WO2014057690A1 - 複合炭素粒子およびそれを用いたリチウムイオン二次電池 - Google Patents

複合炭素粒子およびそれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014057690A1
WO2014057690A1 PCT/JP2013/006100 JP2013006100W WO2014057690A1 WO 2014057690 A1 WO2014057690 A1 WO 2014057690A1 JP 2013006100 W JP2013006100 W JP 2013006100W WO 2014057690 A1 WO2014057690 A1 WO 2014057690A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite carbon
negative electrode
ion secondary
particle
lithium ion
Prior art date
Application number
PCT/JP2013/006100
Other languages
English (en)
French (fr)
Inventor
武内 正隆
義史 横山
千明 外輪
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/435,245 priority Critical patent/US9614218B2/en
Priority to KR1020157006035A priority patent/KR101635491B1/ko
Priority to EP13844916.0A priority patent/EP2908366B1/en
Priority to CN201380053264.7A priority patent/CN104718648B/zh
Priority to JP2014501324A priority patent/JP5567232B1/ja
Publication of WO2014057690A1 publication Critical patent/WO2014057690A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to composite carbon particles and uses thereof. More specifically, the present invention relates to composite carbon particles useful as an active material for a negative electrode that provides a lithium ion secondary battery having a low battery resistance value and good cycle characteristics during high-speed charge / discharge with a large current, and a method for producing the same The present invention also relates to a lithium ion secondary battery using the composite carbon particles.
  • Lithium ion secondary batteries are used as power sources for portable electronic devices. However, the functions of portable electronic devices are diversifying and power consumption is increasing. Therefore, it is required to further increase the capacity of the lithium ion secondary battery. Lithium ion secondary batteries are also used as power sources for electric tools and electric vehicles. In electric vehicles such as battery electric vehicles (BEV) and hybrid electric vehicles (HEV), maintaining a high charge / discharge cycle characteristic for more than 10 years and a large current load characteristic sufficient to drive a high-power motor And a high volumetric energy density is required to extend the cruising range.
  • BEV battery electric vehicles
  • HEV hybrid electric vehicles
  • the carbon-based material there are a carbon material having a low crystallinity (hereinafter referred to as an amorphous carbon material) and a carbon material having a high crystallinity (hereinafter referred to as a highly crystalline carbon material).
  • a carbon material having a low crystallinity hereinafter referred to as an amorphous carbon material
  • a carbon material having a high crystallinity hereinafter referred to as a highly crystalline carbon material.
  • Any of the carbon materials can be used as a negative electrode active material since it can undergo lithium insertion / release reaction.
  • an amorphous carbon material is used as a negative electrode active material, it is said that a lithium ion secondary battery having a large battery capacity and capable of handling rapid charge / discharge can be obtained.
  • a lithium ion secondary battery obtained using an amorphous carbon material has a significant capacity reduction (cycle deterioration) due to repeated charge and discharge.
  • a lithium ion secondary battery having stable cycle characteristics and a low resistance value compared to a lithium ion secondary battery obtained using an amorphous carbon material is obtained. Said to be obtained.
  • a lithium ion secondary battery obtained using a highly crystalline carbon material cannot cope with rapid charge / discharge. This is because the lithium ion insertion / desorption reaction on the negative electrode active material side is not in time during rapid charge / discharge, the battery voltage rapidly reaches the lower limit value or the upper limit value, and the reaction does not proceed any further.
  • Patent Document 1 discloses that natural graphite particles and pitch are mixed and heat-treated at 900 to 1100 ° C. in an inert gas atmosphere to coat the surfaces of natural graphite particles with amorphous carbon.
  • a negative electrode active material is disclosed.
  • Patent Document 2 discloses a two-layer carbon material obtained by immersing a highly crystalline carbon material as a core material in tar or pitch and drying or heat-treating it at 900 to 1300 ° C.
  • Patent Document 3 graphite particles obtained by granulating natural graphite or scaly artificial graphite and a carbon precursor such as pitch are mixed and fired in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere.
  • a carbon material is disclosed.
  • Patent Document 4 spherical graphite particles obtained by granulating and spheroidizing flake graphite having d 002 of 0.3356 nm, an R value of around 0.07, and Lc of about 50 nm by mechanical external force are added to phenolic resin.
  • a composite graphite particle formed by coating a heated carbide is disclosed.
  • JP 2005-285633 A Japanese Patent No. 2976299 Japanese Patent No. 3193342 Japanese Patent Laid-Open No. 2004-210634
  • An object of the present invention is a composite carbon useful as a negative electrode active material capable of obtaining a lithium ion secondary battery having a low battery resistance value, high initial efficiency, and good cycle characteristics during high-speed charge / discharge with a large current. It is an object to provide a lithium ion secondary battery using the composite carbon particles and the particles, a method for producing the particles.
  • the present invention includes the following forms.
  • D50 50% particle diameter
  • the organic compound is at least one selected from the group consisting of petroleum pitch, coal pitch, phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin, and epoxy resin [1. ] Or the composite carbon particles according to [2].
  • HGI value grindability index
  • a negative electrode paste comprising the composite carbon particles according to any one of [1] to [4], a binder, and a solvent.
  • a negative electrode sheet comprising a current collector, and an electrode layer containing the composite carbon particles and the binder according to any one of [1] to [4], which covers the current collector.
  • a lithium ion secondary battery comprising the negative electrode sheet according to [7] and a positive electrode sheet.
  • a non-aqueous electrolyte solution and / or a non-aqueous polymer electrolyte, and the non-aqueous electrolyte solution and / or the non-aqueous polymer electrolyte are ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, butylene carbonate, And the lithium ion secondary battery according to [8], including at least one selected from the group consisting of vinylene carbonate.
  • the composite carbon particles according to the present invention are useful as an active material for a negative electrode in which a lithium ion secondary battery having a low battery resistance value, high initial efficiency, and good cycle characteristics during high-speed charge / discharge with a large current can be obtained. It is.
  • the lithium ion secondary battery of the present invention has a low battery resistance value, high initial efficiency, and good cycle characteristics during high-speed charge / discharge with a large current. It can be used for electronic devices such as personal computers and digital cameras; high-power devices such as electric tools and electric bicycles.
  • the composite carbon particles of one embodiment according to the present invention have core particles made of a carbon material and a coating layer made of a carbonaceous material.
  • the carbon material constituting the core particles is obtained by heat treating petroleum coke.
  • the heat treatment of petroleum coke is performed at a temperature of 2500 ° C. or lower, preferably 1000 ° C. or higher and 2000 ° C. or lower, more preferably 1100 ° C. or higher and 1500 ° C. or lower.
  • This heat treatment is preferably performed in an inert atmosphere.
  • the carbon material constituting the core particles has a specific surface area of preferably 1 to 10 m 2 / g, more preferably 1 to 7 m 2 / g. When the specific surface area is in the above range, a lithium ion secondary battery having a high battery capacity is easily obtained.
  • the specific surface area is calculated by the BET method based on nitrogen adsorption.
  • the core particle has a 50% particle size in a volume-based cumulative particle size distribution by laser diffraction method, preferably 1 to 30 ⁇ m, more preferably 3 to 25 ⁇ m, still more preferably 5 to 20 ⁇ m.
  • the particle size distribution of the core particles is preferably such that 90% by number or more falls within the particle diameter range of 3 to 18 ⁇ m.
  • the carbonaceous material constituting the coating layer is obtained by heat treating an organic compound.
  • the organic compound is not particularly limited as long as a carbonaceous material can be obtained.
  • Suitable organic compounds include at least one selected from the group consisting of petroleum pitch, coal pitch, phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin and epoxy resin.
  • the organic compound is preferably covered with the core particles and heat-treated.
  • the method of covering the core particles with the organic compound include a method including dry-mixing the core particles and the organic compound, and a method including wet-mixing the solution or melt of the organic compound and the core particles.
  • the mixing method include a method of stirring the core particles while spraying the organic compound.
  • the mechanochemical treatment can be performed by mixing the core particles and the organic compound by an apparatus such as a hybridizer manufactured by Nara Machinery.
  • the heat treatment is usually performed at 1000 ° C. to 2000 ° C., preferably 1000 ° C. to 1800 ° C., more preferably 1050 ° C. to 1650 ° C. If the heat treatment temperature is too low, carbonization is not sufficiently completed, and hydrogen and oxygen remain, which tends to affect battery characteristics. On the other hand, if the heat treatment temperature is too high, the coating layer tends to peel off, and the crystallinity becomes too high and the charge / discharge characteristics tend to deteriorate.
  • the heat treatment is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an atmosphere filled with an inert gas such as argon gas or nitrogen gas.
  • the carbonaceous material constituting the coating layer preferably has an R value of 0.2 or more.
  • R value the intensity ratio I D / I of the peak intensity (I G) in the range of the peak intensity (I D) and 1580 ⁇ 1620 cm -1 in the range of 1300 ⁇ 1400 cm -1 measured by Raman spectroscopy G.
  • the R value was calculated as follows. Using a laser Raman spectrometer (NRS-3100) manufactured by JASCO Corporation, measurement was performed under the conditions of an excitation wavelength of 532 nm, an incident slit width of 200 ⁇ m, an exposure time of 15 seconds, an integration count of 2 times, and a diffraction grating of 600 lines / mm. It was. From the measured spectrum, the ratio (I D / I G ) between the peak intensity I D (derived from the amorphous component) near 1360 cm ⁇ 1 and the peak intensity I G (derived from the graphite component) near 1580 cm ⁇ 1 was calculated. . This was used as an index of the degree of graphitization as the R value.
  • the composite carbon particles according to an embodiment of the present invention have a 50% particle size (D50) in a volume-based cumulative particle size distribution by laser diffraction method of 1 to 30 ⁇ m, preferably 3 to 25 ⁇ m, more preferably 5 to 20 ⁇ m. . Further, the particle size distribution of the composite carbon particles according to an embodiment of the present invention is preferably such that 90% by number or more falls within a particle diameter range of 3 to 18 ⁇ m.
  • the specific surface area of the composite carbon particles is 0.5 to 30 m 2 / g, preferably 0.5 to 10 m 2 / g, more preferably 0.5 to 5 m 2 / g.
  • the specific surface area is calculated by the BET method based on nitrogen adsorption.
  • the amount of the coating layer constituting the composite carbon particle of the present invention is not particularly limited.
  • the amount of the coating layer is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the core particles. If the amount of the coating layer is too large, the battery capacity tends to decrease.
  • the coating layer may be present on the surface of the core particle.
  • the quantity of a coating layer is shown as the quantity of the organic compound used when obtaining the composite carbon particle of this invention.
  • the thickness of the coating layer of the composite carbon particles is preferably several tens of nm, more preferably 10 nm or more and less than 100 nm.
  • the composite carbon particles of a preferred form according to the present invention have a peak intensity (I 110 ) of 110 diffraction lines in X-ray diffraction of a small piece pressure-molded with a binder to an electrode density of 1.55-1.65 g / cm 3.
  • the ratio I 110 / I 004 with the peak intensity (I 004 ) of the 004 diffraction line is preferably 0.2 or more, more preferably 0.3 or more, and further preferably 0.5 or more. The larger the ratio I 110 / I 004 is, the lower the crystal orientation in the electrode is.
  • d 002 is 0.337 nm or less.
  • the preferable composite carbon particle of this invention has Lc of 100 nm or more.
  • d 002 is spacing calculated from 002 diffraction line in the powder X-ray diffraction
  • L C is a c-axis direction of the crystallite size determined from 002 diffraction line in the powder X-ray diffraction.
  • the negative electrode paste according to an embodiment of the present invention includes the composite carbon particles, a binder, a solvent, and a conductive aid as necessary.
  • This negative electrode paste can be obtained, for example, by kneading the composite carbon particles, a binder, a solvent, and a conductive aid as required.
  • the negative electrode paste can be formed into a sheet shape or a pellet shape.
  • binder examples include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, and a polymer compound having high ionic conductivity.
  • the polymer compound having a high ionic conductivity examples include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like.
  • the amount of the binder is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the composite carbon particles.
  • the conductive auxiliary agent is not particularly limited as long as it has a function of imparting conductivity and electrode stability to the electrode (buffering action against volume change in insertion / extraction of lithium ions).
  • vapor grown carbon fiber for example, “VGCF” manufactured by Showa Denko KK
  • conductive carbon for example, “Denka Black” manufactured by Denki Kagaku Kogyo, “Super C65” manufactured by TIMCAL, “Super C45” manufactured by TIMCAL, Inc. "KS6L” manufactured by TIMCAL, Inc.
  • the amount of the conductive aid is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the composite carbon particles.
  • the solvent is not particularly limited.
  • the solvent include N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, water and the like.
  • a thickener it is preferable to use a thickener together. The amount of the solvent is adjusted so that the viscosity of the paste can be easily applied to the current collector.
  • the negative electrode sheet of one embodiment according to the present invention has a current collector and an electrode layer that covers the current collector.
  • the current collector include nickel foil, copper foil, nickel mesh, or copper mesh.
  • the electrode layer contains a binder and the composite carbon particles.
  • the electrode layer can be obtained, for example, by applying the negative electrode paste and drying it.
  • the method for applying the paste is not particularly limited.
  • the thickness of the electrode layer is usually 50 to 200 ⁇ m. If the thickness of the electrode layer becomes too large, the negative electrode sheet may not be accommodated in a standardized battery container.
  • the thickness of the electrode layer can be adjusted by the amount of paste applied. It can also be adjusted by drying the paste and then press molding.
  • the pressure molding method include molding methods such as roll pressing and press pressing. The pressure during pressure molding is preferably about 100 MPa to about 300 MPa (about 1 to 3 ton / cm 2 ).
  • a lithium ion secondary battery according to an embodiment of the present invention includes the negative electrode sheet according to the present invention, a positive electrode sheet, a non-aqueous electrolyte solution and / or a non-aqueous polymer electrolyte as constituent elements.
  • the positive electrode sheet those conventionally used for lithium ion secondary batteries, specifically, a sheet containing a positive electrode active material can be used.
  • the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , and LiFePO 4 .
  • the non-aqueous electrolyte and non-aqueous polymer electrolyte used for the lithium ion secondary battery are not particularly limited.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, CF 3 SO 3 Li can be converted into ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene.
  • Organic electrolytes dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propironitrile, dimethoxyethane, tetrahydrofuran, and ⁇ -butyrolactone; contain polyethylene oxide, polyacrylonitrile, poly (vinylidene fluoride), polymethyl methacrylate, etc. And a solid polymer electrolyte containing a polymer having an ethylene oxide bond and the like.
  • a small amount of a substance that causes a decomposition reaction when the lithium ion secondary battery is initially charged may be added to the electrolytic solution.
  • the substance include vinylene carbonate, biphenyl, propane sultone, and the like.
  • the addition amount is preferably 0.01 to 5% by mass.
  • a separator can be provided between the positive electrode sheet and the negative electrode sheet.
  • the separator include non-woven fabrics, cloths, microporous films, or a combination thereof, mainly composed of polyolefins such as polyethylene and polypropylene.
  • the BET method was calculated based on nitrogen adsorption.
  • Particle size The powder was added to 2 cups of ultra-small spatula and 2 drops of nonionic surfactant (Triton-X; manufactured by Roche Applied Science) were added to 50 ml of water and ultrasonically dispersed for 3 minutes. This dispersion was put into a laser diffraction particle size distribution analyzer (LMS-2000e) manufactured by Seishin Enterprise Co., Ltd., and the volume-based particle size distribution was measured to calculate a 50% particle size (D50).
  • LMS-2000e laser diffraction particle size distribution analyzer
  • a coin cell cap to which a gasket was attached was placed thereon, and the coin cell case and the coin cell cap were crimped and sealed to obtain an evaluation lithium ion secondary battery (coin battery).
  • an electrolytic solution a solution obtained by dissolving electrolyte LiPF 6 at a concentration of 1 mol / L in a solvent in which propylene carbonate, ethylene carbonate, and ethyl methyl carbonate are mixed at a volume ratio of 1: 1: 3.
  • the coin battery was removed from the glove box and allowed to stand at room temperature for 24 hours.
  • the battery was charged at a constant current of 0.2 C from the rest potential to 5 mV on the basis of the lithium metal foil, and then charged at a constant voltage of 5 mV, and the charging was stopped when 20 hours passed from the start of the constant current charging.
  • the battery was discharged at a constant current of 0.2 C, cut off at 1.5 V, and rested for 10 minutes.
  • the charge capacity and discharge capacity at this time were measured, and the initial efficiency was calculated based on the following formula.
  • the C rate for the coin battery was calculated based on 300 mAh per 1 g of the negative electrode active material.
  • (Initial efficiency) (Discharge capacity) / (Charge capacity)
  • the slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m with a doctor blade having a clearance of 200 ⁇ m, dried, and press-molded.
  • a positive electrode sheet was obtained by punching into a size of 2 cm ⁇ 2 cm.
  • the negative electrode sheet and the positive electrode sheet were overlapped with a polypropylene separator (Celguard 2400; manufactured by Tonen Corporation) between them. It was put in an aluminum laminate packaging material, an electrolyte solution was injected, and heat sealing was performed in a vacuum to obtain a laminate cell for evaluation.
  • electrolytic solution a solution obtained by dissolving electrolyte LiPF 6 at a concentration of 1 mol / L in a solvent in which propylene carbonate, ethylene carbonate, and ethyl methyl carbonate are mixed at a volume ratio of 1: 1: 3.
  • the C rate in the laminate cell was calculated based on the positive electrode active material, and the capacity per weight was calculated based on 150 mAh per 1 g of the ternary positive electrode material.
  • the capacity per weight of the negative electrode in the laminate cell the value obtained by the above-described coin battery was used.
  • the ratio of negative electrode capacity / positive electrode capacity in the laminate cell was set to 1.35.
  • the first and second charge / discharge cycles were performed as follows. The battery was charged with a constant current at 1 C until it reached 4.2 V from the rest potential, and then charged with a constant voltage at 4.2 V, and the charging was stopped when 20 hours had passed since the start of the constant current charging.
  • the battery was discharged at a constant current at 1C and cut off at a voltage of 2.7V.
  • the third and subsequent charge / discharge cycles were performed as follows. The battery was charged at a constant current of 2 C from the rest potential to 4.2 V, and then charged at a constant voltage of 4.2 V, and the charging was stopped when the current value decreased to 55 ⁇ A. Next, the battery was discharged at a constant current at 3C and cut off at a voltage of 2.7V. Then, the ratio (capacity retention) of the 200th discharge capacity to the third discharge capacity was calculated. This capacity retention indicates the cycle characteristics in large current charge / discharge.
  • a laminate cell was prepared in the same manner as the laminate cell used for measuring the cycle characteristics.
  • the cell C rate is based on the positive electrode capacity.
  • charging / discharging was performed under the following conditions, and current and voltage at that time were recorded.
  • constant current discharge was performed at 1C.
  • constant current charging was performed at 1 C until the rest potential reached 4.2 V, and then constant voltage charging was performed at 4.2 V, and charging was stopped when 20 hours had elapsed since the start of constant current charging.
  • the battery was discharged at a constant current of 0.1 C for 5 hours, subsequently discharged at a constant current of 0.2 C for 5 seconds, and rested for 30 minutes. Thereafter, constant current charging was performed until the voltage reached 4.2 V at 0.02 C, and then constant voltage charging was performed at 4.2 V, and charging was stopped when 50 seconds had elapsed from the start of constant current charging.
  • Example 1 Manufacture of composite carbon particles
  • Petroleum coke having an HGI value of 35 was pulverized so that the 50% particle size (D50) was 10 ⁇ m. This was fired at 1300 ° C. to obtain core particles.
  • 1% by mass of powdery isotropic pitch was mixed with the core particles, and heat treatment was performed at 1100 ° C. in an argon atmosphere to obtain composite carbon particles.
  • Example 2 Composite carbon particles and a negative electrode sheet were obtained in the same manner as in Example 1 except that the heat treatment temperature 1100 ° C. in an argon atmosphere was changed to 1600 ° C. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Example 3 Composite carbon particles and a negative electrode sheet were obtained in the same manner as in Example 1 except that the raw material coke was changed to petroleum coke having an HGI value of 50. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Example 4 Composite carbon particles and a negative electrode sheet of the present invention were obtained in the same manner as in Example 3 except that the heat treatment temperature 1100 ° C. in an argon atmosphere was changed to 1600 ° C. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 1 Carbon particles and a negative electrode sheet were obtained in the same manner as in Example 1 except that the isotropic pitch was not mixed. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 2 Carbon particles and a negative electrode sheet were obtained in the same manner as in Example 2 except that the isotropic pitch was not mixed. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 3 Carbon particles and a negative electrode sheet were obtained in the same manner as in Example 3 except that the isotropic pitch was not mixed. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 4 Carbon particles and a negative electrode sheet were obtained in the same manner as in Example 4 except that the isotropic pitch was not mixed. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 5 Composite carbon particles and a negative electrode sheet were obtained in the same manner as in Example 1 except that the raw material coke was changed to petroleum coke having an HGI value of 28 and D50 was changed to 12 ⁇ m. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 6 Composite carbon particles and a negative electrode sheet were obtained in the same manner as in Example 2 except that the raw material coke was changed to petroleum coke having an HGI value of 28 and D50 was changed to 12 ⁇ m. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 7 Composite carbon particles and a negative electrode sheet were obtained in the same manner as in Example 1 except that the raw material coke was changed to petroleum coke having an HGI value of 70 and D50 was changed to 14 ⁇ m. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • Comparative Example 8 Composite carbon particles and a negative electrode sheet were obtained in the same manner as in Example 2 except that the raw material coke was changed to petroleum coke having an HGI value of 70 and D50 was changed to 14 ⁇ m. Using the obtained negative electrode sheet, initial efficiency, cycle characteristics, and direct current resistance characteristics were measured. The results are shown in Table 1.
  • the lithium ion secondary battery including the negative electrode sheet obtained by using the composite carbon particles (Example) according to the present invention has high capacity retention, low DC resistance characteristics, and high initial efficiency. Recognize.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

粉砕性指数(HGI値)が30~60(測定:ASTMD409)である石油系コークスを2500℃以下で熱処理して得られる炭素材料からなる芯粒子と、 有機化合物を1000℃~2000℃で熱処理して得られる炭素質材からなる被覆層とを有し、 レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1~30μmである リチウムイオン二次電池負極用の複合炭素粒子。

Description

複合炭素粒子およびそれを用いたリチウムイオン二次電池
 本発明は、複合炭素粒子およびその用途に関する。より詳細に、本発明は、電池の抵抗値が低く、大電流による高速充放電時のサイクル特性が良好なリチウムイオン二次電池を与える負極用の活物質として有用な複合炭素粒子およびその製造方法、並びにこの複合炭素粒子を用いて成るリチウムイオン二次電池に関する。
 リチウムイオン二次電池は携帯電子機器などの電源として使用されている。ところが、携帯電子機器はその機能が多様化し消費電力が大きくなっている。そのため、リチウムイオン二次電池の容量をさらに大きくすることが要求されている。また、リチウムイオン二次電池は、電動工具や電気自動車などの電源としても使用されている。バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)などの電気自動車においては、10年間以上に亘って高い充放電サイクル特性を維持すること、ハイパワーモーターを駆動させるために十分な大電流負荷特性を有すること、および航続距離を伸ばすために高い体積エネルギー密度を有することが要求される。
 炭素系材料としては、低結晶化度の炭素材料(以下、アモルファス炭素材料という。)と、高結晶化度の炭素材料(以下、高結晶性炭素材料という。)とがある。いずれの炭素材料もリチウムの挿入脱離反応が可能であることから、負極活物質に用いることができる。
 一般に、アモルファス炭素材料を負極活物質に用いると、電池容量が大きく、急速充放電にも対応可能なリチウムイオン二次電池が得られると言われている。しかし、アモルファス炭素材料を用いて得られるリチウムイオン二次電池は、充放電の繰り替しによる容量低下(サイクル劣化)が著しいことも知られている。
 一方、高結晶性炭素材料を負極活物質に用いると、安定したサイクル特性を有し、アモルファス炭素材料を用いて得られるリチウムイオン二次電池に比較して抵抗値が低いリチウムイオン二次電池が得られると言われている。しかし、高結晶性炭素材料を用いて得られるリチウムイオン二次電池は、急速充放電に対応できていない。これは、急速充放電時に負極活物質側でのリチウムイオンの挿入脱離反応が間に合わず、電池の電圧が急激に下限値若しくは上限値まで達し、それ以上反応が進まなくなることが原因である。
 アモルファス炭素材料と高結晶性炭素材料との複合材料が種々提案されている。
 例えば、特許文献1には、天然黒鉛粒子とピッチを混合して不活性ガス雰囲気下において、900~1100℃で熱処理を行うことにより、天然黒鉛粒子の表面を非晶質炭素で被覆させてなる負極活物質が開示されている。
 特許文献2には、芯材となる高結晶性炭素材料をタール又はピッチに浸漬させ、それを乾燥又は900~1300℃で熱処理してなる二層炭素材料が開示されている。
 特許文献3には、天然黒鉛又は鱗状人造黒鉛を造粒させて得られる黒鉛粒子とピッチなどの炭素前駆体とを混合し、不活性ガス雰囲気下で700~2800℃の温度範囲で焼成させてなる炭素材料が開示されている。
 特許文献4には、d002が0.3356nm、R値が0.07前後、Lcが約50nmである鱗片状黒鉛を機械的外力で造粒球状化して得られる球状黒鉛粒子に、フェノール樹脂の加熱炭化物を被覆してなる複合黒鉛粒子が開示されている。
特開2005-285633号公報 特許2976299号公報 特許3193342号公報 特開2004-210634号公報
 ところが、特許文献1~4に記載されている炭素材料を用いて得られるリチウムイオン二次電池は、電池の抵抗値が高く、初期効率が低く、大電流による高速充放電時のサイクル特性が不十分であった。
 本発明の目的は、電池の抵抗値が低く、初期効率が高く、且つ大電流による高速充放電時のサイクル特性が良好なリチウムイオン二次電池を得ることができる負極活物質として有用な複合炭素粒子およびその製造方法、並びにこの複合炭素粒子を用いて成るリチウムイオン二次電池を提供することである。
 本発明者らは、上記目的を達成するために検討した結果、以下の形態の発明を完成にするに至った。
 すなわち、本発明は以下の形態を包含する。
〔1〕 粉砕性指数(HGI値)が30~60(測定:ASTMD409)である石油系コークスを2500℃以下で熱処理して得られる炭素材料からなる芯粒子と、
 有機化合物を1000℃~2000℃で熱処理して得られる炭素質材からなる被覆層と
を有し、
 レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1~30μmである
リチウムイオン二次電池負極用の複合炭素粒子。
〔2〕 比表面積が0.4~50m2/gである〔1〕に記載の複合炭素粒子。
〔3〕 有機化合物が、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂およびエポキシ樹脂からなる群から選択される少なくとも1つである〔1〕または〔2〕に記載の複合炭素粒子。
〔4〕 被覆層の量が芯粒子に対して0.05~10質量%である〔1〕~〔3〕のいずれかひとつに記載の複合炭素粒子。
〔5〕 粉砕性指数(HGI値)が30~60(測定:ASTMD409)である石油系コークスを2500℃以下で熱処理して炭素材料からなる芯粒子を得る工程、
 該芯粒子に有機化合物を被せ、次いで1000℃~2000℃の温度で熱処理する工程、および
 レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1~30μmとなるように粉砕または/および分級する工程を含む
 リチウムイオン二次電池負極用の複合炭素粒子の製造方法。
〔6〕 前記〔1〕~〔4〕のいずれかひとつに記載の複合炭素粒子と、 バインダーと、 溶媒とを含む負極用ペースト。
〔7〕 集電体と、 該集電体を被覆する、〔1〕~〔4〕のいずれかひとつに記載の複合炭素粒子およびバインダーを含有する電極層と を有する負極シート。
〔8〕 前記〔7〕に記載の負極シートと、正極シートと を有するリチウムイオン二次電池。
〔9〕 非水系電解液および/または非水系ポリマー電解質をさらに有し、且つ
 前記非水系電解液および/または非水系ポリマー電解質が、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ブチレンカーボネート、およびビニレンカーボネートからなる群から選ばれる少なくとも1つを含む 〔8〕に記載のリチウムイオン二次電池。
 本発明に係る複合炭素粒子は、電池の抵抗値が低く、初期効率が高く、且つ大電流による高速充放電時のサイクル特性が良好なリチウムイオン二次電池が得られる負極用の活物質として有用である。本発明のリチウムイオン二次電池は、電池の抵抗値が低く、初期効率が高く、且つ大電流による高速充放電時のサイクル特性が良好であるので、電源として、携帯電話、ノートブック型若しくはタブレット型パソコン、デジタルカメラなどの電子機器;電動工具、電動自転車などのハイパワー機器に用いることができる。
 以下、本発明を更に詳細に説明する。
(複合炭素粒子)
 本発明に係る一実施形態の複合炭素粒子は、炭素材料からなる芯粒子と、炭素質材からなる被覆層とを有する。
 芯粒子を構成する炭素材料は、石油系コークスを熱処理して得られるものである。該石油系コークスは、粉砕性指数(HGI値)が、通常、30~60、好ましくは35~55である。
 この粉砕性指数は、ASTMD409に準拠する測定によって決定できる。まず、コークスの粒度を1.18~600μmにそろえ、コークス50gをハードグローブ粉砕試験機にセットする。5~20rpmで60回廻したところで装置を止める。処理したコークスを75μmの篩に、10分間、5分間、および5分間、合計で20分間かける。篩下の重量Wを測定する。粉砕性指数を下記式に基づいて算出する。
  HGI=13+6.93W
 石油系コークスの熱処理は、2500℃以下、好ましくは1000℃以上2000℃以下、より好ましくは1100℃以上1500℃以下の温度にて行う。この熱処理は不活性雰囲気下で行うことが好ましい。また、アチソン式炭素化炉で熱処理を行ってもよい。
 芯粒子を構成する炭素材料は、比表面積が、好ましくは1~10m2/g、より好ましくは1~7m2/gである。比表面積が上記範囲にあると、高い電池容量のリチウムイオン二次電池が得られやすい。なお、比表面積は窒素吸着に基づきBET法で算出されるものである。
 コークスの熱処理を行った後、必要に応じて解砕および/または分級して所望の粒度の芯粒子とすることができる。芯粒子は、レーザー回折法による体積基準累積粒度分布における50%粒子径が、好ましくは1~30μm、より好ましくは3~25μm、さらに好ましくは5~20μmである。
 細かい粒子が多いと電極密度を上げ難くなり、また大きな粒子が多いと電極スラリー塗工時に塗り斑が発生し、電池特性を著しく低下させる恐れがある。このことから、芯粒子の粒度分布は、粒子径3~18μmの範囲に90個数%以上が入るものであることが好ましい。
 被覆層を構成する炭素質材は、有機化合物を熱処理して得られるものである。
 有機化合物は炭素質材が得られるものであれば特に限定されない。好適な有機化合物としては、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂およびエポキシ樹脂からなる群から選択される少なくとも1つが挙げられる。
 被覆層を形成するために、該有機化合物を前記芯粒子に被せ、熱処理することが好ましい。芯粒子に有機化合物を被せる手法としては、芯粒子と有機化合物とを乾式混合することを含む方法、有機化合物の溶液または融液と芯粒子とを湿式混合することを含む方法などが挙げられる。混合の手法としては、例えば、有機化合物を吹きかけながら前記芯粒子を撹拌する手法が挙げられる。また、奈良機械製ハイブリダイザーなどの装置により芯粒子と有機化合物とを混合してメカノケミカル処理を行うこともできる。
 熱処理は、通常、1000℃以上2000℃以下で、好ましくは1000℃以上1800℃以下で、より好ましくは1050℃以上1650℃以下で行う。熱処理温度が低すぎると炭素化が十分に終了せず水素や酸素が残留し電池特性に影響を及ぼす傾向がある。逆に、熱処理温度が高すぎると、被覆層がはがれやすい傾向、また結晶性が高くなりすぎて充放電特性が低下する傾向がある。熱処理は、非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。
 被覆層を構成する炭素質材は、R値が、好ましくは0.2以上である。R値は、ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGである。R値が大きい炭素質層、すなわち非晶質炭素材料からなる層を芯粒子の表面に設けることにより、リチウムイオンの挿入・脱離が容易になり、リチウムイオン二次電池の急速充放電特性が改善される。
 なお、R値は次のようにして算出した。日本分光株式会社製レーザーラマン分光測定装置(NRS-3100)を用いて、励起波長532nm、入射スリット幅200μm、露光時間15秒、積算回数2回、回折格子600本/mmの条件で測定を行った。測定されたスペクトルから1360cm-1付近のピークの強度ID(非晶質成分由来)と1580cm-1付近のピークの強度IG(黒鉛成分由来)の比(ID/IG)を算出した。それをR値として黒鉛化度合いの指標とした。
 熱処理の後、解砕および/または分級することが好ましい。前記熱処理によって複合炭素粒子同士が融着して塊になることがあるので、熱処理後に解砕および/または分級して、それを電極活物質に用いることが好ましい。
 本発明に係る一実施形態の複合炭素粒子は、レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が、1~30μm、好ましくは3~25μm、より好ましくは5~20μmである。
 また、本発明に係る一実施形態の複合炭素粒子の粒度分布は、粒子径3~18μmの範囲に90個数%以上が入るものであることが好ましい。
 複合炭素粒子の比表面積は、0.5~30m2/g、好ましくは0.5~10m2/g、より好ましくは0.5~5m2/gである。なお、比表面積は窒素吸着に基づきBET法で算出されるものである。
 本発明の複合炭素粒子を構成する被覆層の量は、特に限定されない。被覆層の量は芯粒子100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.1~10質量部である。被覆層の量が多すぎると電池容量が低下する傾向がある。本発明の複合炭素粒子において、被覆層は芯粒子の表面に存在すればよい。なお、被覆層の量は、本発明の複合炭素粒子を得る際に用いる有機化合物の量として示す。また、複合炭素粒子の被覆層の厚さは、好ましくは数10nm、より好ましくは10nm以上100nm未満である。
 本発明に係る好ましい形態の複合炭素粒子は、バインダーを用いて電極密度1.55~1.65g/cm3に加圧成形した小片のX線回折における110回折線のピーク強度(I110)と004回折線のピーク強度(I004)との比I110/I004が、好ましくは0.2以上、より好ましくは0.3以上、さらに好ましくは0.5以上である。比I110/I004の値が大きいほど電極内での結晶配向性が低いことを表す。
 本発明に係る好ましい形態の複合炭素粒子は、d002が0.337nm以下である。また、本発明の好ましい複合炭素粒子は、Lcが100nm以上である。なお、d002は粉末X線回折における002回折線から求めた面間隔、LCは粉末X線回折における002回折線から求めた結晶子のc軸方向の大きさである。
(負極用ペースト)
 本発明に係る一実施形態の負極用ペーストは、前記複合炭素粒子とバインダーと溶媒と必要に応じて導電助剤などとを含むものである。この負極用ペーストは、例えば、前記複合炭素粒子とバインダーと溶媒と必要に応じて導電助剤などとを混練することによって得られる。負極用ペーストは、シート状、ペレット状などの形状に成形することができる。
 バインダーとしては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、イオン伝導率の大きい高分子化合物などが挙げられる。イオン伝導率の大きい高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリルなどが挙げられる。バインダーの量は、複合炭素粒子100質量部に対して、好ましくは0.5~20質量部である。
 導電助剤は電極に対し導電性及び電極安定性(リチウムイオンの挿入・脱離における体積変化に対する緩衝作用)を付与する役目を果たすものであれば特に限定されない。例えば、気相法炭素繊維(例えば、「VGCF」昭和電工社製)、導電性カーボン(例えば、「デンカブラック」電気化学工業社製、「Super C65」TIMCAL社製、「Super C45」TIMCAL社製、「KS6L」TIMCAL社製)などが挙げられる。導電助剤の量は、複合炭素粒子100質量部に対して、好ましくは10~100質量部である。
 溶媒は、特に制限されない。溶媒として、例えば、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量はペーストが集電体に塗布しやすいような粘度となるように調整される。
(負極シート)
 本発明に係る一実施形態の負極シートは、集電体と、該集電体を被覆する電極層とを有するものである。
 集電体としては、例えば、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュなどが挙げられる。
 電極層は、バインダーと前記の複合炭素粒子とを含有するものである。電極層は、例えば、前記の負極用ペーストを塗布し乾燥させることによって得ることができる。ペーストの塗布方法は特に制限されない。電極層の厚さは、通常、50~200μmである。電極層の厚さが大きくなりすぎると、規格化された電池容器に負極シートを収容できなくなることがある。電極層の厚さは、ペーストの塗布量によって調整できる。また、ペーストを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロール加圧、プレス加圧などの成形法が挙げられる。加圧成形するときの圧力は、好ましくは約100MPa~約300MPa(1~3ton/cm2程度)である。
(リチウムイオン二次電池)
 本発明に係る一実施形態のリチウムイオン二次電池は、本発明に係る負極シートと、さらに正極シートと、非水系電解液および/または非水系ポリマー電解質とを構成要素として有する。
 正極シートとして、リチウムイオン二次電池に従来から使われていたもの、具体的には正極活物質を含んでなるシートを用いることができる。正極活物質としては、LiNiO2、LiCoO2、LiMn24、LiNi0.34Mn0.33Co0.332、LiFePO4などが挙げられる。
 リチウムイオン二次電池に用いられる非水系電解液および非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピロニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液や;ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビリニデン、およびポリメチルメタクリレートなどを含有するゲル状のポリマー電解質や;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。
 また、電解液には、リチウムイオン二次電池の初回充電時に分解反応が起きる物質を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート、ビフェニール、プロパンスルトンなどが挙げられる。添加量としては0.01~5質量%が好ましい。
 本発明のリチウムイオン二次電池には正極シートと負極シートとの間にセパレータを設けることができる。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分として成る 不織布、クロス、微孔フィルム又はそれらを組み合わせたものなどが挙げられる。
 以下に実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。
 各種特性の測定は以下のようにして行った。
(比表面積)
 窒素吸着に基づきBET法により算出した。
(粒子径)
 粉体を極小型スパーテル2杯分、及び非イオン性界面活性剤(トリトン-X;Roche Applied Science 製)2滴を水50mlに添加し、3分間超音波分散させた。この分散液をセイシン企業社製レーザー回折式粒度分布測定器(LMS-2000e)に投入し、体積基準粒度分布を測定し、50%粒子径(D50)を算出した。
(粉砕性指数(HGI値))
 コークスの粒度を1.18~600μmにそろえ、該コークス50gをハードグローブ粉砕試験機にセットした。5~20rpmにて60回廻したところで装置を止めた。処理したサンプルを75μmの篩に、10分間、5分間および5分間の、合計20分間、かけた。篩下の重量Wを測定した。粉砕性指数を下記式に基づいて算出した。
  HGI=13+6.93W
(初期効率の測定)
 露点-75℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施した。
 2032型コインセル(直径20mm、厚み3.2mm;宝泉製)を用意した。直径15mmの負極シートをコインセルケースの中に置いた。これに電解液を注ぎ、負極シートに浸透させた。その上に直径20mmのセパレータ(セルガード2400)と、直径17.5mmおよび厚さ3mmのリチウム箔とをこの順で載せた。その上に、ガスケットを取り付けたコインセルキャップを被せ、コインセルケースとコインセルキャップとをかしめて密封し、評価用のリチウムイオン二次電池(コイン電池)を得た。
 なお、電解液として、プロピレンカーボネートとエチレンカーボネートとエチルメチルカーボネートが体積比で1:1:3の割合で混合された溶媒に電解質LiPF6を1mol/Lの濃度で溶解させて得られた液を用いた。
 上記のコイン電池をグローブボックスから取り出し24時間室温で静置した。
 レストポテンシャルからリチウム金属箔基準で5mVになるまで0.2Cで定電流充電し、引き続き5mVで定電圧充電し、定電流充電開始時から20時間経過した時点で充電を止めた。次いで0.2Cで定電流放電し、1.5Vでカットオフし、10分間休止した。このときの充電容量と放電容量を測定し、下記式に基づいて初期効率を算出した。なお、コイン電池に関するCレートは、負極活物質材料1gあたり300mAhを基にして算出した。
 (初期効率)=(放電容量)/(充電容量)
(サイクル特性の測定)
 露点-80℃以下の乾燥アルゴンガス雰囲気下に保ったグローブボックス内で下記の操作を実施した。
 LiMO2(M=Ni,Mn,Co;Unicore社製三元系正極材)90質量部、導電助剤(C45;TIMCAL社製)2質量部、導電助剤(KS6L)3質量部、およびポリフッ化ビニリデン(KFポリマー W#1300;クレハ製)5質量部(固形分として)にN-メチル-ピロリドンを適宜加えながら攪拌・混合し、スラリーを作製した。
 該スラリーを厚さ20μmのアルミ箔上にクリアランス200μmのドクターブレードで塗布し、乾燥させ、加圧成形した。2cm×2cmの大きさに打ち抜いて正極シートを得た。
 負極シートと正極シートとをポリプロピレン製セパレータ(セルガード2400;東燃株式会社製)を間に挟んで重ね合せた。それをアルミラミネート包材の中に入れ、電解液を注入し、真空中でヒートシールして、評価用のラミネートセルを得た。
 なお、電解液として、プロピレンカーボネートとエチレンカーボネートとエチルメチルカーボネートが体積比で1:1:3の割合で混合された溶媒に電解質LiPF6を1mol/Lの濃度で溶解させて得られた液を用いた。
 このラミネートセルを用いて以下の条件で充放電を行った。なお、ラミネートセルにおける、Cレートは正極活物質を基準とし、重量あたり容量は三元系正極材1g当たり150mAhを基にして算出した。ラミネートセルにおける、負極の重量あたり容量は、先述のコイン電池によって求められた値を用いた。ラミネートセルにおける負極容量/正極容量の比率が1.35になるようにした。
 1回目と2回目の充放電サイクルは、次のようにして行った。レストポテンシャルから4.2Vになるまで1Cで定電流充電し、引き続き4.2Vで定電圧充電し、定電流充電開始時から20時間経過した時点で充電を止めた。次いで、1Cで定電流放電し、電圧2.7Vでカットオフした。
 3回目以降の充放電サイクルは、次のようにして行った。レストポテンシャルから4.2Vまで2Cで定電流充電し、引き続き4.2Vで定電圧充電し、電流値が55μAに低下した時点で充電を止めた。次いで、3Cで定電流放電し、電圧2.7Vでカットオフした。
 そして、3回目の放電容量に対する200回目の放電容量の割合(容量保持率)を算出した。この容量保持率は大電流充放電におけるサイクル特性を示している。
(直流抵抗特性の測定)
 サイクル特性の測定に用いたラミネートセルの作成法と同じ方法でラミネートセルを作成した。なお、セルのCレートは正極容量基準である。
 このラミネートセルを用いて以下の条件で充放電を行い、その時の電流と電圧を記録した。まず、1Cで定電流放電を行った。そしてレストポテンシャルから4.2Vになるまで1Cで定電流充電し、引き続き4.2Vで定電圧充電し、定電流充電開始時から20時間経過した時点で充電を止めた。次いで0.1Cで5時間定電流放電し、引き続き0.2Cで5秒間定電流放電し、30分間休止した。その後、0.02Cで4.2Vになるまで定電流充電し、引き続き4.2Vで定電圧充電し、定電流充電開始時から50秒間経過した時点で充電を止めた。
 また、5秒間の定電流放電を、0.5C、1C、および2Cの放電レートにそれぞれ変えて上記と同じ充放電を行い、それらの時の電流と電圧を記録した。
 記録した電流および電圧のすべての値から「直流抵抗特性」を算出した。
実施例1
(複合炭素粒子の製造)
 HGI値が35である石油系コークスを、50%粒子径(D50)が10μmとなるように粉砕した。これを1300℃で焼成し、芯粒子を得た。これに粉末状の等方性ピッチを芯粒子に対して1質量%を混合し、アルゴン雰囲気下で1100℃にて熱処理を行って複合炭素粒子を得た。
(ペーストの調製)
 複合炭素粒子8.00g、導電助材としてアセチレンブラック(HS-100;電気化学社製)1.72g、およびバインダーとしてポリフッ化ビニリデン(KFポリマー #9300;クレハ製)4.30gをそれぞれ秤量し、充分に混合した。その後、これにN-メチル-2-ピロリドン(キシダ化学製)9.32gを徐々に添加し脱泡ニーダー(NBK-1;日本精機製作所製)を用いて混練し、ペーストを得た。
(負極シートの作製)
 このペーストをクリアランス150μmのドクターブレードで20μm厚のCu箔上に塗布し、それを約80℃のホットプレート上に置いて水分を除去した。その後、真空乾燥機にて90℃で1時間乾燥させた。
 複合炭素粒子と導電助材とバインダーとの合計質量、および塗布層の体積とから算出される電極密度が1.50±0.05g/cm3になるように一軸プレスにより加圧成形し、負極シートを得た。
 得られた負極シートを直径15mmの大きさに切り出した。これを1.2t/cm2で10秒間プレスした。塗膜の平均膜厚は70~80μmであった。また、塗膜のローディングレベルは6.5~7.5mg/cm2であった。
 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
実施例2
 アルゴン雰囲気下での熱処理温度1100℃を1600℃に変えた以外は実施例1と同じ手法で複合炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
実施例3
 原料コークスをHGI値が50である石油系コークスに変えた以外は実施例1と同じ手法で複合炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
実施例4
 アルゴン雰囲気下での熱処理温度1100℃を1600℃に変えた以外は実施例3と同じ手法で本発明の複合炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例1
 等方性ピッチを混合しなかった以外は実施例1と同じ手法で炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例2
 等方性ピッチを混合しなかった以外は実施例2と同じ手法で炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例3
 等方性ピッチを混合しなかった以外は実施例3と同じ手法で炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例4
 等方性ピッチを混合しなかった以外は実施例4と同じ手法で炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例5
 原料コークスをHGI値が28である石油系コークスに変え、且つD50を12μmにした以外は実施例1と同じ手法で複合炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例6
 原料コークスをHGI値が28である石油系コークスに変え、且つD50を12μmにした以外は実施例2と同じ手法で複合炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例7
 原料コークスをHGI値が70である石油系コークスに変え、且つD50を14μmにした以外は実施例1と同じ手法で複合炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
比較例8
 原料コークスをHGI値が70である石油系コークスに変え、D50を14μmにした以外は実施例2と同じ手法で複合炭素粒子および負極シートを得た。 得られた負極シートを用いて、初期効率、サイクル特性および直流抵抗特性を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、本発明に係る複合炭素粒子(実施例)を用いて得られる負極シートを備えるリチウムイオン二次電池は容量保持率が高く、直流抵抗特性が低く、且つ初期効率が高いことがわかる。

Claims (9)

  1.  粉砕性指数(HGI値)が30~60(測定:ASTMD409)である石油系コークスを2500℃以下で熱処理して得られる炭素材料からなる芯粒子と、
     有機化合物を1000℃~2000℃で熱処理して得られる炭素質材からなる被覆層と
    を有し、
     レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1~30μmである
    リチウムイオン二次電池負極用の複合炭素粒子。
  2.  比表面積が0.4~50m2/gである請求項1に記載の複合炭素粒子。
  3.  有機化合物が、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂およびエポキシ樹脂からなる群から選択される少なくとも1つである請求項1または2に記載の複合炭素粒子。
  4.  被覆層の量が芯粒子に対して0.05~10質量%である請求項1~3のいずれかひとつに記載の複合炭素粒子。
  5.  粉砕性指数(HGI値)が30~60(測定:ASTMD409)である石油系コークスを2500℃以下で熱処理して炭素材を得る工程、
     該炭素材に有機化合物を被せ、次いで1000℃~2000℃の温度で熱処理する工程、および
     レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1~30μmとなるように粉砕または/および分級する工程を含む
     リチウムイオン二次電池負極用の複合炭素粒子の製造方法。
  6.  請求項1~4のいずれかひとつに記載の複合炭素粒子と、
     バインダーと、
     溶媒と
    を含む負極用ペースト。
  7.  集電体と、
     該集電体を被覆する、請求項1~4のいずれかひとつに記載の複合炭素粒子およびバインダーを含有する電極層と
    を有する負極シート。
  8.  請求項7に記載の負極シートと、
     正極シートと
    を有するリチウムイオン二次電池。
  9.  非水系電解液および/または非水系ポリマー電解質をさらに有し、且つ
     前記非水系電解液および/または非水系ポリマー電解質が、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ブチレンカーボネート、およびビニレンカーボネートからなる群から選ばれる少なくとも1つを含む請求項8に記載のリチウムイオン二次電池。
PCT/JP2013/006100 2012-10-12 2013-10-11 複合炭素粒子およびそれを用いたリチウムイオン二次電池 WO2014057690A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/435,245 US9614218B2 (en) 2012-10-12 2013-10-11 Composite carbon particle and lithium-ion secondary cell using same
KR1020157006035A KR101635491B1 (ko) 2012-10-12 2013-10-11 복합 탄소 입자 및 그것을 사용한 리튬 이온 2차 전지
EP13844916.0A EP2908366B1 (en) 2012-10-12 2013-10-11 Method for the production of a composite carbon particle
CN201380053264.7A CN104718648B (zh) 2012-10-12 2013-10-11 复合碳颗粒和使用其的锂离子二次电池
JP2014501324A JP5567232B1 (ja) 2012-10-12 2013-10-11 複合炭素粒子およびそれを用いたリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012226811 2012-10-12
JP2012-226811 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057690A1 true WO2014057690A1 (ja) 2014-04-17

Family

ID=50477171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006100 WO2014057690A1 (ja) 2012-10-12 2013-10-11 複合炭素粒子およびそれを用いたリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US9614218B2 (ja)
EP (1) EP2908366B1 (ja)
JP (1) JP5567232B1 (ja)
KR (1) KR101635491B1 (ja)
CN (1) CN104718648B (ja)
WO (1) WO2014057690A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102439849B1 (ko) * 2015-08-27 2022-09-01 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 리튬 이차 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976299B2 (ja) 1995-11-14 1999-11-10 大阪瓦斯株式会社 リチウム二次電池用負極材料
JP3193342B2 (ja) 1997-05-30 2001-07-30 松下電器産業株式会社 非水電解質二次電池
JP2004210634A (ja) 2002-12-19 2004-07-29 Jfe Chemical Corp 複合黒鉛粒子、その製造方法、リチウムイオン二次電池負極材、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP2005285633A (ja) 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP2008300274A (ja) * 2007-06-01 2008-12-11 Panasonic Corp 複合負極活物質および非水電解質二次電池
WO2013084506A1 (ja) * 2011-12-09 2013-06-13 昭和電工株式会社 複合黒鉛粒子およびその用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193342A (ja) 1989-12-22 1991-08-23 Sumitomo Bakelite Co Ltd 積層板の製造方法
CA2238286C (en) * 1995-11-14 2004-02-17 Osaka Gas Company Limited Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
US20030160215A1 (en) * 2002-01-31 2003-08-28 Zhenhua Mao Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same
US20070092429A1 (en) * 2005-10-24 2007-04-26 Conocophillips Company Methods of preparing carbon-coated particles and using same
CN101106191A (zh) * 2007-07-26 2008-01-16 辽宁工程技术大学 复合石墨负极材料的制备方法及使用该材料的锂离子电池
CN101332990B (zh) * 2008-07-25 2010-09-08 东莞市迈科新能源有限公司 锂离子电池负极碳材料的制造方法
CN101798079B (zh) * 2009-02-11 2011-11-09 长沙海容新材料股份有限公司 一种锂离子动力电池负极材料及其制备方法
CN102196994B (zh) * 2009-10-22 2013-09-11 昭和电工株式会社 石墨材料、电池电极用碳材料和电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976299B2 (ja) 1995-11-14 1999-11-10 大阪瓦斯株式会社 リチウム二次電池用負極材料
JP3193342B2 (ja) 1997-05-30 2001-07-30 松下電器産業株式会社 非水電解質二次電池
JP2004210634A (ja) 2002-12-19 2004-07-29 Jfe Chemical Corp 複合黒鉛粒子、その製造方法、リチウムイオン二次電池負極材、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP2005285633A (ja) 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP2008300274A (ja) * 2007-06-01 2008-12-11 Panasonic Corp 複合負極活物質および非水電解質二次電池
WO2013084506A1 (ja) * 2011-12-09 2013-06-13 昭和電工株式会社 複合黒鉛粒子およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2908366A4

Also Published As

Publication number Publication date
EP2908366A4 (en) 2016-04-06
JP5567232B1 (ja) 2014-08-06
US9614218B2 (en) 2017-04-04
US20150270535A1 (en) 2015-09-24
CN104718648A (zh) 2015-06-17
JPWO2014057690A1 (ja) 2016-09-05
EP2908366A1 (en) 2015-08-19
CN104718648B (zh) 2017-10-20
KR20150043384A (ko) 2015-04-22
EP2908366B1 (en) 2018-12-19
KR101635491B1 (ko) 2016-07-01

Similar Documents

Publication Publication Date Title
JP5270050B1 (ja) 複合黒鉛粒子およびその用途
JP5225690B2 (ja) 複合黒鉛粒子及びそれを用いたリチウム二次電池
JP5563578B2 (ja) 複合黒鉛粒子及びそれを用いたリチウム二次電池
KR100392034B1 (ko) 비수 전해액 이차 전지, 그의 제조법 및 탄소 재료 조성물
JP5611453B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
TW201336783A (zh) 鋰離子電池用電極材料之製造方法
US20190334173A1 (en) Composite graphite particles, method for producing same, and use thereof
JP5505480B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP4933092B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2007141677A (ja) 複合黒鉛及びそれを用いたリチウム二次電池
WO2012127548A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2020110943A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP4354723B2 (ja) 黒鉛質粒子の製造方法
JP7009049B2 (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池
JP2004059386A (ja) 炭素被覆黒鉛質粒子の製造方法、炭素被覆黒鉛質粒子、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5567232B1 (ja) 複合炭素粒子およびそれを用いたリチウムイオン二次電池
JP5865273B2 (ja) 黒鉛材料の製造方法
JP5001977B2 (ja) 黒鉛質粒子、リチウムイオン二次電池およびその負極材料
JP2003031218A (ja) リチウム二次電池用負極活物質材料およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014501324

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006035

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14435245

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013844916

Country of ref document: EP