WO1999038814A1 - Elements optiques en verre de silice synthetique et leur procede de production - Google Patents

Elements optiques en verre de silice synthetique et leur procede de production Download PDF

Info

Publication number
WO1999038814A1
WO1999038814A1 PCT/JP1999/000383 JP9900383W WO9938814A1 WO 1999038814 A1 WO1999038814 A1 WO 1999038814A1 JP 9900383 W JP9900383 W JP 9900383W WO 9938814 A1 WO9938814 A1 WO 9938814A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz glass
synthetic quartz
molecules
hydrogen
optical member
Prior art date
Application number
PCT/JP1999/000383
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Ikuta
Shinya Kikugawa
Akio Masui
Noriaki Shimodaira
Shuhei Yoshizawa
Original Assignee
Asahi Glass Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12008054&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999038814(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Company Ltd. filed Critical Asahi Glass Company Ltd.
Priority to DE69909983T priority Critical patent/DE69909983T2/de
Priority to EP99901911A priority patent/EP1061052B1/en
Priority to AT99901911T priority patent/ATE246154T1/de
Priority to JP2000530054A priority patent/JP4193358B2/ja
Publication of WO1999038814A1 publication Critical patent/WO1999038814A1/ja
Priority to US10/283,055 priority patent/US8402786B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a synthetic quartz glass optical member and a method for manufacturing the same.
  • the present invention relates to an optical member of an apparatus using a UV laser of 400 nm or less (in particular, a KrF or ArF excimer laser) as a light source, and a method of manufacturing the same.
  • a synthetic quartz glass optical member such as a lens, a window member, a mirror, a prism, and a filter, and a method of manufacturing the same.
  • Synthetic quartz glass is a transparent material over a wide wavelength range from near-infrared to vacuum ultraviolet, has a very small coefficient of thermal expansion, has excellent dimensional stability, and contains almost no metallic impurities. Because of its high purity and other features, it has been mainly used for optical members of conventional optical devices that use g-line and i-line as light sources.
  • the light source of the lithography stepper is a conventional g-line (wavelength 436 nm), i-line (wavelength 36 nm).
  • Kr F excimer laser wavelength 248 nm
  • Ar F excimer laser wavelength 193 nm
  • the optical member used for the stepper has a size of about 19 O nm. Light transmission, stability and durability up to the short wavelength range are required.
  • absorption bands are caused by oxygen-deficient deficiencies such as ⁇ S i—S i ⁇ in synthetic quartz glass. It is thought that intrinsic defects caused by oxygen-excess type defects such as pits and three Si-0-0-Si3 are caused by photoreaction by laser light irradiation. These absorption bands cause a decrease in transmittance, an increase in absolute refractive index, a change in refractive index distribution, or the generation of fluorescence.
  • Japanese Patent Application Laid-Open No. 3-88742 discloses a method of improving ultraviolet laser resistance by including 5 ⁇ 10 16 molecules of Zcm 3 or more of hydrogen molecules and 100 ppm or more of 0H groups in synthetic quartz glass. Is disclosed.
  • this 650 nm red fluorescent band is accompanied by a 260 nm absorption band at the same time, it becomes a serious problem particularly when it is used for an optical member of a device using a KrF excimer laser having a near wavelength as a light source.
  • Japanese Patent Application Laid-Open No. Hei 11-201664 discloses a technique of performing heat treatment at a high temperature of about 800 to 1000 ° C. Also, in Japanese Patent Application Laid-Open No. 6-166522, when hydrogen doping is performed at a high temperature of about 800 to 1000 ° C., a reduction type defect due to hydrogen is generated in synthetic quartz glass.
  • a technique has been disclosed in which a synthetic quartz glass has a hydrogen concentration of 1 ⁇ 10 17 molecules or more Zcm 3 by maintaining the temperature at a low temperature of 300 to 600 ° C. under pressure. Specifically, they conclude that it is preferable to perform hydrogen doping at 100 atm and 1 atm, respectively, and in particular to perform hydrogen doping at a high pressure of 50 atm or more.
  • Kr and F 2 laser in the case of Sutetsuba that the light source, KrF laser light energy density 40 Om JZcm 2 / Pu lse, frequency 1 O 0Hz condition 1 0 6 shots irradiated for 248 nm light after Reduce transmittance reduction to 0.1% or less Is good.
  • 2 1 5 nm e.g., 2 14 nm
  • an absorption coefficient changes at 2.1 10-2 should be less when irradiated with Kr F laser beam Ru in the condition to do so.
  • KrF laser light is irradiated at 5 ⁇ 10 6 shots under the conditions of an energy density of 15 OmJ / cm 2 / Pu 1 se and a frequency of 100 Hz to measure a decrease in transmittance.
  • the energy density of the KrF laser beam is too low in this measurement method, and higher excimer laser resistance has been required in recent years.
  • the present inventors have conducted a more detailed study of the hydrogen molecule doping method using a KrF laser having a higher energy density. As a result, hydrogen was doped under a high pressure as recommended in Japanese Patent Application Laid-Open No. 6-166522. However, it was found that synthetic quartz glass having sufficient laser resistance could not always be obtained.
  • That hydrogen 100 atm in the case of quartz glass containing hydrogen molecules 1 X 1 0 17 molecule ⁇ 1! 3 or more by performing the processing at 500 ° C, Ya hydrogen binding type defects such as a three S i-H
  • the generation of oxygen-deficient defects such as tri-Si-Si (hereinafter, tri-Si-H and ⁇ Si-Si ⁇ are referred to as reducing-type defects) can be used for measurements such as Raman spectroscopy and vacuum ultraviolet spectroscopy.
  • a laser beam was irradiated, a large absorption peak was observed at about 215 nm.
  • This strong absorption peak at about 215 nm has a broad spectrum over a wide wavelength range of 180 to 250 nm, and becomes a problem when used as an optical member of an optical device using an ArF laser or a KrF laser as a light source.
  • An object of the present invention is to provide a method for producing a synthetic quartz glass optical member having substantially no reduced defects and capable of obtaining a hydrogen-containing synthetic quartz glass optical member with high productivity.
  • Another object of the present invention is to provide a synthetic quartz glass optical member that does not cause a decrease in transmittance or generate fluorescence even when irradiated with excimer laser light, and a method for manufacturing the same.
  • the present inventors have conducted research to solve such a problem, and have found for the first time that not only temperature conditions but also atmospheric pressure conditions are important factors in the conditions during hydrogen doping treatment. In other words, it was found that when the pressure was increased, reduced defects due to hydrogen were more likely to occur, and the critical temperature at which reduced defects due to hydrogen were reduced.
  • the present invention relates to a method for producing a synthetic quartz glass optical member used by irradiating laser light in an ultraviolet wavelength range, wherein the content of hydrogen molecules is less than 1 ⁇ 10 17 molecules / cm 3. At a temperature of 300 to 600 ° C.
  • a synthetic quartz glass optical member including a step of obtaining a synthetic quartz glass optical member having a concentration of not more than ppm and substantially not containing reduced defects (hereinafter, referred to as a hydrogen-containing step).
  • the synthetic quartz glass before the hydrogen-containing step has a hydrogen molecule content of less than 1 ⁇ 10 17 molecules / cm 3 . If the content of hydrogen molecules is 1 10 17 molecules ZCM 3 or more, there is a possibility that the original type defects instead in the temperature raising process in the hydrogen-containing process is formed.
  • the synthetic quartz glass optical member As a stepper lens or other optical members, it is necessary to perform heat treatment such as molding and slow cooling to give the optical characteristics necessary for the optical member. Requires a high temperature of 800-1500 ° C. Therefore, even if the content of hydrogen molecules is set to 1 ⁇ 10 17 molecules Zcm 3 or more without reducing defects in the hydrogen containing step, if the subsequent heat treatment is performed at 600 or more, the hydrogen content May cause reduced defects. Therefore, the heat treatment performed at 60 (TC or higher) is preferably performed before the hydrogen-containing step. Examples of the heat treatment performed at 600 ° C. or higher include molding and slow cooling. "Means that the density distribution and the refractive index distribution are made uniform by heating (whole or local) to a predetermined temperature and holding at that temperature for a certain period of time.
  • the synthetic quartz glass before the hydrogen-containing step has been formed by heating and slowly cooled, has a hydrogen molecule content of less than 1 ⁇ 10 17 molecules Zcm 3 , and has reduced defects.
  • the synthetic quartz glass before the hydrogen-containing step has been formed and gradually cooled by heating, has a hydrogen molecule content of less than 1 ⁇ 10 17 molecules / cm 3 , and has an OH group concentration. It is preferable that the synthetic quartz glass has a degree of 200 ppm or less and substantially does not contain reduced defects.
  • the obtained synthetic quartz glass optical member has a hydrogen molecule content of 1 ⁇ 10 17 molecules Zcm 3 or more, It is important that the synthetic quartz glass optical member has an OH group concentration of 200 ppm or less and contains substantially no reduced defects.
  • “substantially not containing reduced defects” has the following meaning. That ⁇ S i - For S i tri-, is that the absorbance k of the light 1 63 nm in the vacuum ultraviolet region is k ⁇ 2 xi 0- 2 (below the detection limit).
  • the intensity I 225 detected by the scattering peak at 2250 cm- 1 of the laser Raman spectrum In the case of Si-H, the intensity I 225 detected by the scattering peak at 2250 cm- 1 of the laser Raman spectrum. The intensity of the scattering peak at 800 cm— 1 indicating the binding of three Si 10— I 80 . Divided by I 225 . ⁇ ⁇ . . But I 225 . / ⁇ ⁇ . . ⁇ 1 x 1 ⁇ " 4 (below the detection limit).
  • the hydrogen-containing process it is important that the content of hydrogen molecules and 1 X 1 0 '7 minutes Child / cm 3 or more.
  • the hydrogen-containing step is performed at a pressure of 2 to 30 atm and a temperature of 300 to 600 ° C. Above 30 atm or above 600 ° C, reduced defects may occur. In particular, if the processing is performed at a pressure higher than 30 atm, the obtained synthetic quartz glass optical member may self-detonate later. This is thought to be due to strain in the structure during manufacturing at high pressure. Less than 2 atmospheres, or, 1 X 1 0 '7 molecules ZCM 3 above processing time required to contain hydrogen molecules is too large is less than 300. Further, when the pressure is less than 2 atm or less than 300 ° C, it is difficult to make the content of hydrogen molecules equal to or more than 5 ⁇ 10 17 molecules Zcm 3 . It is preferably carried out at a pressure of 5 to 20 atm and at a temperature of 400 to 600 ° C. In this specification, “atmospheric pressure” means absolute pressure.
  • Examples of the atmosphere containing hydrogen gas include an atmosphere consisting of only hydrogen gas and an atmosphere consisting of an inert gas containing hydrogen gas.
  • the present invention also provides a synthetic quartz glass used by irradiating a laser beam in an ultraviolet wavelength range.
  • a synthetic quartz glass optical member having a 0H group concentration of 200 ppm or less, a hydrogen molecule content of 1 ⁇ 10 17 molecules / cm 3 or more, and substantially no reduced defects. I will provide a.
  • the present inventors have prepared a synthetic quartz glass containing hydrogen molecules of 1 ⁇ 10 17 molecules or more Zcm 3 and different concentrations of 0H groups within a range of 20 to 1,000 ppm, and irradiating with laser light.
  • the experiment confirmed that the red fluorescence intensity at 650 nm increased in proportion to the increase in the OH group concentration. That is, it was found that upon irradiation with a laser beam, the OH group in the synthetic quartz glass was converted into a non-crosslinked oxygen radical tri-Si 3 O by the following formula (1), and a red fluorescent band of 650 nm was generated.
  • the 0 H group is a precursor of a defect having a 260 nm absorption band, and a large number of OH groups may cause this defect.
  • the present inventors have found that, when hydrogen molecules contain 1 ⁇ 10 17 molecules / cm 3 or more and the OH group concentration is 200 ppm or less, the decrease in transmittance during laser beam irradiation is suppressed. confirmed.
  • the content of hydrogen molecules in the synthetic quartz glass optical member of the present invention is preferably 5 X 1 0 17 molecule ZCM 3 or more.
  • the 0H group concentration of the synthetic quartz glass optical member of the present invention is preferably 100 ppm or less, and more preferably 30 ppm or less.
  • the 0 H group concentration of the synthetic quartz glass obtained in Examples 1 to 10 was 80 ppm.
  • the following evaluations were performed on each of the obtained synthetic quartz glasses.
  • Example 8 takes a long time to process because the hydrogen pressure is too low.
  • the content of hydrogen molecules was determined as follows. That performs Raman spectroscopy measurements, the intensity I 413S detected by scattering peak of 41 35 cm 1 of Rezaramansu Bae vector, the scattering peak of 800 cm 1 is a fundamental vibration between Kei iodine and oxygen Intensity ⁇ ⁇ . .
  • the detection limit by this method is 5 ⁇ 10 16 molecules Z cm 3 .
  • Vacuum ultraviolet spectroscopy (VTMS-502 manufactured by Acton Research Co., Ltd.) was performed to evaluate the three Si—Si three concentrations from the absorbance k 163 of light at 163 ⁇ m. ND indicates below the detection limit.
  • KrF laser light (L PX-100 manufactured by Lambda Physique) was irradiated perpendicularly to a 30 mm ⁇ surface under the conditions of an energy density of 400 mJ / cm 2 / Pulse and a frequency of 100 Hz. Immediately after irradiation with KrF laser light for 3.0 hours The excess ratio was measured with a spectrophotometer (U-3210, manufactured by Hitachi, Ltd.), the absorption coefficient of 214 nm light was obtained, and the change in the absorption coefficient before and after KrF laser irradiation was evaluated using Ak 214 .
  • Table 2 shows the results of each of the above evaluations. In Examples 6, 7, 9, and 10, reduced defects were observed, and a decrease in transmittance due to laser beam irradiation was also observed.
  • Example 2 In the same manner as in Example 1 except that the OH group concentration was adjusted to various concentrations, a synthetic stone glass having a hydrogen molecule content of less than 1 ⁇ 10 17 molecules Zcm 3 and having no reduced defects was prepared. Prepared.
  • the obtained synthetic quartz glass (size: 30 mm ⁇ X 2 Omm) having no reduced type defects and having a 0H group concentration was hydrogen-doped in an atmosphere consisting of hydrogen gas alone at the temperature, pressure, and time shown in Table 3.
  • various synthetic quartz glasses having different hydrogen concentrations and OH group concentrations as shown in Table 4 were obtained. None of the obtained synthetic quartz glasses substantially contained reduced defects.
  • the 0H group concentration was the same as that before the hydrogen containing step.
  • Each of the obtained synthetic quartz glasses was processed into a size of 3 ⁇ X 1 Omm, and both surfaces of 30 mm ⁇ were mirror-polished to prepare laser light irradiation samples.
  • these KrF laser beam (L PX-100 manufactured by Lambda Physics, Inc.) was applied to the sample of the surface of 3 Om m ⁇ under the conditions of energy density 40 Om J / cm 2 Pu 1 se and frequency 100 Hz. Irradiated vertically.
  • ND indicates below the detection limit.
  • Examples 17 to with an OH group concentration of more than 200 ppm: I 9 and Example 20 with a hydrogen molecule content of less than 1 ⁇ 10 17 molecules / cm 3 have a large red fluorescence intensity.
  • Examples 11 to 16 correspond to Examples, and Examples 1 to 20 correspond to Comparative Examples.
  • Example 20 500 1 95 Table 4 Hydrogen concentration OH group concentration 248 nm transmittance Red fluorescence (650 nm)
  • Example 17 1.05 10 18 280 0.020 0.022
  • Example 18 1.27 X 10 18 626 0.025 0.050
  • Example 19 4.39 X 10 18 1049 0.02 1 0.072
  • Example 20 1.22 X 10 16 80 0. 087 0. 050 Industrial potential
  • the synthetic quartz glass optical member which has substantially no reduction type defect and contains a hydrogen molecule can be obtained with good productivity.

Description

明 細
合成石英ガラス光学部材ぉよびその製造方法
技術分野
本発明は、 合成石英ガラス光学部材およびその製造方法に関する。 特に、 波長
400 nm以下の紫外線レーザ (特には K r Fまたは A r Fエキシマレ一ザ) を 光源とする装置の光学部材およびその製造方法に関する。 特にレンズ、 窓部材、 ミラ一、 プリズム、 フィルタなどの合成石英ガラス光学部材およびその製造方法 に関する。
背景技術
合成石英ガラスは、 近赤外域から真空紫外域にわたる広範囲の波長域にわたつ て透明な材料であること、 熱膨張係数がきわめて小さく寸法安定性に優れること 、 また、 金属不純物をほとんど含有しておらず高純度であることなどの特徴を有 しているため、 従来の g線、 i線を光源として用いた光学装置の光学部材に主に 用いられてきた。
近年、 L S Iの高集積化に伴い、 ウェハ上に集積回路パターンを描画するリソ グラフィ技術において、 より線幅の短い微細な描画技術が要求されており、 これ に対応するために露光光源の短波長化が進められている。 すなわち、 例えばリソ グラフィ用ステツパの光源は、 従来の g線 (波長 436 nm) 、 i線 (波長 36
5 nm) から進んで、 Kr Fエキシマレーザ (波長 248nm) 、 または Ar F エキシマレ一ザ (波長 1 93 nm) が用いられようとしており、 前記ステツバに 用いられる光学部材には、 19 O nm程度の短波長域までの光透過性、 安定性、 耐久性が要求される。
従来用いられている合成石英ガラスでは、 例えば Kr Fや Ar Fなどのエキシ マレ一ザの高エネルギー光を照射すると、 紫外域に新たな吸収帯を生じ、 前記ェ キシマレーザを光源とした光学系を構築する際の光学部材としては問題があった 。 すなわち、 前記レーザが長時間照射されると、 いわゆる E' センタ一と呼ばれ る略 2 1 5 nmの吸収帯と NBOHC (非架橋酸素ラジカル) と呼ばれる略 26 0 nmの吸収帯が生起する。
これらの吸収帯は、 合成石英ガラス中の、 ≡S i— S i≡などの酸素欠乏型欠 陥および三 S i - 0— 0— S i三などの酸素過剰型欠陥による固有欠陥がレーザ 光照射による光反応を起こし生成すると考えられている。 これらの吸収帯は、 透 過率の低下、 絶対屈折率の上昇、 屈折率分布の変動、 または蛍光の発生の原因に なる。
これらの問題を解決するための方法として、 種々の方法が検討されており、 合 成石英ガラス中に水素分子を含有させればよいことが知られている。 例えば特開 平 3— 88742では、 合成石英ガラス中に水素分子を 5 X 1 016分子 Zcm3 以上含有しかつ 0H基を l O O ppm以上含有させることにより、 耐紫外線レ一 ザ性を高める方法が開示されている。
しかし、 特開平 3— 88742における 0 H基を 100 p pm以上、 水素分子 を 5 X 1016分子 Zcm3 以上含有した合成石英ガラスにおいては、 略 2 15 n mの吸収帯の生成が抑制され、 A r Fや K r Fレーザ光を長時間照射したときの 透過率の低下、 絶対屈折率の上昇、 屈折率分布の変動については改善されたとし ても、 レーザ光を照射すると 650 nm赤色蛍光を発生する問題があった。 この 650 nmの赤色蛍光帯は同時に 260 nm吸収帯を伴うため、 特に波長が近い K r Fエキシマレーザを光源とする装置の光学部材に用いる場合には大きな問題 となる。
水素分子をドープする手段としては、 特開平 1一 201664において、 80 0〜1000°C前後の高温の加熱処理を行う技術が開示されている。 また、 特開 平 6 - 166522では、 800〜1000 °C前後の高い温度で水素ドープを行 つた場合、 合成石英ガラス中に水素による還元型欠陥が生じるため、 水素含有雰 囲気中 1気圧以上の圧力下で、 300〜600°Cという低い温度に保持すること により、 合成石英ガラス中に水素濃度を 1 X 1017分子 Zcm3 以上含有させる 技術が開示されている。 具体的には、 100気圧と 1気圧のそれぞれで水素ド一 プを行い、 特に 50気圧以上の高圧下で水素ド一プを行うことが好ましいと結論 づけている。
ところで、 Kr Fレーザを光源としたステツバの場合には、 KrFレーザ光を エネルギー密度 40 Om JZcm2 /Pu l s e, 周波数 1 O OHzの条件で 1 06 ショッ ト照射した後の 248 nmの光の透過率低下量を 0. 1 %以下にする のがよい。 そのためには前記条件で Kr Fレーザ光を照射した場合の略 2 1 5 n m (例えば 2 14 nm) での吸収係数変化を 2. 1 10— 2以下にする必要があ る。 特開平 6— 1 66522においては、 K r Fレーザ光をエネルギー密度 1 5 OmJ/cm2 /P u 1 s e、 周波数 100 H zの条件で 5 x 106 ショット照 射して透過率低下を測定しているが、 この測定法では K r Fレーザ光のエネルギ —密度が小さすぎ、 より高い耐エキシマレーザ性が要求されるようになっている 近年においては、 測定法として不充分である。
本発明者らが水素分子ドープ方法について、 より高いエネルギー密度の K r F レーザを使用してさらに詳細な検討を行った結果、 特開平 6— 166522で推 奨するような高圧下で水素をドーブしても必ずしも充分なレーザ耐性を有する合 成石英ガラスを得られないことが判明した。
すなわち水素 100気圧、 500°Cにて処理を行うことにより水素分子を 1 X 1 017分子 〇1! 3 以上含有させた石英ガラスの場合、 三 S i— Hなどの水素結 合型欠陥や三 S i—S i三などの酸素欠乏型欠陥 (以下、 三 S i— Hおよび≡S i一 S i≡を還元型欠陥という) の生成がラマン分光法や真空紫外分光法などの 測定によつて確認でき、 さらにレーザ光を照射すると略 2 15 nmに大きな吸収 ピークが見られた。 この略 215 nmにおける強い吸収ピークは 180〜250 nmの広い波長域にわたって裾野をひき、 A r Fレーザや K r Fレーザを光源と した光学装置の光学部材に用いる場合に問題になる。
本発明は、 還元型欠陥を実質的に有さず、 水素を含有する合成石英ガラス光学 部材が生産性よく得られる合成石英ガラス光学部材の製造方法の提供を目的とす る。
本発明は、 また、 エキシマレーザ光の照射によっても透過率の低下や蛍光の発 生のない合成石英ガラス光学部材とその製造方法の提供を目的とする。
発明の開示
本発明者らは、 かかる問題を解決すべく研究した結果、 水素ドープ処理時の条 件において、 温度条件だけでなく雰囲気の圧力条件も重要な因子であることを初 めて知見した。 すなわち、 圧力が高くなると水素による還元型欠陥が生じやすく なり、 水素による還元型欠陥が生じる臨界温度が低くなることが判明した。 本発明は、 紫外線波長域のレーザ光を照射して使用される合成石英ガラス光学 部材の製造方法であって、 水素分子の含有量が 1 X 1017分子 /cm3 未満であ る合成石英ガラスを、 水素ガスを含有する 2〜30気圧の雰囲気下にて 300〜 600°Cの温度で処理して、 水素分子の含有量が 1 X 1017分子 cm3 以上で あり、 0H基濃度が 200 ppm以下であり、 かつ実質的に還元型欠陥を含有し ない合成石英ガラス光学部材を得る工程 (以下、 水素含有工程という) を含む合 成石英ガラス光学部材の製造方法を提供する。
本発明においては、 水素含有工程の前の合成石英ガラスが、 水素分子の含有量 が 1 X 1 017分子/ cm3 未満であることが重要である。 水素分子の含有量が 1 1017分子 Zcm3 以上であると、 水素含有工程における昇温過程において還 元型欠陥が形成されるおそれがある。
合成石英ガラス光学部材は、 ステツパレンズその他の光学部材として用いるた めに、 光学部材として必要な光学特性を与えるための成形および徐冷などの熱処 理を行う必要があるが、 これらの熱処理には 800~1 500°C程度の高温を要 する。 したがって、 前記水素含有工程で還元型欠陥を生じることなく、 水素分子 の含有量を 1 X 1017分子 Zcm3 以上としても、 その後の熱処理が 600で以 上で行われる場合は、 前記含有した水素により還元型欠陥が生じるおそれがある 。 そこで 60 (TC以上で行われる熱処理は、 水素含有工程の前に行われることが 好ましい。 600°C以上で行われる熱処理としては、 成形ゃ徐冷などがある。 な お、 本発明における 「成形」 には、 (全体または局部を) 所定の温度にまで加熱 し、 その温度で一定時間保持することで密度分布および屈折率分布を均一にする
(均質化) 処理を含む。
また、 水素含有工程の前の合成石英ガラスが既に還元型欠陥を含有する場合、 水素によってさらに多くの還元型欠陥が生成される傾向にある。 したがって、 本 発明においては、 水素含有工程の前の合成石英ガラスは、 加熱による成形および 徐冷がなされており、 水素分子の含有量が 1 X 1017分子 Zcm3 未満であり、 かつ還元型欠陥を実質的に含有しない合成石英ガラスであることが好ましい。 また、 水素含有工程の前の合成石英ガラスは、 加熱による成形および徐冷がな されており、 水素分子の含有量が 1 X 1017分子/ cm3 未満であり、 OH基濃 度が 200 p pm以下であり、 かつ還元型欠陥を実質的に含有しない合成石英ガ ラスであることが好ましい。
また、 耐久性 (エキシマレーザ光の照射によっても透過率が低下しない特性) の観点から、 得られる合成石英ガラス光学部材は、 水素分子の含有量が 1 X 1 0 17分子 Zcm3 以上であり、 OH基濃度が 200 ppm以下であり、 かつ実質的 に還元型欠陥を含有しない合成石英ガラス光学部材であることが重要である。 本発明において、 還元型欠陥を実質的に含有しないとは、 以下のような意味で ある。 すなわち≡S i - S i三については、 真空紫外域の 1 63 nmの光の吸光 度 kが k≤2 x i 0— 2 (検出限界以下) であることである。 また、 ョ S i— Hに ついては、 レーザラマンスぺクトルの 2250 cm— 1の散乱ピークにより検出し た強度 I 225。を三 S i一 0—結合を示す 800 cm— 1の散乱ピークの強度 I 80。 で割った値 I 225。ΖΙ β。。 が I 225。/Ι β。。 ≤ 1 x 1 Ο"4 (検出限界以下) であ ることである。
本発明においては、 水素含有工程によって、 水素分子の含有量を 1 X 1 0 '7分 子/ cm3 以上とすることが重要である。 特に、 耐久性の観点から、 5 X 1017 分子 Zcm3 以上とすることが好ましい。
水素含有工程は、 水素含有ガス 2〜30気圧の圧力下 300〜600°Cの温度 で行う。 30気圧超、 または、 600°C超では還元型欠陥が生じるおそれがある 。 特に、 30気圧超で処理すると得られた合成石英ガラス光学部材が後になって 自爆するおそれがある。 これは、 高気圧での製造時に生ずる構造中の歪みに起因 するものと考えられる。 2気圧未満、 または、 300で未満では 1 X 1 0 '7分子 Zcm3 以上の水素分子を含有させるのに必要な処理時間が多くなりすぎる。 ま た、 2気圧未満、 または、 300°C未満では、 水素分子の含有量を 5 X 1 017分 子 Zcm3 以上とすることは困難となる。 好ましくは 5〜20気圧の圧力で 40 0〜600°Cの温度で行う。 なお、 本明細書において、 「気圧」 は絶対圧の意で ある。
水素ガスを含有する雰囲気としては、 水素ガスのみからなる雰囲気または水素 ガスを含有する不活性ガスからなる雰囲気などが挙げられる。
本発明は、 また、 紫外線波長域のレーザ光を照射して使用される合成石英ガラ ス光学部材であって、 0H基濃度が 200 p pm以下、 水素分子の含有量が 1 X 1 017分子/ cm3 以上であり、 実質的に還元型欠陥を含有しない合成石英ガラ ス光学部材を提供する。
本発明者らは、 水素分子を 1 X 1017分子 Zcm3 以上含有し、 かつ 20〜1 000 p pmの範囲内で異なる濃度の 0 H基を含有した合成石英ガラスを作製し てレーザ光照射実験を実施したところ、 0 H基濃度の増大に比例して 650 nm 赤色蛍光強度が強まることを確認した。 すなわちレーザ光照射すると、'合成石英 ガラス中の OH基が次式 ( 1 ) により非架橋酸素ラジカル三 S i 0 ·に変換され 650 nmの赤色蛍光帯が生成することが知見できた。
三 S i 0 H + h V—≡ S i 0 · + H · · · ( 1 )
また、 0 H基は 260 nm吸収帯を持つ欠陥の前駆体であり、 OH基が多いと この欠陥が生じるおそれがある。 水素分子を 1 X 1017分子/ cm3 以上含有し ておりかつ 0 H基濃度が 200 p pm以下であれば、 レーザ光照射時の透過率低 下が抑制されることを本発明者らは確認した。
本発明の合成石英ガラス光学部材の水素分子の含有量は、 前述と同様の理由か ら、 5 X 1 017分子 Zcm3 以上であることが好ましい。
また、 本発明の合成石英ガラス光学部材の 0H基濃度は 100 ppm以下、 さ らには、 30 p pm以下であることが好ましい。
発明を実施するための最良の形態
[実施例]
(例 1〜: L 0 )
石英ガラス形成原料である S i C 14 を酸水素火炎中で加熱加水分解 (火炎加 水分解) させて得られる石英ガラス微粒子を基材に堆積、 成長させて、 多孔質石 英ガラス体を形成した。 次いで、 Heガス雰囲気にて、 1450でまで昇温して 透明ガラス化し、 透明ガラス体を得た。 次いで、 黒鉛製成形容器内で、 1 700 °C以上で加熱し、 所望の形状に成形した。 さらに、 10で/時間の冷却速度で、 1 300°Cから 1000Όまでの徐冷を行い、 水素分子の含有量が 1 X 1017分 子/ cm3 未満であり、 0H基濃度が 80 ppmで、 還元型欠陥を有しない合成 石英ガラスを用意した。 得られた還元型欠陥を有しない合成石英ガラス (サイズ: 3 Omm0 X 2 Om m) を水素ガスのみからなる雰囲気で、 表 1に示す温度、 圧力の条件で水素分子 の含有量が 1 X 1 017分子 Zcm3 以上となる (表 1に記載した処理時間) まで 水素ドープを行った。 例 1〜5および 8は実施例に相当し、 例 6、 7、 9および 10は比較例に相当する。
例 1〜 1 0で得られた合成石英ガラスの 0 H基濃度は 80 p pmであった。 得 られた各種合成石英ガラスについてそれぞれ以下の評価を行った。 例 8は水素の 圧力が低すぎるため、 処理に長時間要している。
なお、 水素分子の含有量は以下のようにして求めた。 すなわち、 ラマン分光測 定を行い、 レーザラマンスぺクトルの 41 35 cm 1の散乱ピークにより検出し た強度 I 413Sと、 ケィ素と酸素との間の基本振動である 800 cm 1の散乱ピー クの強度 Ι β。。 との強度比 (= I 413SZle。0 ) より、 水素分子の含有量 [分子 /cm3 ] を求めた (V. S. Kho t i mc he nk o e t . a 1. , Z h u r n a 1 P r i k l adno i Spe k t r o s k o p i i , 46 (6) , 987〜 997 ( 1986) ) 。 なお本法による検出限界は 5 x 1016分子 Z cm3 である。
評価 1
真空紫外分光測定 (アクトンリサーチ社製 VTMS— 502) を行い 163 η mの光の吸光度 k163 から、 三 S i— S i三濃度を評価した。 N. D. は検出限 界以下を示す。
評価 2
ラマン分光測定を行い、 レーザラマンスぺクトルの 2250 cm-1の散乱ピー クにより検出した強度 I 2250を三 S i— 0—結合を示す 800 cm - 1の散乱ピー クの強度 I 800 で割った値 I 2250ノ I 80。 からョ S i—H濃度を評価した。 N. D. は検出限界以下を示す。
評価 3
K r Fレーザ光 (ラムダフィジーク社製 L PX— 100) をエネルギー密度 4 00m J/cm2 /P u l s e, 周波数 100 H zの条件にて 30 mm φの面に 垂直に照射した。 K r Fレーザ光を 3. 0時間照射した直後の 2 14 n mでの透 過率を分光光度計 (日立製作所製 U— 3210) により測定し、 214 nmの光 の吸収係数を求め、 Kr Fレーザ光照射前後での吸収係数変化量 Ak214 により 評価した。
以上の各評価の結果を表 2に示す。 例 6、 7、 9、 1 0には、 還元型欠陥がみ られ、 レーザ光照射による透過率の低下も見られる。
表 1 圧力 処理時間
[ CJ [気圧] [時間] 例 1 500 2 67
例 2 500 5 48
例 3 500 10 39
例 4 550 10 28
例 5 600 10 2 1
例 6 650 10 17
例 7 700 10 13
例 8 500 1 94
例 9 500 50 27
例 10 500 100 23
表 2
Figure imgf000011_0001
(例 1 1〜20)
OH基濃度が各種濃度になるように調整した以外は例 1と同様にして、 水素分 子の含有量が 1 X 1017分子 Zcm3 未満であり、 還元型欠陥を有しない合成石 英ガラスを用意した。
得られた還元型欠陥を有しない、 各種 0H基濃度の合成石英ガラス (サイズ: 30 mm ø X 2 Omm) を、 水素ガスのみからなる雰囲気で、 表 3に示す温度、 圧力、 時間で水素ドーブ処理して、 表 4に示すような水素濃度、 OH基濃度の異 なる各種合成石英ガラスを得た。 得られた各種合成石英ガラスはいずれも還元型 欠陥を実質的に含有していなかった。 なお、 0H基濃度は、 水素含有工程前の濃 度と同じであった。
得られた各種合成石英ガラスのサイズを 3 Οπιιηφ X 1 Ommに加工し、 30 mm φの面を両面とも鏡面研磨し、 レ一ザ光照射用サンプルを作成した。 これら のサンプルに K r Fレーザ光 (ラムダフィジ一ク社製 L PX— 100) をェネル ギ一密度 40 Om J/cm2 ノ P u 1 s e、 周波数 100 H zの条件にて 3 Om m Φの面に垂直に照射した。
K r Fレーザ光を 3. 0時間照射した直後の 248 n mでの透過率を分光光度 計 (日立製作所製 U— 3210) により測定し、 Kr Fレーザ光の照射による 2 48 nmの光の透過率の低下量 (照射前の透過率と照射後の透過率との差) を評 価した。 その結果を表 4に示す。 また、 Kr Fレーザ光照射中に合成石英ガラス から発生する赤色蛍光 (650 nm) を光ファイバで集光し、 瞬間マルチ測光シ ステム (大塚電子社製 MCPD - 1000) を用いて蛍光強度 (任意単位) を測 定した。 その結果も表 4に示す。 N. D. は検出限界以下を示す。 0H基濃度が 200 p pm超である例 1 7〜: I 9、 および水素分子の含有量が 1 x 1017分子 /cm3 未満の例 20は赤色蛍光強度が大きい。 例 1 1〜16が実施例、 例 1 Ί 〜20が比較例に相当する。
表 3 温度 圧力 時間
[°c] [気圧] [時間] 例 11 400 2 95
例 12 500 2 150
例 13 500 10 95
例 14 450 10 150
例 15 600 10 150
例 16 500 10 150
例 17 500 10 95
例 18 500 10 95
例 19 500 10 150
例 20 500 1 95 表 4 水素濃度 OH基濃度 248nm透過率 赤色蛍光(650nm)
[分子 /cm3 ] 低下量 [%] 強度 例 11 1. 40 1017 85 0. 038 0. 006 例 12 5. 1 7 1017 90 0. 023 0. 006 例 13 1. 27 X 1018 80 0. 018 0. 005 例 14 3. 46 X 1018 100 0. 015 0. 007 例 15 3. 26 1 018 180 0. 016 0. 012 例 16 3. 30 X 1018 28 0. 014 N . D.
例 17 1. 05 1018 280 0. 020 0. 022 例 18 1. 27 X 1018 626 0. 025 0. 050 例 19 4. 39 X 1018 1049 0. 02 1 0. 072 例 20 1. 22 X 1016 80 0. 087 0. 050 産業上の利用の可能性
本発明によれば、 還元型欠陥を実質的に有さず、 水素分子を含有する合成石英 ガラス光学部材が生産性よく得られる。
また、 本発明によれば、 エキシマレーザ光の照射による透過率の低下や蛍光の 発生の少ない合成石英ガラス光学部材が得られる。

Claims

請 求 の 範 囲
1. 紫外線波長域のレーザ光を照射して使用される合成石英ガラス光学部材の製 造方法であって、 水素分子の含有量が 1 X 1017分子 Zcm3 未満である合成石 英ガラスを、 水素ガスを含有する 2〜30気圧の雰囲気下にて 300〜600°C の温度で処理して、 水素分子の含有量が 1 X 1017分子 Zcm3 以上であり、 0 H基濃度が 200 p pm以下であり、 かつ実質的に還元型欠陥を含有しない合成 石英ガラス光学部材を得る工程を含む合成石英ガラス光学部材の製造方法。
2. 水素ガスを含有する 2〜30気圧の雰囲気下にて 300〜60 CTCの温度で 処理する前の合成石英ガラスは、 加熱による成形および徐冷がなされており、 水 素分子の含有量が 1 X 1017分子 Zcm3 未満であり、 かつ還元型欠陥を実質的 に含有しない合成石英ガラスである請求項 1に記載の合成石英ガラス光学部材の 製造方法。
3. 水素ガスを含有する 2〜30気圧の雰囲気下にて 300〜600 ©温度で 処理する前の合成石英ガラスは、 加熱による成形および徐冷がなされており、 水 素分子の含有量が 1 X 1017分子 Zcm3 未満であり、 OH基濃度が 200 pp m以下であり、 かつ還元型欠陥を実質的に含有しない合成石英ガラスである請求 項 1に記載の合成石英ガラス光学部材の製造方法。
4. 得られる合成石英ガラス光学部材の水素分子の含有量を 5 X 1017分子 Zc m3 以上とする請求項 1、 2または 3に記載の合成石英ガラス光学部材の製造方 法。
5. 紫外線波長域のレーザ光を照射して使用される合成石英ガラス光学部材であ つて、 0^1基濃度が200 111以下、 水素分子の含有量が 1 X 1017分子 Zc m3 以上であり、 実質的に還元型欠陥を含有しない合成石英ガラス光学部材。
6. 水素分子の含有量が 5 X 1017分子 Zcm3 以上である請求項 5に記載の合 成石英ガラス光学部材。
PCT/JP1999/000383 1998-01-30 1999-01-29 Elements optiques en verre de silice synthetique et leur procede de production WO1999038814A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69909983T DE69909983T2 (de) 1998-01-30 1999-01-29 Synthetische, optische quarzglas-elemente und verfahren zur herstellung derselben
EP99901911A EP1061052B1 (en) 1998-01-30 1999-01-29 Synthetic silica glass optical members and process for the production thereof
AT99901911T ATE246154T1 (de) 1998-01-30 1999-01-29 Synthetische, optische quarzglas-elemente und verfahren zur herstellung derselben
JP2000530054A JP4193358B2 (ja) 1998-01-30 1999-01-29 合成石英ガラス光学部材およびその製造方法
US10/283,055 US8402786B2 (en) 1998-01-30 2002-10-30 Synthetic silica glass optical component and process for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/19751 1998-01-30
JP1975198 1998-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09600153 A-371-Of-International 1999-01-29
US10/283,055 Division US8402786B2 (en) 1998-01-30 2002-10-30 Synthetic silica glass optical component and process for its production

Publications (1)

Publication Number Publication Date
WO1999038814A1 true WO1999038814A1 (fr) 1999-08-05

Family

ID=12008054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000383 WO1999038814A1 (fr) 1998-01-30 1999-01-29 Elements optiques en verre de silice synthetique et leur procede de production

Country Status (5)

Country Link
EP (1) EP1061052B1 (ja)
JP (1) JP4193358B2 (ja)
AT (1) ATE246154T1 (ja)
DE (1) DE69909983T2 (ja)
WO (1) WO1999038814A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047753A (ko) * 2001-12-06 2003-06-18 신에쯔 세끼에이 가부시키가이샤 광학 부재용 석영 유리 블랭크, 그 제조 방법 및 이용 방법
EP1318124A3 (de) * 2001-12-06 2003-07-02 Heraeus Quarzglas GmbH & Co. KG Quarzglasrohling für ein optisches Bauteil sowie Verfahren zur Herstellung und Verwendung desselben
US7064093B2 (en) 2001-12-06 2006-06-20 Heraeus Quarzglas Gmbh & Co. Quartz glass blank for an optical component and its utilization
JP2007523044A (ja) * 2004-02-23 2007-08-16 コーニング インコーポレイテッド 合成シリカガラス光学材料およびその製造方法
JP2008526672A (ja) * 2004-12-30 2008-07-24 コーニング インコーポレイテッド 低い偏光誘起複屈折を有する合成シリカ、同シリカの製造方法および同シリカを含むリソグラフィデバイス
JP2008544947A (ja) * 2005-06-30 2008-12-11 コーニング インコーポレイテッド 低フルエンス依存性透過率を持つ合成シリカ材料およびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125897B1 (en) * 1999-06-10 2013-05-22 Asahi Glass Company, Limited Synthetic quartz glass and method for preparing the same
EP1288169A1 (de) * 2001-08-30 2003-03-05 Schott Glas Verfahren zur Wasserstoffbeladung von Quarzglaskörpern zur Verbesserung der Brechzahlhomogenität und der Laserfestigkeit bei gleichzeitiger Einhaltung einer vorgegebenen Spannungsdoppelbrechung und danach hergestellte Quarzglaskörper
JP4104338B2 (ja) * 2002-01-31 2008-06-18 信越石英株式会社 ArF露光装置用合成石英ガラス素材
JP4107905B2 (ja) 2002-07-31 2008-06-25 信越石英株式会社 Yagレーザー高調波用合成石英ガラス光学材料
DE102006043368B4 (de) 2005-09-16 2019-01-10 Corning Inc. Synthetisches Kieselsäureglas und Verfahren zur Herstellung desselben
JP2008063181A (ja) * 2006-09-07 2008-03-21 Shin Etsu Chem Co Ltd エキシマレーザー用合成石英ガラス基板及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164833A (ja) * 1990-10-30 1992-06-10 Shinetsu Quartz Prod Co Ltd 水素分子含有シリカガラス体の製造方法
JPH0532432A (ja) * 1991-07-31 1993-02-09 Shinetsu Quartz Prod Co Ltd 高出力レーザ用光学部材
JPH06166528A (ja) * 1992-11-30 1994-06-14 Shinetsu Quartz Prod Co Ltd 耐紫外線レーザー用光学部材の製造方法
JPH0959034A (ja) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd 合成石英ガラス材及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164833A (ja) * 1990-10-30 1992-06-10 Shinetsu Quartz Prod Co Ltd 水素分子含有シリカガラス体の製造方法
JPH0532432A (ja) * 1991-07-31 1993-02-09 Shinetsu Quartz Prod Co Ltd 高出力レーザ用光学部材
JPH06166528A (ja) * 1992-11-30 1994-06-14 Shinetsu Quartz Prod Co Ltd 耐紫外線レーザー用光学部材の製造方法
JPH0959034A (ja) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd 合成石英ガラス材及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047753A (ko) * 2001-12-06 2003-06-18 신에쯔 세끼에이 가부시키가이샤 광학 부재용 석영 유리 블랭크, 그 제조 방법 및 이용 방법
EP1318124A3 (de) * 2001-12-06 2003-07-02 Heraeus Quarzglas GmbH & Co. KG Quarzglasrohling für ein optisches Bauteil sowie Verfahren zur Herstellung und Verwendung desselben
EP1327612A1 (de) * 2001-12-06 2003-07-16 Heraeus Quarzglas GmbH & Co. KG Quarzglasrohling für ein optisches Bauteil sowie Verfahren zur Herstellung und Verwendung desselben
US7064093B2 (en) 2001-12-06 2006-06-20 Heraeus Quarzglas Gmbh & Co. Quartz glass blank for an optical component and its utilization
US7080527B2 (en) 2001-12-06 2006-07-25 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass blank for an optical component, and manufacturing procedure and use thereof
US7082790B2 (en) 2001-12-06 2006-08-01 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass blank for an optical component, and manufacturing procedure and use thereof
KR100842203B1 (ko) * 2001-12-06 2008-06-30 신에쯔 세끼에이 가부시키가이샤 광학 부재용 석영 유리 블랭크, 그 제조 방법 및 이용 방법
JP2007523044A (ja) * 2004-02-23 2007-08-16 コーニング インコーポレイテッド 合成シリカガラス光学材料およびその製造方法
JP2008526672A (ja) * 2004-12-30 2008-07-24 コーニング インコーポレイテッド 低い偏光誘起複屈折を有する合成シリカ、同シリカの製造方法および同シリカを含むリソグラフィデバイス
JP2008544947A (ja) * 2005-06-30 2008-12-11 コーニング インコーポレイテッド 低フルエンス依存性透過率を持つ合成シリカ材料およびその製造方法

Also Published As

Publication number Publication date
EP1061052A4 (en) 2001-04-11
DE69909983T2 (de) 2004-04-15
EP1061052B1 (en) 2003-07-30
JP4193358B2 (ja) 2008-12-10
EP1061052A1 (en) 2000-12-20
ATE246154T1 (de) 2003-08-15
DE69909983D1 (de) 2003-09-04

Similar Documents

Publication Publication Date Title
KR100359947B1 (ko) 엑시머레이저 및 엑시머램프용의 실리카유리광학재료 및그 제조방법
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP3188624B2 (ja) 遠紫外線用高純度合成シリカガラス及びその製造方法
JP2008063181A (ja) エキシマレーザー用合成石英ガラス基板及びその製造方法
WO1999038814A1 (fr) Elements optiques en verre de silice synthetique et leur procede de production
JP4066632B2 (ja) 合成石英ガラス光学体およびその製造方法
US8402786B2 (en) Synthetic silica glass optical component and process for its production
JP2004269287A (ja) 光学用合成石英ガラス部材及びその製造方法
JP2010184860A (ja) エキシマレーザ用合成石英ガラスの製造方法
JP2005298330A (ja) 合成石英ガラスおよびその製造方法
JP4437886B2 (ja) 光学部材用石英ガラスブランクおよびその使用
JPH0959034A (ja) 合成石英ガラス材及びその製造方法
JP2971686B2 (ja) 耐紫外線レーザー用光学部材の製造方法
JP4011217B2 (ja) エキシマレーザー用光学石英ガラスの製造方法
JP2821074B2 (ja) 耐紫外線レーザー用光学部材の製造方法
JPH03109233A (ja) 紫外線レーザ用合成シリカガラス光学体及びその製造方法
JP4191935B2 (ja) エキシマレーザー用合成石英ガラス部材の製造方法
JP4151109B2 (ja) 合成石英ガラス光学部材およびその製造方法
JP2005239537A (ja) 光学素子の製造法
JPH11302025A (ja) 合成石英ガラス光学部材およびその製造方法
JP4085633B2 (ja) 光学部材用合成石英ガラス
JPH0558668A (ja) 紫外線レーザー用合成石英ガラス光学部材
JP2001247318A (ja) 合成石英ガラス光学部材及びその製造方法
JP4831328B2 (ja) エキシマレーザ用合成石英ガラス基板の製造方法
JP4453936B2 (ja) エキシマレーザー用光学部材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999901911

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09600153

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999901911

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999901911

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999901911

Country of ref document: EP