2 is introduced into the sealed container under a predetermined pressure. Then, after maintaining that state, the supercritical liquid CO 2 is discharged. This step can be repeated if necessary.
- the production method 1 includes a thermal decomposition step for a solid after supercritical drying.
- the supercritically dried solid obtained as described above is placed in a furnace and placed at a heating rate of 0.8 to 1.2 ° C./min in a nitrogen atmosphere at 800 ° C. or higher (for example).
- the temperature is raised to 800 ° C. to 1500 ° C., preferably 800 ° C. to 1200 ° C., more preferably 800 ° C. to 1000 ° C.).
- components other than carbon can be removed to obtain porous carbon.
- the production method 1 includes a pulverization step for pulverizing the porous carbon obtained by the thermal decomposition step into particles.
- the porous carbon after heating is returned to room temperature, and the porous carbon is pulverized to obtain powdered porous carbon.
- the porous carbon can be pulverized so that the porous carbon has a predetermined particle size.
- the average particle size of the porous carbon is preferably 0.01 to 50 ⁇ m, more preferably 0.02 to 10 ⁇ m from the viewpoint of workability and the like.
- the average particle size the particle size (average particle size: D50) of 50% of the integrated value of all particles can be set as the above particle size.
- the average particle size D50 is obtained by measuring the particle size distribution with the laser diffraction / scattering type particle size distribution measuring device LA-960 (laser diffraction / scattering method) manufactured by Horiba Seisakusho Co., Ltd. and obtaining the D50 value from the result of the particle size distribution measurement. Can be sought.
- LA-960 laser diffraction / scattering type particle size distribution measuring device
- the porous carbon can be produced by the production method 1.
- the porous carbon is produced by thermal decomposition of a raw material containing polyimide.
- the method 2 for producing porous carbon of the present embodiment includes a step of preparing a material.
- a predetermined amount of pyromellitic anhydride and paraphenyldiamine are prepared.
- the production method 2 includes a pretreatment step for synthesizing a polyimide solution.
- a polyamic acid solution can be synthesized using pyromellitic anhydride and paraphenyldiamine as materials.
- Dimethylacetamide and toluene can be used as the solvent for this synthesis.
- the total weight of the solvent (dimethylacetamide and toluene) relative to the total weight of pyromellitic anhydride and paraphenyldiamine can be selected so that the initial concentration of the polyamic acid solution to be synthesized is within a predetermined range.
- the initial concentration is the concentration of polyamic acid in the polyamic acid solution in the pretreatment step (with respect to the weight of the polyamic acid solution after synthesis, which is the raw material of pyromellitic anhydride and paraphenyldiamine. (Percentage of total weight).
- the initial concentration is 1 to 45% by weight, preferably 1.5 to 30% by weight, more preferably 2 to 25% by weight, still more preferably 10 to 15% by weight.
- the polyamic acid solution can be synthesized by mixing and heating pyromellitic anhydride and paraphenyldiamine. As a result, a polyamic acid solution can be synthesized.
- a polyimide solution can be synthesized by adding a predetermined amount of pyridine and acetic anhydride to the polyamic acid solution obtained as described above.
- the production method 2 includes a gelation step for gelling the polyimide solution.
- the gelling step the polyimide solution obtained as described above is stirred. Then, by leaving it at room temperature, a gelled solid can be obtained.
- the manufacturing method 2 includes a cleaning step, a supercritical drying step, a heating step, and a crushing step.
- porous carbon can be produced by performing a washing step, a supercritical drying step, a heating step, and a pulverization step in the same manner as in the manufacturing method 1.
- the porous carbon of the present embodiment has a peak temperature of thermal decomposition of 800 ° C. or higher, preferably 800 ° C. to 1500 ° C., when the porous carbon is produced in the thermal decomposition steps of Production Methods 1 and 2. It is more preferably 800 ° C. to 1200 ° C., and even more preferably 800 ° C. to 1000 ° C.
- the peak temperature of thermal decomposition is a predetermined temperature, porous carbon contained in a resin composition or the like for producing a varistor element having appropriate varistor characteristics can be obtained more reliably.
- the resin composition of the present embodiment contains the above-mentioned porous carbon of the present embodiment and a resin.
- the resin composition of the present embodiment preferably contains an epoxy resin and a curing agent as the resin.
- the epoxy resin is a bisphenol A type epoxy resin, a brominated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a biphenyl type epoxy resin, a novolak type epoxy resin, an alicyclic epoxy resin, or naphthalene. It preferably contains at least one selected from type epoxy resins, ether epoxy resins, polyether epoxy resins, and silicone epoxy copolymer resins.
- the resin composition contains a predetermined epoxy resin, it is possible to manufacture a varistor element in which the material for the varistor element is appropriately cured.
- the resin composition of the present embodiment preferably contains an amine compound, a phenol, an acid anhydride, an imidazole compound or a mixture thereof as a curing agent.
- the epoxy resin can be appropriately cured when the varistor element is manufactured.
- the curing agent contained in the resin composition of the present embodiment preferably contains imidazole.
- imidazole compound imidazole, an imidazole derivative, or the like can be used.
- a varistor element containing porous carbon contains an imidazole compound as a curing agent, particularly imidazole, a varistor element having better varistor characteristics, specifically, a high non-linearity coefficient ⁇ can be obtained.
- the curing agent contains both an imidazole compound (particularly imidazole) and an amine compound other than the imidazole compound, a varistor element having a higher non-linearity coefficient ⁇ can be obtained.
- the amine compound other than the imidazole compound can be selected and used from aliphatic amines, alicyclic amines and aromatic amines, 3,3'-diethyl-4,4'-diaminodiphenylmethane and diethyltoluenediamine.
- 3,3'-diethyl-4,4'-diaminodiphenylmethane commercially available as an aromatic amine-based curing agent "KAYAHARD AA" (manufactured by Nippon Kayaku Co., Ltd.)
- diethyl Toluenediamine commercially available as "Etacure” manufactured by Albemar
- the weight ratio of the imidazole compound contained in the resin component is preferably 1 to 20% by weight.
- the resin composition of the present invention preferably contains 0.5 parts by weight to 10 parts by weight of the above-mentioned porous carbon of the present embodiment, with the total amount of the epoxy resin and the curing agent being 100 parts by weight.
- a varistor element having appropriate varistor characteristics can be obtained.
- the resin composition of the present embodiment and the paste for forming a varistor element described later do not contain an inorganic component (filler or the like) other than porous carbon, that is, it is filler-less.
- an inorganic component filler or the like
- a varistor element having appropriate varistor characteristics can be produced even with a resin composition having a simple structure and a paste for forming a varistor element that does not contain an inorganic component such as a filler. can do.
- a paste for forming a varistor element By using the resin composition of the present embodiment described above, a paste for forming a varistor element can be obtained.
- the resin composition of the present invention can be used as it is as a paste for forming a varistor element.
- the varistor element forming paste can further contain a solvent and other additives from the viewpoint of satisfactorily applying the paste at the time of screen printing or the like.
- the paste for forming a varistor element of the present embodiment can further contain a solvent.
- a solvent for example, aromatic hydrocarbons such as toluene and xylene, methyl ethyl ketone, methyl isobutyl ketone, ketones such as cyclohexanone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol. Examples thereof include monoethyl ether, diethylene glycol monobutyl ether, and corresponding esters such as acetate ester, and terpineol and the like.
- the solvent is preferably blended in an amount of 2 to 10 parts by weight based on a total of 100 parts by weight of the above-mentioned resin composition (epoxy resin, curing agent and porous carbon).
- the paste for forming a varistor element of the present embodiment further comprises a colorant such as an inorganic pigment and an organic pigment, an ion trap agent, a flame retardant, a silane coupling agent, a leveling agent, a thixotropic agent, an elastomer, a curing accelerator, and a metal complex.
- a colorant such as an inorganic pigment and an organic pigment, an ion trap agent, a flame retardant, a silane coupling agent, a leveling agent, a thixotropic agent, an elastomer, a curing accelerator, and a metal complex.
- the varistor element forming paste of the present embodiment contains the above-mentioned epoxy resin, a curing agent, a predetermined porous carbon, and in some cases other components such as a solvent, in a meteor type stirrer, a dissolver, a bead mill, and a raikai. It can be put into a mixer such as a machine, a three-roll mill, a rotary mixer, or a twin-screw mixer, and mixed for production. In this way, a resin composition suitable for producing a varistor element can be produced.
- the varistor element forming paste of the present embodiment can be prepared into a varistor element forming paste having a viscosity suitable for screen printing, dipping, and other desired coating or wiring forming methods.
- varistor element forming paste of the present embodiment By applying and curing the above-mentioned varistor element forming paste of the present embodiment so as to be in contact with a predetermined electrode, a varistor element having appropriate varistor characteristics can be manufactured.
- the coating method include screen printing and dipping.
- a varistor element having appropriate varistor characteristics can be obtained.
- Tables 1 and 2 show the materials and production conditions used in the production of the porous carbon used in Examples and Comparative Examples.
- the porous carbons of Examples 2 to 4 and Comparative Examples 1 to 4 were produced by the production method 1 using furfural and phloroglucinol as materials (raw materials).
- the porous carbons of Example 1 and Comparative Example 5 were produced by the production method 2 using pyromellitic acid and paraphenyldiamine as main materials (raw materials).
- ⁇ Manufacturing method 1 Porous carbon production method of Examples 2 to 4 and Comparative Examples 1 to 4> Table 1 shows the blending amounts of the porous carbon materials of Examples 2 to 4, and Table 2 shows the blending amounts of the porous carbon materials of Comparative Examples 1 to 4.
- the initial concentration means the concentration of the total amount of phloroglucinol and furfural in the ethanol solution (concentration of the raw material in the solvent).
- a polyamic acid solution was synthesized using pyromellitic acid and paraphenyldiamine as materials.
- a solvent for this synthesis a solvent (dimethylacetamide) having a weight such that the total weight of the raw materials pyromellitic anhydride and paraphenyldiamine is the initial concentration shown in Tables 1 and 2 in the polyamic acid solution.
- toluene a mixed solvent of dimethylacetamide and toluene was used.
- the polyamic acid solution was synthesized by mixing pyromellitic acid and paraphenyldiamine and heating them. As a result, a polyamic acid solution could be synthesized.
- predetermined amounts of pyridine and acetic anhydride shown in Tables 1 and 2 were added to the polyamic acid solution obtained as described above. As a result, a polyimide solution could be obtained.
- the porous carbons of Example 1 and Comparative Example 5 could be produced by performing a washing step, a supercritical drying step, a thermal decomposition step, and a pulverization step in the same manner as in the manufacturing method 1.
- the temperature after the temperature rise in the heating step was the temperature shown in Tables 1 and 2.
- the average particle size D50 of the porous carbons of Examples and Comparative Examples was set to 25 nm.
- FIGS. 3 to 8 ⁇ Scanning electron microscope (SEM) photograph> Scanning electron microscope (SEM) photographs of the surface of the porous carbon of Example 1, Example 2 and Comparative Example 2 obtained as described above are shown in FIGS. 3 to 8.
- the SEM photographs of Example 1 are shown in FIG. 3 (magnification: 10,000 times) and FIG. 4 (magnification: 100,000 times).
- the SEM photographs of Example 2 are shown in FIG. 5 (magnification: 10,000 times) and FIG. 6 (magnification: 100,000 times).
- the SEM photographs of Comparative Example 2 are shown in FIG. 7 (magnification: 10,000 times) and FIG. 8 (magnification: 100,000 times).
- SEM photographs of Example 1 and Example 2 it can be seen that there are many pores of less than 1 ⁇ .
- the SEM photograph of Comparative Example 2 it can be seen that there are not many pores less than 1 ⁇ m, and the surface is relatively smooth.
- the Raman spectroscopy measuring device "Cora 7100" (manufactured by Anton Paar) was used.
- the laser light to be irradiated had an intensity of 50 mW at a wavelength of 532 nm and a measurement time of 60 seconds.
- FIGS. 9-11 in the Raman spectrum, the peak of the G band near 1590 cm -1, and it can be seen that the peak of the D band of 1350cm around -1 was observed. If necessary, processing such as subtracting the background from the obtained signal can be performed.
- the ratio of the maximum intensity of the peak of G-band and D-band of the Examples and Comparative Examples (M D / M G) are shown in Table 1 and Table 2.
- Epoxy resin epoxy resin
- the epoxy resins used in Examples and Comparative Examples were bisphenol F type epoxy resin (Nippon Steel Sumitomo Metal Industries, Ltd. product number "YDF-8170") (80% by weight) and bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Industries, Ltd. "" It is an epoxy resin mixed with 1001 ”) (20% by weight).
- KAYAHARD A-A (HDAA) 3,3'-diethyl-4,4'-diaminodiphenylmethane manufactured by Nippon Kayaku Co., Ltd. was used.
- the blending amount of the epoxy resin and the curing agent (total 100% by weight) is 67.63% by weight of the epoxy resin, 25.61% by weight of the amine-based curing agent, and 6.76% by weight of the imidazole-based curing agent.
- porous carbon carbon airgel
- 5 parts by weight of porous carbon was used with the blending amount of the epoxy resin and the curing agent being 100 parts by weight.
- the epoxy resin, the curing agent, the porous carbon, the silane coupling agent, and the dispersant having the above-mentioned compounding ratios are mixed with a planetary mixer, further dispersed with a three-roll mill, and made into a paste to form a varistor element. A forming paste was produced.
- a substrate 12 having comb-shaped electrodes 14a and 14b as shown in FIG. 1 was used.
- a substrate a multilayer printed wiring board (with copper foil) made of FR-4 as a material was used. Electrodes 14a and 14b were formed by patterning the copper foil of the multilayer printed wiring board.
- the resin compositions of Examples and Comparative Examples produced as described above were screen-printed so as to cover the comb-shaped electrodes 14a and 14b formed on the surface of the substrate 12.
- the epoxy resin was cured.
- the epoxy resin was cured by holding it at a temperature of 165 ° C. for 2 hours.
- the thickness of the epoxy resin after curing was 90 ⁇ m.
- the varistor elements of Examples and Comparative Examples were prototyped.
- the non-linearity coefficients ⁇ of Examples 1 to 4 of the present invention were all 6 or more.
- the ratio of the integrated intensity I D of the peak of the integrated intensity I G and D bands of the peak of G-band is at least 2.0 It has been shown that if the resin composition containing the porous carbon of the embodiment is used, a varistor element having appropriate varistor properties that can withstand use can be produced.
- the ratio of the maximum intensity M D of the peak of maximum intensity M G and D bands of the peak of G-band (M D / M G) is 0. It was over 80.
- the non-linearity coefficients ⁇ of Comparative Examples 1 to 5 were all 2.2 or less, and did not have appropriate varistor characteristics to withstand use.
- the ratio of the integrated intensity I D of the peak of the integrated intensity I G and D bands of the peak of G-band of the porous carbon of Comparative Example 1 ⁇ 5 (I D / I G) was less than 2.
- the ratio of the maximum intensity M D of the peak of maximum intensity M G and D bands of the peak of G-band of the porous carbon of Comparative Example 1 ⁇ 5 (M D / M G) was less than 0.8.
- Varistor element 12 Substrate 14a, 14b Electrode 16 Resin composition
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明の構成1は、多孔質炭素であって、
多孔質炭素をラマン分光法により測定したラマンスペクトルにおいて、1590cm-1付近のGバンドのピークの積算強度をIGとし、1350cm-1付近のDバンドのピークの積算強度をIDとしたときに、ID/IGが2.0以上であり、
多孔質炭素が1μm未満の寸法の空孔を有し、
多孔質炭素がバリスタ素子用多孔質炭素である、多孔質炭素である。
本発明の構成2は、Gバンドのピークの最大強度をMGとし、Dバンドのピークの最大強度をMDとしたときに、MD/MGが0.80以上である、構成1の多孔質炭素である。
本発明の構成3は、多孔質炭素を製造する際の熱分解のピーク温度が800℃以上1500℃以下である、構成1又は2の多孔質炭素である。
本発明の構成4は、フルフラール及びフロログルシノールを含む原料の混合物の熱分解によって製造される、構成1から3のいずれかの多孔質炭素である。
本発明の構成5は、原料中、フロログルシノール100重量部に対してフルフラールが100~500重量部である、構成4の多孔質炭素である。
本発明の構成6は、ポリイミドを含む原料の熱分解によって製造される、構成1から3のいずれかの多孔質炭素である。
本発明の構成7は、構成1から6のいずれかの多孔質炭素と、樹脂とを含む樹脂組成物である。
本実施形態の多孔質炭素の製造方法1では、多孔質炭素は、フルフラール及びフロログルシノールを含む原料の混合物の熱分解によって製造されることができる。
本実施形態の多孔質炭素の製造方法1は、材料を用意する工程を含む。材料を用意する工程では、まず、所定量のフルフラール及びフロログルシノールを用意する。本実施形態の多孔質炭素では、原料中、フロログルシノール100重量部に対してフルフラールが100~500重量部であることが好ましく、120~340重量部であることがより好ましく、160~310重量部であることがさらに好ましい。
製造方法1は、フロログルシノール及びフルフラールをエタノールに溶解し、エタノール溶液を得るための前処理工程を含む。前処理工程では、まず、フロログルシノールをエタノールに溶解させる。次に、フロログルシノールのエタノール溶液に対して、フルフラールを溶解させる。なお、この溶解の際のエタノールの量としては、フロログルシノール及びフルフラールの合計量のエタノール溶液中の濃度が、1~45重量%、好ましくは1.5~30重量%、より好ましくは2~25重量%になるような量のエタノールを用いることができる。なお、製造方法1では、前処理工程におけるフロログルシノール及びフルフラールの合計量のエタノール溶液中の濃度(溶剤中の原料濃度)のことを、初期濃度(重量%)という。
製造方法1は、フロログルシノール及びフルフラールのエタノール溶液をゲル化するためのゲル化工程を含む。ゲル化工程では、上述のようにして得られたフロログルシノール及びフルフラールのエタノール溶液を撹拌した後、室温で放置することにより、ゲル化した固体を得ることができる。
製造方法1は、ゲル化した固体を洗浄するための洗浄工程を含む。洗浄工程では、ゲル化した固体を洗浄する。洗浄には、エタノールを用いることができるが、それに限られない。他のアルコール類を用いることもできる。洗浄は、例えば、エタノールをゲル化したものに加えること、及び加えたエタノールを排出することを、繰り返し行うことにより、ゲル化したものを洗浄することができる。なお、洗浄工程は、排出するエタノールの着色がなくなるまで行うことができる。
製造方法1は、洗浄した固体に対する超臨界乾燥工程を含む。洗浄後のゲル化した固体を取り出し、超臨界乾燥を行う。具体的には、ゲル化した固体を密封容器に入れ、所定の圧力下で超臨界液体CO2を密封容器に導入する。その後、その状態を保った後に、超臨界液体CO2を排出する。必要に応じ、この工程を繰り返し行うことができる。
製造方法1は、超臨界乾燥後の固体に対する熱分解工程を含む。熱分解工程では、上述のようにして得られた超臨界乾燥後の固体を、炉に入れ、窒素雰囲気中で、0.8~1.2℃/分の加熱速度で、800℃以上(例えば800℃~1500℃、好ましくは800℃~1200℃、より好ましくは800℃~1000℃)になるまで昇温する。昇温完了後、その温度で5~60分間(好ましくは20~30分間)保持することにより、熱分解する。この結果、炭素以外の成分を取り除き、多孔質炭素を得ることができる。
製造方法1は、熱分解工程により得られた多孔質炭素を粉砕して粒子化するためのするための粉砕工程を含む。粉砕工程では、加熱後の多孔質炭素を室温まで戻し、多孔質炭素を粉砕することにより、粉末状の多孔質炭素を得ることができる。粉砕工程では、多孔質炭素が所定の粒子寸法になるように、多孔質炭素を粉砕することができる。粉砕工程では、多孔質炭素の平均粒子寸法は、作業性の点等から、0.01~50μmであることが好ましく、0.02~10μmであることがさらに好ましい。平均粒子寸法は、全粒子の積算値50%の粒子寸法(平均粒径:D50)が上記の粒子寸法とすることができる。平均粒径D50は、株式会社堀場製作所社製レーザー回折/散乱式粒子径分布測定装置LA-960(レーザー回折散乱法)によって粒度分布測定を行い、粒度分布測定の結果からD50値を得ることにより求めることができる。
本実施形態の多孔質炭素の製造方法2では、多孔質炭素が、ポリイミドを含む原料の熱分解によって製造される。
本実施形態の多孔質炭素の製造方法2は、材料を用意する工程を含む。材料を用意する工程では、所定量の無水ピロメリット酸及びパラフェニルジアミンを用意する。
製造方法2は、ポリイミド溶液を合成するための前処理工程を含む。製造方法2の前処理工程では、まず、無水ピロメリット酸及びパラフェニルジアミンを材料として用いて、ポリアミド酸溶液を合成することができる。なお、この合成の際の溶媒として、ジメチルアセトアミド及びトルエンを用いることができる。無水ピロメリット酸及びパラフェニルジアミンの合計重量に対する溶媒(ジメチルアセトアミド及びトルエン)の合計重量は、合成されるポリアミド酸溶液の初期濃度が所定の範囲となるように選択することができる。製造方法2において、初期濃度(重量%)とは、前処理工程におけるポリアミド酸溶液中のポリアミド酸の濃度(合成後のポリアミド酸溶液の重量に対する、原料である無水ピロメリット酸及びパラフェニルジアミンの合計重量の割合)のことをいう。初期濃度は、1~45重量%であり、好ましくは1.5~30重量%、より好ましくは2~25重量%、さらに好ましくは10~15重量%である。ポリアミド酸溶液の合成は、無水ピロメリット酸及びパラフェニルジアミンを混合して加熱することにより行うことができる。この結果、ポリアミド酸溶液を合成することができる。次に、上述のようにして得られたポリアミド酸溶液に対して、所定量のピリジン及び無水酢酸を添加して、ポリイミド溶液を合成することができる。
製造方法2は、ポリイミド溶液をゲル化するためのゲル化工程を含む。ゲル化工程では、上述のようにして得られたポリイミド溶液を撹拌する。その後、室温で放置することにより、ゲル化した固体を得ることができる。
製造方法2は、洗浄工程、超臨界乾燥工程、加熱工程、及び粉砕工程を含む。製造方法2では、上述のゲル化工程の後、製造方法1と同様に、洗浄工程、超臨界乾燥工程、加熱工程、及び粉砕工程を行うことにより、多孔質炭素を製造することができる。
次に、本実施形態の樹脂組成物について、具体的に説明する。本発明の樹脂組成物は、上述の本実施形態の多孔質炭素と、樹脂とを含む。本実施形態の樹脂組成物は、樹脂として、エポキシ樹脂及び硬化剤を含むことが好ましい。
上述の本実施形態の樹脂組成物を用いることにより、バリスタ素子形成用ペーストを得ることができる。本発明の樹脂組成物は、そのままでもバリスタ素子形成用ペーストとして使用することができる。しかしながら、スクリーン印刷等の際に、ペーストの塗布を良好に行う点から、バリスタ素子形成用ペーストは、さらに溶媒及びその他の添加物を含むことができる。
まず初めに本発明の実施例及び比較例に用いた多孔質炭素の製造方法について説明する。表1及び表2に、実施例及び比較例に用いた多孔質炭素の製造の際に用いた材料及び製造条件を示す。実施例2~4及び比較例1~4の多孔質炭素は、フルフラール及びフロログルシノールを材料(原料)として、製造方法1により製造した。実施例1及び比較例5の多孔質炭素は、ピロメリット酸及びパラフェニルジアミンを主材料(原料)として、製造方法2により製造した。
実施例2~4の多孔質炭素の材料の配合量を表1に、比較例1~4の多孔質炭素の材料の配合量を表2に示す。
実施例2~4及び比較例1~4の多孔質炭素の製造方法(製造方法1)では、まず、表1及び表2に記載されている所定量のフルフラール及びフロログルシノールを用意した。
次に、フロログルシノールをエタノールに溶解させた。次に、フロログルシノールのエタノール溶液に対して、フルフラールを溶解させた。なお、この溶解の際に、フロログルシノール及びフルフラールの合計重量が、表1及び表2に示す初期濃度となるようにエタノールを用いた。製造方法1において、初期濃度(重量%)とは、フロログルシノール及びフルフラールの合計量のエタノール溶液中の濃度(溶剤中の原料濃度)のことをいう。
次に、上述のようにして得られたフロログルシノール及びフルフラールのエタノール溶液を撹拌した。その後、室温で、放置することにより、ゲル化することができた。
次に、ゲル化した固体を洗浄した。洗浄には、エタノールを用いた。エタノールをゲル化したものに加えること、及び加えたエタノールを排出することを、繰り返し行うことにより、ゲル化したものを洗浄した。なお、洗浄は、排出するエタノールの着色がなくなるまで行った。
次に、洗浄後のゲル化した固体を取り出し、超臨界乾燥した。具体的には、固形物を密封容器に入れ、超臨界液体CO2を密封容器に導入した。その後、その状態を一定時間保ち、その後、超臨界液体CO2を排出した。超臨界液体CO2の導入、排出を繰り返し行うことで、超臨界乾燥を行った。
上述のようにして得られた超臨界乾燥後の固体を、炉に入れ、窒素雰囲気中で、1℃/分の加熱速度で、実施例の場合には800℃以上(具体的には、表1及び2に記載の温度)になるまで昇温することにより、熱分解した。昇温完了後、その温度で30分間保持した。この結果、炭素以外の成分を取り除き、多孔質炭素を得ることができた。
加熱後の多孔質炭素を室温まで戻し、粉砕することにより、実施例2~4及び比較例1~4の多孔質炭素を得ることができた。
実施例1の多孔質炭素の材料の配合量を表1に、比較例5の多孔質炭素の材料の配合量を表2に示す。
実施例1及び比較例5の多孔質炭素の製造方法(製造方法2)では、まず、表1及び表2に記載されている所定量のピロメリット酸及びパラフェニルジアミンを用意した。
次に、ピロメリット酸及びパラフェニルジアミンを材料として用いて、ポリアミド酸溶液を合成した。なお、この合成の際の溶媒として、原料である無水ピロメリット酸及びパラフェニルジアミンの合計重量が、ポリアミド酸溶液中、表1及び表2に示す初期濃度となるような重量の溶剤(ジメチルアセトアミド及びトルエン)を用いた。溶媒として用いた溶剤は、ジメチルアセトアミド及びトルエンの混合溶剤を用いた。ポリアミド酸溶液の合成は、ピロメリット酸及びパラフェニルジアミンを混合して加熱することにより行った。この結果、ポリアミド酸溶液を合成することができた。次に、上述のようにして得られたポリアミド酸溶液に対して、表1及び表2に記載されている所定量のピリジン及び無水酢酸を添加した。この結果、ポリイミド溶液を得ることができた。
次に、これを撹拌した。その後、室温で、放置することにより、ゲル化した固体を得ることができた。
その後、製造方法1と同様に、洗浄工程、超臨界乾燥工程、熱分解工程、及び粉砕工程を行うことにより、実施例1及び比較例5の多孔質炭素を製造することができた。なお、加熱工程における昇温後の温度は、表1及び2に記載の温度とした。
上述のようにして得られた実施例1、実施例2及び比較例2の多孔質炭素の表面の走査型電子顕微鏡(SEM)写真を、図3~8に示す。実施例1のSEM写真を、図3(倍率:1万倍)及び図4(倍率:10万倍)に示す。実施例2のSEM写真を、図5(倍率:1万倍)及び図6(倍率:10万倍)に示す。比較例2のSEM写真を、図7(倍率:1万倍)及び図8(倍率:10万倍)に示す。実施例1及び実施例2のSEM写真では、1μ未満の空孔が多数存在することが見て取れる。これに対して比較例2のSEM写真では、1μm未満の空孔が多数存在するとはいえず、比較的平滑な表面となっていることが見て取れる。
上述のようにして得られた実施例及び比較例の多孔質炭素を、ラマン分光法により測定し、ラマンスペクトルを得た。図9~11に、それぞれ実施例1、実施例2及び比較例2のラマンスペクトルを示す。図9~11の横軸はラマンシフト(単位:cm-1)であり、縦軸はラマン散乱光の信号強度(任意単位)である。
実施例及び比較例の樹脂組成物に用いた材料は、下記のとおりである。表1及び表2に、実施例及び比較例の材料の配合割合を示す。
実施例及び比較例に用いたエポキシ樹脂は、ビスフェノールF型エポキシ樹脂(新日鉄住友金属株式会社製番「YDF-8170」)(80重量%)と、ビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製「1001」)(20重量%)とを混合したエポキシ樹脂である。
実施例及び比較例の樹脂組成物には、硬化剤として、アミン系硬化剤、及びイミダゾール系硬化剤を混合したものを用いた。
エポキシ樹脂及び硬化剤の配合量(合計100重量%)は、67.63重量%のエポキシ樹脂、25.61重量%のアミン系硬化剤、及び6.76重量%のイミダゾール系硬化剤である。
実施例及び比較例の樹脂組成物には、エポキシ樹脂及び硬化剤の配合量を100重量部として、5重量部の多孔質炭素を用いた。
実施例及び比較例の樹脂組成物には、エポキシ樹脂、硬化剤及び多孔質炭素に加え、エポキシ樹脂及び硬化剤の配合量を100重量部として、0.50重量部のシランカップリング剤(信越シリコーン社製、KBM-403)、及び0.25重量部の分散剤(楠本化成社製、HIPLAAD ED-451)を用いた。
図1に示すような、櫛形の電極14a及び14bを有する基板12を用いた。基板として、FR-4を材料とする多層プリント配線板(銅箔付き)を用いた。多層プリント配線板の銅箔をパターニングすることにより、電極14a及び14bを形成した。
上述のようにして試作した実施例及び比較例のバリスタ素子の電流-電圧特性を測定した。具体的には、バリスタ素子の一対の電極(電極14a及び電極14b)に対して所定の電圧を印加し、そのときに流れる電流値を測定することによって、バリスタ素子の電流-電圧特性を測定した。
バリスタ素子の電流-電圧特性は、Kを定数、αを非直線性係数として、I=K・Vαで近似することができる。バリスタ素子の電流-電圧特性から、フィッティングにより、非直線性係数αを算出した。表1及び表2に、実施例及び比較例のバリスタ素子の非直線性係数αの算出結果を示す。バリスタ素子の非直線性係数αが6以上の場合には、使用に耐える適切なバリスタ特性を有するといえる。
12 基板
14a、14b 電極
16 樹脂組成物
Claims (7)
- 多孔質炭素であって、
多孔質炭素をラマン分光法により測定したラマンスペクトルにおいて、1590cm-1付近のGバンドのピークの積算強度をIGとし、1350cm-1付近のDバンドのピークの積算強度をIDとしたときに、ID/IGが2.0以上であり、
多孔質炭素が1μm未満の寸法の空孔を有し、
多孔質炭素がバリスタ素子用多孔質炭素である、多孔質炭素。 - Gバンドのピークの最大強度をMGとし、Dバンドのピークの最大強度をMDとしたときに、MD/MGが0.80以上である、請求項1に記載の多孔質炭素。
- 多孔質炭素を製造する際の熱分解のピーク温度が800℃以上1500℃以下である、請求項1又は2に記載の多孔質炭素。
- フルフラール及びフロログルシノールを含む原料の混合物の熱分解によって製造される、請求項1から3のいずれか1項に記載の多孔質炭素。
- 原料中、フロログルシノール100重量部に対してフルフラールが100~500重量部である、請求項4に記載の多孔質炭素。
- ポリイミドを含む原料の熱分解によって製造される、請求項1から3のいずれか1項に記載の多孔質炭素。
- 請求項1から6のいずれか1項に記載の多孔質炭素と、樹脂とを含む樹脂組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080025044.3A CN113646386B (zh) | 2019-04-04 | 2020-02-13 | 多孔质碳及树脂组合物 |
JP2021511180A JP7436053B2 (ja) | 2019-04-04 | 2020-02-13 | 多孔質炭素及び樹脂組成物 |
KR1020217035564A KR20210151862A (ko) | 2019-04-04 | 2020-02-13 | 다공질 탄소 및 수지 조성물 |
US17/600,870 US20220185667A1 (en) | 2019-04-04 | 2020-02-13 | Porous carbon and resin composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962829391P | 2019-04-04 | 2019-04-04 | |
US62/829,391 | 2019-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202819A1 true WO2020202819A1 (ja) | 2020-10-08 |
Family
ID=72666645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005476 WO2020202819A1 (ja) | 2019-04-04 | 2020-02-13 | 多孔質炭素及び樹脂組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220185667A1 (ja) |
JP (1) | JP7436053B2 (ja) |
KR (1) | KR20210151862A (ja) |
CN (1) | CN113646386B (ja) |
TW (1) | TWI821522B (ja) |
WO (1) | WO2020202819A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177207A1 (ja) * | 2020-03-02 | 2021-09-10 | ナミックス株式会社 | 低電圧バリスタ、回路基板、半導体部品パッケージ及びインターポーザー |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184749A (ja) * | 2010-03-09 | 2011-09-22 | Shinshu Univ | 電気化学用電極とその製造方法 |
JP2013110112A (ja) * | 2011-11-22 | 2013-06-06 | Samsung Electronics Co Ltd | 複合負極活物質、その製造方法及びそれを含むリチウム二次電池 |
US20130252082A1 (en) * | 2012-01-11 | 2013-09-26 | Energ2 Technologies, Inc. | Hard carbon materials |
JP2018511162A (ja) * | 2015-01-30 | 2018-04-19 | コーニング インコーポレイテッド | 炭化されたココナツ殻に基づくリチウムイオンキャパシタ用のアノード |
US20180197663A1 (en) * | 2017-01-06 | 2018-07-12 | Namics Corporation | Resin composition, paste for forming a varistor element, and varistor element |
WO2018182048A1 (ja) * | 2017-03-31 | 2018-10-04 | 新日鐵住金株式会社 | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09328308A (ja) | 1996-04-10 | 1997-12-22 | Mitsubishi Chem Corp | 活性炭及びその製造方法、並びにこれを用いたキャパシタ |
JP4728142B2 (ja) | 2005-02-25 | 2011-07-20 | 株式会社エクォス・リサーチ | カーボンエアロゲル粉末の製造方法 |
JP2007016160A (ja) | 2005-07-08 | 2007-01-25 | Mitsubishi Chemicals Corp | エアロゲルおよびその製造方法 |
DE102008005005A1 (de) | 2008-01-17 | 2009-07-23 | Evonik Degussa Gmbh | Kohlenstoff-Aerogele, Verfahren zu deren Herstellung und deren Verwendung |
JP5463772B2 (ja) * | 2008-07-30 | 2014-04-09 | 住友化学株式会社 | ナトリウム二次電池 |
US8135324B2 (en) | 2009-03-09 | 2012-03-13 | Xerox Corporation | Fuser member and methods of making thereof |
JP2011151009A (ja) * | 2009-12-22 | 2011-08-04 | Mitsubishi Rayon Co Ltd | 多孔質電極基材の製造方法 |
KR101862432B1 (ko) * | 2010-12-17 | 2018-05-29 | 유니버시티 오브 플로리다 리서치 파운데이션, 인코포레이티드 | 탄소 필름상에서의 수소 산화 및 발생 |
WO2015016182A1 (ja) * | 2013-07-29 | 2015-02-05 | 昭和電工株式会社 | 炭素材料、電池電極用材料、及び電池 |
SG10202009862QA (en) * | 2014-05-29 | 2020-11-27 | Brilliant Light Power Inc | Electrical power generation systems and methods regarding same |
US20180354798A1 (en) * | 2016-02-18 | 2018-12-13 | Sekisui Chemical Co., Ltd. | Black particles and process for producing black particles |
JP6831657B2 (ja) * | 2016-08-16 | 2021-02-17 | 古河電気工業株式会社 | カソード電極 |
JP6923371B2 (ja) * | 2017-06-23 | 2021-08-18 | トヨタ自動車株式会社 | 燃料電池用電極触媒 |
-
2020
- 2020-02-13 US US17/600,870 patent/US20220185667A1/en active Pending
- 2020-02-13 WO PCT/JP2020/005476 patent/WO2020202819A1/ja active Application Filing
- 2020-02-13 JP JP2021511180A patent/JP7436053B2/ja active Active
- 2020-02-13 CN CN202080025044.3A patent/CN113646386B/zh active Active
- 2020-02-13 TW TW109104535A patent/TWI821522B/zh active
- 2020-02-13 KR KR1020217035564A patent/KR20210151862A/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184749A (ja) * | 2010-03-09 | 2011-09-22 | Shinshu Univ | 電気化学用電極とその製造方法 |
JP2013110112A (ja) * | 2011-11-22 | 2013-06-06 | Samsung Electronics Co Ltd | 複合負極活物質、その製造方法及びそれを含むリチウム二次電池 |
US20130252082A1 (en) * | 2012-01-11 | 2013-09-26 | Energ2 Technologies, Inc. | Hard carbon materials |
JP2018511162A (ja) * | 2015-01-30 | 2018-04-19 | コーニング インコーポレイテッド | 炭化されたココナツ殻に基づくリチウムイオンキャパシタ用のアノード |
US20180197663A1 (en) * | 2017-01-06 | 2018-07-12 | Namics Corporation | Resin composition, paste for forming a varistor element, and varistor element |
WO2018182048A1 (ja) * | 2017-03-31 | 2018-10-04 | 新日鐵住金株式会社 | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177207A1 (ja) * | 2020-03-02 | 2021-09-10 | ナミックス株式会社 | 低電圧バリスタ、回路基板、半導体部品パッケージ及びインターポーザー |
Also Published As
Publication number | Publication date |
---|---|
TWI821522B (zh) | 2023-11-11 |
KR20210151862A (ko) | 2021-12-14 |
JPWO2020202819A1 (ja) | 2020-10-08 |
TW202039362A (zh) | 2020-11-01 |
CN113646386B (zh) | 2023-05-02 |
CN113646386A (zh) | 2021-11-12 |
US20220185667A1 (en) | 2022-06-16 |
JP7436053B2 (ja) | 2024-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102166230B1 (ko) | 전도성 필러 및 그의 제조 방법, 및 전도성 페이스트 및 그의 제조 방법 | |
KR101337867B1 (ko) | 탄소나노물질-고분자 복합체 및 그 제조 방법 | |
US10141090B2 (en) | Resin composition, paste for forming a varistor element, and varistor element | |
EP3835362A1 (en) | Conductive liquid silicone rubber and preparation method and use thereof | |
Li et al. | Preparation of hydroxyl and (3‐aminopropyl) triethoxysilane functionalized multiwall carbon nanotubes for use as conductive fillers in the polyurethane composite | |
WO2020202819A1 (ja) | 多孔質炭素及び樹脂組成物 | |
Shen et al. | Unique Li0. 3Ti0. 02Ni0. 68O-carbon nanotube hybrids: Synthesis and their epoxy resin composites with remarkably higher dielectric constant and lower dielectric loss | |
Chang et al. | Substantially improving mechanical property of double percolated poly (phenylene sulfide)/poly (arylenesulfide sulfone)/graphene nanoplates composites with superior electromagnetic interference shielding performance | |
WO2021177207A1 (ja) | 低電圧バリスタ、回路基板、半導体部品パッケージ及びインターポーザー | |
CN115210827B (zh) | 低压变阻器、电路基板、半导体部件封装以及内插件 | |
JP2021095568A (ja) | 樹脂組成物およびそれを用いた硬化膜 | |
JP6493830B2 (ja) | 黒色顔料、着色組成物および着色部材 | |
TWI752350B (zh) | 電極形成用樹脂組合物與晶片型電子零件及其製造方法 | |
JP7446624B2 (ja) | バリスタ形成用ペースト、その硬化物及びバリスタ | |
KR20210121726A (ko) | 고분산 나노 카본 코팅 조성물 | |
Zhao et al. | Significantly enhanced dielectric properties and energy storage density for high-k cyanate ester nanocomposites through building good dispersion of pristine carbon nanotubes in a matrix based on in situ non-covalent interaction with phenolphthalein poly (ether sulfone) | |
JP2013075781A (ja) | カーボンナノファイバー、およびカーボンナノファイバー分散液 | |
EP4383363A1 (en) | Aqueous carbon nanotube dispersion, paste, cathode and anode | |
TW201905935A (zh) | 導電性糊 | |
JP6139117B2 (ja) | シリコン系粒子分散塗液およびその製造方法 | |
Vikulova et al. | High-k Three-Phase Epoxy/K1. 6 (Ni0. 8Ti7. 2) O16/CNT Composites with Synergetic Effect. Polymers 2022, 14, 448 | |
JPH11186106A (ja) | 固体電解質形成用ペースト組成物及びこれを用いた固体電解コンデンサの製造方法 | |
CN116487111A (zh) | 导电浆料的制备方法、压阻传感层和压阻式传感器 | |
WO2023100739A1 (ja) | 液状組成物、積層体及びそれらの製造方法 | |
JP2019175675A (ja) | 導電性ペースト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20782909 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021511180 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217035564 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20782909 Country of ref document: EP Kind code of ref document: A1 |