WO2013084506A1 - 複合黒鉛粒子およびその用途 - Google Patents

複合黒鉛粒子およびその用途 Download PDF

Info

Publication number
WO2013084506A1
WO2013084506A1 PCT/JP2012/007847 JP2012007847W WO2013084506A1 WO 2013084506 A1 WO2013084506 A1 WO 2013084506A1 JP 2012007847 W JP2012007847 W JP 2012007847W WO 2013084506 A1 WO2013084506 A1 WO 2013084506A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite graphite
graphite particles
measured
less
particle size
Prior art date
Application number
PCT/JP2012/007847
Other languages
English (en)
French (fr)
Inventor
義史 横山
千明 外輪
武内 正隆
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2013509063A priority Critical patent/JP5270050B1/ja
Priority to KR1020137016496A priority patent/KR101361567B1/ko
Priority to US13/985,611 priority patent/US20140057166A1/en
Priority to CN201280018914.XA priority patent/CN103492316B/zh
Priority to DE112012004320.0T priority patent/DE112012004320T5/de
Publication of WO2013084506A1 publication Critical patent/WO2013084506A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to composite graphite particles and uses thereof. More specifically, the present invention relates to a lithium ion battery having a low resistance value and good cycle characteristics at low current charge / discharge, a lithium ion battery having a low resistance value and good input / output characteristics and high current cycle characteristics, etc.
  • the present invention relates to composite graphite particles useful as a negative electrode material that can be obtained, a production method thereof, an electrode sheet using the composite graphite particles, and a lithium ion battery.
  • Lithium ion batteries are used as power sources for portable electronic devices. Initially, lithium-ion batteries have many problems such as insufficient battery capacity and short charge / discharge cycle life. Currently, overcoming such challenges one by one, lithium-ion batteries can be used in applications such as mobile phones, notebook computers, digital cameras, and other low-power devices such as electric tools and electric bicycles. The application is also spreading. In addition, lithium ion batteries are particularly expected to be used as power sources for automobiles, and research and development on electrode materials, cell structures, etc. are actively promoted.
  • Carbon-based materials and metal-based materials have been developed as negative electrode materials for lithium ion batteries.
  • Carbon materials include carbon materials with high crystallinity, such as graphite, and carbon materials with low crystallinity, such as amorphous carbon. Any of these can be used as a negative electrode active material because lithium insertion / extraction reaction is possible.
  • a battery obtained from a low crystalline carbon material has a high capacity, but it is known that the cycle deterioration is remarkable.
  • a battery obtained from a highly crystalline carbon material has a relatively low resistance value and stable cycle characteristics, but has a low battery capacity.
  • Patent Document 1 discloses a technique for coating the surface of natural graphite with amorphous carbon by mixing natural graphite and pitch and performing heat treatment at 900 to 1100 ° C. in an inert gas atmosphere.
  • Patent Document 2 discloses a technique in which a carbon material serving as a core material is immersed in tar or pitch and dried or heat-treated at 900 to 1300 ° C.
  • Patent Document 3 a carbon precursor such as pitch is mixed on the surface of graphite particles obtained by granulating natural graphite or scaly artificial graphite, and fired in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere.
  • Technology is disclosed.
  • Patent Document 4 discloses that spherical graphite particles obtained by granulating and spheroidizing graphite having d 002 of 0.3356 nm, R value of about 0.07, and Lc of about 50 nm by mechanical external force are added to phenol. It is disclosed that composite graphite particles formed by coating a heated carbide of a resin such as a resin are used as a negative electrode active material.
  • JP 2005-285633 A Japanese Patent No. 2976299 Japanese Patent No. 3193342 Japanese Patent Laid-Open No. 2004-210634
  • lithium-ion batteries still have improved battery capacity, initial coulomb efficiency, low current charge / discharge cycle characteristics, input / output characteristics, large current cycle characteristics, resistance values, etc. It is requested to do.
  • An object of the present invention is to provide a composite graphite particle useful as a negative electrode material capable of obtaining a lithium ion battery excellent in cycle characteristics during low current charge / discharge or a lithium ion battery excellent in input / output characteristics and large current cycle characteristics, A production method, and an electrode sheet and a lithium ion battery using the composite graphite particles are provided.
  • the present invention includes the following.
  • the intensity ratio I D / I G between the peak intensity (I D ) in the range of 1300 to 1400 cm ⁇ 1 and the peak intensity (I G ) in the range of 1500 to 1620 cm ⁇ 1 measured by Raman spectroscopy is 0.00.
  • the 50% particle diameter (D 50 ) in the volume-based cumulative particle size distribution measured by laser diffraction method is 3 ⁇ m or more and 30 ⁇ m or less, and is pressed to a density of 1.35 to 1.45 g / cm 3 using a binder.
  • Composite graphite particles in which the ratio I 110 / I 004 between the intensity of the 110 diffraction peak (I 110 ) and the intensity of the 004 diffraction peak (I 004 ) measured by the X-ray wide angle diffraction method is 0.2 or more.
  • the composite graphite particles according to [2] d 002 based on the 002 diffraction peak measured by wide-angle X-ray diffraction is less than 0.342nm than 0.334nm (1).
  • the organic compound is at least one compound selected from the group consisting of petroleum pitch, coal pitch, phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin, and epoxy resin. 5].
  • Petroleum coke having a grindability index of 35 to 60 is heat-treated at 2500 ° C. to 3500 ° C. to obtain a core material made of graphite.
  • the slurry or paste according to [10] further containing natural graphite.
  • An electrode sheet comprising a laminate having a current collector and an electrode layer containing the composite graphite particles according to any one of [1] to [8].
  • the electrode layer further contains natural graphite, and a ratio I 110 / I 004 between the intensity of the 110 diffraction peak (I 110 ) and the intensity of the 004 diffraction peak (I 004 ) measured by the X-ray wide angle diffraction method.
  • the electrode sheet according to [12] wherein is 0.1 or more and 0.15 or less.
  • a lithium ion battery including the electrode sheet according to [12] or [13] as a negative electrode.
  • the composite graphite particles according to the present invention have high lithium ion acceptability, they are useful as an active material for a negative electrode of a lithium ion battery.
  • the lithium ion battery obtained using the composite graphite particles has good low current cycle characteristics, input / output characteristics, large current cycle characteristics, and the like.
  • the composite graphite particles of a preferred embodiment according to the present invention have a core material made of graphite and a carbonaceous layer present on the surface thereof.
  • the graphite constituting the core material is artificial graphite obtained by heat-treating (graphitizing) petroleum coke.
  • Petroleum coke used as a raw material has a grindability index, that is, HGI (see ASTM D409), usually 35 to 60, preferably 37 to 55, more preferably 40 to 50.
  • HGI grindability index
  • a lithium ion battery excellent in input / output characteristics, low current cycle characteristics, high current cycle characteristics, and the like can be obtained.
  • HGI can be measured by the following method.
  • the particle size of the sample is adjusted to 1.18 to 600 ⁇ m, and 50 g of the sample is set in a hard glove grinding tester. Stop the device after rotating 60 times at 5-20 rpm.
  • the treatment temperature in graphitization of petroleum coke is usually 2500 ° C. or higher and 3500 ° C. or lower, preferably 2500 ° C. or higher and 3300 ° C. or lower, more preferably 2550 ° C. or higher and 3300 ° C. or lower.
  • the graphitization treatment is preferably performed in an inert atmosphere.
  • the graphitization treatment time may be appropriately selected according to the amount of treatment, the type of graphitization furnace, and the like, and is not particularly limited.
  • the graphitization time is, for example, about 10 minutes to 100 hours.
  • the graphitization treatment can be performed using, for example, an Atchison type graphitization furnace.
  • the 50% particle diameter (D 50 ) of the core material is preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the 50% particle size (D 50 ) of the core material is preferably 10 ⁇ m or more and 30 ⁇ m or less, more preferably 10 ⁇ m or more and 20 ⁇ m or less from the viewpoint of obtaining a lithium ion battery excellent in low current cycle characteristics and high current cycle characteristics.
  • the 50% particle diameter (D 50 ) of the core material is preferably less than 10 ⁇ m, more preferably 3 ⁇ m or more and less than 10 ⁇ m, more preferably from the viewpoint of obtaining a lithium ion battery excellent in input / output characteristics and large current cycle characteristics.
  • the adjustment to the 50% particle size (D 50 ) can be performed by a mechanochemical method such as hybridization, a known granulation method, pulverization, classification or the like.
  • the 50% particle diameter (D 50 ) is calculated based on a volume-based cumulative particle size distribution measured by a laser diffraction method.
  • the core material the ratio I D / I G of the peak intensity (I G) in the range of the peak intensity (I D) and 1500 ⁇ 1620 cm -1 in the range of 1300 ⁇ 1400 cm -1 measured by Raman spectroscopy (R value) is preferably 0.2 or less, more preferably 0.175 or less, further preferably 0.15 or less, and most preferably 0.1 or less.
  • the R value of the core material is a value obtained by measurement in a state before the carbonaceous layer is present on the surface of the core material.
  • the ratio I D / I G (R value) is preferably 0.2 or more, more preferably 0.35 or more, and still more preferably 0.5 or more.
  • the upper limit of the intensity ratio I D / I G (R value) is preferably 1.5, more preferably 1.
  • the R value of the carbonaceous layer is a value obtained by measuring the carbonaceous material by obtaining the carbonaceous material by performing the same method as the method of forming the carbonaceous layer described later in the absence of the core material.
  • the R value was measured using NRS-5100 manufactured by JASCO Corporation under the conditions of irradiation with an argon laser having a wavelength of 532 nm and an output of 7.4 mW, and measurement of Raman scattered light by a spectrometer.
  • an organic compound is first attached to the core material.
  • the method of attaching is not particularly limited.
  • a method of adhering a core material and an organic compound by dry mixing a method of mixing a solution of an organic compound and a core material, and then removing the solvent and adhering can be mentioned.
  • the method by dry mixing is preferable.
  • the dry mixing can be performed using, for example, a stirring composite device equipped with an impeller.
  • isotropic pitch As the organic compound to be adhered, isotropic pitch, anisotropic pitch, resin, resin precursor or monomer is preferable.
  • the pitch include petroleum pitch and coal pitch, and either isotropic pitch or anisotropic pitch can be employed.
  • a resin obtained by polymerizing a resin precursor or a monomer As the organic compound, it is preferable to use a resin obtained by polymerizing a resin precursor or a monomer. Suitable resin includes at least one selected from the group consisting of phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin and epoxy resin.
  • the organic compound attached to the core material is preferably heat treated at 500 ° C. or higher, more preferably 500 ° C. or higher and 2000 ° C. or lower, further preferably 500 ° C. or higher and 1500 ° C. or lower, particularly preferably 900 ° C. or higher and 1200 ° C. or lower. It is preferable to do.
  • the organic compound is carbonized to form a carbonaceous layer. When carbonized in this temperature range, the carbonaceous layer is sufficiently adhered to the core material, and the balance of battery characteristics, charging characteristics, etc. is improved.
  • the carbonization by this heat treatment is preferably performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include an atmosphere filled with an inert gas such as argon gas or nitrogen gas.
  • the heat treatment time for carbonization may be appropriately selected according to the production scale. For example, it is 30 to 120 minutes, preferably 45 to 90 minutes.
  • the ratio of the core material and the carbonaceous layer constituting the composite graphite particles is not particularly limited, but the amount of the carbonaceous layer is preferably 0.05 to 10 with respect to 100 parts by mass of the core material. Part by mass, more preferably 0.1 to 7 parts by mass.
  • the amount of the carbonaceous layer is too small, improvement effects such as cycle characteristics tend to be small. If the amount is too large, the battery capacity tends to decrease. Since the amount of the carbonaceous layer is substantially the same as the amount of the organic compound attached to the core material, it can be calculated as the amount of the organic compound attached to the core material.
  • the composite graphite particles obtained by the carbonization treatment may be fused to form a lump, they can be atomized by crushing.
  • the 50% particle size (D 50 ) in the volume-based cumulative particle size distribution measured by a laser diffraction method is usually 3 ⁇ m or more and 30 ⁇ m or less.
  • the composite graphite particles of a preferred embodiment according to the present invention usually have a 50% particle size (D 50 ) in a volume-based cumulative particle size distribution measured by a laser diffraction method. It is 10 ⁇ m or more and 30 ⁇ m or less, preferably 10 ⁇ m or more and 20 ⁇ m or less. From the viewpoint of low current cycle characteristics and high current cycle characteristics, the composite graphite particles of a preferred embodiment according to the present invention have a 90% particle diameter (D 90 ) in a volume-based cumulative particle size distribution measured by a laser diffraction method.
  • D 50 50% particle size
  • D 90 90% particle diameter
  • the composite graphite particles of a preferred embodiment according to the present invention have a 10% particle diameter (D 10 ) in a volume-based cumulative particle size distribution measured by a laser diffraction method, Preferably they are 1 micrometer or more and 10 micrometers or less, More preferably, they are 4 micrometers or more and 6 micrometers or less.
  • the composite graphite particles of a preferred embodiment according to the present invention have a 50% particle diameter (D 50 ) in a volume-based cumulative particle size distribution measured by a laser diffraction method, usually 3 ⁇ m. It is 10 ⁇ m or less, preferably 3 ⁇ m or more and less than 10 ⁇ m, more preferably 3.5 ⁇ m or more and less than 10 ⁇ m, further preferably 3.5 ⁇ m or more and 8 ⁇ m or less, and most preferably 4 ⁇ m or more and 7 ⁇ m or less.
  • D 50 50% particle diameter in a volume-based cumulative particle size distribution measured by a laser diffraction method
  • the composite graphite particles of a preferred embodiment according to the present invention preferably have a 90% particle size (D 90 ) in a volume-based cumulative particle size distribution measured by a laser diffraction method. They are 6 micrometers or more and 20 micrometers or less, More preferably, they are 8 micrometers or more and 15 micrometers or less.
  • the composite graphite particles of a preferred embodiment according to the present invention have a 10% particle size (D 10 ) in a volume-based cumulative particle size distribution measured by a laser diffraction method, Preferably they are 0.1 micrometer or more and 5 micrometers or less, More preferably, they are 1 micrometer or more and 3 micrometers or less. Since the thickness of the carbonaceous layer is about several tens of nanometers, the 50% particle diameter of the composite graphite particles and the 50% particle diameter of the core material are almost the same as the measured values.
  • the composite graphite particles of the preferred embodiment of the present invention d 002 based on the 002 diffraction peak measured by X-ray wide angle diffraction method, preferably 0.334nm than 0.342nm less, more preferably 0.334nm It is not less than 0.338 nm, more preferably not less than 0.3355 nm and not more than 0.3369 nm, particularly preferably not less than 0.3355 nm and not more than 0.3368 nm.
  • the composite graphite particles of a preferred embodiment according to the present invention have a crystallite size Lc in the c-axis direction of preferably 50 nm or more, more preferably 75 to 150 nm.
  • D 002 and Lc are powders of composite graphite particles set in a powder X-ray diffractometer (manufactured by Rigaku Corporation, Smart Lab IV), measured with a CuK ⁇ ray at an output of 30 kV and 200 mA, and JIS R Calculated according to 7651.
  • the Raman range peak intensity in the spectrum 1300 is measured at ⁇ 1400cm -1 (I D) and the peak intensity in the range of 1500 ⁇ 1620cm -1 (I G
  • the ratio I D / I G is usually 0.1 or more, preferably 0.1 to 1, more preferably 0.5 to 1, and still more preferably 0.7 to 0.95.
  • the BET specific surface area of the composite graphite particles is preferably 0.2 to 30 m 2 / g, more preferably 0.3 to 10 m 2 / g, and still more preferably 0.4 to 5 m 2 / g.
  • the composite graphite particles of a preferred embodiment according to the present invention have a 110 diffraction peak intensity (measured by an X-ray wide angle diffraction method) when pressed to a density of 1.35 to 1.45 g / cm 3 using a binder (
  • the ratio I 110 / I 004 between I 110 ) and the intensity of the 004 diffraction peak (I 004 ) is usually 0.2 or more, preferably 0.3 or more, more preferably 0.4 or more, still more preferably 0.00. 5 or more.
  • polyvinylidene fluoride was used as a binder.
  • Other measurement conditions are the same as those described in the examples.
  • a slurry or paste of a preferred embodiment according to the present invention contains the composite graphite particles, a binder, and a solvent.
  • the slurry or paste of a more preferred embodiment according to the present invention further contains natural graphite.
  • the slurry or paste is obtained by kneading the composite graphite particles, a binder, a solvent, and preferably natural graphite.
  • the slurry or paste can be formed into a sheet shape, a pellet shape or the like, if necessary.
  • the slurry or paste of a preferred embodiment according to the present invention is suitably used for producing battery electrodes, particularly negative electrodes.
  • binder examples include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, and a polymer compound having high ionic conductivity.
  • the polymer compound having a large ionic conductivity examples include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphasphazene, polyacrylonitrile and the like.
  • the mixing ratio of the composite graphite particles and the binder is preferably 0.5 to 20 parts by mass of the binder with respect to 100 parts by mass of the composite graphite particles.
  • the amount of natural graphite is not particularly limited as long as the strength ratio I 110 / I 004 of the electrode sheet described later falls within the following range. Specifically, the amount of natural graphite is preferably 10 to 500 parts by mass with respect to 100 parts by mass of composite graphite particles. When natural graphite is used, a battery having a good balance between large current input / output characteristics and cycle characteristics can be obtained.
  • Natural graphite is preferably spherical.
  • the particle diameter of natural graphite is not particularly limited as long as the strength ratio I 110 / I 004 of the electrode sheet described later falls within the range described later.
  • natural graphite preferably has a 50% particle size (D 50 ) in a volume-based cumulative particle size distribution of 1 to 40 ⁇ m. Adjustment of the above range to D 50 can be performed by mechanochemical methods such as hybridization, known granulation methods, pulverization, classification, and the like. For example, Chinese natural graphite having a D 50 of 7 ⁇ m is introduced into a hybridizer NHS1 type manufactured by Nara Machinery Co., Ltd.
  • a slurry or paste is prepared by mixing 50 parts by mass of the spherical natural graphite particles thus obtained and 50 parts by mass of the composite graphite particles obtained in an example of the embodiment of the present invention, adding a binder to the mixture, and kneading. Can be obtained.
  • the solvent is not particularly limited and includes N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, water and the like.
  • a binder using water as a solvent it is preferable to use a thickener together.
  • the amount of the solvent is adjusted so that the viscosity is easy to apply to the current collector.
  • the slurry or paste of the preferred embodiment according to the present invention may further contain a conductivity imparting agent.
  • the conductivity imparting agent include fibrous carbon such as vapor grown carbon fiber and carbon nanotube, and conductive carbon such as acetylene black and ketjen black (trade name).
  • the electrode sheet of a preferred embodiment according to the present invention comprises a laminate having a current collector and an electrode layer containing the composite graphite particles according to the present invention.
  • the electrode layer preferably further contains natural graphite.
  • the electrode sheet can be obtained, for example, by applying the slurry or paste according to the present invention on a current collector, drying, and pressure forming.
  • the current collector include foils and meshes made of aluminum, nickel, copper, and the like.
  • a conductive layer may be provided on the surface of the current collector.
  • the conductive layer usually contains a conductivity imparting agent and a binder.
  • the method for applying the slurry or paste is not particularly limited.
  • the application thickness (when dried) of the slurry or paste is usually 50 to 200 ⁇ m.
  • the negative electrode may not be accommodated in a standardized battery container.
  • the pressure molding method include molding methods such as roll pressing and press pressing.
  • the pressure during pressure molding is preferably about 100 MPa to about 300 MPa (about 1 to 3 t / cm 2 ).
  • the negative electrode thus obtained is suitable for a lithium ion battery.
  • the electrode sheet When the composite graphite particles and the natural graphite are contained in the electrode layer, the electrode sheet has a 110 diffraction peak intensity (I 110 ) and a 004 diffraction peak intensity (I) measured by the X-ray wide angle diffraction method.
  • the ratio I 110 / I 004 to 004 ) is preferably 0.1 or more and 0.15 or less.
  • the strength ratio I 110 / I 004 of the electrode sheet when natural graphite is used together is controlled by adjusting the ratio of the natural graphite particles to the composite graphite particles according to the present invention and the particle diameter of the natural graphite particles. Can do.
  • the lithium ion battery of a preferred embodiment according to the present invention includes the electrode sheet according to the present invention as a negative electrode.
  • the positive electrode of the lithium ion battery according to a preferred embodiment of the present invention those conventionally used for lithium ion batteries can be used.
  • the active material used for the positive electrode include LiNiO 2 , LiCoO 2 , and LiMn 2 O 4 .
  • the electrolyte used for the lithium ion battery is not particularly limited.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, CF 3 SO 3 Li can be used, for example, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate,
  • non-aqueous electrolytes dissolved in non-aqueous solvents such as propylene carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, and ⁇ -butyrolactone, and so-called non-aqueous polymer electrolytes in solid or gel form.
  • an additive that exhibits a decomposition reaction when the lithium ion battery is initially charged to the electrolyte.
  • the additive include vinylene carbonate, biphenyl, propane sulfone and the like. The addition amount is preferably 0.01 to 5% by mass.
  • a separator can be provided between the positive electrode and the negative electrode.
  • the separator include non-woven fabrics, cloths, microporous films, or combinations thereof, which are mainly composed of polyolefins such as polyethylene and polypropylene.
  • HGI Grindability index
  • the paste was applied onto the current collector using an automatic coating machine and a doctor blade having a clearance of 250 ⁇ m.
  • the current collector on which the paste was applied was placed on a hot plate at about 80 ° C. to remove moisture. Then, it was dried at 120 ° C. for 6 hours with a vacuum dryer. After drying, it was pressure-molded by uniaxial press so that the electrode density determined from the total mass and volume of the graphite particles and the binder was 1.40 ⁇ 0.05 g / cm 3 to obtain an electrode sheet.
  • the obtained electrode sheet was cut into an appropriate size and attached to a glass cell for XRD measurement, and a wide-angle X-ray diffraction peak was measured. The ratio I 110 / I 004 between the intensity of the 004 diffraction peak and the intensity of the 110 diffraction peak was calculated.
  • This paste was applied onto a 20 ⁇ m thick Cu foil with a doctor blade having a clearance of 150 ⁇ m.
  • the current collector coated with the paste was placed on a hot plate at about 80 ° C. to remove N-methyl-2-pyrrolidone. Then, it dried at 90 degreeC with the vacuum dryer for 1 hour. After drying, it was pressure-molded by uniaxial pressing so that the electrode density determined from the total mass and volume of the graphite particles and the binder was 1.50 ⁇ 0.05 g / cm 3 to obtain a negative electrode. The obtained negative electrode was cut out to a size of ⁇ 15 mm.
  • the cut negative electrode was pressed at 1.2 t / cm 2 for 10 seconds, and the average thickness of the coating film was measured to be 70 to 80 ⁇ m. Further, the loading level of the coating film was 6.5 to 7.5 mg / cm 2 .
  • the negative electrode was introduced into a glove box filled with argon gas and controlled to a dew point of ⁇ 75 ° C. or lower.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • a separator Cut out at ⁇ 20 mm and a lithium foil of 3 mm thickness cut out at ⁇ 17.5 mm were placed in this order. From the top, a cap with a gasket was attached and caulked with a caulking device.
  • N-methyl-2-pyrrolidone manufactured by Kishida Chemical Co., Ltd.
  • N-methyl-2-pyrrolidone manufactured by Kishida Chemical Co., Ltd.
  • the paste was applied to an aluminum foil having a thickness of 20 ⁇ m with a doctor blade having a clearance of 200 ⁇ m to produce a positive electrode.
  • the negative electrode and the positive electrode were laminated in a laminate packaging material via a polypropylene separator (manufactured by Tonen Chemical Co., Ltd., Cellguard 2400).
  • an electrolytic solution was injected and heat sealing was performed in a vacuum to obtain a laminate cell for evaluation.
  • the first and second charge / discharge cycles were performed as follows.
  • the battery was charged at a constant current of 5.5 mA from the rest potential to 4.2 V, then charged at a constant voltage of 4.2 V, and the charging was stopped when the current value decreased to 0.27 mA. Subsequently, constant current discharge was performed at 5.5 mA, and cut off at a voltage of 2.7 V.
  • the third and subsequent charge / discharge cycles were performed as follows.
  • the battery was charged at a constant current of 5.5 mA (corresponding to 1 C) from the rest potential to 4.2 V, and then charged at a constant voltage of 4.2 V. When the current value dropped to 55 ⁇ A, the charging was stopped. Subsequently, constant current discharge was performed at 5.5 mA (corresponding to 1 C), and cut off at a voltage of 2.7 V. This charge / discharge cycle was repeated.
  • the ratio of the discharge capacity at the 200th time to the discharge capacity at the 3rd time was evaluated as a “cycle capacity retention rate”.
  • N-methyl-2-pyrrolidone manufactured by Kishida Chemical Co., Ltd.
  • N-methyl-2-pyrrolidone manufactured by Kishida Chemical Co., Ltd.
  • the paste was applied to an aluminum foil having a thickness of 20 ⁇ m with a doctor blade having a clearance of 200 ⁇ m to produce a positive electrode.
  • the negative electrode and the positive electrode were laminated in a laminate packaging material via a polypropylene separator (manufactured by Tonen Chemical Co., Ltd., Cellguard 2400).
  • an electrolytic solution was injected and heat sealing was performed in a vacuum to obtain a laminate cell for evaluation.
  • the first and second charge / discharge cycles were performed as follows.
  • the battery was charged at a constant current of 5.5 mA from the rest potential to 4.2 V, then charged at a constant voltage of 4.2 V, and the charging was stopped when the current value decreased to 0.27 mA. Subsequently, constant current discharge was performed at 5.5 mA, and cut off at a voltage of 2.7 V.
  • the third and subsequent charge / discharge cycles were performed as follows.
  • the battery was charged at a constant current of 16.5 mA (corresponding to 3C) from the rest potential to 4.2 V, and then charged at a constant voltage of 4.2 V.
  • the charging was stopped when the current value dropped to 55 ⁇ A.
  • constant current discharge was performed at 16.5 mA (corresponding to 3C), and cut off at a voltage of 2.7V. This charge / discharge cycle was repeated.
  • the ratio of the 200th discharge capacity to the third discharge capacity was evaluated as “high rate cycle capacity retention”.
  • I / O characteristics were evaluated by the following method. First, constant current discharge was performed at 5.5 mA. Then, constant current charging was performed at 5.5 mA from the rest potential to 4.2 V, and then constant voltage charging was performed at 4.2 V. When the current value decreased to 0.27 mA, charging was stopped. Subsequently, constant current discharge was performed at 0.55 mA (equivalent to 0.1 C) for 2 hours. The voltage value after discharge was recorded. A constant current discharge was performed at 1.1 mA (corresponding to 0.2 C) for 5 seconds, and rested for 30 minutes.
  • the above-mentioned constant current discharge for 5 seconds is performed at 0.55 mA (corresponding to 0.1 C) for 3.5 hours, 5 hours, 6.5 hours, or 8 hours, and at that time, 0.2 C, 0.5 C
  • the current value and voltage value were recorded under constant current charging conditions of 1C and 2C. DC resistance was calculated from these recorded values, and the value was evaluated as “input / output characteristics”.
  • the direct current resistance is small, it is possible to suppress a decrease in input / output and a decrease in capacitance, and it is possible to obtain the high stability as designed.
  • Example 1 Petroleum coke having an HGI of 40 was pulverized to adjust the 50% particle size (D 50 ) to 15 ⁇ m. This was put into an Atchison furnace and heated at 3000 ° C. to obtain a core material made of graphite.
  • the powdery isotropic petroleum pitch was dry-mixed in an amount of 1% by mass with respect to the core material, and heated at 1100 ° C. for 1 hour in an argon atmosphere to obtain composite graphite particles.
  • the obtained composite graphite particles had a 50% particle size of 15 ⁇ m, a BET specific surface area of 1.2 m 2 / g, an R value of 0.85, d 002 of 0.336 nm, and I 110 / I 004 of 0.46. there were.
  • the battery obtained using this composite graphite particle has an initial discharge capacity of 331 mAh / g, an initial efficiency of 92%, a cycle capacity retention ratio of 0.92, a high rate cycle capacity retention ratio of 0.88, and an input / output capacity.
  • the characteristic was 4.8 ⁇ .
  • Example 2 Composite graphite particles were obtained in the same manner as in Example 1 except that the petroleum coke having an HGI of 40 was replaced with the petroleum coke having an HGI of 50.
  • the obtained composite graphite particles had a 50% particle size of 15 ⁇ m, a BET specific surface area of 1.4 m 2 / g, an R value of 0.77, d 002 of 0.337 nm, and I 110 / I 004 of 0.44. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 337 mAh / g, an initial efficiency of 90%, and a cycle capacity retention of 0.93.
  • Example 3 Composite graphite particles were obtained in the same manner as in Example 1 except that the amount of the isotropic petroleum pitch mixed with the graphite core material was changed to 5% by mass with respect to the core material.
  • the obtained composite graphite particles had a 50% particle size of 15 ⁇ m, a BET specific surface area of 1.1 m 2 / g, an R value of 0.91, d 002 of 0.338 nm, and I 110 / I 004 of 0.35. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 330 mAh / g, an initial efficiency of 91%, and a cycle capacity retention of 0.94.
  • Example 4 Composite graphite particles were obtained in the same manner as in Example 1 except that the heating temperature in the Atchison furnace was changed to 2500 ° C.
  • the obtained composite graphite particles had a 50% particle size of 15 ⁇ m, a BET specific surface area of 1.4 m 2 / g, an R value of 0.87, d 002 of 0.340 nm, and I 110 / I 004 of 0.32. there were. Further, the battery obtained using this composite graphite particle had an initial discharge capacity of 320 mAh / g, an initial efficiency of 89%, and a cycle capacity retention of 0.90.
  • Comparative Example 1 Petroleum coke having an HGI of 40 was pulverized to adjust the 50% particle size (D 50 ) to 15 ⁇ m. This was put into an Atchison furnace and heated at 3000 ° C. to obtain graphite particles.
  • the obtained graphite particles had a 50% particle size of 15 ⁇ m, a BET specific surface area of 1.6 m 2 / g, an R value of 0.08, d 002 of 0.335 nm, and I 110 / I 004 of 0.59. It was. Further, the battery obtained using this composite graphite particle had an initial discharge capacity of 333 mAh / g, an initial efficiency of 90%, and a cycle capacity retention of 0.80.
  • Comparative Example 2 Graphite particles were obtained in the same manner as in Comparative Example 1 except that the petroleum coke having an HGI of 40 was replaced with the petroleum coke having an HGI of 50.
  • the obtained graphite particles had a 50% particle size of 15 ⁇ m, a BET specific surface area of 1.8 m 2 / g, an R value of 0.06, d 002 of 0.335 nm, and I 110 / I 004 of 0.57. It was. Further, the battery obtained using this composite graphite particle had an initial discharge capacity of 336 mAh / g, an initial efficiency of 89%, and a cycle capacity retention of 0.82.
  • Comparative Example 3 Composite graphite particles were obtained in the same manner as in Example 1 except that the heating temperature in the Atchison furnace was changed to 2000 ° C.
  • the obtained composite graphite particles had a 50% particle size of 15 ⁇ m, a BET specific surface area of 1.6 m 2 / g, an R value of 0.96, d 002 of 0.349 nm, and I 110 / I 004 of 0.25. there were. Further, the battery obtained using this composite graphite particle had an initial discharge capacity of 299 mAh / g, an initial efficiency of 82%, and a cycle capacity retention of 0.82.
  • Comparative Example 4 Composite graphite particles were obtained in the same manner as in Example 1 except that the petroleum coke having an HGI of 40 was replaced with the petroleum coke having an HGI of 30.
  • the obtained composite graphite particles had a 50% particle diameter of 15 ⁇ m, a BET specific surface area of 1.5 m 2 / g, an R value of 0.87, d 002 of 0.335 nm, and I 110 / I 004 of 0.41. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 326 mAh / g, an initial efficiency of 85%, and a cycle capacity retention of 0.85.
  • Composite graphite particles were obtained in the same manner as in Example 1 except that the petroleum coke having an HGI of 40 was replaced with the petroleum coke having an HGI of 70.
  • the obtained composite graphite particles had a 50% particle size of 18 ⁇ m, a BET specific surface area of 3.1 m 2 / g, an R value of 0.62, d 002 of 0.336 nm, and I 110 / I 004 of 0.57. there were.
  • the battery obtained using this composite graphite particle had an initial discharge capacity of 356 mAh / g, an initial efficiency of 80%, and a cycle capacity retention of 0.61.
  • Example 5 has a core material made of graphite obtained by heat-treating petroleum coke having a grindability index of 35 to 60 at 2500 ° C. or more, and a carbonaceous layer existing on the surface thereof.
  • the intensity ratio of the peak intensity (I G) in the range of the peak intensity (I D) and 1500 ⁇ 1620 cm -1 in the range of 1300 ⁇ 1400 cm -1 as measured by Raman spectrum I D / I G is 0.1 or more
  • 50% particle size (D 50 ) in the volume-based cumulative particle size distribution measured by laser diffraction method is 10 ⁇ m or more and 30 ⁇ m or less
  • density is 1.35 using a binder.
  • Example 5 Petroleum coke having an HGI of 40 was pulverized to adjust the 50% particle size (D 50 ) to 6 ⁇ m. This was put into an Atchison furnace and heated at 3000 ° C. to obtain a core material made of graphite.
  • the powdery isotropic petroleum pitch was dry-mixed in an amount of 1% by mass with respect to the core, and heated at 1100 ° C. for 1 hour in an argon gas atmosphere to obtain composite graphite particles.
  • the obtained composite graphite particles had a 50% particle diameter of 6 ⁇ m, a BET specific surface area of 2.3 m 2 / g, an R value of 0.85, d 002 of 0.336 nm, and I 110 / I 004 of 0.44. there were.
  • the battery obtained using this composite graphite particle has an initial discharge capacity of 330 mAh / g, an initial efficiency of 92%, a high rate cycle capacity retention of 0.82, an input / output characteristic of 3.8 ⁇ , and a cycle capacity retention.
  • the rate was 0.85.
  • Example 6 Composite graphite particles were obtained in the same manner as in Example 5 except that the petroleum coke having an HGI of 40 was replaced with the petroleum coke having an HGI of 50.
  • the obtained composite graphite particles had a 50% particle size of 6 ⁇ m, a BET specific surface area of 2.7 m 2 / g, an R value of 0.77, d 002 of 0.337 nm, and I 110 / I 004 of 0.42. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 335 mAh / g, an initial efficiency of 90%, a high rate cycle capacity retention of 0.83, and an input / output characteristic of 3.7 ⁇ .
  • Example 7 Composite graphite particles were obtained in the same manner as in Example 5, except that the amount of isotropic petroleum pitch mixed with the core material made of graphite was changed to an amount of 5% by mass with respect to the core material.
  • the obtained composite graphite particles had a 50% particle size of 6 ⁇ m, a BET specific surface area of 2.1 m 2 / g, an R value of 0.91, d 002 of 0.338 nm, and I 110 / I 004 of 0.32. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 328 mAh / g, an initial efficiency of 91%, a high rate cycle capacity retention of 0.85, and an input / output characteristic of 3.6 ⁇ .
  • Example 8 Composite graphite particles were obtained in the same manner as in Example 5 except that the heating temperature in the Atchison furnace was changed to 2500 ° C.
  • the obtained composite graphite particles had a 50% particle diameter of 6 ⁇ m, a BET specific surface area of 2.6 m 2 / g, an R value of 0.86, d 002 of 0.340 nm, and I 110 / I 004 of 0.35. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 318 mAh / g, an initial efficiency of 88%, a high rate cycle capacity retention of 0.80, and an input / output characteristic of 4.0 ⁇ .
  • Comparative Example 7 Graphite particles were obtained in the same manner as in Comparative Example 6, except that the petroleum coke having an HGI of 40 was replaced with the petroleum coke having an HGI of 50.
  • the obtained graphite particles had a 50% particle size of 6 ⁇ m, a BET specific surface area of 3.5 m 2 / g, an R value of 0.06, d 002 of 0.335 nm, and I 110 / I 004 of 0.51. It was. Further, the battery obtained using this composite graphite particle had an initial discharge capacity of 334 mAh / g, an initial efficiency of 89%, a high rate cycle capacity retention of 0.58, and an input / output characteristic of 5.2 ⁇ .
  • Comparative Example 8 Composite graphite particles were obtained in the same manner as in Example 5 except that the heating temperature in the Atchison furnace was changed to 2000 ° C.
  • the obtained composite graphite particles had a 50% particle size of 6 ⁇ m, a BET specific surface area of 2.5 m 2 / g, an R value of 0.96, d 002 of 0.349 nm, and I 110 / I 004 of 0.21. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 295 mAh / g, an initial efficiency of 82%, a high rate cycle capacity retention of 0.75, and an input / output characteristic of 3.2 ⁇ .
  • Composite graphite particles were obtained in the same manner as in Example 5 except that the petroleum coke having an HGI of 40 was replaced with the petroleum coke having an HGI of 30.
  • the obtained composite graphite particles had a 50% particle size of 6 ⁇ m, a BET specific surface area of 2.1 m 2 / g, an R value of 0.87, d 002 of 0.335 nm, and I 110 / I 004 of 0.38. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 325 mAh / g, an initial efficiency of 85%, a high rate cycle capacity retention of 0.74, and an input / output characteristic of 5.0 ⁇ .
  • Composite graphite particles were obtained in the same manner as in Example 5, except that petroleum coke with HGI of 40 was replaced with petroleum coke with HGI of 70, and the 50% particle size was adjusted to 18 ⁇ m by pulverization.
  • the obtained composite graphite particles had a 50% particle size of 7 ⁇ m, a BET specific surface area of 5.5 m 2 / g, an R value of 0.62, d 002 of 0.336 nm, and I 110 / I 004 of 0.53. there were.
  • the battery obtained using the composite graphite particles had an initial discharge capacity of 345 mAh / g, an initial efficiency of 80%, a high rate cycle capacity retention of 0.52, and an input / output characteristic of 5.5 ⁇ .
  • Example 1 has a core material made of graphite obtained by heat-treating petroleum coke having a grindability index of 35 to 60 at 2500 ° C. or more, and a carbonaceous layer present on the surface thereof.
  • the intensity ratio of the peak intensity (I G) in the range of the peak intensity (I D) and 1500 ⁇ 1620 cm -1 in the range of 1300 ⁇ 1400 cm -1 as measured by Raman spectrum I D / I G is 0.1 or more
  • 50% particle size (D 50 ) in the volume-based cumulative particle size distribution measured by laser diffraction method is 3 ⁇ m or more and less than 10 ⁇ m
  • density is 1.35 using a binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

粉砕性指数が35~60である石油系コークスを2500℃以上3500℃以下で熱処理して得られる黒鉛からなる芯材と、 その表面に存在する炭素質層とを有する複合黒鉛粒子であって、 ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGが0.1以上であり、 レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が3μm以上30μm以下であり、且つ バインダーを用いて密度1.35~1.45g/cm3に加圧成形した際にX線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が0.2以上である、複合黒鉛粒子。

Description

複合黒鉛粒子およびその用途
 本発明は、複合黒鉛粒子およびその用途に関するものである。より詳細に、本発明は、抵抗値が低く、低電流充放電時のサイクル特性が良好なリチウムイオン電池や、抵抗値が低く、出入力特性および大電流サイクル特性が良好なリチウムイオン電池などを得ることができる負極材料として有用な複合黒鉛粒子、その製造方法、並びにこの複合黒鉛粒子を用いた電極シートおよびリチウムイオン電池に関するものである。
 携帯電子機器などの電源としてリチウムイオン電池が使用されている。リチウムイオン電池は、当初、電池容量が足りないとか、充放電サイクル寿命が短いといった課題が多くあった。現在ではそのような課題を一つずつ克服して、リチウムイオン電池の用途は携帯電話、ノートブック型パソコン、デジタルカメラなどの弱電機器から、電動工具、電動自転車といったパワーを必要とする強電機器にも適用が広がってきている。さらに、リチウムイオン電池は、自動車の動力源への利用が特に期待されており、電極材料、セル構造などの研究開発が盛んにすすめられている。
 リチウムイオン電池の負極材として、炭素系材料や金属系材料の開発が行われている。
 炭素系材料には、黒鉛などの結晶化度の高い炭素材料と、アモルファスカーボンなどの結晶化度の低い炭素材料とがある。これらはいずれもリチウムの挿入脱離反応が可能であることから、負極活物質に用いることができる。
 低結晶性の炭素材料によって得られる電池は、高容量であるが、サイクル劣化が著しいことが知られている。一方、高結晶性の炭素材料によって得られる電池は、抵抗値が比較的に低く且つ安定なサイクル特性を有するが、電池容量が低いことが知られている。
 低結晶性炭素材料および高結晶性炭素材料の短所を相互に補うことを狙って、低結晶性炭素材料と高結晶性炭素材料とを複合化などすることが提案されている。
 例えば、特許文献1には、天然黒鉛とピッチを混合して不活性ガス雰囲気下において、900~1100℃で熱処理を行うことにより、天然黒鉛の表面を非晶質炭素で被覆させる技術が開示されている。
 特許文献2には、芯材となる炭素材料をタールまたはピッチに浸漬させ、それを乾燥または900~1300℃で熱処理する技術が開示されている。
 特許文献3には、天然黒鉛または鱗状人造黒鉛を造粒させて得られる黒鉛粒子の表面にピッチなどの炭素前駆体を混合し、不活性ガス雰囲気下で700~2800℃の温度範囲で焼成させる技術が開示されている。
 さらに、特許文献4には、d002が0.3356nm、R値が約0.07、Lcが約50nmである鱗片状黒鉛を機械的外力で造粒球状化して得られる球状黒鉛粒子に、フェノール樹脂などの樹脂の加熱炭化物を被覆してなる複合黒鉛粒子を負極活物質として用いることが開示されている。
特開2005-285633号公報 特許2976299号公報 特許3193342号公報 特開2004-210634号公報
 上記のような技術が提案されているが、リチウムイオン電池には、未だに、電池容量、初期クーロン効率、低電流充放電時のサイクル特性、入出力特性、大電流サイクル特性、抵抗値等を改善することが求められている。
 本発明の目的は、低電流充放電時のサイクル特性に優れたリチウムイオン電池または出入力特性および大電流サイクル特性が良好なリチウムイオン電池を得ることができる負極材料として有用な複合黒鉛粒子、その製造方法、並びにこの複合黒鉛粒子を用いた電極シートおよびリチウムイオン電池を提供することである。
 すなわち、本発明は以下のものを包含する。
〔1〕 粉砕性指数が35~60である石油系コークスを2500℃以上3500℃以下で熱処理して得られる黒鉛からなる芯材と、 その表面に存在する炭素質層とを有する複合黒鉛粒子であって、
 ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGが0.1以上であり、
 レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が3μm以上30μm以下であり、且つ
 バインダーを用いて密度1.35~1.45g/cm3に加圧成形した際にX線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が0.2以上である、複合黒鉛粒子。
〔2〕 X線広角回折法によって測定される002回折ピークに基づくd002が0.334nm以上0.342nm以下である〔1〕に記載の複合黒鉛粒子。
〔3〕 窒素吸着に基づくBET比表面積が0.2~30m2/gである〔1〕または〔2〕に記載の複合黒鉛粒子。
〔4〕 炭素質層の量が、芯材100質量部に対して0.05~10質量部である〔1〕~〔3〕のいずれかひとつに記載の複合黒鉛粒子。
〔5〕 炭素質層が、有機化合物を500℃以上の温度で熱処理して得られるものである〔1〕~〔4〕のいずれかひとつに記載の複合黒鉛粒子。
〔6〕 有機化合物が、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂およびエポキシ樹脂からなる群から選ばれる少なくとも1種の化合物である〔5〕に記載の複合黒鉛粒子。
〔7〕 レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が3μm以上10μm未満である、〔1〕~〔6〕のいずれかひとつに記載の複合黒鉛粒子。
〔8〕 レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が10μm以上30μm以下である、〔1〕~〔6〕のいずれかひとつに記載の複合黒鉛粒子。
〔9〕 粉砕性指数が35~60である石油系コークスを2500℃以上3500℃以下で熱処理して黒鉛からなる芯材を得、
 有機化合物を黒鉛からなる芯材に付着させ、次いで
 500℃以上の温度で熱処理することを含む、〔1〕~〔8〕のいずれかひとつに記載の複合黒鉛粒子の製法。
〔10〕 〔1〕~〔8〕のいずれかひとつに記載の複合黒鉛粒子、バインダーおよび溶媒を含有するスラリーまたはペースト。
〔11〕 天然黒鉛をさらに含有する〔10〕に記載のスラリーまたはペースト。
〔12〕 集電体と、〔1〕~〔8〕のいずれかひとつに記載の複合黒鉛粒子を含有する電極層とを有する積層体からなる電極シート。
〔13〕 電極層は天然黒鉛をさらに含有し、且つ
 X線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が0.1以上0.15以下である〔12〕に記載の電極シート。
〔14〕 〔12〕または〔13〕に記載の電極シートを負極として含むリチウムイオン電池。
 本発明に係る複合黒鉛粒子は、リチウムイオンの受入性が高いので、リチウムイオン電池の負極用活物質として有用である。当該複合黒鉛粒子を用いて得られるリチウムイオン電池は、低電流サイクル特性、出入力特性、大電流サイクル特性などが良好である。
(複合黒鉛粒子)
 本発明に係る好ましい実施形態の複合黒鉛粒子は、黒鉛からなる芯材と、その表面に存在する炭素質層とを有する。
 芯材を構成する黒鉛は、石油系コークスを熱処理(黒鉛化処理)して得られる人造黒鉛である。
 原料として用いられる石油系コークスは、粉砕性指数、すなわちHGI(ASTM D409参照)が、通常、35~60、好ましくは37~55、より好ましくは40~50である。HGIがこの範囲にあると、出入力特性、低電流サイクル特性、高電流サイクル特性などに優れたリチウムイオン電池が得られる。
 HGIは、次の方法で測定できる。サンプルの粒度を1.18~600μmにそろえ、該サンプル50gをハードグローブ粉砕試験機にセットする。5~20rpmで60回回転させたところで装置を止める。処理したサンプルを、10分間、5分間および5分間で計3回(計20分間)75μmの篩にかける。その後、篩下の質量W[g]を計測し、下式でHGIを算出した。
  HGI=13+6.93W
 石油系コークスの黒鉛化における処理温度は、通常、2500℃以上3500℃以下、好ましくは2500℃以上3300℃以下、より好ましくは2550℃以上3300℃以下である。処理温度が2500℃未満の場合は、得られるリチウムイオン電池の放電容量が低下する。黒鉛化処理は不活性雰囲気下で行うことが好ましい。黒鉛化処理時間は、処理量や黒鉛化炉のタイプ等に応じて適宜選択すればよく、特に限定されるものではない。黒鉛化処理時間は、例えば10分間~100時間程度である。また、黒鉛化処理は、例えばアチソン式黒鉛化炉などを用いて行うことができる。
 芯材の50%粒子径(D50)は、好ましくは3μm以上30μm以下である。芯材の50%粒子径(D50)は、低電流サイクル特性および高電流サイクル特性に優れたリチウムイオン電池を得るという観点から、好ましくは10μm以上30μm以下、より好ましくは10μm以上20μm以下である。また、芯材の50%粒子径(D50)は、出入力特性および大電流サイクル特性に優れたリチウムイオン電池を得るという観点から、好ましくは10μm未満、より好ましくは3μm以上10μm未満、より好ましくは3.5μm以上8μm以下、さらに好ましくは4μm以上7μm以下である。上記50%粒子径(D50)への調整は、ハイブリダイゼーションのようなメカノケミカル法、公知の造粒法、粉砕、分級などによって行うことができる。ここで50%粒子径(D50)は、レーザー回折法により測定される体積基準累積粒度分布に基づいて算出する。
 芯材は、ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との比ID/IG(R値)が、好ましくは0.2以下、より好ましくは0.175以下、さらに好ましくは0.15以下、最も好ましくは0.1以下である。芯材のR値は、芯材の表面に炭素質層を存在させる前の状態で測定して得た値である。
 複合黒鉛粒子を構成する炭素質層は、ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との比ID/IG(R値)が、好ましくは0.2以上、より好ましくは0.35以上、さらに好ましくは0.5以上である。強度比ID/IG(R値)の上限は、好ましくは1.5、より好ましくは1である。大きなR値を有する炭素質層を有することにより、黒鉛層間へのリチウムイオンの挿入・脱離が容易になり、リチウムイオン電池の高速充電性が向上する。
 なお、R値が大きいほど結晶性が低いことを示す。炭素質層のR値は、芯材の無い状態で、後述する炭素質層の形成方法と同じ方法を行って炭素質材を得、この炭素質材を測定して得た値である。R値の測定は、日本分光社製 NRS-5100を用いて、波長532nmおよび出力7.4mWのアルゴンレーザによる照射、分光器によるラマン散乱光測定という条件で行った。
 黒鉛からなる芯材の表面に炭素質層を存在させるために、先ず有機化合物を芯材に付着させる。付着させる方法は、特に制限されない。例えば、芯材と有機化合物とを乾式混合して付着させる方法、有機化合物の溶液と芯材とを混ぜ合わせ次いで溶媒を除去して付着させる方法などが挙げられる。これらのうち、乾式混合による方法が好ましい。乾式混合は、例えば、インペラを備えた攪拌複合装置などを用いて行うことができる。
 付着させる有機化合物としては、等方性ピッチ、異方性ピッチ、樹脂または樹脂前駆体若しくはモノマーが好ましい。ピッチとしては、石油系ピッチ、石炭系ピッチが挙げられ、等方性ピッチでも異方性ピッチでも採用可能である。該有機化合物として、樹脂前駆体若しくはモノマーを重合して得られる樹脂を用いることが好ましい。好適な樹脂としては、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂およびエポキシ樹脂からなる群から選択される少なくとも1種が挙げられる。
 次いで、芯材に付着された有機化合物を、好ましくは500℃以上、より好ましくは500℃以上2000℃以下、さらに好ましくは500℃以上1500℃以下、特に好ましくは900℃以上1200℃以下で、熱処理することが好ましい。この熱処理によって有機化合物が炭素化し炭素質層が形成される。この温度範囲で炭素化すると、炭素質層の芯材への密着が十分となり、電池特性、充電特性などのバランスが良好になる。
 この熱処理による炭素化は、非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。炭素化のための熱処理の時間は、製造規模に応じて適宜選択すればよい。例えば、30~120分間、好ましくは45~90分間である。
 好ましい実施形態における、複合黒鉛粒子を構成する芯材と炭素質層との割合は、特に限定されないが、炭素質層の量は、芯材100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.1~7質量部である。炭素質層の量が少なすぎると、サイクル特性などの改善効果が小さくなる傾向がある。多すぎると電池容量が低下する傾向がある。なお、炭素質層の量は、芯材に付着させた有機化合物の量とほぼ同じなので、芯材に付着させた有機化合物の量として算定できる。
 炭素化処理の後、解砕することが好ましい。炭素化処理によって得られる複合黒鉛粒子は融着して塊になっていることがあるので、解砕によって微粒化することができる。本発明に係る実施形態の複合黒鉛粒子はレーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が、通常、3μm以上30μm以下である。
 低電流サイクル特性および高電流サイクル特性の観点から、本発明に係る好ましい実施形態の複合黒鉛粒子はレーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が、通常、10μm以上30μm以下、好ましくは10μm以上20μm以下である。また、低電流サイクル特性および高電流サイクル特性の観点から、本発明に係る好ましい実施形態の複合黒鉛粒子はレーザー回折法によって測定される体積基準累積粒度分布における90%粒子径(D90)が、好ましくは20μm以上40μm以下、より好ましくは24μm以上30μm以下である。また、低電流サイクル特性および高電流サイクル特性の観点から、本発明に係る好ましい実施形態の複合黒鉛粒子はレーザー回折法によって測定される体積基準累積粒度分布における10%粒子径(D10)が、好ましくは1μm以上10μm以下、より好ましくは4μm以上6μm以下である。
 出入力特性および大電流サイクル特性の観点から、本発明に係る好ましい実施形態の複合黒鉛粒子はレーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が、通常、3μm以上10μm以下、好ましくは3μm以上10μm未満、より好ましくは3.5μm以上10μm未満、さらに好ましくは3.5μm以上8μm以下、最も好ましくは4μm以上7μm以下である。出入力特性および大電流サイクル特性の観点から、本発明に係る好ましい実施形態の複合黒鉛粒子はレーザー回折法によって測定される体積基準累積粒子径分布における90%粒子径(D90)が、好ましくは6μm以上20μm以下、より好ましくは8μm以上15μm以下である。また、出入力特性および大電流サイクル特性の観点から、本発明に係る好ましい実施形態の複合黒鉛粒子はレーザー回折法によって測定される体積基準累積粒子径分布における10%粒子径(D10)が、好ましくは0.1μm以上5μm以下、より好ましくは1μm以上3μm以下である。
 なお、炭素質層の厚さは数十ナノメーター程度であるので、複合黒鉛粒子の50%粒子径と芯材の50%粒子径とは測定値としてほとんど変わらない。
 また、本発明に係る好ましい実施形態の複合黒鉛粒子は、X線広角回折法によって測定される002回折ピークに基づくd002が、好ましくは0.334nm以上0.342nm以下、より好ましくは0.334nm以上0.338nm以下、さらに好ましくは0.3355nm以上0.3369nm以下、特に好ましくは0.3355nm以上0.3368nm以下である。
 本発明に係る好ましい実施形態の複合黒鉛粒子は、c軸方向の結晶子サイズLcが好ましくは50nm以上、より好ましくは75~150nmである。
 なお、d002およびLcは、複合黒鉛粒子の粉末を、粉末X線回折装置(リガク社製、Smart Lab IV)にセットし、CuKα線にて出力30kV、200mAで回折ピークを測定し、JIS R 7651に従って算出した。
 本発明に係る好ましい実施形態の複合黒鉛粒子は、ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との比ID/IGが、通常、0.1以上、好ましくは0.1~1、より好ましくは0.5~1、さらに好ましくは0.7~0.95である。
 複合黒鉛粒子のBET比表面積は、好ましくは0.2~30m2/g、より好ましくは0.3~10m2/g、さらに好ましくは0.4~5m2/gである。
 本発明に係る好ましい実施形態の複合黒鉛粒子は、バインダーを用いて密度1.35~1.45g/cm3に加圧成形した際にX線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が、通常、0.2以上、好ましくは0.3以上、より好ましくは0.4以上、さらに好ましくは0.5以上である。なお、この測定では、バインダーとしてポリフッ化ビニリデンを用いた。その他の測定条件は実施例に記載したものと同じである。強度比I110/I004の値が大きいほど結晶配向性が低いことを表す。この強度比が小さすぎると充電特性が低下する傾向がある。
(スラリーまたはペースト)
 本発明に係る好ましい実施形態のスラリーまたはペーストは、前記複合黒鉛粒子とバインダーと溶媒とを含むものである。本発明に係るより好ましい実施形態のスラリーまたはペーストは、天然黒鉛をさらに含むものである。該スラリーまたはペーストは、前記複合黒鉛粒子とバインダーと溶媒と、好ましくはさらに天然黒鉛とを混練することによって得られる。スラリーまたはペーストは、必要に応じて、シート状、ペレット状などの形状に成形することができる。本発明に係る好ましい実施形態のスラリーまたはペーストは電池の電極、特に負極を作製するために好適に使用される。
 バインダーとしては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン伝導率の大きな高分子化合物などが挙げられる。イオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリファスファゼン、ポリアクリロニトリルなどが挙げられる。複合黒鉛粒子とバインダーとの混合比率は、複合黒鉛粒子100質量部に対して、バインダーを0.5~20質量部用いることが好ましい。
 スラリーまたはペーストにおいて複合黒鉛粒子と天然黒鉛とを併用する場合には、天然黒鉛の量は、後述する電極シートの強度比I110/I004が下記の範囲に入るものであれば特に制限されない。具体的に、天然黒鉛の量は、複合黒鉛粒子100質量部に対して、好ましくは10~500質量部である。天然黒鉛を用いると、大電流入出力特性およびサイクル特性のバランスが良い電池を得ることができる。
 また、天然黒鉛は球状のものであることが好ましい。天然黒鉛の粒子径は、後述する電極シートの強度比I110/I004が後述する範囲に入るものであれば特に制限されない。具体的に、天然黒鉛は、体積基準累積粒度分布における50%粒子径(D50)が、好ましくは1~40μmである。上記範囲のD50への調整は、ハイブリダイゼーションのようなメカノケミカル法、公知の造粒法、粉砕、分級などによって行うことができる。
 たとえば、D507μmの中国産天然黒鉛を奈良機械製作所社製ハイブリダイザーNHS1型に投入し、ローター周速度60m/sにて3分間処理し、D5015μmの球状天然黒鉛粒子を得る。このようにして得られる球状天然黒鉛粒子50質量部と本願発明の実施態様の一例で得られる複合黒鉛粒子50質量部とを混合し、該混合物にバインダーを添加し、混練することによってスラリーまたはペーストを得ることができる。
 溶媒は、特に制限はなく、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量は集電体に塗布しやすいような粘度となるように調整される。本発明に係る好ましい実施形態のスラリーまたはペーストには導電性付与剤がさらに含まれていてもよい。導電性付与剤としては、気相法炭素繊維やカーボンナノチューブなどの繊維状炭素、アセチレンブラックやケッチェンブラック(商品名)などの導電性カーボンが挙げられる。
(電極シート)
 本発明に係る好ましい実施形態の電極シートは、集電体と、本発明に係る複合黒鉛粒子を含有する電極層とを有する積層体からなるものである。該電極層は天然黒鉛をさらに含有することが好ましい。当該電極シートは、例えば、本発明に係るスラリーまたはペーストを集電体上に塗布し、乾燥し、加圧成形することによって得られる。
 集電体としては、例えば、アルミニウム、ニッケル、銅などからなる箔、メッシュなどが挙げられる。集電体表面には導電性層が設けられていてもよい。該導電性層は、通常、導電性付与剤とバインダーとを含む。
 スラリーまたはペーストの塗布方法は特に制限されない。スラリーまたはペーストの塗布厚(乾燥時)は、通常50~200μmである。塗布厚が大きくなりすぎると、規格化された電池容器に負極を収容できなくなることがある。
 加圧成形法としては、ロール加圧、プレス加圧などの成形法を挙げることができる。加圧成形するときの圧力は約100MPa~約300MPa(1~3t/cm2程度)が好ましい。このようにして得られる負極は、リチウムイオン電池に好適である。
 また、電極層に複合黒鉛粒子と天然黒鉛とを併せて含有させる場合に、電極シートは、X線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が、好ましくは0.1以上0.15以下である。天然黒鉛を併有させる場合における電極シートの強度比I110/I004は、天然黒鉛粒子と本発明に係る複合黒鉛粒子との比率や、天然黒鉛粒子の粒子径を調整することによって制御することができる。
(リチウムイオン電池(リチウム二次電池))
 本発明に係る好ましい実施形態のリチウムイオン電池は、本発明に係る電極シートを負極として含むものである。本発明に係る好ましい実施形態のリチウムイオン電池の正極には、リチウムイオン電池に従来から使われていたものを用いることができる。正極に用いられる活物質としては、例えば、LiNiO2、LiCoO2、LiMn24などが挙げられる。
 リチウムイオン電池に用いられる電解質は、特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどのリチウム塩を、例えばエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピロニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしたいわゆる非水系電解液や、固体若しくはゲル状のいわゆる非水系ポリマー電解質を挙げることができる。
 また、電解質には、リチウムイオン電池の初回充電時に分解反応を示す添加剤を少量添加することが好ましい。該添加剤としては、例えば、ビニレンカーボネート、ビフェニル、プロパンスルホンなどが挙げられる。添加量としては0.01~5質量%が好ましい。
 本発明に係る好ましい実施形態のリチウムイオン電池には正極と負極との間にセパレーターを設けることができる。セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。
 以下に実施例、比較例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、黒鉛特性、負極特性および電池特性は以下の方法で測定し評価した。
(1)比表面積
 窒素吸着量の測定に基づきBET法により算出した。
(2)粒子径
 試料を極小型スパーテル2杯分、および非イオン性界面活性剤(トリトン-X)2滴を水50mlに添加し、超音波で3分間分散させた。得られた分散液をレーザー回折式粒度分布測定器(セイシン企業製、LMS-2000S)にセットし、体積基準の粒度分布を測定した。該測定値からD10、D50、およびD90を算出した。
(3)粉砕性指数(HGI)
 粒度1.18~600μmにそろえた試料50gをハードグローブ粉砕試験機にセットした。5~20rpmで60回回転させたところで装置を止めた。処理した試料を10分間、5分間、および5分間の合計3回(計20分間)75μmの篩にかけた。篩下の重量W[g]を計測した。下式で粉砕性指数を算出した。
  HGI=13+6.93W
(4)d002
 粉末X線回折装置(リガク社製、Smart Lab IV)で、CuKα線にて出力30kV、200mAでX線回折ピークを測定した。002回折ピークからJIS R 7651に従ってd002を算出した。
(5)I110/I004
 1質量%カルボキシメチルセルロース水溶液を少量ずつ黒鉛粒子に加えながら混練し固形分1.5質量%となるようにした。これにバインダーとしてポリフッ化ビニリデン(クレハ製、KFポリマー W#9300)1.5質量%を加えてさらに混錬し、十分な流動性を持つようにさらに純水を加え、脱泡ニーダー(日本精機製作所製、NBK-1)を用いて500rpmで5分間混練を行い、ペーストを得た。自動塗工機とクリアランス250μmのドクターブレードを用いて、前記ペーストを集電体上に塗布した。ペーストが塗布された集電体を約80℃のホットプレート上に置いて水分を除去した。その後、真空乾燥機にて120℃で6時間乾燥させた。乾燥後、黒鉛粒子とバインダーの合計質量と体積とから割り出される電極密度が1.40±0.05g/cm3になるように一軸プレスにより加圧成形し、電極シートを得た。
 得られた電極シートを適当な大きさに切り取り、XRD測定用のガラスセルに貼り付け、広角X線回折ピークを測定した。004回折ピークの強度および110回折ピークの強度との比I110/I004を算出した。
(6)ID/IG(R値)
 日本分光社製 NRS-5100を用いて、波長532nmおよび出力7.4mWのアルゴンレーザを試料黒鉛に照射し、ラマン散乱光を分光器で測定した。測定されたラマン分光スペクトルから、1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGを算出した。
(7)負極の作製
 黒鉛粒子を8.00g、導電助材としてアセチレンブラック(電気化学社製、HS-100)を1.72g、バインダーとしてポリフッ化ビニリデン(クレハ製、KFポリマー W#9300)を4.30gそれぞれ秤量した。これらを充分に混合した後にN-メチル-2-ピロリドン9.32gを徐々に添加し脱泡ニーダー(日本精機製作所製、NBK-1)を用いて混練を行い、ペーストを得た。なおペーストに気相法炭素繊維を添加する場合は、この混練の前に添加する。このペーストをクリアランス150μmのドクターブレードで20μm厚のCu箔上に塗工した。ペーストが塗布された集電体を約80℃のホットプレート上に置いてN-メチル-2-ピロリドンを除去した。その後、真空乾燥機にて90℃で1時間乾燥させた。乾燥後、黒鉛粒子とバインダーの合計質量と体積とから割り出される電極密度が1.50±0.05g/cm3になるように一軸プレスにより加圧成形し、負極を得た。得られた負極をφ15mmの大きさに切り出した。その後、切り出した負極を1.2t/cm2で10秒間プレスし、その塗膜の平均厚さを測定したところ70~80μmであった。また、塗膜のローディングレベルは6.5~7.5mg/cm2であった。
(8)電池の放電容量と初期効率
 アルゴンガスで充満され、露点が-75℃以下に制御されたグローブボックス内に前記負極を導入した。負極をコインセル(宝泉製 CR2320)に置き電解液(1M LiPF6 エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=40:60〔体積比〕)を浸透させた。その上にφ20mmで切り出したセパレーター(セルガード2400)、φ17.5mmで切り出した3mm厚のリチウム箔の順に載せた。その上から、ガスケットを取り付けたキャップをし、かしめ器によりかしめた。
 グローブボックスから取り出し、24時間室温で静置した。その後、0.2mAで定電流充電し、4.5Vに到達後、4.5Vで定電圧充電を行い、0.2mAになった時点で充電を止めた。次いで0.2mAで定電流放電し、2.5Vに到達した時点で放電を止め、10分間休止した。
 この充放電サイクルにおける初回充電容量および初回放電容量に基づき、下式にて初期効率を算出した。
 (初期効率)=(初回放電容量)/(初回充電容量)
(9)電池のサイクル特性
 露点-80℃以下の乾燥アルゴンガス雰囲気下に保ったグローブボックス内で下記の操作を実施した。
 正極材(Unicore社製三元系正極材 Li(Ni,Mn,Co)O2 )90質量%、導電性付与剤(TIMCAL社製、C45)2質量%、導電性付与剤(TIMCAL社製、KS6L)3質量%、およびポリフッ化ビニリデン(クレハ製、KFポリマー W#1300)5質量%(固形分)を混合した。その後、これにN-メチル-2-ピロリドン(キシダ化学製)を加えて混錬し、ペーストを得た。 自動塗工機を用いて、前記ペーストをクリアランス200μmのドクターブレードで20μm厚のアルミニウム箔に塗工して、正極を作製した。
 ラミネート外装材の中に、上記負極と正極とをポリプロピレン製セパレーター(東燃化学社製、セルガード2400)を介して積層した。次に、電解液を注入し、真空中でヒートシールを行い、評価用のラミネートセルを得た。
 このラミネートセルを用いて以下のような定電流定電圧充放電試験を行った。
 初回と2回目の充放電サイクルは、次のようにして行った。レストポテンシャルから4.2Vまで5.5mAで定電流充電し、次に4.2Vで定電圧充電を行い、電流値が0.27mAに低下した時点で充電を止めた。次いで、5.5mAで定電流放電を行い、電圧2.7Vでカットオフした。
 3回目以降の充放電サイクルは、次のようにして行った。レストポテンシャルから4.2Vまで5.5mA(1Cに相当)で定電流充電し、次に4.2Vで定電圧充電を行い、電流値が55μAに低下した時点で充電を停止させた。次いで、5.5mA(1Cに相当)で定電流放電を行い、電圧2.7Vでカットオフした。この充放電サイクルを繰り返した。
 そして、3回目の放電容量に対する200回目の放電容量の割合を、「サイクル容量保持率」として評価を行った。
(10)電池のハイレートサイクル特性
 露点-80℃以下の乾燥アルゴンガス雰囲気下に保ったグローブボックス内で下記の操作を実施した。
 正極材(Unicore社製三元系正極材 Li(Ni,Mn,Co)O2 )90質量%、導電性付与剤(TIMCAL社製、C45)2質量%、導電性付与材(TIMCAL社製、KS6L)3質量%、およびポリフッ化ビニリデン(クレハ製、KFポリマー W#1300)5質量%(固形分)を混合した。その後、これにN-メチル-2-ピロリドン(キシダ化学製)を加えて混錬し、ペーストを得た。 自動塗工機を用いて、前記ペーストをクリアランス200μmのドクターブレードで20μm厚のアルミニウム箔に塗工して、正極を作製した。
 ラミネート外装材の中に、上記負極と正極とをポリプロピレン製セパレーター(東燃化学社製、セルガード2400)を介して積層した。次に、電解液を注入し、真空中でヒートシールを行い、評価用のラミネートセルを得た。
 このラミネートセルを用いて以下のような定電流定電圧充放電試験を行った。
 初回と2回目の充放電サイクルは、次のようにして行った。レストポテンシャルから4.2Vまで5.5mAで定電流充電し、次に4.2Vで定電圧充電を行い、電流値が0.27mAに低下した時点で充電を止めた。次いで、5.5mAで定電流放電を行い、電圧2.7Vでカットオフした。
 3回目以降の充放電サイクルは、次のようにして行った。レストポテンシャルから4.2Vまで16.5mA(3Cに相当)で定電流充電し、次に4.2Vで定電圧充電を行い、電流値が55μAに低下した時点で充電を止めた。次いで、16.5mA(3Cに相当)で定電流放電を行い、電圧2.7Vでカットオフした。この充放電サイクルを繰り返した。
 そして、3回目の放電容量に対する200回目の放電容量の割合を、「ハイレートサイクル容量保持率」として評価を行った。
(11)出入力特性
 上記で作製したラミネートセルを用いて、以下の方法で出入力特性を評価した。
 まず、5.5mAで定電流放電を行った。そしてレストポテンシャルから4.2Vまで5.5mAで定電流充電し、次に4.2Vで定電圧充電を行い、電流値が0.27mAに低下した時点で充電を止めた。次いで0.55mA(0.1Cに相当)で2時間定電流放電を行った。放電後の電圧値を記録した。
 1.1mA(0.2Cに相当)で5秒間定電流放電を行い、30分間休止した。その後0.11mA(0.02Cに相当)で定電流充電し、次に4.2Vで定電圧充電を行った。50秒間で充電を停止させ、電圧を5秒間放電させる前の状態に戻した。
 上記の1.1mA(0.2Cに相当)5秒間の定電流放電、30分間休止、およびその後の定電流充電および定電圧充電を50秒間行う充放電サイクルを、0.2C、0.5C、1C、および2Cの定電流充電の条件で行った。それらのときの電流値および電圧値を記録した。
 さらに上記の5秒間定電流放電を、0.55mA(0.1Cに相当)で3.5時間、5時間、6.5時間、または8時間で行い、その際の0.2C、0.5C、1Cおよび2Cの定電流充電の条件における、電流値と電圧値を記録した。
 記録したそれらの値から直流抵抗を算出し、その値を「出入力特性」として評価を行った。直流抵抗が小さいと出入力の低下を抑えられ、容量の低下も小さく、設計で目指したとおりの高い安定性を得ることができる。
《低電流サイクル特性および高電流サイクル特性に優れたリチウムイオン電池》
実施例1
 HGIが40である石油系コークスを粉砕して50%粒子径(D50)を15μmに調整した。これをアチソン炉に入れ、3000℃にて加熱し、黒鉛からなる芯材を得た。
 これに粉末状の等方性石油系ピッチを芯材に対して1質量%となる量で乾式混合し、アルゴン雰囲気下、1100℃にて1時間加熱して、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.2m2/g、R値が0.85、d002が0.336nm、I110/I004が0.46であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が331mAh/g、初期効率が92%、サイクル容量保持率が0.92、ハイレートサイクル容量保持率が0.88、出入力特性が4.8Ωであった。
実施例2
 HGIが40である石油系コークスをHGIが50である石油系コークスに替えた以外は実施例1と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.4m2/g、R値が0.77、d002が0.337nm、I110/I004が0.44であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が337mAh/g、初期効率が90%、サイクル容量保持率が0.93であった。
実施例3
 黒鉛からなる芯材に混合させる等方性石油系ピッチの量を芯材に対して5質量%となる量に変えた以外は実施例1と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.1m2/g、R値が0.91、d002が0.338nm、I110/I004が0.35であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が330mAh/g、初期効率が91%、サイクル容量保持率が0.94であった。
実施例4
 アチソン炉による加熱温度を2500℃に変えた以外は実施例1と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.4m2/g、R値が0.87、d002が0.340nm、I110/I004が0.32であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が320mAh/g、初期効率が89%、サイクル容量保持率が0.90であった。
比較例1
 HGIが40である石油系コークスを粉砕して50%粒子径(D50)を15μmに調整した。これをアチソン炉に入れ、3000℃にて加熱して、黒鉛粒子を得た。
 得られた黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.6m2/g、R値が0.08、d002が0.335nm、I110/I004が0.59であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が333mAh/g、初期効率が90%、サイクル容量保持率が0.80であった。
比較例2
 HGIが40である石油系コークスをHGIが50である石油系コークスに替えた以外は比較例1と同じ方法で、黒鉛粒子を得た。
 得られた黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.8m2/g、R値が0.06、d002が0.335nm、I110/I004が0.57であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が336mAh/g、初期効率が89%、サイクル容量保持率が0.82であった。
比較例3
 アチソン炉による加熱温度を2000℃に変えた以外は実施例1と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.6m2/g、R値は0.96、d002が0.349nm、I110/I004が0.25であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が299mAh/g、初期効率が82%、サイクル容量保持率が0.82であった。
比較例4
 HGIが40である石油系コークスをHGIが30である石油系コークスに替えた以外は実施例1と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が15μm、BET比表面積が1.5m2/g、R値が0.87、d002が0.335nm、I110/I004が0.41であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が326mAh/g、初期効率が85%、サイクル容量保持率が0.85であった。
比較例5
 HGIが40である石油系コークスをHGIが70である石油系コークスに替えた以外は実施例1と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が18μm、BET比表面積が3.1m2/g、R値が0.62、d002が0.336nm、I110/I004が0.57であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量は356mAh/g、初期効率は80%、サイクル容量保持率は0.61であった。
 これらの結果を表1および表2にまとめて示す。なお、参考のために実施例5の結果も併せて示す。表1および表2に示すように、 粉砕性指数が35~60である石油系コークスを2500℃以上で熱処理して得られる黒鉛からなる芯材と、 その表面に存在する炭素質層とを有する複合黒鉛粒子であって、 ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGが0.1以上であり、 レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が10μm以上30μm以下であり、 且つ バインダーを用いて密度1.35~1.45g/cm3に加圧成形した際にX広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が0.2以上である、複合黒鉛粒子を用いて得られる負極を備えた電池は、低電流サイクル特性が良好であることがわかる。低電流サイクル特性に優れたリチウムイオン電池は、電気自動車などの電源として好適である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
《出入力特性および大電流サイクル特性に優れたリチウムイオン電池》
実施例5
 HGIが40である石油系コークスを粉砕して50%粒子径(D50)を6μmに調整した。これをアチソン炉に入れ、3000℃にて加熱し、黒鉛からなる芯材を得た。
 これに粉末状の等方性石油系ピッチを芯材に対して1質量%となる量で乾式混合し、アルゴンガス雰囲気下、1100℃にて1時間加熱して、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が6μm、BET比表面積が2.3m2/g、R値が0.85、d002が0.336nm、I110/I004が0.44であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が330mAh/g、初期効率が92%、ハイレートサイクル容量保持率が0.82、出入力特性が3.8Ω、サイクル容量保持率は0.85であった。
実施例6
 HGIが40である石油系コークスをHGIが50である石油系コークスに替えた以外は実施例5と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が6μm、BET比表面積が2.7m2/g、R値が0.77、d002が0.337nm、I110/I004が0.42であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が335mAh/g、初期効率が90%、ハイレートサイクル容量保持率が0.83、出入力特性が3.7Ωであった。
実施例7
 黒鉛からなる芯材に混合させる等方性石油系ピッチの量を芯材に対して5質量%となる量に変えた以外は実施例5と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が6μm、BET比表面積が2.1m2/g、R値が0.91、d002が0.338nm、I110/I004が0.32であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が328mAh/g、初期効率が91%、ハイレートサイクル容量保持率が0.85、出入力特性が3.6Ωであった。
実施例8
 アチソン炉による加熱温度を2500℃に変えた以外は実施例5と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が6μm、BET比表面積が2.6m2/g、R値が0.86、d002が0.340nm、I110/I004が0.35であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が318mAh/g、初期効率が88%、ハイレートサイクル容量保持率が0.80、出入力特性が4.0Ωであった。
比較例6
 HGIが40である石油系コークスを粉砕して50%粒子径(D50)を6μmに調整した。これをアチソン炉に入れ、3000℃にて加熱して、黒鉛粒子を得た。
 得られた黒鉛粒子は、50%粒子径が6μm、BET比表面積が3.0m2/g、R値が0.08、d002が0.335nm、I110/I004が0.56であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が331mAh/g、初期効率が90%、ハイレートサイクル容量保持率が0.61、出入力特性が5.3Ωであった。
比較例7
 HGIが40である石油系コークスをHGIが50である石油系コークスに替えた以外は比較例6と同じ方法で、黒鉛粒子を得た。
 得られた黒鉛粒子は、50%粒子径が6μm、BET比表面積が3.5m2/g、R値が0.06、d002が0.335nm、I110/I004が0.51であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が334mAh/g、初期効率が89%、ハイレートサイクル容量保持率が0.58、出入力特性が5.2Ωであった。
比較例8
 アチソン炉による加熱温度を2000℃に変えた以外は実施例5と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が6μm、BET比表面積が2.5m2/g、R値が0.96、d002が0.349nm、I110/I004が0.21であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が295mAh/g、初期効率が82%、ハイレートサイクル容量保持率が0.75、出入力特性が3.2Ωであった。
比較例9
 HGIが40である石油系コークスをHGIが30である石油系コークスに替えた以外は実施例5と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が6μm、BET比表面積が2.1m2/g、R値が0.87、d002が0.335nm、I110/I004が0.38であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が325mAh/g、初期効率が85%、ハイレートサイクル容量保持率が0.74、出入力特性が5.0Ωであった。
比較例10
 HGIが40である石油系コークスをHGIが70である石油系コークスに替え、粉砕による調整で50%粒子径を18μmにした以外は実施例5と同じ方法で、複合黒鉛粒子を得た。
 得られた複合黒鉛粒子は、50%粒子径が7μm、BET比表面積が5.5m2/g、R値が0.62、d002が0.336nm、I110/I004が0.53であった。
 また、この複合黒鉛粒子を用いて得られた電池は、初期放電容量が345mAh/g、初期効率が80%、ハイレートサイクル容量保持率が0.52、出入力特性が5.5Ωであった。
 これらの結果を表3および表4にまとめて示す。なお、参考のために実施例1の結果も併せて示す。表3および表4に示すように、粉砕性指数が35~60である石油系コークスを2500℃以上で熱処理して得られる黒鉛からなる芯材と、 その表面に存在する炭素質層とを有する複合黒鉛粒子であって、ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGが0.1以上であり、 レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が3μm以上10μm未満であり、且つ バインダーを用いて密度1.35~1.45g/cm3に加圧成形した際にX線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が0.2以上である、複合黒鉛粒子を用いて得られる負極を備えた電池は、出入力特性および大電流サイクル特性が良好であることがわかる。出入力特性および大電流サイクル特性に優れたリチウムイオン電池は、エンジンとモーターとのハイブリッド自動車などの電源として好適である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (14)

  1.  粉砕性指数が35~60である石油系コークスを2500℃以上3500℃以下で熱処理して得られる黒鉛からなる芯材と、 その表面に存在する炭素質層とを有する複合黒鉛粒子であって、
     ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1500~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGが0.1以上であり、
     レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が3μm以上30μm以下であり、且つ
     バインダーを用いて密度1.35~1.45g/cm3に加圧成形した際にX線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が0.2以上である、複合黒鉛粒子。
  2.  X線広角回折法によって測定される002回折ピークに基づくd002が0.334nm以上0.342nm以下である請求項1に記載の複合黒鉛粒子。
  3.  窒素吸着に基づくBET比表面積が0.2~30m2/gである請求項1または2に記載の複合黒鉛粒子。
  4.  炭素質層の量が、芯材100質量部に対して0.05~10質量部である請求項1~3のいずれかひとつに記載の複合黒鉛粒子。
  5.  炭素質層が、有機化合物を500℃以上の温度で熱処理して得られるものである請求項1~4のいずれかひとつに記載の複合黒鉛粒子。
  6.  有機化合物が、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂およびエポキシ樹脂からなる群から選ばれる少なくとも1種の化合物である請求項5に記載の複合黒鉛粒子。
  7.  レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が3μm以上10μm未満である、請求項1~6のいずれかひとつに記載の複合黒鉛粒子。
  8.  レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が10μm以上30μm以下である、請求項1~6のいずれかひとつに記載の複合黒鉛粒子。
  9.  粉砕性指数が35~60である石油系コークスを2500℃以上3500℃以下で熱処理して黒鉛からなる芯材を得、
     有機化合物を黒鉛からなる芯材に付着させ、次いで
     500℃以上の温度で熱処理することを含む、請求項1~8のいずれかひとつに記載の複合黒鉛粒子の製法。
  10.  請求項1~8のいずれかひとつに記載の複合黒鉛粒子、バインダーおよび溶媒を含有するスラリーまたはペースト。
  11.  天然黒鉛をさらに含有する請求項10に記載のスラリーまたはペースト。
  12.  集電体と、請求項1~8のいずれかひとつに記載の複合黒鉛粒子を含有する電極層とを有する積層体からなる電極シート。
  13.  電極層は天然黒鉛をさらに含有し、且つ
     X線広角回折法によって測定される110回折ピークの強度(I110)と004回折ピークの強度(I004)との比I110/I004が0.1以上0.15以下である請求項12に記載の電極シート。
  14.  請求項12または13に記載の電極シートを負極として含むリチウムイオン電池。
PCT/JP2012/007847 2011-12-09 2012-12-07 複合黒鉛粒子およびその用途 WO2013084506A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013509063A JP5270050B1 (ja) 2011-12-09 2012-12-07 複合黒鉛粒子およびその用途
KR1020137016496A KR101361567B1 (ko) 2011-12-09 2012-12-07 복합 흑연 입자 및 그 용도
US13/985,611 US20140057166A1 (en) 2011-12-09 2012-12-07 Composite graphite particles and use thereof
CN201280018914.XA CN103492316B (zh) 2011-12-09 2012-12-07 复合石墨颗粒及其用途
DE112012004320.0T DE112012004320T5 (de) 2011-12-09 2012-12-07 Graphitverbundteilchen und deren Verwendung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-270732 2011-12-09
JP2011-270731 2011-12-09
JP2011270731 2011-12-09
JP2011270732 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084506A1 true WO2013084506A1 (ja) 2013-06-13

Family

ID=48573893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007847 WO2013084506A1 (ja) 2011-12-09 2012-12-07 複合黒鉛粒子およびその用途

Country Status (7)

Country Link
US (1) US20140057166A1 (ja)
JP (2) JP5270050B1 (ja)
KR (1) KR101361567B1 (ja)
CN (1) CN103492316B (ja)
DE (1) DE112012004320T5 (ja)
TW (1) TWI482734B (ja)
WO (1) WO2013084506A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057690A1 (ja) * 2012-10-12 2014-04-17 昭和電工株式会社 複合炭素粒子およびそれを用いたリチウムイオン二次電池
WO2015016182A1 (ja) * 2013-07-29 2015-02-05 昭和電工株式会社 炭素材料、電池電極用材料、及び電池
WO2015182560A1 (ja) * 2014-05-30 2015-12-03 昭和電工株式会社 炭素材料、その製造方法及びその用途
US10305108B2 (en) 2014-03-31 2019-05-28 Nec Energy Devices, Ltd. Graphite-based active material, negative electrode, and lithium ion secondary battery

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101361567B1 (ko) * 2011-12-09 2014-02-12 쇼와 덴코 가부시키가이샤 복합 흑연 입자 및 그 용도
KR102250267B1 (ko) * 2013-06-12 2021-05-10 쇼와덴코머티리얼즈가부시끼가이샤 알루미늄 규산염 복합체, 도전 재료, 리튬 이온 2차 전지용 도전 재료, 리튬 이온 2차 전지 음극 형성용 조성물, 리튬 이온 2차 전지 양극 형성용 조성물, 리튬 이온 2차 전지용 음극, 리튬 이온 2차 전지용 양극 및 리튬 이온 2차 전지
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
FI3100597T3 (fi) 2014-01-31 2023-09-07 Monolith Mat Inc Plasmapolttimen rakenne
CA2939157A1 (en) * 2014-02-13 2015-08-20 Rockwood Lithium GmbH Galvanic cells and (partially) lithiated lithium battery anodes with increased capacity and methods for producing synthetic graphite intercalation compounds
CN110137442B (zh) * 2014-03-31 2022-08-09 远景Aesc日本有限公司 基于石墨的负电极活性材料、负电极和锂离子二次电池
EP3253904B1 (en) 2015-02-03 2020-07-01 Monolith Materials, Inc. Regenerative cooling method and apparatus
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
US10377633B2 (en) 2015-02-09 2019-08-13 Showa Denko K.K. Carbon material, method for producing same, and use for same
WO2016136524A1 (ja) 2015-02-24 2016-09-01 昭和電工株式会社 炭素材料、その製造方法及びその用途
US20180072575A1 (en) * 2015-02-27 2018-03-15 Imerys Graphite & Carbon Switzerland Ltd. Nanoparticle surface-modified carbonaceous material and methods for producing such material
JP6625336B2 (ja) * 2015-03-26 2019-12-25 三菱ケミカル株式会社 非水系二次電池負極用炭素材及び非水系二次電池
CN111601447A (zh) 2015-07-29 2020-08-28 巨石材料公司 Dc等离子体焰炬电力设计方法和设备
CN108352493B (zh) * 2015-09-14 2022-03-08 巨石材料公司 由天然气制造炭黑
WO2017057123A1 (ja) 2015-09-30 2017-04-06 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR102449847B1 (ko) * 2015-10-27 2022-09-29 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
CA3060482C (en) 2016-04-29 2023-04-11 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
CA3060565C (en) 2016-04-29 2024-03-12 Monolith Materials, Inc. Torch stinger method and apparatus
JP2018006072A (ja) * 2016-06-29 2018-01-11 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用負極
CN114883558A (zh) * 2016-11-14 2022-08-09 昭和电工材料株式会社 锂离子二次电池用负极材、锂离子二次电池用负极和锂离子二次电池
EP3592810A4 (en) 2017-03-08 2021-01-27 Monolith Materials, Inc. SYSTEMS AND METHODS FOR THE PRODUCTION OF CARBON PARTICLES WITH HEAT TRANSFER GAS
WO2018195460A1 (en) 2017-04-20 2018-10-25 Monolith Materials, Inc. Particle systems and methods
JP6907677B2 (ja) 2017-04-25 2021-07-21 トヨタ自動車株式会社 リチウムイオン二次電池用負極活物質粒子の製造方法
WO2019084200A1 (en) 2017-10-24 2019-05-02 Monolith Materials, Inc. PARTICULAR SYSTEMS AND METHODS
JP7102868B2 (ja) * 2018-03-30 2022-07-20 三菱ケミカル株式会社 人造黒鉛系負極材、非水系二次電池用負極及び非水系二次電池
CN108807849B (zh) * 2018-05-16 2019-11-15 宁德时代新能源科技股份有限公司 负极极片及含有它的二次电池
JP6586197B1 (ja) * 2018-06-01 2019-10-02 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液およびその利用
CN109286020B (zh) * 2018-08-21 2021-03-30 宁德时代新能源科技股份有限公司 负极极片及二次电池
CN111668452B (zh) * 2019-03-06 2021-06-04 宁德时代新能源科技股份有限公司 一种负极及其锂离子二次电池
KR20210111569A (ko) * 2020-03-03 2021-09-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
CN114122329A (zh) * 2021-11-11 2022-03-01 珠海冠宇电池股份有限公司 一种负极片和包括该负极片的锂离子电池
WO2024032910A1 (de) * 2022-08-10 2024-02-15 Nippon Kornmeyer Carbon Group Gmbh Verfahren zur herstellung von graphit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072858A1 (ja) * 2005-12-21 2007-06-28 Showa Denko K. K. 複合黒鉛粒子及びそれを用いたリチウム二次電池
WO2010100764A1 (en) * 2009-03-02 2010-09-10 Showa Denko K.K. Composite graphite particles and lithium secondary battery using the same
JP2011519332A (ja) * 2008-03-31 2011-07-07 コノコフィリップス カンパニー 電池用アノード粉末

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662727B1 (en) * 1993-12-24 1998-04-01 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material and process for making the same
JP4294246B2 (ja) * 2001-05-31 2009-07-08 新日本石油精製株式会社 電気二重層キャパシタ電極用炭素材料及びその製造方法並びに電気二重層キャパシタ及びその製造方法
KR101027091B1 (ko) * 2003-10-31 2011-04-06 쇼와 덴코 가부시키가이샤 전지 전극용 탄소 재료, 그 제조방법 및 용도
KR20140108697A (ko) * 2004-01-16 2014-09-12 히타치가세이가부시끼가이샤 리튬 이차전지용 음극 및 리튬 이차전지
CN105186038B (zh) * 2005-10-20 2017-07-28 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
JP2008085192A (ja) * 2006-09-28 2008-04-10 Nippon Chemicon Corp 電気化学キャパシタ用電極材料及びそれを用いた電気化学キャパシタ
US8361310B2 (en) * 2006-11-17 2013-01-29 Etter Roger G System and method of introducing an additive with a unique catalyst to a coking process
JP5458689B2 (ja) * 2008-06-25 2014-04-02 三菱化学株式会社 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
US8372373B2 (en) * 2009-10-22 2013-02-12 Showa Denko K.K. Graphite material, carbonaceous material for battery electrodes, and batteries
KR101361567B1 (ko) * 2011-12-09 2014-02-12 쇼와 덴코 가부시키가이샤 복합 흑연 입자 및 그 용도

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072858A1 (ja) * 2005-12-21 2007-06-28 Showa Denko K. K. 複合黒鉛粒子及びそれを用いたリチウム二次電池
JP2011519332A (ja) * 2008-03-31 2011-07-07 コノコフィリップス カンパニー 電池用アノード粉末
WO2010100764A1 (en) * 2009-03-02 2010-09-10 Showa Denko K.K. Composite graphite particles and lithium secondary battery using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAKU OKUNO ET AL.: "Characteristics of Coke Carbon Modified with Mesophase-Pitch as a Negative Electrode for Lithium Ion Batteries", ELECTROCHEMISTRY, vol. 65, no. 3, 1997, pages 226 - 230 *
SATO, Y. ET AL.: "Li-nuclear magnetic resonance observations of lithium insertion into coke carbon modified with mesophase-pitch", JOURNAL OF POWER SOURCES, vol. 97, no. 98, 2001, pages 165 - 170, XP028142762, DOI: doi:10.1016/S0378-7753(01)00677-2 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908366B1 (en) * 2012-10-12 2018-12-19 Showa Denko K.K. Method for the production of a composite carbon particle
US9614218B2 (en) 2012-10-12 2017-04-04 Showa Denko K.K. Composite carbon particle and lithium-ion secondary cell using same
WO2014057690A1 (ja) * 2012-10-12 2014-04-17 昭和電工株式会社 複合炭素粒子およびそれを用いたリチウムイオン二次電池
WO2015016182A1 (ja) * 2013-07-29 2015-02-05 昭和電工株式会社 炭素材料、電池電極用材料、及び電池
CN105408248A (zh) * 2013-07-29 2016-03-16 昭和电工株式会社 碳材料、电池电极用材料以及电池
JPWO2015016182A1 (ja) * 2013-07-29 2017-03-02 昭和電工株式会社 炭素材料、電池電極用材料、及び電池
KR20180088497A (ko) * 2013-07-29 2018-08-03 쇼와 덴코 가부시키가이샤 탄소 재료, 전지 전극용 재료, 및 전지
US10144646B2 (en) 2013-07-29 2018-12-04 Showa Denko K.K. Carbon material, material for a battery electrode, and battery
KR101971448B1 (ko) 2013-07-29 2019-04-23 쇼와 덴코 가부시키가이샤 탄소 재료, 전지 전극용 재료, 및 전지
US10377634B2 (en) 2013-07-29 2019-08-13 Showa Denko K.K. Carbon material, material for a battery electrode, and battery
US10305108B2 (en) 2014-03-31 2019-05-28 Nec Energy Devices, Ltd. Graphite-based active material, negative electrode, and lithium ion secondary battery
WO2015182560A1 (ja) * 2014-05-30 2015-12-03 昭和電工株式会社 炭素材料、その製造方法及びその用途
JP5877284B1 (ja) * 2014-05-30 2016-03-02 昭和電工株式会社 炭素材料、その製造方法及びその用途

Also Published As

Publication number Publication date
JP6126902B2 (ja) 2017-05-10
TW201339093A (zh) 2013-10-01
JP2013179074A (ja) 2013-09-09
US20140057166A1 (en) 2014-02-27
KR20130097224A (ko) 2013-09-02
DE112012004320T5 (de) 2014-07-03
CN103492316B (zh) 2015-03-18
JP5270050B1 (ja) 2013-08-21
JPWO2013084506A1 (ja) 2015-04-27
KR101361567B1 (ko) 2014-02-12
CN103492316A (zh) 2014-01-01
TWI482734B (zh) 2015-05-01

Similar Documents

Publication Publication Date Title
JP5270050B1 (ja) 複合黒鉛粒子およびその用途
JP5563578B2 (ja) 複合黒鉛粒子及びそれを用いたリチウム二次電池
JP5225690B2 (ja) 複合黒鉛粒子及びそれを用いたリチウム二次電池
EP3032616B1 (en) Method for producing composite
JP5960053B2 (ja) リチウム二次電池用負極活物質
JP5960052B2 (ja) リチウム二次電池用黒鉛系負極活物質
JP5128063B2 (ja) 複合黒鉛及びそれを用いたリチウム二次電池
WO2018110263A1 (ja) 複合黒鉛粒子、その製造方法及びその用途
JP2017063040A (ja) リチウムイオン電池用負極材及びその用途
JP2013222641A (ja) リチウムイオン電池用負極材及びその用途
WO2020110943A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7009049B2 (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池
JP5567232B1 (ja) 複合炭素粒子およびそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013509063

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016496

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13985611

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120043200

Country of ref document: DE

Ref document number: 112012004320

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856270

Country of ref document: EP

Kind code of ref document: A1