WO2015016182A1 - 炭素材料、電池電極用材料、及び電池 - Google Patents
炭素材料、電池電極用材料、及び電池 Download PDFInfo
- Publication number
- WO2015016182A1 WO2015016182A1 PCT/JP2014/069831 JP2014069831W WO2015016182A1 WO 2015016182 A1 WO2015016182 A1 WO 2015016182A1 JP 2014069831 W JP2014069831 W JP 2014069831W WO 2015016182 A1 WO2015016182 A1 WO 2015016182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon material
- less
- electrode
- mass
- area
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/205—Preparation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/78—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a carbon material, a battery electrode material, and a battery. More specifically, the present invention relates to a carbon material and a battery electrode material suitable as an electrode material for a nonaqueous electrolyte secondary battery, and a secondary battery excellent in charge / discharge cycle characteristics and large current load characteristics.
- Lithium ion secondary batteries are mainly used as power sources for portable devices and the like. Mobile devices and the like have diversified functions and have increased power consumption. Therefore, the lithium ion secondary battery is required to increase its battery capacity and simultaneously improve the charge / discharge cycle characteristics. In addition, there is an increasing demand for high-power, large-capacity secondary batteries such as electric tools such as electric drills and hybrid vehicles. Conventionally, lead secondary batteries, nickel cadmium secondary batteries, and nickel metal hydride secondary batteries have been mainly used in this field. However, expectations for high-density lithium-ion secondary batteries that are small and light are high. A lithium ion secondary battery having excellent current load characteristics is demanded.
- the main required characteristics are long-term cycle characteristics over 10 years and large current load characteristics for driving high-power motors.
- a high volumetric energy density is required to extend the cruising range, which is harsh compared to mobile applications.
- a lithium salt such as lithium cobaltate is generally used for the positive electrode active material
- a carbonaceous material such as graphite is used for the negative electrode active material.
- Graphite includes natural graphite and artificial graphite. Of these, natural graphite is available at low cost. However, since natural graphite has a scaly shape, when it is made into a paste together with a binder and applied to a current collector, the natural graphite is oriented in one direction. When charging with such an electrode, the electrode expands in only one direction, and the performance as an electrode is reduced. Although natural graphite granulated has been proposed, spherical natural graphite is crushed and oriented by pressing during electrode production. Moreover, since the surface of natural graphite was active, a large amount of gas was generated during the initial charge, the initial efficiency was low, and the cycle characteristics were not good. In order to solve these problems, Japanese Patent No. 3534391 (US Pat. No. 6,632,569, Patent Document 1) proposes a method of coating carbon on the surface of natural graphite processed into a spherical shape.
- a negative electrode material using so-called hard carbon or amorphous carbon described in JP-A-7-320740 has excellent characteristics against a large current. The cycle characteristics are also relatively good.
- Japanese Patent Application Laid-Open No. 2003-77534 Patent Document 5 describes that excellent high rate discharge characteristics can be achieved by using artificial graphite having highly developed pores.
- WO 2011/049199 US Pat. No. 8,372,373, Patent Document 6 discloses artificial graphite having excellent cycle characteristics.
- Japanese Patent Laid-Open No. 2002-270169 US Pat. No.
- Patent Document 7 discloses an artificial graphite negative electrode manufactured from raw acicular coke having anisotropy based on a flow structure.
- WO 2003/064560 discloses an artificial graphite negative electrode manufactured from coke in which petroleum pitch is coated in a liquid phase.
- Japanese Patent No. 3534391 Japanese Patent Laid-Open No. 4-190555 Japanese Patent No. 3361510 Japanese Patent Laid-Open No. 7-320740 Japanese Patent Laid-Open No. 2003-77534 WO2011 / 049199 specification JP 2002-270169 A WO2003 / 064560 specification (Japanese Patent Publication No. 2005-515957)
- the material manufactured by the method described in Patent Document 1 can cope with the high capacity, low current, and medium cycle characteristics required for mobile applications and the like, but the large current and super long cycle of the large battery as described above. It is very difficult to meet requirements such as characteristics.
- the graphitized product described in Patent Document 2 is a very well-balanced negative electrode material, and can produce a battery with a high capacity and a large current. It is difficult to achieve a wide range of cycle characteristics.
- the method of Patent Document 3 can use fine powder such as natural graphite as well as fine powder of artificial graphite raw material, and exhibits extremely excellent performance as a negative electrode material for mobile use.
- Patent Document 4 has a volume energy density that is too low and is very expensive, so it is used only for some special large batteries.
- maintenance at the time of charging / discharging is inadequate, and is practically inadequate for using for a secondary battery.
- Patent Document 6 there is room for improvement in the diffusion of active material ions because the graphite structure is dense.
- Patent Document 7 although improvement in capacity and initial charge / discharge efficiency is seen with respect to conventional artificial graphite, it has not yet reached a practical range.
- patent document 8 the subject remains in the capacity density of an electrode.
- the manufacturing method becomes complicated with the operation of using a large amount of organic solvent and volatilizing it.
- the ratio I D / I G (R value) to the peak intensity (I G ) of the peak is 0.38 or more and 1.2 or less, and the average interplanar spacing (d002) of (002) plane by X-ray diffraction method is 0
- SOP is the area of the optical structure when the number of the structures is small, the number of tissues is counted from the structure with a small aspect ratio, the aspect ratio in the 60th tissue of the whole structure is AROP, the volume-based average particle diameter by the laser diffraction method Is D50, 1.5 ⁇ AROP ⁇ 6 and 0.2 ⁇ D50 ⁇ (SOP ⁇ AROP) 1/2 ⁇ 2 ⁇ D50
- Carbon material having the relationship [2] The carbon material as described in 1 above, wherein the main component of the carbon material is artificial graphite. [3] The carbon material according to item 1 or 2, wherein the volume-based average particle diameter (D50) by laser diffraction is 1 ⁇ m or more and 50 ⁇ m or less.
- the mass of the particles obtained by pulverizing the petroleum pitch or coal tar pitch is 5% by mass or more based on the total mass of the particles obtained by pulverizing the calcined coke and the particles obtained by pulverizing the petroleum pitch or coal tar pitch. 9. The production method according to any one of items 5 to 8, which is 35% by mass or less.
- the calcined coke is observed with a polarizing microscope in a rectangular field of view of 480 ⁇ m ⁇ 640 ⁇ m, the area is accumulated from a small area, and the cumulative area is 60% of the total optical structure area.
- a battery electrode material comprising the carbon material as described in any one of 1 to 4 above.
- 100 parts by mass of the carbon material according to any one of items 1 to 4, and 0.01 to 200 parts by mass of natural graphite or artificial graphite, and an average interplanar spacing of the natural graphite or artificial graphite (d002 ) Is 0.3380 nm or less.
- An electrode paste comprising the battery electrode material as described in any one of 11 to 13 above and a binder.
- An electrode comprising a molded body of the electrode paste as described in 14 above.
- a battery comprising the electrode according to item 15 as a constituent element.
- the carbon material of the present invention When the carbon material of the present invention is used as a battery electrode material, diffusion of lithium ions is improved, so that high capacity, particularly high coulomb efficiency, and high cycle characteristics are maintained while maintaining high capacity and high energy density at high speed. Possible battery electrodes can be obtained. Moreover, the carbon material of the present invention is excellent in economic efficiency and mass productivity, and can be produced by a method with improved safety.
- the electrode of a rechargeable battery is required to be able to charge more electricity per unit volume.
- Graphite used as an electrode active material for lithium secondary batteries has excellent Coulomb efficiency for the first charge / discharge, but there is an upper limit on the stoichiometric ratio at which lithium atoms can be inserted with respect to carbon atoms, and the energy density per mass is measured. It is difficult to improve beyond the theoretical ratio. Therefore, in order to improve the energy density of the electrode, it is necessary to improve the mass per electrode volume, that is, the electrode density.
- the electrode of a battery is manufactured by applying and drying an active material on a current collecting plate and then pressing. The press improves the fillability of the active material per volume, but if the active material is soft and deforms to some extent with the press, the electrode density can be extremely increased.
- the structure observed in the graphite particles includes a structure that exhibits optical anisotropy due to the development of crystals and the alignment of the graphite network surface, and an optical structure that is not developed or has a large disorder of crystals such as hard carbon. It has long been known that there is an organization that shows direction. For the observation of these structures, it is possible to measure the crystal size by using X-ray diffraction method.
- the carbon material in a preferred embodiment of the present invention is a material in which the size and shape of the optical texture are in a specific range, and further has an appropriate degree of graphitization, so that both the crushing characteristics and the battery characteristics as an electrode material are excellent. It becomes.
- the carbon material preferably satisfies the following formula.
- SOP 1.5 ⁇ AROP ⁇ 6 and 0.2 ⁇ D50 ⁇ (SOP ⁇ AROP) 1/2 ⁇ 2 ⁇ D50 SOP means that when an optical structure is observed with a polarizing microscope in a rectangular field of view of 480 ⁇ m ⁇ 640 ⁇ m of a cross section of the molded body made of the carbon material, the area is accumulated from a structure with a small area, and the accumulated area is the total optical tissue area. It represents the area of the optical structure when the area is 60%.
- AROP represents the aspect ratio in the tissue that is 60% of the total number of tissues by counting the number of tissues from the tissues having a small aspect ratio.
- D50 represents the 50% cumulative diameter (average particle diameter) measured on a volume basis in a laser diffraction particle size distribution meter, and indicates the apparent diameter of the scaly particles.
- the laser diffraction type particle size distribution analyzer for example, Mastersizer (registered trademark) manufactured by Malvern can be used.
- the carbon material in a preferred embodiment of the present invention has a scale shape.
- the optical structure in the carbon material hardens while flowing, it often has a band shape, and when the cross section of the molded body made of the carbon material is observed, the shape of the optical structure is generally rectangular, and the area is It can be estimated that the minor axis and the major axis of the optical tissue are multiplied.
- the minor axis is the major axis / aspect ratio. If it is assumed that the optical structure to be subjected to the area SOP and the optical structure to be subjected to the aspect ratio AROP are the same, the major axis in the optical structure is (SOP ⁇ AROP) 1/2 . That is, (SOP ⁇ AROP) 1/2 assumes the long diameter of a specific size of optical structure, and the ratio of the average particle diameter (D50) to the optical structure has a certain size or more. Is defined by the above formula.
- (SOP ⁇ AROP) 1/2 assuming the major axis of the optical texture is usually smaller than the average particle diameter D50, but when (SOP ⁇ AROP) 1/2 and D50 are close to each other, This means that the particle is composed of a smaller number of optical structures, and when (SOP ⁇ AROP) 1/2 is small with respect to D50, it means that the particles in the carbon material contain a large number of optical structures. .
- the value of (SOP ⁇ AROP) 1/2 is 0.2 ⁇ D50 or more, there are few boundaries of the optical structure, which is convenient for the diffusion of lithium ions, so that charge / discharge can be performed at a high speed. Moreover, the larger the value, the more lithium ions that can be retained.
- the value is preferably 0.25 ⁇ D50 or more, more preferably 0.28 ⁇ D50 or more, and further preferably 0.35 ⁇ D50 or more.
- the upper limit is less than 2 ⁇ D50, but is preferably 1 ⁇ D50 or less.
- the average particle diameter (D50) of the carbon material in a preferred embodiment of the present invention is 1 ⁇ m or more and 50 ⁇ m or less. In order to make D50 less than 1 ⁇ m, it is necessary to pulverize with special equipment at the time of pulverization, and more energy is required. On the other hand, when D50 is too large, it takes time to diffuse lithium in the negative electrode material, and the charge / discharge rate tends to decrease. More preferable D50 is 5 ⁇ m or more and 35 ⁇ m or less. Since the fine powder has a high surface area and leads to an unintended reaction, it is even more preferable that D50 is 10 ⁇ m or more from the viewpoint that it is better to reduce the fine powder. When used for a drive power source for automobiles and the like that require generation of a large current, D50 is preferably 25 ⁇ m or less.
- the aspect ratio AROP of the carbon material is 1.5 or more and 6 or less, more preferably 2.0 or more and 4.0 or less.
- the aspect ratio is larger than the lower limit, it is preferable because the structure slips and a high-density electrode is easily obtained.
- the aspect ratio is lower than the upper limit, the energy required for synthesizing the raw materials is small and preferable.
- the optical tissue observation and analysis method is as follows. [Preparation of deflection microscope observation sample]
- “a cross section of a molded body made of a carbon material” is prepared as follows. A double-sided tape is affixed to the bottom of a plastic sample container having an internal volume of 30 cm 3 , and about 2 cups of spatula (about 2 g) are placed on the sample.
- Cold embedding resin (trade name: cold embedding resin # 105, manufacturer: Japan Composite Co., Ltd., sales company: Marumoto Struers Co., Ltd.) and curing agent (trade name: curing agent (M agent), Manufacturing company: Nippon Oil & Fats Co., Ltd., sales company: Marumoto Struers Co., Ltd.) and knead for 30 seconds.
- the obtained mixture (about 5 ml) is slowly poured into the sample container until it reaches a height of about 1 cm, and allowed to stand for 1 day to solidify.
- the solidified sample is taken out and the double-sided tape is peeled off.
- the surface to be measured is polished using a polishing plate rotating type polishing machine.
- Polishing is performed such that the polishing surface is pressed against the rotating surface.
- the polishing plate is rotated at 1000 rpm.
- the counts of the polishing plates are # 500, # 1000, and # 2000, and the last is alumina (trade name: Baikalox (registered trademark) type 0.3CR, particle size 0.3 ⁇ m, manufacturer: Baikowski. Polishing using a sales company: Baikowski Japan).
- the polished sample is fixed with clay on a preparation and observed using a polarizing microscope (BX51, manufactured by OLYMPAS).
- Statistic processing for the detected organization is performed using an external macro.
- the black portion that is, the portion corresponding to the resin portion instead of the optical structure is excluded from the statistical object, and the area and aspect ratio of each structure are calculated for each of the blue, yellow, and red optical structures.
- the particle end faces of the crushed natural graphite have many defects.
- the carbon material of the present invention is characterized in that defects at the particle end faces are not exposed, and is excellent in battery characteristics.
- Raman spectroscopy As a method for confirming the crystallinity of the particle surface, there is Raman spectroscopy.
- the Raman spectrum can be measured, for example, by observing with an attached microscope using NRS-5100 manufactured by JASCO Corporation.
- the peak in the range of 1300 to 1400 cm ⁇ 1 measured by the Raman spectroscopic spectrum is based on the sp3 bond, and the intensity I D of the peak indicates the number of defects on the surface of the carbon particle and ranges from 1580 to 1620 cm ⁇ 1 .
- the peak at is based on sp2 bonds, and this peak indicates that there are many bonds derived from graphite on the particle surface.
- the carbon material according to a preferred embodiment of the present invention is characterized in that the R value, that is, (I D / I G ) is larger than the graphitized particles after pulverizing the calcined coke.
- a more preferable R value is 0.38 or more and 1.0 or less, and a more preferable R value is 0.4 or more and 0.8 or less. If the R value is too large or too small, side reactions are likely to occur during charge and discharge due to the presence of many defects. By having an appropriate R value, it becomes a carbon material with less self-discharge and deterioration of the battery during holding after charging.
- an average interplanar spacing (d002) of (002) planes by an X-ray diffraction method is 0.338 nm or less. This increases the amount of lithium insertion / extraction per mass of the carbon material, that is, the weight energy density increases. Further, the thickness (Lc) in the C-axis direction of the crystal is preferably 50 nm or more and 1000 nm from the viewpoint of weight energy density and crushability. If d002 is 0.338 nm or less, most of the optical structure observed with a polarizing microscope is an optically anisotropic structure.
- d002 and Lc can be measured by a known method using a powder X-ray diffraction (XRD) method (Noda Inayoshi, Inagaki Michio, Japan Society for the Promotion of Science, 117th Committee Sample, 117-71-A-1 (1963), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee Sample, 117-121-C-5 (1972), Michio Inagaki, “Carbon”, 1963, No. 36, pages 25-34).
- XRD powder X-ray diffraction
- the rhombohedral peak ratio is 5% or less, more preferably 1% or less.
- the carbon material in a preferred embodiment of the present invention has a BET specific surface area of 2 m 2 / g or more and 25 m 2 / g or less, and more preferably 4 m 2 / g or more and 20 m 2 / g or less. More preferably not more than 8m 2 / g or more 15 m 2 / g.
- the BET specific surface area is measured by a general method of measuring the amount of adsorption / desorption of gas per unit mass. For example, NOVA-1200 can be used as the measuring device.
- the carbon material in a preferred embodiment of the present invention has a loose bulk density (0 tapping) of 0.3 g / cm 3 or more and a powder density (tap density) of 400 g / tap when tapped 400 times. It is cm 3 or more and 1.5 g / cm 3 or less. More preferably, 0.45 g / cm 3 or more 1.4 g / cm 3 or less, and most preferably not more than 0.5 g / cm 3 or more 1.3 g / cm 3.
- the loose bulk density is a density obtained by dropping 100 g of a sample from a height of 20 cm onto a measuring cylinder and measuring the volume and mass without applying vibration.
- the tap density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a cantachrome auto tap. These are measurement methods based on ASTM B527 and JIS K5101-12-2, and the drop height of the auto tap in the tap density measurement was 5 mm.
- the loose bulk density is 0.3 g / cm 3 or more, it is possible to further increase the electrode density before pressing when applied to the electrode. From this value, it can be predicted whether or not a sufficient electrode density can be obtained with a single roll press. Moreover, when the tap density is within the above range, the electrode density reached during pressing can be sufficiently increased.
- Examples of the carbon material according to a preferred embodiment of the present invention include a material in which a part of carbon fiber is bonded to the surface.
- a part of the carbon fiber is bonded to the surface of the carbon material, the dispersion of the carbon fiber in the electrode is facilitated, and the cycle characteristics and the current load characteristics are further enhanced by a synergistic effect with the characteristics of the carbon material as the core material.
- the amount of carbon fiber is not particularly limited, but is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the carbon material as the core material.
- carbon fibers examples include organic carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers, and vapor grown carbon fibers.
- organic carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers
- vapor grown carbon fibers having high crystallinity and high thermal conductivity is particularly preferable.
- carbon fibers are bonded to the surface of a carbon material, vapor grown carbon fibers are particularly preferable.
- Vapor grown carbon fiber is produced, for example, by using an organic compound as a raw material, introducing an organic transition metal compound as a catalyst into a high-temperature reactor together with a carrier gas, and subsequently heat-treating (Japanese Patent Laid-Open No. Sho 60- 54998, Japanese Patent No. 2778434, etc.).
- the fiber diameter is 2 to 1000 nm, preferably 10 to 500 nm, and the aspect ratio is preferably 10 to 15000.
- organic compound used as a raw material for carbon fiber examples include gases such as toluene, benzene, naphthalene, ethylene, acetylene, ethane, natural gas, carbon monoxide, and mixtures thereof. Of these, aromatic hydrocarbons such as toluene and benzene are preferred.
- the organic transition metal compound contains a transition metal serving as a catalyst.
- the transition metal include metals of groups IVa, Va, VIa, VIIa, and VIII of the periodic table.
- compounds such as ferrocene and nickelocene are preferable.
- the carbon fiber may be one obtained by pulverizing or pulverizing long fibers obtained by a vapor phase method or the like.
- the carbon fiber may be aggregated on the floc.
- the carbon fiber preferably has no thermal decomposition product derived from an organic compound or the like on its surface, or has a high carbon structure crystallinity.
- Carbon fibers to which no pyrolyzate is attached or carbon fibers having a high carbon structure crystallinity are obtained by, for example, firing (heat treatment) carbon fibers, preferably vapor grown carbon fibers, in an inert gas atmosphere. It is done. Specifically, carbon fibers to which no pyrolyzate is attached can be obtained by heat treatment at about 800 to 1500 ° C. in an inert gas such as argon.
- the carbon fiber having high carbon structure crystallinity is preferably obtained by heat treatment in an inert gas such as argon at 2000 ° C. or higher, more preferably 2000 to 3000 ° C.
- the carbon fiber preferably contains a branched fiber. Further, there may be a portion where the entire fiber has a hollow structure communicating with each other. Therefore, the carbon layer which comprises the cylindrical part of a fiber is continuing.
- a hollow structure is a structure in which a carbon layer is wound in a cylindrical shape, and includes a structure that is not a complete cylinder, a structure that has a partial cut portion, and a structure in which two stacked carbon layers are bonded to one layer. .
- the cross section of the cylinder is not limited to a perfect circle, but includes an ellipse or a polygon.
- the carbon fiber has an (002) plane average plane distance d002 of preferably 0.344 nm or less, more preferably 0.339 nm or less, and particularly preferably 0.338 nm or less, as determined by X-ray diffraction.
- a crystal having a thickness (Lc) in the C-axis direction of 40 nm or less is preferable.
- the carbon material in a preferred embodiment of the present invention is obtained by pulverizing petroleum pitch or coal tar pitch after heat treating the particles obtained by pulverizing calcined coke at a temperature of 2400 ° C. or higher and 3600 ° C. or lower. It can manufacture by mixing with the particle
- a raw material of calcined coke for example, petroleum pitch, coal pitch, coal pitch coke, petroleum coke, and a mixture thereof can be used. Among these, what heated the coke which performed the delayed coking on specific conditions in inert atmosphere is preferable.
- decant oil obtained by removing the catalyst after carrying out fluidized bed catalytic cracking on heavy distillate during refining of crude oil, or coal tar extracted from bituminous coal, etc. has a temperature of 200 ° C or higher. And those having sufficient fluidity by raising the temperature of the tar obtained to 100 ° C. or higher.
- these liquids are heated to 450 ° C. or higher, more preferably 510 ° C. or higher, at least at the entrance to the drum, thereby increasing the residual carbon ratio during coke calcination.
- the pressure in the drum is preferably maintained at normal pressure or higher, more preferably 300 kPa or higher, and further preferably 400 kPa or higher. Thereby, the capacity
- coke is performed under conditions severer than usual, so that the liquid can be reacted more and coke having a higher degree of polymerization can be obtained.
- the obtained coke is cut out from the drum by a jet water flow, and the obtained lump is roughly pulverized to about 5 cm with a hammer.
- a biaxial roll crusher or a jaw crusher can be used, but pulverization is preferably performed so that the amount on a 1 mm sieve is 90% by mass or more. If excessive pulverization is performed to such an extent that a fine powder having a particle diameter of 1 mm or less is generated in large quantities, there is a possibility that inconveniences such as soaring after drying or increased burnout may occur in the subsequent heating process.
- the coarsely ground coke is then calcined.
- Calcination refers to heating to remove moisture and organic volatiles. Coke before calcination ignites relatively easily. Therefore, keep it moistened to prevent fire.
- Pre-calcined coke containing water is inferior in handleability, for example, mud-like water-containing fine powder contaminates the equipment and surroundings. Calcination is extremely advantageous in terms of handleability. Moreover, when graphitization is performed on the calcined coke, crystals grow more.
- Calcination is performed by heating with electricity or flame heating such as LPG, LNG, kerosene, heavy oil. Since a heat source of 2000 ° C. or less is sufficient for removing moisture and organic volatile components, flame heating, which is a cheaper heat source, is preferable when mass production is performed. Especially when processing on a large scale, the energy cost can be reduced by heating the coke in the internal flame type or the internal heat type while burning the organic volatiles of the fuel and unheated coke in the rotary kiln. Is possible.
- the calcined coke preferably has a specific optical texture area and aspect ratio in a specific range.
- the area and aspect ratio of the optical structure can be calculated by the above-described method. However, when calcined coke is obtained as a mass of several centimeters in size, it is embedded in the resin as it is, and is mirror-finished. Equally, the cross section is observed with a polarizing microscope, and the area and aspect ratio of the optical structure are calculated.
- the area is accumulated from a small area structure, and the cumulative area is 60% of the total optical structure area.
- the area of the optical tissues is 10 [mu] m 2 or more 5000 .mu.m 2 or less, more preferably 10 [mu] m 2 or more 1000 .mu.m 2 or less, and more preferably 20 [mu] m 2 or more 500 [mu] m 2 or less.
- the crystals develop in a more uniform form, and the degree of freedom of the particle shape is high when the electrode is pressed due to slippage caused by fracture of the crystal plane, and the filling property is increased.
- the optical structure of calcined coke is observed in the same manner as described above, the number of tissues is counted from the structure having a small aspect ratio, and the aspect ratio in the 60th structure of the entire structure is 1.5 or more and 6 or less. It is preferable.
- the calcined coke is pulverized.
- pulverize There is no restriction
- the pulverization is preferably performed so that the volume-based average particle diameter (D50) by laser diffraction is 1 ⁇ m or more and 50 ⁇ m or less. In order to pulverize until D50 is less than 1 ⁇ m, a large amount of energy is required using special equipment. On the other hand, if D50 is too large, it takes time to diffuse lithium when the electrode is used, and the charge / discharge rate tends to be slow.
- D50 is 5 ⁇ m or more and 35 ⁇ m or less. From the viewpoint that the fine powder generally has a high surface area and is liable to cause an unintended reaction, D50 is more preferably 10 ⁇ m or more. In view of the necessity of generating a large current when used as a driving power source for automobiles or the like, D50 is more preferably 25 ⁇ m or less.
- the particle end face When there are many defects at the particle end face, the reactivity with the electrolyte composition increases, and a large amount of electricity is consumed at the first charge, that is, when lithium is inserted, and an excessively thick film is formed. As a result, the reversible lithium insertion / release reaction is inhibited, and the battery life such as cycle characteristics may be adversely affected. Therefore, it is preferable that the particle end face has fewer defects on the graphite end face.
- particles obtained by pulverizing a defect repair material selected from petroleum-based pitch and coal tar pitch are mixed after graphitization and subjected to heat treatment. It can. By performing this operation, defects on the fracture surface (particle end surface) generated by pulverization are covered during heat treatment, and a material with less exposure of defects on the particle end surface can be obtained.
- the particles that have been heat-treated after pulverizing the calcined coke and the particles that have been pulverized from the defect repairing material can be carried out either wet or dry.
- the defect repairing material is dissolved or dispersed in a solvent, and after adding calcined coke graphitized, the solvent may be removed by drying.
- an organic solvent is used in the wet process, but it is necessary to handle the organic solvent with care, and it is necessary to prevent or recover the vapor generation. Therefore, the mixing is preferably performed by a dry method that does not use a solvent.
- the particles that have been heat-treated after calcination of the calcined coke are generally not pulverized. It is preferable to mix by force.
- mixers with low pulverization capability such as rotation and revolution mixers, planetary mixers, Henschel mixers, etc.
- liner parts such as hammer mill, impeller mill, blades, and rotation speed are adjusted to reduce pulverization performance Can be preferably used.
- the hammer mill and the impeller mill have a strong mixing force and are suitable for continuous dry coating treatment in a short time.
- a smooth film may not be formed by the defect repair material, but the defect repair material is softened by heating after mixing, spreads on the surface of the particles that have been heat-treated after calcination of coke coke, and a smooth film. Become.
- Particles obtained by pulverizing petroleum pitch or coal tar pitch have a volume-based average particle size (D50) determined by laser diffraction method smaller than the average particle size (D50) of particles obtained by pulverizing calcined coke and 0.01 ⁇ m.
- the thickness is preferably 25 ⁇ m or less. If the particle size of the defect repairing material is excessively reduced, it may cause aggregation of particles and may cause dust explosion. More preferable D50 is 0.5 ⁇ m or more, and further preferably 1.0 ⁇ m or more. In order to make the formed film more uniform and form a denser film, D50 is more preferably 10 ⁇ m or less, and further preferably 5 ⁇ m or less.
- Dc / Dp is 1.5. If it is less than 200, the formed film becomes more uniform, which is preferable. If Dc / Dp is too large, special equipment and large energy are required to prepare extremely small defect repairing material particles, and the amount of defect repairing material particles adhering decreases, so that the defect repairing ability may be reduced. . Dc / Dp is more preferably 50 or less, and further preferably 15 or less. In consideration of the quantitative balance of defect repairing particles adhering to particles obtained by pulverizing calcined coke, Dc / Dp is more preferably 3 or more, and further preferably 8 or more.
- the blending amount of the particles obtained by pulverizing the defect repairing material is 5% by mass or more and 35% by mass or less in the total mass of the particles subjected to the heat treatment after pulverizing the calcined coke and the particles obtained by pulverizing the defect repairing material. It is preferable from the viewpoint of the volume energy density of the electrode. 10 mass% or more and 30 mass% or less are more preferable from a viewpoint of high-speed charging / discharging, and 15 mass% or more and 25 mass% or less are further more preferable from a viewpoint of weight energy.
- the surface can be carbonized by heating after calcining coke subjected to heat treatment after pulverization and dry mixing as described above. If no defect repair material is blended, defects remain on the surface of the calcined coke that has been heat-treated after pulverization, but if carbonized after mixing the defect repair material, the detailed mechanism is unknown, but it exists on the particle end face, etc. The defect which repairs is repaired and a material with few defects is obtained.
- the obtained carbon material can achieve the characteristics that were difficult to achieve in the past, such that the main component of the particles is high in crystallinity, the electrode filling property is good, and there are few defects at the particle end face and side reactions can be suppressed. .
- Graphitization is preferably performed at a temperature of 2400 ° C. or higher, more preferably 2800 ° C. or higher, more preferably 3050 ° C. or higher, and most preferably 3150 ° C. or higher.
- a graphite crystal grows more, and an electrode capable of storing lithium ions at a higher capacity can be obtained.
- the graphitization temperature is preferably 3600 ° C. or lower.
- the carbon raw material Prior to graphitization, the carbon raw material is calcined and the organic volatiles are removed, that is, the fixed carbon content is 95% or more, more preferably 98% or more. More preferably, it is 99% or more.
- graphitization is performed in an atmosphere that does not contain oxygen, for example, in a nitrogen-filled environment or an argon-filled environment. In the present invention, the graphitization is preferably performed in an environment containing a certain concentration of oxygen.
- the graphitization treatment is not limited as long as it can be performed in an environment containing a certain concentration of oxygen.
- the graphite crucible is filled with a material to be graphitized and covered.
- it can be performed by a method in which the upper part is in contact with the oxygen-containing gas to generate heat by energization.
- Oxygen-containing gas may be lightly blocked by covering with felt or a porous plate.
- a small amount of argon or nitrogen may be introduced, but the oxygen concentration in the vicinity of the surface of the material to be graphitized (within 5 cm) is 1% or more, preferably 1 in the graphitization step without being completely replaced with argon or nitrogen. It is preferable to adjust to ⁇ 5%.
- the oxygen-containing gas air is preferable, but a low oxygen gas in which the oxygen concentration is reduced to the above concentration can also be used.
- Using a large amount of argon or nitrogen requires energy to concentrate the gas, and if the gas is circulated, the heat required for graphitization is exhausted out of the system, and more energy is required. . Also from this point of view, it is preferable to perform graphitization in an open atmosphere.
- the removal method include a method of removing the material in a range from a portion in contact with the oxygen-containing gas to a predetermined depth. That is, the depth part after that is acquired as a graphite material.
- the predetermined depth is 2 cm from the surface, more preferably 3 cm, and even more preferably 5 cm.
- the part which exists in a deep place has few opportunities to contact oxygen. It is preferable to obtain a material within 2 m from the portion in contact with the oxygen-containing gas as the graphite material. More preferably, it is within 1 m, and further preferably within 50 cm.
- the defect repair material after the defect repair material is mixed and carbonized, it can be used without being pulverized, but it is also possible to reduce the particle size by pulverizing.
- the end face of calcined coke subjected to heat treatment after pulverization is exposed on the end face after pulverization, but since the end face is fractured after graphitization, which is heat treatment, there is little adverse effect on the battery material as the negative electrode material.
- the method is not particularly limited.
- the obtained carbon material and carbon fiber may be mixed by a mechanochemical method using mechanofusion made by Hosokawa Micron, or carbon fiber may be further mixed with pulverized calcined coke and pulverized defect repairing material. There is a method of dispersing and then graphitizing.
- Battery electrode material in the preferable embodiment of this invention comprises the said carbon material.
- the carbon material is used as a battery electrode material, a high energy density battery electrode can be obtained while maintaining high capacity, high coulomb efficiency, and high cycle characteristics.
- the battery electrode material for example, it can be used as a negative electrode active material and a negative electrode conductivity-imparting material of a lithium ion secondary battery.
- spherical natural graphite or artificial graphite having d002 of 0.3370 nm or less is 0 per 100 parts by mass of the carbon material.
- a blend of 0.01 to 120 parts by mass, preferably 0.01 to 100 parts by mass can also be used.
- the mixing can be performed by appropriately selecting a mixed material and determining the mixing amount according to the required battery characteristics.
- carbon fiber can also be mix
- the blending amount is 0.01 to 20 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the graphite material.
- metal particles can also be blended in the battery electrode material.
- the blending amount is 0.1 to 50 parts by mass, preferably 10 to 30 parts by mass with respect to 100 parts by mass of the graphite material.
- the electrode paste in a preferred embodiment of the present invention comprises the battery electrode material and a binder.
- This electrode paste is obtained by kneading the battery electrode material and a binder.
- known apparatuses such as a ribbon mixer, a screw kneader, a Spartan rewinder, a ladyge mixer, a planetary mixer, and a universal mixer can be used.
- the electrode paste can be formed into a sheet shape, a pellet shape, or the like.
- the binder used for the electrode paste include fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber-based materials such as SBR (styrene butadiene rubber).
- the amount of the binder used is suitably 1 to 30 parts by mass with respect to 100 parts by mass of the battery electrode material, and particularly preferably about 3 to 20 parts by mass.
- a solvent can be used when kneading.
- the solvent include known solvents suitable for each binder, such as toluene and N-methylpyrrolidone in the case of a fluoropolymer; water in the case of SBR; and dimethylformamide and isopropanol.
- a binder using water as a solvent it is preferable to use a thickener together.
- the amount of the solvent is adjusted so that the viscosity is easy to apply to the current collector.
- Electrode in a preferred embodiment of the present invention is composed of a molded body of the electrode paste.
- the electrode is obtained, for example, by applying the electrode paste onto a current collector, drying, and pressure-molding.
- the current collector include foils such as aluminum, nickel, copper, and stainless steel, and meshes.
- the coating thickness of the paste is usually 50 to 200 ⁇ m. If the coating thickness becomes too large, the negative electrode may not be accommodated in a standardized battery container.
- the method for applying the paste is not particularly limited, and examples thereof include a method in which the paste is applied with a doctor blade or a bar coater and then molded with a roll press or the like.
- Examples of the pressure molding method include molding methods such as roll pressing and press pressing.
- the pressure during pressure molding is preferably about 1 to 3 t / cm 2 .
- the electrode density of the electrode increases, the battery capacity per volume usually increases. However, if the electrode density is too high, the cycle characteristics usually deteriorate.
- the electrode paste according to a preferred embodiment of the present invention is used, a decrease in cycle characteristics is small even when the electrode density is increased, so that an electrode having a high electrode density can be obtained.
- the maximum value of the electrode density of the electrode obtained by using this electrode paste is usually 1.7 to 1.9 g / cm 3 .
- the electrode thus obtained is suitable for a negative electrode of a battery, particularly a negative electrode of a secondary battery.
- a battery or a secondary battery can be used as a constituent element (preferably a negative electrode).
- a battery or a secondary battery in a preferred embodiment of the present invention will be described by taking a lithium ion secondary battery as a specific example.
- a lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte.
- the electrode in a preferred embodiment of the present invention is used for the negative electrode.
- a lithium-containing transition metal oxide is usually used as the positive electrode active material, preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W.
- An oxide mainly containing at least one transition metal element selected from Fe, Co, and Ni and lithium and having a molar ratio of lithium to transition metal of 0.3 to 2.2 is used.
- Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like may be contained within a range of less than 30 mol% with respect to the transition metal present mainly.
- the value of x is a value before the start of charging / discharging, and increases / decreases by charging / discharging.
- the average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 to 50 ⁇ m.
- the volume of particles of 0.5 to 30 ⁇ m is preferably 95% or more. More preferably, the volume occupied by a particle group having a particle size of 3 ⁇ m or less is 18% or less of the total volume, and the volume occupied by a particle group of 15 ⁇ m or more and 25 ⁇ m or less is 18% or less of the total volume.
- the specific surface area is not particularly limited, but is preferably 0.01 ⁇ 50m 2 / g by BET method, particularly preferably 0.2m 2 / g ⁇ 1m 2 / g.
- the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
- a separator may be provided between the positive electrode and the negative electrode.
- the separator include non-woven fabric, cloth, microporous film, or a combination thereof, mainly composed of polyolefin such as polyethylene and polypropylene.
- organic electrolytes As the electrolyte and electrolyte constituting the lithium ion secondary battery in a preferred embodiment of the present invention, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used. From the viewpoint of electrical conductivity, organic electrolytes are used. preferable.
- organic electrolyte examples include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethyl 5 glycol monobutyl ether, diethylene glycol dimethyl ether, ethylene glycol phenyl ether.
- Ethers such as formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N -Diethylacetamide, N, N-dimethylpropionamide, hexamethylphosphoryl
- Amides such as sulfoxides; sulfur-containing compounds such as dimethyl sulfoxide and sulfolane; dialkyl ketones such as methyl ethyl ketone and methyl isobutyl ketone; ethylene oxide, propylene oxide, tetrahydrofuran, 2-methoxytetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, etc.
- Cyclic ethers of: carbonates such as ethylene carbonate and propylene carbonate; ⁇ -butyrolactone; N-methylpyrrolidone; solutions of organic solvents such as acetonitrile and nitromethane are preferred.
- esters such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, etc.
- Particularly preferred are carbonate-based non-aqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used alone or in admixture of two or more.
- Lithium salts are used as solutes (electrolytes) for these solvents.
- Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 and the like. is there.
- polymer solid electrolyte examples include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative. There are no restrictions on the selection of members other than those described above necessary for the battery configuration.
- Average particle diameter (D50) As a laser diffraction particle size distribution measuring apparatus, a 50% cumulative particle diameter (D50) based on volume was determined using a Malvern master sizer.
- Electrode preparation After adding water to the main agent stock solution and adjusting the viscosity, it is applied on a high purity copper foil to a thickness of 250 ⁇ m using a doctor blade. This is vacuum-dried at 120 ° C. for 1 hour and punched out to 18 mm ⁇ . The punched electrode is sandwiched between super steel press plates, and the press pressure is about 1 ⁇ 10 2 to 3 ⁇ 10 2 N / mm 2 (1 ⁇ 10 3 to 3 ⁇ 10 3 kg / cm 2 ) with respect to the electrode. Press like so. Then, it dries at 120 degreeC with a vacuum dryer for 12 hours, and is set as the electrode for evaluation.
- a triode cell is produced as follows. The following operation is carried out in a dry argon atmosphere with a dew point of -80 ° C or lower.
- a cell with a screw-in lid made of polypropylene inner diameter of about 18 mm
- the carbon electrode with copper foil prepared in (2) above and a metal lithium foil are sandwiched by a separator (polypropylene microporous film (Cell Guard 2400)) and laminated.
- separator polypropylene microporous film (Cell Guard 2400)
- reference metallic lithium is laminated in the same manner. An electrolytic solution is added to this to obtain a test cell.
- Electrolytic solution LiPF 6 is dissolved in an amount of 1 mol / liter as an electrolyte in a mixed solution of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate).
- the first charge / discharge efficiency was obtained by expressing the ratio of the amount of electricity in the first charge / discharge and the amount of discharge / charged electricity in percentage.
- the discharge capacity density was calculated by dividing the amount of discharge electricity at 0.4 mA / cm 2 (equivalent to 0.2 C) by the amount of active material per unit area.
- Charge / discharge cycle capacity maintenance ratio 150 cycles: A constant current low voltage charge / discharge test is performed at a current density of 2 mA / cm 2 (equivalent to 1 C). Charging (insertion of lithium into carbon) is performed by CC (Constant Current) at 0.2 mA / cm 2 from the rest potential to 0.002V. Next, it switches to CV (constant volt: constant voltage) charging at 0.002 V, and stops when the current value drops to 25.4 ⁇ A. As for discharge (release from carbon), CC discharge is performed at a predetermined current density and cut off at a voltage of 1.5V. Moreover, a measurement is performed in a thermostat set to 60 degreeC, and charging / discharging is repeated 150 cycles.
- Example 1 Crude oil produced in Liaoningzhou, China (API28, wax content 17%, sulfur content 0.66%) is distilled at atmospheric pressure, using a sufficient amount of Y-type zeolite catalyst for heavy fraction, at 510 ° C, Fluidized bed catalytic cracking was performed under pressure. Decant oil 1 was obtained by centrifuging solids such as the catalyst until the obtained oil became clear. This oil was put into a small delayed coking process. The drum inlet temperature was maintained at 505 ° C. and the drum internal pressure was maintained at 600 kPa (6 kgf / cm 2 ) for 10 hours, and then cooled with water to obtain a black lump.
- the resulting black lump was crushed with a hammer to a maximum of about 5 cm, and then the rotary kiln in which the outer wall temperature at the center of the inner cylinder was set to 1450 ° C. (electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube) was used to adjust the feed amount and the inclination angle of the black block so that the residence time was 15 minutes, and heating was performed.
- the obtained red hot sample was cooled while supplying the necessary amount of nitrogen so that the inside of the container did not become a negative pressure while being cooled with water outside in a SUS container and shut off from the outside air.
- a lump sample with a size of about 2 cm at maximum, which was black and slightly grayish in color was obtained.
- the calcined coke 1 was observed with a polarizing microscope and subjected to image analysis, and the area was accumulated from a small area of the tissue, and the area of the tissue when it was 60% of the total area was 47.4 ⁇ m 2 .
- particles having a small aspect ratio are arranged in order, and the aspect ratio of the portion that is the 60% -th of the whole particles is 2.66.
- Example 2 Bituminous coal-derived coal tar was subjected to atmospheric distillation at 320 ° C. to remove fractions below the distillation temperature. Insoluble matter was removed from the obtained tar with a softening point of 30 ° C. by filtration at 100 ° C. to obtain a viscous liquid 1. This was put into a small delayed coking process.
- the drum inlet temperature was 510 ° C. and the drum internal pressure was maintained at 500 kPa (5 kgf / cm 2 ) for 10 hours, and then cooled with water to obtain a black lump.
- the resulting black mass was crushed with a hammer to a maximum of about 5 cm, and then a rotary kiln (electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube) whose outer wall temperature at the center of the inner cylinder was set to 1450 ° C. ), The feed amount and the inclination angle of the black block were adjusted so that the residence time was 15 minutes, and heating was performed.
- the obtained red hot sample was cooled in a SUS container by the same method as in Example 1 to obtain a black block sample having a size of about 3 cm at maximum. This was designated as calcined coke 2. This calcined coke 2 was observed and image-analyzed with a polarizing microscope in the same manner as in Example 1, and the results are shown in Table 2.
- Example 3 Municipal crude oil (API30, wax content 2%, sulfur content 0.7%) is distilled at atmospheric pressure, using a sufficient amount of Y-type zeolite catalyst for heavy distillate at 500 ° C and atmospheric pressure Fluidized bed catalytic cracking was performed. Decant oil 2 was obtained by centrifuging solids such as the catalyst until the obtained oil became clear. This oil was put into a small delayed coking process. The drum inlet temperature was maintained at 550 ° C. and the drum internal pressure was maintained at 600 kPa (6 kgf / cm 2 ) for 10 hours, and then cooled with water to obtain a black lump.
- the resulting black mass was crushed with a hammer to a maximum of about 5 cm, and then a rotary kiln (electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube) whose outer wall temperature at the center of the inner cylinder was set to 1450 ° C. ), The feed amount and the inclination angle of the black block were adjusted so that the residence time was 15 minutes, and heating was performed.
- the obtained red hot sample was cooled in a SUS container in the same manner as in Example 1 to obtain a massive sample with a grayish black color and a size of about 2 cm at maximum. This was designated as calcined coke 3. This calcined coke 3 was observed and image-analyzed with a polarizing microscope in the same manner as in Example 1, and the results are shown in Table 2.
- the calcined coke 3 was pulverized in the same manner as in Example 1 to obtain powder calcined coke 3.
- This powder calcined coke 3 is filled into a graphite crucible, carbonized carbon felt (2 mm) is lightly placed, placed in an Atchison furnace in a state that prevents air from flowing in rapidly, and heat treated at 3150 ° C.,
- the graphite 3 was obtained by mixing well for use as a sample.
- Example 4 The decant oil of Example 1 and the viscous liquid 1 of Example 2 were line-mixed at a 1: 1 volume ratio while keeping the piping warm, and this oil was put into a small delayed coking process.
- the drum inlet temperature was maintained at 505 ° C. and the drum internal pressure was maintained at 600 kPa (6 kgf / cm 2 ) for 10 hours, and then cooled with water to obtain a black lump.
- the resulting black mass was crushed with a hammer to a maximum of about 5 cm, and then a rotary kiln (electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube) whose outer wall temperature at the center of the inner cylinder was set to 1450 ° C.
- Example 5 The decant oil 2 of Example 3 and the viscous liquid 1 of Example 2 were line-mixed at a 1: 1 volume ratio while keeping the piping warm, and this oil was put into a small delayed coking process.
- the drum temperature was maintained at 505 ° C. and the drum internal pressure at 600 kPa (6 kgf / cm 2 ) for 10 hours, and then cooled with water to obtain a black lump.
- the resulting black mass was crushed with a hammer to a maximum of about 5 cm, and then a rotary kiln (electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube) whose outer wall temperature at the center of the inner cylinder was set to 1450 ° C.
- a rotary kiln electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube
- Example 6 The decant oil 1 of Example 1 and the viscous liquid 1 of Example 2 were line-mixed at a 1: 1 volume ratio while keeping the piping warm, and this oil was put into a small delayed coking process.
- the drum temperature was maintained at 505 ° C. and the drum internal pressure at 600 kPa (6 kgf / cm 2 ) for 10 hours, and then cooled with water to obtain a black lump.
- the resulting black mass was crushed with a hammer to a maximum of about 5 cm, and then a rotary kiln (electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube) whose outer wall temperature at the center of the inner cylinder was set to 1450 ° C.
- a rotary kiln electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner cylinder tube
- Comparative Example 1 The powder calcined coke 2 described in Example 2 was heat-treated at 3150 ° C. in an Atchison furnace in the same manner as in Example 1, and then mixed well for use as a sample. After measuring various physical properties of the obtained carbon material, an electrode was produced in the same manner as in Example 1, and cycle characteristics and the like were measured. The results are shown in Table 2.
- Comparative Example 2 Residue obtained by vacuum distillation of crude oil from the US West Coast is used as a raw material.
- the properties of this raw material are API18, Wax content 11% by mass, and sulfur content 3.5% by mass.
- This raw material is put into a small delayed coking process.
- the drum inlet temperature was maintained at 490 ° C. and the drum internal pressure was maintained at 2 kgf / cm 2 for 10 hours, and then cooled with water to obtain a black lump.
- After crushing with a hammer to a maximum of about 5 cm, use a rotary kiln (electric heater external heating type, aluminum oxide SSA-S, ⁇ 120 mm inner tube) with the outer wall temperature at the center of the inner tube set to 1450 ° C. was adjusted by adjusting the feed amount and the inclination angle of the black block so that the time was 15 minutes.
- Example 2 The obtained red hot sample was cooled in a SUS container by the same method as in Example 1 to obtain a black block sample having a size of about 3 cm at maximum. This was designated as calcined coke 7. This calcined coke 7 was observed and image-analyzed with a polarizing microscope in the same manner as in Example 1, and the results are shown in Table 2.
- This calcined coke 7 was pulverized in the same manner as in Example 1 to obtain powder calcined coke 7.
- Dry mixing was performed with a mixer at 2000 rpm for 20 minutes to obtain a mixture.
- This mixture is filled in a graphite crucible, carbonized carbon felt (2 mm) is lightly placed, put into an Atchison furnace in a state where air has been prevented from abruptly flowing, and heat treated at 3150 ° C., and then used as a sample. In order to mix well.
- Example 2 After measuring various physical properties of the obtained carbon material, an electrode was produced in the same manner as in Example 1, and cycle characteristics and the like were measured. The results are shown in Table 2. In this example, the volume capacity density of the electrodes is low, and it can be seen that there is a problem in obtaining a high-density battery.
- Comparative Example 3 After measuring various physical properties of SFG44 manufactured by Timical, electrodes were prepared in the same manner as in Example 1, and cycle characteristics and the like were measured. The results are shown in Table 2. In this example, the capacity retention rate of the electrode is low, and inconvenience arises in order to obtain a high-density battery.
- the obtained heat-treated product was pulverized with a pin mill, and classified and removed until particles of 2 ⁇ m or less and particles of 45 ⁇ m or more were not measured by a particle size distribution meter.
- electrodes were prepared in the same manner as in Example 1, and cycle characteristics and the like were measured. The results are shown in Table 2. In this example, the capacity retention rate of the electrode is low, and inconvenience arises in order to obtain a high-density battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
また、電動ドリル等の電動工具や、ハイブリッド自動車用等、高出力で大容量の二次電池への要求が高まっている。この分野は従来より、鉛二次電池、ニッケルカドミウム二次電池、ニッケル水素二次電池が主に使用されているが、小型軽量で高エネルギー密度のリチウムイオン二次電池への期待は高く、大電流負荷特性に優れたリチウムイオン二次電池が求められている。
これらのうち天然黒鉛は安価に入手できる。しかし、天然黒鉛は鱗片状を成しているので、バインダーとともにペーストにし、それを集電体に塗布すると、天然黒鉛が一方向に配向してしまう。そのような電極で充電すると電極が一方向にのみ膨張し、電極としての性能を低下させる。天然黒鉛を造粒して球状にしたものが提案されているが、電極作製時のプレスによって球状化天然黒鉛が潰れて配向してしまう。また、天然黒鉛の表面がアクティブであるために初回充電時にガスが多量に発生し、初期効率が低く、さらに、サイクル特性も良くなかった。これらを解決するため、特許第3534391号公報(米国特許第6632569号、特許文献1)等では、球状に加工した天然黒鉛の表面に、カーボンをコーティングする方法が提案されている。
特開2003-77534号公報(特許文献5)においては、細孔が高度に発達した人造黒鉛を用いることにより、優れた高率放電特性を達成できることが記載されている。
WO2011/049199明細書(米国特許第8372373号、特許文献6)にはサイクル特性に優れた、人造黒鉛が開示されている。
特開2002-270169号公報(米国特許第7141229号、特許文献7)には流れ構造組織に基づく異方性を有する生の針状コークスから製造された人造黒鉛負極が開示されている。
WO2003/064560明細書(米国特許第7323120号、特表2005-515957号公報:特許文献8)には石油ピッチを液相でコーティングしたコークスから製造された人造黒鉛負極が開示されている。
特許文献2に記載の黒鉛化品は、非常にバランスの良い負極材であり、高容量、大電流の電池を作製可能であるが、大型電池に要求される、モバイル用途をはるかに超えた長期にわたるサイクル特性を達成することは困難である。
特許文献3の方法は、人造黒鉛原料の微粉の他、天然黒鉛等の微粉も使用可能であり、モバイル用負極材としては、非常に優れた性能を発揮する。しかし、この材料もモバイル用途等が要求する高容量・低電流・中サイクル特性については対応可能であるが、上記のような大型電池の大電流、超長期サイクル特性といった要求を満たすには至っていない。
特許文献4に記載の負極材料は、体積エネルギー密度があまりにも低く、また、価格も非常に高価なため、一部の特殊な大型電池にしか使用されていない。
特許文献5では、充放電時の容量の保持が不十分であり、現実的に、二次電池に用いるためには不十分である。
特許文献6では、黒鉛の組織が密であり活物質イオンの拡散には改善の余地があった。
特許文献7では、従来の人造黒鉛に対して、容量及び初回充放電効率の改善は見られるものの未だ実用の領域には達していない。
特許文献8では、電極の容量密度に課題が残っている。また、大量の有機溶剤を使用し、これを揮発させるという操作を伴い、製造方法が煩雑となる。
前記炭素材料からなる成形体断面の480μm×640μmの矩形の視野において偏光顕微鏡により光学組織を観察した場合、面積の小さな組織から面積を累積し、その累計面積が全光学組織面積の60%の面積となるときの光学組織の面積をSOPとし、アスペクト比の小さな組織から組織の数を数え組織全体の数の60%番目の組織におけるアスペクト比をAROP、レーザー回析法による体積基準の平均粒子径をD50としたとき、
1.5≦AROP≦6 及び
0.2×D50≦(SOP×AROP)1/2<2×D50
の関係を有する炭素材料。
[2]炭素材料の主成分が人造黒鉛である前項1に記載の炭素材料。
[3]レーザー回析法による体積基準の平均粒子径(D50)が1μm以上50μm以下である前項1または2に記載の炭素材料。
[4]BET比表面積が2m2/g以上25m2/g以下である前項1~3のいずれか1項に記載の炭素材料。
[5]前項1~3のいずれか1項に記載の炭素材料の製造方法であって、か焼コークスを粉砕した粒子を2400℃以上3600℃以下の温度で熱処理した後、石油系ピッチまたはコールタールピッチと混合し、次いで800℃以上1400℃以下の温度で熱処理をする工程を含む製造方法。
[6]前記の800℃以上1400℃以下の温度で熱処理をする工程の後、粉砕または解砕を行う工程を含む前項5に記載の製造方法。
[7]前記か焼コークスを粉砕した粒子のレーザー回析法による体積基準の平均粒子径(D50)Dcが1μm以上50μm以下であり、前記石油系ピッチまたはコールタールピッチを粉砕した粒子の平均粒子径(D50)DpがDcよりも小さく、かつ0.01μm以上25μm以下である前項5または6に記載の製造方法。
[8]Dc/Dpが1.5以上200未満である前項7に記載の製造方法。
[9]前記か焼コークスを粉砕した粒子と前記石油系ピッチまたはコールタールピッチを粉砕した粒子との合計質量に対し、前記石油系ピッチまたはコールタールピッチを粉砕した粒子の質量が5質量%以上35質量%以下である前項5~8のいずれか1項に記載の製造方法。
[10]前記か焼コークスが、480μm×640μmの矩形の視野において偏光顕微鏡により光学組織を観察した場合、面積の小さな組織から面積を累積し、その累計面積が全光学組織面積の60%の面積となるときの光学組織の面積が10μm2以上5000μm2以下であり、かつアスペクト比の小さな組織から組織の数を数え組織全体の数の60%番目の組織におけるアスペクト比が1.5以上6以下であるか焼コークスである前項5~9のいずれか1項に記載の製造方法。
[11]前項1~4のいずれか1項に記載の炭素材料を含む電池電極用材料。
[12]前項1~4のいずれか1項に記載の炭素材料100質量部と、天然黒鉛または人造黒鉛を0.01~200質量部含み、該天然黒鉛または該人造黒鉛の平均面間隔(d002)が0.3380nm以下である電池電極用材料。
[13]前項1~4のいずれか1項に記載の炭素材料100質量部と、天然黒鉛または人造黒鉛を0.01~120質量部含み、該天然黒鉛または該人造黒鉛のアスペクト比が2~100であり、該天然黒鉛または該人造黒鉛の平均面間隔(d002)が0.3380nm以下である電池電極用材料。
[14]前項11~13のいずれか1項に記載の電池電極用材料とバインダーとを含む電極用ペースト。
[15]前項14に記載の電極用ペーストの成形体からなる電極。
[16]前項15に記載の電極を構成要素として含む電池。
また、本発明の炭素材料は経済性、量産性に優れ、安全性の改善された方法により製造することができる。
充電電池の電極は、単位体積あたりにより多くの電気を充電できることが要求されている。リチウム二次電池の電極活物質として使用される黒鉛は、初回の充放電のクーロン効率に優れるが、炭素原子に対しリチウム原子が挿入できる量論比は上限があり、質量あたりのエネルギー密度を量論比以上に向上させることは困難である。そのため電極のエネルギー密度の向上のためには、電極体積あたりの質量、すなわち電極密度の向上が必要となる。
通常、電池の電極は活物質を集電板上に塗工乾燥したあと、プレスを行なうことにより製造される。プレスは体積あたりの活物質の充填性を向上させるが、活物質が柔らかくプレスに伴ってある程度変形すると、電極密度を極めて大きくすることが可能である。
光学組織の大きさ及び形状に関し、前記炭素材料は以下の式を満足することが好ましい。
1.5≦AROP≦6 及び
0.2×D50≦(SOP×AROP)1/2<2×D50
SOPとは、前記炭素材料からなる成形体断面の480μm×640μmの矩形の視野において偏光顕微鏡により光学組織を観察した場合、面積の小さな組織から面積を累積し、その累計面積が全光学組織面積の60%の面積となるときの光学組織の面積を表す。AROPとは、同様の観察において、アスペクト比の小さな組織から組織の数を数え組織全体の数の60%番目の組織におけるアスペクト比を表す。
D50はレーザー回折式粒度分布計において体積基準で測定された50%累積時の径(平均粒子径)を表し、鱗片状粒子の外見上の径を示す。レーザー回折式粒度分布計としては、例えばマルバーン製マスターサイザー(Mastersizer;登録商標)等が利用できる。
より好ましいD50は5μm以上35μm以下である。微粉は表面積が高く、目的外反応に繋がるために、より減らしたほうがよいとの観点からはD50は10μm以上であることがさらにより好ましい。大電流発生が求められる自動車等の駆動電源等の用途に用いる場合にはD50は25μm以下であることが好ましい。
[偏向顕微鏡観察試料作製]
本発明における「炭素材料からなる成形体断面」は以下のようにして調製する。
内容積30cm3のプラスチック製サンプル容器の底に両面テープを貼り、その上にスパチュラ2杯ほど(2g程度)の観察用サンプルを乗せる。冷間埋込樹脂(商品名:冷間埋込樹脂#105、製造会社:ジャパンコンポジット(株)、販売会社:丸本ストルアス(株))に硬化剤(商品名:硬化剤(M剤)、製造会社:日本油脂(株)、販売会社:丸本ストルアス(株))を加え、30秒練る。得られた混合物(5ml程度)を前記サンプル容器に高さ約1cmになるまでゆっくりと流し入れ、1日静置して凝固させる。次に凝固したサンプルを取り出し、両面テープを剥がす。そして、研磨板回転式の研磨機を用いて、測定する面を研磨する。
研磨したサンプルをプレパラート上に粘土で固定し、偏光顕微鏡(OLYMPAS社製、BX51)を用いて観察を行う。
観察は200倍で行う。偏光顕微鏡で観察した画像は、OLYMPUS製CAMEDIA C-5050 ZOOMデジタルカメラをアタッチメントで偏光顕微鏡に接続し、撮影する。シャッタータイムは1.6秒で行う。撮影データのうち、1200ピクセル×1600ピクセルの画像を解析対象とする。これは480μm×640μmの視野を検討していることに相当する。画像解析はImageJ(アメリカ国立衛生研究所製)を用いて、青色部、黄色部、赤色部、黒色部を判定する。
ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピークはsp3結合に基づくものであり、同ピークの強度IDは炭素粒子表面の欠陥の多さを示し1580~1620cm-1の範囲にあるピークはsp2結合に基づくものであり、同ピークは粒子表面に黒鉛由来の結合が多いことを示している。
本発明の好ましい実施態様における炭素材料においては、か焼コークスを粉砕した後、黒鉛化した粒子に比べて、R値すなわち(ID/IG)が大きいことが特徴である。具体的には、ラマン分光測定器で炭素材料の粒子を測定した際ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピークのピーク強度(ID)と1580~1620cm-1の範囲にあるピークのピーク強度(IG)との強度比ID/IG(R値)が0.38以上1.2以下である。より好ましいR値は、0.38以上1.0以下であり、さらに好ましいR値は0.4以上0.8以下である。R値が大きすぎても小さすぎても、多くの欠陥の存在により充放電時に副反応が生じやすくなる。適切なR値を有することにより、充電後保持時に電池の自己放電ならびに劣化が少ない炭素材料となる。
d002が0.335nm未満の炭素材料を製造することは困難であり、0.335nm以上の炭素材料が、産業上有用である。
d002及びLcは、既知の方法により粉末X線回折(XRD)法を用いて測定することができる(野田稲吉,稲垣道夫,日本学術振興会,第117委員会試料,117-71-A-1(1963)、稲垣道夫他,日本学術振興会,第117委員会試料,117-121-C-5(1972)、稲垣道夫,「炭素」,1963,No.36,25-34頁参照)。
このような範囲とすることで、リチウムとの層間化合物の形成がスムーズになり、これを負極材料としてリチウム二次電池に用いた場合、リチウム吸蔵・放出反応が阻害されづらく、急速充放電特性が向上する。
なお、黒鉛材料中の菱面体晶構造のピーク割合(x)は、六方晶構造(100)面の実測ピーク強度(P1)、菱面体晶構造の(101)面の実測ピーク強度(P2)から、下記式によって求める。
x=P2/(P1+P2)
BET比表面積については、単位質量あたりのガスの吸着脱離量の計測という一般的な手法によって測定する。測定装置としては、例えばNOVA-1200を用いることができる。
ゆるめ嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度である。また、タップ密度は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。
これらはASTM B527及びJIS K5101-12-2に準拠した測定方法であるが、タップ密度測定におけるオートタップの落下高さは5mmとした。
ゆるめ嵩密度が0.3g/cm3以上であることにより、電極へ塗工した際の、プレス前の電極密度をより高めることが可能となる。この値により、ロールプレス一回で十分な電極密度を得ることが可能かどうかを予測できる。また、タップ密度が上記範囲内にあることによりプレス時に到達する電極密度を充分高くすることが可能となる。
炭素繊維の量は特に限定されないが、芯材である炭素材料100質量部に対し0.1~5質量部が好ましい。
炭素繊維は、その表面に有機化合物等に由来する熱分解物が付着していないもの、または炭素構造の結晶性が高いものが好ましい。
本発明の好ましい実施態様における炭素材料は、か焼コークスを粉砕した粒子を2400℃以上3600℃以下の温度で熱処理をした後、石油系ピッチまたはコールタールピッチを粉砕した粒子とを混合し、さらに800℃以上1400℃以下の温度で熱処理を行うことにより製造することができる。
か焼コークスの原料としては、例えば、石油ピッチ、石炭ピッチ、石炭ピッチコークス、石油コークス及びこれらの混合物を用いることができる。これらの中でも、特定の条件下でディレイドコーキングを行ったコークスを、不活性雰囲気で加熱したものが好ましい。
か焼前のコークスは、比較的容易に着火する。そのため、火災の防止のため含水させておく。含水させたか焼前コークスは、泥状の含水微粉が機器及び周辺を汚染するなど取り扱い性に劣る。か焼により取り扱い性の点で極めて有利となる。また、か焼を行ったコークスに対して黒鉛化を行うと、結晶がより成長する。
また、上記と同様にか焼コークスの光学組織を観察した場合、アスペクト比の小さな組織から組織の数を数え組織全体の数の60%番目の組織におけるアスペクト比が1.5以上6以下であることが好ましい。
粉砕する手法に特に制限はなく、公知のジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等が用いて行なうことができる。
粉砕は、レーザー回析法による体積基準の平均粒子径(D50)が1μm以上50μm以下となるように行なうことが好ましい。D50が1μm未満になるまで粉砕するには特殊な機器を用いて大きなエネルギーが必要となる。またD50が大きすぎると、電極とした場合のリチウム拡散に時間がかかり、充放電速度が遅くなる傾向がある。より好ましいD50は5μm以上35μm以下である。微粉は一般的に表面積が高く、目的外反応が生じやすくなるため減らしたほうがよいとの観点からは、D50は10μm以上であることがさらに好ましい。自動車等駆動電源として使う際には大電流発生が必要であるとの観点からは、D50は25μm以下であることがさらに好ましい。
湿式により行なう場合は、例えば、前記欠陥修復材を溶媒に溶解または分散させ、か焼コークスを黒鉛化したものをさらに添加した後、溶剤を乾燥除去するとよい。ただし、湿式では有機溶剤を用いるが、有機溶剤は取扱いに注意が必要であり、またその蒸気発生を防いだり、回収することが必要となる。そのため前記混合は溶剤を使用しない乾式で行なうことが好ましい。
乾式で行なう場合は、か焼コークスを粉砕後熱処理をした粒子と前記欠陥修復材を粉砕した粒子とを確実に混合するために、か焼コークスを粉砕後熱処理をした粒子がおおむね粉砕されない程度の力で混合することが好ましい。混合には、自転公転混合機、プラネタリーミキサー、ヘンシェルミキサー等の粉砕能力の小さい混合機のほか、ハンマーミル、インペラーミル等のライナー部分や羽根、回転数を調整し、粉砕性能を下げたものが好ましく使用できる。これらの中でも、ハンマーミル及びインペラーミルは、混合力が強く、連続的に短時間で乾式コーティング処理を行うのに適している。乾式混合では前記欠陥修復材による平滑な膜が形成されない場合があるが、混合後の加熱により欠陥修復材が軟化し、か焼コークスを粉砕後熱処理をした粒子の表面で広がり、平滑な膜となる。
従来、黒鉛化処理は酸素を含まない雰囲気、例えば、窒素封入環境やアルゴン封入環境で行われているが、本発明において黒鉛化処理は酸素を一定濃度含む環境下で行うことが好ましい。
深い場所に存在する部分は酸素と接触する機会が少なくなる。酸素含有気体と接する部分から2m以内の材料を黒鉛材料として取得することが好ましい。より好ましくは1m以内であり、さらに好ましくは50cm以内である。
本発明の好ましい実施態様における電池電極用材料は、上記炭素材料を含んでなる。上記炭素材料を電池電極用材料として用いると、高容量、高クーロン効率、高サイクル特性を維持したまま、高エネルギー密度の電池電極を得ることができる。
また、電池電極用材料には金属粒子を配合することもできる。配合量は、前記黒鉛材料100質量部に対して、0.1~50質量部であり、好ましくは10~30質量部である。
本発明の好ましい実施態様における電極用ペーストは、前記電池電極用材料とバインダーとを含んでなる。この電極用ペーストは、前記電池電極用材料とバインダーとを混練することによって得られる。混錬には、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等公知の装置が使用できる。電極用ペーストは、シート状、ペレット状等の形状に成形することができる。
電極用ペーストに用いるバインダーとしては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマー、SBR(スチレンブタジエンラバー)等のゴム系等公知のものが挙げられる。
混練する際に溶媒を用いることができる。溶媒としては、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーの場合はトルエン、N-メチルピロリドン等;SBRの場合は水等;その他にジメチルホルムアミド、イソプロパノール等が挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量は集電体に塗布しやすい粘度となるように調整される。
本発明の好ましい実施態様における電極は前記電極用ペーストの成形体からなるものである。電極は例えば前記電極用ペーストを集電体上に塗布し、乾燥し、加圧成形することによって得られる。
集電体としては、例えばアルミニウム、ニッケル、銅、ステンレス等の箔、メッシュなどが挙げられる。ペーストの塗布厚は、通常50~200μmである。塗布厚が大きくなりすぎると、規格化された電池容器に負極を収容できなくなることがある。ペーストの塗布方法は特に制限されず、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。
前記電極を構成要素(好ましくは負極)として、電池または二次電池とすることができる。
リチウムイオン二次電池を具体例に挙げて本発明の好ましい実施態様における電池または二次電池を説明する。リチウムイオン二次電池は、正極と負極とが電解液または電解質の中に浸漬された構造をしたものである。負極には本発明の好ましい実施態様における電極が用いられる。
なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
なお、実施例及び比較例の炭素材料についての、光学組織に関する観察及びデータ解析、X線回折法による平均面間隔(d002)、R値、BET比表面積は、本明細書の「発明を実施するための形態」に詳述した方法により測定する。また、その他の物性の測定方法は以下の通り。
レーザー回折式粒度分布測定装置として、マルバーン製マスターサイザーを用いて、体積基準の50%累積粒子径(D50)を求めた。
a)ペースト作製:
スチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)を用意した。SBRの粉末を精製水に分散し、SBR分散液を得た。また、CMCの粉末を精製水と混合し、スターラーで一昼夜撹拌して、CMC溶液を得た。
導電助剤としてカーボンブラックを用意した。電池電極用材料95質量部、混合導電助剤2質量部、固形分が1.5質量部のCMC溶液、固形分が1.5質量部のSBR溶液を混合し、これに粘度調整のための水を適量加え、自転・公転ミキサーにて混練し負極用ペーストを得た。
主剤原液に水を加え、粘度を調整した後、高純度銅箔上でドクターブレードを用いて250μm厚に塗布する。これを120℃で1時間真空乾燥し、18mmφに打ち抜く。打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して約1×102~3×102N/mm2(1×103~3×103kg/cm2)となるようにプレスする。その後、真空乾燥器で120℃、12時間乾燥して、評価用電極とする。
下記のようにして3極セルを作製する。なお以下の操作は露点-80℃以下の乾燥アルゴン雰囲気下で実施する。
ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記(2)で作製した銅箔付き炭素電極と金属リチウム箔をセパレーター(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層する。さらにリファレンス用の金属リチウムを同様に積層する。これに電解液を加えて試験用セルとする。
EC(エチレンカーボネート)8質量部及びDEC(ジエチルカーボネート)12質量部の混合液に、電解質としてLiPF6を1モル/リットル溶解する。
充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行う。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させる。
電流密度0.4mA/cm2(0.2C相当)及び10mA/cm2(5C相当)で定電流低電圧放電試験を行う。試験は25℃に設定した恒温槽内で行う。この際、第一回目の充放電の電気量の比率、放電電気量/充電電気量を百分率で表した結果を、初回充放電効率とした。
放電容量密度は、0.4mA/cm2(0.2C相当)での放電電気量を、単位面積当たりの活物質量で除して算出した。
電流密度2mA/cm2(1C相当)で定電流低電圧充放電試験を行う。
充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行う。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させる。
放電(炭素からの放出)は所定電流密度でCC放電を行い、電圧1.5Vでカットオフする。また、測定は、60℃に設定した恒温槽中で行い、充放電を150サイクル繰り返す。
g)低温レート試験容量比
充電は上記条件において、25℃で行なった。放電は-20℃に維持した恒温槽の中で行なった。-20℃における放電容量密度/25℃における放電容量密度を算出し、低温レート試験容量比とした。
中国遼寧省産原油(API28、ワックス含有率17%、硫黄分0.66%)を常圧蒸留し、重質溜分に対して、十分な量のY型ゼオライト触媒を用い、510℃、常圧で流動床接触分解を行った。得られたオイルが澄明となるまで触媒等の固形分を遠心分離し、デカントオイル1を得た。このオイルを小型ディレイドコーキングプロセスに投入した。ドラム入り口温度は505℃、ドラム内圧は600kPa(6kgf/cm2)に10時間維持した後、水冷して黒色塊を得た。得られた黒色塊を最大5cm程度になるように金槌で粉砕した後、内筒中心部外壁温度を1450℃に設定したロータリーキルン(電気ヒーター外熱式、酸化アルミニウムSSA-S,φ120mm内筒管)を用い、滞留時間が15分となるように黒色塊のフィード量及び傾斜角を調整し、加熱を行った。
得られた赤熱サンプルは、SUS容器中で外部を水冷しながら、外気から遮断し、容器内部が負圧にならないように必要量の窒素を供給しながら冷却を行った。黒色で、若干灰色を帯びた最大2cm程度の大きさを持つ塊状サンプルを得た。これをか焼コークス1とした。
か焼コークス1を偏光顕微鏡により観察及び画像解析を行い、小さい面積の組織から面積を累積し、総面積の60%となるときの組織の面積を測定したところ、47.4μm2であった。また、検出された粒子のうち、アスペクト比が小さな粒子のものから並べていき、粒子全体の60%番目になった部分のアスペクト比は2.66であった。
この粉末か焼コークス1を黒鉛るつぼに充填し、炭化したカーボンフェルト(2mm)を軽く載せ、空気が急激に流入することを防いだ状態でアチソン炉に入れ、3150℃で熱処理を行った後、試料として使用するためによく混合を行い、黒鉛1を得た。
この黒鉛1の85gを、D50=3.1μmで実質的に20μm以上の粒子を含まない等方性石炭ピッチ(軟化点130℃、残炭率60%)15gと自転公転式混合機で2000rpmで20分間乾式混合を行い、混合物を得た。これを窒素雰囲気下、1100℃に維持したシリコニット加熱炉で1時間焼成した。
得られた炭素材料について各種物性を測定後、上記に従い電極を作製し、サイクル特性等を測定した。結果を表2に示す。
瀝青炭由来コールタールを320℃で常圧蒸留し、蒸留温度以下の留分を除去した。得られた軟化点30℃のタールから、100℃でろ過することにより不溶分を除去して、粘調の液体1を得た。これを小型ディレイドコーキングプロセスに投入した。ドラム入り口温度は510℃、ドラム内圧は500kPa(5kgf/cm2)に10時間維持した後、水冷して黒色塊を得た。得られた黒色塊を最大5cm下程度になるように金槌で粉砕した後、内筒中心部外壁温度を1450℃に設定したロータリーキルン(電気ヒーター外熱式、酸化アルミニウムSSA-S,φ120mm内筒管)を用い、滞留時間が15分となるように黒色塊のフィード量及び傾斜角を調整し、加熱を行った。
得られた赤熱サンプルは、実施例1と同様な手法によりSUS容器中で冷却し、黒色で、最大3cm程度の大きさを持つ塊状サンプルを得た。これをか焼コークス2とした。
このか焼コークス2を実施例1と同様に偏光顕微鏡により観察及び画像解析を行い、結果を表2に示す。
この黒鉛2の80gを、D50=2.8μmで実質的に20μm以上の粒子を含まない等方性石油ピッチ(軟化点230℃、残炭率68%)20gと自転公転式混合機で2000rpmで20分間乾式混合を行い、混合物を得た。これを窒素雰囲気下、1000℃に維持したシリコニット加熱炉で1時間焼成した。得られたサンプルをワンダーブレンダー(大阪ケミカル株式会社製)で2分粉砕し、炭素材料を得た。
得られた炭素材料について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
イラン産原油(API30、ワックス含有率2%、硫黄分0.7%)を常圧蒸留し、重質溜分に対して、十分な量のY型ゼオライト触媒を用い、500℃、常圧で流動床接触分解を行った。得られたオイルが澄明となるまで触媒等の固形分を遠心分離し、デカントオイル2を得た。このオイルを小型ディレイドコーキングプロセスに投入した。ドラム入り口温度は550℃、ドラム内圧は600kPa(6kgf/cm2)に10時間維持した後、水冷して黒色塊を得た。得られた黒色塊を最大5cm下程度になるように金槌で粉砕した後、内筒中心部外壁温度を1450℃に設定したロータリーキルン(電気ヒーター外熱式、酸化アルミニウムSSA-S,φ120mm内筒管)を用い、滞留時間が15分となるように黒色塊のフィード量及び傾斜角を調整し、加熱を行った。
得られた赤熱サンプルは、実施例1と同様の手法によりSUS容器中で冷却し、灰色を帯びた黒色で、最大2cm程度の大きさを持つ塊状サンプルを得た。これをか焼コークス3とした。
このか焼コークス3を実施例1と同様に偏光顕微鏡により観察及び画像解析を行い、結果を表2に示す。
この黒鉛3の70gを、D50=2.7μmで実質的に20μm以上の粒子を含まない異方性石炭ピッチ30g(軟化点126℃、残炭率61%)と自転公転式混合機で2000rpmで20分間乾式混合を行い、混合物を得た。これを窒素雰囲気下、900℃に維持したシリコニット加熱炉で1時間焼成した。得られたサンプルをワンダーブレンダー(大阪ケミカル株式会社製)で2分粉砕し、炭素材料を得た。
得られた炭素材料について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
実施例1のデカントオイルと、実施例2の粘調の液体1を配管を保温しながら1:1体積比でライン混合し、このオイルを小型ディレイドコーキングプロセスに投入した。ドラム入り口温度は505℃、ドラム内圧は600kPa(6kgf/cm2)に10時間維持した後、水冷して黒色塊を得た。得られた黒色塊を最大5cm下程度になるように金槌で粉砕した後、内筒中心部外壁温度を1450℃に設定したロータリーキルン(電気ヒーター外熱式、酸化アルミニウムSSA-S,φ120mm内筒管)を用い、滞留時間が15分となるように黒色塊のフィード量及び傾斜角を調整し、加熱を行った。
得られた赤熱サンプルは、SUS容器中で外部を水冷しながら、外気から遮断し、容器内部が負圧にならないように必要量の窒素を供給しながら冷却を行った。黒色で、若干灰色を帯びた最大2cm程度の大きさを持つ塊状サンプルを得た。これをか焼コークス4とした。
このか焼コークス4を実施例1と同様に偏光顕微鏡により観察及び画像解析を行い、結果を表2に示す。
この黒鉛4の80gを、D50=2.0μmで実質的に20μm以上の粒子を含まない異方性石油ピッチ20g(軟化点126℃、残炭率61%)と自転公転式混合機で2000rpmで20分間乾式混合を行い、混合物を得た。これを窒素雰囲気下、1200℃に維持したシリコニット加熱炉で1時間焼成した。得られたサンプルをワンダーブレンダー(大阪ケミカル株式会社製)で2分粉砕し、炭素材料を得た。
得られた炭素材料について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
実施例3のデカントオイル2と、実施例2の粘調の液体1を配管を保温しながら1:1体積比でライン混合し、このオイルを小型ディレイドコーキングプロセスに投入した。ドラム温度は505℃、ドラム内圧は600kPa(6kgf/cm2)に10時間維持した後、水冷して黒色塊を得た。得られた黒色塊を最大5cm下程度になるように金槌で粉砕した後、内筒中心部外壁温度を1450℃に設定したロータリーキルン(電気ヒーター外熱式、酸化アルミニウムSSA-S,φ120mm内筒管)を用い、滞留時間が15分となるように黒色塊のフィード量及び傾斜角を調整し、加熱を行った。
得られた赤熱サンプルは、SUS容器中で外部を水冷しながら、外気から遮断し、容器内部が負圧にならないように必要量の窒素を供給しながら冷却を行った。黒色で、若干灰色を帯びた最大2cm程度の大きさを持つ塊状サンプルを得た。これをか焼コークス5とした。
このか焼コークス5を実施例1と同様に偏光顕微鏡により観察及び画像解析を行い、結果を表2に示す。
この黒鉛5の80gを、D50=2.5μmで実質的に20μm以上の粒子を含まない等方性石炭ピッチ20g(軟化点120℃、残炭率59%)と自転公転式混合機で2000rpmで20分間乾式混合を行い、混合物を得た。これを窒素雰囲気下、1250℃に維持したシリコニット加熱炉で1時間焼成した。得られたサンプルをワンダーブレンダー(大阪ケミカル株式会社製)で2分粉砕し、炭素材料を得た。
得られた炭素材料について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
実施例1のデカントオイル1と、実施例2の粘調の液体1を配管を保温しながら1:1体積比でライン混合し、このオイルを小型ディレイドコーキングプロセスに投入した。ドラム温度は505℃、ドラム内圧は600kPa(6kgf/cm2)に10時間維持した後、水冷して黒色塊を得た。得られた黒色塊を最大5cm下程度になるように金槌で粉砕した後、内筒中心部外壁温度を1450℃に設定したロータリーキルン(電気ヒーター外熱式、酸化アルミニウムSSA-S,φ120mm内筒管)を用い、滞留時間が15分となるように黒色塊のフィード量及び傾斜角を調整し、加熱を行った。
得られた赤熱サンプルは、SUS容器中で外部を水冷しながら、外気から遮断し、容器内部が負圧にならないように必要量の窒素を供給しながら冷却を行った。黒色で、若干灰色を帯びた最大2cm程度の大きさを持つ塊状サンプルを得た。これをか焼コークス6とした。
このか焼コークス6を実施例1と同様に偏光顕微鏡により観察及び画像解析を行い、結果を表2に示す。
この黒鉛6の80gを、D50=6.2μmで実質的に30μm以上の粒子を含まない等方性石油ピッチ(軟化点120℃、残炭率59%)2gと自転公転式混合機で2000rpmで20分間乾式混合を行い、混合物を得た。
これを窒素雰囲気下、1100℃に維持したシリコニット加熱炉で1時間焼成した。得られたサンプルをワンダーブレンダー(大阪ケミカル株式会社製)で2分粉砕し、炭素材料を得た。
得られた炭素材料について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
実施例2記載の粉末か焼コークス2を実施例1と同様にアチソン炉で3150℃で熱処理を行った後、試料として使用するためによく混合を行った。
得られた炭素材料について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
アメリカ西海岸産原油を減圧蒸留した残渣を原料とする。本原料の性状は、API18、Wax分11質量%、硫黄分は3.5質量%である。この原料を、小型ディレイドコーキングプロセスに投入する。ドラム入り口温度は490℃、ドラム内圧は2kgf/cm2に10時間維持した後、水冷して黒色塊を得た。最大5cm下程度になるように金槌で粉砕した後、内筒中心部外壁温度を1450℃に設定したロータリーキルン(電気ヒーター外熱式、酸化アルミニウムSSA-S,φ120mm内筒管)を用い、滞留時間が15分となるように黒色塊のフィード量及び傾斜角を調整し、加熱を行った。
このか焼コークス7を実施例1と同様に偏光顕微鏡により観察及び画像解析を行い、結果を表2に示す。
この混合物を黒鉛るつぼに充填し、炭化したカーボンフェルト(2mm)を軽く載せ、空気が急激に流入することを防いだ状態でアチソン炉に入れ、3150℃で熱処理を行った後、試料として使用するためによく混合を行った。
得られた炭素材料について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
本例においては、電極の体積容量密度が低く、高密度の電池を得るためには不都合が生じていることがわかる。
ティミカル社製SFG44について各種物性を測定後、実施例1と同様に電極を作製し、サイクル特性等を測定した。結果を表2に示す。
本例においては、電極の容量維持率が低く、高密度の電池を得るためには不都合が生じる。
中国産鱗片状天然黒鉛(固定炭素含有分99%、比表面積9.1m2/g、D50=26.8μm)100gを奈良機械製作所製ハイブリダイゼーションシステムNHS-1型を用いてロータ回転数50m/sで3分間処理を行った。この処理をサンプル量を3.6kgとなるまで繰り返し、D50を6μmとなるまで粉砕した石油ピッチ0.4kgを加え、マツボー製M20レーディミキサーに投入し、目視で均一となるまで混合した。続いて本品をアルミナ製るつぼに200gとり、窒素雰囲気で1300℃迄昇温し本温度を2時間維持した。得られた熱処理物をピンミルで解砕し、実質的に2μm以下の粒子及び45μm以上の粒子が粒度分布計によって測定されなくなるまで分級し、除去した。本品の各種物性を測定後、実施例1と同様に電極を作成し、サイクル特性等を測定した。結果を表2に示す。
本例においては、電極の容量維持率が低く、高密度の電池を得るためには不都合が生じる。
Claims (16)
- ラマン分光測定器で炭素材料の粒子を測定した際ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピークのピーク強度(ID)と1580~1620cm-1の範囲にあるピークのピーク強度(IG)との比ID/IG(R値)が0.38以上1.2以下であり、X線回折法による(002)面の平均面間隔(d002)が0.335nm以上0.338nm以下である炭素材料であり、
前記炭素材料からなる成形体断面の480μm×640μmの矩形の視野において偏光顕微鏡により光学組織を観察した場合、面積の小さな組織から面積を累積し、その累計面積が全光学組織面積の60%の面積となるときの光学組織の面積をSOPとし、アスペクト比の小さな組織から組織の数を数え組織全体の数の60%番目の組織におけるアスペクト比をAROP、レーザー回析法による体積基準の50%累積粒子径をD50としたとき、
1.5≦AROP≦6 及び
0.2×D50≦(SOP×AROP)1/2<2×D50
の関係を有する炭素材料。 - 炭素材料の主成分が人造黒鉛である請求項1に記載の炭素材料。
- レーザー回析法による体積基準の平均粒子径(D50)が1μm以上50μm以下である請求項1または2に記載の炭素材料。
- BET比表面積が2m2/g以上25m2/g以下である請求項1~3のいずれか1項に記載の炭素材料。
- 請求項1~3のいずれか1項に記載の炭素材料の製造方法であって、か焼コークスを粉砕した粒子を2400℃以上3600℃以下の温度で熱処理した後、石油系ピッチまたはコールタールピッチと混合し、次いで800℃以上1400℃以下の温度で熱処理をする工程を含む製造方法。
- 前記の800℃以上1400℃以下の温度で熱処理をする工程の後、粉砕または解砕を行う工程を含む請求項5に記載の製造方法。
- 前記か焼コークスを粉砕した粒子のレーザー回析法による体積基準の平均粒子径(D50)Dcが1μm以上50μm以下であり、前記石油系ピッチまたはコールタールピッチを粉砕した粒子の平均粒子径(D50)DpがDcよりも小さく、かつ0.01μm以上25μm以下である請求項5または6に記載の製造方法。
- Dc/Dpが1.5以上200未満である請求項7に記載の製造方法。
- 前記か焼コークスを粉砕した粒子と前記石油系ピッチまたはコールタールピッチを粉砕した粒子との合計質量に対し、前記石油系ピッチまたはコールタールピッチを粉砕した粒子の質量が5質量%以上35質量%以下である請求項5~8のいずれか1項に記載の製造方法。
- 前記か焼コークスが、480μm×640μmの矩形の視野において偏光顕微鏡により光学組織を観察した場合、面積の小さな組織から面積を累積し、その累計面積が全光学組織面積の60%の面積となるときの光学組織の面積が10μm2以上5000μm2以下であり、かつアスペクト比の小さな組織から組織の数を数え組織全体の数の60%番目の組織におけるアスペクト比が1.5以上6以下であるか焼コークスである請求項5~9のいずれか1項に記載の製造方法。
- 請求項1~4のいずれか1項に記載の炭素材料を含む電池電極用材料。
- 請求項1~4のいずれか1項に記載の炭素材料100質量部と、天然黒鉛または人造黒鉛を0.01~200質量部含み、該天然黒鉛または該人造黒鉛の平均面間隔(d002)が0.3380nm以下である電池電極用材料。
- 請求項1~4のいずれか1項に記載の炭素材料100質量部と、天然黒鉛または人造黒鉛を0.01~120質量部含み、該天然黒鉛または該人造黒鉛のアスペクト比が2~100であり、該天然黒鉛または該人造黒鉛の平均面間隔(d002)が0.3380nm以下である電池電極用材料。
- 請求項11~13のいずれか1項に記載の電池電極用材料とバインダーとを含む電極用ペースト。
- 請求項14に記載の電極用ペーストの成形体からなる電極。
- 請求項15に記載の電極を構成要素として含む電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167001904A KR101883678B1 (ko) | 2013-07-29 | 2014-07-28 | 탄소 재료, 전지 전극용 재료, 및 전지 |
KR1020187021405A KR101971448B1 (ko) | 2013-07-29 | 2014-07-28 | 탄소 재료, 전지 전극용 재료, 및 전지 |
US14/908,281 US10144646B2 (en) | 2013-07-29 | 2014-07-28 | Carbon material, material for a battery electrode, and battery |
CN201480042064.6A CN105408248A (zh) | 2013-07-29 | 2014-07-28 | 碳材料、电池电极用材料以及电池 |
JP2015529566A JP6476116B2 (ja) | 2013-07-29 | 2014-07-28 | 炭素材料、電池電極用材料、及び電池 |
US16/176,682 US10377634B2 (en) | 2013-07-29 | 2018-10-31 | Carbon material, material for a battery electrode, and battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013157068 | 2013-07-29 | ||
JP2013-157068 | 2013-07-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/908,281 A-371-Of-International US10144646B2 (en) | 2013-07-29 | 2014-07-28 | Carbon material, material for a battery electrode, and battery |
US16/176,682 Continuation US10377634B2 (en) | 2013-07-29 | 2018-10-31 | Carbon material, material for a battery electrode, and battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016182A1 true WO2015016182A1 (ja) | 2015-02-05 |
Family
ID=52431715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069831 WO2015016182A1 (ja) | 2013-07-29 | 2014-07-28 | 炭素材料、電池電極用材料、及び電池 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10144646B2 (ja) |
JP (1) | JP6476116B2 (ja) |
KR (2) | KR101883678B1 (ja) |
CN (1) | CN105408248A (ja) |
WO (1) | WO2015016182A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129557A1 (ja) * | 2015-02-09 | 2016-08-18 | 昭和電工株式会社 | 炭素材料、その製造方法及びその用途 |
WO2017002959A1 (ja) * | 2015-07-02 | 2017-01-05 | 昭和電工株式会社 | リチウムイオン電池用負極材及びその用途 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3360181B1 (en) * | 2015-10-06 | 2021-10-27 | Arcactive Limited | Improved lead-acid battery electrode |
JP6729889B2 (ja) * | 2016-02-26 | 2020-07-29 | 日清紡ホールディングス株式会社 | レドックスフロー電池電極用炭素触媒 |
JP6819982B2 (ja) * | 2016-02-26 | 2021-01-27 | 日清紡ホールディングス株式会社 | レドックスフロー電池電極用炭素触媒 |
JP2018006072A (ja) * | 2016-06-29 | 2018-01-11 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池用負極 |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
KR102321261B1 (ko) | 2017-10-27 | 2021-11-03 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지 |
KR102229453B1 (ko) * | 2017-11-24 | 2021-03-17 | 주식회사 엘지화학 | 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 |
KR102456927B1 (ko) | 2018-09-19 | 2022-10-20 | 주식회사 엘지화학 | 활물질 분석 장치 |
CN109888284B (zh) * | 2018-12-29 | 2020-05-01 | 湖南晋烨高科股份有限公司 | 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车 |
US20220185667A1 (en) * | 2019-04-04 | 2022-06-16 | Namics Corporation | Porous carbon and resin composition |
KR102299254B1 (ko) * | 2020-11-17 | 2021-09-06 | 주식회사 포스코 | 리튬 이차 전지용 음극 활물질 및 이의 제조방법 및 이를 이용하여 제조된 음극을 포함하는 리튬 이차 전지 |
KR102571202B1 (ko) | 2020-12-10 | 2023-08-25 | 충남대학교산학협력단 | 탄소 복합체를 포함하는 리튬 이차 전지용 음극 활물질 및 그 제조 방법 |
KR102608029B1 (ko) * | 2021-02-17 | 2023-11-30 | 한국화학연구원 | 난흑연화 탄소로부터 고결정성 인조흑연의 제조 방법 및 이에 의해 제조된 인조흑연 |
TWI816598B (zh) * | 2022-11-03 | 2023-09-21 | 台灣中油股份有限公司 | 負極碳材的製法及其鋰離子二次電池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000022687A1 (en) * | 1998-10-09 | 2000-04-20 | Showa Denko K.K. | Carbonaceous material for cell and cell containing the carbonaceous material |
WO2013084506A1 (ja) * | 2011-12-09 | 2013-06-13 | 昭和電工株式会社 | 複合黒鉛粒子およびその用途 |
WO2013164914A1 (en) * | 2012-05-02 | 2013-11-07 | Showa Denko K.K. | Negative electrode material for lithium ion battery and use thereof |
WO2014003135A1 (ja) * | 2012-06-29 | 2014-01-03 | 昭和電工株式会社 | 炭素材料、電池電極用炭素材料、及び電池 |
WO2014058040A1 (ja) * | 2012-10-12 | 2014-04-17 | 昭和電工株式会社 | 炭素材料、電池電極用炭素材料、及び電池 |
WO2014080632A1 (ja) * | 2012-11-21 | 2014-05-30 | 昭和電工株式会社 | リチウムイオン電池用負極材の製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534391A (en) | 1976-06-30 | 1978-01-14 | Mitsubishi Electric Corp | Electronic stethoscope |
JP3126030B2 (ja) | 1990-11-22 | 2001-01-22 | 大阪瓦斯株式会社 | リチウム二次電池 |
JP3653105B2 (ja) | 1993-02-25 | 2005-05-25 | 呉羽化学工業株式会社 | 二次電池電極用炭素質材料 |
JP3361510B2 (ja) | 1996-10-30 | 2003-01-07 | 日立化成工業株式会社 | リチウム二次電池用負極及びその製造法並びにリチウム二次電池 |
US6989137B1 (en) | 1998-10-09 | 2006-01-24 | Showa Denko K.K. | Carbonaceous material for cell and cell containing the carbonaceous material |
JP3534391B2 (ja) | 1998-11-27 | 2004-06-07 | 三菱化学株式会社 | 電極用炭素材料及びそれを使用した非水系二次電池 |
US6632569B1 (en) | 1998-11-27 | 2003-10-14 | Mitsubishi Chemical Corporation | Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material |
JP4945029B2 (ja) | 2001-03-06 | 2012-06-06 | 新日鐵化学株式会社 | リチウム二次電池負極用材料とその製造方法およびリチウム二次電池 |
JP4798741B2 (ja) | 2001-08-31 | 2011-10-19 | 日立マクセルエナジー株式会社 | 非水二次電池 |
US20030160215A1 (en) | 2002-01-31 | 2003-08-28 | Zhenhua Mao | Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same |
CN102931434B (zh) | 2005-10-20 | 2015-09-16 | 三菱化学株式会社 | 锂二次电池以及其中使用的非水电解液 |
CN110061283A (zh) * | 2005-10-20 | 2019-07-26 | 三菱化学株式会社 | 锂二次电池以及其中使用的非水电解液 |
JP5596254B2 (ja) * | 2006-08-31 | 2014-09-24 | 東洋炭素株式会社 | リチウムイオン二次電池負極用炭素材料、低結晶性炭素含浸リチウムイオン二次電池負極用炭素材料、負極電極板、及び、リチウムイオン二次電池 |
TWI493780B (zh) | 2008-03-31 | 2015-07-21 | 派諾得公司 | 用於電池的陽極粉末 |
JP2009200048A (ja) * | 2009-04-06 | 2009-09-03 | Toyo Tanso Kk | イオン注入装置用黒鉛部材 |
KR101071176B1 (ko) | 2009-10-22 | 2011-10-10 | 쇼와 덴코 가부시키가이샤 | 흑연재료, 전지전극용 탄소재료 및 전지 |
JP5554117B2 (ja) | 2010-03-30 | 2014-07-23 | 日本電極株式会社 | アルミニウム精錬用カソードカーボンブロック及びその製造方法 |
CN102844918B (zh) * | 2011-04-21 | 2014-05-28 | 昭和电工株式会社 | 石墨材料、电池电极用碳材料和电池 |
-
2014
- 2014-07-28 WO PCT/JP2014/069831 patent/WO2015016182A1/ja active Application Filing
- 2014-07-28 CN CN201480042064.6A patent/CN105408248A/zh active Pending
- 2014-07-28 US US14/908,281 patent/US10144646B2/en active Active
- 2014-07-28 JP JP2015529566A patent/JP6476116B2/ja active Active
- 2014-07-28 KR KR1020167001904A patent/KR101883678B1/ko active IP Right Grant
- 2014-07-28 KR KR1020187021405A patent/KR101971448B1/ko active IP Right Grant
-
2018
- 2018-10-31 US US16/176,682 patent/US10377634B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000022687A1 (en) * | 1998-10-09 | 2000-04-20 | Showa Denko K.K. | Carbonaceous material for cell and cell containing the carbonaceous material |
WO2013084506A1 (ja) * | 2011-12-09 | 2013-06-13 | 昭和電工株式会社 | 複合黒鉛粒子およびその用途 |
WO2013164914A1 (en) * | 2012-05-02 | 2013-11-07 | Showa Denko K.K. | Negative electrode material for lithium ion battery and use thereof |
WO2014003135A1 (ja) * | 2012-06-29 | 2014-01-03 | 昭和電工株式会社 | 炭素材料、電池電極用炭素材料、及び電池 |
WO2014058040A1 (ja) * | 2012-10-12 | 2014-04-17 | 昭和電工株式会社 | 炭素材料、電池電極用炭素材料、及び電池 |
WO2014080632A1 (ja) * | 2012-11-21 | 2014-05-30 | 昭和電工株式会社 | リチウムイオン電池用負極材の製造方法 |
Non-Patent Citations (2)
Title |
---|
GAKU OKUNO ET AL.: "Characteristics of Coke Carbon Modified with Mesophase-Pitch as a Negative Electrode for Lithium Ion Batteries", ELECTROCHEMISTRY, vol. 65, no. 3, 1997, pages 226 - 230 * |
YUICHI SATO ET AL.: "7Li-nuclear magnetic resonance observations of lithium insertion into coke carbon modified with mesophase-pitch", JOURNAL OF POWER SOURCES, vol. 97 - 98, 2001, pages 165 - 170, XP028142762, DOI: doi:10.1016/S0378-7753(01)00677-2 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129557A1 (ja) * | 2015-02-09 | 2016-08-18 | 昭和電工株式会社 | 炭素材料、その製造方法及びその用途 |
CN107250037A (zh) * | 2015-02-09 | 2017-10-13 | 昭和电工株式会社 | 碳材料、其制造方法以及其用途 |
JPWO2016129557A1 (ja) * | 2015-02-09 | 2017-11-16 | 昭和電工株式会社 | 炭素材料、その製造方法及びその用途 |
US10377633B2 (en) | 2015-02-09 | 2019-08-13 | Showa Denko K.K. | Carbon material, method for producing same, and use for same |
WO2017002959A1 (ja) * | 2015-07-02 | 2017-01-05 | 昭和電工株式会社 | リチウムイオン電池用負極材及びその用途 |
JPWO2017002959A1 (ja) * | 2015-07-02 | 2018-04-12 | 昭和電工株式会社 | リチウムイオン電池用負極材及びその用途 |
US11031587B2 (en) | 2015-07-02 | 2021-06-08 | Showa Denko K. K. | Negative electrode material for lithium-ion batteries including non-flaky artificial graphite including silicon-containing particles, artificial graphite particles and carbonaceous material |
Also Published As
Publication number | Publication date |
---|---|
CN105408248A (zh) | 2016-03-16 |
JPWO2015016182A1 (ja) | 2017-03-02 |
US10377634B2 (en) | 2019-08-13 |
KR101883678B1 (ko) | 2018-07-31 |
KR20160023845A (ko) | 2016-03-03 |
US20190062162A1 (en) | 2019-02-28 |
KR20180088497A (ko) | 2018-08-03 |
KR101971448B1 (ko) | 2019-04-23 |
US10144646B2 (en) | 2018-12-04 |
US20160185600A1 (en) | 2016-06-30 |
JP6476116B2 (ja) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6129754B2 (ja) | 炭素材料、電池電極用炭素材料、及び電池 | |
US10377634B2 (en) | Carbon material, material for a battery electrode, and battery | |
US11031587B2 (en) | Negative electrode material for lithium-ion batteries including non-flaky artificial graphite including silicon-containing particles, artificial graphite particles and carbonaceous material | |
US10522821B2 (en) | Graphite power for negative electrode active material of lithium-ion secondary battery | |
TW201532336A (zh) | 鋰離子二次電池用負極活性物質 | |
JP5571270B1 (ja) | 炭素材料、電池電極用炭素材料、及び電池 | |
US10377633B2 (en) | Carbon material, method for producing same, and use for same | |
JP5877284B1 (ja) | 炭素材料、その製造方法及びその用途 | |
WO2017221895A1 (ja) | 黒鉛材およびそれを用いた二次電池用電極 | |
TW201940424A (zh) | 石墨材料、其製造方法及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480042064.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14833093 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015529566 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167001904 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14908281 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14833093 Country of ref document: EP Kind code of ref document: A1 |