WO2000008695A1 - Capteur magnetique et son procede de production - Google Patents

Capteur magnetique et son procede de production Download PDF

Info

Publication number
WO2000008695A1
WO2000008695A1 PCT/JP1999/004280 JP9904280W WO0008695A1 WO 2000008695 A1 WO2000008695 A1 WO 2000008695A1 JP 9904280 W JP9904280 W JP 9904280W WO 0008695 A1 WO0008695 A1 WO 0008695A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
thin film
layer
sensor according
magnetic
Prior art date
Application number
PCT/JP1999/004280
Other languages
English (en)
French (fr)
Inventor
Ichiro Shibasaki
Atsushi Okamoto
Takashi Yoshida
Ichiro Okada
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to AU50665/99A priority Critical patent/AU5066599A/en
Priority to JP2000564243A priority patent/JP3916870B2/ja
Priority to EP99935099A priority patent/EP1124271B8/en
Priority to US09/762,327 priority patent/US6590389B1/en
Priority to DE69936461T priority patent/DE69936461T2/de
Publication of WO2000008695A1 publication Critical patent/WO2000008695A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head

Definitions

  • Patent application title Magnetic sensor and manufacturing method thereof
  • the present invention relates to a semiconductor thin film magnetic sensor and a method for manufacturing the same.
  • Magnetic sensors such as magnetoresistive elements and Hall elements that use compound semiconductor thin films with high electron mobility, such as InSb, have the function of detecting static magnetic fields, and the rotational angle of the gear at high or low rotational speeds Or, it has a function of detecting a speed. For this reason, it is often used as a small DC motor magnetic sensor.
  • InSb has a problem that it cannot meet the strict requirements in magnetic sensor application fields that are expanding in recent years.
  • a magnetic sensor using InSb has high sensitivity and extremely good characteristics near room temperature, but since the resistance of the magnetic sensing part greatly depends on temperature, it can be used at low temperatures below 140 ° C. Dramatic increase in device resistance makes it easier to pick up electrical noise, and at high temperatures exceeding 120 ° C, drive current increases due to a large decrease in device resistance, making driving difficult. That is, I n Sb has a large temperature dependence, with the maximum temperature change rate of the resistance being 12% Z ° C.
  • the temperature change rate of the resistor / 3R is obtained by the following equation.
  • the temperature variation of the resistance value in the present invention is small, generally refers to the temperature change rate i3 R (% / ° C) is small.
  • magnetic sensors have been widely used as non-contact sensors, and their application range is expanding. You. In such recently expanding magnetic sensor application fields, there is an increasing demand for using magnetic sensors as non-contact sensors even under conditions of lower temperatures and higher temperatures, compared to conventional applications. In general, the temperature range in which the magnetic sensor is driven tends to expand. In applications such as small DC motors used in conventional VTRs and personal computers, magnetic sensors are used in a temperature range near room temperature, for example, in the range of about 20 to 80 ° C (effectively at 100 ° C).
  • the non-contact magnetic sensor for automobiles or industrial non-contact magnetic sensors which is expected to expand in the future, has a temperature range of 150 ° C to 150 ° C. Actual use in the temperature range of 200 ° C) is actually required.
  • InSb has a large temperature dependence, for example, when the temperature change rate is negative, the resistance becomes high at low temperatures and low at high temperatures, and the temperature changes from 150 ° C to +150 ° C.
  • the resistance value at 150 ° C is 28 to 30 times the resistance value at 150 ° C (54 times when the temperature change rate of the resistor is -2%).
  • Stable driving becomes difficult. That is, a complicated and expensive drive circuit is required.
  • the element resistance becomes extremely large, which is strongly affected by stray electromagnetic noise and may cause malfunction due to noise.
  • magnetic sensors can be used only in extremely limited cases, and the advantages of non-contact sensors have not been fully exploited.
  • Such a magnetic sensor and a power supply for driving the magnetic sensor and a control circuit for the magnetic sensor that amplifies the output of magnetic field detection are intended to be compact, low-cost, and high-performance.
  • the temperature dependence of the resulting resistance value is a major obstacle.
  • the ratio between the maximum resistance of 150 ° C and the resistance of 150 ° C must be within 15 times in absolute value.
  • Another object of the present invention is to provide a magnetic sensor that can be driven with high reliability in the range of 150 ° C. to 150 ° C., and that can be driven by a small and low-cost control circuit. is there. More specifically, the temperature of the magnetic sensor is between a low temperature (for example, the required lower limit temperature-50 ° C) and a high temperature (for example, the required upper limit temperature of 150 ° C).
  • An object of the present invention is to provide a highly sensitive and highly reliable magnetic sensor with little change in input resistance value.
  • the present inventors studied the composition, thinning, doping, and the like of a compound semiconductor thin film having high electron mobility, which enables the production of a highly sensitive magnetic sensor, and also examined matching with a control circuit.
  • a magnetic sensor with a small resistance temperature change we found that a magnetic sensor with a small resistance temperature change.
  • the inorganic passivation layer protects the magneto-sensitive part from the heat stress that is directly applied to the magneto-sensitive part.
  • a small control circuit can drive a magnetic sensor over a wide temperature range if the temperature change of the input resistance of the magnetic sensor is within a certain range.
  • a magnetic sensor device combining a high-sensitivity magnetic sensor using a compound semiconductor thin film capable of obtaining a high mobility satisfying such a condition as a magnetic sensing portion and a small control circuit for such a magnetic sensor,
  • a digital output magnetic sensor device that is small and can output a plurality of signals corresponding to the detection of the magnetic field and the non-detection of the magnetic field in proportion to the detection signal of the magnetic field, and a manufacturing method thereof.
  • the magnetic sensor according to claim 1 of the present invention is a magnetic sensor comprising: an In x G ai — xA S yS bi— y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) thin film layer formed on a substrate Wherein the thin film layer contains at least one kind of donor atom selected from the group consisting of Si, Te, S, Sn, Ge and Se.
  • the donor atom is characterized in that at least a part thereof is cationized by replacing any atom of InGaAsSb at a lattice point of the crystal.
  • the magnetic sensor according to claim 3 of the present invention is the magnetic sensor according to claim 1 or 2, wherein the thin film layer has an electron concentration of 2.1 ⁇ 10 16 / cm 3 or more. Further, the relationship between the electron mobility (cmW-s) and the electron concentration n (1 / cm— 3 ) of the thin film layer is as follows:
  • the electron mobility is more desirably 6000 cm 2 ZV ⁇ s or more.
  • a magnetic sensor having high sensitivity and low temperature dependence can be manufactured. Claim 4 of the present invention limits this point.
  • the electron mobility is preferably at least 10,000 cm 2 ZV ⁇ s.
  • a magnetic sensor according to a fourth aspect of the present invention is the magnetic sensor according to the third aspect, wherein the electron mobility of the thin film layer is 6000 cmW ⁇ s or more.
  • the magnetic sensor according to claim 5 of the present invention is the magnetic sensor according to claim 1 or 2, wherein the thin film layer has an electron concentration of 2.1 X 10 16 Zcm 3 or more. Further, the relationship between the electron mobility (cm 2 / V ⁇ s) of the thin film layer and the electron concentration n (1 / cm— 3 ) is
  • the magnetic sensor according to claim 6 of the present invention in the magnetic sensor according to claim 5, wherein the electron mobility of the thin film layer is 10,000 cm 2 / Vs or more. I do.
  • the electron mobility is preferably 15,000 cm 2 ZV ⁇ s or more, and more preferably 20,000 cm 2 , for high sensitivity and low temperature dependence of operation of the magnetic sensor. ZV ⁇ s or more.
  • the magnetic sensor according to claim 7 of the present invention in the magnetic sensor according to claim 6, wherein the thin film layer is an InASySt ⁇ -y (0 ⁇ y ⁇ 1) thin film layer. It is characterized by
  • the magnetic sensor according to claim 8 of the present invention is the magnetic sensor according to claim 7, wherein the thin film layer is an InSb thin film layer.
  • the magnetic sensor according to claim 9 of the present invention is the magnetic sensor according to any one of claims 1 to 8, wherein the surface of the substrate is made of an insulating group III-V compound semiconductor. It is characterized by having been done.
  • the magnetic sensor according to claim 10 of the present invention is the magnetic sensor according to any one of claims 1 to 9, wherein the substrate is made of an insulating GaAs single crystal.
  • the magnetic sensor according to claim 11 of the present invention is characterized in that, in the magnetic sensor according to any one of claims 1 to 10, the thickness of the operating layer is 6 microns or less.
  • the magnetic sensor according to claim 12 of the present invention is the magnetic sensor according to any one of claims 1 to 10, wherein the thickness of the operating layer is 0.7 to 1.2 micron. It is characterized by being.
  • the magnetic sensor according to claim 13 of the present invention is the magnetic sensor according to any one of claims 1 to 10, wherein the thickness of the operation layer is 1.2 microns or less.
  • a magnetic sensor according to claim 14 of the present invention is characterized in that, in the magnetic sensor according to any one of claims 1 to 13, the magnetic sensor is a Hall element.
  • the preferable thickness of the operating layer is 1.2 ⁇ m or less, and more preferably 0.5 ⁇ m or less. It is 1 micron or less, more preferably 0.06 micron or less.
  • a magnetic sensor according to claim 15 of the present invention is characterized in that, in the magnetic sensor according to any one of claims 1 to 13, the magnetic sensor is a magnetoresistive element.
  • the preferred thickness of the working layer is 1.2 microns In the following, furthermore, it is 0.5 micron or less, and in the case of producing a device with low power consumption with a higher input resistance value, it is 0.2 micron or less.
  • claim 16 of the present invention discloses a semiconductor magnetoresistive device, wherein the device comprises four semiconductor thin-film elements having a magnetoresistive effect on a smooth substrate surface. Part, a wiring part, and a bonding electrode, and four element parts that generate a magnetoresistive effect are connected by a bridge structure, and among the four element parts, there is a positional relationship between the sides of the bridge structure.
  • the element units are arranged so as to receive a magnetic field of the same strength vertically at the same time, and the element unit and the bonding electrode are connected by the wiring unit.
  • a semiconductor magnetoresistive device is characterized in that, in the device according to claim 16, the wiring portions do not intersect.
  • the semiconductor magnetoresistive device according to claim 18 of the present invention is the semiconductor magnetoresistive device according to claim 16 or 17, wherein the semiconductor magnetoresistive device comprises It is characterized in that the wiring portions up to the bonding electrode are formed to have the same resistance value.
  • claim 19 of the present invention discloses a magnetic sensor device, wherein the magnetic sensor device includes: a magnetic sensor; an amplification circuit for amplifying an output of the magnetic sensor; A magnetic sensor device packaged with a magnetic circuit having a power supply circuit for driving a sensor, wherein the magnetic sensor is a magnetic sensor according to any one of claims 1 to 18. It is a sensor.
  • the magnetic sensor device according to claim 20 of the present invention is the magnetic sensor device according to claim 19, wherein the input resistance value of the magnetic sensor at 150 ° C is 150 ° C. It is characterized by being set within 15 times the input resistance value.
  • the magnetic sensor device according to claim 21 of the present invention is the magnetic sensor device according to claim 19 or 20, wherein the output after being amplified by the amplifier circuit is It is characterized by being proportional to the output of the magnetic sensor.
  • a magnetic sensor device in the magnetic sensor device according to claim 19 or 20, wherein the output after being amplified by the amplifier is a magnetic field detected by the magnetic sensor. And a digital signal output corresponding to non-detection.
  • the range 23 of claims of the present invention is to disclose a method for manufacturing a magnetic sensor, the production method, the electron density on the substrate of 2 X 10 16 Zcm 3 or more I n x Ga preparative x AS (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) forming a thin film, forming the thin film into a desired pattern, forming a plurality of thin metal thin films on the thin film, Connecting a plurality of external connection electrodes to an end of the thin film.
  • Range manufacturing method of a magnetic sensor of paragraph 24 of the claims of the present invention is the manufacturing method of the magnetic sensor of the claims second third term, the I n x G a i_ x A s y S b have y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1)
  • the step of forming a thin film at least one kind of donor atom selected from the group consisting of Si, Te, S, Sn, Ge and Se is applied to the thin film.
  • the method further comprises the step of including.
  • Claim 25 of the present invention discloses a method for manufacturing a magnetic sensor device, the method comprising: a circuit for amplifying a magnetic field detection signal of a magnetic sensor; and a circuit for driving the magnetic sensor.
  • a method for manufacturing a magnetic sensor device including a step of packaging together a control circuit having a power supply circuit, wherein the magnetic sensor is the magnetic sensor according to any one of claims 1 to 18; The magnetic sensor is manufactured by the manufacturing method described in claim 23 or 24.
  • Claim 26 of the present invention discloses a magnetic sensor having another configuration, wherein the magnetic sensor includes a substrate, and an IrixGa ⁇ ASySb ⁇ v (0) formed on the substrate. ⁇ x ⁇ l, 0 ⁇ y ⁇ l) An operating layer including a thin film layer, and an operating layer formed on the operating layer. An insulating or high-resistance semiconductor intermediate layer, a protective layer of an insulating inorganic layer (that is, a passivation layer) and a force are laminated in this order.
  • the magnetic sensor according to claim 27 'of the present invention is the magnetic sensor according to claim 26, wherein the intermediate layer is in contact with the operation layer and a lattice constant approximated to a lattice constant of the operation layer. It is characterized by having.
  • the intermediate layer is formed of the In x Ga x X A s y S bn (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) It is characterized by a composition containing at least one or more of the elements constituting the thin film.
  • the intermediate layer has a composition including at least one or more elements constituting the barrier layer. It is characterized by.
  • the magnetic sensor according to claim 31 of the present invention is the magnetic sensor according to any one of claims 27 to 30, wherein the In x G a X A s y S b (0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1)
  • the thin film contains at least one kind of donor atom of the group consisting of Si Te S Sn Ge and Se.
  • a magnetic sensor according to claim 32 of the present invention wherein in the magnetic sensor according to claim 31, at least a part of the donor atom is cationized to supply conduction electrons in an operation layer.
  • the donor atom is characterized in that at least a part thereof is positively ionized by replacing any atom of InGaAsSb at a lattice point of the crystal.
  • the magnetic sensor according to claim 33 of the present invention is characterized in that: The magnetic sensor according to any one of the above items, wherein the intermediate layer includes at least one kind of donor atom selected from the group consisting of Si, Te, S, Sn, Ge, and Se. '
  • the magnetic sensor according to claim 34 of the present invention is the magnetic sensor according to any one of claims 27 to 33, wherein the In x G a or X A s y S b y ( 0 ⁇ x
  • the thin film is characterized in that the resistance value at ⁇ 50 ° C. of the thin film is within 15 times the resistance value at 150 ° C.
  • Claim 35 of the present invention discloses a magnetic sensor device having another configuration, wherein the device drives a magnetic sensor, a circuit for amplifying the output of the magnetic sensor, and the magnetic sensor.
  • Claim 36 of the present invention discloses a method of manufacturing a magnetic sensor having another configuration, wherein the manufacturing method comprises the steps of: y S y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) forming a thin film, forming an intermediate layer of a compound semiconductor having similar physical properties to the thin film on the thin film, A step of forming an intermediate layer into a desired pattern; a step of forming a thin metal thin film of a desired shape on the formed pattern; and an insulating inorganic protective layer on the pattern and the metal thin film.
  • the third item 7 scope of the claims of the present invention further disclose a preparation how the magnetic sensor of another construction, the production method, I n x on a smooth surface on the substrate G a Bok X A s y S b ⁇ y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) a step of forming a thin film, a step of forming a barrier layer on the thin film, and a step of forming a barrier layer and physical property values on the barrier layer.
  • FIG. 1 is a graph showing the temperature dependence of the resistance value of the InSb thin film.
  • FIG. 2A is a plan view of the Hall element of the present invention.
  • FIG. 2B is a sectional view of the Hall element.
  • FIG. 3 is a cross-sectional view schematically showing a state in which the Hall element of the present invention is connected to a lead and is packaged with a resin.
  • FIG. 4 is a diagram schematically showing one embodiment of the three-terminal magnetoresistive element of the present invention.
  • FIG. 5A is a plan view showing one embodiment of the magnetoresistance element of the present invention.
  • FIG. 5B is a sectional view of the magnetoresistive element shown in FIG. 5A.
  • 6A to 6C are cross-sectional views showing a laminated structure of thin films in a magnetic sensing portion of the magnetic sensor of the present invention.
  • FIG. 7A to 7C are cross-sectional views showing a laminated structure of thin films in a magnetic sensing portion of the magnetic sensor of the present invention.
  • FIG. 8 is a circuit diagram of a magnetic sensor packaged together with a silicon integrated circuit chip.
  • FIG. 9A is a plan view of a Hall element formed in Example 10 of the present invention.
  • FIG. 9B is a sectional view of the Hall element shown in FIG. 9A.
  • FIG. 1 OA is a sectional view of a two-terminal magnetoresistive element formed in Example 18 of the present invention. is there.
  • FIG. 108 is a plan view of the magnetoresistive element shown in FIG. 1OA. BEST MODE FOR CARRYING OUT THE INVENTION
  • I n x Ga x As y S (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) to be abbreviated as I nGaAs S b.
  • the contents include all compositions determined by the above xy.
  • the electron concentration of the thin film 2 It is necessary that at 1 X 10 16 Zcm 3 or more, preferably 5 X 10 16 Zcm 3 or more, over 6 X 10 16 Zc m 3 More preferably, 6 ⁇ 10 16 5 ⁇ 10 18 Zcm 3 is particularly preferable.
  • One method of increasing the electron concentration of the InGaAsSb thin film is to include a small amount of donor atoms such as SiTeSSnGeSe in the InGaAsSb layer. By doping the donor atom in this manner, a decrease in the resistance of the InGaAsSb layer at high temperatures can be reduced, so that a large current does not flow through the magnetic sensor at high temperatures. Can be.
  • Another method for increasing the electron concentration of InGa, xASySb ⁇ , thin film (0 ⁇ x ⁇ l0 ⁇ y ⁇ 1) is to appropriately set the composition of the thin film, Set the value of xy to 0 The electron concentration can be increased by appropriately selecting within the range of ⁇ x ⁇ l, 0 ⁇ y ⁇ 1.
  • the electron concentration can be set to a specific level, the temperature change of the resistance can be reduced, and the control circuit of the magnetic sensor, including the circuit that amplifies the output of the magnetic sensor and the power supply circuit that drives the magnetic sensor, etc.
  • the load can be reduced.
  • the circuit itself is not complicated, the driving power and current at high temperatures are reduced, and a control circuit that can drive the device over a wide temperature range can be manufactured.
  • the element driving circuit can be simplified and the device can be miniaturized. Therefore, the magnetic sensor of the present invention and a control circuit, which is a small Si integrated circuit, are housed in a single package, and a small-sized thin film magnetic sensor with high sensitivity and high reliability can be realized.
  • the doped magnetic sensor can avoid a sharp drop in the resistance of the magnetic sensor in the high temperature range, it operates stably even in the high temperature range of 10 o ° C or more, and operates in the low temperature range of less than 20 ° C. In this case, the sharp rise of the resistance value (input resistance value) of the magnetic sensor can be reduced, and the device operates stably even in a low temperature range below 20 ° C.
  • the circuit for amplifying the sensor output can be prevented from becoming complicated, and a low-cost magnetic sensor that can operate stably over a wide temperature range can be manufactured.
  • the effect of such doping is an effect common to the embodiments of the present invention, but is not limited to the embodiments listed in the present invention.
  • the donor atom to be doped is not particularly limited as long as it is an element that can be a donor, but Si, Te, S, Sn, Se, Ge, etc. are listed as typical donor atoms.
  • Can be The electron concentration in the InGaAsSb thin film can be set to an appropriate value by adjusting the amount of the doped dopant.
  • the undoped electron concentration is (I) of 1.7 ⁇ 10 16 Zcm 3
  • the resistance value at 50 ° C. is 31 times the resistance value at 150 ° C. It was difficult to use.
  • doping has an electron concentration of 5 X 10 16 Zcm 3 or more.
  • the number in () indicates that the resistance at 50 ° C is 1
  • I n X G a X A s y S b thin (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) is an operation layer of the magnetic sensor of the present invention the thickness of the generally 6 microns or less, 2 microns or less Is more preferable, and in some cases, 1 ⁇ m or less is more preferable.
  • a magnetic sensor having high magnetic field sensitivity and low temperature dependence of resistance is preferable because it can produce a magnetic sensor having a good characteristic of 0.71.2 microns.
  • the thin film as the magnetic sensing part is preferably thinner, and may be manufactured to 0.5 ⁇ m or less, or 0.1 ⁇ m or less.
  • a semiconductor insulating layer having a lattice constant close to that of InGaAsSb or a buffer layer (barrier layer) that is a high-resistance layer is used.
  • the buffer layer when one buffer layer is formed so as to be in contact with the InGaAsSb thin film, which is the operation layer of the magnetic sensor, the electron concentration of the operation layer is appropriately adjusted near the interface with the operation layer.
  • the buffer layer may be doped with donor atoms instead of doping the operation layer.
  • the buffer layer has a role as a layer for trapping electrons in the operation layer (InGaAsSb thin film).
  • the operating layer is an extremely thin film of 50 OA or less, a buffer layer may be formed above and below the operating layer.In such a case, the buffer layer has a role of confining electrons in the operating layer.
  • the operation layer becomes a quantum well.
  • a donor atom may be doped in the operation layer of the quantum well.
  • an insulating or semi-insulating compound semiconductor such as GaAs InP is usually used.
  • the surface of the substrate may further have an insulating or semi-insulating surface, or a surface layer having a high sheet resistance.
  • Si single crystal substrate, ferrite substrate, ceramic A mixed substrate or the like can also be preferably used.
  • the plane orientation of the crystal is not limited and may be (100), (1 1 1), etc. Also, a plane inclined at an angle of about 0 ° with respect to these plane directions may be used.
  • an alumina substrate / sapphire substrate having a smooth surface, a single crystal ferrite substrate having a thin insulating layer on the surface, or the like can be used.
  • the I n S b or I n X G a X A s y S b (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) sufficiently draw out the characteristics of the thin film of, fabricating a magnetic sensor with high sensitivity was a major issue.
  • At least one intermediate layer is formed so as to be in direct contact with the InGaAsSb thin film constituting the magnetic sensing portion of the magnetic sensor.
  • the intermediate layer is made of III-V compound semiconductor material. Insulating layer or high resistance layer.
  • the intermediate layer is generally different from the buffer layer (barrier layer), but may also serve as a buffer layer if necessary.
  • the intermediate layer preferably has a lattice constant close to the lattice constant of the InGaAsSb thin film, a large band gap, a small electron mobility than the thin film, insulating or semi-insulating.
  • the difference in lattice constant from InGaAsSb is preferably within 8%, and more preferably within 5%.
  • a III-V compound that does not directly contact the InGaAs Sb thin film that constitutes the magnetic sensing part of the magnetic sensor but has a large band gap such as GaAs formed at low temperature is used.
  • a semiconductor layer is formed. That is, a plurality of intermediate layers are also formed. In addition to such an intermediate layer, further, S 10 2 Ya i 3 N passivation one Chillon thin layer, such as 4 non-semiconductor on the intermediate layer, i.e., it also performed well the protective layer is formed.
  • Such an intermediate layer is generally formed on the upper side of the thin film. Alternatively, it may be formed on both surfaces of the thin film.
  • a buffer layer in the present invention, the layer formed on the upper side of the thin film is referred to as “barrier layer” for convenience
  • the intermediate layer is formed on the barrier layer. It is formed in contact with.
  • the protection film formed as a passivation does not come into direct contact with the operating layer of the magneto-sensitive part.
  • the characteristics of the InGaA s Sb thin film, especially the electron mobility do not fluctuate.
  • Such an effect is particularly remarkable when the thickness of the thin film is 0.2 ⁇ m or less.
  • such an intermediate layer can also serve as a barrier layer.
  • the thickness of the intermediate layer is not particularly limited, but is usually 2 ⁇ m or less, Preferably it is 1 micron or less, more preferably 0.5 micron or less.
  • the layer formed on the surface has a thickness of 0.5 micron or less, preferably 0.2 micron or less, and more preferably 0.1 micron or less.
  • the intermediate layer may be doped with a donor atom such as Si, Se, Te, S, Sn, or Ge.
  • the donor atom may be uniformly doped on the entire intermediate layer, but may be partially doped on the intermediate layer, for example, on the side in contact with the thin film. In this case, at least a part of the donor atom must be cationized.
  • the intermediate layer has a very small electron mobility and a small electrical conductivity compared to the InGaAsSb thin film, and thus has the property of being a semiconductor but not contributing to electrical conduction. Therefore, it behaves as an insulating layer. Further, since the InGaAsSb thin film is disposed between the passivation layer and the InGaAsSb thin film, the interaction caused by the direct contact of the InGaAsSb thin film with the passivation layer is prevented. Prevents deterioration of nGaAs Sb characteristics.
  • the InGaAsSb thin film in a magnetic sensor having an insulating inorganic layer (protective layer) as a passivation layer, the InGaAsSb thin film, the band gap is large, and the electron mobility is higher than that of the working layer of InGaAsSb.
  • an insulating inorganic layer (protective layer) as a semiconductor intermediate layer and a passivation layer in this order.
  • An insulating or high resistance GaAs layer formed at a low temperature is a preferable example that is often used as an intermediate layer.
  • the magnetic sensor of the present invention is a high-sensitivity magnetic sensor using an InGaAsSb thin film as a magnetic sensing part. Specifically, a Hall element, a magnetoresistive element, and a Hall effect and a magnetoresistive effect are used. It is a thin-film magnetic sensor that detects magnetism by combining elements or these effects.
  • the present invention also provides a magnetic sensor packaged with a control circuit having at least a circuit for amplifying the output of the magnetic sensor and a power supply circuit for driving the magnetic sensor.
  • a magnetic sensor packaged with a control circuit having at least a circuit for amplifying the output of the magnetic sensor and a power supply circuit for driving the magnetic sensor.
  • Magnetic sensor Magnetic sensor.
  • FIGS. 2A to 7C the same reference numeral in each drawing indicates the same function.
  • the circuit shown in the present invention is an equivalent circuit.
  • FIG. 2 is a plan view of a Hall element, which is an embodiment of a magnetic sensor having an Ir ⁇ Ga ⁇ xASySb ⁇ ⁇ thin film (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ 1) of the present invention as an operating layer.
  • FIG. 2B is a sectional view taken along line IIB-IIB ′ in FIG. 2A. 2A and 2B, the InGaAsSb thin film 2 is formed on an insulating substrate 1.
  • FIG. The electron concentration of the thin film 2 is above 2.1 ⁇ 10 16 / cm 3 , and the input resistance value at ⁇ 50 ° C. of the magnetic sensor is within 15 times the input resistance value at 150 ° C.
  • reference numeral 3 denotes an inorganic protective layer formed on the entire surface excluding the external connection electrode 5
  • reference numeral 4 denotes a wiring portion made of a metal thin film. Connect the operation layer of the magnetic sensing part 6 indicated by the pattern.
  • the magnetic sensing unit 6 detects a magnetic field as a magnetic sensor.
  • the InGaAsSb thin film 2 is doped with impurities (donor atoms) such as Si, Te, Sn, S, Se, and Ge.
  • FIG. 3 shows a magnetic sensor in a state where the Hall element 20 of the present invention is packaged with a resin.
  • reference numeral 7 denotes bonding for connecting the electrode 5 (51, 52, 53) of the Hall element to the lead 8
  • 9 denotes the resin of the package.
  • FIG. 4 shows a plan view of a three-terminal magnetoresistive element of the present invention having three external connection electrodes.
  • An InGaAs Sb thin film 2 and an electrode 5 for external connection are formed on a substrate 1.
  • Reference numeral 6 denotes a magnetic sensing unit for detecting a magnetic field as a magnetic sensor.
  • Numeral 10 is a highly conductive portion formed in close contact with the magnetically sensitive portion of InGaAsSb in order to increase the magnetoresistance effect of the InGaAsSb thin film, and is a short bar electrode. .
  • FIG. 5A and 5B show a magnetoresistive element according to another embodiment of the magnetic sensor of the present invention.
  • FIG. 5A is a plan view of the magnetoresistive element
  • FIG. 5B is a cross-sectional view taken along the line VB-V ′ ′ of FIG. 5A.
  • four magnetoresistive elements are arranged and connected in a bridge on one plane.
  • an InGaAsSb thin film 2 is formed on a substrate 1
  • a metal short bar electrode 10 is formed on the thin film 2.
  • the electrode 5 for connection to the outside and the magnetoresistive element are connected by a wiring section 4, and an inorganic thin film often formed as necessary as a passivation layer is a protective film 3 for protecting the magnetoresistive element. It is.
  • the four magnetoresistive element portions 61, 62, 63, and 64, which are the magnetic sensing portions 6, are arranged in a bridge shape.
  • the two magnetoresistive element sections (61 and 63, 62 and 64) in the relationship can receive a magnetic field of the same strength in the vertical direction at the same time.
  • “connected in a bridge” means not only when the magnetoresistive elements are connected in a bridge, but also when the magnetoresistive elements are connected outside the substrate and the This also includes the case in which they are arranged in a ridge shape.
  • the magnetoresistive element section 21 and the short bar electrode 10 constitute a magnetoresistive element section 6 (61, 62, 63, 64).
  • the magnetoresistive effect depends on the shape of the magnetoresistive element 6 (61, 62, 63, 64) between the short bar electrodes, and the longitudinal (L) and width (W) of the magnetoresistive element in the current traveling direction. )), The smaller the length ratio (L / W), the larger the resistance change rate.
  • the wiring section 4 connecting the magnetoresistive element section 6 may be a single layer without crossing, but the length of the wiring section may depend on the position where the electrode 5 (51, 52, 53, 54) is arranged. In order to shorten the length of the wiring, a three-dimensional It may be possible.
  • the resistance values of the wiring portions from the connection point of the adjacent magneto-resistive element portions to the external connection electrodes be equal to each other in order to reduce the offset voltage.
  • the resistance value of the wiring portion is preferably 1% or less, more preferably 0.5% or less, as compared with the resistance value of the magnetoresistive element portion at room temperature.
  • the thickness of the InGaAsSb thin film in the magnetoresistive element portion be as small as possible. This is because the thinner the film thickness, the higher the element resistance, the smaller the chip size with the same element resistance, and the shorter the manufacturing time, which is advantageous in terms of cost. .
  • the film thickness is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, further preferably 3 ⁇ m or less, further preferably 2 ⁇ m or less. And most desirable.
  • the InSb thin film of the magnetoresistive element preferably has a sheet resistance variation within a standard deviation of 5% or less.
  • the difference between the lattice constant of the semiconductor insulating layer and the lattice constant of InGaAsSb is preferably within 7%.
  • the band gap of the layer needs to be larger than that of the operation layer.
  • the semiconductor insulating layer is often formed above and below the InGaAsSb thin film.
  • a semiconductor insulating layer is formed below.
  • An example of such a semiconductor insulating layer is A 1 X G xA SyS bi— v (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ 1, where x and y are not simultaneously 0)
  • a ternary or quaternary compound semiconductor insulating layer is a particularly preferred example.
  • FIG. 6A shows a cross-sectional structure in a state where the semiconductor thin film 2 which is the operation layer of the magnetic sensor of the present invention is formed directly on the insulating substrate 1.
  • FIG. 6B shows a cross section in a state where a semiconductor insulating layer 11 for reducing a difference in lattice constant between the insulating substrate 1 and the semiconductor thin film 2 is formed.
  • FIG. 6C is a cross-sectional view showing a case where a semiconductor insulating layer 11 for reducing the difference in lattice constant is formed on the surface of the semiconductor thin film 2, and the characteristics of the thin film insulating layer during passivation such as Si 3 N 4 are shown. This is a state in which a semiconductor insulating layer that has an effect of reducing the decrease is formed.
  • FIG. 7A shows a cross-sectional structure in which an intermediate layer 13 is formed on the semiconductor thin film 2
  • FIG. 7B shows a semiconductor insulating layer 11 between the semiconductor thin film 2 and the intermediate layer 13.
  • 3 shows a cross-sectional structure in a formed state.
  • the semiconductor insulating layer 11 or the intermediate layer 13 may be doped with a donor atom 12 such as Si in order to supply electrons to the InGaAsSb thin film.
  • the doping may be performed in a part of the semiconductor insulating layer (or the intermediate layer), and in this case, at least a part of the electrons of the donor atom are transferred to the low energy InGaAsSb layer. Supplied. Then, the donor atom of the semiconductor insulating layer (or the intermediate layer) is cationized.
  • FIG. 7C shows a case where the semiconductor insulating layer is partially doped as described above. In FIG. 7C, a region in contact with the semiconductor thin film 2 in the semiconductor insulating layer 11 is doped with a donor atom 12.
  • the thickness of such a semiconductor insulating layer is not particularly limited, but is usually 2 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the thickness of the layer is preferably 0.5 ⁇ m or less, More preferably, it is 0.2 ⁇ m or less, particularly preferably 0.1 ⁇ m or less.
  • the semiconductor thin film 2 is formed directly on the insulating substrate, and when the magnetic sensor is a magnetoresistive element, a metal short bar is directly formed on the semiconductor thin film 2.
  • An electrode is formed.
  • a semiconductor insulating layer is formed between the insulating substrate and the semiconductor thin film, and a short bar is formed on the semiconductor thin film.
  • a semiconductor insulating layer is formed on the surface, and the layer is partially removed to form a short bar electrode.
  • a part of the semiconductor thin film may be doped so as to have a high electrical conductivity so as to exhibit a short bar effect.
  • FIG. 8 shows a control circuit section of a silicon integrated circuit chip provided with a magnetoresistive element 18 of the present invention, an analog amplifier section 15, a Schmitt trigger 16 and an output section 17 (shown by an output transistor). Shows the state packaged together with 14.
  • the control circuit section 14 means a control circuit having at least a differential amplification circuit and a power supply circuit for driving the magnetic sensor, and is preferably small in size, and is particularly preferable as a silicon integrated circuit chip. It is preferred that it be produced. It is often packaged together with the magnetoresistive element 18 of the present invention, which is also the magnetic sensor of the present invention. (Example 1)
  • a Hall element was manufactured as follows.
  • a thin film manufacturing apparatus specially manufactured for manufacturing a thin film of a compound semiconductor was used.
  • the basic configuration of this device consists of a holder for setting a substrate and a heating control device capable of heating the substrate to a certain temperature in an ultra-high vacuum chamber.
  • materials such as In, Sb, As Evaporation source (Knudsen) Cell
  • a desired material can be uniformly grown on a substrate according to a time-series evaporation control of the vapor pressure of each material and a substrate heating program by a substrate heating device. .
  • donor impurities such as Si and Sn are subjected to vapor pressure control in a time-series manner so that the impurities are determined only at a desired portion of the growing thin film.
  • Thin film manufacturing apparatus hereinafter referred to as a single crystal thin film of a material used for a magnetic sensor portion in the present invention or a molecule capable of crystal growth of a mixed crystal thin film
  • Line epitaxy device may be simply abbreviated as MBE device below.
  • a thin film of a compound semiconductor constituting the magnetic sensing portion of the magnetic sensor of the present invention was manufactured under the following conditions.
  • a semi-insulating GaAs substrate having a smooth surface was set on the substrate holder of the above apparatus, and was transported to a predetermined crystal growth chamber.
  • I nS b, and de one dopant Knudsen cell of S n is set Bok crystal growth chamber
  • a 1.0 micron thick Sn-doped InSb thin film was grown by growing the substrate at a temperature of 550 ° C (420 ° C substrate temperature) for 60 minutes. .
  • further vapor beam intensity 1 is an ultra high vacuum
  • the Knudsen cell temperature of n was set to a temperature of 700 ° C, which has little effect on substrate heating. Further, the substrate temperature during the growth was set at 420 ° C. In particular, a Knudsen cell temperature of Sn of 1000 ° C. or less was suitable as a condition for obtaining high electron mobility.
  • the electron mobility of the formed InSb thin film was 44,000 cm 2 / Vsec, and the electron concentration was 7 ⁇ 10 16 Z cm 3 .
  • Hall elements as shown in FIGS. 2 and 2 ′ were manufactured.
  • a resist film is formed by a photolithography process, dry-etched by ion milling, and then etched by a solution containing ferric chloride. did.
  • a resist pattern for forming a bonding electrode for external connection was formed by one photolithography process.
  • Cu and Ni were deposited on the entire surface of the substrate to form a metal layer.
  • the resist pattern and the metal layer deposited thereon were removed to form a plurality of electrode portions 5 for external connection.
  • a protective layer 3 of silicon nitride was formed on the entire surface of the substrate by a plasma CVD method, and only the silicon nitride on the bonding electrode was removed by reactive ion etching to open a window.
  • a resist was formed by a photolithography process so that the bonding electrode portion was opened in a window, pure gold was deposited on the entire surface, and a gold layer was formed only on the bonding electrode portion by a lift-off process.
  • a plurality of Hall elements of the present invention as shown in FIG. 2B were manufactured on one substrate.
  • the element resistance at room temperature was 110 ohm.
  • the value of the offset voltage on the output side was 0.1 ⁇ 2.2 mV, which was extremely small.
  • the offset voltage means the voltage between the output terminals when 1 V is applied between the input terminals when no magnetic field is applied.
  • the temperature dependence of the resistance of the device was less than -0.5% / ° C.
  • the ratio of the input resistance value between 150 ° C and + 150 ° C was also within twice.
  • the Hall voltage obtained with a magnetic field having a magnetic flux density of 0.1 Tesla at an input voltage of IV is 210 mV.
  • the thin-film magnetic sensor of the present invention is obtained by applying the above photolithography, It can be easily manufactured in one wafer process, has high productivity, and has high yield. Furthermore, since the thickness of the magnetically sensitive part of the thin film is small, the resistance value is 100 ohm or more at room temperature, and the power consumption is small. In addition, there is little change in element resistance value due to temperature, and there is little change in offset temperature.
  • connection to external leads can be performed by wire bonding using standard gold wires that can be mass-produced.
  • the package after bonding is often embedded in a resin mold or a thin metal pipe to be finished as a sensor.
  • it may be packaged together with a control circuit that digitally amplifies the output signal of the device.
  • it is also preferable to manufacture a control circuit using the IC of Si. Since the temperature change of the element resistance value is small, amplification of a small Si substrate circuit chip can also be used for digital amplification.
  • a Hall element in which the semiconductor thin film layer was doped with Si was manufactured as follows.
  • a thin film manufacturing apparatus specially manufactured for manufacturing a thin film of a compound semiconductor was used.
  • the basic configuration of this device is that an ultra-high vacuum chamber is equipped with a holder for setting a substrate and a heating control device capable of heating the substrate to a certain temperature.
  • materials such as In, Sb, and Si are used.
  • Thin film with concentration and doping means that can be doped during crystal growth Operation device (hereinafter referred to as a molecular beam epitaxy device capable of growing a single crystal thin film or a mixed crystal thin film of the material used for the magnetic sensor portion in the present invention: hereinafter may be simply abbreviated as an MBE device.) ) Is used. '
  • the electron mobility of the formed InSb thin film was 35,000 cm 2 / V sec, and the electron concentration was 7 ⁇ 10 16 Zcm 3 .
  • a resist film was formed by one photolithography process and etched.
  • a wiring portion and a bonding electrode made of a plurality of thin metal thin films were formed on the InSb thin film according to the same manner as in the first embodiment.
  • a gold layer was formed only on the surface of the bonding electrode, and a large number of Hall elements of the present invention in which a semiconductor thin film was doped with Si were manufactured on one substrate.
  • the element resistance at room temperature was 40 ohms on average.
  • the voltage of IV is applied to the input electrodes (eg, electrodes 51 and 53 in Fig. 2A)
  • the value was 0.1 ⁇ 1.2 mV, which was extremely small.
  • the electron mobility of the semiconductor thin film was high, the sensitivity in a magnetic field was also large.
  • the Hall voltage obtained with a magnetic field of 0.1 Tesla magnetic flux density at an input voltage of 1 V was 128 mV.
  • the temperature change of the input resistance was -0.4% Z ° C, and the input resistance value at 150 ° C was within 5 times the resistance value at 150 ° C. Temperature variation of resistance for thin films outside the scope of the invention The temperature dependency was significantly reduced as compared with the conversion rate of 2.0% Z ° C.
  • this Hall element was packaged together with the Si IC control circuit to produce a magnetic sensor with an amplification circuit, that is, a digital output magnetic sensor.
  • the obtained magnetic sensor was driven stably as a digital high-sensitivity magnetic sensor in a temperature range of 150 ° C. to + 150 ° C.
  • a ridge-shaped magnetoresistive element was manufactured as follows.
  • Example 2 the same Si-doped InSb thin film and intermediate layer as in Example 2 were formed on a semi-insulating GaAs substrate having a smooth surface. The thickness was formed 1. Electron mobility of I n S b films 0 micron 3 5, 0 0 0 c mWsec , electron concentration was 7 X 1 0 1 6 Z cm 3. Next, in order to shape the intermediate layer and the InSb thin film into a desired pattern as shown in FIG. 5, a resist film is formed and etched in the same manner as in Example 2, and a part of the intermediate layer is photo-etched. Then, a short bar electrode composed of a plurality of thin metal thin films, a wiring portion, and a bonding electrode were formed on the InSb thin film.
  • Example 2 a gold layer was formed only on the surface of the bonding electrode.
  • the four magneto-resistive elements are connected in the form of a ridge as shown in FIGS. 5A and 5B, and the two resistive element parts are separated from each other.
  • the two resistive element portions that are not adjacent to each other are arranged on a plane in a state where they receive a magnetic field of the same intensity vertically at the same time.
  • L ZW of this magnetoresistive element was 0.25.
  • the element resistance at room temperature was 350 ohms. Output off when a voltage of 1 V is applied to the input electrode
  • the value of the set voltage was 0.1 ⁇ 1.2 mV, which was extremely small.
  • the temperature change rate of the resistance of the device was -0.4% / ° C, and the input resistance value at 50 ° C was within 5 times the resistance value at 150 ° C.
  • the temperature dependence of the resistance in the case of the thin film outside the range of the present invention was significantly reduced as compared with the temperature change rate of resistance of 2.0% Z ° C.
  • this element when this element was packaged together with the control circuit of the Si IC to produce a magnetic sensor with an amplifier circuit, that is, a digital output magnetic sensor, it was stable between-50 to + 150 ° C. could be driven as a digital high-sensitivity magnetic sensor.
  • a three-terminal magnetoresistive element was manufactured as follows.
  • Si was doped at the same time as the crystal growth by the MBE method to form a thin film.
  • the electron mobility of the formed InSb thin film was 33,000 cmWsec, and the electron concentration was 7 ⁇ 10 16 Zcm 3 .
  • a 1 0. 5 I n 0 Formed to have a 5 S b layer thickness 0.1 5 microns as an intermediate layer.
  • a resist film is formed and etched in the same manner as in Example 3, and a part of the intermediate layer is removed by photoetching.
  • a short bar electrode and a wiring section composed of multiple thin metal thin films were formed on the thin film.
  • a large number of three-terminal magnetoresistive elements as shown in FIG. Manufactured.
  • the element resistance at room temperature was 100 ohms on average.
  • the voltage of IV is applied to the input electrodes (for example, electrodes 51 and 53 in Fig. 4)
  • the offset voltage that appears as a potential difference at the output electrode is 0.1 ⁇ It turned out to be extremely small at 1.2 mV.
  • the magnetoresistance effect was examined. The change in resistance in the magnetic field with a magnetic flux density of 0.1 Tesla was 9%.
  • the magnetic sensing part thin film can be made thinner, the input resistance of the magnetoresistive element is higher and the power consumption is smaller than in the case of the third embodiment.
  • this magnetoresistive element was packaged together with a control circuit for the IC of Si to manufacture a magnetic sensor with an amplification circuit, that is, a digital output magnetic sensor.
  • the obtained magnetic sensor was able to be driven stably as a digital high-sensitivity magnetic sensor in the temperature range from 150 ° C to + 150 ° C. (Example 5)
  • a three-terminal magnetoresistive element was manufactured as follows.
  • Example 4 Ga was placed on a semi-insulating GaAs substrate having a smooth surface. 7 A 10. 3 As 0.! S b 0. 9 semiconductor insulation layer of form shapes so as to have a thickness of 0.3 microns. Then, it was formed to a A 1 0. 3 I n 0 . 7 the thickness of the S b 0. 10 microns as a layer for reducing the difference in lattice constant between I n S b. A 0.2 micron thick Si-doped InSb thin film was formed thereon in the same manner as in Example 4. The electron mobility of the formed InSb thin film was 41,000 cm 2 / Vse, and the electron concentration was 9 ⁇ 10 16 Z cm 3 . Then A 1 0.
  • Example 5 5 I n 0 .
  • Example 5 Formed to have a 5 S b layer thickness 0.1 5 microns as an intermediate layer.
  • Example 4 a large number of three-terminal magnetoresistive elements were manufactured on one substrate.
  • the obtained magnetoresistive element The electron mobility of the electron was larger than that of Example 4. This is presumably because the magnetoresistive element obtained in Example 5 was provided with a layer for reducing the difference in lattice constant.
  • the element resistance at room temperature was 250 ohms on average.
  • the value of the offset voltage on the output side was 0.1 ⁇ 1.4 mV, which was extremely small.
  • the resistance change in a magnetic field with a magnetic flux density of 0.1 Tesla was 11%.
  • the temperature change of the input resistance was 10.5% Z ° C, and the input resistance value at _50 ° C was within 8 times the resistance value at 150 ° C.
  • the temperature dependence of the resistance in the case of a thin film outside the range of the present invention was significantly reduced as compared with the temperature change rate of 2.0% Z ° C.
  • the magnetic sensing part thin film can be made thin, and the input resistance of the magnetic resistance element is high and the power consumption is small.
  • This magnetoresistive element was packaged together with a Si IC control circuit to produce a magnetic sensor with an amplifier circuit, that is, a digital output magnetic sensor.
  • the obtained magnetic sensor was able to be driven stably as a digital high-sensitivity magnetic sensor in the temperature range from 150 ° C to + 150 ° C.
  • a Hall element was manufactured as follows.
  • Example 5 In the same manner as in Example 5, the smooth surface semi-insulating G a As substrate, G a 0 thickness 0.3 microns. 7 A 10. 3 A s 0. ! S b semiconductor insulation layer of 0.9, and was formed I n S b with a thickness of 0.05 microns as a layer for reducing the difference in lattice constant A 10. 4 I n 0. 6 S b. Then, as in Example 5, an InSb thin film having a thickness of 0.1 micron and A1 having a thickness of 0.15 micron as an intermediate layer. 4 I n. 6 Sb was formed.
  • Si was doped simultaneously with crystal growth in a specific part of the intermediate layer, that is, a part in contact with the InSb thin film and having a depth from the interface up to 0.003 microns.
  • the electron mobility of the formed InSb thin film was 42,000 cm 2 / Vsec, and the electron concentration was 9 ⁇ 10 16 / cm 3 .
  • a resist film is formed and etched in the same manner as in the fifth embodiment.
  • a wiring portion composed of a plurality of thin metal thin films and a bonding electrode were formed on the InSb thin film having a layer.
  • a large number of Hall elements as shown in FIGS. 2A and 2B were manufactured on one substrate.
  • the element resistance at room temperature was 250 ohms on average as in Example 5.
  • the value of the offset voltage on the output side was found to be extremely small at 0.1 m 1.4 mV.
  • the Hall voltage was 185 mV in a magnetic field having a magnetic flux density of 0.1 Tesla and an input voltage IV.
  • the temperature change rate of the input resistance of the Hall element was -0.5% Z ° C, and the input resistance value at 50 ° C was within 5 times the resistance value at 150 ° C.
  • the temperature dependency of the resistance in the case of the thin film outside the range of the present invention was significantly reduced as compared with the temperature change rate of 2.0% Z ° C.
  • the magnetic sensing section thin film can be made thin, and the input resistance of the Hall element is high and the power consumption is low.
  • This Hall element was packaged together with the Si IC control circuit to produce a magnetic sensor with an amplifier circuit and a digital output magnetic sensor.
  • the obtained Hall element was able to operate stably as a digital high-sensitivity magnetic sensor in the temperature range from 150 ° C to + 150 ° C.
  • Example 4 is the same as Example 4 except that the donor atom is changed from S i to S. Thus, a three-terminal magnetoresistive element in which the thin film was doped with S was manufactured.
  • the characteristics of the thin film obtained at this time were almost the same as those of Example 4.
  • the element resistance at room temperature was 110 ohms on average.
  • the value of the offset voltage on the output side when a voltage of 1 V was applied to the input electrode was 0.1 ⁇ 0.9 mV, which was extremely small.
  • the magnetoresistance effect was examined. The change in resistance in the magnetic field with a magnetic flux density of 0.1 Tesla was 9%.
  • the temperature change rate of the input resistance of the magnetoresistive element is 1.0.
  • This magnetoresistive element was packaged together with a Si IC control circuit to produce a magnetic sensor with an amplifier circuit and a digital output magnetic sensor. The obtained magnetoresistive element could be driven stably as a digital high-sensitivity magnetic sensor in the temperature range of -50 ° C to + 150 ° C.
  • a three-terminal magnetoresistive element in which a thin film was doped with Sn was manufactured in the same manner as in Example 4, except that the donor atom was changed from Si to Sn in Example 4. At this time, the characteristics of the obtained thin film were equivalent to those of Example 4.
  • the element resistance at room temperature was 100 ohms on average.
  • the value of the offset voltage on the output side was 0.1 ⁇ 0.8 mV, which was extremely small.
  • the resistance change in a magnetic field with a magnetic flux density of 0.1 Tesla was 9.0%.
  • the temperature change rate of the input resistance of the magnetoresistive element was -0.4% Z ° C, and the input resistance value at 50 ° C was within 5 times the resistance value at 150 ° C.
  • the temperature dependence of the resistance in the case of a thin film outside the range of the present invention was significantly reduced as compared with a temperature change rate of 2.0% Z ° C.
  • This magnetoresistive element was packaged together with the control circuit of the Si IC to produce a magnetic sensor with an amplifier circuit and a digital output magnetic sensor. The obtained magnetoresistive element was able to be driven stably as a digital high-sensitivity magnetic sensor in the temperature range from 150 ° C to + 150 ° C.
  • a magnetoresistive element was manufactured as follows.
  • a 0.25 micron alumina thin film was formed on a single-crystal ferrite substrate with a smooth surface by the sputtering method, and the surface of the single-crystal ferrite substrate was used as an insulating surface.
  • Ga Q. 8 A 1 Q . 2 A s. . was formed to a thickness of 0.3 microns by the MBE method in 2 S b Q. 8 semiconductor insulating layer in ultra-high vacuum (2 X 1 0- 8 mb ar ).
  • an InSb thin film was formed to a thickness of 0.3 ⁇ m by MBE in an ultra-high vacuum.
  • the temperature change of the input resistance was —0.4% Z ° C, and the input resistance value at —50 ° C was within 5 times the resistance value at 150 ° C.
  • the temperature dependence of the resistance in the case of the thin film outside the range of the present invention was significantly reduced as compared with the temperature change rate of 2.0% Z ° C.
  • the magnetic sensing unit thin film can be made thinner, and the input resistance of the magnetoresistive element is higher than that of the fourth embodiment, and the power consumption is smaller.
  • This magnetoresistive element was packaged together with a control circuit of Si ⁇ C to produce a magnetic sensor with an amplifier circuit, that is, a digital output magnetic sensor.
  • the obtained magnetoresistive element could be driven stably as a digital high-sensitivity magnetic sensor in the temperature range of 150 ° C to 150 ° C.
  • FIGS. 9A and 9B a Hall element as shown in FIGS. 9A and 9B was manufactured.
  • the same reference numerals are given to the same functions as those in FIGS. 2A and 2B and other figures.
  • FIG. 9A is a plan view of the Hall element of this embodiment
  • FIG. 9B is a cross-sectional view taken along the line IXB-IXB 'in FIG. 9A. 9A and 9B, the InGaAsSb thin film 2 is formed on an insulating substrate 1.
  • FIG. The electron concentration of the thin film 2 is not less than 2.1 ⁇ 10 16 Zcm 3
  • the input resistance value of the magnetic sensor at ⁇ 50 ° C. is within 15 times the input resistance value at 150 ° C.
  • reference numeral 4 denotes a wiring portion, which connects an electrode 5 for connection to the outside and an operation layer of the magneto-sensitive portion 6.
  • the magnetic sensing unit 6 detects a magnetic field as a magnetic sensor.
  • a Hall element having the above-described configuration in which the semiconductor thin film layer was doped with Si was manufactured as follows.
  • a resist film was formed by a photolithography process and etched.
  • a wiring portion composed of a plurality of thin metal thin films and a bonding electrode for connection to the outside were formed on the InSb thin film having the intermediate layer.
  • a gold layer was formed only on the surface of the bonding electrode, and a large number of Hall elements of the present invention having an intermediate layer and having a semiconductor thin film doped with Si were manufactured on one substrate.
  • the resistance value of the element at room temperature was 40 ohms on average.
  • a voltage of 1 V is applied to the input electrodes (for example, electrodes 51 and 53 in FIG. 9A)
  • the value of the offset voltage that appears as a potential difference at the output side is 0. It was found to be extremely small at 1 ⁇ 1.2 mV.
  • the Hall voltage obtained with a magnetic field having a magnetic flux density of 0.1 Tesla at an input voltage of IV was 13 OmV.
  • the temperature change rate of the input resistance is 10.4% / ° C, and the temperature change rate of the resistance when the InSb thin film of Example 10 is used without doping impurities—2.0% / ° C
  • the temperature dependency was greatly reduced compared to.
  • a ridge-shaped magnetoresistive element was manufactured as follows.
  • Example 10 In the same manner as in Example 10, the same InSb-doped InSb thin film and intermediate layer as in Example 10 were formed on a semi-insulating GaAs substrate having a smooth surface.
  • a resist film is formed and etched to form a plurality of thin metal thin films on the InSb thin film having an intermediate layer, that is, a short bar electrode composed of two layers of CuZNi, a wiring portion, and Cu / Ni.
  • a bonding electrode consisting of three layers of ZA u was formed.
  • Example 10 a gold layer was formed only on the surface of the bonding electrode.
  • the four magneto-resistive elements are connected in a ridge-like manner as shown in FIGS. 5A and 5B, and the two resistive element sections are located at a distance from each other.
  • the two resistive element parts that are not adjacent to each other are simultaneously placed on the plane in a state where they receive a magnetic field of the same intensity vertically. Many were manufactured.
  • the ratio L ZW of the length L between the short bar electrodes and the width W of the magnetoresistive element was 0.25.
  • the resistance value of the element at room temperature was 350 ohms.
  • the rate of change of resistance in a magnetic field with a magnetic flux density of 0.1 Tesla was 9%, indicating that the rate of change of resistance in a magnetic field was large and the sensitivity was good.
  • the value of the offset voltage on the output side was 0.1 m 1.2 mV, which was extremely small.
  • the use of a single-crystal thin film and high electron mobility resulted in a large rate of change in the resistance of the magnetic field, indicating that the ability to detect gear teeth was large.
  • the temperature change rate of the resistance of the element is 10.4% Z ° C, which is lower than the temperature change rate of the resistance of the InSb thin film, which does not dope impurities, is 2.0% Z ° C.
  • the temperature dependence was significantly reduced.
  • a digital output magnetic sensor formed by connecting a Si IC differential digital amplifier to this element and forming a single package proved to be extremely excellent in detecting the teeth of a toothed wheel.
  • a three-terminal magnetoresistive element was manufactured as follows.
  • An intermediate layer of 8 Sb was formed.
  • a resist film was formed by a photolithography step, and etching was performed in the same manner as in Example 10.
  • a resist pattern for forming a short bar electrode, a wiring portion, and a bonding electrode composed of a plurality of thin metal thin films was formed by a photolithography process.
  • Example 10 Thereafter, in the same manner as in Example 10, a short bar electrode, a plurality of electrodes for external connection, and a wiring portion were formed. Next, in the same manner as in Example 10, a gold layer was formed only on the surface of the bonding electrode. Thus, a large number of three-terminal magnetoresistive elements having three bonding electrodes as shown in FIG. 4 were manufactured on one substrate. However, the ratio L ZW of the length L between the short bar electrodes and the width W of the magnetoresistive element was 0.25.
  • the element resistance at room temperature was 810 ohms.
  • the value of the offset voltage on the output side was 0.1 ⁇ 2.1 mV, which was extremely small.
  • the resistance change rate of the magnetic field is large, and a resistance change of 14% is obtained in a magnetic field with a magnetic flux density of 0.1 Tesla, which is a high resistance. It was shown that the ability to detect teeth was extremely large.
  • This device was found to be easy to manufacture in a wafer process that applied photolithography, was mass-producible, and had a high yield.
  • the thickness of the magnetically sensitive part of the thin film, that is, the magnetoresistive element part was small, the resistance was at least 300 ohm at room temperature, and the power consumption was small.
  • the package after bonding is embedded in a resin mold or a thin metal pipe, etc. It is often done to finish. Furthermore, it is also packaged together with a control circuit that amplifies the differential output signal of this device and digitally amplifies it. At that time, it is also preferable to manufacture the control circuit using the Si IC. This is a magnetic sensor that has high detection capability for rotating gears and detects rotational speed and the like.
  • a three-terminal magnetoresistive element was manufactured as follows.
  • a 0.3 micron thick InSb thin film was formed by the MBE method.
  • Si was doped to form a thin film, and the formed InSb thin film had an electron mobility of 33,000 cmWsec and an electron concentration of 7 ⁇ 10 16 Zcm 3 . to form the a 10. 9 I n 0. JS b layer was formed to a thickness of 0.1 5 microns.
  • the resistance value of the element at room temperature was 320 ohms on average.
  • the value of the offset voltage on the output side was 0.1 ⁇ 1.2 mV, which was extremely small.
  • the change in resistance in a magnetic field with an input voltage IV and a magnetic flux density of 0.1 Tesla was 10%.
  • the temperature change rate of the input resistance is 10.4% / ° C, which is lower than the temperature change rate of the resistance of the InSb thin film without impurity doping, which is 2.0% Z ° C. This greatly reduced the temperature dependence.
  • the magnetic sensing part thin film can be made thin, and the input resistance of the magnetic resistance element is high, and the power consumption is small.
  • a three-terminal magnetoresistive element was manufactured as follows.
  • the electron mobility of the formed InSb thin film was 41,000 cm 2 ZVsec, and the electron concentration was 9 ⁇ 10 16 Zcm 3 .
  • a resist film was formed by a photolithography process and etched. Thereafter, in the same manner as in Example 13, a short bar electrode made of a plurality of thin metal thin films, a wiring portion, and a bonding electrode for connection to the outside were formed thereon.
  • a gold layer was formed only on the surface of the bonding electrode, and a large number of three-terminal magnetoresistive elements were manufactured on one substrate.
  • the value of the offset voltage on the output side when a voltage of 1 V was applied to the input electrode was extremely small at 0.1 ⁇ 1.4 mV.
  • the rate of change of resistance in a magnetic field with an input voltage IV and a magnetic flux density of 0.1 Tesla was 14%.
  • the temperature change rate of the input resistance is 0.5% Z ° C, and the temperature change rate of the resistance of the thin film outside the present invention is significantly lower than the temperature change rate of 2.0% Z ° C. Reduce I was able to.
  • the magnetic sensing part thin film can be made thin, and the input resistance of the magnetoresistive element is high and the power consumption is small.
  • a comparative three-terminal magnetoresistive element having no intermediate layer was produced in the same manner as in Example 14 except that the intermediate layer was not formed.
  • the characteristics of the obtained magnetoresistive element were measured in the same manner as in Example 14, the sensitivity was reduced by about 35% due to the decrease in the electron mobility, and the resistance in a magnetic field having a magnetic flux density of 0.1 Tesla was found. The change was less than 9%.
  • a three-terminal magnetoresistive element was manufactured as follows.
  • Si was doped simultaneously with crystal growth in a specific portion of the intermediate layer, that is, a portion in contact with the InSb thin film and having a depth from the interface up to 0.003 ⁇ m.
  • the formed thin film has an electron mobility of 38,000 cmWsec and an electron concentration of 9 X
  • a short bar electrode composed of a plurality of thin metal thin films, a wiring portion, and a bonding electrode for connection to the outside were formed on the intermediate layer on the InSb thin film.
  • a protective layer of silicon nitride was formed in the same manner as in Example 14, and only the bonding electrode portion was opened. Then, a gold layer was formed only on the surface of the bonding electrode. In this way,
  • a large number of three-terminal magnetoresistive elements were manufactured on one substrate.
  • the resistance change in a magnetic field with an input voltage of 1 V and a magnetic flux density of 0.1 Tesla was 12%.
  • the temperature change rate of the input resistance of the magnetoresistive element is 10.5% Z ° C, which is lower than the temperature change rate of the resistance of the InSb thin film without impurity doping, which is 2.0% Z ° C.
  • the magnetic sensing section thin film can be made thin, and the input resistance of the magnetoresistive element is high and the power consumption is low.
  • Example 13 A three-terminal magnetoresistive element in which a thin film was doped with S was manufactured in the same manner as in Example 13 except that the donor atom was changed from Si to S. The characteristics of the thin film obtained at this time were almost the same as those of Example 13.
  • the resistance of the element at room temperature was 300 ohms on average.
  • the value of the output-side offset voltage was 0.1 ⁇ 0.2 mV, which was extremely small.
  • the resistance change in the magnetic field was 9%.
  • the temperature change rate of the input resistance of the magnetoresistive element was -0.4% Z ° C. Temperature change rate of resistance in the case of InSb thin film without impurity doping can be reduced to 1Z5 compared to 2.0% / ° C, greatly reducing temperature dependence. I was able to.
  • This magnetoresistive element was packaged together with the control circuit of the Si IC to produce a magnetic sensor with an amplifier circuit and a magnetic sensor with digital output.
  • the obtained resistive element could be driven stably as a digital high-sensitivity magnetic sensor in the temperature range of -50 ° C to 150 ° C. (Example 1)
  • FIG. 1OA and FIG. 10B a two-terminal magnetoresistive element as shown in FIG. 1OA and FIG. 10B was manufactured.
  • the same reference numerals are given to those having the same functions as the structures shown in the above-mentioned respective figures.
  • FIG. 10B shows a plan view of the two-terminal magnetoresistive element of this embodiment having two external connection electrodes
  • FIG. 10A shows the magnetoresistive element of FIG. 10B as XA—XA.
  • XA—XA XA
  • FIG. 10B Shows a plan view of the two-terminal magnetoresistive element of this embodiment having two external connection electrodes
  • FIG. 10A shows the magnetoresistive element of FIG. 10B as XA—XA. 'Shows a cross-sectional view taken along the line.
  • an InAsSb thin film 2 On a substrate 1, an InAsSb thin film 2, a magnetoresistive element portion 21, and an electrode 5 for external connection are formed.
  • Reference numeral 6 denotes a magnetic sensing unit for detecting a magnetic field as a magnetic sensor.
  • 10 is a high-conductivity part formed by ohmic contact with the InGaAsSb of the magnetic sensing part, in order to increase the magnet
  • the short bar electrode is usually made of a metal thin film that can make ohmic contact with the working layer, and may be a multilayer or a single layer.
  • the InAsSb thin film 2 may be doped with a donor atom 12 such as Si. Further, the uppermost surfaces of the electrodes and the wiring portions formed on the operation layer may not be made of gold.
  • a magnetoresistive element having such a configuration was manufactured as follows.
  • Example 10 In the same manner as in Example 10, a small amount of Sn was doped on a GaAs substrate to obtain an electron mobility of 51,000 cm 2 ZVsec, an electron concentration of 4 ⁇ 10 16 Zcm 3 , and a thickness of 1.0 micron InSb thin film and 0.2 micron thick A1. . 2 I n. An intermediate layer of 8 Sb was formed. Next, in order to form the intermediate layer and the InSb thin film into a desired pattern as shown in FIGS. 1OA and 10B, a resist film was formed by one photolithography step.
  • Etching was carried out in the same manner as for 0 Then, a resist pattern for forming a short bar electrode, a wiring portion, and a bonding electrode composed of a plurality of thin metal thin films was formed by one photolithography process. Then, in the same manner as in Example 10, a short bar electrode, a plurality of electrodes for external connection, and And wiring portions were formed. Next, a gold layer was formed only on the surface of the bonding electrode in the same manner as in Example 10. In this manner, a large number of two-terminal magnetoresistive elements as shown in FIGS. 1OA and 10B were manufactured on one substrate. However, the ratio L ZW between the length L and the width W between the short bar and the electrode of such a magnetoresistive element was manufactured at 0.20.
  • the element resistance at room temperature was 500 ohm.
  • the electron mobility was high
  • the resistance change rate of the magnetic field was large, and a resistance change rate of 15% was obtained under a magnetic flux density of 0.1 Tesla. Therefore, it was found that the detection capability of the gear teeth was extremely large.
  • This device was found to be easy to fabricate in a single wafer process using photolithography, was mass-producible, and had a high yield.
  • connection to external leads can be performed by wire bonding using standard gold wires that can be mass-produced.
  • the package after bonding is often embedded in a resin mold or a thin metal pipe to be finished as a sensor.
  • it can be packaged together with a digital amplification control circuit that amplifies the differential output signal obtained by connecting this element and a fixed resistance element formed on the Si IC. Will be At that time, it is also preferable to manufacture the control circuit on an IC chip of the same Si as the fixed resistance element.
  • a three-terminal magnetoresistive element was manufactured as follows.
  • a 0.25 micron alumina thin film was formed on a Ni-Zn single crystal ferrite substrate with a smooth surface by the sputtering method, and the ferrite substrate surface was used as an insulating surface.
  • the body insulating layer in ultra-high vacuum (2 X 1 0- 8 mb ar ) was formed to a thickness of 0.3 micron by iVlBE method.
  • an InSb thin film was formed thereon by MBE in an ultra-vacuum to a thickness of 0.3 ⁇ m.
  • a thin film was formed by doping Sn simultaneously with crystal growth by the MBE method.
  • Electron mobility of I n S b thin film formed is 33, 000 cm 2 / Vsec, and an electron concentration been filed 8 X 10 16 Zcm 3. Then, A 1 of 0.15 microns as an intermediate layer 0. 9 I n 0.! S b formed. Thereafter, in the same manner as in Examples 14 and 5, a large number of three-terminal magnetoresistive elements each having a silicon nitride layer as a protective layer on the surface were manufactured on one substrate.
  • the resistance value of the element at room temperature was 320 ohms on average.
  • the value of the offset voltage on the output side was 0.1 ⁇ 1.2 mV, which was extremely small.
  • the resistance change in a magnetic field with a magnetic flux density of 0.1 Tesla was 9%.
  • the temperature change of the input resistance was -0.4% Z ° C, and the input resistance value at -50 ° C was within 5 times the resistance value at 150 ° C.
  • the temperature dependence of resistance in the case of an InSb thin film without impurity doping was significantly reduced compared to 2.0% Z ° C.
  • the magnetic sensing part thin film can be made thin, the input resistance of the magnetoresistive element is high, and the power consumption is small.
  • This magnetoresistive element was packaged together with the IC control circuit of SIII to produce a magnetic sensor with an amplification circuit, that is, a digital output magnetic sensor.
  • the obtained magnetoresistive element could be driven stably as a digital high-sensitivity magnetic sensor within the temperature range of 150 ° C to 150 ° C.
  • a comparative three-terminal magnetoresistive element having no intermediate layer was manufactured in the same manner as in Example 18, except that the intermediate layer was not formed.
  • the resulting magnetoresistance When the characteristics of the element were measured in the same manner as in Example 18, the magnetoresistive element showed a decrease in sensitivity of about 30% due to a decrease in electron mobility, and a resistance change of 6% due to the magnetoresistance effect. . ⁇
  • the intermediate layer by providing the intermediate layer, the decrease in electron mobility due to the formation of the protective film can be extremely reduced, and a highly sensitive magnetic sensor can be manufactured.
  • the magnetic sensor of the present invention has little fluctuation in element resistance and offset drift due to temperature, can measure a minute magnetic field with high sensitivity, and has little inherent noise of the element. As a result, we have realized a magnetic sensor that can drive a wide temperature range from low to high, as well as around room temperature, with a simple drive circuit.
  • the magnetic sensor of the present invention can detect rotation of a gear or the like with high sensitivity.
  • the pattern accuracy is good and the offset voltage is small.
  • the composition or doping of the thin film of the magnetic sensing part it is possible to reduce the temperature change of the input resistance of the magnetic sensor, to amplify the output of the magnetic sensor, or to control the drive circuit including amplification control for supplying power to the magnetic sensor.
  • the load current can be reduced, and the drive circuit can be downsized.
  • the amplification control circuit can be miniaturized, a package integrated with the magnetic sensor chip is possible, and it can be used as a small magnetic sensor (so-called magnetic sensor IC) with a digital output or linear output. .
  • an element in which the drive amplifier circuit element of the Si LSI and the magnetic sensor of the present invention are integrated and packaged is within the scope of the present invention, and a small magnetic sensor that detects magnetism and outputs a digital signal can be manufactured. It is highly versatile and has a wide range of applications as a small contactless type. It is also a magnetic sensor that can be used for high-speed rotation detection.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

明 細 磁気センサおよびその製造方法 技術分野
本発明は、 半導体薄膜の磁気センサおよびその製造方法に関する。 背景技術
I n S bのような電子移動度の大きい化合物半導体薄膜を用いる磁気抵抗素子 やホール素子等の磁気センサは静磁界を検出できる機能を持ち、 回転速度が速く ても遅くても歯車の回転角度または速度を検出することができる機能を有する。 このため、 小型の DCモー夕一の磁気センサとして多く使われている。
ところが I n S bは、 近年拡大しつつある磁気センサの応用分野においてその 厳しい要求に応えきれないという問題がある。 例えば、 I n S bを使った磁気セ ンサは室温付近では高感度で極めてよい特性を示すが、 感磁部の抵抗値が温度に 大きく依存するので、 一 4 0°C以下の低温度では素子抵抗値の大幅なアップに よって電気的なノイズを拾いやすくなり、 また、 1 2 0°Cを超える高温では素子 抵抗値の大きな低下によって駆動電流が増大し、 駆動が難しくなる。 すなわち、 I n S bは抵抗の温度変化率が最大では一 2 %Z°Cであり大きな温度依存性を有 する。 なお、 抵抗の温度変化率 /3Rは、 下記式により求める。
抵抗の温度変化率 3R (%/°C) = ( 1ZR) dR/dTX 1 0 0
本発明で抵抗値の温度変化が小さいとは、 一般には上記温度変化率 i3 R (% /°C) が小さいことを言う。
近年、 磁気センサは無接触センサとして多用され、 その応用範囲も拡大してい る。 このような最近拡大している磁気センサの応用分野では、 従来の応用に比べ て、 より低温度や、 さらに高い高温度の条件下でも磁気センサを無接触センサと して使う要求が増大しており、 '一般的に磁気センサが駆動される温度範囲は拡大 の傾向にある。 これまでの V T Rやパソコンなどに使用する小型の D Cモー夕な どの用途では、 磁気センサは室温近傍の温度域、 例えば、 — 2 0〜8 0 °C程度の 範囲 (実質 1 0 0 °Cの駆動温度範囲) で使えれば十分であつたが、 今後拡大が予 想される自動車用無接触磁気センサまたは産業用無接触磁気センサでは、 一 5 0 °C〜 1 5 0 °Cの温度範囲 (実質 2 0 0 °Cの駆動温度範囲) での使用が実際に要 求される。
I n S bは大きな温度依存性を有するので、 例えば温度変化率が負の場合には 低温では高抵抗、 高温では低抵抗となり、 一 5 0 °Cから + 1 5 0 °Cまで温度が変 化すると、 一 5 0 °Cにおける抵抗値が 1 5 0 °Cの抵抗値の 2 8〜 3 0倍 (抵抗の 温度変化率が— 2 %の場合には 5 4倍) になる。 このため抵抗値 変動がそのま ま磁気センサの入力抵抗の変動となり、 高温では過電流による破壊等が発生し、 また大きな駆動用の入力電流が必要となり、 小型の集積化した駆動回路では素子 の安定した駆動が困難になる。 すなわち、 複雑で高価な駆動回路が必要となる。 さらに、 低温度では素子抵抗が非常に大きくなり、 浮遊電磁ノイズの影響を強く 受けたり、 ノイズによる誤動作原因となったりする。 この結果、 極めて限られた 場合でしか磁気センサが使えず、 その無接触センサとしてのメリツ卜が十分に生 かされていない状況にあった。
このような磁気センサと磁気センサを駆動する電源や磁界検出の出力を増幅す る磁気センサの制御回路を、 小型で、 低コスト、 かつ高性能に実現しょうとする と、 このような素材に起因する抵抗値の温度依存性が大きな障害となる。 例えば、 最大でも一 5 0 °Cの抵抗値と 1 5 0 °Cの抵抗値の比は、 絶対値で 1 5倍以内であ ることが必要とされる。 本発明は、 前述の従来の磁気センサにおける問題点を解決すベくなされたもの であり、 本発明の課題は、 高感度で、 温度依存性の少ない、 かつ、 広い温度範囲 を簡単な駆動回路で動作するこ'とができる磁気センサを提供することにある。 さ らには、 本発明の課題は、 一 5 0 °C〜 1 5 0 °Cの範囲で高い信頼性で駆動でき、 小型で、 低コストの制御回路により駆動できる磁気センサを提供することにある。 さらに詳しくは、 低温度 (例えば、 要求される下限温度である— 5 0 °C) と、 高 温度 (例えば、 要求される上限温度である 1 5 0 °C) との間で、 磁気センサの入 力抵抗値の変化が少ない、 高感度で、 高信頼性の磁気センサを提供することにあ る。
さらに、 高温度から低温度までの広い温度範囲での磁気センサの駆動では、 大 きな熱ストレスが磁気センサのパッケージを通じて加わり、 新たな熱ストレスか ら感磁部を保護するパッシベーション技術も必要とされており、 そのような必要 性に答えることも、 本発明の課題である。 発明の開示
本発明者らは、 高感度の磁気センサの製作が可能である高い電子移動度を有する 化合物半導体薄膜の組成や薄膜化、 ドーピング等を検討するとともに、 制御回路 とのマッチングを検討した。 特に素子抵抗値の温度依存性または低温度と高温度 での素子抵抗値の変化高に注目し検討した結果、 磁気センサの入力抵抗の温度変 化を小さく抑えることのできる電子移動度の高い薄膜およびその製造方法を見い だすことができた。 この結果、 抵抗の温度変化が少ない磁気センサを見いだした。 さらに、 高温度から低温度までの広い温度範囲での磁気センサの駆動では、 大 きな熱ストレスが磁気センサのパッケージを通じて加わるが、 感磁部を構成する I I I 一 V族化合物半導体と同じ性質を有する絶縁性の I I I 一 V族化合物半導 体の中間層を感磁部上に形成することで、 無機質のパッシベーシヨン層 (保護 層) から直接に感磁部が受ける熱ス卜レスから感磁部を保護するパッシベ一ショ ン技術を見いだした。 その結果、 広い温度範囲で、 しかも高い信頼性のうちに駆 動可能な磁気センサ構造を見いだすことができた。
さらに、 磁気センサの入力抵抗の温度変化がある決められた範囲以内であれば、 小型の制御回路で磁気センサを広い温度範囲で駆動できることを、 見いだした。 さらに、 そのような条件を満たす高い移動度が得られる化合物半導体薄膜を感 磁部とする高感度磁気センサと、 かかる磁気センサ用の小型の制御回路とを組み 合わせた磁気センサ装置であって、 小型で、 磁界の検出信号に比例した出力ゃ磁 界の検出非検出に対応した複数の信号を出力することのできるデジタル出力の磁 気センサ装置と、 その製造方法をも、 見いだした。
すなわち、 本発明の請求の範囲第 1項に係る磁気センサは、 基板上に形成され た I nxG a i— xA S yS b i— y (0<x≤ 1, 0≤y≤ 1) 薄膜層を感磁部の動 作層とする磁気センサであって、 前記薄膜層に、 S i、 Te、 S、 Sn、 Geお よび S eからなる群から選ばれる少なくとも 1種のドナーァトムを含むことを特 徴とする。
本発明の請求の範囲第 2項の磁気センサは、 前記第 1項の磁気センサにおいて、 前記ドナ一ァトムの少なくとも一部が感磁部の動作層中に伝導電子を供給するた めに陽イオン化していることを特徴とする。 ここで、 さらに詳しくは、 前記ド ナ一ァトムは少なくともその一部が結晶の格子点で I nGaAs S bのいずれか の原子を置き換えて陽イオン化していることを特徴とする。
本発明の請求の範囲第 3項の磁気センサは、 前記請求の範囲第 1項または第 2 項の磁気センサにおいて、 前記薄膜層が 2. 1 X 1016/cm3以上の電子濃度 を有し、 さらに、 該薄膜層の電子移動度 (cmW - s) と電子濃度 n (1/ cm— 3) の関係が、
L o g! 0 (n) +4. 5 X 1 0— 5X^≥17. 3 δ
を満たすこと特徴とする。
ここで、 前記電子移動度は、 さらに望ましくは 6000 cm2ZV · s以上であ る。 このような範囲に電子移動度 および電子濃度 nを設定することにより、 高 感度であって、 温度依存性の少ない磁気センサが製作できる。 係る点を限定した のが、 本発明の請求の範囲第 4項である。 さらに高感度の磁気センサを製作する 場合は、 電子移動度は 1 0000 cm2ZV · s以上であることが好ましい。 本発明の請求の範囲第 4項の磁気センサは、 前記請求の範囲第 3項の磁気セン ザにおいて、 前記薄膜層の電子移動度が 6000 cmW · s以上であること特 徴とする。
本発明の請求の範囲第 5項の磁気センサは、 前記請求の範囲第 1項または第 2 項の磁気センサにおいて、 前記薄膜層が 2. 1 X 1 016Zcm3以上の電子濃度 を有し、 さらに、 該薄膜層の電子移動度 (cm2/V - s) と電子濃度 n (1/ cm— 3) の関係が、
L o g 10 (n) +4. 5 X 1 0_5X^≥ 1 8. 0
を満たすことを特徴とする。
本発明の請求の範囲第 6項の磁気センサは、 前記請求の範囲第 5項の磁気セン ザにおいて、 前記薄膜層の電子移動度^が 10,000cm2/V · s以上であること を特徴とする。
ここで、 前記電子移動度 は、 高感度で、 温度依存性の少ない磁気センサ動作 のために、 望ましくは、 1 5, 000 cm2ZV · s以上であり、 さらに望ましく は、 20, 000 cm2ZV · s以上である。
本発明の請求の範囲第 7項の磁気センサは、 前記請求の範囲第 6項の磁気セン ザにおいて、 前記薄膜層が I nA S yS t^— y (0≤y≤ 1) 薄膜層であることを 特徴とする。
本発明の請求の範囲第 8項の磁気センサは、 前記請求の範囲第 7項の磁気セン ザにおいて、 前記薄膜層が I n S b薄膜層であることを特徴とする。
本発明の請求の範囲第 9項の磁気センサは、 前記請求の範囲第 1ないし 8項の いずれかの磁気センサにおいて'、 前記基板の表面が、 絶縁性の I I I 一 V族化合 物半導体から構成されていることを特徴とする。
本発明の請求の範囲第 1 0項の磁気センサは、 前記請求の範囲第 1ないし 9項 のいずれかの磁気センサにおいて、 前記基板が、 絶縁性の G a A s単結晶からな ることを特徴とする。
本発明の請求の範囲第 1 1項の磁気センサは、 前記請求の範囲第 1ないし 1 0 項のいずれかの磁気センサにおいて、 前記動作層の厚さが、 6ミクロン以下であ ることを特徴とする。
本発明の請求の範囲第 1 2項の磁気センサは、 前記請求の範囲第 1ないし 1 0 項のいずれかの磁気センサにおいて、 前記動作層の厚さが、 0 . 7〜1 . 2ミク ロンであることを特徴とする。
本発明の請求の範囲第 1 3項の磁気センサは、 前記請求の範囲第 1ないし 1 0 項のいずれかの磁気センサにおいて、 前記動作層の厚さが、 1 . 2ミクロン以下 であることを特徴とする。
本発明の請求の範囲第 1 4項の磁気センサは、 前記請求の範囲第 1ないし 1 3 項のいずれかの磁気センサにおいて、 該磁気センサがホール素子であることを特 徴とする。 このホール素子では、 動作層の好ましい厚さは、 1 . 2ミクロン以下、 さらには、 0 . 5ミクロン以下、 さらに高い入力抵抗値で消費電力の少ないホ一 ル素子を製作する場合は、 0 . 1ミクロン以下、 より望ましくは、 0 . 0 6ミク ロン以下である。
本発明の請求の範囲第 1 5項の磁気センサは、 前記請求の範囲第 1ないし 1 3 項のいずれかの磁気センサにおいて、 該磁気センサが磁気抵抗素子であることを 特徴とする。 この磁気抵抗素子では、 動作層の好ましい厚さは、 1 . 2ミクロン 以下、 さらには、 0 . 5ミクロン以下、 さらに高い入力抵抗値で消費電力の少な い素子を製作する場合は、 0 . 2ミクロン以下である。
また、 本発明の請求の範囲第' 1 6項は、 半導体磁気抵抗装置を開示するもので、 該装置は、 平滑な基板表面上に、 半導体薄膜からなる 4個の磁気抵抗効果を生じ る素子部、 配線部、 およびボンディング電極を有し、 4個の磁気抵抗効果を生じ る素子部がプリッジ構造で接続され、 該 4個の素子部のうち前記プリッジ構造の 隔辺の位置関係にある 2個の素子部が同時に同一強度の磁界を垂直に受ける状態 で配置されており、 前記素子部と前記ボンディング電極とは前記配線部で接続さ れていることを特徴とする。
本発明の請求の範囲第 1 7項の半導体磁気抵抗装置は、 前記請求の範囲第 1 6 項の装置において、 前記配線部が交差していないことを特徴とする。
本発明の請求の範囲第 1 8項の半導体磁気抵抗装置は、 前記請求の範囲第 1 6 項または 1 7項の半導体磁気抵抗装置において、 前記 4つの素子部を接続してい る接続点から前記ボンディング電極までの配線部の抵抗値がそれぞれ等しくなる ように形成されていることを特徴とする。
また、 本発明の請求の範囲第 1 9項は、 磁気センサ装置を開示するもので、 該 磁気センサ装置は、 磁気センサと、 該磁気センサの出力を増幅するための増幅回 路と、 前記磁気センサを駆動するための電源回路を有する磁気回路とがー緒に パッケージされてなる磁気センサ装置であって、 前記磁気センサが前記請求の範 囲第 1ないし 1 8項のいずれかに記載の磁気センサであることを特徴とする。 本発明の請求の範囲第 2 0項の磁気センサ装置は、 前記請求の範囲第 1 9項の 磁気センサ装置において、 前記磁気センサの一 5 0 °Cの入力抵抗値が 1 5 0 °Cの 入力抵抗値の 1 5倍以内に設定されていることを特徴とする。
本発明の請求の範囲第 2 1項の磁気センサ装置は、 前記請求の範囲第 1 9また は 2 0項の磁気センサ装置において、 前記増幅回路により増幅された後の出力が 前記磁気センサの出力に比例することを特徴とする。
本発明の請求の範囲第 22項の磁気センサ装置は、 前記請求の範囲第 1 9また は 20項の磁気センサ装置において、 前記増幅器により増幅された後の出力が前 記磁気センサによる磁界の検出および非検出に対応したデジタル信号出力である ことを特徴とする。
また、 本発明の請求の範囲第 23項は、 磁気センサの製造方法を開示するもの で、 該製造方法は、 基板上に電子濃度が 2 X 1016Zcm3以上の I nxGaト x AS
Figure imgf000010_0001
(0<x≤ 1, 0≤y≤ 1) 薄膜を形成する工程と、 前記薄膜を所 望のパターンに形成する工程と、 該薄膜上に複数個の薄い金属薄膜を形成するェ 程と、 複数個の外部接続用電極を前記薄膜の端部に接続する工程と、 を含むこと を特徴とする。
本発明の請求の範囲第 24項の磁気センサの製造方法は、 前記請求の範囲第 2 3項の磁気センサの製造方法において、 前記 I nxG a i_xA s yS bい y (0< x≤ 1, 0≤y≤ 1) 薄膜を形成する工程が、 該薄膜に、 S i、 Te、 S、 Sn、 G eおよび S eからなる群から選ばれる少なくとも 1種のドナ一ァトムを含ませ る工程をさらに具備することを特徴とする。
また、 本発明の請求の範囲第 25項は、 磁気センサ装置の製造方法を開示する もので、 該製造方法は、 磁気センサの磁界検出信号を増幅する回路と、 前記磁気 センサを駆動するための電源回路を有する制御回路とを一緒にパッケージするェ 程を含む磁気センサ装置の製造方法であって、 前記磁気センサが請求の範囲第 1 〜18項のいずれかに記載の磁気センサであり、 該磁気センサは請求の範囲第 2 3または 24項に記載の製造方法によって製造されることを特徴とする。
また、 本発明の請求の範囲第 26項は、 他の構成の磁気センサを開示するもの で、 該磁気センサは、 基板と、 該基板上に形成された I rixGa ^AS yS b^ v (0<x≤ l, 0≤y≤ l) 薄膜層を含む動作層と、 該動作層上に形成されてい る絶縁性もしくは高抵抗の半導体の中間層と、 絶縁性無機質層の保護層 (すなわ ち、 パッシベーシヨン層) と力 前記の順に積層されてなることを特徴とする。 本発明の請求の範囲第 27項'の磁気センサは、 前記請求の範囲第 26項の磁気 センサにおいて、 前記中間層が前記動作層上に接するとともに該動作層の格子定 数と近似した格子定数を有することを特徴とする。
本発明の請求の範囲第 28項の磁気センサは、 前記請求の範囲第 27項の磁気 センサにおいて、 前記中間層が前記 I nxG a卜 XA s y S b n (0<x≤ 1 , 0≤y≤ 1) 薄膜を構成する元素の少なくとも 1種類以上の元素を含む組成であ ることを特徴とする。
本発明の請求の範囲第 29項の磁気センサは、 前記請求の範囲第 27項の磁気 センサにおいて、 前記動作層が前記 I nxG a s y S b (0<x≤ 1 ,
0≤y≤ 1) 薄膜の上にバリヤ層を有することを特徴とする。
本発明の請求の範囲第 30項の磁気センサは、 前記請求の範囲第 29項の磁気 センサにおいて、 前記中間層が前記バリヤ層を構成する元素の少なくとも 1種類 以上の元素を含む組成であることを特徴とする。
本発明の請求の範囲第 3 1項の磁気センサは、 前記請求の範囲第 27から 30 項のいずれかの磁気センサにおいて、 前記 I nxG a XA s y S b (0<x ≤ 1 , 0≤y≤ 1) 薄膜が S i Te S Sn Geおよび S eからなる群の 少なくとも 1種類のドナーァトムを含むことを特徴とする。
本発明の請求の範囲第 32項の磁気センサは、 前記第 31項の磁気センサにお いて、 前記ドナーァトムの少なくとも一部が動作層中の伝導電子を供給するため に陽イオン化していることを特徴とする。 ここで、 さらに詳しくは、 前記ドナー ァトムは少なくともその一部が結晶の格子点で I n G a A s S bのいずれかの原 子を置き換えて陽イオン化していることを特徴とする。
本発明の請求の範囲第 33項の磁気センサは、 前記請求の範囲第 27から 3 1 項のいずれかの磁気センサにおいて、 前記中間層が S i 、 T e、 S、 S n、 G e および S eからなる群から選ばれる少なくとも 1種類のドナーァトムを含むこと を特徴とする。 '
本発明の請求の範囲第 3 4項の磁気センサは、 前記請求の範囲第 2 7から 3 3 項のいずれかの磁気センサにおいて、 前記 I nxG aい XA s y S bい y (0<x
≤ 1, 0≤y≤ l ) 薄膜は、 該薄膜の— 5 0°Cにおける抵抗値が 1 5 0°Cにおけ る抵抗値の 1 5倍以内であることを特徴とする。
また、 本発明の請求の範囲第 3 5項は、 他の構成の磁気センサ装置を開示する もので、 該装置は、 磁気センサと該磁気センサ出力を増幅する回路と前記磁気セ ンサを駆動するための電源回路を有する制御回路とがー緒にパッケージされてい る磁気センサ装置であって、 前記磁気センサが請求の範囲第 2 7から 34項のい ずれかに記載の薄膜磁気センサであることを特徴とする。
また、 本発明の請求の範囲第 3 6項は、 他の構成の磁気センサの製造方法を開 示するもので、 該製造方法は、 表面が平滑な基板上に I
Figure imgf000012_0001
yS y (0<x≤ 1, 0≤y≤ 1) 薄膜を形成する工程と、 該薄膜上に該薄膜と物性値 が近似する化合物半導体の中間層を形成する工程と、 該薄膜および該中間層を所 望のパターンに形成する工程と、 形成されたパターンの上に所望の形状の薄い金 属薄膜を形成する工程と、 該パターンおよび該金属薄膜の上に絶縁性無機質の保 護層を形成する工程と、 外部と接続するための電極を複数個形成する工程と、 該 電極を前記 I nxG a卜 XA s y S b y (0<x≤ 1, 0≤y≤ l ) 薄膜の端部 に接続する工程と含むことを特徴とする。
また、 本発明の請求の範囲第 3 7項は、 さらに他の構成の磁気センサの製造方 法を開示するもので、 該製造方法、 表面が平滑な基板上に I nxG a卜 XA s yS b ^y (0<x≤ 1 , 0≤y≤ 1 ) 薄膜を形成する工程と、 該薄膜上にバリヤ層 を形成する工程と、 該バリヤ層上に該バリヤ層と物性値が近似する化合物半導体 の中間層を形成する工程と、 該薄膜、 バリヤ層および該中間層を所望のパターン に形成する工程と、 形成されたパターンの上に所望の形状の薄い金属薄膜を形成 する工程と、 該パターンおよび該金属薄膜の上に絶縁性無機質の保護層を形成す る工程と、 外部と接続するための電極を複数個形成する工程と、 該電極を前記 I n x G a X A s y S b n ( 0 < x≤ 1 , 0≤ y≤ 1 ) 薄膜の端部に接続するェ 程と含むことを特徴とする。 図面の簡単な説明
第 1図は、 I n S b薄膜の抵抗値の温度依存性を示すグラフである。
第 2 A図は本発明のホール素子の平面図である。
第 2 B図はホール素子の断面図である。
第 3図は本発明のホール素子がリードと接続され、 樹脂パッケージされた状態 を模式的に示す断面図である。
第 4図は本発明の 3端子の磁気抵抗素子の一態様を模式的に示した図である。 第 5 A図は本発明の磁気抵抗素子の一態様を示す平面図である。
第 5 B図は第 5 A図に示した磁気抵抗素子の断面図である。
第 6 A図から第 6 C図は本発明の磁気センサの感磁部における薄膜の積層構造 を示した断面図である。
第 7 A図から第 7 C図は本発明の磁気センサの感磁部における薄膜の積層構造 を示した断面図である。
第 8図はシリコン集積回路チップと一緒にパッケージされた状態の磁気センサ の回路図である。
第 9 A図は本発明の実施例 1 0で形成したホール素子の平面図である。
第 9 B図は第 9 A図に示したホール素子の断面図である。
第 1 O A図は本発明の実施例 1 8で形成した 2端子の磁気抵抗素子の断面図で ある。
第 108図は第1 OA図に示した磁気抵抗素子の平面図である。 発明を実施するための最良の形態
I nGaAs S b薄膜の電子濃度と抵抗の温度依存性には大きな相関関係があ る。 特に薄膜の電子濃度が 2. 1 X 1016Zcm3以上になると抵抗の温度変化 が小さくなり、 かつ、 磁気センサのオフセット電圧の温度ドリフトが小さくなり、 本発明の磁気センサは、 表面が平滑な基板上に電子濃度が 2. 1 X 101 6/ c m3以上の I nxG a XA s y S b (0<x≤ 1 , 0≤y≤ 1) の薄膜をェピ タキシャル成長させて感磁部の動作層として形成する。 以下、 本明細書では記述 の簡略化のために必要に応じて I nxGa xAs yS (0<x≤ 1 , 0≤ y≤ 1 ) を I nGaAs S bと略記する。 その内容は、 上記 x yで定まるす ベての組成を含む。
本発明において、 薄膜の電子濃度は 2. 1 X 1016Zcm3以上であることが 必要であるが、 5 X 1016Zcm3以上であることが好ましく、 6 X 1016Zc m3上であることがさらに好ましく、 特に 6 X 1016 5 X 1018Zcm3が好ま しい。
I nGaAs S b薄膜の電子濃度を大きくする方法の 1つには、 I nGaAs Sb層に微量の S i Te S Sn Ge S e等のドナーアトムを含ませる 方法がある。 このようにドナ一アトムをドーピングすることにより、 高温度にお ける I nGaAs S b層の抵抗値の低下を少なくすることができるので、 磁気セ ンサに高温度で大きな電流が流れることを防ぐことができる。 また、 I n Ga, 一 xAS yS b^,薄膜 (0<x≤ l 0≤y≤ 1) の電子濃度を大きくする別の方 法としては、 薄膜の組成を適宜設定することにより、 すなわち、 x yの値を 0 <x≤ l , 0≤y≤ 1の範囲内で適宜選択することにより電子濃度を大きくする ことができる。
電子濃度を特定のレベルにすることができれば、 抵抗の温度変化を小さくおさ えることができ、 磁気センサの出力を増幅する回路、 磁気センサを駆動する電源 回路等を含む磁気センサの制御回路の負荷を少なくすることができる。 また、 回 路そのものも複雑化せず、 高温での駆動電力および電流も少なくなり、 広い温度 範囲で素子を駆動できる制御回路の製作が可能になる。 その結果、 素子駆動回路 も簡単になり、 かつ小型化できる。 このため、 本発明の磁気センサと小型の S i 集積回路である制御回路を一体化した一つのパッケージに納めて、 高感度で信頼 性の高い小型の薄膜磁気センサを実現できる。
ドーピングした磁気センサは、 高温域において磁気センサの抵抗値が急激に低 下することを避けることができるので、 10 o°c以上の高温域でも安定に動作し、 一 20°C以下の低温域においても磁気センサの抵抗値 (入力抵抗値) の急激な上 昇を少なくすることができ、 一 20°C以下の低温域においても安定に動作する。 センサ出力を増幅する回路の複雑化が避けられ、 低コストの広い温度範囲にわ たって安定に動作する磁気センサの製作が可能になる。 かかるドーピングの効果 は、 本発明の実施例に共通する効果であるが、 本発明に列挙された実施例に限定 されるものではない。
ドーピングするドナ一アトムは、 ドナーになりうる元素であれば、 特に限定さ れるものではないが、 S i、 Te、 S、 S n、 S e、 Ge等が代表的なドナ一ァ トムとして挙げられる。 ドーピングするドナ一ァトムの量を調節することにより、 I nGaAs S b薄膜中の電子濃度を適切な値に設定することができる。
例として、 I nS bに対するドーピングの効果を第 1図を用いて説明する。 不純物をドーピングしない電子濃度が 1. 7 X 1 016Zcm3の I n S b薄膜 の場合 ( 1 )、 S iをドーピングして電子濃度が 6. 6 X 1 01 6/ c m3となった 場合 (11)、 S iをドーピングして電子濃度が 16. 0 X 1016Zcm3となった 場合 (III) の 3種類について、 一 50°Cから 150°Cの温度範囲で抵抗値の変化 を調べた。 この結果を表 1およ'び図 1に示す。 第 1図から明らかなように、 I n S b薄膜に S iをドーピングすることにより、 抵抗の温度依存性が減少している。 すなわち、 ドーピングしない電子濃度が 1. 7 X 1016Zcm3の ( I ) の場合 には、 一 50°Cの抵抗値が 1 50°Cの抵抗値の 3 1倍であり、 低温領域での使用 は難しかった。 しかし、 ドーピングして電子濃度が 5 X 1 016Zcm3以上の
(II) の場合は、 ほぼ平坦な線を示し、 電子濃度が 8 X 1 016Zcm3上の
(III) の場合は、 電子濃度が (III) より低い (Π) の場合よりもさらに平坦な 線を示す。 温度変化に対する抵抗値のグラフは水平であることが最も好ましいが、 - 50°Cの抵抗値が 1 50°Cの抵抗値より高い場合には 1 5倍以内であることが 好ましく、 8倍以内であることがより好ましい。 また、 1 50°Cの抵抗値が— 5 0°Cの抵抗値より高い場合には 1 50°Cの抵抗値が 3倍以内であることが好まし く、 2倍以内であることがさらに好ましい。
表 1
Figure imgf000016_0001
( ) 内の数字は 50°Cにおける抵抗値が 1 50°Cにおける抵抗値の
何倍になるかを示している。 本発明の磁気センサの動作層である I n XG a XA s y S b 薄膜 ( 0 <x ≤ 1 , 0≤y≤ 1 ) の厚さは、 一般に 6ミクロン以下が好ましく、 2ミクロン 以下がより好ましく、 場合によっては 1ミクロン以下がより好ましい。 また、 高い磁界感度で、 かつ、 抵抗値の温度依存性が少ない磁気センサの場合、 0. 7 1. 2ミクロンで特性の良いものをつくることができ、 好ましい。 高抵抗 の入力抵抗値を必要とする磁気センサの場合には、 感磁部としての薄膜は更に 薄いことが好ましく、 0. 5ミクロン以下、 または 0. 1ミクロン以下で製作 されることもある。 このように感磁部薄膜の厚さが 1ミクロン以下の場合には、 I nGa As S bの格子定数と近似する格子定数を有する半導体絶縁層または 高抵抗層であるバッファ一層 (バリヤ層) を、 例えば格子定数の差が 2 %以内 のバッファ一層を薄膜と基板との間に、 または薄膜の表面に形成することが好 ましい。
本発明においては、 磁気センサの動作層である I n G a A s S b薄膜と接する ようにバッファ一層が形成されている場合には、 動作層との界面付近に動作層の 電子濃度を適切な値にするために、 動作層にドーピングする代わりにバッファー 層にドナ一アトムをドーピングしてもよい。 なお、 バッファ一層は動作層 ( I n GaAs S b薄膜) に電子を閉じこめる層としての役割を有している。 動作層が 50 OA以下のような極めて薄い膜のときに動作層の上下にバッファ一層が形成 されることがあるが、 かかる場合には、 バッファ一層は動作層に電子を閉じこめ る役割を有するので、 動作層は量子井戸となる。 また、 量子井戸の動作層にド ナーァトムをド一プしても良い。
本発明の基板としては、 通常、 GaAs I n P等の絶縁性または半絶縁性の 化合物半導体が用いられる。 本発明においては基板の表面に、 さらに絶縁性もし くは半絶縁性の表面、 またはシート抵抗値の高い表面層を有していてもよい。 こ の場合は、 上述の絶縁性基板材料の他に S i単結晶基板、 フェライト基板、 セラ ミックス基板なども好ましく用いることができる。 結晶の面方位は、 (100), (1 1 1) など何でもよく制限はない。 また、 これらの面方位に対して、 0 1 0° 程度の角度傾けた面でも良'い。 他にも表面が平滑なアルミナ基板ゃサフアイ ァ基板、 表面に薄い絶縁層を有する単結晶フェライ ト基板なども用いることがで きる。 高温で等方性の静熱圧プレス、 いわゆる H I Pをかけて作製した、 結晶性 のより緻密なフェライト基板は多結晶であっても表面に耐熱性の絶縁層を形成す れば、 好ましい絶縁性基板として本発明で用いることができる。
これまでは、 I n S bまたは I n XG a x A s y S b (0<x≤ 1 0≤ y≤ 1) 薄膜等を磁気センサの感磁部の薄膜として、 すなわち、 磁気センサの動 作層として使おうとすると、 その上に形成される S i 3N4 S i〇2等の保護膜、 いわゆるパッシべ一ション薄膜と I n S b薄膜、 I nxG a — xA S yS b ^ y (0<x≤ 1, 0≤y≤ 1) 薄膜等の薄膜の結晶格子の格子定数の差が大きいの で、 結晶境界での相互作用により 20 30 %の電子移動度の低下が起きること があり、 磁気センサの感度低下を招いていた。 しかし、 I nSbは電子移動度が 高く、 良好な磁気センサ材料であるので、 結晶格子の大きな不整合があつたにし ても I n S bを用いて磁気センサを製作しているのが現状である。 特に信頼性の 点を考慮すると、 パッシベーシヨン薄膜を形成することが好ましいので、 このよ うな素子特性の低下が生じた。 感磁部薄膜の厚さを薄くし、 磁気センサの消費電 力などを少なく、 高感度化しようとするときは、 特性劣化も大きくなつた。 この ため、 I n S bまたは I n XG a XA s y S b (0 <x≤ 1 , 0≤y≤ 1 ) の薄膜の特性を十分に引き出し、 高感度の磁気センサを製作することが大きな課 題となっていた。
この課題を解決するためには、 本発明においては好ましい態様として、 磁気セ ンサの感磁部を構成する I nGaAs S b薄膜上に直接に接するように、 少なく とも一層の中間層を形成する。 中間層とは I I I一 V族化合物半導体材料からな る絶縁層または高抵抗層である。 前記中間層は、 バッファ層 (バリヤ一層) とは 一般的には異なるが、 必要によっては、 バッファ一層を兼ねる場合がある。 さら に、 前記中間層は、 好ましくは'、 格子定数が I nGaAs S b薄膜の格子定数と 近似しており、 かつ、 バンドギャップが大きく、 該薄膜より電子移動度の小さい、 絶縁性もしくは半絶縁性の A 1 x I ηい XS b (0<x≤ 1 ) または Gay l r^— yS b (0<y≤ 1) の薄膜高抵抗層である。 I nGaAs S bとの格子定数の違 レ ま 8 %以内であることが好ましく、 さらには 5%以内である。 さらには、 磁気 センサの感磁部を構成する I nGaAs S b薄膜上に直接に接しないが、 低温度 で形成された G a A sのような大きいバンドギャップを有する I I I— V族の化 合物半導体層が形成されることも良く行われる。 すなわち、 複数の中間層の形成 も行われる。 このような中間層に加えて、 さらに、 中間層上には半導体でない S 102ゃ i 3N4等のパッシベ一シヨン薄膜層、 すなわち、 保護層が形成される ことも良く行われる。
かかる中間層は該薄膜の上側に形成されるのが一般的である。 あるいは、 薄膜 の両面に形成されていてもよい。 バッファ一層 (本発明においては、 薄膜の上側 に形成されるものを便宜上 「バリヤ層」 ということもある) が薄膜の上面に接し て形成されている場合には、 中間層はバリヤ層の上に接して形成される。
このような化合物半導体の中間層を I nGaAs S b薄膜またはバリヤ層の上 側に形成すれば、 パッシベーシヨンとして形成される保護膜と感磁部の動作層と が直接接しないことになるので、 保護膜が存在するにもかかわらず、 I nGaA s S b薄膜の特性、 特に電子移動度が変動しなくなる。 かかる効果は、 薄膜の厚 さが 0. 2ミクロン以下の場合に特に顕著である。 なお、 薄膜の格子定数との差 が 2 %以内であるような中間層の場合には、 かかる中間層がバリヤ層としての役 割も果たすことができる。
本発明において中間層の厚さには特に制限はないが、 通常は 2ミクロン以下、 好ましくは 1ミクロン以下、 さらに好ましくは、 0. 5ミクロン以下である。 特 に、 表面に形成された層は、 0. 5ミクロン以下、 好ましくは 0. 2ミクロン以 下、 さらに好ましくは 0. 1ミ'クロン以下が好ましい。 薄膜と接して中間層が形 成されている場合は、 中間層に S i , S e, T e, S, S n, Ge等のドナ一ァ トムをドーピングしてもよい。 ただし、 ドナ一アトムは中間層全体に一様にド一 ビングされていてもよいが、 中間層の一部分に、 例えば薄膜と接する面側に偏つ てドーピングされていてもよい。 この場合、 少なくともドナーアトムの一部は陽 イオン化していることが必要である。
中間層は、 電子移動度が I nGaA s S b薄膜と比べてきわめて小さく、 導電 率も小さいので、 半導体ではあるが電気伝導には寄与しない性質を有する。 した がって、 絶縁層として振る舞う。 さらに、 I n G a A s S b薄膜とパッシベ一 シヨン層との間に配置されているので、 I nGaA s S b薄膜が直接パッシベ一 シヨン層と接することにより生じる相互作用を防止し、 I nGaAs S bの特性 の劣化を防止する。 したがって、 絶縁性の無機質層 (保護層) をパッシベーショ ン層として有する磁気センサでは、 I n G a A s S b薄膜、 バンドギャップが大 きく、 かつ、 I nGaAs S bの動作層より電子移動度の小さい半導体の中間層、 パッシベ一シヨン層として絶縁性の無機質層 (保護層) をこの順に有することが 好ましい。 低温度で形成される絶縁性もしくは高抵抗の Ga A s層は、 中間層と して、 しばしば用いられる好ましい例である。
本発明の磁気センサは、 I nGaA s S b薄膜を感磁部として使用する高感度 磁気センサであり、 具体的には、 ホール素子、 磁気抵抗素子、 さらにはホール効 果と磁気抵抗効果とを組み合わせた素子、 あるいはこれらの効果によって磁気を 検出する薄膜磁気センサである。
なお、 磁気センサ出力を増幅する回路および磁気センサを駆動するための電源 回路を少なくとも有する制御回路と一緒にパッケージされた磁気センサも本発明 の磁気センサである。
以下に、 第 2 A図〜第 7 C図を用いて本発明をさらに詳しく説明する。 ただし、 特にことわらない限り、 各図に'おいて同一符号は同一機能を有するものであると する。 また、 本発明において示される回路は等価回路である。
第 2Α図は、 本発明の I r^Ga ^ xA S y S b ^ ν薄膜 (0<x≤ l, 0≤y ≤ 1) を動作層として有する磁気センサの一態様であるホール素子の平面図を示 し、 第 2 B図は、 第 2 A図における線 I I B— I I B' 線に沿って切断したとき の断面図を示す。 第 2 A図および第 2 B図において、 I nGaAs S b薄膜 2は 絶縁性の基板 1上に形成されている。 かかる薄膜 2の電子濃度は 2. 1 X 1016 /cm3上であり、 磁気センサの— 50°Cにおける入力抵抗値は 150°Cにおける 入力抵抗値の 1 5倍以内である。 図中、 3は外部接続用電極 5を除いた全面に形 成されている無機質の保護層であり、 4は金属薄膜からなる配線部であり、 外部 と接続するための電極 5と中央の十字パターンで示された感磁部 6の動作層を接 続する。 感磁部 6は磁気センサとして磁界を検出する。
本発明においては、 I n G a A s S b薄膜 2に S i、 Te、 S n、 S、 S e、 Ge等の不純物 (ドナ一アトム) がドーピングされている。
第 3図は、 本発明のホール素子 20が樹脂パッケージされた状態の磁気センサ を示す。 第 3図において、 7はホール素子の電極 5 (5 1, 52, 53) とリー ド 8とをつなぐボンディングであり、 9はパッケージの樹脂を示す。
第 4図は、 3個の外部接続用電極を有する本発明の 3端子の磁気抵抗素子の平 面図を示す。 基板 1上に I nGaAs S b薄膜 2、 外部接続のための電極 5が形 成されている。 6は磁気センサとして磁界を検出するための感磁部を示す。 10 は、 I nGaA s S b薄膜の磁気抵抗効果を大きくするため、 感磁部の I n G a As S bにォ一ミック接触して形成した高導電性の部分で、 ショートバー電極で ある。 電極 5 ( 5 1および 5 3) に一定電圧を加え、 磁界を加えると、 電極 5 ( 5 2) の出力端子の電位が磁界の大きさに応じて変動し、 磁界を検出することがで さる。 '
第 5 A図および第 5 B図は、 本発明の磁気センサの別の態様の磁気抵抗素子を 示す。 第 5 A図は磁気抵抗素子の平面図であり、 第 5 B図は第 5 A図の VB— V Β' 線に沿って切ったときの断面図である。 本態様の磁気抵抗素子は、 4個の磁 気抵抗素子部を一平面上にブリッジ状に配置して接続してある。 第 5 Α図, 第 5 Bにおいて、 基板 1上に I nG a A s S b薄膜 2が形成されており、 この薄膜 2 の上に金属のショートバ一電極 1 0が形成されている。 外部と接続するための電 極 5と磁気抵抗素子部とは配線部 4で接続されており、 パッシベーシヨン層とし て必要に応じてしばしば形成される無機質薄膜は、 磁気抵抗素子を保護する保護 膜 3である。 感磁部 6である 4個の磁気抵抗素子部 6 1, 62, 63, 64は、 第 5 A図および第 5 B図に示すように、 ブリッジ状に配置されているので、 隔辺 の位置関係にある 2個の磁気抵抗素子部 (6 1と 6 3, 62と 64) は、 同一強 度の磁界を同時に垂直方向に受けることができるようになつている。 なお、 本発 明において、 「ブリッジ状に接続されている」 とは、 磁気抵抗素子部がブリッジ状 に接続されている場合だけでなく、 基板の外で接続されて磁気抵抗素子部が回路 上でプリッジ状に配置されたことになる場合も含まれる。 磁気抵抗効果素子部 2 1およびショートバ一電極 1 0は磁気抵抗素子部 6 (6 1, 62, 63, 64) を構成する。 磁気抵抗効果はショートバー電極間の磁気抵抗素子部 6 (6 1, 6 2 , 6 3 , 64) の形状に依存し、 その磁気抵抗素子部の電流進行方向の縦 (L) と横幅 (W) の長さの比 (L/W) が小さいほど抵抗変化率が大きくなる。 磁気抵抗素子部 6を接続する配線部 4は交差せず単層のみからなる構成でもよ いが、 電極 5 (5 1, 52, 53, 54) の配置される位置によっては配線部の 長さを短くするために、 少なくとも 1ケ所で配線部を交差させる立体的な多層構 成としてもよい。
また、 隣り合う磁気抵抗素子部の接続点から外部接続電極までの配線部の抵抗 値は、 それぞれ等しくなるように形成することが、 オフセット電圧を少なくする 上で好ましい。 なお、 配線部の抵抗値は、 磁気抵抗素子部の室温の抵抗値と比較 して 1 %以下、 さらには、 0. 5 %以下であることが好ましい。
磁気抵抗素子部の I nGaAs S b薄膜は、 膜厚が薄いほど望ましい。 それは、 膜厚が薄いほど、 素子抵抗を大きくすることができ、 また、 同じ素子抵抗でも チップサイズを小さくすることができ、 さらに、 製作時間も短縮できるため、 コ スト上有利になるからである。 膜厚は 7ミクロン以下が望ましく、 さらに 5ミク ロン以下が望ましく、 さらに 3ミクロン以下が望ましく、 さらに 2ミクロン以下 が特に望ましく、 さらに 1ミクロン以下は、 最も高いシート抵抗が得られ、 チッ プサイズも最小にでき、 最も望ましい。
さらには、 磁気抵抗素子部の I n S b薄膜は、 シート抵抗値のばらつきが、 標 準偏差で 5 %以内とすることが好ましい。
本発明においては、 I nGaAs S b薄膜と基板との間に基板の格子定数と近 似している半導体絶縁層 (または高抵抗層) A a y I n z A s s S b t B i u (x + y + z = l、 s + t +u= l、 0≤x, y, z, s, t , u≤ 1 ) を形成 することが好ましい。 半導体絶縁層の格子定数は、 I nGa A s S bの格子定数 との差が 7 %以内であることが好ましい。 該層のバンドギャップは動作層のそれ より大きく取ることが必要である。 このような構造とすることにより、 薄くて抵 抗の大きい I n S bまたは I nGaA s S bの薄膜が容易に得られ、 消費電力の 少ない磁気センサが得られ、 実用上有用である。 また、 素子製作工程における I n G a A s S bの特性低下も少ない。
半導体絶縁層は、 I nGaAs S b薄膜の上下に形成されることもよく行われ る。 特に、 I nGaAs S b薄膜の厚さが 1ミクロン以下の場合にはしばしば上 下に半導体絶縁層が形成される。 このような、 半導体絶縁層の例として、 A 1 XG xA S yS b i— v(0≤x≤ l, 0≤y≤ 1 , ただし、 xおよび yは同時に 0に なることはない)からなる 3元または 4元の化合物半導体絶縁層は、 特に好ましい 例である。
第 6A図には、 本発明の磁気センサの動作層である半導体薄膜 2が絶縁性基板 1の上に直接に形成された状態の断面構造を示す。 第 6 B図には、 絶縁性基板 1 と半導体薄膜 2との間に格子定数の差を少なくする半導体絶縁層 1 1を形成した 状態の断面を示す。 第 6 C図は、 半導体薄膜 2の表面に格子定数の差を少なくす る半導体絶縁層 1 1を形成した場合の断面図であり、 S i 3N4などのパッシベー シヨン時に薄膜絶縁層の特性低下を少なくする効果もある半導体絶縁層を形成し た状態である。 第 7A図には、 半導体薄膜 2の上に中間層 1 3が形成された状態 の断面構造を示し、 第 7 B図には半導体薄膜 2と中間層 13との間に半導体絶縁 層 1 1が形成された状態の断面構造を示す。
半導体絶縁層 1 1または中間層 13には、 I nG a A s S b薄膜中に電子を供 給するために、 S i等のドナ一アトム 12がドーピングされることもある。 ただ し、 ドーピングは半導体絶縁層 (または中間層) の一部分に行われていてもよく、 この場合には、 少なくとも一部のドナ一アトムの電子はエネルギーが低い I nG a A s S b層に供給される。 そして、 半導体絶縁層 (または中間層) のドナーァ トムは陽イオン化する。 第 7 C図に、 このように半導体絶縁層が部分的にドーピ ングされた場合を示す。 第 7 C図においては、 半導体絶縁層 1 1のうち、 半導体 薄膜 2と接する領域にドナーァトム 12がドーピングされている。
このような半導体絶縁層の厚さについては、 特に制限はないが、 通常 2ミクロ ン以下、 好ましくは 1ミクロン以下、 さらに好ましくは 0. 5ミクロン以下であ る。 半導体絶縁層を表面に形成する場合にはォ一ミック電極を I nS b表面に形 成する必要があり、 その層の厚さは 0. 5ミクロン以下であることが好ましく、 さらには 0 . 2ミクロン以下、 特に 0 . 1ミクロン以下であることが好ましい。 上記構造のものを本発明の磁気センサの感磁部に用いる例を示す。 例えば、 第 6 A.図の構造の場合には、 絶縁性基板上に直接半導体薄膜 2が形成され、 磁気セ ンサが磁気抵抗素子の場合は、 この半導体薄膜 2の上に直接金属のショートバー 電極が形成される。 第 6 Β図の構造の場合には、 絶縁性基板と半導体薄膜との間 に半導体絶縁層が形成されていて、 半導体薄膜の上にショートバーが形成される。 第 6 C図の構造の場合には、 表面に半導体絶縁層が形成され、 該層を一部除去し てショートバー電極が形成される。 なお、 本発明においては、 高導電率を有する ように、 半導体薄膜の一部をドーピングして、 ショートバー効果を出すよう形成 してもよい。
第 8図は、 本発明の磁気抵抗素子 1 8を、 アナログ増幅部 1 5、 シュミットト リガ 1 6および (出カトランジス夕で示した) 出力部 1 7を備えたシリコン集積 回路チップの制御回路部 1 4と一緒にパッケージした状態を示す。 これも本発明 の磁気センサに含まれる。 ここで制御回路部 1 4とは、 差動増幅の回路と磁気セ ンサを駆動するための電源回路を少なくとも有する制御回路を意味し、 小型であ ることが好ましく、 特に、 シリコン集積回路チップとして製作されることが好ま しい。 本発明の磁気抵抗素子 1 8と一緒にパッケージされることもしばしば行わ れ、 これも本発明の磁気センサである。 (実施例 1 )
以下のようにしてホール素子を製造した。
本実施例では、 化合物半導体の薄膜製作のために特別に製作された薄膜製作装 置を用いた。 この装置の基本構成は、 超高真空の室内に、 基板をセットするホル ダ一と該基板を一定の温度に加熱できる加熱制御装置を備え、 さらに、 I n、 S b、 A s等の材料の蒸気圧を個別に制御できる当該材料の蒸発源 (クヌードセン セル) を複数個備えた薄膜製作装置を使用する。 この装置では、 前記各材料の蒸 気圧の時系列的な蒸発制御と、 さらに、 基板加熱装置による基板の加熱プロダラ ムにしたがって、 基板上に均一に所望の材料の単結晶成長を行うことができる。 また、 上記の機能に加えて、 さらに、 必要に応じて、 S iや S n等のドナー不純 物を蒸気圧制御を時系列的に行い、 成長中の薄膜の所望の部分のみに、 定められ た濃度で、 かつ、 結晶成長中にドーピングできるドープ手段を備えた薄膜製作装 置 (以下、 当該発明で磁気センサ部に使用する材料の単結晶薄膜や、 混晶薄膜の 結晶成長が可能な分子線エピタキシー装置:以下、 単に MB E装置と略記するこ ともある。) をも用いる。
前述の装置を用いて、 本発明の磁気センサの感磁部を構成する化合物半導体の 薄膜を、 以下のような条件で製作した。
表面が平滑な半絶縁性の G a A s基板を上記装置の基板ホルダーにセットし、 所定の結晶成長室に搬送した。 次に、 結晶成長室を超高真空中 (2 X 1 0— 8mb a r) に排気した後、 I nS b、 およびド一パントの S nを結晶成長室内にセッ 卜されたクヌードセンセルから蒸発させ、 厚さ 1. 0ミクロンの S nをドープし た I nS b薄膜を、 基板加熱ヒー夕の指示温度 550°C (基板温度 420°C) で 60分間成長することにより、 形成した。 このとき、 高い電子移動度を得る最適 条件として、 さらに、 I nの蒸気ビーム強度 1. 2 X 1 0— 7mb r、 S bの蒸気 ビーム強度 1. 8X 10— 6mb r、 ドーパントの S nのクヌードセンセル温度は、 基板加熱に影響の少ない 700°Cの温度に設定した。 さらに、 成長中の基板温度 は 420 °C—定とした。 特に、 1000°C以下の S nのクヌードセンセル温度は、 高い電子移動度が得られる条件として、 好適であった。 形成された I nS b薄膜 の電子移動度は 44, 000 cm2/Vsecであり、 電子濃度は 7 x 1016Z c m 3であった。
また、 ドーパントの活性化率の測定から、 ドープした S nの 50 %が電子を出 2δ
し、 陽イオンとして存在していることが、 判明した。 この高い活性率は、 高い電 子移動度が得られ、 高感度のホール素子が製作できることを、 示唆している。 次いで、 第 2 Α図および第 2 'Β図に示すようなホール素子を製作した。 I n S b薄膜 2を所望のパターンに形成するため、 フォトリソグラフィー工程によりレ ジスト膜を形成し、 イオンミリングによるドライエッチングした後、 塩化第二鉄 を含む溶液により I n S b薄膜 2をエッチングした。 これに外部接続用ボンディ ング電極を形成するためのレジストパターンをフォトリソグラフィ一工程により 形成した。 その後、 基板の全面に C uと N iを蒸着して金属層を形成した。 リフ トオフ工程によりレジストパターンとその上に蒸着した金属層とを除去して複数 個の外部接続のための電極部 5を形成した。 プラズマ C V D法により基板全面に 窒化シリコンの保護層 3を形成し、 ボンディング電極部上の窒化シリコンのみを 反応性イオンエッチングで除去して窓開けを行った。 ボンディング電極部分が窓 開けされた状態となるようにフォトリソグラフィー工程によりレジストを形成し、 純金を全面に蒸着した後、 リフトオフ工程によりボンディング電極部分のみに金 層を形成して、 第 2 A図および第 2 B図に示すような本発明のホール素子を一枚 の基板上に複数個製造した。
得られたホール素子の特性を測定したところ、 室温下における素子抵抗値は 1 1 0オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側のオフセッ ト電圧の値は 0 . 1 ± 2 . 2 mVで極めて小さいことが分かった。 ここで、 オフ セット電圧とは、 磁界を印加しない場合において、 入力端子間に 1 V印加したと きの出力端子間の電圧を意味する。 素子の抵抗の温度依存性は - 0 . 5 % /°C以 下であった。 一 5 0 °Cと + 1 5 0 °Cの入力抵抗値の比も倍以内であった。 さらに、 I Vの入力電圧で 0 . 1テスラの磁束密度の磁界で得られたホール電圧は 2 1 0 m Vであつ こ。
本発明の薄膜磁気センサは、 上記のようなフォ トリソグラフィーを応用した、 ウェハ一プロセスで容易に製作でき、 量産性があり、 歩留まりも高い。 さらに、 薄膜の感磁部の膜厚が小さいため、 抵抗値が室温で 1 0 0オーム以上あり、 消費 電力も小さい。 また、 温度によ'る素子抵抗値の変動も少なく、 オフセットの温度 変化も少ない。
さらに、 外部リードとの接続は、 量産性のある標準的な金ワイヤーによるワイ ヤーボンディングが可能である。 得られたホール素子は、 ボンディング後のパッ ケージが樹脂モールドまたは細い金属パイプなどに埋め込まれてセンサとして仕 上げられることもよく行われる。 さらに、 本素子の出力信号をデジタル増幅する 制御回路と一緒にパッケージされることも行われる。 その際、 S iの I Cで制御 回路を製作することも好ましく行われる。 素子抵抗値の温度変化が少ないため、 小型の S iの基板回路チップの増幅もデジタル増幅用に用いることができる。
(実施例 2 )
以下のようにして半導体薄膜層が S iでドーピングされたホール素子を製造し た。
すなわち、 本実施例では、 化合物半導体の薄膜製作のために特別に製作された 薄膜製作装置を用いた。 この装置の基本構成は、 超高真空の室内に、 基板をセッ 卜するホルダーと該基板を一定の温度に加熱できる加熱制御装置を備え、 さらに、 I n、 S b、 S i等の材料の蒸気圧を個別に制御できる当該材料の蒸発源 (ク ヌードセンセル) を備えた薄膜製作装置を使用する。 この装置では、 前記各材料 の蒸気圧の時系列的な蒸発制御と、 さらに、 基板加熱装置による基板の加熱プロ グラムにしたがって、 基板上に均一に所望の材料の単結晶成長を行うことができ る。 また、 上記の機能に加えて、 さらに、 必要に応じて、 S iや S n等のドナー 不純物を蒸気圧制御を時系列的に行い、 成長中の薄膜の所望の部分のみに、 定め られた濃度で、 かつ、 結晶成長中にドーピングできるドープ手段を備えた薄膜製 作装置 (以下、 当該発明で磁気センサ部に使用する材料の単結晶薄膜や、 混晶薄 膜の結晶成長が可能な分子線エピタキシー装置:以下、 単に MB E装置と略記す ることもある。) を用いる。 '
前述の装置を用いて、 前記実施例 1の操作に準じて、 表面が平滑な半絶縁性の GaAs基板上に、 基板加熱ヒ一夕の指示温度 5 50°C (基板温度 420°C) で 超高真空中 (2 X 1 0— 8mb a r) で 60分かけて I n S b薄膜を厚さ 1. 0ミ クロンとなるように MBE法で形成した。 ただし、 MB Eによる結晶成長と同時 に S iをド一プして薄膜層を形成した。 このとき、 S iのクヌードセンセルの温 度は、 1 080°Cで一定とした。 I nと S bは実施例と同じであった。 形成され た I n S b薄膜の電子移動度は 35, 000 c m2/ V s e c, 電子濃度は 7 x 1 016Zcm3であった。 I n S b薄膜を所望のパターンに形成するため、 フォト リソグラフィ一工程によりレジスト膜を形成し、 エッチングした。 次に、 I n S b薄膜に複数の薄い金属薄膜からなる配線部とボンディング電極を、 実施例 1に 準じて形成した。 次に、 実施例 1と同様にしてボンディング電極の表面のみに金 層を形成して、 半導体薄膜が S iでドーピングされた本発明のホール素子を一枚 の基板上に多数個製造した。
得られたホール素子の特性を測定したところ、 室温下における素子抵抗値は平 均 40オームであった。 I Vの電圧を入力電極 (例えば、 第 2 A図の電極 5 1, 53) に加えたときの、 出力側の電極 (第 2 A図の電極 52, 54) に電位差と して現れるオフセット電圧の値は 0. 1 ± 1. 2mVであり、 極めて小さいこと が分かった。 また、 半導体薄膜の電子移動度が高いので、 磁界での感度も大きく、 1 Vの入力電圧で 0.1テスラの磁束密度の磁界で得られたホール電圧は 1 28mV であった。
入力抵抗の温度変化は— 0. 4 %Z°Cであり、 一 5 0°Cの入力抵抗値は 1 5 0°Cの抵抗値の 5倍以内であった。 本発明の範囲外の薄膜の場合の抵抗の温度変 化率一 2 . 0 % Z°Cと比較して大幅に温度依存性を低減することができた。
更に、 このホール素子を、 S iの I Cの制御回路と一緒にパッケージして増幅 回路付きの磁気センサ、 即ち、 'デジタル出力の磁気センサを製作した。 得られた 磁気センサは、 一 5 0 °Cから + 1 5 0 °Cの温度範囲で安定にデジタル高感度磁気 センサとして駆動した。
(実施例 3 )
以下のようにしてプリッジ状の磁気抵抗素子を製造した。
実施例 2と同様にして、 表面が平滑な半絶縁性の G a A s基板上に、 実施例 2 と同一の S iをドーピングした I n S b薄膜および中間層を形成した。 形成され た厚さ 1 . 0ミクロンの I n S b薄膜の電子移動度は 3 5 , 0 0 0 c mWsec, 電子濃度は 7 X 1 0 1 6 Z c m 3であった。 次いで、 中間層と I n S b薄膜を所望 の図 5に示すようなパターンに整形するために、 実施例 2と同様にしてレジスト 膜を形成しエッチングして、 中間層の一部をフォトエッチングで除去し、 I n S b薄膜に複数の薄い金属薄膜からなるショートバー電極、 配線部、 およびボン ディング電極を形成した。
次に、 実施例 2と同様にして、 ボンディング電極の表面のみに金層を形成した。 このようにして、 4個の磁気抵抗効果を生ずる素子が、 第 5 A図および第 5 B図 に示すようにプリッジ状に接続され、 互いに隔辺の位置関係にある 2個の抵抗素 子部 (互いに隣り合わない 2個の抵抗素子部) が同時に同一の強度の磁界を垂直 に受ける状態で平面上に配置されている構造の本発明のプリッジ状の磁気抵抗素 子を一枚の基板上に多数個製造した。 この磁気抵抗素子の L ZWは 0 . 2 5で あった。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子抵抗値は 3 5 0オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側のオフ セット電圧の値は 0. 1 ± 1. 2mVであり、 極めて小さいことが分かった。 ま た、 単結晶薄膜を使用し、 電子移動度が高いので、 磁界の抵抗変化率も大きく、 歯車の歯の検出能が大きいことが示された。 また、 素子の抵抗の温度変化率は - 0. 4%/°Cであり、 一 50°Cの入力抵抗値は 1 50°Cの抵抗値の 5倍以内で あった。 本発明の範囲外の薄膜の場合の抵抗の温度変化率一 2. 0%Z°Cと比較 して、 大幅に温度依存性を低減することができた。
更に、 この素子を、 S iの I Cの制御回路と一緒にパッケージして増幅回路付 きの磁気センサ、 即ち、 デジタル出力の磁気センサを製作したところ、 — 50〜 + 150°Cの間で安定にデジタル高感度磁気センサとして駆動できた。
(実施例 4)
以下のようにして 3端子の磁気抵抗素子を製造した。
表面が平滑な半絶縁性の G a A s基板上に、 G a 0. 8A 10. 2A s 0.2 S b0. 8 の半導体絶縁層を超高真空中 (2 X 10— 8mb a r) で、 実施例 1に記載の装置 により、 MBE法で、 0. 3ミクロンの厚さとなるように形成した。 その上に、 超高真空中 (2 X 10— 8mb a r) で I nS b薄膜を厚さ 0. 3ミクロンとなる ように MB E法で形成した。
ただし、 MBE法による結晶成長と同時に S iをドーピングして薄膜を形成し た。 形成された I n S b薄膜の電子移動度は 33, 000 cmWsec, 電子濃 度は 7 X 1016Zcm3であった。 次いで、 中間層として A 10. 5 I n0. 5S b層 を厚さ 0. 1 5ミクロンとなるように形成した。 中間層および I n S b薄膜を所 望のパターンに形成するため、 実施例 3と同様にしてレジスト膜を形成しエッチ ングして、 中間層の一部をフォトエッチングで除去し、 I n S b薄膜に複数の薄 い金属薄膜からなるショートバー電極、 配線部を形成した。 次いで、 実施例 3と 同様にして、 第 4図に示すような 3端子の磁気抵抗素子を一枚の基板上に多数個 製造した。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子抵抗値は 平均 100オームであった。 I Vの電圧を入力電極 (例えば、 第 4図の電極 51, 53) に加えたときの、 出力側の電極 (第 4図の電極 52) に電位差として現れ るオフセット電圧の値は 0. 1 ± 1. 2mVで極めて小さいことが分かった。 磁 界での感度を調べるために磁気抵抗効果を調べた。 0. 1テスラの磁束密度の磁 界での抵抗変化は 9 %であった。
この実施例 4の場合は感磁部薄膜が薄くできるので、 実施例 3の場合と比較し て磁気抵抗素子の入力抵抗が高く、 消費電力が少なくてすむ。
更に、 この磁気抵抗素子は、 S iの I Cの制御回路と一緒にパッケージして増 幅回路付きの磁気センサ、 即ち、 デジタル出力の磁気センサを製作した。 得られ た磁気センサは、 一 50°Cから + 1 50°Cの温度範囲で安定にデジタル高感度磁 気センサとして駆動できた。 (実施例 5 )
以下のようにして 3端子の磁気抵抗素子を製造した。
実施例 4と同様にして、 表面が平滑な半絶縁性の G a A s基板上に、 Ga。. 7 A 10. 3A s 0. ! S b0. 9の半導体絶縁層を 0. 3ミクロンの厚さとなるように形 成した。 次いで、 I n S bとの格子定数の差を少なくする層として A 10.3 I n0. 7 S bを 0. 10ミクロンの厚さとなるように形成した。 その上に、 実施例 4と同 様にして厚さ 0. 2ミクロンの S iをドーピングした I n S b薄膜を形成した。 形成された I n S b薄膜の電子移動度は 41, 000 cm2/Vse 電子濃度は 9 X 1016Z cm3であった。 次いで、 中間層として A 10. 5 I n0. 5S b層を厚 さ 0. 1 5ミクロンとなるように形成した。 次に、 実施例 4と同様にして、 3端 子の磁気抵抗素子を一枚の基板上に多数個製造した。 なお、 得られた磁気抵抗素 子の電子移動度は実施例 4の値より大きかった。 これは、 実施例 5で得られた磁 気抵抗素子は、 格子定数の差を少なくする層を設けていることによる、 と考えら れる。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子抵抗値は 平均 250オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側のォ フセット電圧の値は 0. 1 ± 1. 4mVで極めて小さいことが分かった。 磁界で の感度を調べるために磁気抵抗効果を調べた。 0. 1テスラの磁束密度の磁界で の抵抗変化は 1 1 %であった。 また、 入力抵抗の温度変化は一 0. 5%Z°Cであ り、 _ 50°Cの入力抵抗値は 1 50°Cの抵抗値の 8倍以内であった。 本発明の範 囲外の薄膜の場合の抵抗の温度変化率一 2. 0 %Z°Cと比較して大幅に温度依存 性を低減することができた。 また、 この場合は、 感磁部薄膜が薄くでき、 磁気抵 抗素子の入力抵抗が高く消費電力が少ない。
この磁気抵抗素子は、 S iの I Cの制御回路と一緒にパッケージして増幅回路 付きの磁気センサ、 即ち、 デジタル出力の磁気センサを製作した。 得られた磁気 センサは、 一 50°Cから + 1 50°Cの温度範囲で安定にデジタル高感度磁気セン サとして駆動できた。
(実施例 6 )
以下のようにしてホール素子を製造した。
実施例 5と同様にして、 表面が平滑な半絶縁性の G a As基板上に、 厚さ 0. 3ミクロンの G a0. 7A 10. 3A s 0. ! S b 0. 9の半導体絶縁層、 および I n S b との格子定数の差を少なくする層として厚さ 0. 05ミクロンの A 10. 4 I n0. 6 S bを形成した。 その上に実施例 5と同様にして、 厚さ 0. 1ミクロンの I nS b薄膜、 および中間層として厚さ 0. 15ミクロンの A 1。.4 I n。. 6S bを形成 した。 ただし、 I n S b薄膜中の電子濃度を増加させる目的で、 I n S b薄膜に ドーピングする代わりに中間層の特定の部分、 すなわち I n S b薄膜と接する部 分で境界面からの深さが 0. 003ミクロンまでの部分に結晶成長と同時に S i をドーピングした。 形成された I n S b薄膜の電子移動度は 42, 000 cm2/ Vsec, 電子濃度は 9 X 1016/cm3であった。 次に、 中間層と I nS b薄膜を 所望の第 2 A図および第 2 B図に示すようなパターンに形成するために、 実施例 5と同様にしてレジスト膜を形成しエッチングして、 中間層を有する I n S b薄 膜に複数の薄い金属薄膜からなる配線部、 ボンディング電極を形成した。 次に、 実施例 5と同様にして、 第 2 A図および第 2 B図に示すようなホール素子を一枚 の基板上に多数個製造した。
得られたホール素子の特性を測定したところ、 室温下における素子抵抗値は実 施例 5と同様に平均 250オームであった。 1 Vの電圧を入力電極に加えたとき の、 出力側のオフセット電圧の値は 0. 1土 1. 4mVで極めて小さいことが分 かった。 また、 入力電圧 IV、 0. 1テスラの磁束密度の磁界でのホール電圧は 185mVであった。 ホール素子の入力抵抗の温度変化率は— 0. 5%Z°Cであ り、 一 50°Cの入力抵抗値は 1 50°Cの抵抗値の 5倍以内であった。 本発明の範 囲外の薄膜の場合における抵抗の温度変化率一 2. 0 %Z°Cと比較して大幅に温 度依存性を低減することができた。 また、 この場合は、 感磁部薄膜が薄くでき、 ホール素子の入力抵抗が高く消費電力が少ない。
このホール素子は、 S iの I Cの制御回路と一緒にパッケージして増幅回路付 きの磁気センサ、 デジタル出力の磁気センサを製作した。 得られたホール素子は 一 50°Cから + 1 50°Cの温度範囲で安定にデジタル高感度磁気センサとして駆 動できた。
(実施例 7 )
実施例 4において、 ドナ一アトムを S iから Sに変更した以外は実施例 4と同 様にして、 薄膜が Sでドーピングされた 3端子の磁気抵抗素子を製造した。
このとき得られた薄膜の特性は実施例 4とほぼ同一であった。 また、 実施例 4 と同様にして磁気抵抗素子の特性を測定したところ、 室温下における素子抵抗値 は平均 1 10オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側の オフセット電圧の値は 0. 1 ±0. 9mVで極めて小さいことが分かった。 磁界 での感度を調べるために、 磁気抵抗効果を調べた。 0. 1テスラの磁束密度の磁 界での抵抗変化は 9 %であった。 磁気抵抗素子の入力抵抗の温度変化率は一 0.
4%Z°Cであり、 — 50°Cの入力抵抗値は 150°Cの抵抗値の 5倍以内であった。 この磁気抵抗素子は、 S iの I Cの制御回路と一緒にパッケージして増幅回路 付きの磁気センサ、 デジタル出力の磁気センサを製作した。 得られた磁気抵抗素 子は— 50°Cから + 1 50°Cの温度範囲で安定にデジタル高感度磁気センサとし て駆動できた。
(実施例 8 )
実施例 4において、 ドナーアトムを S iから S nに変更した以外は実施例 4と 同様にして、 薄膜が S nでドーピングされた 3端子の磁気抵抗素子を製造した。 このとき、 得られた薄膜の特性は実施例 4と同等の値が得られた。 また、 実施 例 4と同様にして磁気抵抗素子の特性を測定したところ、 室温下における素子抵 抗値は平均 100オームであった。 1 Vの電圧を入力電極に加えたときの、 出力 側のオフセット電圧の値は 0. 1 ±0. 8 mVで極めて小さいことが分かった。 磁界での感度を調べるために、 磁気抵抗効果を調べた。 0. 1テスラの磁束密 度の磁界での抵抗変化は 9. 0%であった。 磁気抵抗素子の入力抵抗の温度変化 率は— 0. 4%Z°Cであり、 一 50°Cの入力抵抗値は 150°Cの抵抗値の 5倍以 内であった。 本発明の範囲外の薄膜の場合における抵抗の温度変化率一 2. 0% Z°Cと比較して大幅に温度依存性を低減できた。 この磁気抵抗素子は、 S iの I Cの制御回路と一緒にパッケージして増幅回路 付きの磁気センサ、 デジタル出力の磁気センサを製作した。 得られた磁気抵抗素 子は一 50°Cから + 1 50°Cの温度範囲で安定にデジタル高感度磁気センサとし て駆動できた。
(実施例 9 )
以下のようにして磁気抵抗素子を製造した。
表面が平滑な単結晶フェライト基板上にアルミナ薄膜をスパッ夕一法で 0. 2 5ミクロン形成し、 単結晶フェライト基板表面を絶縁性の表面とした。 このフエ ライト基板の絶縁性表面上に、 GaQ. 8A 1 Q. 2A s。. 2S bQ. 8の半導体絶縁層 を超高真空中 (2 X 1 0— 8mb a r) で MBE法により 0. 3ミクロンの厚さと なるように形成した。 次に、 超高真空中で I n S b薄膜を厚さ 0. 3ミクロンと なるように MB E法で形成した。 ただし、 MB E法による結晶成長と同時に S i をドーピングして薄膜を形成した。 形成された I n S b薄膜の電子移動度は 33, 000 cmWsec, 電子濃度は 7 X 1 016Z c m3であった。 次いで実施例 4 と同様にして、 中間層として 0. 1 5ミクロンの A 10. 9 I n0. ! S b層を形成し、 実施例 4と同様にして 3端子の磁気抵抗素子を一枚の基板上に多数個製造した。 得られた磁気抵抗素子の特性を測定したところ、 室温下における素子抵抗値は 平均 1 00オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側のォ フセット電圧の値は 0. 1 ± 1. 2mVで極めて小さいことが分かった。 磁界で の感度を調べるために磁気抵抗効果を調べた。 0. 1テスラの磁束密度の磁界で の抵抗変化は 9 %であった。
入力抵抗の温度変化は— 0. 4 %Z°Cであり、 — 5 0°Cの入力抵抗値は 1 5 0°Cの抵抗値の 5倍以内であった。 本発明の範囲外の薄膜の場合のおける抵抗の 温度変化率一 2. 0 %Z°Cと比較して大幅に温度依存性を低減することができた。 また、 この場合は、 感磁部薄膜が薄くでき、 磁気抵抗素子の入力抵抗が実施例 4 と比較して高く消費電力が少ない。
この磁気抵抗素子は、 S iの Ί Cの制御回路と一緒にパッケージして増幅回路 付きの磁気センサ、 即ち、 デジタル出力の磁気センサを製作した。 得られた磁気 抵抗素子は、 一 50°Cから 1 50°Cの温度範囲で安定にデジタル高感度磁気セ ンサとして駆動できた。
(実施例 10 )
本実施例では、 第 9 A図および第 9 B図に示すようなホール素子を製造した。 この図において、 説明を簡略化するために、 前記第 2 A図および第 2 B図や他の 図と同一機能には同一符号を付した。
第 9 A図は、 本実施例のホール素子の平面図を示し、 第 9 B図は、 第 9 A図に おける線 I XB— I XB' 線に沿って切断したときの断面図を示す。 第 9 A図お よび第 9 B図において、 I nGaAs S b薄膜 2は絶縁性の基板 1上に形成され ている。 かかる薄膜 2の電子濃度は 2. 1 X 1 016Zcm3以上であり、 磁気セ ンサ一の— 50°Cにおける入力抵抗値は 1 50°Cにおける入力抵抗値の 1 5倍以 内である。 図中、 4は配線部であり、 外部と接続するための電極 5と感磁部 6の 動作層を接続する。 感磁部 6は磁気センサ一として磁界を検出する。
半導体薄膜層が S iでドーピングされた前記構成のホール素子を以下のように して製造した。
表面が平滑な半絶縁性の G a A s基板上に、 超高真空中 (2 X 10— 8mb a r) で、 1. 0ミクロン厚の I n S b薄膜を、 実施例 1に記載の装置を用いて、 MBE法で形成した。 ただし、 MBEによる結晶成長と同時に S iをドーピング して薄膜を形成した。 形成された I n S b薄膜の電子移動度は 35000 cm2/ Vsec、 電子濃度は 7 X 1 016,Zcm3であった。 次いで、 中間層として Ga0. 9 I n o. 1513層を厚さ 0. 1 5ミクロンとなるように形成した。 中間層および I n S b薄膜を所望のパターンに形成するため、 フォトリソグラフィー工程により レジスト膜を形成し、 エッチングした。 この中間層を有する I nS b薄膜に複数 の薄い金属薄膜からなる配線部、 外部と接続するためのボンディング電極を形成 した。
次に、 ボンディング電極の表面のみに金層を形成して、 中間層を有し、 半導体 薄膜が S iでドーピングされた本発明のホール素子を一枚の基板上に多数個製造 した。
得られたホール素子の特性を測定したところ、 室温下における素子の抵抗値は 平均 40オームであった。 1 Vの電圧を入力電極 (例えば、 第 9 A図の電極 51、 53) に加えたときの、 出力側 (第 9 A図の電極 52、 54) に電位差として現 れるオフセット電圧の値は 0. 1 ± 1. 2 mVで極めて小さいことが分かった。 また、 半導体薄膜の電子移動度が高いので磁界での感度も大きく、 I Vの入力電 圧で 0.1テスラの磁束密度の磁界で得られたホール電圧は 13 OmVであった。 入 力抵抗の温度変化率は一 0. 4%/°Cであり、 不純物をドーピングしない実施例 10の I n S b薄膜を用いた場合の抵抗の温度変化率— 2. 0%/°Cと比較して 大幅に温度依存性を低減することができた。
(実施例 1 1 )
以下のようにしてプリッジ状の磁気抵抗素子を製造した。
実施例 10と同様にして、 表面が平滑な半絶縁性の G a As基板上に、 実施例 10と同一の S iをドーピングした I n S b薄膜および中間層を形成した。 形成 された 1. 0ミクロン厚の I n S b薄膜の電子移動度は 35, 000 cm W sec電子濃度は 7 X 10 /cm3であった。 次いで、 中間層および I n S b薄膜 を所望の図 5に示すようなパターンに形成するために、 実施例 1 0と同様にして レジスト膜を形成しエッチングして、 中間層を有する I n S b薄膜に複数の薄い 金属薄膜、 すなわち、 C u ZN iの二層からなるショートバー電極、 配線部、 お よび C u /N i ZA uの三層からなるボンディング電極を形成した。
次に、 実施例 1 0と同様にして、 ボンディング電極の表面のみに金層を形成し た。 このようにして、 4個の磁気抵抗効果を生ずる素子が、 第 5 A図および第 5 B図に示すようにプリッジ状に接続され、 互いに隔辺の位置関係にある 2個の抵 抗素子部 (互いに隣り合わない 2個の抵抗素子部) が同時に同一の強度の磁界を 垂直に受ける状態で平面上に配置されている構造の本発明の差動型磁気抵抗素子 を一枚の基板上に多数個製造した。 ただし、 かかる磁気抵抗素子のショートバ一 電極間の長さ Lと横幅 Wとの比 L ZW値は 0 . 2 5で製造した。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子の抵抗値 は 3 5 0オームであった。 0 . 1テスラの磁束密度の磁界における抵抗変化率は 9 %であり、 磁界における抵抗変化率が大きく感度が良好であることが分かった。
1 Vの電圧を入力電極に加えたときの、 出力側のオフセット電圧の値は 0 . 1土 1 . 2 mVで極めて小さいことが分かった。 また、 単結晶薄膜を使用し、 電子移 動度が高いので磁界の抵抗変化率も大きく、 歯車の歯の検出能が大きいことが示 された。 また素子の抵抗の温度変化率は一 0 . 4 % Z°Cであり、 不純物をドーピ ングしない I n S b薄膜の場合の抵抗の温度変化率一 2 . 0 % Z°Cと比較して大 幅に温度依存性を低減することができた。 本素子に S iの I Cの差動デジタル増 幅器を接続し、 一つのパッケージに形成したデジタル出力の磁気センサーは、 歯 車の歯の検出能が非常に優れていることが分かった。
(実施例 1 2 )
以下のようにして 3端子の磁気抵抗素子を製造した。
実施例 1 0と同様にして、 G a A s基板上に微量の S nをドープした電子移動 度 5 0 . 0 0 0 c m 2ノ V sec、 電子濃度 4 X 1 0 1 6 Z c m 3で、 厚さ 1 . 0ミク ロンの I n S b薄膜および厚さ 0 . 2ミクロンの A 1。. 2 I n。. 8 S bの中間層を 形成した。 次いで、 中間層および I n S b薄膜を所望のパターンに形成するため、 フォトリソグラフィー工程によりレジスト膜を形成し、 実施例 1 0と同様にエツ チングした。 これに、 複数の薄い金属薄膜からなるショートバ一電極、 配線部、 ボンディング電極を形成するためのレジストパターンをフォトリソグラフィ一ェ 程により形成した。 その後、 実施例 1 0と同様にして、 ショートバー電極、 複数 の外部接続のための電極、 および配線部を形成した。 次に、 実施例 1 0と同様に してボンディング電極の表面のみに金層を形成した。 このようにして、 3個のボ ンディング電極を有する第 4図に示すような 3端子の磁気抵抗素子を一枚の基板 上に多数個製造した。 ただし、 かかる磁気抵抗素子のショートバー電極間の長さ Lと横幅 Wとの比 L ZW値は 0 . 2 5で製造した。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子抵抗値は 8 1 0オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側のオフ セット電圧の値は 0 . 1 ± 2 . l mVで極めて小さいことが分かった。 また、 単 結晶薄膜を使用し、 電子移動度が高いので磁界の抵抗変化率も大きく、 0 . 1テ スラの磁束密度の磁界において 1 4 %の抵抗変化が得られ、 高抵抗であり、 歯車 の歯の検出能が極めて大きいことが示された。
本素子は、 フォトリソグラフィーを応用したウェハープロセスで容易に製作で き、 量産性があり、 歩留まりも高いことが分かった。 また、 薄膜の感磁部即ち磁 気抵抗素子部の膜厚が小さいので、 抵抗値が室温で 3 0 0オーム以上あり、 消費 電力も小さかった。
さらに、 外部リードとの接続は量産性のある標準的な金ワイヤーによるワイ ヤーボンディングが可能である。 得られた磁気抵抗素子は、 ボンディング後の パッケ一ジが樹脂モールドまたは細い金属パイプなどに埋め込まれてセンサーと して仕上げられることもよく行われる。 さらに、 本素子の差動出力信号を増幅す る、 デジタル増幅する制御回路と一緒にパッケージされることも行われる。 その 際、 S iの I Cで制御回路を製作することも好ましく行われる。 これは、 回転す る歯車の検出能が高く、 回転速度等を検出する磁気センサーとなる。
(実施例 13)
以下のようにして 3端子の磁気抵抗素子を製造した。
表面が平滑な半絶縁性の G a As基板上に、 G a 0. 7A 1 3A s 0. i S b0. 9 の半導体絶縁層を超高真空中 (2 X 10— 8mb a I" ) で、 18£法で0. 3ミク ロンとなるように形成した。 その上に、 厚さ 0. 3ミクロンの I n S b薄膜を M BE法により形成した。 ただし、 MB Eによる結晶成長と同時に S iをドーピン グして薄膜を形成した。 形成された I n S b薄膜の電子移動度は 33, 000 c m Wsec, 電子濃度は 7 x 1016Zcm3であった。 次いで、 中間層として A 10. 9 I n0. J S b層を厚さ 0. 1 5ミクロンとなるように形成した。 中間層およ び I n S b薄膜を所望のパターンに形成するため、 フォトリソグラフィー工程に よりレジスト膜を形成し、 エッチングした。 これに、 複数の薄い金属薄膜からな るショートバー電極、 配線部、 および外部と接続するためのボンディング電極を 形成した。 次いで、 実施例 1 1と同様にしてボンディング電極の表面のみに金層 を形成し、 3端子の磁気抵抗素子を一枚の基板上に多数個製造した。 ただし、 か かる磁気抵抗素子のショートバー電極間の長さ Lと横幅 Wとの比 LZW値は 0. 20で製造した。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子の抵抗値 は平均 320オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側の オフセット電圧の値は 0. 1 ± 1. 2mVで極めて小さいことが分かった。 また、 入力電圧 I V、 0. 1テスラの磁束密度の磁界での抵抗変化は 10 %であった。 また、 入力抵抗の温度変化率は一 0. 4%/°Cであり、 不純物をドーピングしな い I n S b薄膜の場合の抵抗の温度変化率一 2. 0 %Z°Cと比較して大幅に温度 依存.性を低減することができた。 また、 この場合は感磁部薄膜が薄くでき磁気抵 抗素子の入力抵抗が高く消費電力が少ない。
(実施例 14)
以下のようにして 3端子の磁気抵抗素子を製造した。
実施例 1 3と同様にして、 GaAs基板上に Ga0. 7 A 1。. 3 A s 0. S b 0. 9 半導体絶縁層を 0. 3ミクロンとなるように形成した。 次いで、 I n S bとの格 子定数の差を少なくするバッファ一層として A 10. 9 I n0. i S bを 0. 10ミク ロンとなるように形成した。 その上に、 厚さ 0. 1ミクロンの S iをドーピング した I n S b薄膜および中間層として 0. 1 5ミクロンの A 10.9 I n0. ! S bil を実施例 1 3と同様にして形成した。 形成された I nS b薄膜の電子移動度は 4 1, 000 cm2ZVsec, 電子濃度は 9 X 1016Zcm3であった。 次いで、 I n S b薄膜等を所望のパターンに形成するため、 フォトリソグラフィー工程によ りレジス卜膜を形成し、 エッチングした。 その後、 実施例 13と同様にして、 こ れに複数の薄い金属薄膜からなるショートバー電極、 配線部、 外部と接続するた めのボンディング電極を形成した。 次いで、 実施例 13と同様にしてボンディン グ電極の表面のみに金層を形成し、 3端子の磁気抵抗素子を一枚の基板上に多数 個製造した。
得られた素子の特性を測定したところ、 1 Vの電圧を入力電極に加えたときの 出力側のオフセット電圧の値は 0. 1 ± 1. 4 mVで極めて小さいことが分かつ た。 入力電圧 I V、 0. 1テスラの磁束密度の磁界での抵抗変化率は 14 %で あった。 また、 入力抵抗の温度変化率は一 0. 5%Z°Cであり、 本発明外の薄膜 の場合の抵抗の温度変化率一 2. 0 %Z°Cと比較して大幅に温度依存性を低減す ることができた。 また、 この場合は、 感磁部薄膜が薄くでき、 磁気抵抗素子の入 力抵抗が高く消費電力が少ない。
(比較例 1 )
実施例 14において、 中間層を形成しなかった以外は実施例 14と同様にして 中間層を持たない比較用の 3端子の磁気抵抗素子を製造した。 得られた磁気抵抗 素子について、 実施例 14と同様に特性の測定を行ったところ、 電子移動度の低 下に伴う感度低下が約 35 %あり、 0. 1テスラの磁束密度の磁界での抵抗変化 は 9 %以下であった。
(実施例 15 )
以下のようにして 3端子の磁気抵抗素子を製造した。
実施例 14と同様にして、 GaAs基板上に、 厚さ 0. 3ミクロンの Ga0. 7 A 10. 3As 0. XS b0. 9の半導体絶縁層、 I nS bとの格子定数の差を少なくす る層として 0. 10ミクロンの A 10. 9 I n0. XS bのバッファ一層を形成した。 ただし、 中間層の特定部分、 すなわち、 I nS b薄膜と接する部分で境界面から の深さが 0. 003ミクロンまでの部分に結晶成長と同時に S iをドーピングし た。 形成された薄膜の電子移動度は 38, 000 cmWsec, 電子濃度は 9 X
1 016Zcm3であった。 次に、 中間層および I n S b薄膜等を所望のパターン に形成するために、 実施例 14と同様にしてレジスト膜を形成しエッチングして、
I n S b薄膜上の中間層の上に複数の薄い金属薄膜からなるショートバー電極、 配線部、 および外部と接続するためのボンディング電極を形成した。 次いで、 実 施例 14と同様にして窒化シリコンの保護層を形成し、 ボンディング電極部のみ 窓開けした後、 ボンディング電極の表面のみに金層を形成した。 このようにして、
3端子の磁気抵抗素子を一枚の基板上に多数個製造した。 得られた磁気抵抗素子の特性を測定したところ、 1 Vの電圧を入力電極に加え たときの、 出力側のオフセット電圧の値は 0. 1 ± 1. 4mVで極めて小さいこ とが分かった。 また、 入力電圧 '1 V、 0. 1テスラの磁束密度の磁界での抵抗変 化は 12%であった。 磁気抵抗素子の入力抵抗の温度変化率は一 0. 5%Z°Cで あり、 不純物をドーピングしない I n S b薄膜の場合の抵抗の温度変化率一 2. 0%Z°Cと比較して大幅に温度依存性を低減することができた。 また、 この場合 は、 感磁部薄膜が薄くでき、 磁気抵抗素子の入力抵抗が高く消費電力が少ない。
(実施例 16 )
実施例 1 3において、 ドナ一アトムを S iから Sに変更した以外は実施例 1 3 と同様にして、 薄膜が Sでドーピングされた 3端子の磁気抵抗素子を製造した。 このとき得られた薄膜の特性は実施例 1 3とほぼ同一であった。 また、 実施例 13と同様にして磁気抵抗素子の特性を測定したところ、 室温下における素子の 抵抗値は平均 300オームであった。 1 Vの電圧を入力電極に加えたときの、 出 力側のオフセット電圧の値は 0. 1 ±0. 2 mVで極めて小さいことが分かった。 磁界での抵抗変化は 9 %であった。 磁気抵抗素子の入力抵抗の温度変化率は - 0. 4%Z°Cであり、 — 50°Cの入力抵抗値は 150°Cの抵抗値の 5倍以内であった。 不純物をドーピングしない I n S b薄膜の場合の抵抗の温度変化率一 2. 0 % /°Cと比較して抵抗値の温度変化を 1 Z 5に減少でき、 大幅に温度依存性を低減 することができた。
この磁気抵抗素子は、 S iの I Cの制御回路と一緒にパッケージして増幅回路 付きの磁気センサ一、 デジタル出力の磁気センサ一を製造した。 得られた抵抗素 子は— 50°Cから 1 50 Cの温度範囲で安定にデジタル高感度磁気センサ一とし て駆動できた。 (実施例 1 Ί )
本実施例では、 第 1 O A図および第 1 0 B図に示すような 2端子の磁気抵抗素 子を製造した。 この図において'、 説明を簡略化するために、 前述の各図に示した 構造と同一機能を有するものには同一符号を付した。
第 1 0 B図は 2個の外部接続用電極を有する本実施例の 2端子の磁気抵抗素子 の平面図を示し、 第 1 0 A図は第 1 0 B図の磁気抵抗素子を XA— XA' 線に 沿って切断したときの断面図を示す。 基板 1上に I nA s S b薄膜 2、 磁気抵抗 効果素子部 2 1、 および外部接続のための電極 5が形成されている。 6は磁気セ ンサ一として磁界を検出するための感磁部を示す。 1 0は、 I n G aA s S b薄 膜の磁気抵抗効果を大きくするため、 感磁部の I n G a A s S bにォーミック接 触して形成した高導電性の部分で、 ショートバー電極である。 ショートバ一電極 は、 通常、 動作層とォーミック接触できる金属薄膜で作られ、 多層でも単層でも よい。 なお、 前記 I n A s S b薄膜 2に S i等のドナ一ァトム 1 2をドーピング してもよい。 また、 動作層上に形成される電極および配線部の最上面は、 金でな くてもよい。
係る構成の磁気抵抗素子を以下のようにして製造した。
実施例 1 0と同様の方法で、 G a A s基板上に微量の S nをドープして、 電子 移動度 5 1, 0 0 0 cm2ZVsec、 電子濃度 4 X 1 016Zcm3、 厚さ 1. 0ミ クロンの I n S b薄膜および厚さ 0. 2ミクロンの A 1。. 2 I n。. 8S bの中間層 を形成した。 次いで、 中間層および I n S b薄膜を所望の第 1 O A図および第 1 0 B図に示したようなパターンに形成するため、 フォトリソグラフィ一工程によ りレジスト膜を形成し、 実施例 1 0と同様にエッチングした。 これに、 複数の薄 い金属薄膜からなるショートバー電極、 配線部、 ボンディング電極を形成するた めのレジストパターンをフォトリソグラフィ一工程により形成した。 その後、 実 施例 1 0と同様にして、 ショートバー電極、 複数の外部接続のための電極、 およ び配線部を形成した。 次に、 実施例 1 0と同様にしてボンディング電極の表面の みに金層を形成した。 このようにして、 第 1 O A図および第 1 0 B図に示すよう な 2端子の磁気抵抗素子を一枚の基板上に多数個製造した。 ただし、 かかる磁気 抵抗素子のショートバ一電極間の長さ Lと幅 Wとの比 L ZW値は 0 . 2 0で製造 した。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子抵抗値は 5 0 0オームであった。 また、 単結晶薄膜を使用し、 電子移動度が高いので磁界 の抵抗変化率も大きく、 0 . 1テスラの磁束密度下において、 1 5 %の抵抗変化 率が得られた。 したがって、 歯車の歯の検出能が極めて大きいことが分かった。 本素子は、 フォトリソグラフィーを応用したウェハ一プロセスで容易に製作で き、 量産性があり、 歩留まりも高いことが分かった。
さらに、 外部リードとの接続は量産性のある標準的な金ワイヤ一によるワイ ヤーボンディングが可能である。 得られた磁気抵抗素子は、 ボンディング後の パッケージが樹脂モールドまたは細い金属パイプなどに埋め込まれてセンサーと して仕上げられることもよく行われる。 さらに、 本素子と S iの I C上に形成し た固定抵抗素子を接続して構成された回路で得られる差動出力信号を増幅する、 デジタル増幅する制御回路と一緒にパッケージされることも行われる。 その際、 制御回路は、 固定抵抗素子と同じ S iの I Cチップ上に製作することも好ましく 行われる。
(実施例 1 8 )
以下のようにして 3端子の磁気抵抗素子を作製した。
表面が平滑な N i 一 Z n系単結晶フェライト基板上にアルミナの薄膜をスパッ 夕一法で 0 . 2 5ミクロン形成し、 フェライト基板表面を絶縁性の表面とした。 このフェライ ト基板の絶縁性表面上に、 G a。. 8 A 1 。. ., A s 0. 2 S b。 。の半導 体絶縁層を超高真空中 (2 X 1 0— 8mb a r) で、 iVlBE法により 0. 3ミクロ ンの厚さとなるように形成した。 次に、 その上に、 超真空中で I n S b薄膜を厚 さ 0 3ミクロンとなるように MBE法で形成した。 ただし、 MB E法による結 晶成長と同時に S nをドーピングして薄膜を形成した。 形成された I n S b薄膜 の電子移動度は 33, 000 cm2/Vsec, 電子濃度は 8 X 1016Zcm3あつ た。 次いで、 中間層として 0. 15ミクロンの A 1 0. 9 I n 0. ! S bを形成した。 その後、 実施例 14 ; 5と同様にして、 表面に保護層として窒化シリコン層を有 する 3端子の磁気抵抗素子を一枚の基板上に多数個製造した。
得られた磁気抵抗素子の特性を測定したところ、 室温下における素子の抵抗値 は平均 320オームであった。 1 Vの電圧を入力電極に加えたときの、 出力側の オフセット電圧の値は 0. 1 ± 1. 2mVで極めて小さいことが分かった。 磁界 での感度を調べるために磁気抵抗効果を調べた。 0. 1テスラの磁束密度の磁界 での抵抗変化は 9%であった。 また、 入力抵抗の温度変化は— 0. 4%Z°Cであ り、 — 50°Cの入力抵抗値は 1 50°Cの抵抗値の 5倍以内であった。 不純物を ドーピングしない I n S b薄膜の場合の抵抗の温度変化率— 2. 0%Z°Cと比較 して大幅に温度依存性を低減することができた。 またこの場合は感磁部薄膜が薄 くでき磁気抵抗素子の入力抵抗が高く消費電力が少ない。
この磁気抵抗素子は、 S ίの I Cの制御回路と一緒にパッケージして増幅回路 付きの磁気センサー、 即ち、 デジタル出力の磁気センサーを製作した。 得られた 磁気抵抗素子は、 一 50°C〜十 1 50°Cの温度範囲内で安定にデジタル高感度磁 気センサ一として駆動できた。
(比較例 2 )
実施例 18において、 中間層を形成しなかった以外は実施例 18と同様にして、 中間層を持たない比較用の 3端子の磁気抵抗素子を製造した。 得られた磁気抵抗 素子について実施例 1 8と同様に特性の測定を行ったところ、 磁気抵抗素子は、 電子移動度の低下に伴う感度低下が約 3 0 %あり、 磁気抵抗効果による抵抗変化 は 6 %であった。 ―
以上説明したように、 本発明においては中間層を設けることにより、 保護膜の 形成による電子移動度の低下を極めて少なくすることができ、 高感度の磁気セン サーを製造することができた。
産業上の利用可能性
本発明の磁気センサは、 温度による素子抵抗値の変動やオフセットドリフトが 少なく、 高感度で微少磁界の測定が可能であり、 また素子固有のノィズが少ない。 この結果、 室温周辺はもちろん低温度から高温度までの広い温度範囲を簡単な駆 動回路で駆動できる磁気センサを実現した。 本発明の磁気センサは、 ギヤなどの 回転検出も高感度で検出できる。
また、 薄膜を感磁部に使用しており、 フォトリソグラフィ一工程を利用して感 磁部薄膜を製作するので、 パターン精度が良く、 オフセット電圧も小さい。 さら に、 感磁部薄膜の組成設定またはドーピングにより、 磁気センサの入力抵抗値の 温度変化を少なくでき、 磁気センサ出力を増幅し、 または磁気センサに電力を供 給する増幅制御を含む駆動回路の負荷電流を低減でき、 駆動回路の小型化も可能 である。 さらに、 増幅制御回路が小型化できるため磁気センサチップとの一体化 したパッケージが可能であり、 小型でデジタル出力またはリニア一出力の得られ る磁気センサ (いわゆる磁気センサ I C ) としても使用可能である。
特に、 S iの L S Iの駆動増幅回路素子と本発明の磁気センサを一体化して パッケージした素子は本発明の範囲であり、 磁気を検出してデジタル信号を出力 する小型磁気センサが製作でき、 きわめて汎用性が高く、 小型の無接触- しての用途が広い。 また、 高速の回転検出にも使える磁気センサである-

Claims

請求の範囲
1. 基板上に形成された I nxG aい XA s yS bい y (0<x≤ 1 , 0≤y≤ 1) 薄膜層を感磁部の動作層とする磁気センサであって、 前記薄膜層に、 S i、
Te、 S、 S n、 G eおよび S eからなる群から選ばれる少なくとも 1種のド ナ一アトムを含むことを特徴とする磁気センサ。
2. 前記ドナ一アトムの少なくとも一部が陽イオン化していることを特徴とす る請求の範囲第 1項に記載の磁気センサ。
3. 前記薄膜層が 2. 1 X 1016Zcm3以上の電子濃度を有し、 さらに、 該 薄膜層の電子移動度// (cmW - s) と電子濃度 n (1/cm-3) の関係が、
L o g 10 (n) +4. 5 X 10_5X / ≥17. 3
を満たすこと特徴とする請求の範囲第 1項または第 2項請求の範囲第 1項または 第 2項に記載の磁気センサ。
4. 前記薄膜層の電子移動度が 6000 cmW · s以上であること特徴とす る請求の範囲第 3項に記載の磁気センサ。
5. 前記薄膜層が 2. 1 X 1016Zcm3以上の電子濃度を有し、 さらに、 該 薄膜層の電子移動度 (cmW - s) と電子濃度 n (1/cm—3) の関係が、
L o g 10 (n) +4. 5 X 10- 5X ≥18. 0
を満たすことを特徴とする請求の範囲第 1項または第 2項に記載の磁気センサ。
6. 前記薄膜層の電子移動度 が 10,000cm2ZV · s以上であることを特徴 とする請求の範囲第 5項に記載の磁気センサ。
7. 前記薄膜層が I nAS yS
Figure imgf000049_0001
(0≤y≤ 1) 薄膜層であることを特徴と する請求の範囲第 6項に記載の磁気センサ。
8. 前記薄膜層が I n S b薄膜層であることを特徴とする請求の範囲第 7項に 記載の磁気センサ。
9. 前記基板の表面が、 絶縁性の I I I一 V族化合物半導体から構成されてい ることを特徴とする請求の範囲第 1ないし 8項のいずれかに記載の磁気センサ。
10. 前記基板が、 絶縁性の GaA s単結晶からなることを特徴とする請求の 範囲第 1ないし 9項のいずれかに記載の磁気センサ。
1 1. 前記動作層の厚さが、 6ミクロン以下であることを特徴とする請求の範 囲第 1ないし 10項のいずれかに記載の磁気センサ。
12. 前記動作層の厚さが、 0. 7〜1. 2ミクロンであることを特徴とする 請求の範囲第 1ないし 10項のいずれかに記載の磁気センサ。
13. 前記動作層の厚さが、 1. 2ミクロン以下であることを特徴とする請求 の範囲第 1ないし 10項のいずれかに記載の磁気センサ。
14. ホール素子であることを特徴とする請求の範囲第 1ないし 1 3項のいず れかに記載の磁気センサ。
15. 磁気抵抗素子であることを特徴とする請求の範囲第 1ないし 13項のい ずれかに記載の磁気センサ。
16. 平滑な基板表面上に、 半導体薄膜からなる 4個の磁気抵抗効果を生じる 素子部、 配線部、 およびボンディング電極を有し、 4個の磁気抵抗効果を生じる 素子部がプリッジ構造で接続され、 該 4個の素子部のうち前記プリッジ構造の隔 辺の位置関係にある 2個の素子部が同時に同一強度の磁界を垂直に受ける状態で 配置されており、 前記素子部と前記ボンディング電極とは前記配線部で接続され ていることを特徴とする半導体磁気抵抗装置。
17. 前記配線部が交差していないことを特徴とする請求の範囲第 16項の装
18. 前記 4つの素子部を接続している接続点から前記ボンディング電極まで の配線部の抵抗値がそれぞれ等しくなるように形成されていることを特徴とする 請求の範囲第 1 6項または 1 7項に記載の半導体磁気抵抗装置。
19. 磁気センサと、 該磁気センサの出力を増幅するための増幅回路と、 前記 磁気センサを駆動するための電'源回路を有する磁気回路とがー緒にパッケージさ れてなる磁気センサ装置であって、 前記磁気センサが前記請求の範囲第 1ないし 1 8項のいずれかに記載の磁気センサであることを特徴とする磁気センサ装置。
20. 前記磁気センサの一 50°Cの入力抵抗値が 1 50°Cの入力抵抗値の 1 5 倍以内に設定されていることを特徴とする請求の範囲第 1 9項に記載の磁気セン
2 1. 前記増幅回路により増幅された後の出力が前記磁気センサの出力に比例 することを特徴とする請求の範囲第 1 9または 20項に記載の磁気センサ装置。
22. 前記増幅器により増幅された後の出力が前記磁気センサによる磁界の検 出および非検出に対応したデジタル信号出力であることを特徴とする請求の範囲 第 1 9または 20項に記載の磁気センサ装置。
23. 基板上に電子濃度が 2 X 1 016ノ cm3以上の I nxGa xAs yS b , _y (0<χ≤ 1, 0≤y≤ l) 薄膜を形成する工程と、 前記薄膜を所望のパター ンに形成する工程と、 該薄膜上に複数個の薄い金属薄膜を形成する工程と、 複数 個の外部接続用電極を前記薄膜の端部に接続する工程と、 を含むことを特徴とす る磁気センサの製造方法。
24. 前記 I nxG a XA s y S b y (0く x≤ 1 , 0≤y≤ l) 薄膜を形 成する工程が、 該薄膜に、 S i T e S S n G eおよび S eからなる群か ら選ばれる少なくとも 1種のドナ一ァトムを含ませる工程をさらに具備すること を特徴とする請求の範囲第 23項の磁気センサに記載の製造方法。
25. 磁気センサの磁界検出信号を増幅する回路と、 前記磁気センサを駆動す るための電源回路を有する制御回路とを一緒にパッケージする工程を含む磁気セ ンサ装置の製造方法であって、 前記磁気センサが請求の範囲第 1 1 8項のいず れかに記載の磁気センサであり、 該磁気センサは請求の範囲第 23または 24項 に記載の製造方法によって製造されることを特徴とする磁気センサ装置の製造方 法。 . -
26. 基板と、 該基板上に形成された I nxG a i_xA s y S bい y (0<x≤ 1, 0≤y≤ l) 薄膜層を含む動作層と、 該動作層上に形成されている絶縁性も しくは高抵抗の半導体の中間層と、 絶縁性無機質層の保護層 (すなわち、 パッシ ベーシヨン層) とが、 前記の順に積層されてなることを特徴とする磁気センサ。
27. 前記中間層が前記動作層上に接するとともに該動作層の格子定数と近似 した格子定数を有することを特徴とする請求の範囲第 26項に記載の磁気センサ。
28. 前記中間層が前記 I nxG a卜 XA s yS b卜 y (0<x≤ 1, 0≤y≤ 1) 薄膜を構成する元素の少なくとも 1種類以上の元素を含む組成であることを 特徴とする請求の範囲第 27項に記載の磁気センサ。
29. 前記動作層が前記 I nxG a s y S b卜 y (0<x 1, 0≤y≤
1) 薄膜の上にバリヤ層を有することを特徴とする請求の範囲第 27項に記載の 磁気センサ。
30. 前記中間層が前記バリヤ層を構成する元素の少なくとも 1種類以上の元 素を含む組成であることを特徴とする請求の範囲第 29項に記載の磁気センサ。
3 1. 前記 I nxG aい XA s y S bい y (0<x≤ 1, 0≤y≤ l) 薄膜が S i、 Te、 S、 Sn、 G eおよび S eからなる群の少なくとも 1種類のドナーァ トムを含むことを特徴とする請求の範囲第 27から 30項のいずれかに記載の磁 気センサ。
32. 前記ドナーァトムの少なくとも一部が陽イオン化していることを特徴とす る請求の範囲第 31項に記載の磁気センサ。
33. 前記中間層が S i、 Te、 S、 S n、 G eおよび S eからなる群から選 ばれる少なくとも 1種類のドナーァトムを含むことを特徴とする請求の範囲第 2 7から 31項のいずれかに記載の磁気センサ。
34. 前記 I nxG aい XA s y S b y (0<x≤ 1 , 0≤y≤ l) 薄膜は、 該薄膜の一 50°Cにおける抵抗値が 1 50°Cにおける抵抗値の 1 5倍以内である ことを特徴とする請求の範囲第 27から 33項のいずれかに記載の磁気センサ。 δ
35. 磁気センサと該磁気センサ出力を増幅する回路と前記磁気センサを駆動 するための電源回路を有する制御回路とがー緒にパッケージされている磁気セン サ装置であって、 前記磁気センサが請求の範囲第 27から 34項のいずれかに記 載の薄膜磁気センサであることを特徴とする磁気センサ装置。
36. 表面が平滑な基板上に I nxG aい XA s、. S bい y (0<χ≤ 1, 0≤0 y≤ 1) 薄膜を形成する工程と、 該薄膜上に該薄膜と物性値が近似する化合物半 導体の中間層を形成する工程と、 該薄膜および該中間層を所望のパターンに形成 する工程と、 形成されたパターンの上に所望の形状の薄い金属薄膜を形成するェ 程と、 該パターンおよび該金属薄膜の上に絶縁性無機質の保護層を形成する工程 と、 外部と接続するための電極を複数個形成する工程と、 該電極を前記 I nxGa5 い xA S yS t^— y (0<x≤ l, 0≤y≤ 1) 薄膜の端部に接続する工程と含む ことを特徴とする磁気センサの製造方法。
37. 表面が平滑な基板上に I nxG a XA s y S b y (0<x≤ 1 , 0≤ y≤ 1) 薄膜を形成する工程と、 該薄膜上にバリヤ層を形成する工程と、 該バリ ャ層上に該バリヤ層と物性値が近似する化合物半導体の中間層を形成する工程と、0 該薄膜、 バリヤ層および該中間層を所望のパターンに形成する工程と、 形成され たパターンの上に所望の形状の薄い金属薄膜を形成する工程と、 該パターンおよ び該金属薄膜の上に絶縁性無機質の保護層を形成する工程と、 外部と接続するた めの電極を複数個形成する工程と、 該電極を前記 I nxG a s y S b , _ y
(0<x≤ 1, 0≤y≤ 1) 薄膜の端部に接続する工程と含むことを特徴とする5 磁気センサの製造方法。
PCT/JP1999/004280 1998-08-07 1999-08-06 Capteur magnetique et son procede de production WO2000008695A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU50665/99A AU5066599A (en) 1998-08-07 1999-08-06 Magnetic sensor and method for fabricating the same
JP2000564243A JP3916870B2 (ja) 1998-08-07 1999-08-06 磁気センサおよびその製造方法
EP99935099A EP1124271B8 (en) 1998-08-07 1999-08-06 Magnetic sensor and method for fabricating the same
US09/762,327 US6590389B1 (en) 1998-08-07 1999-08-06 Magnetic sensor, magnetic sensor apparatus, semiconductor magnetic resistance apparatus, and production method thereof
DE69936461T DE69936461T2 (de) 1998-08-07 1999-08-06 Magnetsensor und zugehöriges herstellungsverfahren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/225008 1998-08-07
JP22500898 1998-08-07
JP23922598 1998-08-25
JP10/239225 1998-08-25

Publications (1)

Publication Number Publication Date
WO2000008695A1 true WO2000008695A1 (fr) 2000-02-17

Family

ID=26526378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004280 WO2000008695A1 (fr) 1998-08-07 1999-08-06 Capteur magnetique et son procede de production

Country Status (9)

Country Link
US (1) US6590389B1 (ja)
EP (2) EP1813954A1 (ja)
JP (1) JP3916870B2 (ja)
KR (1) KR100431044B1 (ja)
CN (1) CN1185723C (ja)
AU (1) AU5066599A (ja)
DE (1) DE69936461T2 (ja)
TW (1) TW393567B (ja)
WO (1) WO2000008695A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388268B2 (en) 2002-01-15 2008-06-17 Asahi Kasei Electronics Co., Ltd. Compound semiconductor multilayer structure, hall device, and hall device manufacturing method
JP5079525B2 (ja) * 2005-12-27 2012-11-21 旭化成株式会社 薄膜積層体及びそれを用いたInSb薄膜磁気センサ並びにその製造方法
JP2016166782A (ja) * 2015-03-09 2016-09-15 エスアイアイ・セミコンダクタ株式会社 磁気センサ装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007868B4 (de) * 2000-02-21 2010-02-18 Robert Bosch Gmbh Elektronische Steuerschaltung
CN100367526C (zh) 2001-10-01 2008-02-06 旭化成电子材料元件株式会社 霍尔器件和磁传感器
JP2004070543A (ja) * 2002-08-05 2004-03-04 Rohm Co Ltd ポインティング制御回路付き磁気センサ
WO2004077585A1 (ja) * 2003-02-26 2004-09-10 Asahi Kasei Electronics Co., Ltd. 半導体センサ及びその製造方法
US7265543B2 (en) * 2003-04-15 2007-09-04 Honeywell International Inc. Integrated set/reset driver and magneto-resistive sensor
US6903429B2 (en) * 2003-04-15 2005-06-07 Honeywell International, Inc. Magnetic sensor integrated with CMOS
EP1580568A3 (en) * 2004-03-24 2012-09-19 Yamaha Corporation Semiconductor device, magnetic sensor, and magnetic sensor unit
CN101331385B (zh) * 2005-12-16 2011-11-30 旭化成电子材料元件株式会社 位置检测装置
US7420365B2 (en) 2006-03-15 2008-09-02 Honeywell International Inc. Single chip MR sensor integrated with an RF transceiver
US7847536B2 (en) * 2006-08-31 2010-12-07 Itron, Inc. Hall sensor with temperature drift control
EP2099083B1 (en) * 2006-11-30 2014-09-03 Asahi Kasei Kabushiki Kaisha Thin film laminated body, thin film magnetic sensor using the thin film laminated body and method for manufacturing the thin film laminated body
US8035932B2 (en) * 2007-09-20 2011-10-11 Hitachi Global Storage Technologies Netherlands B.V. Lorentz magnetoresistive sensor with integrated signal amplification
US7800381B2 (en) * 2007-09-26 2010-09-21 Infineon Technologies Ag Test structures, systems, and methods for semiconductor devices
US8559139B2 (en) * 2007-12-14 2013-10-15 Intel Mobile Communications GmbH Sensor module and method for manufacturing a sensor module
CN102460199B (zh) * 2009-06-30 2014-01-08 旭化成微电子株式会社 磁传感器
CN202433514U (zh) * 2011-01-17 2012-09-12 江苏多维科技有限公司 独立封装的桥式磁场传感器
US8988072B2 (en) 2011-07-21 2015-03-24 Infineon Technologies Ag Vertical hall sensor with high electrical symmetry
US9007060B2 (en) * 2011-07-21 2015-04-14 Infineon Technologies Ag Electronic device with ring-connected hall effect regions
US9312472B2 (en) 2012-02-20 2016-04-12 Infineon Technologies Ag Vertical hall device with electrical 180 degree symmetry
KR20140077590A (ko) * 2012-12-14 2014-06-24 삼성전기주식회사 홀 센서 및 그 제조 방법
TWI619280B (zh) 2014-04-01 2018-03-21 友達光電股份有限公司 感測元件
US9279864B2 (en) * 2014-05-16 2016-03-08 Infineon Technologies Ag Sensor device and sensor arrangement
CN105470382A (zh) * 2015-12-31 2016-04-06 江苏森尼克电子科技有限公司 一种具有延伸电极的磁敏器件及制造工艺
CN105470383A (zh) * 2015-12-31 2016-04-06 江苏森尼克电子科技有限公司 一种具有预埋电极的磁敏器件及制造工艺
JP6583208B2 (ja) * 2016-10-14 2019-10-02 株式会社デンソー 磁気検出素子
CN108075035B (zh) * 2016-11-18 2021-08-20 旭化成微电子株式会社 霍尔元件
CN107452873B (zh) * 2017-07-28 2020-09-04 苏州矩阵光电有限公司 一种霍尔元件及其制备方法
US20220163368A1 (en) * 2019-03-20 2022-05-26 Vitesco Technologies GmbH Angle Detection Device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288483A (ja) * 1990-04-04 1991-12-18 Asahi Chem Ind Co Ltd InAsホール効果素子
JPH0677556A (ja) * 1991-07-16 1994-03-18 Asahi Chem Ind Co Ltd 半導体センサおよびその製造方法
JPH06224488A (ja) * 1993-01-25 1994-08-12 Mitsubishi Electric Corp 磁気抵抗素子
JPH0888423A (ja) * 1994-09-19 1996-04-02 Asahi Chem Ind Co Ltd 磁気センサ
JPH08204251A (ja) * 1995-01-24 1996-08-09 Asahi Chem Ind Co Ltd GaAsホール素子
JPH08242027A (ja) * 1995-03-03 1996-09-17 Mitsubishi Electric Corp 磁気抵抗素子回路
JPH09219547A (ja) * 1996-02-09 1997-08-19 Sony Corp 磁気抵抗素子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948970A (ja) * 1982-09-13 1984-03-21 Pioneer Electronic Corp 磁電変換素子
JPS59159565A (ja) * 1983-03-02 1984-09-10 Sankyo Seiki Mfg Co Ltd 磁気検出装置
JPS6428576A (en) * 1987-07-24 1989-01-31 Ube Industries Magnetic body detector
JPH0258880A (ja) * 1988-08-24 1990-02-28 Matsushita Electric Ind Co Ltd 半導体磁気抵抗素子
JPH06103761B2 (ja) * 1989-04-14 1994-12-14 株式会社村田製作所 4相差動回転センサー
JPH0348650A (ja) * 1989-07-14 1991-03-01 Mitsubishi Kasei Corp 単環性テルペン誘導体
US5453727A (en) * 1991-07-16 1995-09-26 Asahi Kasai Kogyo Kabushiki Kaisha Semiconductor sensors and method for fabricating the same
JP3133102B2 (ja) * 1991-08-02 2001-02-05 新日本無線株式会社 半導体磁気抵抗素子
JPH0566133A (ja) * 1991-09-09 1993-03-19 Matsushita Electric Ind Co Ltd 磁気式回転センサ
JP3180378B2 (ja) * 1991-09-11 2001-06-25 松下電器産業株式会社 半導体薄膜の製造方法および半導体磁気抵抗素子の製造方法
JPH06125122A (ja) * 1992-10-09 1994-05-06 Nippon Autom Kk 磁気抵抗素子及びその取付基板並びに該磁気抵抗素子と取付基板を用いた磁気センサ
JP3288483B2 (ja) 1993-06-22 2002-06-04 川崎製鉄株式会社 耐衝撃性に優れる薄鋼板およびその製造方法
JPH07147438A (ja) * 1993-11-24 1995-06-06 Murata Mfg Co Ltd 磁電変換素子
JP3453967B2 (ja) * 1995-11-28 2003-10-06 松下電器産業株式会社 半導体薄膜磁気抵抗素子
JPH09203748A (ja) * 1996-01-29 1997-08-05 Tokin Corp 半導体加速度センサ
JP3548761B2 (ja) * 1996-07-12 2004-07-28 株式会社東海ヒット 顕微鏡観察用透明恒温培養容器
JPH1074308A (ja) * 1996-08-30 1998-03-17 Hitachi Ltd 磁気スイッチング素子及びそれを用いた磁気センサと磁気記録再生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288483A (ja) * 1990-04-04 1991-12-18 Asahi Chem Ind Co Ltd InAsホール効果素子
JPH0677556A (ja) * 1991-07-16 1994-03-18 Asahi Chem Ind Co Ltd 半導体センサおよびその製造方法
JPH06224488A (ja) * 1993-01-25 1994-08-12 Mitsubishi Electric Corp 磁気抵抗素子
JPH0888423A (ja) * 1994-09-19 1996-04-02 Asahi Chem Ind Co Ltd 磁気センサ
JPH08204251A (ja) * 1995-01-24 1996-08-09 Asahi Chem Ind Co Ltd GaAsホール素子
JPH08242027A (ja) * 1995-03-03 1996-09-17 Mitsubishi Electric Corp 磁気抵抗素子回路
JPH09219547A (ja) * 1996-02-09 1997-08-19 Sony Corp 磁気抵抗素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1124271A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388268B2 (en) 2002-01-15 2008-06-17 Asahi Kasei Electronics Co., Ltd. Compound semiconductor multilayer structure, hall device, and hall device manufacturing method
JP5079525B2 (ja) * 2005-12-27 2012-11-21 旭化成株式会社 薄膜積層体及びそれを用いたInSb薄膜磁気センサ並びにその製造方法
JP2016166782A (ja) * 2015-03-09 2016-09-15 エスアイアイ・セミコンダクタ株式会社 磁気センサ装置

Also Published As

Publication number Publication date
DE69936461T2 (de) 2008-03-13
CN1316104A (zh) 2001-10-03
EP1124271A1 (en) 2001-08-16
EP1813954A1 (en) 2007-08-01
TW393567B (en) 2000-06-11
CN1185723C (zh) 2005-01-19
US6590389B1 (en) 2003-07-08
EP1124271A4 (en) 2005-01-26
DE69936461D1 (de) 2007-08-16
JP3916870B2 (ja) 2007-05-23
EP1124271B1 (en) 2007-07-04
AU5066599A (en) 2000-02-28
EP1124271B8 (en) 2007-09-19
KR20010072297A (ko) 2001-07-31
KR100431044B1 (ko) 2004-05-12

Similar Documents

Publication Publication Date Title
WO2000008695A1 (fr) Capteur magnetique et son procede de production
JP5536339B2 (ja) 薄膜積層体及びそれを用いた薄膜磁気センサ並びにその製造方法
KR960001197B1 (ko) 반도체 센서 및 그 제조방법
US9484527B2 (en) Nanometer magnetic multilayer film for temperature sensor and manufacturing method therefor
JP5079525B2 (ja) 薄膜積層体及びそれを用いたInSb薄膜磁気センサ並びにその製造方法
EP1225453A2 (en) Magnetic field sensor with tailored magnetic response
US10585152B2 (en) Temperature-compensated magneto-resistive sensor
JP2793440B2 (ja) 磁気センサおよびその製造方法
JP5048033B2 (ja) 半導体薄膜素子の製造方法
KR100699965B1 (ko) 자기 센서 및 그 제조 방법
JP3069545B2 (ja) 化合物半導体を含む積層体およびその製造方法
JP2003289163A (ja) スピンバルブトランジスタ
JP2004158668A (ja) ハイブリッド磁気センサ及びその製造方法
JP4764311B2 (ja) 半導体磁気抵抗装置
JP2000138403A (ja) 薄膜磁気センサ―
JPH0870146A (ja) 磁気センサ
JP2005327861A (ja) 強磁性微粒子検出装置
JP2005327860A (ja) 強磁性微粒子検出装置
JP2847307B2 (ja) 磁性半導体素子及びその製造方法並びに磁気光読み取りヘッド
JPH04179289A (ja) 磁気抵抗素子
Van’T Erve et al. A Highly Sensitive Spin-Valve Transistor
JP2000277830A (ja) 半導体薄膜素子
JPH0670262U (ja) ヘテロ接合ホール素子
JP2003218423A (ja) 化合物半導体積層構造体および磁気センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99810419.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017001588

Country of ref document: KR

Ref document number: 09762327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999935099

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017001588

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999935099

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017001588

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999935099

Country of ref document: EP