WO1999031032A1 - Procede permettant de preparer du pentafluoroethane, catalyseurs de fluoration et procede de preparation associe - Google Patents

Procede permettant de preparer du pentafluoroethane, catalyseurs de fluoration et procede de preparation associe Download PDF

Info

Publication number
WO1999031032A1
WO1999031032A1 PCT/JP1998/005284 JP9805284W WO9931032A1 WO 1999031032 A1 WO1999031032 A1 WO 1999031032A1 JP 9805284 W JP9805284 W JP 9805284W WO 9931032 A1 WO9931032 A1 WO 9931032A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
catalyst
fluorination
producing
compound
Prior art date
Application number
PCT/JP1998/005284
Other languages
English (en)
French (fr)
Inventor
Takashi Kanemura
Takashi Shibanuma
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP98954812.8A priority Critical patent/EP1038858B1/en
Priority to US09/581,285 priority patent/US6433233B1/en
Publication of WO1999031032A1 publication Critical patent/WO1999031032A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/21Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation

Definitions

  • the present invention relates to a method for producing pentafluorofluoroethane, a catalyst for fluorination, and a method for producing the same.
  • pentafluorethane is expected to be used in a wide variety of applications such as refrigerants, blowing agents, solvents, dry etchants, and the like.
  • pentafluoroethane is a gas that is inert and low toxic at normal temperature and pressure, and is Arikawa ⁇ ⁇ . It is known to use a catalyst or the like in which a metal is supported on alumina, and to conduct a ⁇ -phase fluorination reaction of tetrachloroethylene or a halogenated hydrocarbon [C 2 HC 1 F (5; X is 1 to 5)].
  • the desired product is represented by pentafluoroethane or C 2 HC 1 F (5 where X is 1 to 5), which can be recycled to the reaction system as a raw material.
  • C 2 HC 1 F 5 where X is 1 to 5
  • fluorenes specific CFCs
  • WO 9219576 shows that HCFC-123 produces bantafluoroethane with an oxidized chromium catalyst prepared from (NH 4 ) z Cr 2 ⁇ .
  • EP Patent No. 456552 discloses that pentafluoroethane is produced from HCFC-123 as a raw material using a catalyst having Cr supported on activated carbon.
  • chromium oxide catalyst or a catalyst in which chromium or chromium oxide is supported on activated carbon there is a limit to the reduction of the by-product chlorofluoroethanes which are problematic as described above. Improvement on the problem of chlorofluoroethane formation is still inadequate It is.
  • a catalyst in which gold is supported on a chromium-based catalyst such as chromium oxide or fluorinated chromium oxide has been proposed as a catalyst for producing pentafluoroethane.
  • JP-A-2 The No. 1 78237, F e 2 0 3 - perchlorethylene fluorine I ⁇ using C r 2 0 3 catalysts, and generates a high yield Bentafuruoro ethane.
  • HCFC-123 is used as a raw material, and is 400.
  • the catalyst shown in the patent publication the valence of Cr by its catalytic Micromax ⁇ is identified +3.
  • W095 / 27688 discloses a method for producing pentafluorofluoroethane using a Zn / Cr oxide-based catalyst, but does not disclose any knowledge regarding the total amount of by-product chlorofluoroethanes produced. Absent. Also, c
  • FC-115 in the example using park mouth mouth ethylene as the raw material, the ratio of C-FC-115 to pentafluoroethane produced is 0.59%, In the example using HCFC-123 as a raw material, even the ratio of CFC-115 to the total amount of HFC-125 and HCFC-124 already reached 1.46%. It can be said that the effect of reducing mouth ethane is insufficient.
  • EP 733611 which discloses a method for producing pentafluoroethane from perchlorethylene using an MgZCr oxide catalyst, has been described in any of the examples shown therein.
  • JP-A-2-172933 discloses that, in addition to Cr, a halogen containing at least one element selected from the group consisting of A1, K4g, Ca, Ba, Sr, Fe, Ni, Co and Mn.
  • a halogen containing at least one element selected from the group consisting of A1, K4g, Ca, Ba, Sr, Fe, Ni, Co and Mn is shown, and in European Patent No. 546883, the reaction between + trivalent Cr and + divalent Ni is described.
  • the fluorination reaction of HCFC-133a using a catalyst based on a mixed oxide of Cr and Ni prepared with a hydroxide sol is shown.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and aims at pentafluoroethane, which is a target product, and C 2 HC 1 F ( 5) which can be recycled to a reaction system as a raw material.
  • -x) (where X is an integer of 1 to 5) without significantly lowering the production activity, and the total production of chlorofluoroethanes which are by-products during the production of pentafluoroethane
  • Still another object of the present invention is to provide a fluorination catalyst that can be used in the above-described method for producing pentafluoroethane and a method for producing the same.
  • the inventor of the present invention has studied the improvement of Kumumu-based catalysts such as chromium oxide and chromium oxyfluoride in order to solve the above-mentioned problems.
  • the average value of Kumumu is +3.5.
  • the chromium-based catalyst which is +5.0 or less and which is in an amorphous state includes at least one electrode selected from the group consisting of indium, gallium, cono-kort, nickel, zinc and aluminum.
  • the catalyst to which the metal element is added significantly enhances the activity of producing pentafluoroethane ⁇ and C 2 HC 1 F (5, where X is an integer of 1 to 5), which can be recycled to the reactor as a raw material. It was found that it was possible to reduce the total amount of chlorofluoroethanes, a by-product during the production of pennofluorene, without any deterioration.
  • the present inventor focused on the relationship between the chromium source in the added chromium-based catalyst; Hffi and the reactivity, and as a result, the average valence was about +4. It has been clarified that the above-mentioned effects can be obtained with a catalyst having a low valency. This is presumed to be due to the fact that the valence change, which is considered as one of the chromium catalyst performances, was facilitated. In addition, when the valence becomes sixteen, it becomes thermally unstable, and some exhibit sublimability, which may cause a problem when used as a catalyst.
  • the average chromium content should be +3.5 or more and +5 or less (preferably +4 to 104.5). is there.
  • the average value ⁇ i is +3.5 or more, the catalytic activity is improved as compared with the value less than +5.0, and when the average value is less than +5.0, the activity is higher and higher than that of the larger value.
  • the structure becomes stable. Then, by adding the metal to the chromium-based catalyst, a catalyst having high activity and hardly producing chloro ⁇ -fluoroethane is obtained, and the above-mentioned effects are obtained.
  • the present invention comprises, as a main component, a chromium compound to which at least one gold element selected from the group consisting of indium, gallium, cobalt, nickel, lead and aluminum is added, and Production of pentafluoroethane which has a valence of +3.5 or more and +5.0 or less and fluorinates a chlorine-containing carbon compound in the presence of an amorphous chromium-based catalyst
  • the method (hereinafter referred to as a method for producing benzoyl fluoroethane of the present invention).
  • some of the catalysts in which a metal is added to chromium oxide or fluorinated chromium oxide having a chromium atomic number of thirteen have been proposed by the present inventors.
  • a chromium-based catalyst that is less than +3.5, not less than +3.5, and not more than +5.0, and that is an amorphous state,
  • fluorinated chlorine-containing carbon compounds such as perchlorethylene, 1,1-dichloroalpha-2,2,2,2-trifluoropiethane and 1-chloro-1,2,2,2-tetrafluoroethane
  • the above-mentioned activation not only reduces the equipment temperature and running cost by lowering the reaction temperature, reducing the amount of catalyst, and extending the life of the catalyst, but also produces by-products, in particular, black ⁇ -fluoroethanes. As a result, it is possible to suppress the generation of by-products, that is, ⁇ fluoroethanes.
  • the activity of the amorphous catalyst having a chromium valence of +3.5 to 15 for the main reaction (benefluoroethane formation reaction) is crystalline, or the chromium valence is + Since the activity of the catalyst is much higher than that of the catalyst of No. 3, by adding the gold element, the high activity, which is a feature of amorphous, can be fully utilized while suppressing the generation amount of specific freon.
  • the use of an amorphous catalyst makes it possible to conduct the reaction ia ⁇ at a low temperature, and in combination with the effect of the added metal, the absolute amount of the specific fluorocarbon is higher than that of the crystalline catalyst. Is also significantly reduced.
  • the average valence number is a quantum number of quantum identified by composition analysis and magnetic susceptibility measurement, and the average atomic number identified by the previous analysis is actually
  • the chromium-based catalyst was analyzed in succession, and the average ⁇ of chromium in the catalyst was determined from the results obtained.
  • the average valence specified by the magnetic susceptibility measurement was: The change in the magnetic susceptibility of the preceding medium due to the temperature change was determined, and the average valence of chromium in the preceding medium was theoretically determined from the results (specific measurement methods will be described later).
  • the average valence is more preferably +3.6 or more and +4.8 or less (more preferably, 144.0 or more and +4.5 or less).
  • the amorphous state means that the above-mentioned solvent is in an amorphous state as a whole, and this means, for example, a diffraction attributed to a specific crystal structure in X-ray diffraction measurement. There is no peak.
  • HF, F 2, or another fluorine-containing hydrocarbon may be used as the fluorinating agent to be used.
  • the present invention provides, as a fluorine-containing catalyst which can be used in the method for producing pentafluoroethane of the present invention, at least one kind selected from the group consisting of indium, gallium, cobalt, nickel, zinc and aluminum.
  • Chromium-based fluorination catalyst hereinafter referred to as catalyst of the present invention).
  • the catalyst of the present invention is a chromium-based fluorination reaction catalyst used for a fluorination reaction, and can be used for various fluorination reactions.
  • ethane-ethylene-based chlorinated hydrocarbons (or carbon chlorides) It is desirable to provide the method for the production of Penyu Fluoroethane by converting it into Benyu Fluoroethane.
  • the present invention provides a method for producing the catalyst of the present invention with good reproducibility, wherein a chromium compound to which at least one metal element selected from the group consisting of indium, gallium, cobalt, nickel, zinc and aluminum is added.
  • a chromium compound to which at least one metal element selected from the group consisting of indium, gallium, cobalt, nickel, zinc and aluminum is added.
  • chromium-based fluorination catalyst in which the average atomic number of chromium in the chromium compound is +3.5 or more and +5.0 or less, and which is in an amorphous state. In doing so,
  • a method for producing a catalyst for fluorination (hereinafter, referred to as a method for producing a catalyst of the present invention) is also provided, wherein the chromium-based fluorination catalyst in the amorphous state is obtained by firing in an atmosphere of an inert gas. Things.
  • the chromium-based fluorination catalyst in the non-quality state is obtained by calcining in an atmosphere of an inert gas such as nitrogen gas.
  • the calcination can be carried out at a calcination temperature of 380 to 410 ° C. and a calcination time of about 0.5 to 3.5 hours.
  • the method comprises the steps of: starting from perchloroethylene, 1,1-dichloro-2,2,2-trifluorotrifluoroethane and 1-chloro-1,2,2,2,2-tetrafluoroethane. Fluorinating at least one of the chlorine-containing carbon compounds selected from the group consisting of Is desirable.
  • the chlorine-containing carbon compound is composed of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) and 1-chloro-1,2,2,2-tetrafluoroethane (HCFC- It is desirable to use any one of the above 1) or a mixture thereof.
  • perchlorethylene can be used as a starting material.
  • perchlorethylene is considered to be led to pentafluoroethane via an intermediate such as HCFC-123 or HCFC-124.
  • the method for producing pentafluoroethane of the present invention has a large effect particularly on the reaction that produces by-produced fluorofluoroethanes. Accordingly, in the present invention, there is no limitation on the starting material in such a reaction, but the yield of pentafluoroethane is relatively high, and the amount of chlorofluoroethanes produced is relatively large.
  • HCFC-122 1,1,2-trichloro-2,2-difluoromethane
  • reaction conditions are arbitrarily selected according to the characteristics of each starting material.
  • the molar ratio of the reaction between HF as a raw material and a chlorinated carbon compound is usually (0.9 to 100): 1.
  • the reaction temperature is usually 150 to 45 (TC.
  • the contact time between the catalyst and the reaction gas (the value obtained by dividing the catalyst weight by the amount of the reaction gas flowing per unit time) is usually And 0.1 gZN mL ⁇ sec to 50 g / NmL ⁇ se
  • the preferable reaction pressure can be appropriately selected depending on the type of the raw material gas to be subjected to the reaction, for example, from HCFC-123 to pentaflu.
  • the mole ratio of the reaction of the fluorinating agent such as HF with HCFC-123, the reaction temperature, the contact time and the reaction pressure are appropriately changed to obtain the pentafluoroethane. Conversion rate and the production rate of chlorofluoroethanes change. Evening conversion to Furuoroetan tends to increase with increasing reaction or contact time.
  • the reaction temperature is more preferably 250 to 380, and the molar ratio of the reaction is more preferably 2 to 10.
  • a more desirable contact time is from 0.2 g / NmL ⁇ sec to 20 g / NmL ⁇ sec.
  • the reaction pressure is preferably around normal pressure, and the reaction can be performed at a pressure higher than normal pressure, but the conversion to penfluorofluoroethane tends to decrease.
  • 1,1-dichloro-2,2,2-trifluorofluoroethane is converted to fluorine-containing carbon compound in the presence of the chromium-based catalyst.
  • the amount of bentafluoroethane obtained is reduced by the amount of by-product It is fully possible to carry out the project so that the proportion of the total production of the class is less than 0.5%.
  • the amount of generated pentafluoroethane and the amount of recyclable C 2 HC 1, F (5 ⁇ ,; (Integer of 5), the ratio of the total amount of chlorofluoroethanes produced to the amount of pentafluoroethane produced to 0.5% or less or 0.3% or less without significantly deteriorating the production activity of pentafluoroethane.
  • the chromium compound is at least one selected from the group consisting of chromium oxide, chromium fluoride, chromium oxyfluoride, and chromium fluorinated oxide. May be. That is, the catalyst used in the process for producing pentafluoro mouth ethane of the present invention may be a mixture of these various forms, for example, chromium oxyfluoride containing ⁇ -chromium having a different origin. Good.
  • the chromium-based catalyst be fluorinated before being subjected to the fluorination reaction of the chlorine-containing carbon compound. For example, by distributing the above-mentioned catalyst for a predetermined temperature and a predetermined time in a mixed gas of HF gas and gas, Fluoride
  • the chromium-based catalyst can be used such that the specific surface area after the fluorination becomes 25 to 13 Om 2 Zg. That is, the metal-added amorphous chromium oxide containing Cr from the plateau ⁇ i was prepared by the method described above, and then 100 to 460. If HF gas treatment is performed at C, preferably 150 to 400, a catalyst of 25 to 13 Om 2 can be obtained naturally. In order to achieve this, the initial stage of the HF treatment, which generates a very large amount of heat, is performed at a low temperature (150 to 250), and the HF is diluted with nitrogen gas (HF: 5 to 20%). Alternatively, it is desirable to increase the HF concentration.
  • the chromium-based catalyst is calcined in an atmosphere of an inert gas, whereby the Kumu-based catalyst can be made to be in an amorphous state.
  • the method for producing pen-fluorene there is no limitation on the method of adding the metal element to the chromium-based catalyst.
  • chromium hydroxide is immersed in an aqueous solution of the metal element and dried. After that, the calcination may be performed (impregnation method or immersion method: see FIG. 1), or the chromium hydroxide containing the metal element is co-precipitated from an aqueous solution in which the gold J and the chromium are dissolved. After being obtained and dried, the calcination may be performed (coprecipitation method: see FIG. 2).
  • a chromium-based catalyst is immersed in the aqueous metal salt solution, or chromium hydroxide, which is a precursor of a chrome-based catalyst, is immersed in the aqueous metal salt solution, followed by drying and firing.
  • a precipitant such as aqueous ammonia is added to a mixture of chromium hydroxide and an aqueous solution of chromium salt to obtain chromium hydroxide containing the metal element.
  • At least one metal element selected from the group consisting of o, Ni, Zn and A1 is added to the chromium compound.
  • the amount of the metal element added to the chromium-based catalyst such as chromium oxide is not too small so as not to obtain the effect of the present invention, and not too large to significantly inhibit the reaction activity of the chromium-based catalyst.
  • Amount is fine. That is, the amount of Cr in the catalyst is preferably in the range of 0.001 to 0.5, more preferably 0.005 to 0.1 (the production of the catalyst of the present invention). The method is the same).
  • the addition of the metal element does not cause any problem even after the fluorination treatment. However, it is desirable to perform it before the fluorination treatment.
  • the chromium-based catalyst may have an improved reaction activity or selectivity other than chromium, indium, gallium, cobalt, nickel, zinc, aluminum, oxygen, chlorine and fluorine. It is desirable to add or carry an element having the above effect, and the element may be at least one element selected from the group consisting of cadmium, magnesium and titanium.
  • a part or all of a product generated when the chlorine-containing carbon compound is fluorinated using hydrogen fluoride is returned to a reaction system, or hydrogen fluoride is used by using the catalyst according to claim 1. Can be led to another reaction system for performing the fluoridation. Further, a mixture containing pentafluoroethane and hydrogen chloride may be separated from the product, and the remaining product may be returned to the previous reaction system, or may be led to the other reaction system. Such a process allows for more efficient production of pentafluoroethane.
  • the chromium compound may be at least one compound selected from the group consisting of chromium oxide, chromium fluoride, chromium oxyfluoride, and chromium oxyfluoride. That is, as long as the element of chromium is within the range of the above-mentioned element number 5, the various forms described above may be employed.
  • the catalyst of the present invention is preferably fluorinated. In particular, it is the specific surface area before and after SL fluorination is 2 5 ⁇ 1 3 O m 2.
  • an element other than chromium, indium, gallium, cobalt, nickel, zinc, aluminum, oxygen, chlorine, and fluorine which has an effect of improving the reaction activity or selectivity may be added.
  • the element may be at least one element selected from the group consisting of cadmium, magnesium and titanium.
  • the baking can be performed after the powdered chromium hydroxide is immersed in an aqueous solution of the metal element and dried, (impregnation method or immersion method: see FIG. 1).
  • pre-forming may be performed after obtaining and drying chromium hydroxide containing the metal element by coprecipitation from an aqueous solution in which the metal element and chromium are dissolved (coprecipitation method: see FIG. 2). .
  • the chromium compound in the method for producing a catalyst of the present invention may be at least one compound selected from the group consisting of chromium oxide, chromium fluoride, chromium oxyfluoride, and chromium fluorinated chloride.
  • the catalyst be fluorinated after the calcination.
  • the specific surface area of the catalyst for the fluorination can be carried out 2 5 ⁇ 1 3 0 m 2 Z g and comprising as said fluorinated.
  • the catalyst for fluorination in the production method of the present invention includes an element having an effect of improving a reaction activity or selectivity other than chromium, indium, gallium, cobalt, nickel, zinc, aluminum, oxygen, chlorine, and fluorine. It is desirable to add.
  • the element may be at least one element deviating from the group consisting of cadmium, magnesium and titanium.
  • the average atomic valence of chromium in the catalyst is +3.5 or more and +5.0 or less, and is amorphous.
  • a fluorine-containing catalyst is prepared, for example, by the following method. First, a precipitate of chromium hydroxide is obtained by mixing an aqueous solution of chromium salt (eg, chromium nitrate, chromium chloride, chromium alum, chromium sulfate) and aqueous ammonia.
  • chromium salt eg, chromium nitrate, chromium chloride, chromium alum, chromium sulfate
  • a 5.7% aqueous solution of chromium nitrate is dripped with 10% ammonia water in an equivalent amount to about 1.2 times the equivalent amount to obtain a precipitate of chromium hydroxide.
  • the physical properties of chromium hydroxide can be controlled by the reaction rate of the precipitation reaction at this time, it is desirable that the reaction rate be somewhat high.
  • the reaction speed depends on the method of mixing aqueous ammonia (mixing speed) and the stirring state of the reaction solution.
  • this precipitate is filtered, washed, and dried.
  • This drying is desirably performed, for example, in air at 70 to 140, particularly at about 120 ° C. for 1 hour to 50 hours, particularly about 12 hours.
  • the material obtained at this stage is in the form of chromium hydroxide.
  • this hydroxide chromium is converted into, for example, an indium nitrate aqueous solution (for example, the amount of indium in the indium nitrate aqueous solution with respect to chromium in the chromium hydroxide becomes about 1: 0.03 in atomic ratio).
  • concentration of the aqueous solution is adjusted as described above.
  • chromium hydroxide with indium added is crushed and formed into a pellet by a tableting machine.
  • the beret may have a cylindrical shape with a diameter of about 3 mm and a height of about 3 mm, for example.
  • the belt is formed into a hollow cylindrical shape.
  • the formed catalyst is calcined in an atmosphere of an inert gas such as nitrogen gas to form amorphous chromium oxide with an average atomic number of chromium of +3.5 or more and +5.0 or less. be able to.
  • the firing temperature is desirably not less than 380 hand, it raised Cr 2 0 3 and Ru plows (original ⁇ i of chromium +3) for thereby forming a higher temperature within the range that can avoid it It is desired to do. Accordingly, the calcination is carried out, for example, 380 e C ⁇ 410 e C, in particular 400 e C and forth 0.5 hours to 3. 5 hours, especially 2 hours before and after.
  • Cr 2 0 3 is to not obtained average raw Contact number of high chromium-based catalysts generated, and if too short, a hydroxyl group in the catalyst Residue tends to be too large.
  • the catalyst is then CFC's and HCFC's, or by HF and F 2 can be treated off Tsu fluorinated. If the fluorination treatment is not performed, the fluorination of the catalyst proceeds during the reaction to produce bantafluoroethane, which greatly inhibits the reaction to produce the target product, pentafluoroethane, and promotes the formation of by-products May be.
  • the higher the temperature and pressure the faster the fluorination proceeds, and the temperature is such that the generated water does not condense in the process, and the heat of reaction causes the catalyst to crystallize. It is good to set the temperature that does not change to the upper limit.
  • the temperature at the time of the fluorination treatment may be in the range of 100 to 460.
  • the fluorination treatment reduces the specific surface area of the catalyst to 25 m 2 Zg to 130 m 2 .
  • various conditions for obtaining chromium hydroxide by a precipitation reaction (neutralization reaction) in the above-described catalyst preparation method are particularly important.
  • a chromium compound to which at least one metal element deviating from the group consisting of indium, gallium, cobalt, nickel, zinc and aluminum is added as a main component
  • the average atomic number of chromium in the chromium ligated product is not less than +3.5 and not more than +5.0, and the fluorinated carbon compound is present in the presence of a chromium-based catalyst in an amorphous state.
  • the compound is mainly composed of a compound to which at least one kind of gold bending element selected from the group consisting of indium, gallium, cobalt, nickel, zinc and aluminum is added.
  • the average number of chromium atoms in the chromium is +3.5 or more and +5.0 or less and is in an amorphous state, and is useful as a catalyst for fluorination in various fluorination reactions.
  • Provided to the method for producing pentafluoroethane of the present invention be able to.
  • the chromium-based fluorination catalyst in the amorphous state is obtained by baking in an atmosphere of an inert gas.
  • a catalyst for system fluorination can be produced with good reproducibility.
  • FIG. 1 is a flowchart showing an example of catalyst preparation according to an example of the present invention.
  • FIG. 2 is a flowchart showing a catalyst preparation example of another embodiment of the present invention.
  • FIG. 3 is a flowchart showing a catalyst preparation example of a comparative example.
  • FIG. 4 is a graph showing the results of X-ray diffraction measurement of Catalyst 1.
  • FIG. 5 is a graph showing the results of X-ray diffraction measurement of Catalyst 2.
  • FIG. 6 is a graph showing the results of X-ray diffraction measurement of Comparative Catalyst 1.
  • FIG. 7 is a graph showing the results of X-ray diffraction measurement of Comparative Catalyst 2.
  • FIG. 8 is a graph showing the results of X-ray diffraction measurement of Comparative Catalyst 3.
  • FIG. 9 is a process flow diagram when recycling is performed based on another embodiment of the present invention.
  • FIG. 10 is a graph showing the result of X-ray diffraction measurement of Comparative Catalyst 4.
  • FIG. 11 is a graph showing an X-ray diffraction measurement result of the ratio and the medium 5.
  • fluorination catalysts (catalysts 1 to 8) based on the present example and fluorination catalysts a l to 3) for comparison were prepared.
  • catalysts 1 to 6 were produced. First, 1.14 kg of a 10% aqueous ammonium hydroxide solution was added dropwise to 7.65 kg of a 5.7% aqueous chromium nitrate solution with stirring to obtain a precipitate of chromium hydroxide. Then, this was separated by filtration, washed with pure water, and a part thereof was dried in air at 120 at 12 hours, and the obtained solid chromium hydroxide was pulverized to a particle size of 0.2 mm or less. A powdery chromium hydroxide was obtained.
  • the powder was crushed again, and the powder mixed with 2% by weight of graphite was mixed into a cylindrical shape having an outer diameter of 3 mm and a height of 31101 using a commercially available tableting machine.
  • Fill Omm Hastelloy C reaction tube with nitrogen gas Then, the mixture is heated and calcined at 00 e C for 2 hours, and further brought into contact with a mixed gas of hydrogen fluoride and nitrogen at 200 to 360 at 2 hours for fluoridation.
  • Catalyst 1 Chromium oxide fluoride containing indium
  • Catalyst 2 Gallium-containing fluorinated chromium oxide
  • Catalyst 3 Cobalt-containing chromium fluoride oxide
  • Catalyst 4 Nigel-containing fluorinated oxide
  • Catalyst 5 Chromium oxide fluoride containing 3 ⁇ 4 ⁇ &
  • Catalyst 6 Fluorinated chromium oxide containing aluminum
  • composition analysis of the catalysts 1 to 6 of the present example obtained in the above catalyst preparation examples before fluorination the Cr original number calculated from the composition analysis, and the Cr original identified by the magnetic susceptibility measurement.
  • the numbers, X-ray diffraction measurement (XRD) results and specific surface area measurement (SSA) results are summarized in Table 2 below.
  • the average number of factors specified by the analysis is measured as follows.
  • chromium was oxidized to hexavalent using an alkali melting method, and was dissolved in an aqueous solution.
  • chromium was removed by the permanganate method, a type of redox titration.
  • the determination of hydrogen was performed using the CHN fraction (quantification by completely oxidizing hydrogen to H 2 0). From the obtained ill results of chromium and hydrogen, the amount of oxygen, which is the remaining constituent element, was calculated.
  • the H 2 O adsorbed on the catalyst is determined using a differential thermobalance (100 is the weight loss due to the endothermic absorption near the area is the adsorbed water amount). From measurement results of the results and differential thermal balance of the elemental analysis, the naturally catalyst Makoto C r Ox (OH) y - is specified in the form of zH 2 0.
  • n is a source of the additional metal element such as In described above, and m is the atomic ratio of the additional metal element to Cr.
  • the average power specified by the susceptibility measurement was determined as follows.
  • the valence of the magnetic ion (Cr ion) of the paramagnetic material can be determined by measuring the susceptibility curve (change in susceptibility with respect to the change in It is generally known that it can be specified. In other words, a comparison between the effective Bohr magnetism, which is theoretically calculated from the number of 3 d $ 3 ⁇ 4ii pairs, and the effective Bohr obtained from the magnetic susceptibility measurement results From this, the valence of Cr is specified.
  • Effective Bohr magneton jCz ⁇ TC 0.125) ' ⁇ (A)
  • the effective Bohr magneton number of chromium ions is theoretically calculated from the total spin angular momentum determined by the number of 3 d llil particles in the ion. It is also known to be obtained, and the values are as shown in Table a below.
  • the specific surface area is a value after fluorination.
  • catalyst 7 was produced.
  • a powder obtained by adding 2% by weight of graphite to the mixture was compression-molded into a cylindrical shape having an outer diameter of 3 mm and a height of 3 mm by using a commercially available punch, and this was made of Hastelloy C having a diameter of 20 mm.
  • the reaction tube was filled into a nitrogen gas 3 ⁇ 43 ⁇ 41 below 0 2 hours at O'C heated, calcined, further, the fluorine I in contact for 2 hours at at 20 0 e C ⁇ 360 a mixed gas of hydrogen fluoride and nitrogen Then, an indium-containing chromium oxide oxide was obtained as Catalyst 7.
  • the Cr factor of the obtained catalyst was determined by analysis to be 10.27, and the value specified by the measurement of the magnetism was +4.3.
  • the X-ray diffraction measurement (XRD) confirmed that the catalyst was amorphous.
  • the specific surface area (SSA) of this catalyst 7 ( ⁇ 105.2 m 2 / g
  • catalyst 8 was obtained.
  • Catalyst 8 was replaced with nickel-containing fluorinated catalyst 8 in the same manner as in Catalyst Preparation Example 7 except that 200 g of a 10.0% aqueous nickel nitrate solution was used instead of 30 g of a 1.0% aqueous indium nitrate solution S. Chromium oxide was obtained.
  • the Cr original ffi number of the obtained catalyst was +4.23 from the analysis, and the value identified from the susceptibility measurement was +4.2.
  • the X-ray diffraction measurement (XRD) confirmed that the catalyst was amorphous.
  • the specific surface area (SSA) of this catalyst 7 is 108. lm 2 / Atsu TZQ
  • a powder obtained by adding 2% by weight of graphite to the mixture was compression-molded into a cylindrical shape having an outer diameter of 3 mm and a height of 3 mm using a commercially available punching machine, and this was made of Hastelloy C having an inner diameter of 20 mm.
  • the Cr original number of the obtained catalyst was +2.95 from the analysis, and the value determined from the susceptibility measurement was +3.02. Further, the X-ray diffraction diffraction peaks obtained in the measurement (XRD) is attributed to be due to crystal structure of all Cr 2 0 3, the catalyst was confirmed that you have indicated crystallinity.
  • the specific surface area (SSA) of this comparative catalyst 2 was 10.4 m 2 Zg. According to the flowchart shown in FIG. 3, Comparative Catalyst 3 was obtained.
  • the powder was crushed again, and the powder mixed with 2 weight of graphite was formed into a column having a diameter of 3 mm and a height of 3 mm using a commercially available tableting machine.
  • Contact was made for a period of time to fluorinate, and as a specific catalyst 3, a catalyst made of indium-containing chromium hydroxide was prepared.
  • the Cr original number of the obtained catalyst was +2.97 from the analysis, and the value specified from the susceptibility measurement was +3.04. Further, the X-ray diffraction diffraction peaks obtained in the measurement (XRD) is attributed to be due to crystal structure of all Cr 2 0 3, the catalyst and this showing the crystallinity is 3 ⁇ 4H! .
  • the specific surface area (SSA) of this comparative catalyst 3 was 9.5. It was m 2.
  • each of the catalysts 1 to 8 and the ratios of the catalysts 1 to 3 obtained by the above-mentioned method was rubbed with an agate mortar into powder, and the crystals of each catalyst were obtained by X-ray diffraction under the following measurement conditions. An example in which the properties and the crystal structure were examined is shown. The measurement results are shown in Table A below.
  • Catalyst 1 Fig. 4 Amorphous (Two diffraction peaks are seen, but these belong to carbon (graphite))
  • Catalyst 2 Fig. 5 Amorphous (Two diffraction peaks are seen, but these are carbon (graphite)
  • Catalyst 3 Amorphous (not shown, two diffraction peaks are also seen, and these are attributed to carbon (graphite).)
  • Catalyst Amorphous (not shown, two diffraction peaks Catalyst 5 Amorphous (not shown, but two diffraction peaks are seen similarly, these are reduced to carbon (black))
  • Catalyst 6 Non-catalyst Amorphous (not shown, two diffraction peaks are seen similarly, these are degraded to carbon (black ship))
  • Catalyst 7 Amorphous (not shown, two diffraction peaks are seen similarly, these Catalyst is amorphous (not shown).
  • HCFC-123 was fluorinated under the above reaction conditions, and the obtained gas at the outlet of the reactor was washed with water, dried, and analyzed by gas chromatography to determine its organic composition.
  • [115/125] indicates the ratio of the pentafluorofluoroethane (CFC-115) concentration to the pentafluoroethane (HFC-125) concentration.
  • CFC-115) concentration indicates the ratio of the pentafluorofluoroethane (CFC-115) concentration to the pentafluoroethane (HFC-125) concentration.
  • CFC-115 concentration indicates the ratio of the pentafluorofluoroethane (CFC-115) concentration to the pentafluoroethane (HFC-125) concentration.
  • ] Indicates the ratio of the chlorofluoroethanes (11X) to the pentafluoroethane concentration (the same applies hereinafter).
  • Catalyst Catalyst 1, 4 and 5
  • Reaction tube Hastelloy C, inner diameter 15 mm
  • HCFC-124 was fluorinated under the above reaction conditions, and the obtained gas at the outlet of the reactor was washed with water, dried, and analyzed by gas chromatography to determine its organic composition. The measurement results are shown in Table 5 below.
  • Example 10 Example 1 1 Catalyst Catalyst 1 Catalyst 4 Catalyst 5 Reaction (.c) 318 319 316 Yes HFC-125 66.4 65.2 66.8 units
  • HCFC-124 was fluorinated under the same reaction conditions as in Examples 9, 10 and 11 using Comparative Catalysts 1-3. The results are shown in Table 6 below.
  • Comparative Example 1 and the same reaction conditions (300 e C) in a ratio medium 2 CC r 2 0 3 (crystalline)] and Comparative Catalyst 3 [metal element (I n) of the added C r, 0 8 (crystalline).
  • Comparative Catalyst 3 metal element (I n) of the added C r, 0 8 (crystalline).
  • the reaction at 350 ° C. was performed to show that the reaction was performed at 350 ° C., which shows the advantage of lowering the temperature by using a high activity catalyst (catalyst of the present application) (lower impurity concentration for HFC-125).
  • the fluorination reaction of HCFC-123 was performed under the same conditions as in 1, 2, and 7. The results are shown in Table 8 below.
  • the gas-phase fluorination reactor 1 is charged with 45 kg of the catalyst 1 as a fluorination catalyst, and HCFC-123 is supplied to the reactor 1 from the raw material container 2 at a rate of 49 mol / h.
  • Anhydrous HF was supplied from the raw material container 3 at a flow rate of 102 mol / h.
  • the fluorination reaction in the reactor 1 was 324, and the pressure was 3.2 kgZcm 2 .
  • the reaction mixture coming out of the reactor 1 was introduced into a condensing device (heat exchanger) 4, and was condensed into a non-condensate and a condensate at ⁇ 20 ° C. and a pressure of 3.1 kg / cm 2 .
  • the non-condensate mainly contains HFC-125, and was sent to the purification step via pipe 5 for purification, and was recovered as HFC-125, which was the target substance.
  • the condensate was sent to a separation tank 6 and separated into a liquid phase mainly composed of HF and a liquid phase mainly composed of HCFC-123 and HCFC-124.
  • the liquid phase mainly composed of HF was supplied to the reactor 1 again as a raw material from the pipe 8 via the pipe 7.
  • the liquid phase mainly composed of HCFC-123 and HCFC-124 was introduced into the distillation column 10 via the pipe 9, and distilled at a pressure of 7.2 kg, cm 2 .
  • the non-condensate in the distillation column 10 and the condenser 12 at the top mainly contains HFC-125, and is purified through the pipe 13 together with the non-condensate in the above-mentioned condensing device 4.
  • HFC-125 which is the target product
  • HCFC-12 which was accompanied by HFC-125, was returned to the distillation column 10 again.
  • the reflux product in the distillation column 10 passes through the piping 14, and the bottom component of the distillation column 10 passes through the piping 15 together with the liquid phase mainly composed of HF separated in the separation tank 6. It was supplied to the reactor 1 via 8, and was used as a raw material for the fluorination reaction together with newly added HCFC-123 and HF.
  • the ratio of CF C-115 in HFC-125 was about 0.22% in the recovered material extracted from pipes 5 and 13, and the side cut (described later) Even without performing Comparative Example 10), the amount was very small.
  • a comparative example is shown in which a metal-free chromium oxide catalyst (amorphous) is used to recycle organic substances obtained from a reaction vessel.
  • HFC-125 was produced in the same manner as in Example 15 except that the comparative catalyst 1 was used as the catalyst to be charged into the reactor 1 and the reaction temperature was 320.
  • each of the recovered materials (components from pipes 5 and 13) and the recycled components (components from pipes 7, 14 and 15) after 60 hours from the start of the reaction was the same as in Example 15. (Flow rate: mo 1 hour) is shown in Table 10 below.
  • the ratio of CFC-115 in HFC-125 was about 0.2% of the recovered material extracted from pipes 5 and 13, which was implemented as a product (HFC-125).
  • the same effect as in Example 15 is obtained, but the loss amount including CFC-115 is 2.6 mol / h, which is about 24 times as large as that of Example 15 (0.1 lmo 1Z time). It became.
  • the metal is supported on an amorphous catalyst having a valence of chromium of about 14 to significantly reduce the concentration of CFCs relative to HFC-125. It is clear that the effect is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

明細書 ペンタフルォロェタンの製造方法、 並びにフッ素化用触媒及びその製造 方法 産業上の利用分野
本発明は、 ペン夕フルォロェタンの製造方法、 並びにフッ素化用触媒 及びその製造方法に関するものである。
従来の技術
一般に、 水素含有飽和ハロゲン化炭化水素 (以下、 代替フロンと称す ることがある。 ) は、 オゾン層の破壊の可能性が極めて低いため、 従来 より市場で用いられている水素を含まないハロゲン化炭素 (例えは、 ク ロロフルォロェタン類:以下、 特定フロンと称することがある。 ) の f 替品として注目されている。
特に、 ペンタフルォ ェタンは、 冷媒、 発泡剤、 溶剤、 ドライエッチ ヤント等の多岐に渡る用途が期待される。 また、 ペンタフルォロェタン は、 通常の温度及び圧力では不活性で低毒性の気体であり、 有川な物^ 従来より、 ペンタフルォロェタンの製造方法としては、 酸化ク□厶触 媒ゃアルミナに金属を担持した触媒等を用レ、、 テトラクロロエチレンや ハロゲン化炭化水素 〔C 2 H C 1 F ( 5 ;但し、 Xは 1〜5〕 の ¾ 相フッ素化反応が知られている。
しかしながら、 従来より知られている反応では、 目的生成物のへンタ フルォロェタンや、 原料として反応系へのリサイクルが可能な C 2 H C 1 F ( 5 (但し、 Xは 1〜5 ) で表されるハロゲン化炭化水素の他 に、 副生成物としてク anフルォロェタン類 (特定フロン) の生成が避 けられないことも明らかとなっている。
この特定フロンであるクロ αフルォロェタン類 〔C2 Cし F ( 6-,, (但し Xは 1〜5) 〕 は、 原料として反応系にリサイクルできないため に、 生産ロスをもたらすだけでなく、 特に、 CFC— 1 1 5 ( 1 -クロ ロー 1, 1, 2, 2, 2—ペンタフルォロェタン:以下、 同様) は、 精 製工程における目的生成物 (ペンタフルォロェタン) との分離が困難な ため、 精製設備費の増大やべンタフルォロェタンの 低下を招いてい る。 さらに、 その処理には多くの費用が必要とされている。
まず、 酸化クロム触媒、 或いは活性炭にクロム又は酸化クロムを担持 した触媒を用 、た従来のぺンタフルォロェタンの製造方法を説明する。 例えば、 米国特許第 3 75 54 77号では、 HCFC— 1 23 (2, 2—ジクロロー 1, 1, 1—トリフルォロェタン:以下、 同様) を原料 とし、 酸化クロム触媒を用いてペンタフルォロェタンが生成されること が示されており、 また、 特開平 8— 38 9 04号では、 還元処理した酸 ィ匕クロム触媒で、 パークロロエチレンからペンタフルォロェタンが生成 されること、 さらに、 WO 92 1 95 76号では、 (NH4 ) z C r 2 Οτ から調製した酸ィ匕クロム触媒で、 HCFC- 1 23からベンタフ ルォロェタンが生成されることを示している。 また、 欧州特許第 4 5 6 552号では、 活性炭に C rを担持せしめた触媒で、 H C F C— 1 23 を原料としてペンタフルォロェタンが生成されることが示されている。 しかしながら、 以上のような酸化クロム触媒、 或いは活性炭にクロム 又は酸化クロムを担持した触媒を用いた従来の方法では、 上述のように 問題となる副生成物クロ口フルォロェタン類の低減には限界があり、 ク ロロフルォロェタン類生成の問題についての改善は、 依然として不十分 である。
特に、 上述したいずれの方法でも、 目的生成物であるベンタフルォロ ェタンの生成量に対する副生成物クロ口フルォロェタン類の総生成量の 割合を 1%以下とすることは困難である。
また、 アルミナ又はフッ化アルミニウムに金属を担持した触媒を用レヽ てペンタフルォロェタンを製造する方法が知られている。
例えば、 欧州特許第 638535号では、 C r 2 03 ZA 1 F2 、 特 表平 3— 505328号では、 Mn (又は C o、 C r ) ZA 1 F 3 、 W 092/ 1 6482号では Zn/アルミナ、 特開平 4— 29940号で は CoZC eZアルミナ、 或いは、 欧州特許第 609 1 24号では、 C r/N i/A 1酸化物の触媒で、 パークロロエチレン、 H C F C— 1 2 2 (1, 1, 2—トリクロロー 2, 2—ジフルォロェタン:以下、 同様 ) 、 或いは、 HCFC— 1 23を原料としたペンタフルォロェタンの製 造方法が示されている。
これらアルミナ又はフッ化アルミニウムを担体とした触媒を用いた ¾ 合、 酸化クロム系触媒を使用した場合に比べて、 いずれも反応活性が低 く、 高温での反応を余儀なくされ、 結果的に副生成物の生成が多くなる 条件となるだけでなく、 反応器の加熱設備費や用役費の増大につながつ ている。 さらに、 多量の触媒が必要となり、 自ずと高級材質を用いた大 きな反応器が必要となってしまう。
また、 酸化クロム、 フッ素化酸化クロムなどのクロム系触媒に金 を 担持せしめた触媒もペンタフルォロェタン製造用の触媒として提案され ている。
しかしながら、 そのほとんどは、 問題となる副生成物クロ口フルォロ ェタン類の生成量を考慮しておらず、 フッ素ィ匕活性が高く、 即ち、 ベン タフルォロェタンの生成率が高く、 かつ、 副生成物であるクロ口フルォ 口エタン類の生成を抑えたぺンタフルォロェタンの製造方法は示されて いない。
例えば、 特開平 2 - 1 78237号では、 F e 2 03 — C r 2 03 触 媒を用いてパークロロエチレンをフッ素ィ匕し、 収率良くベンタフルォロ エタンを生成している。 また、 特開平 7— 6 1 944号では、 HCFC - 123を原料とし、 400。Cで 4時間水素処理した I n/Cr F y (当該公開特許公報に示された触媒は、 その触媒 Μ ^により Crの価 数は +3. 0に特定される。 )触媒を用いてペンタフルォロエタンを得 ており、 また、 特開平 8— 1 08073号では、 同じく HCFC— 1 2 3から 400でで 4時間水素処理した GaZCr Ox F, (当該公開特 許公報に示された触媒は、 その触媒 により Crの価数は +3. 0に 特定される。 )触媒を用いたペンタフルォロェタンの生成を開示してお り、 それぞれ、 反応圧力の増加による活性低下の抑制効果と触媒の長寿 命ィ匕について示されている。
しかしながら、 これらのいずれの例においても、 副生成物であるクロ 口フルォロェタン類の生成に関する知見は示されていない。
即ち、 W095/27688号では Z n/C r酸化物系の触媒を用い たペン夕フルォロェタンの製造方法を開示しているが、 副生成物クロ□ フルォロェタン類の総生成量に関する知見は示されていない。 また、 c
FC- 1 1 5についてのそれは示されているが、 パーク口口エチレンを 原料にした実施例では、 生成してくるペンタフルォロェタンに対する C FC- 1 1 5の割合は 0. 59%、 HCFC— 123を原料とした実施 例では、 HFC— 1 25と HCFC— 1 24を合わせた量に対する C F C— 1 1 5の割合でさえも既に 1. 4 6%に達しており、 クロ口フルォ 口エタン類の低減効果は不十分と言える。
さらに、 MgZC r酸化物触媒を用いたパークロロエチレンからのべ ンタフルォロェタンの製造方法を開示した欧州特許第 7336 1 1号に 至っては、 そこに示されているどの実施例においても、 副生成物である クロ口フルォロエタン類の生成量は、 その中の比較例に比べても明らか に多く、 ペンタフルォロェタンの生成量に対するクロ口フルォロェタン 類の総生成量の割合は、 2. 9〜7. 0%と高い値である。
また、 他の反応、 例えば、 :》じ?じー 1 333 (2—クロロー 1, 1 , 1一トリフルォロェタン:以下、 同様) のフッ素化反応において、 い くつかの金属添加の酸化ク πム触媒が提案されている。
例えば、 特開平 2 - 1 72933号では、 Crとともに、 A 1、 K4g 、 Ca、 Ba、 Sr、 F e、 N i、 C o及び Mnからなる群より選ばれ る少なくとも 1種の元素を含むハロゲン化物または酸化物からなる触媒 を用いた HCFC— 1 33 aのフッ素化反応が示されており、 また、 欧 州特許第 546883号では、 + 3価の C rと+ 2価の N iとの水酸化 物ゾルにより調製した C rと N iとの混合酸化物を基材とする触媒を用 いた、 HCFC— 1 33 aのフッ素化反応が示されている。
しかしながら、 これらの文献の中で、 ペンタフルォロェタンの生成反 応における活性、 選択性及びクロ口フルォロェタン類の生成量等に | す る知見は何ら示されておらず、 また、 ペン夕フルォロェタンの生成反応 における反応性は容易に推測できるものではない。 さらに、 前者におけ る触媒は、 450でで 5時間の焼成を行っており、 また、 後者における 触媒は 420で、 4時間の焼成により調製されているので、 Crの平均 価数が +3. 0程度となり、 かつ、 非晶質の触媒を得る条件としては適 当でない。 発明の目的
本発明は、 上述した従来の実情に鑑みてなされたものであり、 その目 的は、 目的生成物であるペンタフルォロェタンや、 原料として反応系に リサイクル可能な C 2 H C 1 F ( 5 - x ) (但し、 Xは 1〜 5の整数) の 生成活性を有意に低下させることなく、 かつ、 ペンタフルォロェタン製 造時の副生成物であるクロロフルォロエタン類の総生成量が低減され、 その結果として、 生産ロスを抑えるだけでなく、 精製設備費の抑制や、 ペンタフルォロェタンの純度向上が可能な触媒を用いたベンタフルォロ ェタンの製造方法を提供することにある。
本発明の更に他の目的は、 上述したペンタフルォロェタンの製造方法 に用いることができるフッ素化用触媒及びその製造方法を提供すること にめる。
発明の構成
本発明者は、 上述した課題を解決するべく、 酸ィ匕クロム、 酸化フッ化 ク αムなどのク口ム系触媒の改良を検討した結果、 ク口厶の平均原^ が + 3 . 5以上、 + 5 . 0以下であり、 かつ、 非晶質 (アモルファス) 状態にあるクロム系触媒に、 インジウム、 ガリウム、 コノくルト、 ニッケ ル、 亜鉛及びアルミニウムからなる群より選ばれる少なくとも 1極の金 属元素が添加された触媒が、 ペンタフルォロエタンゃ、 原料として反応 器へのリサイクルが可能な C 2 H C 1 F ( 5 (但し、 Xは 1〜 5の 整数) の生成活性を有意に悪化させることなく、 ペン夕フルォロェタン 製造時の副生成物であるクロ口フルォロエタン類の総生成量を低減させ ることが可能であることを見レ、だした。
即ち、 本発明者は、 添加されるクロム系触媒中のクロムの原-; Hffiと反 応性との関係に着目し、 検討を行った結果、 その平均原子価数が約 + 4 価である触媒において上述した効果が得られることを明らかにした。 こ れは、 クロム触媒性能の一つとして考えられる価数変化が容易となって いることによるものと推定される。 また、 十 6価となれば熱的に不安定 になり、 また、 昇華性を示すものもあり、 触媒として使用する上で問題 となる場合がある。
また、 繊分析や磁化率測定結果より特定される触媒全体としてのク ロムの平均原 は、 比較的安定な +3、 +4、 或いは +6という 値を必ずしもとるものではないことも判明し、 それらは、 +3価、 +4 価、 或いは +6価のクロムが混在する結果、 平均原^ i数として整数値 をとらないものと考えられる。
以上のことから、 主に +4価のクロムを含み、 クロムの平均原 Ϊ ϋίと しては、 +3. 5以上、 +5以下 (好ましくは +4〜十 4. 5) とすべ きである。 この平均原^ iが +3. 5以上であることによって、 これ未 満に比べて触媒活性が向上し、 また +5. 0以下であることによって、 これより大きいものに比べて高活性でかつ構造が安定となる。 そして、 このクロム系触媒に、 前記金属を添加することにより、 高活性でクロ π フルォロエタン類の生成し難い触媒が得られ、 上述した効果が得られる のである。
即ち、 本発明は、 インジウム、 ガリウム、 コバルト、 ニッケル、 亚鉛 及びアルミニウムからなる群より選ばれる少なくとも 1棰の金厲元尜が 添加されたクロム化合物を主成分とし、 前記クロム化合物におけるク口 ムの平均原子価数が +3. 5以上、 +5. 0以下であり、 かつ、 非晶質 状態にあるクロム系触媒の存在下に、 含塩素炭素化合物をフッ素化する 、 ペンタフルォロェタンの製造方法(以下、 本発明のベン夕フルォロェ タンの製造方法と称する。 ) に係るものである。 前述したように、 クロムの原 数が十 3である酸化クロム又はフッ 素化酸化クロムに金属を添加した触媒はいくつか提案されている力 本 発明者が鋭意検討を重ねた結果、
インジウム、 ガリウム、 コバルト、 ニッケル、 亜鉛及びアルミニウム からなる群より選ばれる少なくとも 1種の金属元素が添加されたクロム 化合物であって、 この化合物が安定な原^ i数 + 3よりも大きく、 昇華 性を有する化合物をも形成する原^ K数 + 6よりも小さい、 + 3 . 5以 上、 + 5 . 0以下であり、 かつ、 非晶質状態にあるク口厶系触媒の存在 下に、
例えば、 パークロロエチレン、 1, 1ージク α口— 2 , 2 , 2—トリ フルォ πェタン及び 1 一クロロー 1 , 2 , 2 , 2—テトラフルォロエタ ンなどの含塩素炭素化合物をフッ素化する
ことによって、 ペンタフルォ πェタン生成反応の高活性化と、 ベンタフ ルォロエタン生成量に対する副生成物であるクロ口フルォロエタン類の 生成量の低減化との両立が可能になることを見レ、だした。
特に、 前記髙活性化は、 反応温度の低温化や触媒量の低減、 長寿命化 を可能にして設備費ゃランニングコストの低減をもたらすだけでなく、 副生成物、 特にクロ αフルォロェタン類が生成し難 、条件を実現させる 結果となって、 さらに、 副生成物であるク π πフルォロェタン類の生成 を抑制することができる。
これは、 非晶質でクロムの価数が + 3 . 5〜十 5の触媒の主反応 (ベ ンタフルォロェタンの生成反応) に対する活性が、 結晶性、 或いはクロ ムの価数が + 3の触媒の活性に比べ非常に高いために、 前記金厲元尜を 添加することによって、 特定フロンの生成量を抑えつつ、 非晶質の特長 である高活性を十分に活かすことができる。 加えて、 高活性化により同 -H F C - 1 2 5生成量の条件では、 非晶質の触媒を用いることで反応 ia ^の低温ィ匕が可能となり、 添加金属の効果とあいまって特定フロンの 絶対量においても結晶性触媒よりも大幅に少なくなる。
なお、 本発明における前記平均原子価数とは、 その組成分析及び磁化 率測定により特定されるク口厶の原^ 5数であつて、 前 分析によ り特定される平均原 数は、 実際に前記クロム系触媒の誠分析を行 い、 これによつて得られる結果から前言 媒中のクロムの平均原子昍を 求めたものであって、 磁化率測定により特定される平均原子価数は、 温 度変化による前言 媒の磁化率の変化を求め、 その結果から理論的に、 前言 媒中のクロムの平均原子価を求めたものである (具体的な測定方 法については後述する) 。
なお、 前記平均原子価数は、 + 3 . 6以上、 + 4 . 8以下 (更には十 4 . 0以上、 + 4 . 5以下) がさらに望ましい。
さらに、 前記非晶質状態とは、 前言 媒が全体として非晶質 (ァモノレ ファス)状態にあることを意味し、 これは、 例えば X線回折则定におい て特定の結晶構造に帰属される回折ピークが存在しなレ、状態である。 また、 本発明のペンタフルォロェタンの製造方法におけるフッ素化反 応では、 使用するフッ素化剤として、 H F、 F 2 又はその他のフッ素含 有炭化水素などを用いてよい。
本発明は、 本発明のぺンタフルォロェタンの製造方法に使用できるフ ッ素ィ匕用触媒として、 インジウム、 ガリウム、 コバルト、 ニッケル、 亜 鉛及びアルミニウムからなる群より選ばれる少なくとも 1種の金屈元尜 が添加されたクロム化合物を主成分とし、 前記クロム化合物におけるク αムの平均原子価数が + 3 . 5以上、 + 5 . 0以下であり、 かつ、 非晶 質状態にあるクロム系フッ素化用触媒(以下、 本発明の触媒と称する。 ) を するものである。
本発明の触媒は、 フッ素化反応に供するクロム系フッ素化反応用触媒 であり、 種々のフッ素化反応に供することができるが、 特に、 エタンゃ エチレン系の塩化炭化水素 (又は塩化炭素) をフッ素化してベン夕フル ォロェタンを得る、 ペン夕フルォロェタンの製造方法に供することが望 ましい。
さらに、 本発明は、 本発明の触媒を再現性良く製造する方法として、 インジウム、 ガリウム、 コバルト、 ニッケル、 亜鉛及びアルミニウムか らなる群より選ばれる少なくとも 1種の金属元素が添加されたクロム化 合物を主成分とし、 前記ク口ム化合物におけるク αムの平均原 数が + 3 . 5以上、 + 5 . 0以下であり、 かつ、 非晶質状態にあるクロム系 フッ素化用触媒を製造するに際し、
不活性ガスの雰囲気下での焼成によって前記非晶質状態にあるクロム 系フッ素化用触媒を得る、 フッ素化用触媒の製造方法 (以下、 本発明の 触媒の製造方法と称する。 ) も提供するものである。
本発明の触媒の製造方法によれば、 本発明の触媒を製造するに際し、 例えば窒素ガス等の不活性ガスの雰囲気下で焼成によって、 前記非品質 状態にあるクロム系フッ素化用触媒を得ることができ、 前記焼成は、 特 に焼成温度 3 8 0で〜 4 1 0 °C、 焼成時間 0 . 5時間〜 3 . 5時間程度 で行うことがきる。
まず、 本発明のぺンタフルォロェタンの製造方法を説明する。
本発明のペンタフルォロェタンの製造方法において、 パークロロェチ レン、 1 , 1—ジクロロー 2, 2 , 2—トリフルォ口ェタン及び 1 ーク ロロ一 1 , 2 , 2 , 2—テトラフルォロェタンからなる群より選ばれる 少なくとも 1種の前記含塩素炭素化合物をフッ化水素によりフッ素化す ることが望ましい。
さらに、 前記含塩素炭素化合物が、 1, 1—ジクロロ- 2, 2, 2- トリフルォロェタン (HCFC— 123) 及び 1一クロロー 1, 2, 2 , 2ーテトラフルォロェタン (HCFC— 1 24) のいずれか又はその 混合物であることが望ましい。
即ち、 出発原料として HCFC— 123や HCFC— 1 24 (特に H CFC- 1 24) を使用する場合、 副生成物であるクロ口フルォロエタ ン類の生成を極めて少量に抑制することができ、 これと同時に目的物で あるペンタフルォロエタンを高収率で得ることができる。
もちろん、 出発原料としてパークロロエチレンを用いることもでき、 この場合、 パークロロエチレンは HCFC— 1 23や HCFC— 1 24 等の中間体を経てペンタフルォロェタンへと導かれると考えられる。 上述したように、 本発明のペンタフルォロェタンの製造方法は、 特に 、 クロ口フルォロエタン類を副生する反応に関してその効梁が大き 、。 従って、 本発明においては、 このような反応であれば出発原料の制限は ないが、 比較的ペンタフルォロェタンの収率が高く、 かつ、 クロ口フル ォロェタン類の生成量が多い、 パークロロエチレン、 1, 1ージクロ□ 一 2, 2, 2—トリフルォロェタン及び 1—ク口口一 1, 2, 2, 2 - テトラフルォ πェタンのいずれか、 又はそれらの混合物、 或いは 1, 1 ージクロロー 2, 2, 2—トリフルォロェタンと 1—クロロー 1, 2, 2, 2—テトラフルォロェタンとの混合物の HFによるフッ素化におい て特に顕著な効果が得られる。 また、 前記含塩素炭素化合物として、 1 , 1, 2—トリクロロー 2, 2—ジフルォ口ェタン (HCFC— 1 22 ) などを用いてもよい。
本発明のペンタフルォロエタンの製造方法におけるフッ素化反応の反 応条件は、 各出発原料の特性に応じて任意に選ばれる。
例えば、 原料となる HFと含塩素炭素化合物 (特に、 パ一クロロェチ レン、 HCFC— 123及び— 1 24のいずれか) との反応のモル比は 通常、 (0. 9〜1 00) : 1であり、 また、 反応温度は通常、 1 50 〜 45 (TCである。 また、 前言 媒と反応ガスとの接触時間 (触媒重 量を反応ガスの単位時間に流れる量で割った値) は、 通常、 0. l gZ NmL · s e c〜50 g/NmL · s e。である。 なお、 好ましい反応 圧力は反応に供する原料ガスの種類等によつて適宜選ぶことができる。 例えば、 HCFC— 123からペンタフルォロェタンを生成させるフ ッ素化反応では、 HF等のフッ素化剤と HCFC— 1 23との反応のモ ル比、 反応温度、 接触時間及び反応圧力を適宜変えることにより、 ベン タフルォ口エタンへの転化率やクロ口フルォロエタン類の生成率が変化 し、 例えば、 ペン夕フルォロェタンへの転化率は、 反応 や接触時間 の増加に伴って増加する傾向にある。
特に、 製造設備費や反応条件による用役費、 或いは上記の反応条件を 考慮すると、 反応温度はさらに 250で〜 380でが望ましく、 反応の モル比はさらに 2〜1 0が望ましい。 また、 さらに望ましい接触時間は 0. 2 g/NmL · s e c〜20 g/NmL · s e cである。 さらに、 反応圧力は、 常圧付近であることが好ましく、 常圧よりも高い圧力下で の反応も可能であるが、 ペン夕フルォロエタンへの転化率が低下する傾 向 {こある。
また、 本発明のペンタフルォロェタンの製造方法によれば、 前記クロ ム系触媒の存在下、 前記含塩素炭素化合物として 1, 1—ジクロロー 2 , 2, 2—トリフルォロェタンをフッ素^する際に、 得られるベンタフ ルォ口ェタンの生成量に対して、 副生成物であるクロ口フルォロェタン 類の総生成量の割合が 0 . 5 %以下となるように実施することが十分に 可能である。
さらに、 前記含塩素炭素化合物として 1一クロ口一 1, 2 , 2 , 2 - テトラフルォロェタンをフッ素化する場合は、 得られるベンタフルォ□ ェタンの生成量に対して、 副生成物であるクロ口フルォロェタン類の総 生成量の割合が 0 . 3 %以下となるように実施することが十分に可能で ある。
このように、 本発明のペンタフルォロェタンの製造方法によれば、 ベ ンタフルォロェタンの生成量やリサイクル可能な C 2 H C 1 , F ( 5 - ,; (但し、 Xは 1〜5の整数) の生成活性を有意に悪化させることなく、 ペンタフルォロエタンの生成量に対するクロ口フルォロエタン類の総生 成量の割合を 0 . 5 %以下或いは 0 . 3 %以下とすることができ、 原料 として反応系にリサイクルできないクロ口フルォロエタン類の総生成!: を低減すると共に、 ペンタフルォロェタンとの分離が困難である C F C 一 1 1 5の生成も抑制することができ、 ペン夕フルォロェタンの効率良 い製造を実施することができる。
また、 本発明のペン夕フルォロェタンの製造方法において、 前記クロ ム化合物は、 酸化クロム、 フッ化クロム、 酸化フッ化ク π厶及び酸化塩 化フッ化クロムからなる群より選ばれる少なくとも 1種であつてよい。 即ち、 本発明のペンタフルォ口エタンの製造方法で用いる触媒は、 この ような種々の形態の混合体であってよいし、 例えば、 原 の異なるク πムを含む酸化フッ化クロム等であってもよい。
また、 前記クロム系触媒を前記含塩素炭素化合物のフッ素化反応に供 する前に予めフッ素化することが望ましい。 例えば、 H Fガスと ガ スとの混合ガス中に所定温度、 所定時間、 前言 媒を配しておくことで フッ素ィ匕される。
なお、 前記フッ素化後の比表面積が 25〜13 Om2 Zgとなるよう な前記クロム系触媒を用いることができる。 即ち、 上述した方法で、 金 属添加した非晶質で高原^ iの C rを含む酸化クロムを調製し、 その後 100〜460。C、 好ましくは 150〜 400でで H Fガス処理を行え ば、 自ずと 25〜13 Om2 の触媒が得られる。 なお、 このために は、 非常に大きな発熱を伴う HF処理の初期は低温 (150〜250で ) で、 HFを窒素ガスで希釈 (HF: 5〜20%) して行い、 その後、 昇温、 或いは HF濃度を増加していくことが望ましい。
また、 不活性ガスの雰囲気下で前記クロム系触媒の焼成を行い、 これ によつて前記ク口ム系触媒を非晶質状態とすることができる。
上述した温度、 時間内での前記焼成によって、 上述した原- Hiliを有し 、 かつ、 非晶質のクロム系触媒を形成することができるが、 特に、 ¾ 380〜 410て、 0. 5〜3. 5時間の範囲内で前記焼成を行うこと が望ましい。
また、 本発明のペン夕フルォロェタンの製造方法において、 前記クロ ム系触媒への前記金属元素の添加方法に制限はなく、 例えば、 水酸化ク ロムを前記金属元素の水溶液中に浸漬処理し、 乾燥した後に、 前記焼成 を行ってもよく (含浸法又は浸漬法:図 1参照) 、 又は、 前記金 J¾元尜 とクロムが溶解する水溶液から共沈により前記金属元素を含有する水酸 化クロムを得、 乾燥した後に前記焼成を施してもよい (共沈法:図 2参 照)。
即ち、 例えば、 前記金属塩水溶液にクロム系触媒を浸演させる、 或い は、 前記金属塩水溶液にク口ム系触媒の前駆体である水酸化クロムを浸 潰させた後、 乾燥、 焼成を施す含浸法や、 前記金属元素の金屈塩水溶液 とクロム塩水溶液との混合液にアンモニア水等の沈殿剤を加え、 前記金 属元素を含有する水酸化クロムを得、 焼成することによって調製する共 沈法などにより、 I n、 G a、 C o、 N i、 Z n及び A 1からなる群よ り選ばれる少なくとも 1種の金属元素がクロム化合物に添加される。 また、 酸化クロム等のクロム系触媒への前記金属元素の添加量は、 本 発明の効果が得られない程に少な過ぎず、 クロム系触媒の反応活性を有 意に阻害する程に多過ぎない量でよい。 即ち、 触媒中の C rに対して、 原 比で 0. 0 0 1〜0. 5、 好ましくは 0 . 0 0 5〜0. 1となる 範囲内の量が望ましい (本発明の触媒の製造方法も同様) 。
このように、 前 SE 媒の初期活性の安定化や脱水のために、 H F等に よる前記触媒のフッ素化処理を行う場合、 前記金属元素の添加は、 前記 フッ素化処理の後でも問題はなレ、が、 フッ素化処理の前に行うことが望 ましい。
また、 本発明のペンタフルォロェタンの製造方法においては、 前記ク ロム系触媒に、 クロム、 インジウム、 ガリウム、 コバルト、 ニッケル、 亜鉛、 アルミニウム、 酸素、 塩素及びフッ素以外の反応活性又は選択性 改善の効果を有する元素を添加、 または担持することが望ましく、 前記 元素は、 カドミウム、 マグネシウム及びチタンからなる群より選ばれる 少なくとも 1種の元素としてよい。
また、 前記含塩素炭素化合物をフッ化水素を用いてフッ素化する際に 生じる生成物の一部若しくは全部を、 反応系に戻す、 或いは、 請求項 1 に記載した触媒を使用してフッ化水素によるフッ素ィ匕を行う他の反応系 に導くことができる。 さらに、 前記生成物からペンタフルォロエタン及 び塩化水素を含む混合物を分離し、 残りの生成物を前言 応系に戻す、 或いは、 前記他の反応系に導いてもよい。 このような工程によって、 より一層効率的なペンタフルォロエタンの 製造が可能となる。
次に、 本発明の触媒について説明する。
本発明の触媒において、 前記クロム化合物が、 酸化クロム、 フッ化ク Πム、 酸ィ匕フッ化クロム及び酸化塩化フッ化クロムからなる群より選は れる少なくとも 1種の化合物であってよい。 即ち、 クロムの原 ϊΗΙίが、 前述した原^ 5数の範囲内にあれば、 前記の種々の形態であつてよい。 また、 本発明の触媒はフッ素化されていることが望ましい。 特に、 前 記フッ素化後の比表面積が 2 5〜1 3 O m2 であることがよい。 また、 本発明の触媒においては、 クロム、 インジウム、 ガリウム、 コ バルト、 ニッケル、 亜鉛、 アルミニウム、 酸素、 塩素、 フッ素以外の反 応活性又は選択性改善の効果を有する元素が添加されていることが望ま しく、 前記元素は、 カドミウム、 マグネシウム及びチタンからなる群よ り選ばれる少なくとも 1種の元素であってよい。
次に、 本発明の触媒の製造方法を説明する。
後述する調製法により得た水酸化クロムを不活性雰囲気下で高温処理 すると、 脱水と共に、 酸化クロムの生成が進行し、 同時に表面積も増加 する。 この現象は、 比較的低温、 或いは短時間の焼成、 即ち、 3 0 0 °C 〜3 7 (TC、 或いは 0 . 4時間の焼成でも進行し、 十分大きな表面被-は 得られるが、 この焼成条件では、 触媒中に水酸基 (O H— ) が多く残留 し、 得られた触媒中のクロムの価数が + 3 . 5に満たない値となる。 逆 に 4 1 0 eCを越える、 或いは 3 . 5時間を越える焼成では、 クロ厶ィォ ンとして原^ ffiは安定な + 4価から + 3価に移行してゆき、 酸ィヒクロム の結晶構造としても、 非晶質から、 安定な C r 2 03 ( C r + 3価) 構 造への結晶化が進み、 クロムの平均原 は + 3 . 5を下回ってしまう 以上の検討結果から、 本願中に示した調製法により得た水酸化クロム の焼成により、 非晶質でのクロムの平均原 が + 3 . 5以上、 + 5 .
0以下の触媒を得るためには、 不活性雰囲気下で、 3 8 0で〜 4 1 0で 、 特に 4 0 0 eCで 0 . 5〜3 . 5時間、 好ましくは 2時間の焼成が適当
C、ある。
また、 粉末状水酸化クロムを前記金属元素の水溶液中に浸漬処理し、 乾燥した後に、 前記焼成を行うことができる (含浸法又は浸潰法:図 1 参照)。 または、 前記金属元素とクロムが溶解する水溶液から共沈によ り前記金属元素を含有する水酸化クロムを得て乾燥した後、 前¾½成を 行ってもよい (共沈法:図 2参照) 。
また、 本発明の触媒の製造方法における前記クロム化合物は、 酸化ク ロム、 フッ化クロム、 酸化フッ化クロム及び酸化塩化フッ化クロムから なる群より選ばれる少なくとも 1種の化合物であってよい。
また、 本発明の触媒の製造方法においては、 前記触媒を前記焼成後に フッ素化することが望ましい。 前記フッ素化用触媒の比表面積が 2 5〜 1 3 0 m 2 Z gとなるように前記フッ素化を行うことができる。
さらに、 本発明の製造方法における前記フッ素化用触媒に、 クロム、 インジウム、 ガリウム、 コバルト、 ニッケル、 亜鉛、 アルミニウム、 酸 素、 塩素、 フッ素以外の反応活性又は選択性改善の効果を有する元尜を 添加することが望ましい。
前記元素は、 カドミウム、 マグネシウム及びチタンからなる群より逸 ばれる少なくとも 1種の元素であってよい。
本発明の触媒の製造方法において、 前記触媒におけるク口厶の平均原 子価数は + 3 . 5以上、 + 5 . 0以下であり、 かつ、 非晶質であるが、 このようなフッ素ィ匕用触媒は、 例えば、 以下に示す方法で調製される。 まず、 クロム塩の水溶液 (例えば、 硝酸クロム、 塩化クロム、 クロム みょうばん、 硫酸クロム) とアンモニア水とを混合することによって、 水酸化クロムの沈殿を得る。
次いで、 例えば、 硝酸クロムの 5 . 7 %水溶液に 1 0 %のアンモニア 水を等当量から等当量の 1 . 2倍程度滴下することによって、 水酸化ク ロムの沈殿を得る。 この時の沈殿反応の反応速度により水酸化クロムの 物性を制御することができるが、 反応速度はある程度速いことが望まし い。 この反応速度は、 反応溶液の 、 アンモニア水の混合方法 (混合 速度) 、 攪拌状態によって左右される。
次いで、 この沈殿を濾過、 洗浄後、 乾燥する。 この乾燥は、 例えば、 空気中 7 0で〜 1 4 0 、 特に 1 2 0 °C前後で 1時間〜 5 0時 、 特に 1 2時間前後行うことが望ましい。 この段階で得られる物質は、 水酸化 クロムの状態である。
次いで、 この水酸ィ匕クロムを、 例えば硝酸インジウム水溶液 (例えば この水酸化クロム中のクロムに対し、 硝酸インジウム水溶液中のインジ ゥムの量が原子比で約 1 : 0 . 0 3程度になるように前記水溶液の濃度 を調整する。 ) に浸漬し、 例えば 1 2時間程含浸させた後、 改めて例え ば 1 2 0でで 1 2時間乾燥することによって、 インジゥ厶添加の水酸化 クロムが得られる。
次いで、 ペレツ ト形状の触媒にする場合は、 インジウム添加の水酸化 クロムを解砕し、 打錠機によってペレツ ト状に成形する。 ベレツ 卜は、 例えば直径 3 mm、 高さ 3 mm程度の円柱状であってよい。 または、 ガ ス流通時の圧力損失やガスの拡散を考慮すると、 前記べレツ 卜は中空円 筒形に成形することが望ましい。 次いで、 成形された触媒を窒素ガス等の不活性ガスの雰囲気中、 焼成 することによって、 クロムの平均原 数が +3. 5以上、 +5. 0以 下で非晶質の酸化クロムにすることができる。
この焼成温度は、 380て以上であることが望ましいが、 高くしすき ると Cr 2 03 (クロムの原^ iは +3) を形成してしまうため、 それを回避できる範囲でより高温にすることが望まれる。 従って、 この 焼成は、 例えば、 380eC〜410eC、 特に 400eC前後で 0. 5時間 〜3. 5時間、 特に 2時間前後行う。 上述したように、 この焼成時 が 上述した範囲よりも長すぎると、 Cr 2 03 が生成して平均原 お数の 高いクロム系触媒が得られず、 また、 短すぎると、 触媒中に水酸基の残 留が多くなりすぎる傾向にある。
次いで、 触媒を CFC類や HCFC類、 或いは HFや F2 によってフ ッ素化処理することができる。 フッ素化処理を行わない場合、 ベンタフ ルォロエタンの生成反応中に触媒のフッ素化が進行してしまい、 目的物 であるペンタフルォロェタンの生成反応を大きく阻害したり、 副生成物 の生成を促進することがある。
特に、 HFでフッ素化処理する場合、 温度、 圧力は高いほどフッ素化 の進行速度は大きくなり、 また、 温度は生成する水が工程内で凝縮しな いかであって、 反応熱により触媒が結晶化しない温度を上限とすれは よい。 例えば、 フッ素化処理時の温度は 100で〜 460での範囲内で あればよい。
なお、 このフッ素化処理によって、 触媒の比表面積は低下し、 25m 2 Zg〜l 30m2 になる。
上述したような方法以外でも、 触媒中のクロムの平均原- Hi数が十 3 . 5以上、 +5. 0以下であり、 かつ、 非晶質状態にあるクロム系触媒 を調製することが可能であるが、 本発明における触媒を得るためには、 上述した触媒調製方法における、 沈殿反応 (中和反応) によって水酸化 クロムを得るときの種々の条件や、 水酸化ク口ムの焼成条件などが特に 重要となる。
なお、 上述した触媒調製例以外の調製方法例としては、 ί肖酸インジゥ ム水溶液を水酸化クロムに含浸させる代わりに、 硝酸クロム水溶液に硝 酸インジゥム水溶液を混合させて、 水酸ィヒクロムの沈殿を得る共沈法な ど;^ある。
産業上の利用可能性
本発明のペンタフルォロェタンの製造方法によれば、 インジウム、 ガ リウム、 コバルト、 ニッケル、 亜鉛及びアルミニウムからなる群より逸 ばれる少なくとも 1種の金属元素が添加されたクロム化合物を主成分と し、 前記クロムィ匕合物におけるクロムの平均原^ 数が + 3 . 5以上、 + 5. 0以下であり、 かつ、 非晶質状態にあるクロム系触媒の存在下に 、 素炭素化合物をフッ素化するので、 ペンタフルォロェタンや、 原 料として反応器へのリサイクルが可能な C 2 H C 1 F ( 5-x ) (但し、 Xは 1〜5の の生成活性を有意に悪化させることなく、 ベンタフ ルォロエタン製造時の副生成物であるクロロフルォロエタン類の総生成 量を低減させることが可能である。
本発明の触媒によれば、 インジウム、 ガリウム、 コバルト、 ニッケル 、 亜鉛及びアルミニウムからなる群より選ばれる少なくとも 1種の金屈 元素が添加されたク口ム化合物を主成分とし、 前記ク口ム化合物におけ るクロムの平均原^ i数が + 3 . 5以上、 + 5 . 0以下であり、 かつ非 晶質状態にあって、 種々のフッ素化反応におけるフッ素化用触媒として 有用であり、 特に、 本発明のペンタフルォロェタンの製造方法に供する ことができる。
本発明の触媒の製造方法によれば、 インジウム、 ガリウム、 コバルト 、 ニッケル、 亜鉛及びアルミニウムからなる群より選ばれる少なくとも
1種の金属元素が添加されたク πム化合物を主成分とし、 前記クロ厶化 合物におけるクロムの平均原 数が + 3 . 5以上、 + 5 . 0以下であ り、 かつ、 非晶質状態にあるクロム系フッ素化用触媒を製造するに際し 、 不活性ガスの雰囲気下での焼成によって前記非晶質状態にあるクロム 系フッ素化用触媒を得るので、 前記非晶質状態にあるクロム系フッ素化 用触媒を再現性良く製造することができる。
図面の簡単な説明
図 1は、 本発明の実施例の触媒調製例を示すフローチヤ一卜である。 図 2は、 本発明の他の実施例の触媒調製例を示すフローチヤートであ 。
図 3は、 比較例の触媒調製例を示すフローチヤ一トである。
図 4は、 触媒 1の X線回折測定結果を示すグラフである。
図 5は、 触媒 2の X線回折測 結果を示すグラフである。
図 6は、 比較触媒 1の X線回折測定結果を示すグラフである。
図 7は、 比較触媒 2の X線回折測定結果を示すグラフである。
図 8は、 比較触媒 3の X線回折測定結果を示すグラフである。
図 9は、 本発明の他の実施例に基づきリサイクルを行う場合のプロセ スフロー図である。
図 1 0は、 比較触媒 4の X線回折測定結果を示すグラフである。 図 1 1は、 比,媒 5の X線回折測 ¾ ¾果を示すグラフである。 符号の説明
1 - · ·反応器 2、 3 · , ,原料容器
4 …分縮器 (熱交換器)
5、 7、 8、 9、 1 1、 1 3、 1 4、 1 5 · · ·配管
6 · · ·分液槽
1 0 . . .蒸留塔
12 · · ·凝縮器
実施例
以下、 本発明を実施例について詳細に説明するが、 本発明は以下の実 施例に限定されるものではない。 まず、 本実施例に基づくフッ素化用触媒 (触媒 1〜8) 、 及び比較用 のフッ素化用触媒 a ι〜 3 ) を作製した。
触媒 1〜6 (実施例)
図 1に示すフ口一チャートに従って、 触媒 1〜触媒 6を作製した。 まず、 5. 7%硝酸クロム水溶液 7. 65 kgに対し、 1 0%水酸ィ匕 アンモニゥム 1. 14 kgを攪拌しながら滴下し、 水酸化クロムの沈殿 を得た。 次いで、 これを濾別し、 純水による洗浄の後、 その一部を空気 中、 120でで 12時間乾燥して得られた固形水酸化クロムを 0. 2m m以下の粒径に粉砕し、 粉末状の水酸化クロムを得た。
次いで、 得られた粉末状の水酸ィ匕クロムのうちの 50 gを下記の表 1 に示す試薬を 3 OmLの水に溶解した水溶液に浸漬し、 1 2時間放置し た後、 改めて乾燥、 水分除去を行った。
次いで、 これを解砕し直し、 黒鉛 2重量%を加えて混合した粉末を、 市販の打錠機を用いて外形 3 mm、 高さ 31101の円柱状に/£^成形し、 これを内径 2 Ommのハステロイ C製の反応管に充填し、 窒素ガス 下、 0 0 eCで 2時間加熱、 焼成し、 さらに、 フツ化水素と窒素との混 合ガスに 2 0 0で〜 3 6 0でで 2時間接触させてフッ素ィ匕し、
触媒 1 :インジウム含有のフッ化酸化クロム
触媒 2 :ガリウム含有のフッ化酸化クロム
触媒 3 : コバルト含有のフツ化酸化クロム
触媒 4 :ニッゲル含有のフッ化酸化ク口ム
触媒 5 : ¾ί&含有のフッ化酸化クロム
触媒 6 :アルミニウム含有のフッ化酸化クロム
を得た。
表 1
Figure imgf000025_0001
以上の触媒調製例で得られた本実施例の触媒 1〜 6のフッ素化前の組 成分析とそれより算出される Crの原^ ffi数、 また、 磁化率測定により 特定される Crの原 数、 X線回折測定 (XRD)結果及び比表面 ¾ 測定(SSA)結果を下記の表 2にまとめた。
なお、 舰分析により特定される平均原 数は、 下記の如く測定し
7 o
まず、 アルカリ溶融法を用いてクロムを 6価に酸化し、 を水溶液 中に溶解させた。 次いで、 酸化還元滴定の一種である過マンガン酸塩法 によりクロムを^した。 水素の定量は CHN分^^置(水素を H2 0 に完全酸化して定量) を用いて行った。 得られたクロム及び水素の定 ill 結果から、 残りの構成元素である酸素の量を算出した。 以上の元尜分析 と同時に、 触媒に吸着している H2 〇を示差熱天秤を用いて定 ώしてお く (100で付近での吸熱に伴う重量減少分を吸着水分量とする)。 元 素分析の結果と示差熱天秤での測 果から、 自ずと触媒の誠は C r Ox (OH) y - zH2 0の形で特定される。
次いで、 酸素 (0)、 水酸基 (OH)、 及び水(H2 0)の価数はそ れぞれ、 —2、 一 1及び 0であるので、 残るクロム (Cr)の原 は 分析の結果を用いて、 下式により導いた。
Cr原 =— (- 2 Χχ- 1 xy) -n Xm
(但し、 nは上記した I nなどの添加金属元素の原 であり、 mは C rに対する添加金属元素の原子数比である。 )
また、 磁化率測定により特定される平均原 数は、 下記の如く则定 した。
常磁性体の磁性イオン (Crイオン) の価数は、 磁化率曲線( の 変化に対する磁化率の変化) を測定することにより、 その結果から 的に特定できることが一般的に知られている。 即ち、 3 d$¾iiの不対 子の数より理論的に算出される各価数のクロムイオンに固有の有効ボー ァ磁^ ¾と、 磁化率測^果から得られた有効ボーァ との比較か ら Crの価数が特定される。
まず、 磁気天秤を用いて、 変化による触媒の磁化率の変化を測定 した。 その結果から下式で表されるキュリー定数を求めた。
X = C/T (X:磁化率、 C:キュリ—定数、 T: 〔K〕 ) 次いで、 下記の関係式(Α) に、 得られた Cを代入し有効ボーァ磁子 数を算出した。
有効ボーァ磁子数 jCz = ~TC 0. 125) ' · · (A) 一方、 クロムイオンの有効ボーァ磁子数がイオンの 3 d llil¾子の数 により決定される全スピン角運動量から理論的に得られることも知られ ており、 その値は下記表 aの通りである。
表 a
Figure imgf000027_0001
そして、 表 aにおける とクロム原 との相関性をもとに、 前記式 (A) で得られた値から、 触媒中のクロムの平均原 数を特定した。 例えば、 = 2. 72ならば、
2. 72= 1. 73 X + 2. 83 ( 1 -χ) · · ·式 1 クロム原^ ffi=+5x+4 ( 1 -χ) · · '式 2 であり、 式 1、 式 2を解くと、 クロム原 =+4. 1と算出される。 表 2 触媒 1 触媒 2 触媒 3 触媒 4 触媒 5 触媒 6 添加金属 M I n Ga Co N i Zn A 1 金属 (ra) 0.03 0.03 0.03 0.03 0.03 0.03 組
成 クロム 1 1 1 1 1 1 モ 酸素 (X) 2.15 2.15 2.13 2.13 2.16 2.14 ル
比 OH (y) 0.05 0.03 0.01 0.02 0.01 0.04
H2 0 (z) 0.22 0.21 0.25 0.22 0.23 0.26 原 誠分析 +4.26 +4.24 +4.21 +4.22 +4.27 +4.23 子
価 磁化率測定 +4.3 +4.2 +4.1 +4.1 +4.3 + 4.2
X線回折結果 非晶質 非晶質 非晶質 非晶質 非晶質 非 BB質 比表面積 (raVg) 88.0 92.5 90.0 93.1 91.8 89.4 伹し、 r原^ j は各触媒中のク。ム平均原^ Kであり、 フッ素化前 のものであって、 触媒^ ¾Mm C r Ox (OH) y - zH2 0から導い たものである。 尚、 比表面積はフッ素化後の値である。
触媒 7 (実施例)
図 2に示すフローチャートに従って、 触媒 7を作製した。
まず、 5. 7%水酸化クロム水溶液 7. 65kgと 10. 0%の硝酸 インジウム水溶液 330 gとの混合溶液を調製した。 この混合溶液に対 し、 10%水酸化アンモニゥム 1. 21 kgを攪拌しながら滴下し、 ィ ンジゥム添加の水酸化クロムの沈殿を得た。
次いで、 これを濾別し、 純水による洗浄の後、 その一部を空気中、 1 20eCで 12時間乾燥して得られた固形水酸化クロムを 0. 2mm以下 の粒径に粉砕し、 粉末状のインジウム含有水酸化クロムを得た。
次いで、 これに黒鉛 2重量%を加えて混合した粉末を、 市販の打锭拨 を用いて外形 3mm、 高さ 3 mmの円柱状に圧縮成形し、 これを內径 2 0mmのハステロイ C製の反応管に充填し、 窒素ガス ¾¾1下、 0 O'C で 2時間加熱、 焼成し、 さらに、 フッ化水素と窒素との混合ガスに 20 0eC〜360でで 2時間接触させてフッ素ィ匕し、 触媒 7として、 インジ ゥム含有のフッ化酸化クロムを得た。
得られた触媒の C rの原 数は、 分析からの値が十 4. 27で あり、 磁ィ匕率測定から特定された値は +4. 3であった。 また、 その X 線回折測定 (XRD)から、 この触媒は非晶質を示していることが確認 された。 また、 この触媒 7の比表面積 (SSA) {±105. 2m2 /g あつ 7ZQ
触媒 8 (実施例)
図 2に示すフローチャートに従って、 触媒 8を得た。 1 0. 0%の硝酸インジウム水溶液 S 30 gの代わりに、 1 0. 0% の硝酸ニッケル水溶液 200 gを使用した以外は触媒調製例 7と同様に して、 触媒 8としてニッケル含有のフッ化酸化クロムを得た。
得られた触媒の Crの原^ ffi数は、 分析からの値が +4. 23で あり、 磁化率測定から特定された値は +4. 2であった。 また、 その X 線回折測定(XRD) から、 この触媒は非晶質を示していることが確認 された。 また、 この触媒 7の比表面積 (SSA) は 1 08. lm2 / あつ TZQ
比議媒 1
図 3に示すフローチャートに従って、 比較触媒 1を得た。
まず、 5. 7%硝酸クロム水溶液 7. 65 kgに対し、 1 0%水酸化 アンモニゥム 1, 14 kgを攪拌しながら滴下し、 水酸化クロムの沈殿 を得た。 次いで、 これを濾別し、 純水による洗浄の後、 その一部を空気 中、 120°Cで 12時間乾燥して得られた固形水酸化クロムを 0. 2m m以下の粒径に粉砕し、 粉末状の水酸化クロムを得た。
次いで、 これに黒鉛 2重量%を加えて混合した粉末を、 市販の打绽機 を用いて外形 3mm、 高さ 3 mmの円柱状に圧縮成形し、 これを内径 2 0 mmのハステロイ C製の反応管に充填し、 窒素ガス δ¾ϋ下、 400。C で 2時間加熱、 焼成し、 さらに、 フッ化水素と窒素との混合ガスに 20 oec〜36 0てで 2時間接触させてフッ素化し、 i iとして、 フ ッ化酸化クロムからなる触媒を調製した。
得られた触媒の Crの原^ ffi数は、 分析からの値が +4. 1 8で あり、 磁化率測定から特定された値は +4. 2であった。 また、 その X 線回折測定 (XRD) から、 この触媒は非晶質を示していることが確認 された。 また、 この比較触媒 1の比表面積 (SSA) は 1 1 1. 3m2 であった。 図 3に示すフ n—チャートに従って、 比較触媒 2を得た。
まず、 5. 7%硝酸クロム水溶液 7. 65kgに対し、 10%水酸化 アンモニゥム 1. 14 kgを攪拌しながら滴下し、 水酸化クロムの沈殿 を得た。 次いで、 これを濾別し、 純水による洗浄の後、 その一部を空気 中、 120でで12時間乾燥して得られた固形水酸化クロムを 0. 2m m以下の粒径に粉砕し、 粉末状の水酸化クロムを得た。
これを内径 20 mmのハステロイ C製の反応管に充塡し、 窒素ガスの 流通下、 室温から 550°Cまで昇温させ、 550°Cを下回らないように 2時間保持して第 1回目の焼成を行つた。
その後、 降温し、 緑色の Cr 2 03 粉末を得た。 次いで、 これに黒鉗 2重量%を加えて混合した粉末を外形 3 mm、 高さ 3 mmの円柱状に、 市販の打錠機を用いて圧縮成形し、 これを内径 20mmのハステロイ C 製の反応管に充填し、 窒素ガス流通下、 00でで 2時間加熱して第 2 回目の焼成を行い、 さらに、 フッ化水素と窒素との混合ガスに 200eC 〜360でで 2時間接触させてフッ素化し、 比 ^媒 2として、 フッ化 酸化クロムからなる触媒を調製した。
得られた触媒の C rの原^ ffi数は、 分析からの値が + 2. 95で あり、 磁化率測定から特定された値は +3. 02であった。 また、 その X線回折測定 (XRD)で得られた回折ピークはすべて Cr 2 03 の結 晶構造によるものに帰属されており、 この触媒は結晶性を示しているこ とが確認された。 また、 この比較触媒 2の比表面積 (SSA) は 10. 4m2 Zgであった。 図 3に示すフローチャートに従って、 比較触媒 3を得た。
まず、 5. 7%硝酸クロム水溶液 7. 65kgに対し、 10%水酸化 アンモニゥム 1. 14 kgを攪拌しながら滴下し、 水酸化クロムの沈殿 を得た。 次いで、 これを漶別し、 純水による洗浄の後、 その一部を空気 中、 120でで 12時間乾燥して得られた固形水酸化クロムを 0. 2m m以下の粒径に粉砕し、 粉末状の水酸化クロムを得た。
これを内径 20mmのハステロイ C製の反応管に充填し、 窒素ガスの 流通下、 室温から 55 (TCまで昇温させ、 550eCを下回らないように 2時間保持して第 1回目の焼成を行った。 その後、 降温し、 緑色の Cr
2 OS 粉末を得た。
この粉末のうちの 45. 2gを、 5. 16 gの In(N03)s · 8H20を 3 OmLの水に溶解した水溶液に浸潰し、 12時間放置した後、 改めて 乾燥、 水分除去を行った。
次いで、 これを解砕し直し、 黒鉛 2重量 を加えて混合した粉末を、 市販の打錠機を用いて外形 3 mm、 高さ 3ΠΠΏの円柱状に 成形し、 これを内径 20 mmのハステロィ C製の反応管に充填し、 窒素ガス ¾¾i 下、 400°Cで 2時間加熱して第 2回目の焼成を行い、 さらに、 フッ化 水素と窒素との混合ガスに 200で〜 360eCで 2時間接触させてフッ 素化し、 比^ 媒 3として、 インジウム含有の水酸化ク α厶からなる触 媒を調製した。
得られた触媒の C rの原^ ffi数は、 分析からの値が + 2. 97で あり、 磁化率測定から特定された値は +3. 04であった。 また、 その X線回折測定 (XRD)で得られた回折ピークはすべて Cr 2 03 の結 晶構造によるものに帰属されており、 この触媒は結晶性を示しているこ とが ¾H!された。 また、 この比較触媒 3の比表面積 (SSA) は 9. 5 m2 であった。
次に、 上述した方法で得られた触媒 1〜 8及び比,媒 1〜 3の触媒 をそれぞれ、 めのう乳鉢で擦り潸して粉末にし、 X線回折法により下記 測定条件で、 各触媒の結晶性及び結晶構造を調べた例を示す。 その測定 結果を下記表 Aに示す。
•回折装置:理学電機社製 RAD-R A型 X線回折装置 ( X R D )
• X線: CuKa線
•出力: 40 kVx 10 OmA
表 A 触 媒 X R D 結晶性、 結晶構造
の結果 触媒 1 図 4 非晶質 (二つの回折ピークが見られるが、 これらは 炭素(黒鉛) に帰属) 触媒 2 図 5 非晶質 (二つの回折ピークが見られるが、 これらは 炭素(黒鉛) に帰属) 触媒 3 非晶質 (図示はしないが、 二つの回折ピークが同様に 見られ、 これらは炭素(黒鉛) に帰 ¾〉 触媒 非晶質 (図示はしないが、 二つの回折ピークが同様に 見られ、 これらは炭素(黒 ¾}) に帰属) 触媒 5 非晶質 (図示はしないが、 二つの回折ピークが同様に 見られ、 これらは炭素(黒 ) に帰屈) 触媒 6 非晶質 (図示はしないが、 二つの回折ピークが同様に 見られ、 これらは炭素(黒船) に帰腐) 触媒 7 非晶質 (図示はしないが、 二つの回折ピークが同様に 見られ、 これらは炭素(黒鋭) に帰屈) 触媒 8 非晶質 (図示はしないが、 二つの回折ピークが同様に 見られ、 これらは炭素(黒鉛) に帰属) 比 媒 1 図 6 非晶質 (二つの回折ピークは炭素(黒鉛) に帰属) 比纖媒 2 図 7 Cr203 (炭素の回折ピーク以外は全て Cr203に帰厲) mrnrn 図 8 Cr203 (炭素の回折ピーク以外は全て Cr20sに帰厲) 但し、 図 4〜図 8の横軸は、 X線入射角 20を示し、 縦軸はカウン卜 数(c p s : count per second) を示す。 なお、 X線入射角 20が 26 度から 27度に表れた回折ピークと、 同じく 55度から 56度に表れた 回折ピークとは、 成形のために用いた炭素(黒鉛) に帰厲するものであ る o
ペンタフルォ Πエタンの作製
得られた触媒 1〜 8及び比較触媒 1〜 3を用いて、 ペンタフルォロェ タンを作製した。
く実施例 1〜8 >
前 I2 媒調製で得られた触媒 1〜8を用いて HFによる HCFC— 1 23 (1, 1ージクロロー 2, 2, 2—トリフルォロェタン) の気相フ ッ素化を、 下記の反応条件で行った。
反応条件
触媒:触媒 1〜 8
触媒量: 9. 2 g
(触媒ペレツトを粉砕し、 粒径 300- 1 000〃mに揃えたもの) 反応管:ハステロイ C製、 内径 1 5mm
反応ガス (流量) : HCFC- 123 (48 NmL/mi n)
HF ( 1 92NmL/m i n)
反応 表 3に記載
反応圧力:大気圧
上記の反応条件で HCFC— 123のフッ素化を行い、 得られた反応 器出口のガスは、 水洗、 乾燥後、 ガスクロマトグラフィーで分析し、 そ の有機物組成を求めた。
得られた結果を下記の表 3に示す。 但し、 表中 Γΐΐχ j は、 クロロフ ルォロェタン類 (CFC- 1 12、 CFC- 1 1 2 a. CFC— 1 1 3 、 CFC— 1 13 a、 CFC - 1 14、 CFC- 1 1 4 a及び CFC - 1 1 5) のト一タル濃度を示す (以下、 同様) 。
また、 表中 [115/125] は、 ペンタフルォロェタン(HFC- 125) 濃度に対 するペン夕フルォロクロロェタン(CFC- 115) 濃度の割合を示し、 表中 [1 1X/125] は、 ペンタフルォロェタン濃度に対する前記クロ口フルォロェ タン類 (11X) の割合を示す (以下、 同様) 。
表 3 A 実施例
1 2 3 4 触媒 触媒 1 触媒 2 触媒 3 触媒 4 反応温度(。c) 302 305 302 306 有 HFC-125 11.1 11.9 12.2 11.8 機
物 HCFC-124 47.0 46.6 46.7 46.8 組
成 HCFC-123 41.8 41.4 40.9 41.3 モ CFC-115 0.002 0.003 0.006 0.002 ル
% 11X 0.02 0.03 0.05 0.04 その他 0.07 0.11 0.13 0.09
[115/125] ) 0.018 0.025 0.049 0.017
[賺25](¾) 0.18 0.25 0.41 0.34 表 3B 実施例
5 6 7 8 触媒 触媒 5 触媒 6 触媒 7 触媒 8 反応 CO 301 303 300 302 有 HFC-125 12.4 12.4 11.9 12.0 機
物 HCFC-124 46.7 46.5 46.8 46.7 組
成 HCFC-123 40.8 40.9 41.2 41.2 モ CFC-115 0.004 0.004 0.002 0.002 ル
% 11X 0.03 0.06 0.015 0.03 その他 0.09 0.12 0.06 0.08
[115/125] (¾) 0.032 0.032 0.017 0.017
[議25](%) 0.24 0.48 0.13 0.25 く比較例 1〜3 >
前記比,媒 1〜 3の触媒を用いて、 実施例 1〜 8と同様の反応条件 で HCFC— 1 23のフッ素化反応を行った。 その結果を下記の表 こ 示す。
表 4 比較例 1 比較例 2 比較例 3 触媒 比難媒 1 比較触媒 2 比麵媒 3 反応 (。c) 300 334 340 有 HFC-125 12.1 12.0 11.9 機
物 HCFC-124 46.4 46.6 46.4 組
成 HCFC-123 41.0 40.6 41.0 モ CFC-115 0.031 0.055 0.043 ル
% 11X 0.21 0.34 0.29 その他 0.34 0.49 0.41
[115/125] (¾) 0.26 0.46 0.36
[11X/125KD 1.74 2.83 2.44 <実施例 9〜1 1 >
触媒 1、 4及び 5を用い、 HFによる HCFC— 124 (2—クロ口 — 1, 1, 1, 2—テトラフルォロェタン) の気相フッ素化反応を下記 の条件で行った。 反応条件
触媒:触媒 1、 4及び 5
触媒量: 1 8. 5 g
(触媒ペレツトを粉砕し、 粒径 300〜1 000 mに揃えたもの) 反応管:ハステロイ C製、 内径 1 5 mm
反応ガス 0») : HCFC- 124 ( 55 NmL/m i n)
HF ( 1 1 ONmL/m i n)
反応 :表 5に記載
反応圧力:大気圧
上記の反応条件で HCFC— 124のフッ素化を行い、 得られた反応 器出口のガスは、 水洗、 乾燥後、 ガスクロマトグラフィーで分析し、 そ の有機物組成を求めた。 測定結果を下記の表 5に示す。
表 5 室施例 9 実施例 1 0 実施例 1 1 触媒 触媒 1 触媒 4 触媒 5 反応 (。c) 318 319 316 有 HFC - 125 66.4 65.2 66.8 機
物 HCFC-124 21.2 23.9 20.8 組
成 HCFC-123 12.2 10.7 12.2 モ CFC-115 0.022 0.015 0.033 ル
% 11X 0.052 0.081 0.071 その他 0.13 0.14 0.11
[115/125](¾) 0.03 0.02 0.05
[11X/125](¾) 0.08 0.12 0.11 ぐ比較例 4〜6 >
比較触媒 1〜3を用い、 実施例 9、 1 0及び 1 1と同様の反応条件で HCFC- 1 24のフッ素化反応を行った。 その結果を下記の表 6に示 す。
表 6 比較例 4 比較例 5 比較例 6 触媒 比較触媒 1 比,媒2 比,媒3 反応 (。c) 315 355 359 有 HFC-125 66.7 67.3 67.0 機
物 HCFC-124 19.8 21.2 22.3 組
成 HCFC-123 12.8 9.5 8.9 モ CFC-115 0.110 0.210 0.220 ル
% 11X 0.25 0.72 0.68 その他 0.39 1.28 1.12
[115/125] (¾) 0.16 0.31 0.33
[11X/125](¾) 0.37 1.07 1.01 表 3及び表 4から、 触媒 1〜8を用い、 原料ガスとして HCFC - 1 23を用いた場合の実施例 1〜8は、 リサイクル可能な HCFC— 1 2 4の生成量が多く、 これに対して、 目的物であるペンタフルォロェタン との分離が困難である C F C— 1 1 5の 量、 及びリサイクル不可能 であって環境への負荷の大きい 1 1 Xの生成量共に比較例 1〜 3よりも 少なく、 また、 目的物の生成量にも有意な差はなく、 産業的に非常に有 用なペン夕フルォロプロパンの製造方法である。
また、 表 5及び表 6から、 原料ガスとして HCFC— 124を用いた 場合の実施例 9、 1 0及び 1 1についても、 上述した場合と同様に、 産 業的に非常に有用なぺン夕フルォロプロパンの製造方法である。
ぐ比較例 7、 8>
ここでは、 比較例 1と同一反応条件 (300eC) で比 媒 2 CC r 2 03 (結晶質) 〕 及び比較触媒 3 〔金属元素 (I n) 添加の C r , 0 8 (結晶質) 〕 を用いた場合の例 (結晶質触媒でクロムの原子価が十 3 である触媒の主反応活性の低さ (HCFC— 124, HFC- 125生 成量の少なさ) ) を示す。
即ち、 反応體を 300eCにする以外は、 比較例 2及び 3と同一条件 で HCFC - 123のフッ素化反応を行った。結果を下記表 7に示す。
表 7 比較例 7 比 ^-t較1 例 8 触媒 比較触媒 2 比纖媒 3 反応温度 (°C) 300 300 有 HFC-125 0.30 0.16 機
物 HCFC-124 14.5 10,8 組
成 HCFC-123 85.1 88.7 モ CFC-115 0.002 0.001 ル
% 11X 0.069 0.041 その他 0.03 0.03
[115/125] ) 0.67 0.63
[11Χ/125](¾) 23.0 25.6 即ち、 反応 を揃えた、 同一条件での上記の結果から、 クロムが十
3価の金属無添加又は添加の触媒(結晶質) を用いると、 比較例 1に比 ベて目的物 HFC— 125の生成活性は大きく低下し、 HFC - 125 に対するクロ口フルォロェタン類濃度も上昇することが分かる。 このこ とから、 非晶質高原^ iクロム系触媒の優位性が分かる。
ぐ実施例 12〜14 >
ここでは、 高温での実施例 〔高活性ィヒ(本願の触媒) により低温化で きることの利点 (HFC— 125に対する不純物濃度の低下) 〕 を示す 反応 を 350でにする以外は、 実施例 1、 2及び 7と同一条件で HCFC— 123のフッ素化反応を行つた。 結果を下記表 8に示す。
表 8 実施例 1 2 実施例 1 3 実施例 1 触媒 触媒 1 触媒 2 触媒 7 反応 CO 350 350 350 有 HFC-125 67.1 66.9 67.1 機
物 HCFC-124 14.8 14.9 14.8 組
成 HCFC-123 17.0 16.9 17.0 モ CFC-115 0.11 0.17 0.12 ル
% 11X 0.28 0.33 0.26 その他 0.81 0.98 0.86
[115/125] (¾) 0.16 0.25 0.18
[11X/125](¾) 0.42 0.49 0.39 上記の結果から、 高温にすることにより HFC— 1 25の生成量は増 加する。 HFC— 1 25に対するクロ口フルォロェタン類濃度は、 より 低温の例に比較して上昇することが分かる。
く実施例 1 5 >
ここでは、 反応器から得られる有機物をリサイクルする場合の実施例 を示す (本発明の触媒を用いた HFC— 1 25製造プロセス)。
以下に、 図 9に示すプロセスフロー図に基づいて、 本実施例を示す。 まず、 気相フッ素化反応器 1に、 フッ素化触媒として触媒 1を 4 5 k g 充塡し、 この反応器 1に、 原料容器 2より HCFC— 1 23を 4 9mo 1/時間の で供給し、 原料容器 3より無水 HFを 1 02mo 1ノ時 間の流量で供給した。 なお、 反応器 1におけるフッ素化反応の は 3 24でとし、 圧力は 3. 2kgZcm2 とした。
次いで、 反応器 1から出た反応混合物を分縮器 (熱交換器) 4に導入 し、 — 20 °C、 圧力 3. 1 kg/cm2 で非凝縮物と凝縮物に分縮 した。 非凝縮物は、 主として HFC— 1 25を含むものであり、 配管 5 を経て精製工程に送って精製し、 目的物である HFC— 1 25として回 収した。 凝縮物については分液槽 6へ送り、 主として HFよりなる液相 と、 主として HCFC— 1 23及び HCFC— 1 24よりなる液相とに 分液した。 主として HFよりなる液相は、 配管 7を経て、 配管 8より原 料として再び反応器 1に供給した。 主として HCFC— 1 23及び HC FC- 1 24よりなる液相については、 配管 9を経て、 蒸留塔 1 0に導 入し、 7. 2 kg, cm2 の圧力で蒸留した。
蒸留塔 1 0と塔頂の凝縮器 1 2での非凝縮物は、 主として H F C— 1 25を含むものであり、 配管 1 3を経て、 上記した分縮器 4での非凝縮 物と共に、 精製工程に送って精製し、 目的物である HFC— 1 25とし た。 HFC— 1 25に伴われていた HCFC— 1 2 については、 再び 蒸留塔 1 0に戻した。
蒸留塔 1 0における還流物は配管 1 4を経由し、 蒸留塔 1 0のボトム 成分は配管 1 5を経由して、 分液槽 6で分液された主として HFよりな る液相と共に、 配管 8を経て反応器 1に供給し、 新たに加える HCFC - 1 23及び HFと共にフッ素化反応の原料として用いた。
上記操作を 60時間続けると、 各成分の がほぼ一定となった。 そ の際の回収物 (配管 5及び 1 3からの成分) を再び再利用成分(配管 7 、 1 4及び 1 5からの成分) の各 (流量: mo 1 時間) を下記表 9に示す。
表 9
Figure imgf000050_0001
以上の結果から分かるように、 配管 5及び 1 3から抜き出された回収 物において、 HF C - 1 25中の C F C- 1 1 5の割合は約 0. 22 % であり、 サイドカツト (後述の比較例 1 0参照) をしなくても、 非常に 少量であった。
<比較例 9 >
ここでは、 金属無添加の酸化クロム触媒(非晶質) を用い、 反応容器 から得られる有機物をリサイクルする場合の比較例を示す。 反応器 1に充塡する触媒に比較触媒 1を用い、 反応温度を 320でに する以外は、 実施例 1 5と同様にして、 HFC— 1 25を製造した。 実 施例 1 5と同様に、 反応開始から 6 0時間経過後の回収物 (配管 5及び 1 3からの成分) 及び再利用成分(配管 7、 1 4及び 1 5からの成分) の各誠(流量: mo 1ノ時間) を下記表 1 0に示す。
表 1 0
Figure imgf000051_0001
以上の結果から、 配管 5及び 1 3から抜き出された回収物において、 HFC— 1 25中の CFC— 1 1 5の割合は約 1. 22%であり、 実施 例 1 5に比べて大幅に増加していた。
ぐ比較例 1 0 >
ここでは、 リサイクルする際にサイドカツトを用いたときの HFC— 1 25の製造プロセスを示す。
蒸留塔 1 0の中段部の CFC— 1 1 4 a濃度の高い成分を、 配管 1 1 に設けて、 これより系外に除去(サイドカツト) する以外は、 比較例 9 と同様にして、 HFC— 1 25を製造した。 実施例 1 5と同様に、 反応 開始から 6 0時間経過後の回収物 (配管 5及び 1 3からの成分) 、 洱利 用成分(配管 7、 1 4及び 1 5からの成分) 及び蒸留塔からの除去成分 (配管 1 1からの成分) の各組成 (流量: mo 1 時間) を下記表 1に 示す c
表 1 1
Figure imgf000052_0001
以上の結果から、 配管 5及び 1 3から抜き出された回収物において、 HFC— 1 25中の CFC— 1 1 5の割合は約 0. 2%であり、 製品 ( HFC- 125) としては実施例 1 5と同等の効果が得られている が、 CFC- 1 1 5を含めたロス量は 2. 6mo lZ時間となり、 突施 例 1 5 (0. lmo 1Z時間) の約 24倍の量となった。
<比較例 1 1、 12 >
ここでは、 C r 2 03 (クロム原 : +3)ヘ^元素を添加して も、 非晶質でク口ムが高原^ Rffiの酸化ク口ムに金属元素を添加した場合 に比べて、 不純物低減効果が低いことを示す。
比 ,媒4
5. 1 6 gの I n (N03 ) 3 - 3H2 0の代わりに、 5. 82 gの Ga (N08 ) 3 · 8H2 0を用いる以外は、 比 ^媒 3と同一の調製 方法により比籠媒 4を調製した。 得られた触媒の価数は、 分析力、 らの値は +3. 00、 磁化率測定から特定された値は +3. 05であり 、 XRDの回折ピークは、 図 1 0に示すように、 すべて Cr 2 03 の結 晶構造によるものに帰属された。
比 媒 5
5. 16g0In (N〇3 ) 3 - 3H2 0の代わりに、 4. 23 gの Ni (NOs ) 2 · 6H2 0を用いる以外は、 比較触媒 3と同一の調製 方法により比麵媒 5を調製した。 得られた触媒の価数は、 誠分析力、 らの値は +2. 98、 磁化率測定から特定された値は +3. 03であり 、 XRDの回折ピークは、 図 1 1に示すように、 すべて Cr 2 03 の結 晶構造によるものに帰属された。
比纖媒 4及び 5を用レヽて、 (反応 を除く)反応条件は宾施例 1 〜 8と同一条件で H C F C— 123のフッ素化反応を行った。 結果を下 記表 12に示す。
表 1 2 比較例 1 1 比較例 1 2 触媒 比籠媒 4 比觀媒 5 反応■ (。c) 343 344 有 HFC-125 11.7 11.8 機
物 HCFC-124 46.5 46.3 組
成 HCFC-123 41.1 41.1 モ CFC-115 0.050 0.057 ル
% 11X 0.33 0.37 その他 0.37 0.43
[115/125] (¾) 0.43 0.48
[11X/125](¾) 2.82 3.14 比較例 2と 3、 比較例 5と 6、 比較例 7と 8、 或いは比較例 1 1と 1 2の各結果から、 クロム価数が + 3である結晶性の触媒に金属添加した 場合、 CFC類低減効果は小さいことが分かる。
また、 実施例 1〜1 1の結果から、 非晶質でクロムの価数が約十 4で ある触媒に金属を担持することにより、 顕著な、 HFC— 1 25に対す る C F C類濃度の低減効果が得られることは明らかである。
即ち、 下記表 1 3に示すように、 クロム原"? ffiが +3のクロム系 に各種金属元素を添加する場合と無添加の場合とを比べると、 たとえ金 属元素を添加した場合でも、 〔CFC— 1 1 5 /HFC- 1 25〕 の減 少割合はせいぜい 21 %であり、 また、 〔1 1 XZHFC— 1 25〕 の 減少割合はせいぜい 1 3%であった。 また、 金属を添加することによつ て CCFC— 1 1 5/HFC- 1 25) や 〔1 1 XZHFC - 125〕 が増える場合もあった。
これに対して、 非晶質でク口ム原^ iが約 4であるクロ厶系触媒に各 種金属元素を添加する場合と無添加の場合とを比べると、 非晶質でクロ ムの原 が約 であるクロム系触媒に金属元素を添加すると、 〔C F C一 1 1 5/HFC- 125〕 の減少割合が最も良い例で 92% (少な くとも 90%) にも達し、 さらに、 〔1 1 XZHFC— 1 25〕 の減少 割合は、 最も良い例で 90% (少なくとも 80%) に達した。
表 1 3
Figure imgf000056_0001
*括弧内は、 添加金属なしの触媒と比べた場合の 〔CFC— 1 1 5ZH FC- 125〕 の減少割合、 及び 〔1 1 XZHFC - 1 25) の減少割 合を示す。

Claims

請求の範囲
1. インジウム、 ガリウム、 コバルト、 ニッケル、 亚鉛及び アルミニウムからなる群より選ばれる少なくとも 1種の金属元素が添加 されたクロム化合物を主成分とし、 前記ク口ム化合物におけるクロムの 平均原子価数が +3. 5以上、 +5. 0以下であり、 かつ、 非晶質状態 にあるクロム系触媒の存在下に、 含塩素炭素化合物をフッ素化する、 ベ ンタフルォロェタンの製造方法。
2. パ一クロ口エチレン、 1, 1—ジクロロー 2, 2, 2 - トリフルォロェタン及び 1—クロ口一 1, 2, 2, 2—テトラフルォロ ェタンからなる群より選ばれる少なくとも 1種の前記含塩素炭素化合物 をフッ化水素によりフッ素化する、 請求の範囲の第 1項に記載したベン 夕フルォロェタンの製造方法。
3. 前記クロム系触媒の存在下、 前記含塩素炭素化合物とし て 1, 1—ジクロロー 2, 2, 2—トリフルォロェタンをフッ素^する 際に、 得られるペン夕フルォロェタンの生成量に対して、 副生成物であ るクロ口フルォロェタン類の総生成量の割合が 0. 5%以下となり、 ま た、 前記ク πム系触媒の存在下、 前記含塩素炭素化合物として 1一クロ ロー 1, 2, 2, 2—テトラフルォロェタンをフッ素化する際に、 得ら れるペンタフルォロェタンの生成量に対して、 副生成物であるクロロフ ルォロェタン類の総生成量の割合が 0. 3%以下となる、 請求の範囲の 第 2項に記載したペンタフルォロェタンの製造方法。
4. 前記クロム化合物が、 酸ィ匕クロム、 フッ化クロム、 酸化 フッ化クロム及び酸化塩化フッ化クロムからなる群より選ばれる少なく とも 1種である、 請求の範囲の第 1項に記載したペン夕フルォロェタン の製造方法。
5 . 前記クロム系触媒を前記含塩素炭素化合物のフッ素化反 応に供する前に予めフッ素化し、 前記フッ素化後の比表面積が 2 δ ΐΏ ^
Zg〜l 3 O m 2 Zgとなるような前記クロム系触媒を用いる、 請求の 範囲の第 4項に記載したペンタフルォロェタンの製造方法。
6. 不活性ガスの雰囲気下で前記ク口ム系触媒の焼成を行 ヽ
、 これによつて前記クロム系触媒を非晶質状態とする、 請求の範囲の第 1項に記載したペン夕フルォロェタンの製造方法。
7. 前記焼成を 3 8 0で〜 4 1 0 °C、 0 . 5時間〜 3 .
5時間行う、 請求の範囲の第 6項に記載したペン夕フルォロェタンの製 造方法。
8. 7j酸ィ匕クロムを前記金属元素の水溶液中に浸漬処理し、 乾燥した後に、 前記焼成を行うか、 或いは、 前記金属元素及びクロムを 溶解する水溶液から共沈により前記金属元素を含有する水酸化クロムを 得、 乾燥した後、 前記焼成を行う、 請求の範囲の第 6項に記載したペン タフルォロェタンの製造方法。
9 . 前記クロム系触媒に、 反応活性又は選択性改善の効果を 有する力ドミゥム、 マグネシウム及びチタンからなる群より選ばれる少 なくとも 1種の元素を添加する、 請求の範囲の第 1項に記載したベンタ フルォロェタンの製造方法。
1 0. 前記含塩素炭素化合物をフッ化水素を用いてフッ素化 する際に生じる生成物の一部若しくは全部を、 反応系に戻す、 或いは、 請求項 1に記載した触媒を使用してフッ化水素によるフッ素化を行う他 の反応系に導く、 請求の範囲の第 2項に記載したぺン夕フルォロェタン の製造方法。
1 1 . 前言胜成物からペンタフルォロェタン及び塩化水素を 含む混合物を分離し、 残りの生成物を前 M応系に戻す、 或いは、 前記 他の反応系に導く、 請求の範囲の第 1 0項に記載したペン夕フルォロェ タンの製造方法。
1 2. インジウム、 ガリウム、 コノくルト、 ニッケル、 亜鉛及 びアルミニウムからなる群より選ばれる少なくとも 1種の金属元素が添 加されたクロム化合物を主成分とし、 前記クロ厶化合物におけるクロム の平均原子価数が + 3. 5以上、 + 5 . 0以下であり、 かつ、 非晶質状 態にあるクロム系フッ素化用触媒。
1 3 . 前記クロム化合物が、 酸ィ匕クロム、 フツイ匕クロム、 酸 化フッ化クロム及び酸化塩化フッ化クロムからなる群より選ばれる少な くとも 1種の化合物である、 請求の範囲の第 1 2項に記載したフッ素化 用触媒。
1 4. フッ素化されており、 このフッ素化後の比表面積が 2 5 m2 Z g〜l 3 0 m2 / gである、 請求の範囲の第 1 3項に記載した フッ素化用触媒。
1 5. 反応活性又は選択性改善の効果を有するカドミウム、 マグネシウム及びチタンからなる群より選ばれる少なくとも 1種の元素 が添加されている、 請求の範囲の第 1 2項に記載したフッ素化用触媒。
1 6. インジウム、 ガリウム、 コバルト、 ニッケル、 亜鉛及 びアルミニウムからなる群より選ばれる少なくとも 1種の金属元素が添 加されたクロム化合物を主成分とし、 前記ク口ム化合物におけるクロム の平均原子価数が + 3 . 5以上、 + 5 . 0以下であり、 かつ、 非晶質状 態にあるクロム系フッ素化用触媒を製造するに際し、
不活性ガスの雰囲気下での焼成によって前記非晶質伏態にあるク口厶 系フツ素化用触媒を得る、 フッ素化用触媒の製造方法。
1 7. 不活性ガスの雰囲気下で、 温度 3 8 0で〜 4 1 0 eC、
0 . 5時間〜 3 . 5時間、 前記焼成を行う、 請求の範囲の第 1 6項に記 載したフッ素化用触媒の製造方法。
1 8. 水酸化クロムを前記金属元素の水溶液中に浸漬処理し
、 乾燥した後に、 前記焼成を行うか、 或いは、 前記金属元素とクロムを 溶解する水溶液から共沈により前記金属元素を含有する水酸化クロムを 得、 乾燥した後、 前記焼成を行う、 請求の範囲の第 1 6項に記載したフ ッ素化用触媒の製造方法。
1 9. 前記クロム化合物を、 酸化クロム、 フツイ匕クロム、 酸 化フッ化クロム及び酸化塩化フッ化クロムからなる群より選ばれる少な くとも 1種の化合物とする、 請求の範囲の第 1 6項に記戟したフッ素化 用触媒の製造方法。
2 0. 前記焼成後にフッ素化することによって、 前記フッ素 化用触媒の比表面積を 2 5 m 2 Z g〜l 3 0 m 2 Z gとする、 請求の範 囲の第 1 9項に記載したフッ素化用触媒の製造方法。
2 1 . 前記フッ素化用触媒に、 反応活性又は選択性改善の効 果を有する力ドミゥム、 マグネシウム及びチタンからなる群より選ばれ る少なくとも 1種の元素を添加する、 請求の範囲の第 1 6項に記載した フッ素化用触媒の製造方法。
PCT/JP1998/005284 1997-12-12 1998-11-24 Procede permettant de preparer du pentafluoroethane, catalyseurs de fluoration et procede de preparation associe WO1999031032A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98954812.8A EP1038858B1 (en) 1997-12-12 1998-11-24 Process for the preparation of pentafluoroethane, fluorination catalysts therefor
US09/581,285 US6433233B1 (en) 1997-12-12 1998-11-24 Process for the preparation of pentafluoroethane, fluorination catalysts and process for the preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34277497A JP3520900B2 (ja) 1997-12-12 1997-12-12 ペンタフルオロエタンの製造方法、並びにフッ素化用触媒及びその製造方法
JP9/342774 1997-12-12

Publications (1)

Publication Number Publication Date
WO1999031032A1 true WO1999031032A1 (fr) 1999-06-24

Family

ID=18356400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005284 WO1999031032A1 (fr) 1997-12-12 1998-11-24 Procede permettant de preparer du pentafluoroethane, catalyseurs de fluoration et procede de preparation associe

Country Status (4)

Country Link
US (2) US6433233B1 (ja)
EP (1) EP1038858B1 (ja)
JP (1) JP3520900B2 (ja)
WO (1) WO1999031032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077048A1 (fr) * 2000-04-12 2001-10-18 Solvay (Société Anonyme) Procede pour la preparation d'un hydro(chloro)fluoroalcane et catalyseur
WO2001098240A2 (en) * 2000-06-21 2001-12-27 Showa Denko K.K. Process for producing hexafluoroethane and use thereof

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757085B1 (fr) * 1996-12-13 1999-01-22 Atochem Elf Sa Catalyseurs massiques a base de chrome et de nickel pour la fluoration en phase gazeuse d'hydrocarbures halogenes
US6172270B1 (en) 1997-04-23 2001-01-09 Asahi Glass Company, Ltd. Process for producing halogenated hydrocarbons
EP1198441A4 (en) * 1999-07-21 2003-01-22 Halocarbon Prod Corp PRODUCTION OF ALIPHATIC FLUOROCARBONS
AU2003265589A1 (en) * 2002-08-22 2004-03-11 E.I. Du Pont De Nemours And Company Process for the preparation of 1,1,1,2,2-pentafluoroethane
RU2318595C2 (ru) * 2002-08-22 2008-03-10 Е.И.Дюпон Де Немур Энд Компани Никельзамещенные и смешанные никель- и кобальтзамещенные хромоксидные композиции, их получение и применение в качестве катализаторов и предшественников катализаторов
CN100464840C (zh) * 2002-08-22 2009-03-04 纳幕尔杜邦公司 钴取代的氧化铬组合物,它们的制备以及它们作为催化剂和催化剂前体的用途
CN1867402B (zh) * 2003-10-14 2010-04-28 纳幕尔杜邦公司 含锌的氧化铬组合物、它们的制备以及它们作为催化剂和催化剂前体的用途
GB0507139D0 (en) 2005-04-08 2005-05-18 Ineos Fluor Holdings Ltd Catalyst
CN1911512B (zh) * 2005-07-07 2011-12-07 独立行政法人产业技术综合研究所 氟化催化剂及其制备方法、以及使用了该催化剂的氟化合物的制备方法
US7232789B2 (en) * 2005-09-23 2007-06-19 Ulsan Chemical Co., Ltd. Catalyst for preparation of pentafluoroethane and preparation method thereof
FR2894250B1 (fr) * 2005-12-06 2008-01-18 Arkema Sa Procede de fabrication du pentafluoroethane
GB0525699D0 (en) 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
GB0525700D0 (en) 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
GB0525701D0 (en) * 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
CN100444958C (zh) * 2006-11-08 2008-12-24 浙江衢化氟化学有限公司 一种氟化催化剂及其制备方法和用途
US7638659B2 (en) * 2007-04-18 2009-12-29 International Isotopes, Inc. Processes for producing chlorofluorocarbon compounds using inorganic fluoride
US7649121B2 (en) * 2007-04-18 2010-01-19 International Isotopes Inc. Processes for producing halogenated hydrocarbon compounds using inorganic fluoride
WO2009032849A1 (en) * 2007-09-04 2009-03-12 International Isotopes Inc. Processes for producing hydrohalocarbon and halocarbon compounds using silicon tetrafluoride
JP5146466B2 (ja) * 2007-12-14 2013-02-20 ダイキン工業株式会社 ペンタフルオロエタンの製造方法
GB0816208D0 (en) * 2008-09-05 2008-10-15 Ineos Fluor Holdings Ltd Catlyst and process using the catalyst
US9862659B2 (en) 2008-09-05 2018-01-09 Mexichem Amanco Holding S.A. De C.V. Catalyst and process using the catalyst
JP2012519654A (ja) 2009-03-04 2012-08-30 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンと1,3,3,3−テトラフルオロプロペンを含む含フッ素プロペンの製造方法
ES2598484T3 (es) * 2009-04-23 2017-01-27 Daikin Industries, Ltd. Procedimiento para la preparación de 2,3,3,3-tetrafluoropropeno
MX2012009203A (es) * 2010-02-12 2012-08-31 Daikin Ind Ltd Proceso para producir un alqueno que contiene fluor.
MX2012009204A (es) 2010-02-12 2012-09-07 Daikin Ind Ltd Proceso para producir un compuesto de alqueno que contiene fluor.
JP5679049B2 (ja) 2010-10-27 2015-03-04 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
CN103717560B (zh) 2011-07-26 2016-04-27 大金工业株式会社 用于制备2,3,3,3-四氟丙烯的方法
EP2773604B1 (en) 2011-10-31 2020-11-25 Daikin Industries, Ltd. Process for producing 2-chloro-3,3,3-trifluoropropene
FR2998815B1 (fr) 2012-12-03 2017-01-27 Arkema France Catalyseur prepare par broyage reactif
WO2015022731A1 (ja) 2013-08-13 2015-02-19 日立オートモティブシステムズ株式会社 電池監視装置、電池システムおよび車両制御システム
CN103611525A (zh) * 2013-11-13 2014-03-05 浙江衢化氟化学有限公司 一种气相法生产五氟乙烷的催化剂及其制备方法
CN104151131B (zh) * 2014-08-08 2015-11-18 浙江衢化氟化学有限公司 一种2,3,3,3-四氟丙烯的制备方法
DK3241878T4 (da) * 2014-09-25 2024-02-05 Daikin Ind Ltd Sammensætning, der omfatter hfc og hfo
CN105344349B (zh) * 2015-11-23 2017-12-22 山东东岳化工有限公司 一种固体氟化催化剂及其制备方法
CN105688890B (zh) * 2016-02-01 2019-03-01 乳源东阳光氟有限公司 一种氟化催化剂及其制备方法
CN106278810B (zh) * 2016-08-04 2017-08-08 淄博澳宏化工科技有限公司 联产1,3,3,3‑四氟丙烯和1‑氯‑3,3,3‑三氟丙烯的方法
WO2018143271A1 (ja) 2017-01-31 2018-08-09 ダイキン工業株式会社 含フッ素ハロゲン化炭化水素の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624050A (en) * 1979-08-04 1981-03-07 Daikin Ind Ltd Fluorination catalyst
JPH05146680A (ja) * 1991-05-24 1993-06-15 Daikin Ind Ltd フツ素化触媒およびハロゲン化炭化水素のフツ素化方法
JPH06247884A (ja) * 1993-01-27 1994-09-06 Elf Atochem Sa パークロロエチレン又はペンタクロロエタンのフッ素化方法
WO1994020441A1 (en) * 1993-03-05 1994-09-15 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane
JPH08504208A (ja) * 1992-12-08 1996-05-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ヒドロフルオロカーボンおよびヒドロハロフルオロカーボンのフッ素含量を低減する方法
WO1996013476A1 (en) * 1994-10-27 1996-05-09 Imperial Chemical Industries Plc Production of hydrofluoroalkanes
JPH08268933A (ja) * 1995-03-20 1996-10-15 Hoechst Ag ペンタフルオルエタン(r125)の製造方法
JPH0967278A (ja) * 1995-08-23 1997-03-11 Korea Advanced Inst Of Sci Technol 1,1,1,2−テトラフルオロエタン、ペンタフルオロエタン及び1,1,1−トリフルオロエタンの同時製造方法
JPH09141105A (ja) * 1995-11-24 1997-06-03 Daikin Ind Ltd フッ素化用成形触媒及びハロゲン化炭化水素の製造方法
EP0801980A1 (en) * 1996-04-17 1997-10-22 AUSIMONT S.p.A. Catalyst for the fluorination of halogenated hydrocarbons
JPH10180104A (ja) * 1996-12-13 1998-07-07 Elf Atochem Sa ハロゲン化炭化水素の気相フッ素化用のクロムおよびニッケルをベースとするバルク触媒

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792643A (en) * 1987-06-16 1988-12-20 Kaiser Aluminum & Chemical Corporation Catalyst and process for 1,1,1,2-tetrafluoroethane by vapor phase reaction
GB9104775D0 (en) * 1991-03-07 1991-04-17 Ici Plc Fluorination catalyst and process
CA2069149C (en) * 1991-05-24 2002-09-03 Takashi Shibanuma Fluorination catalyst and process for fluorinating halogenated hydrocarbon
US5494877A (en) * 1994-06-20 1996-02-27 Showa Denko K. K. Chromium-based fluorination catalyst containing gallium and production method thereof
FR2740994B1 (fr) * 1995-11-10 1997-12-05 Atochem Elf Sa Catalyseurs massiques a base d'oxyde de chrome, leur procede de preparation et leur application a la fluoration d'hydrocarbures halogenes
JP2001500059A (ja) * 1996-09-10 2001-01-09 インペリアル・ケミカル・インダストリーズ・ピーエルシー フッ素化触媒及び製造方法
US6172270B1 (en) * 1997-04-23 2001-01-09 Asahi Glass Company, Ltd. Process for producing halogenated hydrocarbons

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624050A (en) * 1979-08-04 1981-03-07 Daikin Ind Ltd Fluorination catalyst
JPH05146680A (ja) * 1991-05-24 1993-06-15 Daikin Ind Ltd フツ素化触媒およびハロゲン化炭化水素のフツ素化方法
JPH08504208A (ja) * 1992-12-08 1996-05-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ヒドロフルオロカーボンおよびヒドロハロフルオロカーボンのフッ素含量を低減する方法
JPH06247884A (ja) * 1993-01-27 1994-09-06 Elf Atochem Sa パークロロエチレン又はペンタクロロエタンのフッ素化方法
WO1994020441A1 (en) * 1993-03-05 1994-09-15 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane
WO1996013476A1 (en) * 1994-10-27 1996-05-09 Imperial Chemical Industries Plc Production of hydrofluoroalkanes
JPH08268933A (ja) * 1995-03-20 1996-10-15 Hoechst Ag ペンタフルオルエタン(r125)の製造方法
JPH0967278A (ja) * 1995-08-23 1997-03-11 Korea Advanced Inst Of Sci Technol 1,1,1,2−テトラフルオロエタン、ペンタフルオロエタン及び1,1,1−トリフルオロエタンの同時製造方法
JPH09141105A (ja) * 1995-11-24 1997-06-03 Daikin Ind Ltd フッ素化用成形触媒及びハロゲン化炭化水素の製造方法
EP0801980A1 (en) * 1996-04-17 1997-10-22 AUSIMONT S.p.A. Catalyst for the fluorination of halogenated hydrocarbons
JPH10180104A (ja) * 1996-12-13 1998-07-07 Elf Atochem Sa ハロゲン化炭化水素の気相フッ素化用のクロムおよびニッケルをベースとするバルク触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1038858A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077048A1 (fr) * 2000-04-12 2001-10-18 Solvay (Société Anonyme) Procede pour la preparation d'un hydro(chloro)fluoroalcane et catalyseur
FR2807751A1 (fr) * 2000-04-12 2001-10-19 Solvay Procede pour la preparation d'un hydro (chloro) fluoroalcane et catalyseur
US7067706B2 (en) 2000-04-12 2006-06-27 Solvay (Societe Anonyme) Method for preparing a hydro(chloro)fluoroalkane and catalyst
WO2001098240A2 (en) * 2000-06-21 2001-12-27 Showa Denko K.K. Process for producing hexafluoroethane and use thereof
WO2001098240A3 (en) * 2000-06-21 2002-06-06 Showa Denko Kk Process for producing hexafluoroethane and use thereof

Also Published As

Publication number Publication date
EP1038858B1 (en) 2014-07-16
US6433233B1 (en) 2002-08-13
US6503865B1 (en) 2003-01-07
JPH11171806A (ja) 1999-06-29
EP1038858A4 (en) 2002-03-27
JP3520900B2 (ja) 2004-04-19
EP1038858A1 (en) 2000-09-27

Similar Documents

Publication Publication Date Title
WO1999031032A1 (fr) Procede permettant de preparer du pentafluoroethane, catalyseurs de fluoration et procede de preparation associe
JP5133500B2 (ja) コバルト置換酸化クロム組成物、それらの製造、および触媒および触媒前駆物質としてのそれらの使用
KR100351211B1 (ko) 크롬계플루오르화촉매,그촉매의제조방법및그촉매를사용한플루오르화방법
JP2613683B2 (ja) ヘキサフルオロプロピレンの多段階合成
JP5096661B2 (ja) ニッケル置換ならびに混合ニッケルおよびコバルト置換酸化クロム組成物、それらの製造、ならびに触媒および触媒前駆物質としてのそれらの使用
KR960001696B1 (ko) 촉매의 존재하에 히드로플루오르화에 의한 1,1,1-트리플루오로-2,2-디클로로에탄의 제조방법
ES2625204T3 (es) Procedimiento para producir una olefina que contiene flúor
JP2007508140A (ja) 亜鉛を含有するクロム酸化物組成物、それらの調製、ならびにそれらの触媒および触媒前駆体としての使用
JP2005536539A (ja) 1,1,1,2,2−ペンタフルオロエタンを製造するための方法
US5559069A (en) Catalysts for halogenated hydrocarbon processing, their precursors and their preparation and use
WO2019240233A1 (ja) ジフルオロエチレンの製造方法
JP2000508320A (ja) 末端炭素原子に結合したフッ素を含有するハロゲン化プロパンの製法
US20170327441A1 (en) Process for the preparation of 2, 3, 3, 3-tetrafluoropropene
US20080207964A1 (en) Compositions containing chromium, oxygen and gold, their preparation, and their use as catalysts and catalyst precursors
EP0673354A1 (en) Process for reducing the fluorine content of hydrofluorocarbons and hydrohalofluorocarbons
EP0576581A1 (en) METHOD FOR PRODUCING 2,2-DICHLOR-1,1,1-TRIFLUORETHANE, 2-CHLORINE-1,1,1,2-TETRAFLUORETHANE AND PENTAFLUORETHANE.
EP0576600A1 (en) METHOD FOR PRODUCING 2-CHLORINE-1,1,1,2-TETRAFLUORETHANE AND PENTAFLUORETHANE.
JP5246327B2 (ja) 気相フッ素化による含フッ素プロペンの製造方法
KR0152580B1 (ko) 1,1,1,2-테트라플루오로에탄, 펜타플루오로에탄 및 1,1,1-트리플루오로에탄의 병산 방법
JP3558385B2 (ja) クロム系フッ素化触媒、及びフッ素化方法
CN116060010A (zh) 引发剂、氟化催化剂以及e-1,1,1,4,4,4-六氟-2-丁烯的制备方法
US11312673B2 (en) Method for producing 1,1,2-trifluoroethane (HFC-143)
JPH0838904A (ja) クロム系フッ素化触媒、その製法及びフッ素化方法
US5321170A (en) Process for the manufacture of 1,1,1,2-tetrafluoroethane
US6040486A (en) Process for the manufacture of 2-chloro-1,1,1-trifluoroethane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998954812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581285

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998954812

Country of ref document: EP