WO1999067333A1 - Materiau de couverture agricole - Google Patents

Materiau de couverture agricole Download PDF

Info

Publication number
WO1999067333A1
WO1999067333A1 PCT/JP1999/003342 JP9903342W WO9967333A1 WO 1999067333 A1 WO1999067333 A1 WO 1999067333A1 JP 9903342 W JP9903342 W JP 9903342W WO 9967333 A1 WO9967333 A1 WO 9967333A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mol
tetrafluoroethylene
propylene
ethylene
Prior art date
Application number
PCT/JP1999/003342
Other languages
English (en)
French (fr)
Inventor
Naomi Ichikuni
Toru Ishida
Seitoku Kaya
Atsushi Funaki
Teruo Takakura
Original Assignee
Asahi Glass Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company Ltd. filed Critical Asahi Glass Company Ltd.
Priority to AU43920/99A priority Critical patent/AU4392099A/en
Priority to US09/720,240 priority patent/US6461719B1/en
Priority to KR1020007014494A priority patent/KR20010053047A/ko
Priority to EP99926768A priority patent/EP1090955A1/en
Publication of WO1999067333A1 publication Critical patent/WO1999067333A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1438Covering materials therefor; Materials for protective coverings used for soil and plants, e.g. films, canopies, tunnels or cloches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]

Definitions

  • the present invention relates to an agricultural covering material, and more specifically, flexibility, durability, and the like for use in a lining film used in a house or a house used in an agricultural or horticultural facility such as a tunnel house, a pipe house, or a large house.
  • the present invention relates to a coating material for agricultural use of a fluororesin film having excellent dust resistance and light transmittance.
  • films such as polyethylene, ethylene-vinyl acetate copolymer, polyester resin, and soft vinyl chloride resin have been used as agricultural coating materials for tunnel houses and pipe houses. It occupies the majority of agricultural coating materials because it is superior to other materials in terms of heat insulation.
  • the soft vinyl chloride resin film contains a plasticizer, the film surface is easily stained by the bleed-out of the plasticizer, and there is a problem that the light transmittance is reduced in a short period of time.
  • each of the above films must be renewed in one to two years due to deterioration due to sunlight, temperature, wind, rain, oxidation, etc., in which UV absorbers are blended to improve weather resistance.
  • the film containing the ultraviolet absorbent blocks the ultraviolet light, depending on its ultraviolet absorption activity, so that the cultivation and activities of crops that require ultraviolet light (eg, eggplant and certain flowers) It is not suitable for cultivation of crops (for example, strawberry, melon, watermelon, green pepper, etc.) that are pollinated by honey bees that require ultraviolet light for cleaning.
  • plastic plates are usually combined with UV absorbers to improve weather resistance, so they may be used by crops such as eggplants and flowers that require UV light, and insects that require UV light to operate. It is not suitable for cultivation of pollinated crops such as melons and strawberries.
  • flat glass is fragile and dangerous, and it is necessary to strengthen the framework of the house because it is heavier than plastic plate.
  • a fluororesin film composed of a tetrafluoroethylene-ethylene copolymer (hereinafter referred to as ETFE) or a vinyl fluoride polymer, which has excellent properties that do not easily break, is used as a coating material for agriculture. I have.
  • ETFE tetrafluoroethylene-ethylene copolymer
  • vinyl fluoride polymer which has excellent properties that do not easily break
  • the work is performed to fix the film to the frame of the house using fixing members while keeping the film tension.
  • the fluororesin film used has a high elastic modulus and is inferior in flexibility, so it may be necessary to pull and fix the film with a large force.
  • the lining film used in the house prevents a sharp drop in the temperature inside the house, for example, during the daytime and nighttime in winter, especially at night, when the temperature inside the house falls. It is used to improve the heating efficiency of the heater, and may be used to block some light rays in order to obtain an appropriate amount of sunshine in the case of excessive sunshine.
  • the house lining film is frequently spread or stored during the day, in the evening, or in the morning, but if the film is hard, it is difficult to store the film, and squeezing may occur.
  • An object of the present invention is to provide a coating material for agricultural use, which is a fluororesin film having a small elastic modulus, excellent flexibility, and a specific gravity smaller than that of a conventional fluororesin film and excellent in spreading workability. On offer. In addition, excellent tensile strength It has made it possible to provide coating materials for agricultural use that are fluororesin films with excellent toughness.
  • the present invention is primarily a dynamic viscoelasticity is 1 ⁇ 70 k gZmm, tensile strength 1. 5 ⁇ 5. 0 k gZmm 2, specific gravity 1.0 to 2.0, contact with water
  • an agricultural covering material comprising a fluoropolymer film having an angle of 106 degrees or less.
  • tetrafluoroethylene hereinafter, referred to as TFE
  • copolymer 1 ethylene-based copolymer
  • copolymer 2 ethylene-based copolymer
  • copolymer 2 ethylene-based copolymer
  • copolymer 2 a copolymer containing 5 to 70 mol% of a polymerization unit based on propylene is preferable.
  • the ratio of the polymerized unit based on TFE and the polymerized unit based on Zethylene is preferably 70Z30 to 30/70 (molar ratio), and particularly preferably 65Z35 to 45/55 (molar ratio).
  • the ratio is more than 70/30, it becomes difficult to produce a film.
  • the ratio is less than 30 Z 70, the weather resistance and the acid rain resistance of the film are liable to decrease.
  • the CH 2 CH-C n F 2n + l (n is the 2-1 0 integer) further contain polymerized units based on a compound represented by in the copolymer 1, the content thereof is preferred It is preferably 0.1 to 10 mol%, particularly preferably 0.3 to 5 mol%. If it exceeds 10 mol%, the weather resistance and acid rain resistance of the film are liable to decrease. At full, the mechanical properties of the film are apt to deteriorate.
  • This copolymer 1 is known per se and can be produced, for example, by the method described in JP-B-59-501163.
  • any conventionally known various polymerization methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be employed.
  • Commercially available “Aflon C ⁇ P” manufactured by Asahi Glass
  • “Aflon LM” manufactured by Asahi Glass
  • a volumetric flow rate serving as a reference is preferably about 1 to 300 mm 3 / sec, and particularly preferably in a range of 1 to 100 mm 3 / sec. It is preferable in terms of physical properties and production of the film.
  • the volume flow rate is the volume of copolymer 1 flowing out from a nozzle with a diameter of l mm and a length of 2 mm at 300 ° C and under a load of 7 kg per unit time using a Koka type flow tester. It is defined by the value expressed (mm 3 Z seconds).
  • the copolymer 2 is a copolymer of TFE and propylene, and the polymerization unit based on TFE is preferably 955 to 30/70 (molar ratio), particularly preferably 95.5 to 30/70 (molar ratio). A copolymer having a molar ratio of 0/10 to 40/60 is used. If the polymerization unit based on propylene is less than 5 mol%, the elasticity of the copolymer 2 is reduced, and it is difficult to impart flexibility to the film. If it exceeds 70 mol%, the weather resistance and acid resistance of the film are reduced. Raininess decreases.
  • the copolymer 2 may further include one or more other polymerized units based on comonomers.
  • the comonomer include ⁇ -olefins such as ethylene and isobutylene, acrylic acid, methacrylic acid and their alkyl esters, vinyl fluoride, vinylidene fluoride, hexafluoropropylene, and Fluorinated olefins such as ethylene and fluorinated vinyl ethers such as perfluoro (vinyl ether).
  • the content of the polymerized unit based on the comonomer (the total amount in the case of two or more kinds) is preferably 50 mol% or less, particularly preferably 40 mol% or less in the copolymer 2.
  • the molecular weight of the copolymer 2 is preferably 50,000 or more, particularly preferably 70,000 or more, and further preferably 10 to 250,000. If the molecular weight is too small, the mechanical properties of the film will be reduced, and if it is too large, the moldability of the composition will be reduced.
  • any of various polymerization methods such as bulk polymerization, emulsion polymerization, and solution polymerization can be employed.
  • the copolymer 2 is known per se, and a product commercially available as “Afras” (produced by Asahi Glass) can also be used as the copolymer 2.
  • the fluoropolymer film of the present invention includes the copolymer 1 (TFE-ethylene copolymer) and the TFE-propylene-ethylene-elastic copolymer (hereinafter referred to as copolymer 3).
  • copolymer 3 TFE-ethylene copolymer
  • copolymer 3 TFE-propylene-ethylene-elastic copolymer
  • the copolymer 3 is preferably composed of 40 to 70 mol% of polymerized units based on TFE, 10 to 50 mol% of polymerized units based on propylene, and 1 to 50 mol% based on ethylene. Mol%, particularly preferably 45 to 60 mol% of polymerized units based on TFE, 30 to 45 mol% of polymerized units based on propylene, and 3 to 30 mol% of polymerized units based on ethylene. %. Copolymer 3 in this range is preferable because it has a small elasticity and flexibility.
  • the copolymer 3 may further contain a polymerized unit based on one or more comonomer components such as a fluorine-containing olefin and a hydrocarbon-based olefin.
  • the comonomer components include 1-butene, 2-butene, isobutylene, and other high-performance olefins, (perfluorobutyl) ethylene, ⁇ -fluorohexyl) ethylene, (perfluorooctyl) ethylene, and hexane.
  • Fluorine-containing olefins such as fluoropropylene, vinyl fluoride, vinylidene fluoride, trichlorofluoroethylene, fluorinated vinyl ethers such as perfluoro (ethylvinyl ether), perfluoro (methyl vinyl ether), and perfluoro (propyl vinyl ether) Fluorine acrylates and the like.
  • the amount of the polymerized unit based on the comonomer component is in the range of 50 mol% or less in the copolymer 3. In particular, the amount is preferably as small as 10 mol% or less to the extent that the copolymer 3 is modified.
  • the molecular weights of Copolymer 1 and Copolymer 3 are not particularly limited, but a volume flow rate of about 1 to 30 O mm : Z seconds is suitable as a guideline, and particularly, about 1 to 100 mm 3 / S range is preferable in terms of physical properties and production of the film.
  • Volume flow rate using a Koka type Furotesu evening one, if 3 0 0 ° C of the copolymer 1, when 2 0 0 ° C of the copolymer 3, under 2 load at 7 kg / cm, diameter l mm, is defined as a value expressed by the capacity of the fluorocopolymer flowing per unit time from a nozzle of length 2 mm (mm 3 Z seconds).
  • the copolymer film of the present invention examples include the copolymer 1 (TFE-ethylene copolymer) and the TFE-propylene-vinylidene fluoride (hereinafter, referred to as VdF) copolymer (hereinafter, copolymer). And a film formed from a composition in which the copolymer 4 is 5 to 200 parts by weight based on 100 parts by weight of the copolymer 1.
  • the copolymer 4 is preferably composed of 5 to 85 mol% of polymerized units based on TFE, 1 to 45 mol% of polymerized units based on propylene, and 5 to 70 mol% of polymerized units based on VdF. %, Particularly preferably 15 to 80 mol% of polymerized units based on TFE, 5 to 40 mol% of polymerized units based on propylene, and 10 to 50 mol% of polymerized units based on VdF, In the proportion of The copolymer 4 in this range is preferable because it has a small elastic modulus and flexibility.
  • the copolymer 4 may further contain one or more polymer units based on a comonomer component such as a fluorine-containing olefin or a hydrocarbon-based olefin.
  • a comonomer component such as a fluorine-containing olefin or a hydrocarbon-based olefin.
  • the comonomer components include ⁇ -olefins such as propylene, 1-butene, 2-butene, and isobutylene, and H-fluorobutyl) ethylene, (perfluorohexyl) ethylene, (perfluorooctyl) ethylene, hexafluoropropylene, and fluorine.
  • Fluorinated olefins such as vinyl chloride and trichlorofluoroethylene; fluorinated vinyl ethers such as perfluoro (ethyl vinyl ether); perfluoro (methyl vinyl ether); and perfluoro (propyl vinyl ether); and fluorinated acrylates.
  • the amount of the polymerized unit based on the comonomer component is preferably 50 mol% or less in the copolymer 4. In particular, 10 mol% or less to the extent that copolymer 4 is modified Is preferably small.
  • copolymer 4 For the production of the copolymer 4, all conventionally known various polymerization methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be employed.
  • the molecular weights of Copolymer 1 and Copolymer 4 are not particularly limited, but a volume flow rate of about 1 to 300 mm 3 / sec is suitable as a guideline, and especially 1 to 100 mm 3 / The range of seconds is preferable from the viewpoint of physical properties and production of the film.
  • the volume flow rate was 300 ° C for Copolymer 1 and 200 ° C for Copolymer 4 using a Koka type flow tester, under a load of 7 kg Z cm 2 and a diameter of l mm, is defined as a value expressed by the capacity of the fluorocopolymer flowing per unit time from a nozzle of length 2 mm (mm 3 Z seconds).
  • the fluoropolymer film of the present invention includes a TFE-ethylene-propylene-based copolymer (hereinafter, referred to as copolymer 5) and the copolymer 2 (a TFE-propylene-based elastic copolymer), A film formed from a composition in which Copolymer 2 is 5 to 100 parts by weight based on 100 parts by weight of Copolymer 5 is exemplified.
  • the copolymer 2 is preferably a copolymer containing 5 to 70 mol% of propylene-based polymer units.
  • the copolymer 5 may further include a polymerized unit based on one or more other monomers.
  • Other monomers include ⁇ -olefins such as 1-butene, 2-butene and isobutylene, vinylidene fluoride, hexafluoropropylene, trifluoromethyl fluorene, fluorinated olefins such as vinyl fluoride, and ethyl vinyl ether.
  • vinyl ethers such as perfluoro (methyl vinyl ether) and perfluoro (propyl vinyl ether), and fluorinated acrylates.
  • the amount of the polymerized unit based on these monomer components in the copolymer 5 is preferably within a range of 50 mol% or less. In particular, it is preferably at most 10 mol% for modifying the copolymer 5.
  • the molecular weight of the copolymer 5 is not particularly limited, but a volume flow rate of about 1 to 300 mm 3 ns is preferable, and a range of 1 to 100 mm 3 s is particularly preferable. It is preferable in terms of physical properties and production of the film.
  • the volumetric flow rate was measured using an advanced flow tester. At a temperature of 200 ° C and a load of 7 kg, defined as the volume of the copolymer 5 flowing out per unit time from a nozzle with a diameter of l mm and a length of 2 mm (mm 3 Z seconds). You.
  • any conventionally known various polymerization methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be adopted.
  • the copolymer 2 5 to 100 parts by weight of the copolymer 2 is blended with 100 parts by weight of the copolymer 5. If the amount is less than 5 parts by weight, the flexibility of the obtained film is not remarkably recognized, and if it exceeds 100 parts by weight, the strength and the like of the obtained film tend to be reduced.
  • the film of the fluorinated polymer of the present invention includes: 100 parts by weight of the copolymer 5 (TFE-ethylene-propylene-based copolymer) and 100 parts by weight of the copolymer 4 (TFE-propylene-VclF-based).
  • Copolymer A film formed from a composition containing both copolymers in a proportion of 5 to 200 parts by weight is exemplified.
  • the copolymer 5 preferably has a polymerized unit based on TFE of 40 to 70 mol%, a polymerized unit based on ethylene preferably 20 to 50 mol%, and a polymerized unit based on propylene. Contains 5 to 40 mol%, particularly preferably 45 to 65 mol% of polymerized units based on TFE, 20 to 45 mol% of polymerized units based on ethylene, and polymerized units based on propylene. 8 to 25 mol%.
  • the copolymer 5 in this range is compatible with the copolymer 4, and has an appropriate tensile strength.
  • the copolymer 5 may further contain one or more polymerized units based on a comonomer component such as a fluorinated olefin or a hydrocarbon olefin.
  • a comonomer component such as a fluorinated olefin or a hydrocarbon olefin.
  • the comonomer components include ⁇ -olefins such as 1-butene and isobutylene, fluorinated olefins such as hexafluoropropylene, trichlorofluoroethylene and vinyl fluoride, and perfluoro (methylvinyl). And vinyl ethers such as perfluoro (propyl vinyl ether) and fluorine-containing acrylates.
  • the amount of the polymerized unit based on these comonomer components is preferably within a range of 50 mol% or less in the copolymer. In particular, the amount is preferably as small as 10 mol% or less to the extent that the copolymer 5 is modified.
  • a volume flow rate of about 1 to 300 mm 3 ⁇ sec is suitable as a guideline, and particularly 1 to 100 mm. : i
  • the range of Z seconds is preferable from the viewpoint of physical properties and production of the film.
  • the volume flow rate is a value expressed by the volume of the copolymer flowing out of a nozzle with a diameter of lmm and a length of 2 mm per unit time at 200 ° C under a load of 7 kg using a Koka type flow tester. (Mm 3 Z seconds).
  • 5 to 200 parts by weight of the copolymer 4 is blended with 100 parts by weight of the copolymer 5.
  • the polymerization unit based on tetrafluoroethylene (TFE) is 5 to 84 mol%
  • the polymerization unit based on hexafluoropropylene (hereinafter referred to as HFP) is 1 to 84 mol%.
  • copolymer 6 A film of a fluorine-containing copolymer (hereinafter, referred to as copolymer 6) containing 45 mol% and a polymerized unit based on vinylidene fluoride (VdF) at a ratio of 5 to 90 mol% is exemplified.
  • a copolymer containing 10 to 80 mol% of a polymerized unit based on TFE, 5 to 30 mol% of a polymerized unit based on HFP, and 15 to 85 mol% of a polymerized unit based on VdF 6 are preferred.
  • the copolymer 6 may further be obtained by copolymerizing one or more kinds of comonomer components such as fluorine-containing olefins and hydrocarbon-based olefins.
  • comonomer component examples include olefins such as propylene, butene, and isobutylene; fluorinated olefins such as trichlorofluoroethylene and vinyl fluoride; ethylvinyl ether; and perfluoromethylvinyl.
  • vinyl ethers such as mono-ter and perfluoropropyl vinyl ether, and fluorinated acrylates.
  • the copolymer 6 be copolymerized within a range of 50 mol% or less. It is particularly preferred that the copolymer 6 is copolymerized in a small amount of 10 mol% or less to the extent that the copolymer 6 is modified.
  • the molecular weight of the copolymer 6 is not particularly limited, but is preferably 5 to about 300 mm 3 Z seconds as volumetric flow rate to be the measure, in particular 1 0-1 range 300 mm 3 / sec physical properties and production of the film Above.
  • the volumetric flow rate was measured using a height-adjusted flow tester at 200 ° C under a load of 7 kg / cm from a nozzle 1 mm in diameter and 2 mm in length. It is defined as a value (mm 3 Z seconds) expressed as 6 volumes of copolymer flowing out at the same time.
  • the ratio of polymerized units based on TFE is 5 to 85% by mole
  • polymerized units based on propylene is 1 to 50% by mole
  • polymerized units based on VdF is 5 to 70% by mole.
  • a film of a fluorine-containing copolymer (hereinafter, referred to as a copolymer 7) is exemplified.
  • a film of 7 is preferred.
  • the copolymer 7 may further be obtained by copolymerizing one or more kinds of comonomer components such as fluorine-containing olefins and hydrocarbon-based olefins.
  • the comonomer components include ⁇ -olefins such as propylene, butene and isobutylene, fluorine-containing olefins such as trichlorofluoroethylene and vinyl fluoride, ethylvinyl ether, perfluoromethylvinylether, and the like.
  • Vinyl ethers such as perfluoropropyl vinyl ether; and fluorine-containing acrylates.
  • the copolymer 7 is copolymerized within a range of 50 mol% or less. It is particularly preferable that the copolymer 7 is copolymerized in a small amount of 10 mol% or less to the extent that the copolymer 7 is modified.
  • the molecular weight of the copolymer 7 is not particularly limited, a volume flow rate of about 1 to 300 mm 3 / sec is preferable as a standard, and the physical properties and properties of the film are preferably in the range of 1 to 100 mm 3 Z sec. Preferred for production.
  • the volume flow rate is the volume of the copolymer 7 flowing out of the nozzle 1 mm in diameter and 2 mm in length at 200 ° C and under a load of 7 kgZcm 2 at a unit time using a Koka type flow tester. (Mm : iZ seconds).
  • a total of polymerized units based on at least one of the fluorinated comonomers represented by the following Formula 1, Formula 2 or Formula 3 is 0.05 to 20 mol%, based on TFE.
  • a fluorine-containing copolymer containing 30 to 85 mol% of polymerized units, 1 to 30 mol% of propylene-based polymerized units, and 5 to 68.5 mol% of VdF-based polymerized units hereinafter, referred to as “polymerized units”. Film). Is shown.
  • Y is a fluorine atom or a hydrogen atom
  • R ' is a divalent fluorine-substituted organic group having 2 to 12 carbon atoms
  • X is a fluorine atom or a chlorine atom.
  • n is a hydrogen atom
  • n is an integer of 0 to 3
  • m is an integer of 1 to 4.
  • R f in Formulas 1 and 2 may be any one as long as the number of substituted fluorine atoms is 1 or more, and a completely fluorinated divalent fluorine-substituted organic group is used. More preferred.
  • R f is preferably carbon alone or a divalent fluorine-substituted organic group having a chain formed by carbon and oxygen.
  • R f include, for example, a perfluoroalkylene group or a perfluoroalkylene group containing an ether bond.
  • the number of carbon atoms constituting R f is preferably 2 to 10 which is 2 to 12.
  • R f preferably has a straight-chain structure, but may have a branched structure. In the case of a branched structure, it is preferable that the branched portion is a short chain having about 1 to 3 carbon atoms.
  • fluorinated comonomer examples include (perfluoroalkyl) ethylenes such as (perfluorobutyl) ethylene, (perfluorohexyl) ethylene, and perfluoroalkyl) ethylene, and perfluoroalkyl (methyl vinyl ether). ), Perfluoro (ethyl vinyl ether), perfluoro (alkyl vinyl ether), such as perfluoro (propyl vinyl ether), and compounds in which n in Formula 3 is 0 or 1, and m is 1 or 2 are preferably used.
  • the copolymer 8 may also contain, for example, ⁇ -olefins such as ethylene and isobutylene, acrylic acid and its esters, methyacrylic acid and its Esters, fluorine-containing olefins such as trifluoroethylene, alkyl vinyl ethers such as ethyl vinyl ether and butyl vinyl ether, and vinyl acetate such as vinyl acetate and vinyl benzoate.
  • Copolymers of comonomers such as nil esters may be used.
  • the content of the polymerized units based on these comonomers in the copolymer 8 is preferably 10 mol% or less in total in order to maintain the excellent properties of the copolymer 8.
  • any conventionally known various polymerization methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be employed.
  • a volume flow rate of about 1 to 300 mm 3 Z seconds is preferably used as a reference, and the physical property of the film is in the range of 1 to 100 mm 3 Z seconds. And from the viewpoint of production.
  • the volume flow rate is the volume of the copolymer 8 flowing out per unit time from a nozzle with a diameter of l mm and a length of 2 mm at 200 ° C and under a load of 7 kg using a Koka type flow tester. (Mm 3 Z seconds).
  • the film of the fluoropolymer of the present invention contains 40 to 75 mol% of a polymerization unit based on TFE, 20 to 50 mol% of a polymerization unit based on ethylene, and a polymerization unit based on propylene.
  • a film of the copolymer 9 containing 5 to 40 mol% is also exemplified.
  • the copolymer 9 may further contain one or more polymerized units based on a comonomer component such as a fluorine-containing olefin or a hydrocarbon-type olefin.
  • a comonomer component such as a fluorine-containing olefin or a hydrocarbon-type olefin.
  • the comonomer components include ⁇ -olefins such as 1-butene, 2-butene and isobutylene, (perfluorobutyl) ethylene, (perfluorohexyl) ethylene, (perfluorooctyl) ethylene, hexafluoropropylene, and vinyl fluoride.
  • Fluorinated olefins such as trifluoroethylene, trichloro mouth, fluorinated vinyl ethers such as perfluoro (ethyl vinyl ether), perfluoro (methyl vinyl ether), perfluoro (propyl vinyl ether), and fluorinated acrylates. .
  • the amount of the polymerized unit based on the comonomer component is preferably in the range of 30 mol% or less in the copolymer 9. In particular, the amount is preferably as small as 10 mol% or less to the extent that the copolymer 9 is modified.
  • the molecular weight of the copolymer 9 is not particularly limited. A range of about 1 to 300 mm 3 Z seconds is preferable, and a range of 1 to 100 mm 3 / s is particularly preferable in view of physical properties and production of the film. Volume flow rate, using a Koka type flow tester, at 200 ° C, under 7 kg / cm 2 load, the capacity of the copolymer 9 flowing in diameter 1 mm, a unit from a nozzle of length 2 mm Time (Mm : iZ seconds).
  • the film of the fluoropolymer of the present invention has a molar ratio of polymerized units based on TFE / polymerized units based on ethylene of 57/43 to 67/33, and a polymerized unit based on a tertiary vinyl monomer in the polymer.
  • a film of a TFE-ethylene-tertiary vinyl monomer copolymer (hereinafter, referred to as copolymer 10) having a content of 0.1 to 10 (mol%) is exemplified.
  • the copolymer 10 preferably has a molar ratio of polymerized units based on TFE to polymerized units based on ethylene of 61Z39 to 67Z33.
  • the third vinyl monomer in the copolymer 10, CH 2 CH- C n F 2n ⁇ l (n is an integer from 2 to 10) is preferred that it is a non-° one Furuoroarukiru) ethylene represented by .
  • the copolymer 10 is a copolymer mainly composed of TFE and ethylene and further with a tertiary vinyl monomer.
  • Tertiary vinyl monomers such as 1-butene, isobutylene, etc., fluorinated olefins such as olefin, vinylidene fluoride, hexafluoropropylene, trichlorofluoroethylene, vinyl fluoride, etc., (perfluoroalkyl) ethylene
  • vinyl ethers such as methyl vinyl ether, perfluoro (methyl vinyl ether), and perfluoro (propyl vinyl ether), and fluorine-containing acrylates.
  • the content of the polymerization unit based on the tertiary vinyl monomer in the copolymer 10 is preferably from 0.1 to 10 mol%, particularly preferably from 0.3 to 5 mol%.
  • the molar ratio of the polymerized units based on TFE and the polymerized units based on ethylene is 57/43 to 67Z33, and the content of the polymerized units based on (perfluoroalkyl) ethylene in the polymer is 0.1.
  • the copolymer 10 having a molecular weight of 110 (mol%) has a low elasticity and is flexible, and is suitable as an agricultural covering material. It is assumed that the decrease in the elastic modulus is due to the decrease in the crystallinity of the copolymer 10.
  • all conventionally known various polymerization methods such as bulk polymerization, suspension polymerization, emulsion polymerization and solution polymerization can be employed.
  • the molecular weight of the copolymer 10 is not particularly limited, but a volume flow rate of about 1 to 300 mm 3 / sec is suitable as a standard, and the range of 1 to 100 mm 3 / sec is particularly preferable. Preferred for production. Volume flow rate, using a Koka type flow tester, 300 ° C, 7 kg / cm 2 under a load, the capacity of the copolymer 10 to flow into a single much time from a nozzle of a diameter of 1 mm, length 2 mm (Mm 3 Z seconds).
  • the film as the agricultural covering material is preferably flexible so that it can be easily fixed to the frame of the house.
  • the fluoropolymer film of the present invention has a dynamic viscoelastic modulus of 1 to 70 kgZmm 2 and is excellent in flexibility. In particular, it preferably has a dynamic viscoelasticity in the range of 3 to 60 kg / mm 2 .
  • the film of the present invention is formed using a known forming method such as an inflation method or an extrusion method. If the thickness of the film is too thin, it is easily broken, and if it is too thick, it is inconvenient for cutting, bonding, and spreading the film, and the light transmittance is reduced.
  • the preferred thickness is between 10 and 300 / m, more preferably between 20 and 100 mm.
  • the width of the film is usually preferably in the range of 1000 to 2000 mm from the viewpoint of film production and handling.
  • a coloring agent for example, titanium oxide, zinc white, calcium carbonate, precipitated silica, carbon black, chrome yellow, phthalocyanine blue, phthalocyanine green, or the like may be added to the fluoropolymer according to the present invention as needed. Can be blended.
  • the inside of a house for agricultural and horticultural facilities is generally hot and humid, and condensed water droplets easily adhere to the ceiling and inside the walls. Water droplets that adhere to the plant during cultivation if they block out the sun's rays or drop, may hinder good plant growth. Therefore, it is desirable that the contact angle of the film with water is not large.
  • the film of the present invention has a contact angle with water of 106 degrees or less. Does not contain hydrogen atoms The contact angle of the fluororesin film exceeds 106 degrees, which is not preferable.
  • the inside surface of the house is preferable to treat the inside surface of the house with a dropping agent in order to prevent adhesion of water droplets.
  • a dropping agent include an alcohol-soluble or water-dispersible fluororesin mixed with an inorganic hydrophilic colloid substance, a hydrophilic polymer mixed with a surfactant, and a hydrophilic polymer mixed with a surfactant.
  • Activators and those containing an inorganic hydrophilic colloidal substance are exemplified.
  • the inorganic hydrophilic colloid substance colloidal silica, colloidal alumina, colloidal titania, and the like can be used.
  • the hydrophilic polymer, polyvinyl alcohol and, _ S_ ⁇ 3 H, _ COOH, one NH 2, - CN, polymer include having one (OCH 2 CH 2) "In general hydrophilic functional groups of the first class
  • the surfactant may be any of anionic, cationic, and nonionic surfactants.
  • the film of the present invention has a small contact angle with water of 106 degrees or less, it is advantageous in terms of affinity during the above-mentioned various surface treatments and various formulations.
  • the film of the present invention can be used as a coating material for agriculture as well as a coating material for ordinary agriculture, and can be spread not only on a tunnel house and a pipe house but also on a full-scale large-scale house for cultivation of crops. Can be used as a stretch film.
  • the dynamic viscoelastic modulus which is an index of flexibility, is a value measured at 25 ° C using a dynamic viscoelasticity measuring device (manufactured by Toyo Seiki, model Rheographic Solid L-1).
  • Transparency was measured using a haze meter (manufactured by Nippon Seimitsu Optical Co., model SEP-T) to measure the total light transmittance and haze value, and used as a measure of transparency.
  • a haze meter manufactured by Nippon Seimitsu Optical Co., model SEP-T
  • the specific gravity is a value measured according to the JIS K-7112A method.
  • the contact angle is a value for water measured using a contact angle measuring device (Model CA-X, manufactured by Kyowa Interface Science Co., Ltd.).
  • Stretching workability is defined as the difficulty of the work of stretching the film and fixing it to the frame using fixing members. ⁇ (easy to construct), ⁇ (slightly difficult to construct compared to soft PVC resin) ), X (Construction is possible, but it is hard and requires human power, and the film is easy to enter).
  • the storage operability was evaluated as ⁇ (easy to store), ((has a feeling of lumpy), and X (cannot be stored) as the difficulty of spreading and storing the film lining the house.
  • a mixed gas having a TFE / ET composition of 53/47 (molar ratio) was introduced, and the reaction was continued at a pressure of 15. O kg / cm 2 G.
  • PFBE was added at a rate of 0.1 mL to 2 g of the mixed gas, and the reaction was continued for 8 hours.
  • the copolymer A had a polymerized unit based on TFE / polymerized unit based on ET based on NMR measurement and a polymerized unit based on ZPFBE of 53.1 / 45.5 / 1.4 (molar ratio), and the melting point was 260 ° C.
  • the volume flow rate was 51.6 mm 3 / sec.
  • a 2 L stainless steel autoclave with a degassed stirrer was charged with 1966 g of perfluorocyclohexane, 14.2 g of methanol, 250 g of TFE, 7.8 g of ET, and 31.8 g of PFBE.
  • the temperature was raised to 65 ° C. 7 mL of a solution of 50% t-butyl peroxyisobutyrate in a perfluorosiloxane mouth was injected under pressure to initiate polymerization.
  • a mixed gas having a TFEZET composition of 60/40 (molar ratio) was introduced, and the reaction was continued at a pressure of 14.3 kg / cmG.
  • PFBE was added at a rate of 0.1 mL per 1 g of the mixed gas, and the reaction was continued for 8 hours.
  • the copolymer B has a polymerized unit based on TFE based on NMR measurement and a polymerized unit based on ZET FBE. / 37.3 / 3.8 (molar ratio), melting point 220 ° (:, volume flow rate was 85. 2 mm 3 7 sec.
  • a composition comprising 100 parts by weight of the copolymer B and 100 N of Afras in an amount shown in Table 1 was extruded at a die temperature of 270 ° C. to obtain a film having a thickness of 50 m.
  • the mechanical properties and transparency of the obtained film were measured, and the stretching workability and the storing workability were evaluated. The results are shown in Table 1.
  • a 50 m thick polyvinyl fluoride film (Tedlar 200 SG40TR, manufactured by DuPont) was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Extruded Aflon PFA P-66P tetrafluoroethylene-perfluoroalkylvinylether-based copolymer, made by Asahi Glass
  • Extruded Aflon PFA P-66P tetrafluoroethylene-perfluoroalkylvinylether-based copolymer, made by Asahi Glass
  • the obtained film was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Aflon FEP H 330 (tetrafluoroethylene-hexafluoropropylene-based copolymer, manufactured by Asahi Glass) was extruded at 320 ° C to obtain a 50-thick film. The obtained film was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the reaction continued.
  • the monomers in the reactor were purged, and the copolymer dispersion was filtered, washed, and dried to obtain 88 g of a white copolymer C.
  • the copolymer C had a polymerized unit based on TFE based on NMR measurement, a polymerized unit based on ZPP, and a polymerized unit based on ZET was 53.2 / 38.8.4 / 8.4 (molar ratio).
  • the volume flow rate was 92.3 mm. 3 Z seconds.
  • a mixed gas with a composition of TFE / P PZET of 6 1/2 1/18 (molar ratio) was introduced at a pressure of 17.7 kg / cm 2 G.
  • the reaction was continued for 7 hours.
  • the monomers in the reactor were purged to obtain 837 g of a copolymer dispersion.
  • Sulfuric acid was added dropwise to the dispersion latex to cause aggregation, followed by washing and drying to obtain 194 g of a copolymer D.
  • the copolymer D has a polymerized unit based on TFE based on NMR measurement, and a polymerized unit based on ZPP / polymerized unit based on ET is 6 2. 1/2 1.6 / 16.3 (molar ratio).
  • the flow rate was 78.2 mm 3 Z seconds.
  • Example 13 (Example)
  • the mechanical properties and transparency of the obtained film were measured in the same manner as in Example 11 except that 60 parts by weight of copolymer D was used instead of copolymer C. Workability was evaluated. The results are shown in Table 2.
  • Example 11 Using the same extruder as in Example 1, a composition prepared by mixing 100 parts by weight of the copolymer B and 60 parts by weight of the copolymer C was extruded at a die temperature of 275 ° C. A film of 502 m was obtained. The mechanical properties and transparency of the film were measured, and the workability of stretching and storage was evaluated. The results are shown in Table 2.
  • a mixed gas with a composition of TF EZP PZVd F of 45/45/10 (molar ratio) was introduced, and a pressure of 16.7 kg / cm 2 G was used for 7.2.
  • the reaction was continued for hours.
  • the monomers in the reactor were purged to obtain 818 g of a copolymer dispersion.
  • Ammonia chloride was added dropwise to the dispersion to cause aggregation, followed by washing and drying to obtain 188 g of a copolymer E.
  • the copolymer E had a polymerized unit based on TFE / polymerized unit based on pp based on NMR measurement, and a polymerized unit based on ZV dF of 47.5 / 1 1.2 / 41.3 (molar ratio).
  • the 127 ° volumetric flow rate was 57.3 mm 3 Z seconds.
  • a mixed gas with a TFE / PPZVd F composition of 58/10/32 (molar ratio) was introduced, and the reaction was continued at a pressure of 18.3 kg / cm 2 G .
  • PFBE was added at a rate of 0.1 mL to 3 g of the mixed gas, and the reaction was continued for 8 hours.
  • the monomers in the reactor were purged to obtain 84 Og of a copolymer dispersion.
  • Sulfuric acid was added dropwise to the dispersion latex to cause coagulation, followed by washing and drying to obtain 194 g of a copolymer F.
  • the copolymer F is a polymerized unit based on TFE from NMR measurement.
  • a polymerized unit based on ZPp, a polymerized unit based on ZVdF, and a polymerized unit based on FBE is 59.9.9 / 11.4 / 27.3. /1.4 (molar ratio), melting point was 139 ° C, and volumetric flow rate was 37.7 mm 3 Z seconds.
  • a 3 Ommc /) extruder equipped with a 600 mm wide T die was used to extrude a composition containing 100 parts by weight of copolymer A and 50 parts by weight of copolymer E at a die temperature of 320 ° C.
  • a 50 / xm thick film was obtained.
  • the mechanical properties of the film [dynamic viscoelasticity (kg / mm 2 ), tensile strength (kgZmn)], transparency [total light transmittance (%), haze (%)] were measured, and the film was stretched. Workability and storage workability were evaluated. The results are shown in Table 3.
  • the amounts in Table 3 are parts by weight.
  • Example 17 Using the same extruder as in Example 17, a composition prepared by mixing 100 parts by weight of the copolymer B and 120 parts by weight of the copolymer E was extruded at a die temperature of 27.5 ° C. A film of 50 ⁇ m was obtained. The mechanical properties and transparency of the film were measured, and the workability of stretching and storage was evaluated. The results are shown in Table 3.
  • copolymer G has a polymerized unit based on TFE based on NMR measurement, a polymerized unit based on ZET, and a polymerized unit based on ZPP is 59.6 / 29.1 / 11.3 (molar ratio). It was 79 ° C. Volumetric flow rate was 1 6. 2 mm 3 / sec.
  • the copolymer H has a polymerized unit based on TFE based on NMR measurement, a polymerized unit based on ZET, and a polymerized unit based on ZPP is 50.3 / 27.0 / 22.7 (molar ratio), and has a melting point of 147 ° C.
  • the volume flow rate was 31.9 mm 3 / sec.
  • Example 23 The mechanical properties and transparency of the obtained film were measured in the same manner as in Example 23, except that the amount of Afras 100 N was changed to 60 parts by weight and 100 parts by weight, respectively, and the stretching workability and storage work were performed. The sex was evaluated. The results are shown in Table 4. [Examples 26 to 28 (Example)]
  • Example 23 In the same manner as in Example 23, a composition containing 100 parts by weight of the copolymer H and 100 N of the copolymer H as shown in Table 4 was used, and the obtained mechanical properties and transparency were measured. Table 4 shows the results of the evaluation of the storage workability.
  • a resin composition containing 100 parts by weight of copolymer G and 50 parts by weight of copolymer ⁇ was heated to a die temperature of 220 ° C. using a 30 mm ⁇ extruder equipped with a 60-mm-wide ⁇ die. To obtain a film having a thickness of 50 / m.
  • the mechanical properties of the film [dynamic viscoelasticity (kg / mm 2 ), tensile strength (kgZmm 2 ) 3, transparency [light transmittance
  • Table 5 shows the results. The amounts in Table 5 are parts by weight.
  • Example 29 Using the resin composition having the composition shown in Table 5, a film was prepared in the same manner as in Example 29. This film was measured and evaluated in the same manner as in Example 29. The results are shown in Table 5.
  • Polymerized units ZV d F in based polymerized units based on polymerized units ZH FP based on TF E is the composition of 40Z10Z50 (mol%), melting point 120 ° C, the fluorocopolymer volumetric flow rate is 13. 7 mm 3 Z seconds
  • a polymer (THV 200G, manufactured by 3M Company) was extruded at 180 ° C to obtain a film having a thickness of 60 m. The mechanical properties and transparency of the film were measured, and the spreadability and storage workability were evaluated. Table 6 shows the results.
  • Polymerized units ZV d F in based polymerized units based on polymerized units ZH FP based on TFE is the composition of 55 / 10Z35 (mol%), mp 1 50 ° C, volume flow rate is 39. 6 mm 3 Z seconds including A fluorocopolymer (THV400G, manufactured by 3M) was extruded at 220 ° C to obtain a film having a thickness of 60 m. The same as in Example 35 for this film It was measured and evaluated in the same manner. Table 6 shows the results.
  • Polymerized unit based on TFE ZH FP based polymerized unit ZVdF based polymerized unit has a composition of 58/1 0Z32 (mol%), melting point is 164 ° C, and volumetric flow rate is 67.5 mm 3 / sec.
  • a fluorinated copolymer (THV 500G, manufactured by 3M Company) was extruded at 220 ° C to obtain a film having a thickness of 60 m. This film was measured and evaluated in the same manner as in Example 35. Table 6 shows the results.
  • the copolymer is a polymerized unit based on TFE as measured by NMR.
  • Polymerized unit based on ZP P Polymerized unit based on ZVd F has a composition of 47.5 / 1 1.2 / 4 1.3 (molar ratio), melting point is 127 ° C, and volume flow rate is 57 3 (mm 3 / sec).
  • a mixed gas with a composition of TF EZP P / Vd F of 60/15/25 (molar ratio) was introduced, and a pressure of 18.7 kg / cm 2 G was used for 10.2
  • the reaction was continued for hours.
  • the monomers in the reactor were purged to obtain 832 g of a copolymer dispersion.
  • Sulfuric acid was added dropwise to the dispersion to cause coagulation, followed by washing and drying to obtain 179 g of a copolymer.
  • the copolymer has a composition of 62.3 / 18.
  • the reaction was continued for 9.6 hours at a force of 17.6 kg / cm 2 G.
  • the monomers in the reactor were purged to obtain 15.2 kg of a copolymer dispersion.
  • Ammonium chloride was added dropwise to this dispersion to cause aggregation, followed by washing and drying to obtain 2.3 kg of a copolymer.
  • the copolymer is composed of a polymerized unit based on TFE and a polymerized unit based on ZVdF, as determined by NMR, with a composition of 71.2 / 1 0.1 / 18.7 (molar ratio). With a melting point of 164 ° C and a volumetric flow rate of 4.8 (mm 3 Z seconds).
  • a film was prepared in the same manner as in Example 38, and the obtained film was evaluated. Table 7 shows the results.
  • a mixed gas with a composition of TF EZP PZVcl F of 50Z12Z38 (molar ratio) was introduced, and the reaction was continued at a pressure of 17.4 kg / cm 2 G for 7.7 hours.
  • the monomers in the reactor were purged to obtain 14.7 kg of a copolymer dispersion.
  • Ammonium chloride was added dropwise to this dispersion to cause aggregation, followed by washing and drying to obtain 2.1 kg of a copolymer.
  • the copolymer has a composition of 51.8 / 12.7 / 35.5 (molar ratio) of polymerized units based on TFE and polymerized units based on VdF, as measured by NMR, The melting point was 147 ° C and the volume flow rate was 28.6 (mm 3 Z seconds).
  • a film was prepared in the same manner as in Example 38, and the obtained film was evaluated. Table 7 shows the results. [3 ⁇ 47]
  • a mixed gas with a composition of TFEZP P / Vd F of 58/1 0/32 (molar ratio) was introduced, and the reaction was performed at a pressure of 18.3 kg / cm 2 G.
  • PFBE was added at a rate of 0.1 mL to 3 g of the mixed gas, and the reaction was continued for 8 hours.
  • the comonomer in the reactor was purged to obtain 840 g of a copolymer dispersion.
  • Sulfuric acid was added dropwise to the dispersion to cause coagulation, followed by washing and drying to obtain 194 g of a copolymer.
  • the copolymer was found to be composed of polymerized units based on TFE, polymerized units based on ZPP, polymerized units based on ZVdF / polymerized units based on PFBE, 59.9 / 11.4 / 27.3 / 3/1.
  • a 4 (molar ratio), melting point of 1 39 ° C, volume flow rate is 3 7. 7 mm:! was Z seconds.
  • a mixed gas with a composition of TF EZP PZVd F of 65 Z20 / 15 (molar ratio) was introduced, and the reaction was continued at a pressure of 17.6 kg / cm 2 G.
  • PPVE was added at a ratio of 0.1 mL to 5 g of the mixed gas, and the reaction was continued for 9.6 hours.
  • the comonomer in the reactor was purged to obtain 15.2 kg of a copolymer dispersion.
  • Ammonia chloride was added dropwise to the dispersion to cause aggregation, followed by washing and drying to obtain 2.3 kg of a copolymer.
  • Table 8 shows the composition ratio, melting point, and volume flow rate of the copolymer by NMR. In the same manner as in Example 42, the mechanical properties and transparency of the obtained film were measured, and the stretching workability and the storage workability were evaluated. Table 8 shows the results.
  • deionized water 610 g After degassing a 1 liter stainless steel autoclave with a stirrer, deionized water 610 g, ammonium perfluorooctanoate 3.6 g, disodium hydrogen phosphate monohydrate 14. 8 g, sodium hydroxide 1.59 g, ammonium persulfate 3 g, iron sulfate 0.11 g, ethylenediaminetetraacetic acid 0.10 g, 2-butanol 1.8 g, and then TFE 23.5 g, 2.5 g ET and 1.0 g PP were charged and kept at 25 ° C. 2 ml of a solution of 1.76 g of sodium hydroxide and 0.29 g of Rongalite were injected into 10 ml of water to initiate polymerization.
  • the ratio was 3 / 27.01 / 22.7 (molar ratio), the melting point was 147 ° C., and the volume flow rate was 31.9 (mm 3 Z seconds).
  • the fluorinated copolymer was extruded at 230 ° C. to obtain a film having a thickness of 80 / m. The mechanical properties and transparency of this film were measured, and the stretching workability and storage workability were evaluated. Table 9 shows the results.
  • a mixed gas with a TFEZET / PP composition of 50Z30Z20 (molar ratio) was introduced, and the reaction was continued at a pressure of 17.6 kg / cm 2 G for 9.6 hours. .
  • the monomers in the reactor were purged to obtain 15.2 kg of a copolymer dispersion.
  • Ammonium chloride was added dropwise to the dispersion to cause coagulation, followed by washing and drying to obtain 2.3 kg of a copolymer.
  • the copolymer had a polymerized unit based on TFE based on NMR analysis, a polymerized unit based on ZET, and a polymerized unit based on ZPP of 48.1 / 33.7 / 18.2.
  • a mixed gas having a composition of TFE / ET of 60 Z40 (molar ratio) was introduced, and the reaction was continued at a pressure of 14.3 kg / cm 2 G.
  • PFBE was added at a rate of 0.1 mL per 1 g of the mixed gas, and the reaction was continued for 8 hours.
  • the monomers in the reactor were purged, and the copolymer dispersion was filtered, washed and dried to obtain 204 g of a white copolymer.
  • the copolymer had a polymerized unit based on TFE based on NMR measurement, a polymerized unit based on ZET was 61.2 / 38.8 (molar ratio), and the content of a polymerized unit based on PFBE in the copolymer was 4%.
  • the melting point was 220 ° (: and the volume flow rate was 85.2 mm 3 / sec.
  • the copolymer was extruded at 270 ° C. to obtain a film having a thickness of 60 ⁇ m.
  • a mixed gas with a TFE / ET composition of 65/35 (molar ratio) was introduced, and the reaction was continued at a pressure of 15.9 kg / cm 2 G.
  • PFHE was added at a rate of 0.1 mL to 3 g of the mixed gas, and the reaction was continued for 8.4 hours.
  • the monomers in the reactor were purged to obtain 811 g of a copolymer dispersion.
  • Ammonium chloride was added dropwise to the dispersion to cause aggregation, and the mixture was washed and dried to obtain 190 g of a copolymer.
  • the copolymer is based on polymerized units ZET based on TFE from NMR measurements.
  • the polymerized units are 65.0 / 35.0 (molar ratio), the content of polymerized units based on PFHE is 1.3 mol%, the melting point is 21.6 ° C, and the capacity flow rate is 42.1 mm 3 Z Seconds.
  • the copolymer was extruded at 270 ° C. to obtain a film having a thickness of 60 / m. The mechanical properties and transparency of this film were measured, and the workability of stretching and storage was evaluated. Table 10 shows the results.
  • a mixed gas having a TF EZET composition of 60/30 (molar ratio) was introduced, and the reaction was continued at a pressure of 16.2 kg / cm 2 G.
  • PFBE was added at a ratio of 1 mL to 10 g of the mixed gas, and the reaction was continued for 9.6 hours.
  • the monomers in the reactor were purged to obtain 14.9 kg of a copolymer dispersion.
  • Ammonia chloride was added dropwise to the dispersion to cause agglomeration, followed by washing and drying to obtain 2.4 kg of a copolymer.
  • the copolymer had a polymerized unit based on TFE of 65.5 / 34.5 (molar ratio) based on TFE based on NMR measurement, and a polymerized unit content based on PFBE of 6.5 mol%, The melting point was 212 ° C and the volume flow rate was 26.9 mm 3 Z seconds.
  • the copolymer was extruded at 270 ° C. to obtain a film having a thickness of 60 / xm. The mechanical properties and transparency of this film were measured, and the workability of stretching and storage was evaluated. Table 10 shows the results.
  • the agricultural film of the present invention has a small dynamic elasticity and flexibility, and thus has excellent workability at the time of extension and is suitable as a covering material for agricultural use in agricultural and horticultural facilities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Greenhouses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明細書
農業用被覆資材
技術分野
本発明は農業用被覆資材に関し、 詳しくは、 トンネルハウス、 パイプハウス、 大型ハウス等の農園芸施設に展張するためのもしくはハウス内に使用するハウス 内張フィルムに使用するための柔軟性、 耐久性、 防塵性、 光線透過性等に優れた フッ素樹脂フィルムの農業用被覆資材に関する。
背景技術
従来、 トンネルハウスやパイプハウス用の農業用被覆資材として、 ポリエチレ ン、 エチレン一酢酸ビニル共重合体、 ポリエステル樹脂、 軟質塩化ビニル樹脂等 のフィルムが使用され、 軟質塩化ビニル樹脂フィルムが施工性、 価格、 保温性等 の面で他の材料のフィルムより優れるため農業用被覆資材の大半を占めている。 しかし、 軟質塩化ビニル樹脂フィルムは可塑剤を含むため、 可塑剤のブリードア ゥ卜によりフィルム表面が汚れやすく、 短期間のうちに光線透過率が低下する難 点がある。
また、 上記の各フィルムは耐候性向上のために紫外線吸収剤が配合されている 力 太陽光線、 気温、 風雨、 酸化等による劣化のために、 通常 1〜 2年で張りか えなければならない。 しかも、 このように紫外線吸収剤を配合したフィルムは、 その紫外線吸収活性に差こそあれ紫外線を遮蔽するので、 紫外線を必要とする作 物 (例えばナス、 ある種の花卉類) の栽培や、 活動するために紫外線を必要とす るミツバチゃシマハナアブ等により受粉される作物 (例えばイチゴ、 メロン、 ス イカ、 ピーマン等) の栽培にも不向きである。
一方、 近年ハウス管理の省力化、 栽培面積の拡大、 ハウス寿命の長期化等の目 的で本格的な大型ハウスも採用されている。 この大型ハウスには、 従来、 ポリエ ステル樹脂、 ポリカーボネート樹脂、 硬質塩化ビニル樹脂、 アクリル樹脂、 繊維 強化プラスチック等の板、 板ガラス等の被覆資材が 5年以上の長期展張用として 使用されている。 しかし、 これら被覆資材は厚さが厚く、 重量が大きくなり、 大 型の専用基材を骨組としたハウスに展張しなければならず、 その展張施工も非常 に複雑であり、 かつ比較的高価である欠点がある。 また、 ポリエステル樹脂、 ポ リカ一ボネート樹脂、 硬質塩化ビニル樹脂、 アクリル樹脂等の板は雹等により亀 裂が発生しやすく、 また発生した亀裂が伝播しやすいなどの欠点がある。
さらに、 これらプラスチック板には、 通常耐候性向上のため紫外線吸収剤が配 合されているので、 紫外線を必要とするナスや花などの作物や、 活動するために 紫外線を必要とする昆虫類により受粉されるメロン、 イチゴ等の作物の栽培には 不向きである。 また、 板ガラスは破損しやすく危険であり、 プラスチック板より 高重量のためハウスの骨組を更に強固なものとする必要がある。
これらの問題を解決する目的で、 例えば、 耐候耐久性ゃ耐酸性雨性に優れ、 寿 命が 1 0〜 1 5年の実績があり、 汚れにくく、 また汚れが雨水で洗われやすいこ とや、 破れにくい優れた特性を有するテトラフルォロエチレン一エチレン系共重 合体 (以下、 E T F Eという) やフッ化ビニル系重合体からなるフッ素樹脂の フィルムを農業用の被覆資材とする提案がされている。
一般に、 農業用の被覆資材のフィルムをパイプハウス等に展張する際、 フィル ムの張りが弛まないようにしつつハウスの骨組に固定用部材を用いて固定すると いう施工がされる。 しかし、 使用されているフッ素樹脂のフィルムは、 弾性率が 大きく柔軟性に劣るため、 フィルムを大きな力で引っ張り固定しなければならな いことがある。
また、 ハウス内に使用する内張フィルムは、 たとえば冬季の日中及び夜間、 特 に夜間において、 ハウス内温度が低下する時期にハウス内温度の急激な低下を未 然に防止し、 またハウス内暖房機による暖房効率を向上させるために使用される ものである、 また過日照時には、 適切な日照量にするため一部光線を遮断する目 的で使用されることがある。
このように、 ハウス内張フィルムは、 日中もしくは夕方、 朝方と頻繁に展張さ れたり、 収納されたりするが、 フィルムが固いと収納しにくく、 シヮが発生する こともある。
発明の開示
本発明の目的は、 上記課題を解決し、 弾性率が小さく柔軟性に優れ、 従前の フッ素樹脂フィルムに比べ比重が小さく展張作業性に優れたフッ素樹脂のフィル ムである農業用の被覆資材の提供にある。 また、 柔軟性に優れながらも引張強度 等の強靱性に優れたフッ素樹脂のフィルムである農業用の被覆資材の提供を可能 とした。
すなわち、 本発明は、 第一に、 動的粘弾性率が 1〜70 k gZmm、 引張強度 が 1. 5〜5. 0 k gZmm2、 比重が 1. 0〜2. 0、 水との接触角が 106 度以下である含フッ素ポリマーのフィルムからなることを特徴とする農業用の被 覆資材を提供する。
発明を実施するための最良の形態
本発明の含フッ素ポリマーのフィルムとしては、 テトラフルォロエチレン (以 下、 TFEという) 一エチレン系共重合体 (以下、 共重合体 1という) 100重 量部に対して、 TFE—プロピレン系弾性共重合体 (以下、 共重合体 2という) 5〜 1 00重量部の割合で両者を含む組成物から成形されたフィルムが例示され る。
共重合体 2としては、 プロピレンに基づく重合単位を 5〜 70モル%含有する 共重合体が好ましい。
共重合体 1としては、 TFEに基づく重合単位 Zエチレンに基づく重合単位の 比が 70Z30〜30Z70 (モル比) であり、 かつ、 CH2= CH— CnF 2n+ l (nは 2〜 10の整数である) で表される化合物に基づく重合単位をさらに 0. 1〜 10モル%含有する TF E-エチレン系共重合体であってもよい。
本発明では、 共重合体 1の 1 00重量部に対して共重合体 2を 5〜 100重量 部配合する。 配合量が 5重量部未満では、 得られたフィルムの柔軟性が顕著に認 められず、 100重量部超では、 得られたフィルムの強度等が低下しやすい。 共重合体 1は、 T F Eに基づく重合単位 Zェチレンに基づく重合単位の比が好 ましくは 70Z30〜30/70 (モル比) 、 特に好ましくは 65Z35〜45 /55 (モル比) である。 この比が 70 / 30超ではフィルムの製造が困難とな り、 30 Z 70未満ではフィルムの耐候耐久性ゃ耐酸性雨性が低下しやすい。 また、 共重合体 1中に CH2 = CH—CnF2n+ l (nは 2〜 1 0の整数である) で表される化合物に基づく重合単位をさらに含有させる場合、 その含有量は好ま しくは 0. 1〜 1 0モル%、 特に好ましくは 0. 3〜5モル%である。 1 0モ ル%超ではフィルムの耐候耐久性ゃ耐酸性雨性が低下しやすく、 0. 1モル%未 満ではフィルムの機械的特性が低下しやすい。
この共重合体 1はそれ自体既知のものであり、 例えば特公昭 5 9 - 5 0 1 6 3 に記載の方法で製造できる。 共重合体 1の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の従来公知の各種重合方法はいずれも採用できる。 「ァフ ロン C〇P」 (旭硝子製) 、 「ァフロン L M」 (旭硝子製) として市販されてい るものもこの共重合体 1として使用できる。
共重合体 1の分子量は、 特には限定されないが、 その目安となる容量流速とし て 1〜 3 0 0 mm 3 /秒程度が好適であり、 特に 1 ~ 1 0 0 mm 3 /秒の範囲が フィルムの物性や製造上好ましい。 容量流速は、 高化式フローテス夕を使用して、 3 0 0 °C、 7 k g荷重下で、 直径 l mm、 長さ 2 mmのノズルから単位時間に流 出する共重合体 1の容量で表される値 (mm3Z秒) で定義される。
共重合体 2は、 T F Eとプロピレンの共重合体であり、 T F Eに基づく重合単 位 Zプロピレンに基づく重合単位は、 好ましくは 9 5 5〜 3 0ノ7 0 (モル 比) 、 特に好ましくは 9 0 / 1 0〜4 0 / 6 0 (モル比) である共重合体が使用 される。 プロピレンに基づく重合単位が 5モル%未満では共重合体 2の弾性が低 下し、 フィルムに柔軟性を付与することは困難であり、 7 0モル%超ではフィル ムの耐候耐久性ゃ耐酸性雨性が低下する。
共重合体 2は、 さらに他の 1種以上のコモノマに基づく重合単位を含んでもよ い。 このコモノマとしては、 エチレン、 イソブチレン等の α—才レフイン類、 ァ クリル酸、 メ夕クリル酸およびそれらのアルキルエステル類、 フッ化ビニル、 フッ化ビニリデン、 へキサフルォロプロピレン、 クロ口トリフルォロエチレン等 の含フッ素ォレフィン類、 パ一フルォロ (ビニルエーテル) 等の含フッ素ビニル エーテル類等が挙げられる。
このコモノマに基づく重合単位の含有量 (2種以上の場合はその合計量) は、 共重合体 2中に好ましくは 5 0モル%以下、 特に好ましくは 4 0モル%以下の範 囲である。
共重合体 2の分子量は、 好ましくは 5万以上、 特に好ましくは 7万以上、 さら に好ましくは 1 0〜 2 5万である。 分子量が小さすぎるとフィルムの機械的特性 が低下し、 大きすぎると組成物の成形性が低下する。 共重合体 2の製造に関しては、 塊状重合、 乳化重合、 溶液重合など各種重合方 式はいずれも採用できる。 共重合体 2はそれ自体既知のものであり、 「アフラ ス」 (旭硝子製) として市販されているものも共重合体 2として使用できる。 本発明の含フッ素ポリマーのフィルムとしては、 前記共重合体 1 ( T F E —ェ チレン系共重合体) と T F E —プロピレン一エチレン系弾性共重合体 (以下、 共 重合体 3という) を含み、 共重合体 1の 1 0 0重量部に対して共重合体 3を 5〜 8 0重量部である組成物から成形されたフィルムが例示できる。
共重合体 3は、 好ましくは、 T F Eに基づく重合単位を 4 0〜 7 0モル%、 プ ロピレンに基づく重合単位を 1 0〜 5 0モル%、 およびエチレンに基づく重合単 位を 1〜 5 0モル%、 特に好ましくは、 T F Eに基づく重合単位を 4 5〜6 0モ ル%、 プロピレンに基づく重合単位を 3 0〜4 5モル%、 およびエチレンに基づ く重合単位を 3〜 3 0モル%、 の割合で含有する。 この範囲の共重合体 3は、 弾 性率が小さく柔軟性を有し好ましい。
共重合体 3は、 さらに 1種以上の含フッ素ォレフィンや炭化水素系のォレフィ などのコモノマ成分に基づく重合単位を含んでもよい。 コモノマ成分としては、 1ーブテン、 2—ブテン、 イソブチレン等のひ一才レフインや、 (パーフルォロ ブチル) エチレン、 ひ \°一フルォ口へキシル) エチレン、 (パーフルォロォクチ ル) エチレン、 へキサフルォロプロピレン、 フッ化ビニル、 フッ化ビニリデン、 トリクロ口フルォロエチレン等の含フッ素ォレフィン、 パーフルォロ (ェチルビ ニルエーテル) 、 パーフルォロ (メチルビニルエーテル) 、 パ一フルォロ (プロ ピルビニルエーテル) 等の含フッ素ビニルエーテル類、 含フッ素ァクリレート類 等が挙げられる。
コモノマ成分に基づく重合単位は、 共重合体 3中に 5 0モル%以下の範囲内で あることが好ましい。 特に、 共重合体 3を改質せしめる程度に、 1 0モル%以下 の少量であることが好ましい。
共重合体 3の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の 従来公知の各種重合方法はすべて採用できる。
共重合体 1および共重合体 3の分子量は、 特に限定されないが、 その目安とな る容量流速として 1〜 3 0 O mm : Z秒程度が好適であり、 特に 1〜 1 0 0 mm 3 /秒の範囲がフィルムの物性や製造上好ましい。 容量流速は、 高化式フローテス 夕一を使用して、 共重合体 1の場合 3 0 0 °C、 共重合体 3の場合 2 0 0 °Cで、 7 k g / c m 2荷重下で、 直径 l mm、 長さ 2 mmのノズルから単位時間に流出する 含フッ素共重合体の容量で表される値 (mm3Z秒) で定義される。
本発明において、 共重合体 1の 1 0 0重量部に対して共重合体 3を 5〜 8 0重 量部配合する。 配合量が 5重量部未満では、 得られたフィルムの柔軟性が顕著に 認められず、 8 0重量部超では、 得られたフィルムの強度等が低下しやすい。 本発明の含フッ素ポリマーのフィルムとしては、 前記共重合体 1 ( T F E—ェ チレン系共重合体) と T F E —プロピレンーフッ化ビニリデン (以下、 V d Fと いう) 系共重合体 (以下、 共重合体 4という) を含み、 共重合体 1の 1 0 0重量 部に対して共重合体 4を 5〜 2 0 0重量部である組成物から成形されたフィルム が例示される。
共重合体 4は、 好ましくは、 T F Eに基づく重合単位を 5〜8 5モル%、 プロ ピレンに基づく重合単位を 1〜4 5モル%、 および V d Fに基づく重合単位を 5 〜7 0モル%、 特に好ましくは、 T F Eに基づく重合単位を 1 5〜 8 0モル%、 プロピレンに基づく重合単位を 5〜4 0モル%、 および V d Fに基づく重合単位 を 1 0〜 5 0モル%、 の割合で含有する。 この範囲の共重合体 4は、 弾性率が小 さく柔軟性を有し好ましい。
共重合体 4は、 さらに 1種以上の含フッ素ォレフィンゃ炭化水素系のォレフィ ンなどのコモノマ成分に基づく重合単位を含んでもよい。 コモノマ成分として、 プロピレン、 1ーブテン、 2—ブテン、 イソブチレン等の α —ォレフィンや、 ひ°—フルォロブチル) エチレン、 (パーフルォ口へキシル) エチレン、 (パー フルォロォクチル) エチレン、 へキサフルォロプロピレン、 フッ化ビニル、 トリ クロ口フルォロエチレン等の含フッ素ォレフィン、 パーフルォロ (ェチルビニル エーテル) 、 パーフルォロ (メチルビニルエーテル) 、 パーフルォロ (プロピル ビニルエーテル) 等の含フッ素ビニルエーテル類、 含フッ素ァクリレート類等が 挙げられる。
コモノマ成分に基づく重合単位は、 共重合体 4中に 5 0モル%以下の範囲内で あることが好ましい。 特に、 共重合体 4を改質せしめる程度に、 1 0モル%以下 の少量であることが好ましい。
共重合体 4の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の 従来公知の各種重合方法はすべて採用できる。
共重合体 1および共重合体 4の分子量は、 特に限定されないが、 その目安とな る容量流速として 1〜3 0 0 mm 3 /秒程度が好適であり、 特に 1〜 1 0 0 mm 3 /秒の範囲がフィルムの物性や製造上好ましい。 容量流速は、 高化式フローテス 夕一を使用して、 共重合体 1の場合 3 0 0 °C、 共重合体 4の場合 2 0 0 °Cで、 7 k g Z c m2荷重下で、 直径 l mm、 長さ 2 mmのノズルから単位時間に流出する 含フッ素共重合体の容量で表される値 (mm3Z秒) で定義される。
本発明において、 共重合体 1の 1 0 0重量部に対して共重合体 4を 5〜2 0 0 重量部配合する。 配合量が 5重量部未満では、 得られたフィルムの柔軟性が顕著 に認められず、 2 0 0重量部超では、 得られたフィルムの強度等が低下しやすい。 本発明の含フッ素ポリマーのフィルムとしては、 T F E—エチレン一プロピレ ン系共重合体 (以下、 共重合体 5という) と前記共重合体 2 ( T F E—プロピレ ン系弾性共重合体) を含み、 共重合体 5の 1 0 0重量部に対して、 共重合体 2が 5〜1 0 0重量部である組成物から成形されたフィルムが例示される。
共重合体 2は、 プロピレンに基づく重合単位を 5〜7 0モル%含有する共重合 体であることが好ましい。
共重合体 5は、 さらに他の 1種以上のモノマに基づく重合単位を含んでもよい。 他のモノマとしては、 1ーブテン、 2—ブテン、 イソブチレン等の α—才レフィ ン、 フッ化ビニリデン、 へキサフルォロプロピレン、 トリクロ口フルォロェチレ ン、 フッ化ビニル等の含フッ素ォレフィン、 ェチルビニルエーテル、 パーフルォ 口 (メチルビ二ルェ一テル) 、 パーフルォロ (プロピルビニルエーテル) 等のビ ニルエーテル類、 含フッ素ァクリレート類等が挙げられる。 これらのモノマ成分 に基づく重合単位は、 共重合体 5中に 5 0モル%以下の範囲内であることが好ま しい。 特に、 共重合体 5を改質する 1 0モル%以下であることが好ましい。
共重合体 5の分子量は、 特には限定されないが、 その目安となる容量流速とし て 1〜 3 0 0 mm 3ノ秒程度が好適であり、 特に 1〜 1 0 0 mm 3 Z秒の範囲が フィルムの物性や製造上好ましい。 容量流速は、 高化式フローテスターを使用し て、 2 0 0 °C、 7 k g荷重下で、 直径 l mm、 長さ 2 mmのノズルから単位時間 に流出する共重合体 5の容量で表される値 (mm3Z秒) で定義される。
共重合体 5の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の 従来公知の各種重合方法はいずれも採用できる。
本発明において、 共重合体 5の 1 0 0重量部に対して、 共重合体 2を 5〜 1 0 0重量部配合する。 配合量が 5重量部未満では、 得られたフィルムの柔軟性が顕 著に認められず、 1 0 0重量部を超えると、 得られたフィルムの強度等が低下し やすい。
本発明の含フッ素ボリマーのフィルムとしては、 前記共重体 5 ( T F E—ェチ レン一プロピレン系共重合体) 1 0 0重量部に対して前記共重体 4 ( T F E —プ ロピレン一 V cl F系共重合体) 5〜2 0 0重量部の割合で両共重合体を含む組成 物から成形されたフィルムが例示される。
共重合体 5は、 T F Eに基づく重合単位を好ましくは 4 0〜 7 0モル%、 ェチ レンに基づく重合単位を好ましくは 2 0〜 5 0モル%、 およびプロピレンに基づ く重合単位を好ましくは 5〜4 0モル%含有し、 特に好ましくは、 T F Eに基づ く重合単位を 4 5〜6 5モル%、 エチレンに基づく重合単位を 2 0〜4 5モル%、 およびプロピレンに基づく重合単位を 8〜 2 5モル%含有する。 この範囲の共重 合体 5は、 共重合体 4と相溶性があり、 しかも適度の引張強度を有する。
共重合体 5は、 さらに 1種以上の含フッ素ォレフィンや炭化水素系ォレフイン などのコモノマ成分に基づく重合単位を含んでもよい。 コモノマ成分としては、 1—ブテン、 イソブチレン等の α—ォレフイン、 へキサフルォロプロピレン、 ト リクロロフルォロエチレン、 フッ化ビニル等の含フッ素ォレフィン類、 パ一フル ォロ (メチルビ二ルェ一テル) 、 パーフルォロ (プロピルビニルエーテル) 等の ビニルエーテル類、 含フッ素ァクリレート類等が挙げられる。 これらのコモノマ 成分に基づく重合単位は、 共重合体中に 5 0モル%以下の範囲内であることが好 ましい。 特に、 共重合体 5を改質せしめる程度に、 1 0モル%以下の少量である ことが好ましい。
共重合体 4および共重合体 5の分子量は、 特には限定されないが、 その目安と なる容量流速として 1〜 3 0 0 mm 3 Ζ秒程度が好適であり、 特に 1〜 1 0 0 mm :iZ秒の範囲がフィルムの物性や製造上好ましい。 容量流速は、 高化式フローテス 夕を使用して、 200°C、 7 k g荷重下で、 直径 lmm、 長さ 2 mmのノズルか ら単位時間に流出する共重合体の容量で表される値 (mm3Z秒) で定義される。 本発明では、 共重合体 5の 100重量部に対して共重合体 4を 5〜 200重量 部配合する。 配合量が 5重量部未満では、 得られたフィルムの柔軟性が顕著に認 められず、 200重量部超では、 得られたフィルムの強度等が低下しやすい。 本発明の含フッ素ポリマーのフィルムとしては、 テトラフルォロエチレン (T F E) に基づく重合単位を 5〜 84モル%、 へキサフルォロプロピレン (以下、 HF Pという) に基づく重合単位を 1〜45モル%、 およびフッ化ビニリデン (Vd F) に基づく重合単位を 5〜90モル%、 の割合で含有する含フッ素共重 合体 (以下、 共重合体 6という) のフィルムが例示される。
特に、 TFEに基づく重合単位を 10〜80モル%、 HFPに基づく重合単位 を 5〜30モル%、 および Vd Fに基づく重合単位を 1 5〜85モル%、 の割合 で含有する共重合体 6のフィルムが好ましい。
共重合体 6は、 さらに 1種またはそれ以上のフッ素含有のォレフィンや炭化水 素系のォレフィンなどのコモノマ成分を共重合せしめたものでもよい。 このコモ ノマ成分としては、 プロピレン、 ブテン、 イソブチレン等のひ一才レフイン、 ト リクロロフルォロエチレン、 フッ化ビニル等の含フッ素ォレフィン、 ェチルビ二 ルェ一テル、 パーフルォロメチルビ二ルェ一テル、 パーフルォロプロピルビニル エーテル等のビニルエーテル類、 含フッ素ァクリレ一ト類等が挙げられる。 これ らのコモノマ成分を共重合する際には、 共重合体 6中に 50モル%以下の範囲内 で共重合させることが好ましい。 共重合体 6を改質せしめる程度に、 10モル% 以下の少量で共重合させることが特に好ましい。
共重合体 6の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の 従来公知の各種重合方法はすべて採用可能である。
共重合体 6の分子量は、 特に限定されないが、 その目安となる容量流速として 5〜 300 mm 3 Z秒程度が好適であり、 特に 1 0〜 1 00mm3/秒の範囲が フィルムの物性や製造上好ましい。 容量流速は、 高化式フローテスターを使用し て、 200°C、 7 k g/ cm 荷重下で、 直径 1 mm、 長さ 2 mmのノズルから単 位時間に流出する共重合体 6容量で表される値 (mm3Z秒) で定義される。 本発明の含フッ素ポリマーのフィルムとしては、 TFEに基づく重合単位を 5 〜85モル%、 プロピレンに基づく重合単位を 1〜50モル%、 および VdFに 基づく重合単位を 5〜70モル%、 の割合で含有する含フッ素共重合体 (以下、 共重合体 7という) のフィルムが例示される。
特に、 TF Eに基づく重合単位を 1 5〜80モル%、 プロピレンに基づく重合 単位を 5〜40モル%、 および Vd Fに基づく重合単位を 10〜 50モル%、 の 割合で含有する共重合体 7のフィルムが好ましい。
共重合体 7は、 さらに 1種またはそれ以上のフッ素含有のォレフィンや炭化水 素系のォレフィンなどのコモノマ成分を共重合せしめたものでもよい。 このコモ ノマ成分としては、 プロピレン、 ブテン、 イソブチレン等の α—ォレフィン、 ト リクロロフルォロエチレン、 フッ化ビニル等の含フッ素ォレフィン、 ェチルビ二 ルエーテル、 パーフルォロメチルビ二ルェ一テル、 パーフルォロプロピルビニル エーテル等のビニルエーテル類、 含フッ素ァクリレート類等が挙げられる。 これ らのコモノマ成分を共重合する際には、 共重合体 7中に 50モル%以下の範囲内 で共重合させることが好ましい。 共重合体 7を改質せしめる程度に、 10モル% 以下の少量で共重合させることが特に好ましい。
共重合体 7の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の 従来公知の各種重合方法はすべて採用可能である。
共重合体 7の分子量は、 特に限定されないが、 その目安となる容量流速として 1〜300 mm3/秒程度が好適であり、 特に 1〜 1 00 mm 3Z秒の範囲がフィ ルムの物性や製造上好ましい。 容量流速は、 高化式フローテス夕一を使用して、 200°C、 7 k gZcm2荷重下で、 直径 1 mm、 長さ 2 mmのノズルから単位時 間に流出する共重合体 7の容量で表される値 (mm:iZ秒) で定義される。
本発明の含フッ素ポリマーのフィルムとしては、 下記式 1、 式 2または式 3で 表されるフッ素化コモノマの 1種以上に基づく重合単位を合量で 0. 05〜 20 モル%、 TFEに基づく重合単位を 30〜85モル%、 プロピレンに基づく重合 単位を 1〜30モル%、 および Vd Fに基づく重合単位を 5〜68. 5モル%、 の割合で含有する含フッ素共重合体 (以下、 共重合体 8という) のフィルムが例 示される。
ただし、 下記の式 1、 式 2、 式 3において、 Yはフッ素原子または水素原子で あり、 R'は炭素数 2〜 12の 2価のフッ素置換有機基であり、 Xはフッ素原子、 塩素原子、 または水素原子であり、 nは 0〜3の整数であり、 mは 1〜4の整数 である。
XR fC Y = CH2 式 1
XRfOCF = CF2 式 2
CF3 (CF2) n (〇CF (CF3) C F2) mOCF = CF2 · · ·式 3 フッ素化コモノマとして、 式 1、 式 2または式 3から選ばれる少なくとも 1種 を使用する。 式 1、 式 2中の Rfの 2価のフッ素置換有機基は、 置換しているフッ 素原子の数が 1以上であればよく、 完全にフッ素化された 2価のフッ素置換有機 基がより好ましい。 また、 Rfは、 炭素のみ、 または炭素と酸素により鎖が形成さ れた 2価のフッ素置換有機基が好ましい。
Rfとしては、 具体的には、 例えばパーフルォロアルキレン基またはエーテル結 合を含有するパーフルォロアルキレン基が挙げられる。 R fを構成する炭素数は、 2〜12である力 2〜1 0が好ましい。 Rfは、 直鎖の構造が好ましいが、 分岐 の構造であってもよい。 分岐の構造である場合は、 分岐部分の炭素数が 1〜3程 度の短鎖であるものが好ましい。
フッ素化コモノマとして具体的には、 (パーフルォロブチル) エチレン、 (パーフルォ口へキシル) エチレン、 ひ°一フルォロォクチル) エチレンなどの (パーフルォロアルキル) エチレン類、 パ一フルォロ (メチルビニルエーテル) 、 パーフルォロ (ェチルビニルエーテル) 、 パ一フルォロ (プロピルビニルエーテ ル) などのパーフルォロ (アルキルビニルエーテル) 類、 式 3の nが 0または 1、 mが 1または 2の化合物が好ましく用いられる。
また、 共重合体 8は、 上記のフッ素化コモノマ、 TFE、 プロピレン、 Vd F の成分以外に、 例えばエチレン、 イソブチレン等の α—才レフイン類、 アクリル 酸およびそのエステル類、 メ夕クリル酸およびそのエステル類、 クロ口トリフル ォロエチレン等の含フッ素ォレフィン類、 ェチルビニルエーテル、 プチルビニル エーテル等のアルキルビニルエーテル類、 酢酸ビニル、 安息香酸ビニルなどのビ ニルエステル類等のコモノマを共重合させたものでもよい。 これらのコモノマに 基づく重合単位の共重合体 8中の含有量は、 共重合体 8の優れた特性を保持する ために、 合量で 1 0モル%以下であることが好ましい。
共重合体 8の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の 従来公知の各種重合方法はいずれも採用できる。
共重合体 8の分子量は、 特に限定されないが、 その目安となる容量流速として 1〜 3 0 0 mm 3Z秒程度が好適であり、 1〜 1 0 0 mm 3 Z秒の範囲がフィルム の物性や製造上、 特に好ましい。 容量流速は、 高化式フローテス夕一を使用して、 2 0 0 °C、 7 k g荷重下で、 直径 l mm、 長さ 2 mmのノズルから単位時間に流 出する共重合体 8の容量で表される値 (mm3Z秒) で定義される。
また、 本発明の含フッ素ポリマーのフィルムとしては、 T F Eに基づく重合単 位を 4 0〜7 5モル%、 エチレンに基づく重合単位を 2 0〜5 0モル%、 および、 プロピレンに基づく重合単位を 5〜4 0モル%の割合で含有する共重合体 9の フィルムも例示される。
共重合体 9においては、 さらに 1種以上の含フッ素ォレフィンや炭化水素系の ォレフィンなどのコモノマ成分に基づく重合単位を含んでもよい。 コモノマ成分 として、 1ーブテン、 2—ブテン、 イソブチレン等の α—ォレフィンや、 (パ一 フルォロブチル) エチレン、 (パーフルォ口へキシル) エチレン、 (パーフルォ ロォクチル) エチレン、 へキサフルォロプロピレン、 フッ化ビニル、 トリクロ口 フルォロエチレン等の含フッ素ォレフィン、 パーフルォロ (ェチルビニルエーテ ル) 、 パーフルォロ (メチルビ二ルェ一テル) 、 パーフルォロ (プロピルビニル エーテル) 等の含フッ素ビニルエーテル類、 含フッ素ァクリレート類等が挙げら れる。
コモノマ成分に基づく重合単位は、 共重合体 9中に 3 0モル%以下の範囲内で あることが好ましい。 特に、 共重合体 9を改質せしめる程度に、 1 0モル%以下 の少量であることが好ましい。
共重合体 9の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等の 従来公知の各種重合方法はすべて採用できる。
共重合体 9の分子量は、 特に限定されないが、 その目安となる容量流速として 1〜 300 mm 3 Z秒程度が好適であり、 特に 1〜 100 mm3/秒の範囲がフィ ルムの物性や製造上好ましい。 容量流速は、 高化式フローテスターを使用して、 200°Cで、 7 k g/ cm2荷重下で、 直径 1 mm、 長さ 2 mmのノズルから単位 時間に流出する共重合体 9の容量で表される値 (mm:iZ秒) で定義される。 本発明の含フッ素ポリマーのフィルムとしては、 TFEに基づく重合単位/ェ チレンに基づく重合単位のモル比が 57/43〜 67/33であり、 かつ重合体 中の第 3ビニルモノマに基づく重合単位の含有量が 0. 1〜10 (モル%) であ る TFE—エチレン一第 3ビニルモノマ系共重合体 (以下、 共重合体 1 0とい う) のフィルムが例示される。
上記の共重合体 10は、 TFEに基づく重合単位 Zエチレンに基づく重合単位 のモル比が 61Z39〜67Z33であるものが好ましい。
また、 共重合体 10中の第 3ビニルモノマは、 CH2=CH— CnF2n÷l (nは 2〜10の整数である) で表される ひ°一フルォロアルキル) エチレンであるこ とが好ましい。
共重合体 1 0は、 TFEとエチレンを主体に、 さらに第 3ビニルモノマとの共 重合体である。 第 3ビニルモノマとして、 1ーブテン、 イソブチレン等の α—才 レフイン、 フッ化ビニリデン、 へキサフルォロプロピレン、 トリクロ口フルォロ エチレン、 フッ化ビニル等の含フッ素ォレフィン、 (パーフルォロアルキル) ェ チレン、 ェチルビニルエーテル、 パ一フルォロ (メチルビ二ルェ一テル) 、 パー フルォロ (プロピルビエルェ一テル) 等のビニルエーテル類、 含フッ素ァクリ レート類が挙げられる。 好ましくは、 CH2=CH— CnF n+1 (nは 2〜 10の 整数である) で表される (パーフルォロアルキル) エチレンである。
共重合体 10中の第 3ビニルモノマに基づく重合単位の含有量は、 0. 1〜 1 0モル%、 特に 0. 3〜5モル%が好ましい。
特に、 TFEに基づく重合単位 Zエチレンに基づく重合単位のモル比が 57/ 43〜67Z33であり、 重合体中の (パーフルォロアルキル) エチレンに基づ く重合単位の含有量が 0. 1〜1 0 (モル%) である共重合体 1 0は、 弾性率が 低く柔軟であり、 農業用被覆資材として好適である。 弾性率低下は、 共重合体 1 0の結晶性が低下したことによると推測される。 共重合体 1 0の製造に関しては、 塊状重合、 懸濁重合、 乳化重合、 溶液重合等 の従来公知の各種重合方法はすべて採用できる。
共重合体 1 0の分子量は、 特に限定されないが、 その目安となる容量流速とし て 1〜300 mm3/秒程度が好適であり、 特に 1〜 1 00mm3/秒の範囲が フィルムの物性や製造上好ましい。 容量流速は、 高化式フローテスターを使用し て、 300°C、 7 k g/ cm2荷重下で、 直径 1 mm、 長さ 2 mmのノズルから単 位時間に流出する共重合体 10の容量で表される値 (mm3Z秒) で定義される。 農業用被覆資材としてのフィルムは、 ハウスの骨組に容易に固定するために、 柔軟性であることが好ましい。 本発明の含フッ素ポリマーのフィルムは、 動的粘 弾性率が 1〜70 k gZmm2であり、 柔軟性に優れている。 特に 3〜60 kg/ mm2の範囲の動的粘弾性率を有することが好ましい。
本発明の含フッ素ポリマーのフィルムは、 柔軟性に優れている上、 引張強度が 1. 5〜5. 0 k gノ mm2と良好であり、 また、 比重も 1. 0〜2. 0と比較的 小さい。
本発明のフィルムは、 インフレーション法や押出成形法等の公知の成形法を用 いて成形される。 フィルムの厚さは、 薄すぎると破れやすくなり、 厚すぎると フィルムの切断、 接着、 展張作業等に不便であり、 さらに光線透過率も低下する。 好ましい厚さは 10〜 300 / mであり、 より好ましくは 20〜 1 00 ΠΊであ る。 フィルムの幅は、 通常 1000〜2000mmの範囲がフィルムの製造や取 り扱いの点から好ましい。
フィルム成形に際して、 上記本発明における含フッ素ポリマーに必要に応じて、 着色剤、 例えば、 酸化チタン、 亜鉛華、 炭酸カルシウム、 沈降性シリカ、 カーボ ンブラック、 クロムイェロー、 フタロシアニンブル一、 フタロシアニングリーン 等を配合できる。
さらに農園芸施設用のハウスの内部は一般に高温高湿で、 天井や壁の内側には 凝縮した水滴が付着しやすい。 付着した水滴は、 太陽光線を遮ったり、 滴下する と栽培中の植物に付着するので植物の良好な成育を妨げる原因となる。 したがつ て該フィルムの水に対する接触角としては大きくないことが望ましい。 本発明の フィルムは、 水に対する接触角が 1 06度以下である。 水素原子を含有しない フッ素樹脂のフィルムの接触角は 1 0 6度を越えるため好ましくない。
また、 水滴の付着を防ぐためにハウスの内側となる面を流滴剤で処理すること が好ましい。 流滴剤としては、 例えば、 アルコール可溶型または水分散型のフッ 素樹脂に無機親水性コロイド物質を配合したもの、 親水性重合体に界面活性剤を 配合したもの、 親水性重合体に界面活性剤、 無機親水性コロイド物質を配合した もの等が挙げられる。 無機親水性コロイド物質として、 コロイダルシリカ、 コロ ィダルアルミナ、 コロイダルチタニア等が使用できる。 親水性重合体としては、 ポリビニルアルコールや、 _ S〇3 H、 _ C O O H、 一 N H 2、 — C N、 一 (O C H 2 C H 2) „一等の一般に親水性の官能基を有する重合体が含まれる。 また、 界面 活性剤としては、 ァニオン系、 カチオン系、 ノニオン系のいずれの界面活性剤で あってもよい。
本発明のフィルムは、 水に対する接触角が 1 0 6度以下と小さいので、 上記の 各種表面処理や各種配合の際に、 親和性の面で有利である。
本発明のフィルムは、 農業用被覆資材として、 通常の農業用被覆資材と同様に、 作物の施設栽培のために、 トンネルハウスやパイプハウスの他、 本格的な大型八 ウスにも展張でき、 ハウス内張フィルムとして使用できる。
以下、 本発明を実施例および比較例により具体的に説明するが、 本発明はこれ らによって限定されない。
柔軟性の指標である動的粘弾性率は、 動的粘弾性測定装置 (東洋精機製、 型式 レオログラフソリッド L一 1 ) を用いて測定した 2 5 °Cでの値である。
透明性は、 ヘイズメータ (日本精密光学製、 型式 S E P— T ) を用い全光線透 過率およびヘイズ値を測定し透明性の尺度とした。
比重は、 J I S K - 7 1 1 2 A法に準拠して測定した値である。
接触角は、 接触角測定装置 (協和界面科学 (株) 製、 型式 C A— X) を用いて 測定した水に対する値である。
展張作業性は、 フィルムを展張して骨組に固定用部材を使用して固定する施工 の難易度として、 〇 (施工が容易である) 、 △ (軟質塩化ビニル樹脂と比較して 若干施工が難しい) 、 X (施工は可能であるが、 硬くて人力を要し、 フィルムに シヮが入りやすい) にて評価した。 収納作業性は、 ハウス内張フィルムの展張、 収納の難易度として、 〇 (収納し やすい) 、 △ (ゴヮゴヮ感がある) 、 X (収納できない) にて評価した。
[共重合体 Aの合成]
脱気した撹拌機付きの内容積 2 Lのステンレス製オートクレーブに、 パーフル ォロシクロへキサン 1 966 g、 メタノール 14. 7 g, TFE 250 g、 ェチ レン (以下、 ETという) 1 7. 5 g、 (パーフルォロブチル) エチレン (以下、 P FBEという) 1 7. 4 gを仕込み、 6 5 °Cに昇温した。 1 0 % t—ブチル パーォキシイソブチレ一卜のパーフルォロシクロへキサン溶液 14mLを圧入し、 重合を開始した。 反応に伴い低下する圧力を補うために、 TFE/ETの組成が 53 /47 (モル比) の混合ガスを導入し、 圧力 1 5. O k g/ cm2 Gにて反 応を続けた。 PFBEを混合ガス 2 gに対して 0. lmLの割合で添加し 8時間 反応を続けた。
反応終了後、 反応器内のモノマをパージし、 共重合体分散液をろ過、 洗浄、 乾 燥後、 白色の共重合体 A 164 gを得た。 共重合体 Aは NMR測定より TF Eに 基づく重合単位/ ETに基づく重合単位 ZPF BEに基づく重合単位が 53. 1 /45. 5 / 1. 4 (モル比) であり、 融点が 260 °C、 容量流速は 51. 6 m m3 /秒であった。
[共重合体 Bの合成]
脱気した撹拌機付きの内容積 2 Lのステンレス製オートクレーブに、 パーフル ォロシクロへキサン 1 966 g、 メタノール 14. 2 g、 TFE 250 g、 ET 7. 8 g、 PFBE 3 1. 8 gを仕込み、 65 °Cに昇温した。 50 % t—ブチル パーォキシィソブチレートのパーフルォロシク口へキサン溶液 7 m Lを圧入し、 重合を開始した。 反応に伴い低下する圧力を補うために、 TFEZETの組成が 60/40 (モル比) の混合ガスを導入し、 圧力 14. 3 k g/cm Gにて反 応を続けた。 PFBEを混合ガス 1 gに対して 0. lmLの割合で添加し 8時間 反応を続けた。
反応終了後、 反応器内のモノマをパージし、 共重合体分散液をろ過、 洗浄、 乾 燥後、 白色の共重合体 B 204 gを得た。 共重合体 Bは NMR測定より TFEに 基づく重合単位 ZETに基づく重合単位 ZP F B Eに基づく重合単位が 58. 9 / 37. 3 / 3. 8 (モル比) であり、 融点が 220° (:、 容量流速は 85. 2 m m3 7秒であった。
[例 1 (実施例) ]
幅 600 mmの Tダイスを備えた 30 mm φ押出機を用い、 共重合体 Αを 1 0 0重量部、 アフラス 10 ON (旭硝子製、 TFEに基づく重合単位/プロピレン に基づく重合単位は 56/44 (モル比) ) 30重量部を配合した組成物を、 ダ イス温度 320°Cで押出し、 厚さ 50 /xmのフィルムを得た。 そのフィルムの機 械的特性 [動的粘弾性率 (k g/mm2 ) 、 引張強度 (k g/mm2 ) ] 、 透明 性 [全光線透過率 (%) 、 ヘイズ (%) ] を測定し、 展張作業性および収納作業 性を評価した。 その結果を表 1に示す。 なお、 表 1の配合量の単位は重量部であ る。
[例 2〜3 (実施例) ]
アフラス 1 00 Nの配合量をそれぞれ 60重量部、 1 00重量部とする以外は 例 1と同様にして、 得られたフィルムの機械的特性、 透明性を測定し、 展張作業 性および収納作業性を評価した。 その結果を表 1に示す。
[例 4〜6 (実施例) ]
共重合体 Bを 100重量部、 アフラス 1 00 Nを表 1に示す量で配合した組成 物をダイス温度 270 °Cで押出し、 厚さ 50 mのフィルムを得た。 例 1と同様 にして、 得られたフィルムの機械的特性、 透明性を測定し、 展張作業性および収 納作業性を評価した。 その結果を表 1に示す。
[例 7 (比較例) ]
共重合体 Aを 320°Cで押出した厚さ 60 mのフィルムについて、 例 1と同 様にして評価した。 その結果を表 1に示す。
[例 8 (比較例) ]
ポリフッ化ビニルの厚さ 50 mのフィルム (テドラー 200 SG40TR、 デュポン社製) について、 例 1と同様にして評価した。 その結果を表 1に示す。
[例 9 (比較例) ]
ァフロン PFA P - 66 P (テトラフルォロエチレン一パーフルォロアルキ ルビ二ルェ一テル系共重合体、 旭硝子製) を 380°Cで押出し、 厚さ 5 の フィルムを得た。 得られたフィルムについて、 例 1と同様にして評価した。 その 結果を表 1に示す。
[例 10 (比較例) ]
ァフロン FEP H 330 (テトラフルォロエチレン一へキサフルォロプロピ レン系共重合体、 旭硝子製) を 320°Cで押出し、 厚さ 50 のフィルムを得 た。 得られたフィルムについて、 例 1と同様にして評価した。 その結果を表 1に 示す。
1]
Figure imgf000020_0001
[共重合体 Cの合成]
脱気した撹拌機付きの内容積 1. 3 Lのステンレス製オートクレープに、 パー フルォロシクロへキサン 1 387 g、 TF E 1 62 g, プロピレン (以下、 PP という) 1 3. 4 g、 ET 1. 7 gを仕込み、 66 °Cに昇温した。 5 % t—プチ ルバーオキシィソブチレ一トのパーフルォロシクロへキサン溶液 9 mLを圧入し、 重合を開始した。
反応に伴い低下する圧力を補うために、 TF E/P PZETの組成が 54/8 / 38 (モル比) の混合ガスを導入し、 圧力 14. 4 k g/ cm Gにて 8時間 反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散液をろ 過、 洗诤、 乾燥後、 白色の共重合体 Cを 8 8 g得た。 共重合体 Cは、 NMR測定 より T F Eに基づく重合単位 Z P Pに基づく重合単位 Z E Tに基づく重合単位が 53. 2/ 38. 4/8. 4 (モル比) であり、 容量流速は 92. 3 mm3 Z秒 であった。
[共重合体 Dの合成]
脱気した撹拌機付きの内容積 1 Lのステンレス製ォ一トクレーブに、 脱イオン 水 63 5 g、 パ一フルォロオクタン酸アンモニゥム 5 g、 TFE 3 2. 6 g、 P P 0. 6 g、 ET O. 3 gを仕込み、 8 0°Cに昇温した。 30 %過硫酸アンモニ ゥム水溶液 5 mLを圧入し、 重合を開始した。
反応に伴い低下する圧力を補うために、 TF E/P PZETの組成が 6 1/2 1/1 8 (モル比) の混合ガスを導入し、 圧力 1 7. 7 k g/cm2 Gにて 7時 間反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散液 8 37 gを得た。 分散液ラテックスに硫酸を滴下して凝集させ、 さらに洗浄、 乾燥 して共重合体 Dを 1 94 g得た。 共重合体 Dは、 NMR測定より TFEに基づく 重合単位 ZP Pに基づく重合単位/ ETに基づく重合単位は、 6 2. 1/2 1. 6/1 6. 3 (モル比) であり、 容量流速は 78. 2 mm3 Z秒であった。
[例 1 1 (実施例) ]
幅 60 Ommの Tダイスを備えた 30 mmc/)押出機を用い、 共重合体 Aを 1 0 0重量部、 共重合体 Cを 20重量部を配合した組成物を、 ダイス温度 320 °Cで 押出し、 厚さ 5 0 zzmのフィルムを得た。 そのフィルムの機械的特性 [動的粘弾 性率 (k g/mm2 ) 、 引張強度 (k g /mm2 ) ] 、 透明性 [全光線透過率 (%) 、 ヘイズ (%) ] を測定した、 また展張作業性および収納作業性を評価し た。 その結果を表 2に示す。 なお、 表 2の配合量は重量部である。
[例 1 2 (実施例) ]
共重合体 Cの配合量を 40重量部とする以外は例 1 1と同様にして、 得られた フィルムの機械的特性、 透明性を測定し、 また展張作業性および収納作業性を評 価した。 その結果を表 2に示す。
[例 1 3 (実施例) ] 共重合体 Cのかわりに共重合体 Dを 6 0重量部とする以外は例 1 1と同様にし て、 得られたフィルムの機械的特性、 透明性を測定し、 また展張作業性および収 納作業性を評価した。 その結果を表 2に示す。
[例 1 4 (実施例) ]
例 1 1と同様の押出機を用い、 共重合体 Bを 1 0 0重量部、 共重合体 Cを 6 0 重量部を配合した組成物を、 ダイス温度 2 7 5 °Cで押出し、 厚さ 5 0 2 mのフィ ルムを得た。 そのフィルムの機械的特性、 透明性を測定し、 また展張作業性およ び収納作業性を評価した。 その結果を表 2に示す。
[例 1 5 (実施例) ]
共重合体 Cのかわりに共重合体 Dを 2 0重量部とする以外は例 1 4と同様にし て、 得られたフィルムの機械的特性、 透明性を測定し、 また展張作業性および収 納作業性を評価した。 その結果を表 2に示す。
[例 1 6 (実施例) ]
共重合体 Cのかわりに共重合体 Dを 4 0重量部とする以外は例 1 4と同様にし て、 得られたフィルムの機械的特性、 透明性を測定し、 また展張作業性および収 納作業性を評価した。 その結果を表 2に示す。
2]
Figure imgf000023_0001
[共重合体 Eの合成]
脱気した撹拌機付きの内容積 1 Lのステンレス製オートクレープに、 脱イオン 水 6 3 5 g、 パーフルォロオクタン酸アンモニゥム 5 g、 TFE 1 5. 8 g、 P P 0. 3 g、 Vd F l l . 9 gを仕込み、 7 0°Cに昇温した。 3 0 %過硫酸アン モニゥム水溶液 5 mLを圧入し、 重合を開始した。
反応に伴い低下する圧力を補うために、 TF EZP PZVd Fの組成が 45/ 45/1 0 (モル比) の混合ガスを導入し、 圧力 1 6. 7 k g/cm2 Gにて 7. 2時間反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散 液 8 1 8 gを得た。 分散液に塩化アンモニゥムを滴下して凝集させ、 さらに洗浄、 乾燥して共重合体 Eを 1 88 g得た。 共重合体 Eは、 NMR測定より TFEに基 づく重合単位/ p pに基づく重合単位 ZV d Fに基づく重合単位が 47. 5/1 1. 2/41. 3 (モル比) であり、 融点が 1 27° 容量流速は 57. 3mm3 Z秒であった。 [共重合体 Fの合成]
脱気した撹拌機付きの内容積 1 Lのステンレス製ォ一トクレーブに、 脱イオン 水 635 g、 パーフルォロオクタン酸アンモニゥム 5 g、 TFE 14. 9 g、 P P I. 4 g、 V d F 9. 7 g、 P F B E 1. 2 gを仕込み、 80°Cに昇温した。 30 %過硫酸アンモニゥム水溶液 5 mLを圧入し、 重合を開始した。
反応に伴い低下する圧力を補うために、 TFE/PPZVd Fの組成が 58/ 10/32 (モル比) の混合ガスを導入し、 圧力 18. 3 k g/c m2 Gにて反 応を続けた。 P F B Eを混合ガス 3 gに対して 0. lmLの割合で添加し 8時間 反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散液 84 O gを得た。 分散液ラテックスに硫酸を滴下して凝集させ、 さらに洗净、 乾燥し て共重合体 Fを 1 94 g得た。 共重合体 Fは、 NMR測定より TF Eに基づく重 合単位 ZP pに基づく重合単位 ZV d Fに基づく重合単位 ZP F B Eに基づく重 合単位は、 59. 9/ 1 1. 4/27. 3/1. 4 (モル比) であり、 融点が 1 39°C、 容量流速は 37. 7 mm3 Z秒であった。
[例 1 7 (実施例) ]
幅 600mmの Tダイスを備えた 3 Ommc/)押出機を用い、 共重合体 Aを 10 0重量部、 共重合体 Eを 50重量部を配合した組成物を、 ダイス温度 320°Cで 押出し、 厚さ 50 /xmのフィルムを得た。 そのフィルムの機械的特性 [動的粘弾 性率 (k g/mm2 ) 、 引張強度 (k gZmn ) ] 、 透明性 [全光線透過率 (%) 、 ヘイズ (%) ] を測定した、 また展張作業性および収納作業性を評価し た。 その結果を表 3に示す。 なお、 表 3の配合量は重量部である。
[例 1 8 (実施例) ]
共重合体 Eの配合量を 120重量部とする以外は例 1 7と同様にして、 得られ たフィルムの機械的特性、 透明性を測定し、 また展張作業性および収納作業性を 評価した。 その結果を表 3に示す。
[例 1 9 (実施例) ]
共重合体 Eのかわりに共重合体 Fを 1 00重量部とする以外は例 1 7と同様に して、 得られたフィルムの機械的特性、 透明性を測定し、 また展張作業性および 収納作業性を評価した。 その結果を表 3に示す。 [例 2 0 (実施例) ]
例 1 7と同様の押出機を用い、 共重合体 Bを 1 0 0重量部、 共重合体 Eを 1 2 0重量部を配合した組成物を、 ダイス温度 2 7 5 °Cで押出し、 厚さ 5 0 ^ mの フィルムを得た。 そのフィルムの機械的特性、 透明性を測定し、 また展張作業性 および収納作業性を評価した。 その結果を表 3に示す。
[例 2 1 (実施例) ]
共重合体 Eのかわりに共重合体 Fを 5 0重量部とする以外は例 2 0と同様にし て、 得られたフィルムの機械的特性、 透明性を測定し、 また展張作業性および収 納作業性を評価した。 その結果を表 3に示す。
[例 2 2 (実施例) ]
共重合体 Eのかわりに共重合体 Fを 1 0 0重量部とする以外は例 2 0と同様に して、 得られたフィルムの機械的特性、 透明性を測定し、 また展張作業性および 収納作業性を評価した。 その結果を表 3に示す。
ほ 3]
Figure imgf000026_0001
[共重合体 Gの合成]
脱気した撹拌機付きの内容積 1 Lのステンレス製オートクレープに、 脱イオン 水 6 3 5 g、 パーフルォロオクタン酸アンモニゥム 5 g TFE 3 2. 4 g E T O . 5 g P P 0. 3 gを仕込み、 7 0°Cに昇温した。 5 %過硫酸アンモニゥ ム水溶液 5mLを圧入し、 重合を開始した。 反応に伴い低下する圧力を補うため に、 TF EZET/P Pの組成が 6 0Z3 0/ 1 0 (モル比) の混合ガスを導入 し、 圧力 1 5. 6 k g/ cm2 Gにて 6. 7時間反応を続けた。
反応終了後、 反応器内のモノマをパージし、 共重合体分散液 8 2 6 gを得た。 この分散液に塩化アンモニゥムを滴下して凝集させ、 さらに洗浄、 乾燥して共重 合体 Gを 2 0 1 g得た。 共重合体 Gは、 NMR測定より TF Eに基づく重合単位 ZETに基づく重合単位 ZP Pに基づく重合単位が 5 9. 6 / 2 9. 1 / 1 1. 3 (モル比) であり、 融点 1 7 9°Cであった。 容量流速が 1 6. 2mm3 /秒で あった。 [共重合体 Hの合成]
脱気した撹拌機付きの内容積 1 Lのステンレス製ォ一トクレーブに、 脱イオン 水 6 1 0 g、 パーフルォロオクタン酸アンモニゥム 3. 6 g、 リン酸水素ニナト リウム 12水和物 14. 8 g、 水酸化ナトリウム 1. 59 g、 過硫酸アンモニゥ ム 3 g、 硫酸鉄 0. 1 1 g、 エチレンジァミン四酢酸 0. 1 0 g、 2—ブタノ一 ル 1. 8 gを仕込み、 次に TFE 23. 5 g、 ET 2. 5 g、 PP 1. 0 gを仕 込み、 25°Cに保持した。 水 1 OmLに対し水酸化ナトリウム 1. 76 gおよび ロンガリット 0. 29 gの割合の溶液を 2mLを圧入し重合を開始した。 反応に 伴い低下する圧力を補うために TF EZETZP Pの組成が 50 / 2 5 / 2 5 (モル比) の混合ガスを導入し、 圧力 16. 8 k g/cm2 Gにて 7. 2時間反 応を続けた。
反応終了後、 反応器内のモノマをパージし、 共重合体分散液 826 gを得た。 この分散液に塩化アンモニゥムを滴下して凝集させ、 さらに洗浄、 乾燥して共重 合体 Hを 186 g得た。 共重合体 Hは、 NMR測定より TF Eに基づく重合単位 ZETに基づく重合単位 ZP Pに基づく重合単位が 50. 3 /27. 0 /22. 7 (モル比) であり、 融点が 147°C、 容量流速が 31. 9mm3 /秒であった。
[例 23 (実施例) ]
幅 60 Ommの Tダイスを備えた 3 Ommd押出機を用い、 共重合体 Gを 10 0重量部、 アフラス 1 0 ON (旭硝子製、 TFEに基づく重合単位/プロピレン に基づく重合単位は 56Z44 (モル比) ) 30重量部を配合した組成物を、 ダ イス温度 220°Cで押出し、 厚さ 50 mのフィルムを得た。 そのフィルムの機 械的特性 [動的粘弾性率 (k gZmm2 ) 、 引張強度 (k g/mm2 ) ] 、 透明 性 [全光線透過率 (%) 、 ヘイズ (%) ] を測定し、 展張作業性および収納作業 性を評価した。 その結果を表 4に示す。 なお、 表 4の配合量は重量部である。
[例 24〜25 (実施例) ]
アフラス 1 00 Nの配合量をそれぞれ 60重量部、 1 00重量部とする以外は 例 23と同様にして、 得られたフィルムの機械的特性、 透明性を測定し、 展張作 業性および収納作業性を評価した。 その結果を表 4に示す。 [例 26〜 28 (実施例) ]
共重合体 Hを 1 0 0重量部、 1 00 Nを表 4のとおりに配合した組成 物を例 2 3と同様にして、 得られた 機械的特性、 透明性を測定し、 展 張作業性および収納作業性を評価した その結果を表 4に示す。
4]
Figure imgf000028_0001
[例 29 (実施例) ]
幅 60 Ommの Τダイスを備えた 3 0 mm φ押出機を用い、 共重合体 Gを 1 0 0重量部、 共重合体 Εを 50重量部含有する樹脂組成物を、 ダイス温度 220°C にて押出し、 厚さ 50 /mのフィルムを得た。 そのフィルムの機械的特性 [動的 粘弾性率 (k g/mm2 ) 、 引張強度 (k gZmm2 ) 3 、 透明性 [光線透過率
(%) 、 ヘイズ (%) ] を測定し、 また展張作業性および収納作業性を評価した。 その結果を表 5に示す。 なお、 表 5の配合量は重量部である。
[例 30〜 34 (実施例) ]
表 5に示す配合の樹脂組成物を用いて、 例 2 9と同様にフィルムを作成し、 そ のフィルムを例 29と同様に測定し、 また評価した。 その結果を表 5に示す ほ 5]
Figure imgf000029_0001
[例 35 (実施例) ]
TF Eに基づく重合単位 ZH F Pに基づく重合単位 ZV d Fに基づく重合単位 が 40Z10Z50 (モル%) の組成であり、 融点が 120°C、 容量流速が 13. 7mm3 Z秒である含フッ素共重合体 (THV 200 G、 3 M社製) を 1 80 °C で押出し、 厚さ 60 mのフィルムを得た。 そのフィルムの機械的特性、 透明性 を測定し、 また展張作業性および収納作業性を評価した。 その結果を表 6に示す。
[例 36 (実施例) ]
TFEに基づく重合単位 ZH F Pに基づく重合単位 ZV d Fに基づく重合単位 が 55/10Z35 (モル%) の組成であり、 融点が 1 50°C、 容量流速が 39. 6mm3 Z秒である含フッ素共重合体 (THV400 G、 3 M社製) を 220 °C で押出し、 厚さ 60 mのフィルムを得た。 このフィルムについて、 例 35と同 様して測定し、 評価した。 その結果を表 6に示す。
[例 3 7 (実施例) ]
TFEに基づく重合単位 ZH F Pに基づく重合単位 ZV d Fに基づく重合単位 が 58/1 0Z32 (モル%) の組成であり、 融点が 1 64°C、 容量流速が 67. 5 mm3 /秒である含フッ素共重合体 (THV 500 G、 3 M社製) を 220 °C で押出し、 厚さ 60 mのフィルムを得た。 このフィルムについて、 例 3 5と同 様して測定し、 評価した。 その結果を表 6に示す。
[表 6]
Figure imgf000030_0001
[例 38 (実施例) ]
内容積 1 リツトルの撹拌機付きのステンレス製オートクレープに、 脱気した後、 脱イオン水 6 3 5 g、 パーフルォロオクタン酸アンモニゥム 5 g、 TFE 1 5. 8 g、 P P O. 3 g、 V d F 1 1. 9 gを仕込み、 70°Cに昇温した。 30 %過 硫酸アンモニゥム水溶液 5m 1 を圧入し、 重合を開始した。 反応に伴い低下する 圧力を補うために、 TFEZP PZVd Fの組成が 45Z45ノ 1 0 (モル比) の混合ガスを導入し、 圧力 16. 7 k gZcm2 Gにて 7. 2時間反応を続けた。 反応終了後、 反応器内のモノマーをパージし、 共重合体分散液 8 1 8 gを得た。 この分散液に塩化アンモニゥムを滴下して凝集させ、 さらに洗浄、 乾燥して共重 合体を 1 8 8 g得た。 共重合体は、 NMRにより測定して TFEに基づく重合単 位 ZP Pに基づく重合単位 ZVd Fに基づく重合単位が 47. 5/1 1. 2/4 1. 3 (モル比) の組成であり、 融点が 1 27°Cであり、 容量流速が 5 7. 3 (mm3 /秒) であった。
含フッ素共重合体を 200°Cで押出した厚さ 80; mのフィルムの機械的特性、 透明性を測定した、 また展張作業性を評価した。 その結果を表 7に示す。
[例 39 (実施例) ]
内容積 1リツトルの撹拌機付きのステンレス製ォ一トクレーブに、 脱気した後、 脱イオン水 6 10 g、 パ一フルォロオクタン酸アンモニゥム 3. 6 g、 リン酸水 素ニナトリウム 12水和物 14. 8 g、 水酸化ナトリウム 1. 59 g、 過硫酸ァ ンモニゥム 3 g、 硫酸鉄 0. 1 1 g、 エチレンジァミン四酢酸 0. 1 0 g、 2 - ブタノール 1. 8 gを仕込み、 次に TFE 17. 5 g、 PP 1. 5 g、 Vd F 9. O gを仕込み、 25°Cに保持した。 水 1 Om 1に対し水酸化ナトリウム 1. 76 gおよびロンガリット 0. 29 gの溶液 2 m 1を圧入し重合を開始した。
反応に伴い低下する圧力を補うために TF EZP P/Vd Fの組成が 60/1 5 / 25 (モル比) の混合ガスを導入し、 圧力 18. 7 k g/cm2 Gにて 10. 2時間反応を続けた。 反応終了後、 反応器内のモノマーをパージし、 共重合体分 散液 832 gを得た。 この分散液に硫酸を滴下して凝集させ、 さらに洗浄、 乾燥 して共重合体を 1 79 g得た。 共重合体は、 NMRにより測定して TFEに基づ く重合単位/ P Pに基づく重合単位/ Vd Fに基づく重合単位が 62. 3/18. 1/19. 6 (モル比) の組成であり、 融点が 1 55 °Cであり、 容量流速が 27. 1 (mm3 Z秒) であった。 例 38と同様にして、 得たフィルムを評価した。 そ の結果を表 7に示す。
[例 40 (実施例) ]
内容積 20リットルの撹拌機付きのステンレス製オートクレープに、 脱気した 後、 脱イオン水 1 1. 8 k g、 tーブ夕ノール 520 g、 メタノール 135 g、 パーフルォロオクタン酸アンモニゥム 50 g、 TFE 420 g, P P 29 g、 V d F 1 34 gを仕込み、 70°Cに昇温した。 30 %過硫酸アンモニゥム水溶液 1 8 Om lを圧入し、 重合を開始した。 反応に伴い低下する圧力を補うために TF EZP PZVd Fの組成が 70/ 10Z20 (モル比) の混合ガスを導入し、 圧 力 1 7. 6 k g/c m2 Gにて 9. 6時間反応を続けた。 反応器内のモノマーを パージし、 共重合体分散液 1 5. 2 k gを得た。 この分散液に塩化アンモニゥム を滴下して凝集させ、 さらに洗浄、 乾燥して共重合体を 2. 3 k gを得た。 共重 合体は、 NMRにより測定して TF Eに基づく重合単位 ZP Pに基づく重合単位 ZV d Fに基づく重合単位が 7 1. 2/1 0. 1/18. 7 (モル比) の組成で あり、 融点が 164°Cであり、 容量流速が 4. 8 (mm3 Z秒) であった。 例 3 8と同様にしてフィルムを作成し、 得られたフィルムを評価した。 その結果を表 7に示す。
[例 41 (実施例) ]
内容積 20リットルの撹拌機付きのステンレス製ォ一トクレーブに、 脱気した 後、 脱イオン水 1 1. 8 k g、 tーブ夕ノール 57 5 g、 メタノール 96 g、 パーフルォロオクタン酸アンモニゥム 60 g、 TF E 266 g, PP 29 g、 V d F 233 gを仕込み、 70°Cに昇温した。 30 %過硫酸アンモニゥム水溶液 1 8 Om lを圧入し、 重合を開始した。 反応に伴い低下する圧力を補うために TF EZP PZVcl Fの組成が 50Z12Z38 (モル比) の混合ガスを導入し、 圧 力 1 7. 4 k g / c m 2 Gにて 7. 7時間反応を続けた。 反応器内のモノマを パージし、 共重合体分散液 14. 7 k gを得た。 この分散液に塩化アンモニゥム を滴下して凝集させ、 さらに洗浄、 乾燥して共重合体を 2. 1 k gを得た。 共重 合体は、 N M Rにより測定して T F Eに基づく重合単位 P Pに基づく重合単位 /Vd Fに基づく重合単位が 5 1. 8/1 2. 7/35. 5 (モル比) の組成で あり、 融点が 147°Cであり、 容量流速が 28. 6 (mm3 Z秒) であった。 例 38と同様にしてフィルムを作成し、 得られたフィルムを評価した。 その結果を 表 7に示す。 [¾7]
Figure imgf000033_0001
[例 42 (実施例) ]
撹拌機付きの内容積 1 Lのステンレス製オートクレ一ブを脱気した後、 脱ィォ ン水 63 5 g、 パーフルォロオクタン酸アンモニゥム 5 g TFE 14. 9 g P Pを 1. 4 g Vd F 9. 7 g P FBE 1. 2 gを仕込み、 80°Cに昇温し た。 30 %過硫酸アンモニゥム水溶液 5 mLを圧入し、 重合を開始した。 反応に 伴い低下する圧力を補うために、 TFEZP P/Vd Fの組成が 58/1 0/3 2 (モル比) の混合ガスを導入し、 圧力 1 8. 3 k g/cm2 Gにて反応を続け た。 P FBEを混合ガス 3 gに対して 0. 1 mLの割合で添加し 8時間反応を続 けた。
反応終了後、 反応器内のコモノマをパージし、 共重合体分散液 840 gを得た。 分散液に硫酸を滴下して凝集させ、 さらに洗浄、 乾燥して共重合体を 1 94 g得 た。 共重合体は、 NMRの測定より TFEに基づく重合単位 ZP Pに基づく重合 単位 ZVd Fに基づく重合単位/ P F B Eに基づく重合単位が 5 9. 9/ 1 1. 4/ 2 7. 3/ 1. 4 (モル比) であり、 融点が 1 39°Cであり、 容量流速が 3 7. 7mm:! Z秒であった。 共重合体を 200 °Cで押出した厚さ 80 mのフィ ルムの機械的特性 [動的粘弾性率 (k g/mm2 ) 、 引張強度 (k g/mm2 ) ] 、 透明性 [全光線透過率 (%) ヘイズ (%) ] を測定した。 また、 展張作 業性および収納作業性を評価した。 その結果を表 8に示す。
[例 43 (実施例) ]
撹拌機付きの内容積 1 Lのステンレス製オートクレープを脱気した後、 脱ィォ ン水 6 10 g、 パーフルォロオクタン酸アンモニゥム 3. 6 g、 リン酸水素ニナ トリウム 1 2水和物 14. 8 g、 水酸化ナトリウム 1. 59 g、 過硫酸アンモニ ゥム 3 g、 硫酸鉄 0. 1 1 g、 エチレンジァミン四酢酸 0. 10 gおよび 2—ブ タノ一ル 1. 8 gを仕込み、 次に TFE 22, 6 g、 PPを 3. 5 g、 Vd F l 6. 0 g、 (パーフルォロォクチル) エチレン (CH2 =CH-C8 F17、 以下、 PFOEという) 1. 3 gを仕込み、 25°Cに保持した。 水 1 OmLに対し水酸 化ナトリウム 1. 76 gおよびロンガリッ ト 0. 29 gの溶液 2mLを圧入し重 合を開始した。 反応に伴い低下する圧力を補うために TF EZP P/Vd Fの組 成が 53/10Z37 (モル比) の混合ガスを導入し、 圧力 20. 3 k g/cm2 Gにて反応を続けた。 P FOEを混合ガス 5 gに対して 0. lmLの割合で添加 し 1 1時間反応を続けた。
反応終了後、 反応器内のコモノマをパージし、 共重合体分散液 827 gを得た。 分散液に硫酸を滴下して凝集させ、 さらに洗浄、 乾燥して共重合体を 187 g得 た。 共重合体の NMRによる組成割合、 融点、 容量流速を表 8に示す。 また、 例 42と同様にして、 得たフィルムの機械的特性、 透明性を測定し、 展張作業性お よび収納作業性を評価した。 その結果を表 8に示す。
[例 44 (実施例) ]
撹拌機付きの内容積 20 Lのステンレス製オートクレープを脱気した後、 脱ィ オン水 1 1. 8 k g、 tーブ夕ノール 520 g、 メタノール 1 35 g、 パ一フル ォロオクタン酸アンモニゥム 50 g、 TFE 399 g、 PPを 44 g、 Vd F l 25 g、 パ一フルォロ (プロピルビニルェ一テル) (CF2 =C F C3 F7 、 以 下 PPVEという) 35 gを仕込み、 70°Cに昇温した。 30%過硫酸アンモニ ゥム水溶液 1 8 OmLを圧入し、 重合を開始した。 反応に伴い低下する圧力を補 うために TF EZP PZVd Fの組成が 6 5 Z20/ 1 5 (モル比) の混合ガス を導入し、 圧力 1 7. 6 k g/cm2 Gにて反応を続けた。 PPVEを混合ガス 5 gに対して 0. lmLの割合で添加し 9. 6時間反応を続けた。 反応器内のコモノマをパージし、 共重合体分散液 1 5. 2 k gを得た。 分散液 に塩化アンモニゥムを滴下して凝集させ、 さらに洗浄、 乾燥して共重合体を 2. 3 k gを得た。 共重合体の NMRによる組成割合、 融点、 容量流速を表 8に示す。 また、 例 42と同様にして、 得たフィルムの機械的特性、 透明性を測定し、 展張 作業性および収納作業性を評価した。 その結果を表 8に示す。
[例 45 (実施例) ]
撹拌機付きの内容積 20 Lのステンレス製オートクレープを脱気した後、 脱ィ オン水 1 1. 8 k g、 tーブ夕ノール 57 5 g、 メタノール 96 g、 パーフルォ 口オクタン酸アンモニゥム 60 g、 TFE 266 g、 PPを 29 g、 V d F 23 3 g、 パーフルォロ (2—メトキシプロピルビニルエーテル) (式 3において、 n = 0、 m= 1の化合物、 CF3 〇CF (CF3 ) C F2 〇CF = CF2 、 以下 PMVEという) 1 6. 3 gを仕込み、 70°Cに昇温した。 30%過硫酸アンモ ニゥム水溶液 1 8 OmLを圧入し、 重合を開始した。 反応に伴い低下する圧力を 補うために TF EZP P/V d Fの組成が 44Z 12/44 (モル比) の混合ガ スを導入し、 圧力 1 7. 4 k g/cm2 Gにて反応を続けた。 PMVEを混合ガ ス 7 gに対して 0. lmLの割合で添加し 7. 7時間反応を続けた。
反応器内のコモノマをパージし、 共重合体分散液 14. 7 k gを得た。 分散液 に塩化アンモニゥムを滴下して凝集させ、 さらに洗浄、 乾燥して共重合体を 2. l k gを得た。 共重合体の NMRによる組成割合、 融点、 容量流速を表 8に示す。 また、 例 42と同様にして、 得たフィルムの機械的特性、 透明性を測定し、 展張 作業性および収納作業性を評価した。 その結果を表 8に示す。
8]
Figure imgf000036_0001
[例 46 (実施例) ]
内容積 1 リツトルの撹拌機付きステンレス製ォ一トクレーブを脱気した後、 脱 イオン水 6 3 5 g、 パーフルォロオクタン酸アンモニゥム 5 g TF E 32. 4 g ET O. 5 g P P O. 3 gを仕込み、 7 0°Cに昇温した。 5 %過硫酸アン モニゥム水溶液 5m 1を圧入し重合を開始した。 反応に伴い低下する圧力を補う ために、 TFEZETZP Pの組成が 6 0Z30Z 1 0 (モル比) の混合ガスを 導入し、 圧力 1 5. 6 k g/cm Gにて 6. 7時間反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散液 826 gを得た。 この分散液に塩化アンモニゥムを滴下して凝集させ、 洗浄、 乾燥して共重合体を
20 1 g得た。 共重合体は、 NMRによる分析から TF Eに基づく重合単位/ E Tに基づく重合単位/ P Pに基づく重合単位が、 59. 6 / 29. 1 / 1 1. 3 (モル比) であり、 融点が 1 79°Cであり、 容量流速が 1 6. 2 (mm3 /秒) であった。 含フッ素共重合体を 230°Cで押出成形して、 厚さ 80 / mのフィル ムを得た。 このフィルムの機械的特性、 透明性を測定し、 また展張作業性および 収納作業性を評価した。 その結果を表 9に示す。
[例 47 (実施例) ]
内容積 1リットルの撹拌機付きステンレス製オートクレープを脱気した後、 脱 イオン水 6 1 0 g、 パーフルォロオクタン酸アンモニゥム 3. 6 g、 リン酸水素 ニナトリウム 1 2水和物 14. 8 g、 水酸化ナトリウム 1. 59 g、 過硫酸アン モニゥム 3 g、 硫酸鉄 0. 1 1 g、 エチレンジァミン四酢酸 0. 1 0 g、 2—ブ 夕ノール 1. 8 gを仕込み、 次に TFE 23. 5 g、 ET2. 5 gおよび PP 1. 0 gを仕込み、 25°Cに保持した。 水 1 0m 1に対し水酸化ナトリウム 1. 76 gおよびロンガリット 0. 29 gの溶液 2 m 1を圧入し重合を開始した。
反応に伴い低下する圧力を補うために TFEZETZP Pの組成が 50/30 /20 (モル比) の混合ガスを導入し、 圧力 1 6. 8 k g/cm2 Gにて 7. 2 時間反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散液 826 gを得た。 この分散液に塩化アンモニゥムを滴下して凝集させ、 さらに洗 净、 乾燥して共重合体を 186 g得た。 共重合体は、 NMRによる分析から TF Eに基づく重合単位/ E Tに基づく重合単位 ZP Pに基づく重合単位が、 50.
3 / 27. 0 1 /22. 7 (モル比) であり、 融点が 147°Cであり、 容量流速 が 3 1. 9 (mm3 Z秒) であった。 含フッ素共重合体を 230 °Cで押出成形し て、 厚さ 80 /mのフィルムを得た。 このフィルムの機械的特性、 透明性を測定 し、 また展張作業性および収納作業性を評価した。 その結果を表 9に示す。
[例 48 (実施例) ]
内容積 20リットルの撹拌機付きステンレス製オートクレープを脱気した後、 脱イオン水 1 1. 8 k g、 t—ブ夕ノール 520 g、 メタノール 135 g、 パー フルォロオクタン酸アンモニゥム 50 g、 TFE 402 g、 ET44 g、 P P 1 8 gを仕込み、 7 0°Cに昇温した。 5 %過硫酸アンモニゥム水溶液 1 8 Om 1 を 圧入し、 重合を開始した。 反応に伴い低下する圧力を補うために TFEZET/ P Pの組成が 5 0Z3 0Z20 (モル比) の混合ガスを導入し、 圧力 1 7. 6 k g/c m2 Gにて 9. 6時間反応を続けた。 反応器内のモノマをパージし、 共重 合体分散液 1 5. 2 k gを得た。 この分散液に塩化アンモニゥムを滴下して凝集 させ、 さらに洗浄、 乾燥して共重合体を 2. 3 k gを得た。 共重合体は、 NMR による分析から T F Eに基づく重合単位 ZE Tに基づく重合単位 Z P Pに基づく 重合単位が 48. 1 /33. 7/ 1 8. 2 (モル比) であり、 融点が 1 64 °Cで あり、 容量流速が 5 7. 4 (mm3 Z秒) であった。 含フッ素共重合体を 2 3 0°Cで押出成形して、 厚さ 80 tmのフィルムを得た。 このフィルムの機械的特 性、 透明性を測定し、 また展張作業性および収納作業性を評価した。 その結果を 表 9に示す。
ほ 9]
Figure imgf000038_0001
[例 49 (実施例) ]
脱気した撹拌機付きの内容積 2 Lのステンレス製オートクレープに、 パーフル ォロシクロへキサン 1 9 66 g、 メタノール 14. 2 g、 TFE 2 50 g、 ET 7. 8 g、 P FBE 3 1. 8 gを仕込み、 6 5 °Cに昇温した。 t一ブチルバーオ キシィソプチレートの 50 %パーフルォロシクロへキサン溶液 7 mLを圧入し、 重合を開始した。
反応に伴い低下する圧力を補うために、 TF E/ETの組成が 60 Z40 (モ ル比) の混合ガスを導入し、 圧力 14. 3 k g/cm2 Gにて反応を続けた。 P FBEを混合ガス 1 gに対して 0. lmLの割合で添加し 8時間反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散液をろ過、 洗浄、 乾燥 後、 白色の共重合体を 204 g得た。 共重合体は、 NMR測定より TFEに基づ く重合単位 ZETに基づく重合単位が 6 1. 2/38. 8 (モル比) 、 共重合体 中の PF BEに基づく重合単位の含有量が 4. 0モル%であり、 融点が 220° (:、 容量流速が 85. 2mm3 /秒であった。 共重合体を 270°Cで押出成形し、 厚 さ 60 xmのフィルムを得た。 このフィルムの機械的特性 [動的粘弾性率 (k g /mm2 ) 、 引張強度 (k gZmm2 ) ] 、 透明性 [全光線透過率 (%) 、 ヘイ ズ (%) ] 、 を測定し、 また展張作業性および収納作業性を評価した。 その結果 を表 10に示す。
[例 50 (実施例) ]
脱気した撹拌機付きの内容積 1 Lのステンレス製オートクレーブに脱イオン水 6 1 0 g、 パ一フルォロオクタン酸アンモニゥム 3. 6 g、 リン酸水素ニナトリ ゥム 12水和物 14. 8 g、 水酸化ナトリウム 1. 59 g、 過硫酸アンモニゥム 33、 硫酸鉄0. 1 1 g、 エチレンジァミン四酢酸 0. 10 g、 2—ブ夕ノール 1. 8 gを仕込み、 次に TF E 32. 2 g、 ETO. 8 g、 ひ ーフルォ口へキ シル) エチレン (以下、 PFHEという) 1. 6 gを仕込み、 25 °Cに保持した。 水 1 OmLに対し水酸化ナトリウム 1. 76 gおよびロンガリット 0. 29 gを 溶解した溶液を 2 m Lを圧入し重合を開始した。
反応に伴い低下する圧力を補うために TFE/ETの組成が 65/35 (モル 比) の混合ガスを導入し、 圧力 1 5. 9 k g/cm2 Gにて反応を続けた。 PF HEを混合ガス 3 gに対して 0. 1 mLの割合で添加し 8. 4時間反応を続けた。 反応終了後、 反応器内のモノマをパージし、 共重合体分散液 8 1 1 gを得た。 こ の分散液に塩化アンモニゥムを滴下して凝集させ、 洗浄、 乾燥して共重合体を 1 90 g得た。 共重合体は、 NMR測定より TFEに基づく重合単位 ZETに基づ く重合単位が 65. 0 / 35. 0 (モル比) 、 P F HEに基づく重合単位の含有 量が 1. 3モル%であり、 融点が 2 1 6°C、 容量流速が 42. 1mm3 Z秒で あった。 共重合体を 270°Cで押出成形し、 厚さ 60 /mのフィルムを得た。 こ のフィルムの機械的特性、 透明性を測定し、 また展張作業性および収納作業性を 評価した。 その結果を表 10に示す。
[例 51 (実施例) ]
脱気した撹拌機付きの内容積 20 Lのステンレス製オートクレープに、 脱ィォ ン水 1 1. 8 k g、 tーブ夕ノール 520 g、 メタノール 180 g、 パ一フルォ 口オクタン酸アンモニゥム 50 g、 TFE 386 g、 ET 54 g、 PFBE 95 gを仕込み、 70°Cに昇温した。 5 %過硫酸アンモニゥム水溶液 1 8 OmLを圧 入し、 重合を開始した。
反応に伴い低下する圧力を補うために TF EZETの組成が 60 / 30 (モル 比) の混合ガスを導入し、 圧力 16. 2 k g/cm2 Gにて反応を続けた。 P F BEを混合ガス 1 0 gに対して 1 mLの割合で添加し 9. 6時間反応を続けた。 反応器内のモノマをパージし、 共重合体分散液 14. 9 k gを得た。 分散液に塩 化アンモニゥムを滴下して凝集させ、 さらに洗浄、 乾燥して共重合体を 2. 4 k g得た。 共重合体は、 NMR測定より TFEに基づく重合単位 ZETに基づく重 合単位が 65. 5 / 34. 5 (モル比) 、 PF BEに基づく重合単位の含有量が 6. 5モル%であり、 融点が 212°C、 容量流速が 26. 9mm3 Z秒であった。 共重合体を 270°Cで押出成形し、 厚さ 60 /xmのフィルムを得た。 このフィル ムの機械的特性、 透明性を測定し、 また展張作業性および収納作業性を評価した。 その結果を表 10に示す。
ほ 1 0 ]
Figure imgf000041_0001
本発明の農業用フィルムは、 動的弾性率が小さく柔軟性を有するため、 展張時 の作業性に優れ農園芸施設の農業用の被覆資材として好適である。

Claims

請求の範囲
1. 動的粘弾性率が 1〜 7 0 k gZmm、 引張強度が 1. 5〜5. 0 k g/m m2、 比重が 1. 0〜2. 0、 水との接触角が 1 06度以下である含フッ素ポリ マーのフィルムからなることを特徴とする農業用被覆資材。
2. テトラフルォロエチレン一エチレン系共重合体 1 00重量部に対して、 テ トラフルォロエチレン一プロピレン系弾性共重合体 5〜 1 0 0重量部の割合で両 者を含む組成物から成形されたフィルムからなる請求項 1記載の農業用被覆資材。
3. テトラフルォロエチレン一プロピレン系弾性共重合体が、 プロピレンに基 づく重合単位を 5〜 7 0モル%含有する共重合体である請求項 2記載の農業用被 覆資材。
4. テ卜ラフルォロエチレン一エチレン系共重合体が、 テトラフルォロェチレ ンに基づく重合単位 Zエチレンに基づく重合単位の比が 7 0Z30〜 30/7 0
(モル比) であり、 かつ、 該共重合体中の CH2 =CH-Cn F2n + 1 (nは 2〜 1 0の整数である) で表される化合物に基づく重合単位の含有量が 0. 1〜 1 0 モル%である請求項 2記載の農業用被覆資材。
5. テ卜ラフルォロエチレン一エチレ
一プロピレン一エチレン系共重合体を含
Figure imgf000042_0001
系共重合体 1 0 0重量部に対してテトラフルォロエチレン一プロピレンーェチレ ン系共重合体が 5〜 80重量部である組成物から成形されたフィルムからなる請 求項 1記載の農業用の被覆資材。
6. テトラフルォロエチレン一エチレン系共重合体が、 テトラフルォロェチレ ンに基づく重合単位 Zエチレンに基づく重合単位が 70Z3 0〜30Z70 (モ ル比) であり、 かつ共重合体中の CH2 =CH— Cn F2n+1 (nは 2〜 1 0の整 数である) で表される化合物に基づく重合単位の含有量が 0. 1〜 1 0モル%で ある請求項 5記載の農業用被覆資材。
7. テトラフルォロエチレン一プロピレン一エチレン系共重合体が、 テトラフ ルォロエチレンに基づく重合単位を 40〜 70モル%、 プロピレンに基づく重合 単位を 1 0〜 50モル%、 およびエチレンに基づく重合単位を 1〜 50モル%、 の割合で含有する共重合体である請求項 5記載の農業用被覆資材。 一プロピレン一フッ化ビニリデン系共重合体を含み、 テトラフルォロエチレン一 エチレン系共重合体 1 0 0重量部に対してテトラフルォロエチレン一プロピレン 一フッ化ビニリデン系共重合体が 5〜 2 00重量部である組成物から成形された フィルムからなる請求項 1記載の農業用被覆資材。
9. テトラフルォロエチレン一エチレン系共重合体が、 テトラフルォロェチレ ンに基づく重合単位/エチレンに基づく重合単位が 7 0Z30〜30Z70 (モ ル比) であり、 かつ共重合体中の CH2 =CH-Cn F2n + 1 (nは 2〜 1 0の整 数である) で表される化合物に基づく重合単位の含有量が 0 · 1〜 1 0モル%で ある請求項 8記載の農業用被覆資材。
1 0. テトラフルォロエチレン一プロピレン一フッ化ビニリデン系共重合体が、 テトラフルォロエチレンに基づく重合単位を 5〜8 5モル%、 プロピレンに基づ く重合単位を 1〜45モル%、 およびフッ化ビニリデンに基づく重合単位を 5〜 70モル%、 の割合で含有する共重合体である請求項 8記載の農業用被覆資材。
1 1. テトラフルォロエチレン一エチレン一プロピレン系共重合体とテトラフ ルォロエチレン一プロピレン系弾性共重合体を含み、 テトラフルォロエチレン一 エチレン一プロピレン系共重合体 1 0 0重量部に対して、 テトラフルォロェチレ ンープロピレン系弾性共重合体が 5〜 1 00重量部である組成物から成形された フィルムからなる請求項 1記載の農業用被覆資材。
1 2. テトラフルォロエチレン一エチレン一プロピレン系共重合体が、 テトラ フルォロエチレンに基づく重合単位を 40〜7 0モル%、 エチレンに基づく重合 単位を 20〜50モル%、 およびプロピレンに基づく重合単位を 5〜40モル% の割合で含有する共重合体である請求項 1 1記載の農業用被覆資材。
1 3. テトラフルォロエチレン—プロピレン系弾性共重合体が、 プロピレンに 基づく重合単位を 5〜 7 0モル%含有する共重合体である請求項 1 1または 1 2 記載の農業用被覆資材。
14. テトラフルォロエチレン一エチレン一プロピレン系共重合体 1 00重量 部に対してテトラフルォロエチレン一プロピレン—フッ化ビニリデン系共重合体 5〜2 00重量部の割合で両共重合体を含む組成物から成形されたフィルムから なる請求項 1記載の農業用被覆資材。
1 5. テトラフルォロエチレン一プロピレン—フッ化ビニリデン系共重合体が、 テトラフルォロエチレンに基づく重合単位を 5〜8 5モル%、 プロピレンに基づ く重合単位を 1〜45モル%、 およびフッ化ビニリデンに基づく重合単位を 5〜 70モル%、 の割合で含有する共重合体である請求項 14記載の農業用被覆資材。
1 6. テトラフルォロエチレン一エチレン一プロピレン系共重合体が、 テトラ フルォロエチレンに基づく重合単位を 40〜70モル%、 エチレンに基づく重合 単位を 20〜50モル%、 およびプロピレンに基づく重合単位を 5〜40モル%、 の割合で含有する共重合体である請求項 14記載の農業用被覆資材。
1 7. テトラフルォロエチレンに基づく重合単位を 5〜84モル%、 へキサフ ルォロプロピレンに基づく重合単位を 1〜45モル%、 およびフッ化ビニリデン に基づく重合単位を 5〜90モル%、 の割合で含有する含フッ素共重合体のフィ ルムからなる請求項 1記載の農業用被覆資材。
1 8. テトラフルォロエチレンに基づく重合単位を 5〜8 5モル%、 プロピレ ンに基づく重合単位を 1〜5 0モル%、 およびフッ化ビニリデンに基づく重合単 位を 5〜70モル%、 の割合で含有する含フッ素共重合体のフィルムからなる請 求項 1記載の農業用被覆資材。
1 9. 下記式 1、 式 2または式 3で表されるフッ素化コモノマの 1種以上に基 づく重合単位を合量で 0. 0 5〜20モル%、 テトラフルォロエチレンに基づく 重合単位を 3 0〜8 5モル%、 プロピレンに基づく重合単位を 1〜30モル%、 およびフッ化ビニリデンに基づく重合単位を 5〜68. 5モル%、 の割合で含有 する含フッ素共重合体のフィルムからなる請求項 1記載の農業用被覆資材。
ただし、 下記の式 1、 式 2、 式 3において、 Yはフッ素原子または水素原子で あり、 Rf は炭素数 2〜 1 2の 2価のフッ素置換有機基であり、 Xはフッ素原子、 塩素原子、 または水素原子であり、 nは 0〜3の整数であり、 mは 1〜4の整数 である。
XRfCY = CH2 式 1
XROCF = CF, 式 2
C F, (C F,) n (〇CF (C F,) CF,) m〇CF = CF., · · ·式 3
20. テトラフルォロエチレンに基づく重合単位を 40〜 75モル%、 ェチレ ンに基づく重合単位を 20〜 50モル%、 およびプロピレンに基づく重合単位を 5〜40モル%、 の割合で含有する含フッ素共重合体のフィルムからなる請求項 1記載の農業用被覆資材。
2 1. テトラフルォロエチレンに基づく重合単位 Zエチレンに基づく重合単位 が 5 7/43〜 67/3 3 (モル比) であり、 かつ重合体中の第 3ビニルモノマ に基づく重合単位の含有量が 0. 1〜 1 0 (モル%) であるテトラフルォロェチ レン エチレン系重合体のフィルムからなる請求項 1記載の農業用被覆資材。
22. テトラフルォロエチレンに基づく重合単位 Zエチレンに基づく重合単位 が 6 1/39〜 6 7/33 (モル比) である請求項 2 1記載の農業用被覆資材。
2 3. 第 3ビニルモノマが CH2 =CH— Cn F2n + 1 (nは 2〜1 0の整数で ある) で表される ひ°一フルォロアルキル) エチレンである請求項 2 1記載の農 業用被覆資材。
PCT/JP1999/003342 1998-06-23 1999-06-23 Materiau de couverture agricole WO1999067333A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU43920/99A AU4392099A (en) 1998-06-23 1999-06-23 Agricultural covering material
US09/720,240 US6461719B1 (en) 1998-06-23 1999-06-23 Agricultural covering material
KR1020007014494A KR20010053047A (ko) 1998-06-23 1999-06-23 농업용 피복자재
EP99926768A EP1090955A1 (en) 1998-06-23 1999-06-23 Agricultural covering material

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP17632198 1998-06-23
JP17632098 1998-06-23
JP10/176320 1998-06-23
JP10/176321 1998-06-23
JP18088698 1998-06-26
JP18088798 1998-06-26
JP10/180886 1998-06-26
JP10/180887 1998-06-26
JP18278198 1998-06-29
JP10/182781 1998-06-29
JP10/182782 1998-06-29
JP18278298 1998-06-29

Publications (1)

Publication Number Publication Date
WO1999067333A1 true WO1999067333A1 (fr) 1999-12-29

Family

ID=27553444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003342 WO1999067333A1 (fr) 1998-06-23 1999-06-23 Materiau de couverture agricole

Country Status (6)

Country Link
US (1) US6461719B1 (ja)
EP (1) EP1090955A1 (ja)
KR (1) KR20010053047A (ja)
CN (1) CN1134501C (ja)
AU (1) AU4392099A (ja)
WO (1) WO1999067333A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160298A1 (en) * 1998-08-20 2001-12-05 Asahi Glass Company Ltd. Aqueous dispersion of fluorocopolymer and composition for water-based coating material
JP2002114824A (ja) * 2000-10-04 2002-04-16 Daikin Ind Ltd 含フッ素エラストマー
JP2003105104A (ja) * 2001-09-27 2003-04-09 Asahi Glass Co Ltd 透明性に優れるフッ素樹脂フィルム
WO2011007705A1 (ja) * 2009-07-13 2011-01-20 旭硝子株式会社 エチレン/テトラフルオロエチレン系共重合体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120527B2 (ja) 2002-10-04 2008-07-16 旭硝子株式会社 テトラフルオロエチレン/エチレン系共重合体組成物
US20060057343A1 (en) * 2004-09-01 2006-03-16 Hideoki Tsuji Light-scattering composite agricultural film
CN101426364A (zh) 2006-02-24 2009-05-06 太阳发明国际有限责任公司 温室、温室大棚、滤光装置、照明装置、导光装置、应用和引入装置
WO2008105298A1 (ja) * 2007-02-21 2008-09-04 Asahi Glass Company, Limited 積層シート
FR2958206A1 (fr) 2010-03-30 2011-10-07 Arkema France Films fluores multicouche
CN104093772A (zh) * 2012-01-30 2014-10-08 旭硝子株式会社 光学构件、其制造方法以及具备该光学构件的物品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731295A (ja) * 1993-07-13 1995-02-03 Nippon Carbide Ind Co Inc ハウス内張フィルム
JPH08187823A (ja) * 1995-01-12 1996-07-23 Asahi Glass Co Ltd 農業用フッ素樹脂フィルム
JPH08259731A (ja) * 1995-03-20 1996-10-08 Nippon Carbide Ind Co Inc 樹脂組成物及びそれからなる樹脂成形物
JPH10212362A (ja) * 1997-01-29 1998-08-11 Teijin Ltd フッ素樹脂フィルム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1092730A (en) 1975-11-12 1980-12-30 Joseph R. Kaelin Process for the continuous treatment of wet sludge from a sewage treatment plant
SE7607763L (sv) 1976-07-07 1978-01-20 Plm Ab Forfarande for aerob, termofil nedbrytning i vetskefas av mikrobiellt nedbrytbar substans
US4555543A (en) 1984-04-13 1985-11-26 Chemical Fabrics Corporation Fluoropolymer coating and casting compositions and films derived therefrom
US4915840A (en) 1988-06-07 1990-04-10 Bioprocess Engineering, Inc. Process for sludge reduction in an aerobic sludge generating waste treatment system
GB9118560D0 (en) 1991-08-30 1991-10-16 Pirtferm Ltd Process for degrading organic matter
JP2973761B2 (ja) 1993-01-11 1999-11-08 栗田工業株式会社 有機性排液の好気性処理方法
JPH08258228A (ja) 1995-03-22 1996-10-08 Asahi Glass Co Ltd 農業用フッ素樹脂積層体
JP3048889B2 (ja) 1995-06-29 2000-06-05 神鋼パンテツク株式会社 活性汚泥処理方法及びそのための活性汚泥処理装置
FR2737202B1 (fr) 1995-07-25 1997-10-17 Omnium Traitement Valorisa Installation pour le traitement biologique des eaux en vue de leur potabilisation
JPH0976428A (ja) 1995-09-14 1997-03-25 Daikin Ind Ltd 農業用防曇性フィルム
JPH0999298A (ja) 1995-10-06 1997-04-15 Shinko Pantec Co Ltd 汚泥の処理方法
JP3408371B2 (ja) 1996-04-16 2003-05-19 株式会社荏原製作所 有機性汚水の処理方法および装置
EP0927729B1 (en) 1996-09-09 2007-11-07 Daikin Industries, Limited Fluorocopolymer and film made therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731295A (ja) * 1993-07-13 1995-02-03 Nippon Carbide Ind Co Inc ハウス内張フィルム
JPH08187823A (ja) * 1995-01-12 1996-07-23 Asahi Glass Co Ltd 農業用フッ素樹脂フィルム
JPH08259731A (ja) * 1995-03-20 1996-10-08 Nippon Carbide Ind Co Inc 樹脂組成物及びそれからなる樹脂成形物
JPH10212362A (ja) * 1997-01-29 1998-08-11 Teijin Ltd フッ素樹脂フィルム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160298A1 (en) * 1998-08-20 2001-12-05 Asahi Glass Company Ltd. Aqueous dispersion of fluorocopolymer and composition for water-based coating material
EP1160298A4 (en) * 1998-08-20 2003-09-10 Asahi Glass Co Ltd AQUEOUS DISPERSION OF FLUOROPOLYMER AND ITS USE IN WATER-BASED COATINGS
JP2002114824A (ja) * 2000-10-04 2002-04-16 Daikin Ind Ltd 含フッ素エラストマー
JP2003105104A (ja) * 2001-09-27 2003-04-09 Asahi Glass Co Ltd 透明性に優れるフッ素樹脂フィルム
WO2011007705A1 (ja) * 2009-07-13 2011-01-20 旭硝子株式会社 エチレン/テトラフルオロエチレン系共重合体
US8829132B2 (en) 2009-07-13 2014-09-09 Asahi Glass Company, Limited Ethylene/tetrafluoroethylene copolymer
JP5609872B2 (ja) * 2009-07-13 2014-10-22 旭硝子株式会社 エチレン/テトラフルオロエチレン系共重合体

Also Published As

Publication number Publication date
US6461719B1 (en) 2002-10-08
KR20010053047A (ko) 2001-06-25
EP1090955A1 (en) 2001-04-11
CN1134501C (zh) 2004-01-14
CN1313881A (zh) 2001-09-19
AU4392099A (en) 2000-01-10

Similar Documents

Publication Publication Date Title
ES2372033T3 (es) Composición copolimérica de tetrafluoroetileno/etileno.
EP0911347B1 (en) Copolymers of maleic anhydride or acid and fluorinated olefins
US20230340169A1 (en) Method for manufacturing fluoropolymer
RU2005119131A (ru) Перфторэластомерные композиции
JP2001171055A5 (ja)
WO1999067333A1 (fr) Materiau de couverture agricole
KR102173664B1 (ko) 플루오르화된 필름
JP2004534131A5 (ja)
WO2020226178A1 (ja) フルオロポリマーの製造方法及びフルオロポリマー
US20050288465A1 (en) Fluorocopolymer film and its application
JP3687348B2 (ja) 農業用被覆資材
EP1213305B1 (en) Tetrafluoroethylene / ethylene copolymer and film thereof
ES2204383T3 (es) Polimeros fluorados modificados reticulables.
JP2003505525A5 (ja)
US7402640B2 (en) Fluoropolymer and film made of it
JPH08258228A (ja) 農業用フッ素樹脂積層体
JPH0741522A (ja) エチレン/テトラフルオロエチレン系共重合体
JP3702650B2 (ja) 農業用被覆資材
US5856417A (en) Fluorine-containing copolymer
JP4175006B2 (ja) テトラフルオロエチレン−エチレン系共重合体及びそれを用いてなるフィルム
JP3097093B2 (ja) 含フッ素共重合体およびそれを用いた硬化用組成物
JPH11343315A (ja) 農業用被覆資材
JPH0361587B2 (ja)
JP4752354B2 (ja) 含フッ素共重合体フィルム、その製造方法、及びその用途
JP2001206913A (ja) テトラフルオロエチレン−エチレン系共重合体及びそのフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99809851.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020007014494

Country of ref document: KR

Ref document number: 1999926768

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09720240

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999926768

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007014494

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999926768

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007014494

Country of ref document: KR