WO1999019379A1 - Procedes de preparation de polymeres monodisperses, procedes de polymerisation en continu de monomeres cycliques et polymeres obtenus par ces procedes - Google Patents

Procedes de preparation de polymeres monodisperses, procedes de polymerisation en continu de monomeres cycliques et polymeres obtenus par ces procedes Download PDF

Info

Publication number
WO1999019379A1
WO1999019379A1 PCT/JP1998/004674 JP9804674W WO9919379A1 WO 1999019379 A1 WO1999019379 A1 WO 1999019379A1 JP 9804674 W JP9804674 W JP 9804674W WO 9919379 A1 WO9919379 A1 WO 9919379A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactone
polymer
carbonate
molecular weight
monomer
Prior art date
Application number
PCT/JP1998/004674
Other languages
English (en)
French (fr)
Inventor
Takuzo Aida
Jun Watanabe
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to EP98947897A priority Critical patent/EP0943641B1/en
Priority to US09/331,022 priority patent/US6191250B1/en
Priority to JP51998599A priority patent/JP4311768B2/ja
Priority to DE69820223T priority patent/DE69820223T2/de
Publication of WO1999019379A1 publication Critical patent/WO1999019379A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups

Definitions

  • TECHNICAL FIELD-The present invention relates to a method for producing a lactone polymer, a carbonate polymer, a lactone-strength-carbonate block copolymer, and a lactone-carbonate random copolymer using a specific polymerization catalyst.
  • the present invention relates to monodispersion, that is, a molecular weight distribution value (Mw / Mn) represented by a ratio of a weight average molecular weight (Mw) to a number average molecular weight (Mn) is almost equal to 1 or Production method of lactone polymer, carbonate polymer, lactone-carbonate block copolymer, lactone-carbonate random copolymer with very high purity of one structural component, and lactone using initiator in extruder And a method for producing a lactone polymer, a carbonate polymer, a lactone-strength-carbonate copolymer, and a lactone polymer having a narrow molecular weight distribution obtained by the method.
  • the present invention relates to a polymer, a lactone-force copolymer.
  • Ring-opening polymerization of cyclic monomers such as lactones and cyclic carbonates is usually carried out using anion polymerization using an organometallic compound as an initiator, and using a compound having active hydrogen such as water or alcohol as an initiator, and using a catalyst as a catalyst.
  • anion polymerization using an organometallic compound as an initiator and using a compound having active hydrogen such as water or alcohol as an initiator, and using a catalyst as a catalyst.
  • a catalyst as a catalyst.
  • organometallic compound as the initiator of the anion polymerization examples include n -butyllithium, tert-butoxypotassium, sodium methoxide, rare earth metal compound complexes, and the like.
  • No. 737 discloses the synthesis of polystyrene-polyprolactone block copolymer and the like.
  • No. 6 discloses synthesis of polyprolactone-polyneopentylglycol-carbonate block copolymer and the like, and JP-A-5-500982 and JP-A-5-2471184 disclose rare earth metals. The synthesis of polyprolactones using complexes has been reported.
  • polymers and narrow block copolymers with narrow molecular weight distributions are obtained by employing special reaction methods such as very strict purification of the solvent and cyclic monomer used. There is an advantage that can be synthesized.
  • Examples of the catalyst used in the latter polymerization include sulfuric acid, paratoluenesulfonic acid, quaternary ammonium salt, boron trifluoride, tin tetrachloride, trialkylaluminum, tetrabutyl titanate, and dibutyl tin oxide in a broad sense. Can be illustrated. These various Lewis acids serve to reduce the energy required for the ring opening reaction of lactone monomers and cyclic carbonate monomers, and to amplify the nucleophilicity of initiators such as water and alcohol.
  • the initiator of this ring-opening reaction is water or alcohol, but water and alcohol simultaneously act as a reaction terminator or chain transfer agent, which is used to synthesize polymers and block copolymers having a narrower molecular weight distribution than anion polymerization. Was very difficult.
  • EP 0600 4 17 A1 includes Br ⁇ nsted acid, anionic salt of bronsted acid ion, strongly acidic ion exchange resin, alkyl alkali metal, alkali metal alkoxide, amine, and tin compound.
  • a methacryl group-modified lactone polymer in which caprolactone is added in an amount of 1 to 5 molar equivalents to 2-hydroxyethyl methacrylate is very difficult to synthesize in a single step by anion polymerization. Also not advantageous.
  • the reaction rate is low, and the synthesis of the polyprolactone polymer requires more than 10 days, so that the power and the product are extremely colored. I can't say.
  • a catalyst generally usable for a transesterification reaction or an esterification reaction for example, acetates such as lead, zinc, manganese, calcium, cobalt, magnesium, antimony, aluminum, titanium, tin, and carbonates
  • acetates such as lead, zinc, manganese, calcium, cobalt, magnesium, antimony, aluminum, titanium, tin, and carbonates
  • the molecular weight distribution may broaden.
  • Japanese Patent Application Laid-Open No. Hei 7-533686 proposes a method for producing E-force prolactone in an extruder using aluminum alkoxide as a polymerization initiator from the viewpoint of improving production efficiency.
  • metal alkoxide initiators Can be used for the production of very high molecular weight polymers as disclosed in JP-A-7-536686, but it is used for relatively low molecular weight polymers. In such a case, there is a concern that an increase in the metal content in the resin may adversely affect various physical properties and stability.
  • the different parts of the reaction process are mixed with each other, so that the molecular weight distribution tends to be widened.
  • An object of the present invention is to provide a lactone polymer, a carbonate polymer, a lactone-carbonate random copolymer, a lactone-carbonate monoblock copolymer, etc., which are monodisperse or have a narrow molecular weight distribution.
  • Another object of the present invention is to provide a method for efficiently producing the above polymer in a short time, and a continuous production method. Disclosure of the invention
  • the present inventors have conducted intensive studies on a method for efficiently producing a lactone polymer, a carbonate polymer, a lactone-carbonate random copolymer, and a lactone-carbonate block copolymer in a short time. It has been found that the use of a specific titanium-based Lewis acid as a catalyst is extremely effective, and that the resulting polymers have an extremely narrow molecular weight distribution, thereby completing the present invention.
  • the present inventors have conducted intensive studies on a method for efficiently producing polylactone, polycarbonate, a lactone-carbonate copolymer in a short time, and as a result, have found that a specific aluminum-based Lewis acid or a titanium-based Lewis acid can be used as a catalyst. The present inventors have found that continuous polymerization in an extruder used as a polymer is extremely effective, and that these obtained polymers are useful because of their narrow molecular weight distribution, and have completed the present invention.
  • a lactone monomer (b 1), a cyclic carbonate monomer (b 2), or a lactone monomer (b 1) is used by using an initiator (a).
  • ring force In carrying out the ring-opening addition reaction of the mixture (b 3) of the bone monomer (b 2), A method for producing a monodisperse polymer is provided, wherein a titanium-based Lewis acid catalyst (cT) represented by the general formula T1 is used.
  • cT titanium-based Lewis acid catalyst
  • X is an alkoxy group (when represented by RO, R is an alkyl group which may have any substituent)
  • chlorine, bromine or iodine and ⁇ is hydrogen or any substituent
  • is any of the integers from 1 to 4.
  • a mixture of a total of 1 to less than 100 molar equivalents of the lactone alone (b1) and the cyclic carbonate monomer (b2) per 1 molar equivalent of the initiator (a) is used.
  • (B3) is reacted to obtain a lactone-carbonate random copolymer, and the method for producing a monodispersed polymer according to the first aspect of the present invention is provided.
  • one of the lactone monomer (b1) and the cyclic carbonate monomer (b2) is subjected to ring opening until it is consumed. After the addition reaction, the remaining monomer is subjected to a ring-opening addition reaction to obtain a lactone-carbonate block copolymer using a titanium-based Lewis acid catalyst (cT) represented by the above general formula T1.
  • a titanium-based Lewis acid catalyst (cT) represented by the above general formula T1.
  • the titanium-based Lewis acid catalyst (cT) is a compound represented by the following general formula T2.
  • a method for producing a dispersed polymer is provided.
  • the initiator (a) is a polyhydric alcohol having 2 to 10 hydroxyl groups in the molecule or one hydroxyl group and one radical polymerizable double in the molecule.
  • the titanium-based Lewis acid catalyst (cT) is a compound represented by the following general formula T3, wherein the titanium-based Lewis acid catalyst (cT) is a compound represented by the following general formula T3: A method for producing a dispersed polymer is provided.
  • R is an alkyl group optionally having substituent (s), ⁇ is hydrogen or an optional substituent, and ⁇ is any one of integers from 1 to 3.
  • a lactone monomer (b1), a cyclic carbonate monomer (b2), or a lactone monomer (b) is used in an extruder using an initiator (a).
  • the aluminum-based Lewis acid catalyst (c A) represented by the following general formula A 1 (c A)
  • a method for producing a lactone polymer characterized by using a titanium-based Lewis acid catalyst (cT) represented by the general formula T1 as a catalyst.
  • R is an alkyl group having 14 carbon atoms
  • Y is hydrogen or any substituent
  • P is any of 1, 2, and 3.
  • the aluminum-based Lewis acid catalyst (cA) is a compound represented by the following general formula A2, and the titanium-based Lewis acid catalyst (cT) is represented by the above-mentioned general formula T2.
  • a method according to the seventh aspect of the present invention, which is a compound, is provided.
  • R is an alkyl group having 1 to 4 carbon atoms
  • X is selected from tert-butyl, phenyl, chlorine, bromine, and iodine
  • Y is hydrogen or any substituent.
  • the weight average molecular weight (Mw) power Sl O, 000 to 200,000, and the ratio MwZMn of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.0 to 100 2.
  • a lactone polymer, carbonate polymer or lactone-carbonate copolymer is provided.
  • the lactone polymer, carbonate polymer or lactone-carbonate copolymer according to the ninth aspect of the present invention, wherein MwZMn is 1.2 to 2.0.
  • the lactone polymer, the carbonate polymer, or the lactone mono-carbonate according to the ninth or tenth aspect of the present invention wherein the content of the gel-like substance is 20 lm 2 or less.
  • a polymer is provided.
  • the lactone polymer according to claim 9 having a weight average molecular weight (Mw) of 100,000 to 200,000.
  • the cyclic carbonate polymer according to claim 9 wherein the weight average molecular weight (Mw) is 10,000 to 200,000.
  • the lactone-monocyclic force-bonnet block copolymer according to claim 9 wherein the weight average molecular weight (Mw) is 30,000 to 200,000.
  • the lactone monocyclic carbonate random copolymer according to claim 9, wherein the weight average molecular weight (Mw) is 10,000 to 200,000.
  • the weight average molecular weight (Mw) is 10,000 to 200,000.
  • the present invention from those in the oligomer region, those in the low molecular weight region having a weight average molecular weight (Mw) of 10,000 or less, those in the weight average molecular weight (Mw) of 10,000 to 100,000, and those in the weight average Mw with a molecular weight of 100,000 to 200,000, a number average molecular weight of 5,000 or less, 5,000 to 70,000, 70,000 or more, and even 100,000 or more, Mw Lactone, cyclic carbonate homopolymer, random copolymer, block copolymer, random block with / Mn of 1.0 to 2.5, and more preferably 1.-2 to 2.0 A copolymer is obtained.
  • “monodispersion” is generally defined by the following definition.
  • a polymer obtained by adding a lactone monomer and a Z or carbonyl monomer in a range of 1 to 10 molar equivalents to the initiator or a polymer having a number average molecular weight of less than 1,000 When measured by gel permeation chromatography (hereinafter abbreviated as “GPC”), the purity of all components of a single structural component (single molar equivalent-fold adduct of a cyclic monomer) is 50% or more. It is preferably 70% or more, more preferably 90% or more.
  • low dispersion generally means that the ratio of the weight average molecular weight to the number average molecular weight (molecular weight distribution value) is from 1.0 to 1.0.
  • lactone polymer, carbonate polymer and lactone mono-carbonate copolymer of the present invention are monodisperse and low-dispersion polymers, but are abbreviated as monodisperse polymers for convenience.
  • the initiator (a) in the present invention is a compound having active hydrogen in the molecule, for example, a hydroxyl group, an amino group, a carboxyl group, a thiol group and two or more electrons in the molecule. It is a compound having an active methylene group and the like sandwiched between suction groups.
  • they are aliphatic monoalcohols and aliphatic polyhydric alcohols.
  • the former include methanol, ethanol, isopropanol, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Specific examples of the latter include ethylene glycol, diethylene glycol, butanediol, hexamethylene glycol, neopentyl glycol, trimethyl alcohol, propane, and pentaerythri.
  • Examples thereof include tall, polyvinyl alcohol, 2-hydroxyhexyl (meth) acrylate modified polymer, and an ethylene oxide adduct of bisphenol A.
  • (meth) acrylate indicates acrylate or methacrylate (the same applies hereinafter).
  • lactone monomer (bl) in the present invention known ones can be used, but generally] 3-propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, f-prolactone, and Examples of the lactone include alkylated lactones and enanthractones. Practically, ⁇ -valerolactone, f-coprolactone, and alkylated lactones of these lactones are preferably used.
  • alkylene glycol carbonates such as propylene glycol carbonate, 2-methyl-11,3-propanediol carbonate, neopentyl glycol carbonate and the like are preferably used. Is done.
  • the lactone monomer (b 1) and the cyclic carbonate monomer (b 2) can be used as a mixture of both (b 3). Furthermore, in each of these cases, the lactone monomer (b 1) and the cyclic carbonate monomer (b 2) can be used as a mixture of two or more monomers.
  • the molar ratio of the lactone monomer (b 1) to the cyclic carbonate monomer (b 2) in the mixture (b 3) can be arbitrarily selected, but is preferably 5/95 to 95/5, more preferably 10/95. / 90 ⁇ 90/10 is more preferred. Initiator to monomer molar ratio
  • the supply amount or charge amount of the lactone monomer (b 1), the cyclic carbonate monomer (b 2), or the mixture of the two (b 3) with respect to 1 molar equivalent of the initiator (a) is as follows.
  • the molar equivalent is 1 to 100,000 molar equivalents, preferably 1 to 5,000 molar equivalents, and more preferably 1 to 1,000 molar equivalents.
  • the molar equivalent is 100 to 100,000 molar equivalents, preferably 100 to 50,000, and more preferably 400 to 2,000 molar equivalents. . If the amount exceeds the above range, the ring-opening reaction rate of the cyclic monomer becomes slow, a monodispersed polymer cannot be obtained, or the molecular weight distribution value of the polymer is undesirably increased.
  • the amount is less than the above range, the viscosity becomes low, which is not preferable when an extruder is used.
  • the amount of the mixture (b3) charged to the initiator (a) is within the above range in order to obtain a polymer having a high molecular weight.
  • the organoaluminum Lewis acid catalyst (cA) in the present invention is represented by the above general formula A1.
  • R in the general formula A1 is an alkyl group having 1 to 4 carbon atoms, and specific examples include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, and an iso-butyl group. Tert-butyl group and the like.
  • Y is hydrogen or an arbitrary substituent.
  • substituents include alkyl groups such as methyl group, ethyl group, butyl group and tert-butyl group, aryl groups such as phenyl group, fluorine, chlorine, and the like. Examples thereof include halogen such as iodine, a trimethylsilyl group, and a trimethylgermyl group.
  • Y may be the same or different.
  • P is any one of 1, 2 and 3.
  • the ring-opening addition reaction rate of the cyclic monomer is high, but the molecular weight distribution of the produced polymer tends to widen, and in the case of 3, However, since it becomes difficult to prepare a catalyst, it is most preferably 2.
  • organoaluminum Lewis acid catalyst (c A) represented by the general formula A1 one represented by the general formula A2 is preferable.
  • the value of P in the general formula A1 is 2 in the organoaluminum-type lucidic acid of the general formula A2, and X is selected from t-tert-butyl, phenyl, chlorine, bromine, and iodine. X may be the same or different.
  • X is hydrogen or a non-bulky substituent such as a methyl group
  • the steric hindrance between the catalysts is reduced, and associative properties appear, resulting in a lactone monomer and / or a cyclic force.
  • the organoaluminum Lewis acid catalyst (cA) used in the method for producing a monodisperse polymer of the present invention is prepared as follows. That is, like 2,6-dipheninolefenorezole, 2,6-di-butysolole 4-methylphenol / re, 2,4,6—trichloromouth phenol, 2,4,6-tri-butyl phenol Alkyl-substituted phenols such as trimethylaluminum and isobutylaluminum Obtained by reacting such trialkylaluminum.
  • the reaction temperature is preferably from 0 ° C to room temperature.
  • organic solvent used in the reaction examples include aliphatic hydrocarbons such as hexane, cyclohexane, heptane, octane, and decane; aromatic hydrocarbons such as benzene, toluene, and xylene; And a mixture thereof.
  • the catalyst is obtained as white crystals or organic solvent solution. Titanium-based Lewis acid (c T)
  • the titanium-based Lewis acid (cT) in the present invention is represented by the general formula T1.
  • X in the general formula T 1 is any of an alkoxy group, chlorine, bromine, and iodine;
  • R when the alkoxy group is represented by RO is an alkyl group; and R may have any substituent.
  • alkoxy group having no substituent examples include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group and a tert-butoxy group.
  • alkoxy group having an arbitrary substituent examples include a 2-chloropropoxy group having a halogen group and a 2-methoxyethoxy group having an alkoxy group.
  • Y is hydrogen or an arbitrary substituent.
  • substituents include an alkyl group such as a methyl group, an ethyl group, a butyl group and a tert-butyl group, an aryl group such as a phenyl group, a methoxy group, Examples include an alkoxy group such as an ethoxy group, a halogen such as fluorine, chlorine, and iodine, a trimethylsilyl group, and a trimethylgermyl group.
  • Y may be the same or different.
  • P is any one of the integers 1 to 4; if 1, the ring-opening addition of the cyclic monomer Although the reaction rate is high, the molecular weight distribution of the produced polymer tends to widen,
  • Y is selected from an alkylene group such as a methylene group, sulfur (-S-), oxygen (-O-), and the like.
  • the titanium-based Lewis acid (cT) represented by the general formula T1 has a P value of 1 to 3 in the general formula T1, and Z is selected from t tert -butyl, phenyl, chlorine, bromine, and iodine. Z may be the same or different.
  • Z is hydrogen or a non-bulky substituent such as a methyl group, the steric hindrance between the catalysts is reduced, and associative properties appear, resulting in a lactone monomer and Z or cyclic carbonate.
  • is selected from the above groups because the ⁇ effect of the catalyst on the catalyst decreases.
  • titanium-based Lewis acid (cT) represented by the general formula 1 those represented by the general formula T3 are preferable.
  • the value of P in the general formula T1 is any one of integers from 1 to 3
  • X is an alkoxy group represented by RO.
  • R is an alkyl group and may have an optional substituent. Specific examples of the alkoxy group having no substituent include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, and a tert-butoxy group.
  • Rara is an alkoxy group represented by RO.
  • alkoxy group having an arbitrary substituent examples include a 2-chloropropoxy group having a halogen group and a 2-methoxyethoxy group having an alkoxy group.
  • the ortho-position group of the phenoxy group is bulky as in the general formula T2.
  • one molecule has one or more phenoxy groups as ligands having the same structure as the above-mentioned aluminum-based Lewis acid catalyst and titanium-based Lewis acid catalyst.
  • the phenoxy group may be an alkyl group such as a methyl group, an ethyl group, a butyl group or a tert-butyl group, an aryl group such as a phenyl group, a halogen atom such as fluorine, chlorine, or iodine, a trimethylsilyl group, or a trimethylgermyl group. It may have 1 to 5 groups.
  • the metal constituting the Lewis acid catalyst include lead, zinc, manganese, calcium, cobalt, magnesium, antimony, tin and the like in addition to aluminum and titanium. Particularly, aluminum, titanium, tin and the like are preferable.
  • These catalysts can be used in a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, and can be preferably used particularly in a continuous polymerization method using an extruder.
  • the catalyst used in the method for producing a monodisperse polymer of the present invention is prepared as follows. That is, 2,6-diphenyl-phenol, 2,6-di-tert-butyl, 4-methylinophenol, 2,4,6-trichlorobutanol, 2,4,6-tri-tert-butyl It is obtained by reacting a substituted phenol such as phenol with a titanium halide such as titanium tetrachloride or a titanate such as tetraisopropoxytitanium or tetrabutoxytitanium.
  • the molar ratio of the substituted phenol / titanate 2 is 5/1 to 11, preferably 2.5 Z 1 to? ;! It is.
  • the reaction temperature is preferably from 0 ° C to room temperature.
  • the same solvent as that used in the above-mentioned organoaluminum-based Lewis acid catalyst (cA) can be used.
  • the catalyst is obtained in a crystalline state or as an organic solvent solution.
  • aluminum-based Lewis acid catalyst (cA) or a titanium-based Lewis acid catalyst (cT) can be performed in the presence of an initiator and a monomer such as lactone or cyclic carbonate in advance.
  • a monomer such as lactone or cyclic carbonate
  • a titanium-based Lewis acid catalyst (cT) having an alkoxy group a titanium compound having a halogen atom and a phenoxy group obtained as described above may be added to propylene oxide dioxetane. There is a method of reacting such a cyclic ether. Catalyst usage
  • the amount of the aluminum-based Lewis acid catalyst (cA) or titanium-based Lewis acid catalyst (cT) used per mole equivalent of the initiator (a) is usually 0.001 to 1 mole equivalent, preferably 0.01. It is preferably 0.5 to 0.2 molar equivalent, more preferably 0.05 to 0.2 molar equivalent.
  • the weight is more monodispersed and the molecular weight distribution is narrower.
  • an initiator In order to produce a coalescence, an initiator
  • the total amount of the above impurities including water is 5, OOppm or less, preferably 5OOppm or less, more preferably 50ppm or less.
  • the resulting polymer has a low monodisperse or molecular weight distribution value.
  • usable polymerization reaction solvents include aliphatic hydrocarbons such as hexane, heptane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; halogens such as chloroform and dichloromethane.
  • a system solvent can be exemplified. The amount used is not particularly limited, and an appropriate amount can be used. Reaction conditions
  • the reaction can be carried out at a reaction temperature of about 0 to 240 ° C., but the lower the reaction temperature, the monodispersed or the molecular weight distribution of the obtained polymer becomes narrower. Usually, room temperature to about 200 ° C. is preferable.
  • reaction temperature When the reaction temperature is high, the molecular weight distribution of the produced resin tends to be widened. On the other hand, when the purpose of the present invention is to improve the production efficiency (reaction rate), the higher temperature is more preferable.
  • reaction temperature when the reaction temperature is too high, a thermal decomposition reaction of the polymer occurs, which is not preferable because coloring or heat stability may be reduced. From such a viewpoint, a reaction temperature of 150 to 200 ° C. is preferable in order to sufficiently exhibit the feature of the present invention that the molecular weight distribution is narrow and to maintain high production efficiency.
  • the reaction time varies depending on the reaction temperature, the molar ratio of the initiator / monomer, the catalyst concentration, and the like, but is usually 0.5 to 600 minutes. In order to sufficiently exhibit the feature of the present invention that the molecular weight distribution is narrow, and to maintain high production efficiency at the same time, the time is preferably from 1 to 240 minutes.
  • the reaction system may be a batch system, a semi-batch system, or a continuous system.
  • a batch-type method yields a polymer with a narrow dispersion, but if a high-molecular-weight polymer is to be obtained, there will be problems with stirring and removal.
  • the dispersion is slightly widened, but the formation of a gel-like substance is difficult, so it is suitable for obtaining a high molecular weight polymer for film grade.
  • Extruder for continuous production is slightly widened, but the formation of a gel-like substance is difficult, so it is suitable for obtaining a high molecular weight polymer for film grade.
  • extruder for carrying out the continuous production method according to the present invention, all commonly used extruders can be applied, and further, what is called a kneader can be used. Actually, any material may be used as long as it has various means for mixing, stirring, transporting the raw material from the raw material supply point to the die, heating the contents, removing heat, and venting the gas.
  • An object in which two screws rotate in the same direction is generally widely used.
  • Specific examples include a single-screw extruder, a multi-screw extruder, an in-line screw-type extruder, a vent-type extruder, and a screw-type extruder such as a no-pass vent-type extruder.
  • non-screw extruders such as an elastodynamic extruder, a high-end dynamic extruder, a ram-type continuous extruder, a roll-type extruder, and a gear-type extruder can be used.
  • kneading machines such as a kneader, a bottler, a screw-type kneader, an internal mixer, a double-arm kneader, and a self-cleaning kneader may be used.
  • a plurality of extruders used in the present invention may be used. They may be simply connected in series.However, in order to remove slightly residual monomers and solvents, etc., it is possible to reduce volatile impurities in the product by partially reducing the pressure, By charging different kinds of monomers from the supply point of the above, it becomes possible to produce a block copolymer.
  • the ring-opening reaction of the cyclic monomer (b) proceeds in a “living polymerization” manner, even when the cyclic monomer (b) remains in the system, a single polymer is produced. Because of the dispersion, a method in which an excess of the cyclic monomer (b) is charged in advance and the excess of the cyclic monomer (b) is separated after reaching the target polymerization rate can also be adopted. Further, after the completion of the ring-opening addition reaction, the catalyst (c) can be optionally separated from the produced polymer.
  • Examples of the above separation method include solvent separation, adsorption, distillation under reduced pressure, and filtration. All methods utilizing the difference in solubility between the produced polymer and the catalyst (c) can be used for solvent separation.
  • adsorption methods such as activated carbon, silica gel, alumina, graphite, polymers containing hydroxyl group, amino group, carboxyl group and sulfoxide group, etc.
  • the swimming method can be applied.
  • Vacuum distillation is suitable for separation when the resulting lactone polymer has a low molecular weight. Further, for filtration, a method of performing filtration using a substrate such as a membrane depending on the molecular size can be applied.
  • Preferred examples of the polymer produced by the method of the present invention include a polyvalent hydroxyl group-containing polymer represented by the general formula P1 and a (meth) acrylic group-modified polymer represented by the general formula P2.
  • R 1 is one (CR 3 R ′′ k—, k is an integer of 2 to 8, and k R 3 and R 4 may be the same or different and are independently hydrogen or methyl)
  • R 2 is an alkylene group having 1 to 10 carbon atoms, and n 2 is not 0 but each is an integer of 0 to 100, n 3 is an integer of 1 to 10, and m is 2 to 10
  • A represents the residue of an m-valent polyhydric alcohol, provided that n> structural units derived from lactone and n 2 structural units derived from carbonate are arbitrary.
  • R 1 is one (CR 3 R 4 ) k one, k is an integer of 2 to 8, and k R 3 and R 4 may be the same or different and independently represent a hydrogen or a methyl group
  • R 2 and R 6 are an alkylene group having 1 to 10 carbon atoms
  • R 5 is hydrogen or a methyl group
  • n 2 is not 0 but both are each an integer of 0 to 100
  • n 3 is an integer of from 1 to 10.
  • binding order of number of lactone-derived structural unit and the n 2 carbonate-derived structural units is arbitrary.
  • the polyhydric hydroxyl group-containing polymer of the present invention represented by the general formula P1, a polylactone polymer having two or more hydroxyl groups at the terminal of the molecule, and being monodispersed, A lactone copolymer, a polycarbonate polymer, a carbonate copolymer, a lactone-carbonate random copolymer, and a lactone-carbonate block copolymer.
  • the polyvalent hydroxyl group-containing polymer represented by the general formula P 1 specific examples of R 1 in the formula, ethylene group, trimethylene group, propylene group, tetramethylene group, Bae Ntamechiren group, 2-methyl-one tetra Examples include a methylene group.
  • R 2 specific examples include a trimethylene group, a propylene group, a 2-methyltrimethylene group, a 2,2-dimethyltrimethylene group, a tetramethylene group, and the like.
  • 1 Oyobi 1 2 are both rather than 0 are each integers from 0 to 1 0 0, preferably are each 1-5 0, 1 3 1-1 0
  • m is 2 to 10, preferably 2, 3 and 4.
  • the monodispersed polymer or copolymer of the present invention (both are simply referred to as a polymer) is used as a raw material for polyurethane
  • the molecular weight distribution of the raw material is narrow and the amount of impurities is small, so that molecular design is easy.
  • the physical properties and appearance of the polyurethane are improved, and workability during production is improved.
  • the molecular weight distribution is The synthesis of polylactone polymers, such as narrow and cyclic dimers, has been reported, but the polyvalent hydroxyl group-containing polymer of the present invention preferably has a molecular weight distribution in the range of 1.0 to 1.2, and , A very high purity polylactone polymer substantially free of cyclic dimers, or various monodispersed poly-polycarbonate polymers, lactone-carbonate random copolymers and lactone-carbonate block copolymers It is united.
  • the (meth) acrylic group-modified polymer of the present invention is characterized by being monodisperse, that is, the value of or n 2 in the general formula P 2 is adjusted to a high level.
  • R 1 in the general formula P 2 examples include ethylene, trimethylene, propylene, tetramethylene, pentamethylene and hexamethylene, and R 2 is trimethylene, propylene, 2-methyltrimethyl. Examples include a methylene group, a 2,2-dimethyl trimethylene group and a tetramethylene group.
  • n 2 is an integer of 1-1 00, usually 1 to: an integer of I 0.
  • the (meth) a represented by the above general formula P2 and the following general formula P3 or P4 of the present invention.
  • Acrylic group-modified polymer monodisperse wherein the value of or n 2 in the clogging formula is one integer at a high level.
  • R 1 is one (CR 3 R 4 ) k—, k is an integer of 2 to 8, and k R : and R 4 may be the same or different and independently represent a hydrogen or methyl group and a, R; is hydrogen or a methyl group, R 6 is an alkylene group having 1 to 10 carbon atoms, n: is: to 100 integer)!.
  • I II II CH 2 CC-0-R 6 -0 — (— C— R 2 — O—) — H (P 4)
  • R 2 and R 6 are alkylene groups having 1 to 10 carbon atoms, R 5 is hydrogen or a methyl group, and n 2 is an integer from 1 to: I00.
  • R 1 represents an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group
  • R 2 represents a trimethylene group
  • the structure of a conventional (meth) acrylic group-modified lactone polymer is represented by the general formula P2. It was a mixture of (meth) acrylic group-modified lactone polymers with different molecular weights, with widely varying values.
  • the (meth) acrylic group-modified lactone polymer and the like of the present invention are monodisperse, and in the markets for coating materials and polymer modifiers, the physical and chemical properties of products are controlled with high quality and precision. In addition, the reactivity and workability in manufacturing products are extremely good.
  • the present invention is characterized in that the distribution of the average molecular weight is narrow, that is, the ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is small, and Mw / Mn is 1.0 to 2.0. 5. More preferably, a polylactone, polycarbonate-carbonate or lactone-carbonate copolymer having a molecular weight of 1.2 to 2.0 is obtained.
  • the film when a film is produced by using a polymer having a narrow molecular weight distribution obtained by the present invention, gel-like non-uniform points are hardly developed in the film, that is, the film has a low molecular weight distribution. . lm 2 per 20 or less, preferably 15 or less, more preferably 10 or less, that having a high advantage in properties of the film.
  • the polylactone, polycarbonate, and lactone-strength-carbonate copolymers according to the present invention can be prepared by, for example, fibers, sheets, or the like by any of the usual techniques for molding thermoplastic resins such as molding, extrusion, and inflation. Suitable as a raw material for manufacturing various products such as films and flasks.
  • the average molecular weight was measured by gel permeation chromatography (GPC) in tetrahydrofuran at 40 ° C.
  • 2,6-Ditert-butyl-4-methylphenol (8.82 g, 4 Ommo 1) recrystallized from hexane was dissolved in 500 ml of dry hexane, and tetraisopropoxytitanium (5. 9 ml, 2 Ommo 1) was added dropwise, and after the addition was completed, the mixture was further stirred for 2 hours. After further heating at 60 ° C, hexane 45 Om 1 was distilled out by maintaining the pressure at a low level. Thereafter, the mixture was allowed to stand at 0 ° C.
  • the crystals were made into a 0.3 mmo 1 Zm 1 solution of dichloromethane, and reacted with an equivalent amount of propylene oxide at room temperature to obtain a titanium-based Lewis acid (B) having a structure of the general formula T3 ′.
  • Me A BMP Abbreviated as “Me A BMP”.
  • Neopentyl glycocarbonate (26. Og, 20 Ommo 1) was weighed and placed in a round bottom flask with a three-way cock (containing a magnetic stirrer), and the inside was replaced with nitrogen.
  • dichloroethane (16. Oml) and isopropyl alcohol (0.77 ml, 10 mmo1) dried with a syringe were added, and the 2,6-ditert-butyl obtained in Reference Example 1 was further added.
  • Butyl-4-methylphenol disubstituted titanium-based Lewis acid catalyst (A) was added with 0.3 ml / m 1 of dichloromethane solution (1 ml) and stirred at 80 ° C for 2.0 hours.
  • the reaction product was poured into 300 ml of methanol, and the white precipitate was dried under reduced pressure.
  • the yield of the obtained water-soluble polymer was 25.O g
  • the number average molecular weight in terms of standard polystyrene measured by GPC was 2,400
  • the molecular weight distribution value was 1.17.
  • Example I-II Living polymerization of f-force prolactone, part 1) f-force prolactone (22.8 g, 20 Ommo 1) in the same apparatus and operation as in Example I-11 , Dried dichloromethane (16.Om 1), isopropyl alcohol (0.77 ml, 1 Ommo 1) and 2,6-ditert-butyl-4-methylphenol disubstituted titanium-based Lewis acid catalyst (A) 1 ml of a 0.3 mmo1 / m1 dichloromethane solution was charged and polymerized to obtain 21.0 g of a lactone polymer. The number average molecular weight in terms of standard polystyrene measured by GPC was 2,200, and the molecular weight distribution value was 1.08.
  • Example I Production of neopentyl glycol carbonate Ne one toe £ per force Puroraku Tonbu lock copolymer, Part 1)
  • Neopentylglycol tricarbonate (6.5 g, 5 Ommo I) was weighed in the same apparatus as in Example I-11, and the inside was replaced with nitrogen.
  • dichloromethane (3 ml) and isopropyl alcohol (0.077 ml, 1 mmo 1) dried with a syringe were added, and 2,6-ditert-butyl-4 monomethylphenol disubstituted titanium-based Lewis acid catalyst ( 0.3 mmo 1 Zm 1 dichloromethane solution lm 1 of A) was added, and the mixture was stirred at 60 ° C. for 4.0 hours. After confirming that the monomer was consumed, a very small amount of sampling was performed.
  • the former has a number average molecular weight of 6,100 and a molecular weight distribution of 1.20, whereas the number average molecular weight of the block copolymer is 13,20.
  • Example I-1 0.3 ml of a toluene solution of dichloromethane (3 ml), isopropyl alcohol (0.077 ml, 1 mmo 1), and the titanium-based Lewis acid catalyst (B) obtained in Reference Example 2 in 1 ml 1 And stirred at room temperature for 6 hours. During this time the monomer was completely consumed. The same operation as in Example I-1 was performed to obtain 10.6 g of a lactone polymer. The number average molecular weight in terms of standard polystyrene measured by GPC was 13, 100, and the molecular weight distribution value was 1.15.
  • the obtained dope was subjected to GPC measurement, and the dope was diluted with toluene.Through a silica gel column preparative step and a solvent removal purification step, 570 g of a monodisperse methataryl-modified lactone tetramer was obtained. Was.
  • the number average molecular weight in terms of standard polystyrene measured by GPC was 470, and the molecular weight distribution value was 1.08.
  • Example I-1 0.3 mmo 1 of tetrabutyl titanate was used instead of the 2,6-ditert-butyl-4-substituted titanium-based Lewis acid (A) obtained in Reference Example 1.
  • Example I except that 1 ml of / m 1 dichloromethane solution was used. The resulting white precipitate was dried under reduced pressure in the same manner as in —1. The yield of the obtained carbonate polymer was 23.5 g, the number average molecular weight in terms of standard polystyrene measured by GPC was 2,200, and the molecular weight distribution value was 2.50.
  • Example 1-2 0.3 mmo of tetrabutyl titanate was used instead of 2,6-ditert-butyl-4-methylphenol disubstituted titanium-based Lewis acid (A).
  • a lactone weight was obtained in the same manner as in Comparative Example I-12 except that 2,2′-methylenebis- (6-tert-butyl-1-methylphenol) was added in an amount of 0.3 mmol. 21.5 g of the combined product were obtained.
  • the number average molecular weight in terms of standard polystyrene measured by GPC was 2,200, and the molecular weight distribution value was 1.50.
  • the obtained mixed solution was supplied at a rate of 1 kg / hr by a pipe connected to a feed port of an extruder circulated inside the jacket via a pump while keeping the temperature of the heat medium at 150 ° C.
  • the extruder is provided with a jacket to circulate the heat medium kept at 150 ° C inside the jacket. After maintaining the steady state, the temperature of the resin discharged from the outlet was measured and found to be 178 ° C. and 172 ° C. in Examples II-1 and II-2, respectively.
  • the obtained resin was cooled in a water tank and then crushed to obtain a pellet.
  • the reddish color was added from the raw material supply section of the extruder, and the hue of the discharged resin was confirmed.
  • the residence time was about 30 minutes for all.
  • the weight average, number average molecular weight and molecular weight distribution MwZMn of the obtained resin were evaluated by GPC. After addition the resulting resin was dried for 24 hours at ⁇ under 50 ° C, then molded into a film having a thickness of 50 microns by an extruder fitted with a T-die, the gel-like non-present per film 0. 1 m 2 The uniform points were counted and evaluated. Table 1 shows the results.
  • Example II-13 100 parts by weight of neopentyl glycol carbonate (Example II-13), or a mixture of 50 parts by weight of neopentyl glycol carbonate and 50 parts by weight of —-force prolactone Example II-1 was carried out in the same manner as in Example II-1, except that the temperature of the heating medium was changed to 160 ° C.
  • the temperature of the discharged resin was 181 ° C (Example II-13) and 185 ° C (Example II-4, random copolymer). Table 1 shows the results.
  • Example II An extruder 2 was provided in series at the subsequent stage of the extruder of 11 through a pipe heated by a ribbon heater to provide a second continuous reactor for polymerizing a block copolymer portion.
  • Extruder 2 is provided with a tank 2 for the copolymer section, Glycolic carbonate was charged and fed to the extruder 2 at a rate of 0.5 kg / hr.
  • Glycolic carbonate was charged and fed to the extruder 2 at a rate of 0.5 kg / hr.
  • polyneopentyl dalicol carbonate was polymerized in the first stage.
  • the temperature of the resin discharged from the outlet of the extruder 2 was 170 ° C. Table 1 shows the results.
  • Example II-11 The procedure was performed in the same manner as in Example II-11 except that 0.082 parts by weight of aluminum tributoxide was used instead of both the initiator and Me A1 BMP.
  • Aluminum tributoxide used was a 2% by weight heptane solution in advance.
  • the temperature of the discharged resin was 177 ° C. Table 1 shows the results.
  • Example II-12 The procedure was performed in the same manner as in Example II-12 except that 0.034 parts by weight of tetrabutyl titanate was used as a catalyst.
  • the temperature of the discharged resin was 170 ° C. Table 1 shows the results.
  • Example II-1 The procedure was performed in the same manner as in Example II-1, except that 0.063 parts by weight of dibutyltin dilaurate was used as a catalyst.
  • the obtained resin had a low viscosity and no pellet was obtained.
  • ⁇ -force prolacton (15 kg, 1332 mo 1) was charged into a stainless steel 20 liter reactor, and the inside was replaced with nitrogen. Then, ethylene glycol (9.3 g, 0.15mo 1) was added, and the 2,6-ditert-butyl 4-methylphenol-1-substituted aluminum Lewis acid obtained in Reference Example 4 was further added to ethylen glycol. The mixture was added so that it became 0.1 l mo with respect to the mixture, and stirred at 170 ° C for 3 hours. During this time The monomer was completely consumed. The reactants were removed by a gear pump attached to the bottom of the reactor. The yield of the obtained carbonate polymer was 14.2 kg, the weight average molecular weight Mw in terms of standard polystyrene measured by GPC was 150,000, and the molecular weight distribution value was 2.0. The number of uneven points in the shape was large.
  • a lactone polymer, a carbonate polymer, a lactone-carbonate random copolymer and a lactone-one-force-one-block copolymer can be efficiently produced in a short time,
  • the resulting polymer has a molecular weight distribution value (M w / M n) of almost 1 or a very high purity of a single structural component, so that rigidity, toughness, weather resistance, scratch resistance, low temperature resistance, High quality with excellent physical properties such as coating workability It is useful as a raw material for polyurethane, a raw material for paint, a resin modifier, etc.
  • a continuous polymerization reaction with high productivity in an extruder becomes possible, and further, there are few gel-like non-uniform substances such as "butter" and a molecular weight of 10,000. ⁇ 200,000 as high, molecular weight distribution as narrow as 1.0 ⁇ 2.5, very high purity of single structural component, high grade lactone polymer, carbonate Polymers and lactone-carbonate copolymers can be obtained with good productivity.
  • the resulting polymer is useful in applications that require high added value and high functionality in products such as resin modifiers, paints, surface modifications, and adhesives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

明 細 書
単分散重合体の製造方法、 並びに、 環状モノマーの連続重合方法及びそれによる 重合体
技術分野 - 本発明は、 特定の重合触媒を用いる、 ラク トン重合体、 カーボネート重合体、 ラク トン一力一ボネートブロック共重合体、 ラク トン一カーボネートランダム共 重合体の製造方法に関する。 さらに詳しくは、 本発明は、 単分散、 すなわち重量 平均分子量 (M w) と数平均分子量 (M n ) の比で表される分子量分布値 (Mw /M n ) が殆ど 1に近い、 あるいは単一構造成分の純度が非常に高いラク トン重 合体、 カーボネート重合体、 ラク トン一カーボネートブロック共重合体、 ラクト ンーカーボネートランダム共重合体の製造方法、 並びに押出機中で開始剤を用い てラク トン及びノまたは環状カーボネートを連続的に重合させるラク トン重合体、 カーボネート重合体、 ラク トン一力一ボネ一ト共重合体の製造方法及びそれによ り得られる分子量分布の狭いラク トン重合体、 カーボネート重合体、 ラク トン— 力一ボネ一ト共重合体に関する。
背景技術
ラク トンや環状カーボネートなどの環状単量体の開環重合は、 通常、 開始剤と して有機金属化合物を用いるァニオン重合と、 開始剤として水やアルコールなど の活性水素を有する化合物を用い、 触媒として種々の広義のルイス酸を用いる重 合の 2つに大別できる。
前者のァニオン重合の開始剤たる有機金属化合物としては、 n—プチルリチウ ム、 t e r t —ブトキシカリウム、 ナトリウムメ トキシドおよび希土類金属化合 物錯体などが例示でき、 具体的には特開昭 4 6 - 3 7 7 3 7号公報ではポリスチ レン一ポリ力プロラク トンプロック共重合体などの合成、 特開平 2— 2 9 4 3 2 6号公報ではポリ力プロラク トン一ポリネオペンチルグリコール力一ボネ一トブ ロック共重合体などの合成、 特開平 5— 500 98 2号公報および特開平 5— 2 4 7 1 84号公報では希土類金属錯体を用いるポリ力プロラク トンなどの合成が 報告されている。
これらのァ-オン重合では、 使用する溶媒や環状単量体を非常に厳密に精製す るなどの特別な反応方法を採用することにより、 分子量分布の狭い重合体やプロ ック共重合体を合成できる長所がある。
後者の重合で用いる触媒としては、 硫酸、 パラトルエンスルホン酸、 4級アン モニゥム塩、 三フッ化ホウ素、 四塩化スズ、 トリアルキルアルミニウム、 テトラ ブチルチタネ一ト、 ジブチルスズォキシド等の広義のルイス酸が例示できる。 これらの種々のルイス酸は、 ラク トン単量体や環状カーボネート単量体の開環 反応に要するエネルギーを低減させると共に、 水やアルコールなどの開始剤の求 核性を増幅させる働きがある。
この開環反応の開始剤は水やアルコールであるが、 水やアルコールは同時に反 応停止剤や連鎖移動剤となり、 これがァニオン重合と比較して分子量分布の狭い 重合体やプロック共重合体の合成を非常に困難にしていた。
広義のルイス酸を触媒に用いる重合の中で、 特異的に分子量分布の狭い重合体 やブロック共重合体が合成できる方法として、 井上 ·相田らは Ma c r omo 1 e c u l e s (マクロモレキュノレス) 1 98 7, 20, 2 982— 2988にお いて、 単分散ラク トン重合体の合成を報告している。 この報告の中では、 触媒と してアルミニウムポルフィルン錯体を用レ、、 G P C法を用いて測定した数平均分 子量が 1, 1 00〜 1 0, 400、 分子量分布 ί直が 1. 1 0〜: I . 1 8の範囲の ポリ力プロラク トン重合体の合成が記載されている。
また、 ] Vla k r omo l . Ch em. , Ma c r omo l . S y m p . 1 9 9 1, 42/43, 1 1 7— 1 3 3では、 岡本が、 触媒としてトリェチルォキソ二 ゥムへキサフルォロホスホネートを、 開始剤としてエチレンダリコールを用い、 G P C法で測定した数平均分子量が 3, 000程度、 分子量分布値が 1. 25〜 1 . 3 1程度のポリラク トンジオール重合体を合成している。
さらにまた、 E P 0 6 0 0 4 1 7 A 1には、 ブレンステッド酸、 ブレンステツ ド酸ァ二オンのォニゥム塩、 強酸性イオン交換樹脂、 アルキルアルカリ金属、 ァ ルカリ金属アルコキサイ ド、 ァミン、 スズ化合物、 タングステン化合物、 チタン 化合物、 亜鉛化合物等を触媒とし、 多価アルコールゃヒ ドロキシアルキル (メ タ) ァクリレートを開始剤として環状カーボネー卜の開環反応により、 分子量分 布値 1 . 7〜2 . 1程度の重合体が得られることが報告されている。
一方、 近年、 樹脂改質剤、 塗料、 表面改質剤、 粘接着剤などの分野では、 製品 の高付加価値、 高機能化を必要とする用途が増えるに伴い、 分子量分布が狭く、 単一構造成分の純度が非常に高いラク トン重合体、 カーボネート重合体およびラ ク トン一カーボネート共重合体の必要性が高まってきた。
しかしながら、 特定の構造のラク トン重合体および力一ボネート重合体を得る ために、 ァニオン重合を用いる方法では開始剤として有機金属化合物を多量に使 用するため、 反応熱のコントロールが困難となったり、 残存金属成分が重合体の 熱安定性を大幅に劣化させるなど種々の問題が発生する。
具体的には、 2—ヒドロキシェチルメタクリレートに 1〜 5モル当量倍のカプ ロラク トンが付加したメタクリル基変性ラク トン重合体は、 ァニオン重合では単 ステップでの合成は非常に困難であり、 経済的にも有利でない。
また前記アルミニウムボルフイリン錯体の系では、 反応速度が遅く、 前記ポリ 力プロラク トン重合体の合成に 1 0日以上の日数を必要とするばかり力、 生成物 が非常に着色するため、 実用的とはいえない。
また、 トリェチルォキソニゥムへキサフルォロホスホネートの系では、 前記の ポリラク トンジオール重合体を得るのに、 3 0 °Cで 2 4時間を要し、 かつラク ト ン単量体が 5 %程度残存し、 ラク トン単量体の転化率を 1 0 0 %近くに上げよう とすると、 分子量分布値が広がる懸念があった。
このような問題を解決するために、 我々はすでに特開平 7— 2 9 2 0 8 3号公 報に示される方法を見出し報告している。 この方法は特定のアルミニウム系ルイ ス酸触媒を用いることで分子量分布値が 1 . 0〜1 . 5の低分散のある種のポリ マーの製造を可能にしている。
通常ラク トンや環状カーボネートの重合は、 不連続な方法で行われることが多 いが、 特に高分子量のポリマーを得ようとする場合には、 その粘度の高さから取 り出し等に問題があり、 取り出し時の不必要な加熱時間の延長が樹脂物性を悪化 させる。
また生産効率を向上させるという観点からは、 触媒の添加量を増加させる等反 応速度の向上が必要となるが、 一般に不連続な装置は除熱能力が低く限界がある。 このような問題を解決するために、 ラク トンや環状カーボネートを連続的に製 造する方法が、 既に提案されている (ベ一リンガー .インゲルハイム (Boehring er Ingelhe im) KGによる特許公開公報 EP-A- 0, 372, 221)。 この文献には、 全く一般 的にポリ - E -力プロラク トンの製造の可能性が開示されている。 しかしながら、 唯一の触媒又は重合開始剤のみが考えられており、 更に、 この文献には例えば塩 化第一錫のような錫塩及び錫ォク トェ一卜が好ましいと記載されている。 工業的 に許容しうるポリ - E -カプロラク トンへの転化率に達するのに推奨された触媒 では数時間の重合時間を必要とするので、 この方法は実際には、 押出機中におけ る f -力プロラク トンの連続重合によりポリ - £ -力プロラク トンを製造するの に適用できないことが見いだされた。
同様に押出機を用いる方法では、 一般にエステル交換反応やエステル化反応に 使用できる触媒、 例えば鉛、 亜鉛、 マンガン、 カルシウム、 コバルト、 マグネシ ゥム、 アンチモン、 アルミニウム、 チタン、 錫等の酢酸塩、 炭酸塩、 ハロゲン化 物、 酸化物、 アルキル化物、 アルコキサイ ド、 特にアルミニウム、 チタン、 錫等 のハロゲン化物、 アルキル化物、 アルコキサイ ド等を使用することが可能である 力 一般に回分式の反応器に比べて分子量分布が広がる可能性がある。
特開平 7— 5 3 6 8 6号公報では、 生産効率を向上させるという観点から、 重 合開始剤としてアルミニウムアルコキシドを用い、 押出機中で E—力プロラク ト ンを製造する方法が提案されている。 しかしながら、 金属アルコキシドを開始剤 に用いる方法は、 特開平 7— 5 3 6 8 6号公報に示されているような非常に高分 子量のポリマーの製造には使用し得るが、 比較的低分子量のポリマ一に使用する 場合、 樹脂中の金属含有量の増加による諸物性、 安定性への悪影響が懸念される。 また一般に押出機等の連続反応装置で重合反応を行う場合、 反応過程の異なる部 分が相互に混ざり合うため、 分子量分布は広がる傾向にあり、 特開平 7— 5 3 6
8 6号公報によると分子量分布値が 2 . 2以上のポリマ一が得られている。
本発明は、 単分散のあるいは分子量分布の狭い、 ラクトン重合体、 カーボネー ト重合体、 ラク トン一カーボネートランダム共重合体およびラク トン一カーボネ 一トブロック共重合体等を提供することを目的としている。
また本発明は、 上記重合体を、 効率よく短時間で製造する方法、 また、 連続製 造方法を提供することを目的としている。 発明の開示
本発明者等は、 ラク トン重合体、 カーボネート重合体、 ラク トン一カーボネ一 トランダム共重合体およびラク トン一カーボネ一トブロック共重合体を効率よく 短時間に製造する方法について鋭意検討した結果、 特定のチタン系ルイス酸を触 媒として用いることが極めて有効であること、 および得られるこれらの重合体が その分子量分布が極めて狭いことを見い出し、 本発明を完成するに至った。 また、 本発明者等は、 ポリラク トン、 ポリカーボネート、 ラク トン一カーボネ 一ト共重合体を効率よく短時間に製造する方法について鋭意検討した結果、 特定 のアルミニウム系ルイス酸またはチタン系ルイス酸を触媒として用いる押出機中 での連続重合が極めて有効であること、 および得られるこれらの重合体がその分 子量分布が狭いゆえに有益であることを見い出し、 本発明を完成するに至った。
即ち、 本発明の第 1によれば、 開始剤 (a ) を用いて、 ラク トン単量体 (b 1 ) 、 環状カーボネート単量体 (b 2 ) 、 又はラク トン単量体 (b 1 ) と環状力 —ボネ一ト単量体 (b 2 ) の混合物 (b 3 ) を開環付加反応せるにあたり、 下記 一般式 T 1で示されるチタン系ルイス酸触媒 (cT) を用いることを特徴とする 単分散重合体の製造方法が提供される。
Figure imgf000008_0001
(ここで Xはアルコキシ基 (ROで表わす時、 Rはアルキル基で任意の置換基を 有していてもよい。 ) 、 塩素、 臭素、 沃素から選択され、 Υは水素または任意の 置換基であり、 Ρは 1〜4の整数の内のいずれかである。 )
本発明の第 2によれば、 開始剤 (a) 1モル当量に対し、 ラク トン単体 (b 1) と環状カーボネート単量体 (b 2) の合計 1〜1 00未満モル当量倍の混合 物 (b 3) を反応させ、 ラク トン一カーボネートランダム共重合体を得ることを 特徴とする本発明の第 1に記載の単分散重合体の製造方法が提供される。
本発明の第 3によれば、 開始剤 (a) を用い、 ラク トン単量体 (b 1) または 環状カーボネート単量体 (b 2) のいずれか一方をそれが消費されるまで開環付 加反応させた後、 残りの単量体を開環付加反応させるにあたり、 上記一般式 T 1 で示されるチタン系ルイス酸触媒 (cT) を用い、 ラク トン一カーボネートブロ ック共重合体を得ることを特徴とする単分散重合体の製造方法が提供される。 本発明の第 4によれば、 チタン系ルイス酸触媒 (c T) が下記一般式 T 2で示 される化合物であることを特徴とする本発明の第 1〜3のいずれかに記載の単分 散重合体の製造方法が提供される。
[X ー Ti Y (Τ 2)
Figure imgf000008_0002
」 ρ
(ここで Xはアルコキシ基 (ROで表わす時、 Rはアルキル基で任意の置換基を 有していてもよい。 ) 、 塩素、 臭素、 沃素から選択され、 Υは水素または任意の 置換基であり、 Ζは t e r t—ブチル基、 フユニル基、 塩素、 臭素、 沃素から選 択され、 Pは 1〜3の整数の内のいずれかである。 ) 本発明の第 5によれば、 開始剤 (a ) が分子内に 2〜1 0個の水酸基を有する 多価アルコールであるかまたは分子内に 1個の水酸基と 1個のラジカル重合性二 重結合を共に有するアルコールであることを特徴とする本 明の第 1 ~ 4のいず れかに記載の単分散重合体の製造方法が提供される。
本発明の第 6によれば、 チタン系ルイス酸触媒 (c T) が下記一般式 T 3で示 される化合物であることを特徴とする本発明の第 1〜 5のいずれかに記載の単分 散重合体の製造方法が提供される。
Figure imgf000009_0001
(ここで Rは任意の置換基を有してもよいアルキル基であり、 Υは水素または任 意の置換基であり、 Ρは 1〜3の整数の内のいずれかである。 )
本発明の第 7によれば、 押出機中で開始剤 (a ) を用いて、 ラク トン単量体 ( b 1 ) 、 環状カーボネート単量体 (b 2 ) 、 又はラク トン単量体 (b 1 ) と環 状カーボネート単量体 (b 2 ) の混合物 (b 3 ) を連続的に開澴付加反応させる にあたり、 下記一般式 A 1で示されるアルミニウム系ルイス酸触媒 (c A) また は上記一般式 T 1で示されるチタン系ルイス酸触媒 (c T) を触媒として用いる ことを特徴とするラク トン重合体の製造方法が提供される。
Figure imgf000009_0002
(ここで、 Rは炭素数 1 4のアルキル基であり、 Yは水素または任意の置換基 であり、 Pは 1、 2及び 3のいずれかである。 )
本発明の第 8によれば、 アルミニウム系ルイス酸触媒 (c A) が下記一般式 A 2で示さる化合物であり、 チタン系ルイス酸触媒 (c T) が上記一般式 T 2で示 される化合物である本発明の第 7に記載の製造方法が提供される。
Figure imgf000010_0001
(ここで Rは炭素数 1〜4のアルキル基であり、 Xは t e r t—ブチル基、 フエ ニル基、 塩素、 臭素、 沃素から選択され、 Yは水素または任意の置換基であ る。 )
本発明の第 9によれば、 重量平均分子量 (Mw) 力 Sl O, 000〜 200, 00 0であり、 重量平均分子量 (Mw) と数平均分子量 (Mn) との比 MwZMnが 1. 0〜2. 5であるラク トン重合体、 カーボネート重合体またはラク トン一カーボ ネート共重合体が提供される。
本発明の第 1 0によれば、 MwZMnが 1. 2〜2. 0である本発明の第 9記載 のラク トン重合体、 カーボネート重合体またはラク トン一カーボネート共重合体 が提供される。
本発明の第 1 1によれば、 ゲル状物含有率が 20個 0. lm2以下の本発明の 第 9又は 10に記載のラク トン重合体、 カーボネート重合体またはラク トン一力 —ボネート共重合体が提供される。
本発明の第 1 2によれば、 重量平均分子量 (Mw) が 100, 000〜 200, 000である請求項 9記載のラク トン重合体が提供される。
本発明の第 1 3によれば、 重量平均分子量 (Mw) が 10, 000〜 200, 0 00である請求項 9記載の環状カーボネート重合体が提供される
本発明の第 14によれば、 重量平均分子量 (Mw) が 30, 000〜 200, 0 00である請求項 9記載のラク トン一環状力一ボネ一トブロック共重合体が提供 される。
本発明の第 1 5によれば、 重量平均分子量 (Mw) が 10, 000〜 200, 0 00である請求項 9記載のラク トン一環状カーボネートランダム共重合体が提供 される。 本発明によれば、 オリゴマー領域のものから、 重量平均分子量 (Mw) が 10, 000以下の低分子量領域のもの、 重量平均分子量 (Mw) が 10, 000〜10 0, 000のもの、 重量平均分子量が 100, 000〜200, 000のもの、 数平均分子量が 5, 000以下のもの、 5, 000〜70, 000のもの、 70, 000以上、 さらには 1 00, 000以上のもので、 Mw/Mnが 1. 0~2. 5、 さらには 1.- 2~2. 0であるラク トン、 環状カーボネ一トの各単独重合体、 ラ ンダム共重合体、 ブロック共重合体、 ランダム .ブロック共重合体が得られる。 発明を実施するための最良の形態
以下に本発明の実施の形態を説明する。
本発明において、 「単分散」 とは通常次の定義で示すものである。 ラク トン単 量体および Zまたは力一ボネ一ト単量体が開始剤に対して 1〜 10倍モル当量の 範囲で付加した重合体または数平均分子量が 1 , 000未満の重合体の場合、 ゲ ルパーミエ一シヨンクロマトグラフィー (以下、 「GPC」 と略す。 ) による測 定において、 単一構造成分 (環状単量体の単一モル当量倍付加体) の全成分に対 する純度が 50%以上、 好ましくは 70%以上、 さらに好ましくは 90%以上で あることであり、 数平均分子量が 1 , 000以上の重合体の場合、 G PC測定に おいて分布がュニモーダル (単峰性) であることである。 本発明において、 「低 分散」 とは通常重量平均分子量ノ数平均分子量の比 (分子量分布値) が 1. 0〜
1. 5の範囲、 好ましくは 1. 0〜1. 2の範囲、 さらに好ましくは 1. 0〜1.
1の範囲であることである。
したがって、 本発明のラク トン重合体、 カーボネート重合体及びラク トン一力 ーボネート共重合体は、 単分散且つ低分散の重合体と言うべきであるが、 便宜上 単分散重合体と略称する。
開始剤 (a)
本発明における開始剤 (a) は、 分子内に活性水素を有する化合物、 例えば、 分子内に水酸基、 アミノ基、 カルボキシル基、 チオール基および 2個以上の電子 吸引基によって挟まれた活性メチレン基などを有する化合物である。
一般的には、 脂肪族モノアルコールや脂肪族多価アルコールであり、 前者の具 体例としては、 メタノール、 エタノール、 イソプロパノール、 2—ヒ ドロキシェ チル (メタ) ァクリレート、 4ーヒ ドロキシブチル (メタ) ァクリレート、 ァリ ルアルコール等を挙げることができ、 後者の具体例としては、 エチレングリコ一 ノレ、 ジエチレングリコ一/レ、 ブタンジォ一 /レ、 へキサメチレングリコ一ノレ、 ネオ ペンチルグリコール、 トリメチ口一ルプロパン、 ペンタエリスリ トール、 ポリビ ニルアルコール、 2—ヒ ドロキシェチル (メタ) ァクリレート変性重合体および ビスフエノール Aのエチレンォキシド付加物などを挙げることができる。
上記記載において、 (メタ) ァクリレートとはァクリレートまたはメタクリレ ートを示す (以下同じ) 。 ラク トン単量体 (b 1 )
本発明におけるラク トン単量体 (b l ) としては、 公知のものを使用し得るが、 一般的には ]3—プロピオラク トン、 γ—ブチロラク トン、 δ—バレロラク トン、 f 一力プロラク トンおよびこれらラク トンのアルキル化ラク トン、 ェナントラク トンなどが挙げられ、 実用的には δ—バレロラク トン、 f 一力プロラク トンおよ びこれらラク トンのアルキル化ラク トンが好適に使用される。 環状カーボネート単量体 (b 2 )
同様に環状カーボネート単量体 (b 2 ) としては、 プロピレングリコ一ルカ一 ボネート、 2—メチル一 1 , 3—プロパンジォ一ルカ一ボネ一ト、 ネオペンチル グリコールカーボネートなどのアルキレングリコールカーボネートなどが好適に 使用される。 混合物 ( b 3 )
ラク トン単量体 (b 1 ) および環状カーボネート単量体 (b 2 ) は、 各単独で 用いることもできるほか、 両者の混合物 (b 3 ) としても用いることがきる。 さ らにまた、 これらの各場合において、 ラク トン単量体 (b 1 ) および環状カーボ ネート単量体 (b 2) は各 2種以上の単量体を混合して用いることもできる。
混合物 (b 3) のラク トン単量体 (b 1 ) と環状カーボネート単量体 (b 2) のモル比は任意に選択できるが、 5/9 5〜9 5/5が好ましく、 さらに 1 0/ 9 0〜90/1 0がより好ましレヽ。 開始剤と単量体のモル比
本発明において、 開始剤 (a) 1モル当量に対するラク トン単量体 (b 1 ) 、 環状カーボネート単量体 (b 2) 、 又は両者の混合物 (b 3) の供給量または仕 込み量は、 1〜1 0, 0 0 0モル当量倍、 好ましくは 1〜5, 00 0モル当量倍、 さらに好ましくは 1〜1, 000モル当量倍である。
連続重合の場合には、 1 0 0〜1 0, 0 00モル当量倍、 好ましくは 1 00〜 5, 00 0モル当量倍、 さらに好ましくは 4 0 0〜2, 0 0 0モル当量倍である。 上記量が上記範囲を超える場合は、 環状単量体の開環反応速度が遅くなつたり、 単分散の重合体が得られなくなるかまたは重合体の分子量分布値が大きくなるた め好ましくない。
上記量が上記範囲未満である場合は、 低粘度となるため押出機を用いる場合に は好ましくない。
開始剤 ( a) に対する混合物 (b 3) の仕込量は、 分子量が大きい重合体を得 る場合には上記の範囲内である。
しかしながら、 例えば 1〜1 0 0モル当量倍未満の範囲内に調整することもで きる。 1〜 1 00モル当量倍未満の範囲で混合物 (b 3) を供給または仕込むこ とにより、 分子量の小さい単分散のラクトン単独重合体、 カーボネート単独重合 体、 ラク トン一力一ボネートブロック共重合体、 又はラク トン一カーボネートラ ンダム共重合体を製造することができる。 有機アルミニウム系ルイス酸触媒 (c A)
本発明における有機アルミニウム系ルイス酸触媒 (c A) は、 上記一般式 A 1 で示される。 一般式 A 1中の Rは炭素数 1〜4のアルキル基であり、 具体例とし ては、 メチル基、 ェチル基、 n—プロピル基、 i s o—プロピル基、 n—ブチル 基、 i s o—ブチル基、 t e r t一ブチル基等が挙げられる。
Yは水素または任意の置換基であり、 置換基の具体例としては、 メチル基、 ェ チル基、 ブチル基、 t e r t一ブチル基などのアルキル基、 フエニル基などのァ リール基、 フッ素、 塩素、 ヨウ素などのハロゲン、 トリメチルシリル基、 および トリメチルゲルミル基等が挙げられる。 Yはそれぞれ同じでも、 異なっていても よい。
Pは 1、 2および 3のいずれかであるが、 1の場合は環状単量体の開環付加反 応速度が大きい反面、 生成する重合体の分子量分布が広がる傾向があり、 3の場 合、 触媒の調製が困難になることから、 2であることが最も好ましい。
前記一般式 A 1で示される有機アルミニウム系ルイス酸触媒 (c A) としては、 前記一般式 A 2で示されるものが好ましい。 一般式 A 2の有機アルミニウム系ル イス酸は一般式 A 1において Pの値が 2であり、 Xは t e r t—ブチル基、 フエ ニル基、 塩素、 臭素、 ヨウ素から選ばれる。 Xはそれぞれ同じでも、 異なってい てもよい。
Xが水素であるか、 メチル基等のバルキ一でない置換基の場合、 触媒同士の立 体的障害が小さくなり、 会合性が出現する結果、 ラク トン単量体および/または 環状力一ボネ一トなどの触媒に対する配位効果が减少するため、 より単分散の重 合体を得るには Xが上記の基から選ばれることが好ましい。
本発明の単分散重合体の製造方法において使用される上記有機アルミニウム系 ルイス酸触媒 (c A) は、 以下のように調製される。 すなわち、 2, 6—ジフエ ニノレフエノーゾレ、 2, 6—ジー t一ブチゾレー 4一メチルフエノー/レ、 2 , 4 , 6 —トリクロ口フエノール、 2, 4, 6—トリー t一ブチルフエノールのようなァ ルキル置換フエノールと トリメチルアルミニウム、 ィソブチルアルミニウムのよ うなトリアルキルアルミニウムとを反応させることにより得られる。
反応させる際の両者のモル比は、 アルキル置換フエノール/トリアルキルアル ミニゥム = 5 /:!〜 1 / 1、 好ましくは 2 . 5 / 1〜2 / 1である。
反応温度は 0 °C〜室温が好ましい。
なお、 反応に使用される有機溶媒としては、 へキサン、 シクロへキサン、 ヘプ タン、 オクタン、 デカン等の脂肪族炭化水素、 ベンゼン、 トルエン、 キシレン等 の芳香族炭化水素、 クロ口ホルム、 ジクロロメタン等のハロゲン系溶媒、 あるい はこれらの混合物が例示される。
触媒は白色結晶または有機溶媒溶液として得られる。 チタン系ルイス酸 (c T)
本発明におけるチタン系ルイス酸 (c T ) は、 前記一般式 T 1で示される。 一 般式 T 1の Xはアルコキシ基、 塩素、 臭素、 沃素のいずれかであり、 アルコキシ 基を R Oで表わす時の Rはアルキル基であり、 Rはさらに任意の置換基を有して いてもよレヽ。
任意の置換基を有しないアルコキシ基の具体例としては、 メ トキシ基、 ェトキ シ基、 n—プロポキシ基、 i s o—プロポキシ基、 n—ブトキシ基、 i s o—ブ トキシ基、 t e r t—ブトキシ基などが挙げられる。
任意の置換基を有するアルコキシ基の具体例としては、 ハロゲン基を有するも のとして 2—クロ口プロポキシ基、 アルコキシ基を有するものとして 2—メ トキ シエトキシ基等が挙げられる。
Yは水素または任意の置換基であり、 置換基の具体例としては、 メチル基, ェ チル基, ブチル基, t e r t一ブチル基などのアルキル基、 フエニル基などのァ リール基、 メ トキシ基、 エトキシ基などのアルコキシ基、 フッ素、 塩素、 ヨウ素 などのハロゲン、 トリメチルシリル基、 およびトリメチルゲルミル基等が挙げら れる。 Yはそれぞれ同じでもまた異なっていてもよい。
Pは 1〜4の整数の內のいずれかであるが、 1の場合は環状単量体の開環付加 反応速度が大きい反面、 生成する重合体の分子量分布が広がる傾向があり、 Pが
3、 4の場合、 触媒の調製が困難になることから、 2であることが最も好ましレ、。
Pが 2以上の場合、 複数個存在するフエノキシ基どうしが置換基 Yを介して結 合していても何ら問題はない。 このような場合の Yとしては、 メチレン基等のァ ルキレン基、 硫黄 (一 S—) 、 酸素 (一 O— ) 等から選択される。
前記一般式 T 1で示されるチタン系ルイス酸 (c T) としては、 前記一般式 T 2で示されるものが好ましい。 一般式 T 2のチタン系ルイス酸は一般式 T 1にお いて Pの値が 1〜 3であり、 Zは t e r t —ブチル基、 フエニル基、 塩素、 臭素、 ヨウ素から選ばれる。 Zはそれぞれ同じでも、 異なっていてもよい。 Zが水素で あるか、 メチル基等のバルキ一でない置換基の場合、 触媒同士の立体的障害が小 さくなり、 会合性が出現する結果、 ラク トン単量体および Zまたは環状カーボネ —トなどの触媒に対する配 β£効果が減少するため、 より単分散の重合体を得るに は Ζが上記の基から選ばれることが好ましい。
また一般式 Τ 1で示されるチタン系ルイス酸 (c T) としては、 前記一般式 T 3で示されるものが好ましい。 一般式 T 3のチタン系ルイス酸は前記一般式 T 1 において Pの値が 1〜 3の整数のいずれかであり、 Xが R Oで表わされるアルコ キシ基である。 この Rはアルキル基であり任意の置換基を有していてもよい。 任意の置換基を有しないアルコキシ基の具体例としては、 メ トキシ基、 ェトキ シ基、 n—プロポキシ基、 i s o—プロポキシ基、 n—ブトキシ基、 i s o—ブ トキシ基、 t e r t _ブトキシ基が挙げらる。
任意の置換基を有するアルコキシ基の具体例としては、 ハロゲン基を有するも のとして 2—クロ口プロポキシ基、 アルコキシ基を有するものとして 2—メ トキ シエトキシ基等が挙げられる。
Yの内で、 前記一般式 T 2の様にフエノキシ基のオルト位の基がバルキーなも のがより好ましい。
本発明においては、 上記のアルミニウム系ルイス酸触媒、 チタン系ルイス酸触 媒と同様の構造を持った、 1分子中に 1以上のフエノキシ基を配位子として有す W
15 るルイス酸触媒を使用することができる。 該フエノキシ基は、 メチル基、 ェチル 基、 ブチル基、 t e r t一ブチル基などのアルキル基、 フエニル基などのァリー ル基、 フッ素、 塩素、 ヨウ素などのハロゲン、 トリメチルシリル基、 およびトリ メチルゲルミル基等の置換基を 1〜 5個有していてもよい。 該ルイス酸触媒を構 成する金属としては、 上記アルミニウム、 チタン以外に、 鉛、 亜鉛、 マンガン、 カルシウム、 コバルト、 マグネシウム、 アンチモン、 錫等が挙げられる。 特にァ ルミ二ゥム、 チタン、 錫等が好ましい。
これらの触媒は、 回分重合方法においても、 半回分重合方法においても、 連続 重合方法においても、 使用可能であり、 特に押出機を用いる連続重合方法におい ては好ましく使用できる。
本発明の単分散重合体の製造方法において使用される触媒は、 以下のように調 製される。 すなわち、 2, 6—ジフエ-ノレフエノ一ル、 2, 6—ジー t—ブチル — 4—メチノレフエノ一ル、 2 , 4 , 6— トリクロロブエノ一ル、 2 , 4, 6— ト リ一 t—ブチルフエノールのような置換フエノールと、 四塩化チタンの様なハロ ゲン化チタン、 または、 テトライソプロポキシチタン、 テトラブトキシチタンの ようなチタン酸エステルとを反応させることにより得られる。
反応させる際の両者のモル比は、 置換フエノール/チタン酸エステル二 5 / 1 〜1 1、 好ましくは 2 . 5 Z 1〜? ;!である。 反応温度は 0 °C〜室温が好ま しい。
なお、 反応に使用される有機溶媒としては、 前記有機アルミニウム系ルイス酸 触媒 (c A) において使用された溶媒と同じものが使用できる。
触媒は結晶状態または有機溶媒溶液として得られる。
このような有機アルミニウム系ルイス酸触媒 (c A) またはチタン系ルイス酸 触媒 (c T ) の合成は、 あらかじめ開始剤とラク トン、 環状カーボネート等のモ ノマ一を存在させた状態でも可能であるが、 希釈による触媒の生成速度の低下を 招き、 また得られる樹脂の分子量分布が広がる傾向にあるため、 予め別途合成す る方が好ましい。 また、 アルコキシ基を有するチタン系ルイス酸触媒 (c T) を得るための別法 として、 前記の様にして得られたハロゲン原子とフエノキシ基を有するチタン化 合物に、 プロピレンォキシドゃォキセタンの様な環状エーテルを反応させる方法 がある。 触媒の使用量
開始剤 (a) 1モル当量に対するアルミニウム系ルイス酸触媒 (c A) または チタン系ルイス酸触媒 (c T) の使用量は通常 0. 000 1〜1モル当量倍、 好 ましくは 0. 01〜0. 5モル当量倍、 さらに好ましくは 0. 05〜0. 2モル 当量倍である。
触媒の使用量が少ないほど単分散または分子量分布が狭くなる傾向になるが、 上記量が 0. 0001モル当量倍未満の場合は、 環状単量体の開環反応速度が遅 く、 1モル当量倍を超える場合は、 実際上、 無意味に過剰であるだけである。 不純物及び水分
本発明のラク トン重合体、 カーボネート重合体、 ラク トン一カーボネ一トブロ ック共重合体およびラク トン一力一ボネートランダム共重合体の製造方法におい て、 より単分散で分子量分布の狭い上記重合体を製造するためには、 開始剤
(a) ;ラク トン単量体 (b l) 、 環状カーボネート単量体 (b 2) 、 または両 者の混合物 (b 3) である単量体;アルミニウム系ルイス酸触媒 (c A) または チタン系ルイス酸触媒 (cT) などの純度をなベく高くすることが副反応の抑制 などの反応を制御するために好まし 、。
同様の理由から、 製造装置は、 水分をはじめ、 溶媒を除く上記の反応原料以外 の化合物の混入を避け得る装置の使用が望ましい。
上記水分をはじめとする不純物の総量は 5, O O O p pm以下、 好ましくは 5 O O p pm以下、 さらに好ましくは 50 p pm以下である。
特に反応系中の水分を少なくすればするほど、 また不純物を少なくするほど、 得られる重合体は単分散または分子量分布値は小さくなる。 重合反応溶媒
本発明において、 使用可能な重合反応溶媒としては、 へキサン、 ヘプタン、 シ クロへキサン等の脂肪族炭化水素、 ベンゼン、 トルエン、 キシレン等の芳香族炭 化水素、 クロ口ホルム、 ジクロロメタン等のハロゲン系溶媒が例示できる。 また、 使用量としては特に制限を受けず、 適当量使用することができる。 反応条件
本発明において、 反応原料として開始剤 (a ) ; ラク トン単量体 (b 1 ) 、 環 状カーボネート単量体 (b 2 ) または両単量体の混合物 (b 3 ) (以下、 これら 単量体を総称して環状単量体 (b ) と略す) ;およびアルミニウム系ルイス酸触 媒 (c A) またはチタン系ルイス酸触媒 (c T ) (以下、 これら触媒を総称して
( c ) と略す) 、 さらに場合によっては溶媒を使用するが、 それらの添加順序、 添加方法は特に制限を受けない (ただし、 ブロック共重合体を製造するときの両 環状単量体 (b ) の添加順序は除く) 。
また、 反応温度は 0〜 2 4 0 °C程度において実施可能であるが、 反応温度が低 いほど得られる重合体は単分散または分子量分布は狭くなる。 通常、 室温〜 2 0 0 °C程度が好ましい。
反応温度が高いと、 生成する樹脂の分子量分布が広がる傾向にあるが、 一方、 本発明の効果として生産効率 (反応速度) の向上を目的とする場合、 高温の方が より好適である。
しかし、 反応温度が高すぎると重合体の熱分解反応が発生し、 着色したり、 熱 安定性が低下することがあるため好ましくない。 このような観点から、 分子量分 布が狭いという本発明の特徴を十分に発現させ、 同時に高い生産効率を保持する ためには、 1 5 0〜2 0 0 °Cの反応温度が好ましい。
逆に温度を室温以下としても特に問題は発生しないが、 反応速度が低下するの で利点はなレ、。 その他には反応を制約する条件は殆どな 、。
反応時間は、 反応温度、 開始剤/単量体のモル比、 触媒濃度等により変わるが、 通常 0 . 5〜6 0 0分である。 分子量分布が狭いという本発明の特徴を十分に発 現させ、 同時に高い生産効率を保持するには 1〜2 4 0分が好ましい。 反応方式は回分式でも、 半回分式でも、 連続式でもよい。
回分式で行うと分散の狭い重合体が得られるが、 高分子量の重合体を得ようと すると撹拌や取り出しに問題が生じる。
連続式で行うと、 分散は少し広がるが、 ゲル状物が生成しにくいのでフィルム グレード用高分子量の重合体を得るには適している。 連続製造用押出機
本発明による連続製造方法を実施するための押出機は、 一般に用いられている もののすべてが適用し得、 さらには混練機と呼ばれるものも使用可能である。 実際に種々の原料の混合、 攪拌、 原料供給点からダイへの搬送、 内容物の加熱、 除熱の各手段、 ガス抜き用ベント口を有するものであればよい。
攪拌軸は同一又は反対方向に回転する 1個、 2個又は複数個のスクリユーの作 用に基づく各種の公知及び従来の押出機も本発明による方法を実施するのに適す る。
2個のスクリユーが同方向に回転する物が一般に広く用いられる。 具体例とし ては、 単軸式スクリユー押出機、 多軸式スクリユー押出機、 インラインスクリュ —式押出機、 ベント式押出機、 ノくィパスベント式押出機等のスクリユー式押出機 が挙げられる。 また、 エラストダイナミック押出機、 ハイ ド口ダイナミック押出 機、 ラム式連続押出機、 ロール式押出機、 ギヤ式押出機などの非スクリユー押出 機も使用可能である。 また、 コニ一ダー、 ボテ一ター、 スクリユー型ニーダー、 インターナルミキサー、 双腕型ニーダー、 セルフクリーニング型ニーダ一等の混 練機も挙げられる。 また、 本発明に用いられる押出機は複数用いてもよい。 それらは単に直列に繋 がれてもよいが、 わずかに残存したモノマーや溶媒等を除去するために、 一部減 圧に保つことで製品中の揮発性不純物を低減したり、 それぞれの押出機の供給点 から各々別種のモノマ一を仕込むことでブロック共重合体の製造が可能になる。 また本発明においては、 押出機内部をあらかじめ窒素、 ヘリウム、 アルゴン等 の不活性ガスで置換したり、 反応中不活性ガス雰囲気に保つ等、 酸素、 水分との 接触を極力避けることが好ましく、 さらには一部、 あるいは全部を減圧下に保つ てもよい。 後処理
本発明においては、 環状単量体 (b ) の開環反応は 「リビング重合」 的に進行 するため、 環状単量体 (b ) が系内に残存している状態においても生成重合体は 単分散であることから、 予め過剰の環状単量体 (b ) を仕込み、 目標の重合率に 到達後、 過剰分の環状単量体 (b ) を分離する方法も採用することができる。 さらに、 開環付加反応の終了後、 生成重合体から触媒 (c ) を分離することも、 任意に実施できる。
上記の分離方法としては、 溶媒分離、 吸着、 減圧蒸留および濾過などが例示で きる。 溶媒分離は生成重合体と触媒 (c ) との溶解度の差を利用する全ての方法 が適用できる。
上記の吸着については、 活性炭、 シリカゲル、 アルミナ、 グラフアイ、 水酸基、 アミノ基、 カルボキシル基およびスルホキシド基などを含有する高分子、 および 多孔質セラミックスなどの基材を用い、 クロマトグラフィーを行う方法や電気泳 動法が適用できる。
減圧蒸留は生成するラク トン重合体が低分子量の場合の分離に適し、 さらに濾 過については、 分子サイズの違いにより膜などの基材を用い濾過を行う方法など を適用することができる。 重合体
本発明の方法により製造されるポリマーの好ましいものとしては、 例えば、 一 般式 P 1で表される多価水酸基含有重合体または一般式 P 2で表される (メタ) ァクリル基変性重合体で単分散であることを特徴とする重合体である。
o o
II II 、 ―
A+ 0[-(-C-Rl-0-)-(C-0-R2-0-) -1-H (P I)
m
(ここで R1は一 (CR3R" k—であり、 kは 2〜8の整数であり、 k個の R3 及び R4は同一または異なっていてもよく独立に水素またはメチル基であり、 R2 は炭素数 1〜10のアルキレン基であり、 及び n 2は共には 0ではなく各々 0 〜100の整数であり、 n3は 1〜 10の整数であり、 mは 2〜 10の整数であり、 Aは m価の多価アルコールの残基を示す。 但し、 n >個のラク トン由来構造単位と n 2個のカーボネート由来構造単位の結合順序は任意である。 )
R5 O O O
I II II II
CH2 = C-C-0-R6-0[-(-C-R'-0-) -(C-0-R2-0-)-]-H (P 2)
Πΐ Π2 Π3
(ここで R1は一 (CR3R4) k一であり、 kは 2〜8の整数であり、 k個の R3 及び R4は同一または異なっていてもよく独立に水素またはメチル基であり、 R2 及び R6は炭素数 1〜10のアルキレン基であり、 R5は水素またはメチル基であ り、 及び n2は共には 0ではなく各々 0〜1 00の整数であり、 n3は 1〜10 の整数である。 但し、 個のラク トン由来構造単位と n2個のカーボネート由来 構造単位の結合順序は任意である。 )
多価水酸基含有重合体 (P 1)
前記一般式 P 1で表される本発明の多価水酸基含有重合体は、 分子の末端に水 酸基を 2個以上有し、 かつ単分散であることを特徴とするポリラク トン重合体、 ラク トン共重合体、 ポリカーボネート重合体、 カーボネート共重合体、 ラク トン —カーボネートランダム共重合体およびラク トン一カーボネートブロック共重合 体である。
前記一般式 P 1で示される多価水酸基含有重合体としては、 式中の R 1の具体例 としては、 エチレン基、 トリメチレン基、 プロピレン基、 テトラメチレン基、 ぺ ンタメチレン基、 2—メチル一テトラメチレン基等が挙げられる。 また R 2の具体 例としては、 トリメチレン基、 プロピレン基、 2—メチルトリメチレン基、 2, 2—ジメチルトリメチレン基、 テトラメチレン基等が挙げられる。
また一般式 P 1中、 1ぉょび1 2は、 共には 0ではなく、 各々 0〜 1 0 0の整 数であり、 好ましくは各々 1〜5 0であり、 1 3は1〜1 0でぁり、 mは 2〜1 0 であり、 好ましくは 2、 3および 4である。
一般式 P 1において、 η ,および n 2のいずれもが 0でない場合、 n 3が大きくな るとランダム共重合体となり、 逆に、 n 3が小さくなるとブロック共重合体となる c n ,およ n 2のどちらかが 0の場合、 n 3は 1である。
従来より、 分子の末端に水酸基を 2個以上有する重合体がポリゥレタン原料な どに使用されているが、 分子量分布が広いばかりでなく、 環状単量体の多量化反 応により生成した環状の 2量体や多量体などが原因となり、 ポリウレタンの物性 や外観または製造時での作業性が低下する問題があった。
これに対して、 本発明の単分散の重合体又は共重合体 (両者を単に重合体とい う) をポリウレタン原料として用いると、 原料の分子量分布が狭く、 不純物も少 ないため、 分子設計が容易で、 結果としてポリウレタンの物性、 外観が向上し、 製造時における作業性が向上する。
具体的には、 次の通りである。
①高分子量のポリウレタンが容易に製造できる。
②剛性、 靭性、 熱安定性の向上したポリウレタンが得られる。
③流動性、 成形加工性の向上したポリウレタンが得られる。
④色相、 つやが非常に良好で、 粉吹き現象、 ゆず肌等の無いポリウレタンが得ら れる。
⑤ポリウレタンの製造の際、 製造装置、 成形加工機等において、 焼けコゲ等の付 着がない。
特公平 3— 56 25 1号公報または前述の Ma k r omo l . C h e m. , M a c r omo 1. S ymp. 1 99 1, 42^43, 1 1 7— 1 33では、 分子 量分布が狭く、 環状の 2量体等の少ないポリラクトン重合体の合成が報告されて いるが、 本発明の多価水酸基含有重合体は、 分子量分布が好ましくは 1. 0〜1. 2の範囲で、 かつ、 環状の 2量体を実質上含まない非常に高純度のポリラクトン 重合体、 または単分散である種々のポリ力一ボネート重合体、 ラクトン一カーボ ネートランダム共重合体およびラク トン一カーボネートブロック共重合体である。
(メタ) ァクリル基変性重合体 ( P 2 )
また本発明の (メタ) アクリル基変性重合体は単分散、 つまり一般式 P 2中の または n 2の値が高レベルに整っていることを特徴とする。
前記一般式 P 2中の R1の具体例としては、 エチレン基、 トリメチレン基、 プロ ピレン基、 テトラメチレン基、 ペンタメチレン基およびへキサメチレン ¾、 R2は トリメチレン基、 プロピレン基、 2—メチルトリメチレン基、 2, 2—ジメチル トリメチレン基およびテ卜ラメチレン基等が挙げられる。
また、 前記一般式 P 2中、 η ,および n2の各範囲としては 1〜 1 00の整数で あり、 通常 1〜: I 0の整数である。
前記一般式 P 1と同様に、 一般式 P 2においても、 η ,および n 2のいずれもが 0でない場合、 n3が大きくなるとランダム共重合体となり、 逆に、 n3が小さく なるとブロック共重合体となる。 η ,およ n 2のどちらかが 0の場合、 1 3は1でぁ る。
(メタ) アクリル基変性重合体 (P 3) 及び (P 4)
本発明の上記一般式 P 2及び下記一般式 P 3または P 4で示される (メタ) ァ クリル基変性重合体は、 単分散、 つまり式中の または n2の値が高レベルに整 つていることを特徴とする。
R5 O O
I II II
CH2 = C-C-0-R6-0 — (― C— Rに O— ) — H (P 3)
Figure imgf000025_0001
(ここで R1は一 (CR3R4) k—であり、 kは 2〜8の整数であり、 k個の R: 及び R 4は同一または異なっていてもよく独立に水素またはメチル基であり、 R ; は水素またはメチル基であり、 R6は炭素数 1〜10のアルキレン基であり、 n: は:!〜 100の整数である。 )
R5 O O
I II II CH2 = C-C-0-R6-0 — (― C— R2— O— ) — H (P 4)
(ここで R2及び R6は炭素数 1〜 10のアルキレン基であり、 R5は水素またはメ チル基であり、 n2は 1〜: I 00の整数である。 )
前記一般式 P 2と同様に一般式 P 3及び P 4において、 R1としてはエチレン基、 プロピレン基、 トリメチレン基、 テトラメチレン基、 ペンタメチレン基およびへ キサメチレン基、 R2としてはトリメチレン基、 2—メチルトリメチレン基、 2, 2—ジメチルトリメチレン基およびテトラメチレン基等が挙げられる。
また、 一般式 P 3及び P 4において、 n および の各範囲としては 1〜 10 0の整数であり、 通常 1〜 10の整数である。
ランダム共重合およびプロック共重合となる場合の η ιおよび n2の関係は、 前 記一般式 P 1及び P 2の場合と同じである。
例えば、 従来の (メタ) アクリル基変性ラク トン重合体は、 特公昭 63— 66 307号公報および特公昭 64-25322号公報に開示されているように、 そ の構造は前記一般式 P 2中の の値にバラツキが大きく、 分子量の異なる (メ タ) アクリル基変性ラク トン重合体の混合物であった。 本発明の (メタ) アクリル基変性ラク トン重合体等は単分散であり、 塗料原料 や高分子改質剤などの市場において、 製品の物理的および化学的性質が高品質か つ精密に制御されるのみならず、 製品を製造する際の反応性、 作業性も極めて良 好である。
例えば、 前記特公昭 6 4 - 2 5 3 2 2号公報記載の塗料原料であるスチレン、 メチルメタクリレート、 (メタ) アクリル基変性ラク トン重合体のラジカル共重 合体の市場では、 (メタ) アタリル基変性ラク トン重合体の分子量が単分散であ る場合、 新たに発現する利点として次の①' 〜③' を挙げることができる。
① ' 前記ラジカル共重合体と多価ィソシアナ一卜との架橋硬化塗膜を製造する際 に、 (メタ) アクリル基変性ラク トン重合体の末端水酸基の反応性が均一である ため、 架橋密度が高く、 均一の架橋構造を有する塗膜が生成し、 塗膜物性、 例え ば剛性、 靭性、 耐候性、 耐擦傷性、 耐低温性、 塗装加工性などに非常に優れてい る。
②, (メタ) アクリル基変性ラク トン重合体自体の物理的および化学的性質に反 映されるラジカル重合性、 貯蔵安定性、 結晶化温度などの諸物性を明確に把握で きる。
③ ' 製品中の不純物が極めて少ない。
また、 (メタ) アクリル基変性力一ボネート重合体、 あるいは (メタ) ァクリ ル基変性ラク トン—カーボネート共重合体も単分散の場合、 同様の利点が発現す る。
本発明によれば、 平均分子量の分布が狭い、 すなわち重量平均分子量 (Mw) と 数平均分子量 (Mn) との比が小さいという点で特徴を有し、 Mw/Mnが 1 . 0〜 2 . 5、 さらに好ましくは 1 . 2〜2 . 0であるポリラク トン、 ポリ力一ボネ一 トまたはラク トン一カーボネート共重合体が得られる。
ところで、 フィルムのような薄い製品の溶融製造に高分子量のポリマ一を使用 することが好ましいのは公知である。 しかしながら、 一般に高分子量のポリマー を薄肉化する場合に、 広い分子量分布を有するポリマーを用いる場合には、 一部 の超高分子量物の影響でフィルム中にゲル状の不均一な点が多く発現することを 我々は見出した。
したがって、 本発明により得られる分子量分布の狭いポリマーを使用してフィ ルムを製造する場合には、 フィルム中にゲル状の不均一な点が発現することがほ とんど無く、 即ちフィルムの 0. l m2当たり 20個以下、 好ましくは 15個以下、 さらに好ましくは 10個以下であり、 フィルムの性状において高い優位性を有す る。
本発明によるポリラク トン、 ポリカーボネート、 ラク トン一力一ボネート共重 合体は、 金型成形、 押出、 インフレーション法等のような熱可塑性樹脂を成形す る通常の技術のいずれかにより例えば繊維、 シート、 フィルム及びフラスコのよ うな種々の製品の製造の原料に適する。 実施例
以下に参考例および実施例を挙げて本発明を更に詳細に説明するが、 本発明は これらに限定されるものではない。
なお、 本発明においては、 平均分子量は 40°Cにおいてテトラヒドロフラン中 でゲル浸透クロマトグラフィー (GPC) により測定した。
(参考例 1 : チタン系ルイス酸の調製、 その 1 )
へキサンから再結晶した 2, 6—ジ t e r t—ブチルー 4—メチルフエノール (8. 82 g, 4 Ommo 1 ) を乾燥したへキサン 500 m 1に溶解し、 室温下 でテトライソプロポキシチタン (5. 9m l , 2 Ommo 1 ) を滴下し、 滴下終 了後さらに 2時間攪拌した。 さらに 60°Cで加熱した後、 减圧に保つことでへキ サン 45 Om 1を留出させた。 その後 0°Cで 10時間放置し、 結晶として 2, 6 —ジ t e r t—プチルー 4一メチルフエノール二置換チタン系ルイス酸 ( 「D i PT i (BMP) 」 とも略す。 ) (A) を得た。 乾燥したへキサンで二度結晶を 洗浄し、 残渣を真空乾燥した ( 8. 0 g、 収率 67 %) 。 結晶はジクロロメタン の 0. 3 mmo 1 Zm 1溶液とした。 (参考例 2 :チタン系ルイス酸の調製、 その 2)
へキサンから再結晶した 2, 2' —メチレンビス一 (6— t e r t—プチル一 4一メチルフエノール) (6. 8 1 g, 20 mmo 1 ) を乾燥したへキサン 50 Om lに溶解し、 室温下で四塩化チタン (2. 2m l , 2 Ommo 1 ) を滴下し た後、 2時間攪拌した。 さらに 60°Cで加熱し、 沈降物が溶解したのを確認した 後、 室温で 1 0時間放置し、 赤褐色結晶として 2, 2' —メチレンビス一 (6— t e r tーブチルー 4—メチルフエノ一ル) 二置換チタン系ルイス酸を得た。 乾 燥したへキサンで二度結晶を洗浄し、 残渣を真空乾燥した (6. 82 g、 収率 7
4. 5%) 。 結晶はジクロロメタンの 0. 3 mmo 1 Zm 1溶液とした後、 室温 にて当量のプロピレンォキシドを反応させ、 一般式 T3 ' の構造を有するチタン 系ルイス酸 (B) を得た。
Figure imgf000028_0001
(参考例 3 :チタン系ルイス酸の調製、 その 3)
へキサンから再結晶した 2, 2 ' ーメチレンビス一 (6— t e r t—ブチル一 4—メチルフエノール) (6. 8 1 g, 2 Ommo 1 ) を乾燥したへキサン 50 Om lに溶解し、 室温下でテトライソプロポキシチタン (5. 9m l , 2 Omm o 1 ) を加え、 2時間攪拌した。 さらに 60°Cで加熱した後、 減圧に保つことで へキサン 4 5 Om 1を留出させた。 その後 0。Cで 1 0時間放置し、 結晶として 2, 2 ' ーメチレンビス一 ( 6— t e r t—ブチノレー 4—メチノレフエノ一グレ) 二置換 チタン系ルイス酸 (C) を得た。 乾燥したへキサンで二度結晶を洗浄し、 残渣を 真空乾燥した (6. 8 g、 収率 6 7%) 。 結晶はジクロロメタンの 0. 3mmo 1 /m 1溶液とした。
(参考例 4 : アルミニウム系ルイス酸の調製)
2, 6—ジ t e r t—ブチノレ一 4—メチノレフエノール (2. 76 g, 1 2. 5 mmo 1 ) を乾燥したへキサン 1 Om 1に溶解し、 0 °Cでトリメチルアルミニゥ ム (0. 6m 1, 6. 25mmo 1 ) を滴下した。 得られた懸濁液を 60 °Cに加 温し、 全てが溶解した後、 室温で 1 0時間放置し、 白色結晶として 2, 6—ジ t e r t一ブチル一 4—メチルフエノール二置換アルミニウム系ルイス酸 (以下、
「Me A l BMP」 と略す。 ) を得た。 乾燥したへキサンで二度結晶を洗浄し、 洗浄後の結晶を真空乾燥した。
I . チタン系ルイス酸触媒による単分散重合体の製造
(実施例 I 一 1 :ネオペンチルグリコールカーボネ一トのリビング重合、 その 1 )
三方コックつき丸底フラスコ (磁気撹拌子入り) にネオペンチルグリコ一ルカ —ボネート (26. O g, 20 Ommo 1 ) を秤りとり、 内部を窒素置換した。 窒素気流中、 注射器にて乾燥したジクロロエタン (1 6. Om l ) 、 イソプロピ ルアルコール (0. 77m l , 1 0 mmo 1 ) を加え、 さらに参考例 1で得られ た 2, 6—ジ t e r t—ブチルー 4—メチルフエノール二置換チタン系ルイス酸 触媒 (A) の 0. 3mmo 1 /m 1ジクロロメタン溶液 1 m 1を添加し、 80°C にて 2. 0時間撹拌した。 この間にモノマーは完全に消費した。 反応物を 300 m 1のメタノール中に投入し、 白色沈澱を減圧乾燥した。 得られた力一ボネ一ト 重合体の収量は 25. O gであり、 G PCにより測定した標準ポリスチレン換算 数平均分子量は 2, 400、 分子量分布値は 1. 1 7であった。 (実施例 I一 2 : f —力プロラク トンのリビング重合、 その 1 ) 実施例 I一 1と同様の装置、 同様の操作にて、 f —力プロラクトン (22. 8 g, 20 Ommo 1 ) 、 乾燥したジクロロメタン (16. Om 1 ) 、 ィソプロピ ルアルコール (0. 77m l, 1 Ommo 1 ) および 2, 6—ジ t e r t—ブチ ル—4—メチルフエノール二置換チタン系ルイス酸触媒 (A) の 0. 3mmo 1 /m 1ジクロロメタン溶液を 1 m 1仕込み、 重合させ、 ラク トン重合体 21. 0 gを得た。 GPCにより測定した標準ポリスチレン換算数平均分子量は 2, 20 0、 分子量分布値は 1. 08であった。
(実施例 I一 3 :ネオペンチルグリコールカーボネ一トー £一力プロラク トンブ ロック共重合体の製造、 その 1)
実施例 I一 1と同様の装置にネオペンチルグリコール力一ボネート (6. 5 g, 5 Ommo I ) を秤りとり、 内部を窒素置換した。 窒素気流中、 注射器にて乾燥 したジクロロメタン (3m l ) 、 イソプロピルアルコール (0. 077m l, 1 mmo 1 ) を加え、 2, 6—ジ t e r t—ブチルー 4一メチルフエノール二置換 チタン系ルイス酸触媒 (A) の 0. 3mmo 1 Zm 1ジクロロメタン溶液 lm 1 を添加し、 60°Cで 4. 0時間撹拌し、 モノマーが消費されたことを確認し、 極 微量のサンプリングをした。 次いで、 ί—力プロラク トン (5. 7 g, 5 Omm o 1 ) を添加し、 室温で 1. 5時問撹拌させ重合を進行させた。 反応物を 300 m 1のメタノール中に投入し、 白色沈澱を減圧乾燥した。 得られたブロック共重 合体の収量は 1 1. O gであった。
前者のネオペンチルグリコ一ルカ一ボネ一ト重合体の数平均分子量 6, 100, 分子量分布値が 1. 20に対し、 ブロック共重合体の数平均分子量は 1 3, 20
0、 分子量分布値は 1. 22であった。 — NMRにより確認したこの樹脂中に 含まれるィソプロピルアルコール/ネオペンチルグリコ一ルカーボネ一ト /£ - 力プロラク トンのモル比は 1. 0/50. 0/46. 8であった。 (実施例 I— 4: ε—力プロラクトンのリビング重合、 その 2) 実施例 I— 1と同様の装置を用い、 f 一力プロラクトン (1 1. Om l, 1 0 Ommo 1 ) を乾燥したジクロロメタン (3m l ) 、 イソプロピルアルコール (0. 0 7 7m l , 1 mmo 1 ) 、 および参考例 2で得られたチタン系ルイス酸 触媒 (B) の 0. 3mmo l Zm l トルエン溶液 1 m 1を仕込み、 室温で 6時間 撹拌した。 この間にモノマーは完全に消費した。 実施例 I— 1と同様の操作を行 レ、、 ラク トン重合体 1 0. 6 gを得た。 GPC測定した標準ポリスチレン換算数 平均分子量は 1 3, 1 00、 分子量分布値は 1. 1 5であった。
(実施例 I 一 5 :単分散メタアクリル基変性ラクトン 4量体の製造)
空気導入管、 温度調節器、 コンデンサーおよび撹拌器を備え付けた 4つ口ブラ スコに、 2—ヒドロキシェチルメタクリレート (1 30 g, 1 m o 1 ) 、 £一力 プロラク トン (456. 6 g, 4 mo 1 ) および参考例 3で得られた 2, 2, — メチレンビス一 (6— t e r t—ブチルー 4一メチルフエノール) 二置換チタン 系ルイス酸触媒 (C) の 0. 3 mm o 1 /m 1ジクロロメタン溶液 3 m 1を仕込 み、 乾燥した空気を導入しながら 60°Cで 5時間撹拌した。 得られたド一プの G PC測定を行うとともに、 ド一プをトルエンで希釈し、 シリカゲルカラム分取と 脱溶剤の精製工程を経て、 単分散メタアタリル基変性ラク トン 4量体 570 gを 得た。
G P C測定した標準ポリスチレン換算数平均分子量は 4 70、 分子量分布値は 1. 08であった。
(比較例 I 一 1 :ネオペンチルグリコ一ルカ一ボネートのリビング重合、 その 2)
実施例 I — 1において、 参考例 1で得られた 2 , 6—ジ t e r t—プチルー 4 —メチルフエノ一ルニ置換チタン系ルイス酸 (A) に代えてテトラブチルチタネ ートの 0. 3 mmo 1 /m 1ジクロロメタン溶液 l m lを用いた以外は実施例 I — 1と同様にして、 得られた白色沈澱を減圧乾燥した。 得られたカーボネート重 合体の収量は 23. 5 gであり、 G PCにより測定した標準ポリスチレン換算数 平均分子量は 2, 200、 分子量分布値は 2. 50であった。
(比較例 I — 2 : ε—力プロラク トンのリビング重合、 その 3 )
実施例 1— 2において、 2, 6—ジ t e r t—ブチルー 4—メチルフエノール 二置換チタン系ルイス酸 (A) に代えてテトラブチルチタネートの 0. 3mmo
1 /m 1ジクロロメタン溶液を l m 1を用いた以外は実施例 I一 2と同様にして、 ラク トン重合体 2 1. 5 gを得た。 G P Cにより測定した標準ポリスチレン換算 数平均分子量は 2, 300、 分子量分布値は 2. 20であった。
(実施例 1—6 : ί —力プロラク トンのリビング重合その 4)
比較例 1 — 2において、 2, 2 ' ーメチレンビス一 (6— t e r t—ブチル一 4一メチルフエノール) を 0. 3 mm o 1添加した以外は比較例 I一 2と同様に して、 ラク トン重合体 2 1. 5 gを得た。 G PCにより測定した標準ポリスチレ ン換算数平均分子量は 2 200、 分子量分布値は 1. 50であった。
II. アルミニウム系ルイス酸又はチタン系ルイス酸触媒により分子量分布の狭い 重合体の連続重合
以下の実施例は、 内径 4 7mm(t>、 L,D=40の 2軸同方向回転嚙み合い型 押出機で行った。
(実施例 II— 1, II- 2)
窒素気流下に保ったタンク内に、 f 一力プロラク トン 1 00重量部に対し開始 剤としてエチレングリコールを 0. 06 2重量部添加し、 混合する。 これに参考 例 4で合成した M e A 1 BMP (実施例 II— 1 ) または参考例 1で合成した D i PT i (BMP) (実施例 II一 2) を、 エチレングリコール 1 mo 1 に対し 0. lmo 1になるように秤量し、 タンク内に投入して攪拌した。
得られた混合液は、 熱媒温度を 1 50°Cに保ち、 ジャケット内部に循環させた 押出機供給口にポンプを介して接続された配管により、 1 k g/h rの速度で供 給した。 なお、 押出機にはジャケットが設けられ、 1 50°Cに保った熱媒をジャ ケット内部に循環させる。 定常状態に保った後、 出口から排出される樹脂の温度 を測定したところ、 実施例 II— 1、 II— 2ではそれぞれ 1 78°C、 1 72°Cであ つた。
得られた樹脂は水槽で冷却した後破砕し、 ペレッ トを得た。 押出機の原料供給 部より食紅を添加し、 排出される樹脂の色相を確認したところ、 滞留時間は何れ も約 30分であった。
得られた樹脂は G P Cにより重量平均、 数平均分子量及び分子量分布 MwZMn を評価した。 さらに得られた樹脂は减圧下 50 °Cで 24時間乾燥した後、 Tダイ を取り付けた押出機により厚さ 50ミクロンのフィルムに成形し、 フィルム 0. 1 m2あたりに存在するゲル状の不均一点を数え評価した。 結果を表 1に示す。
(実施例 II一 3, II一 4)
ε—力プロラク トンの代りに、 ネオペンチルグリコールカーボネ一ト 100重 量部 (実施例 II一 3) 、 又はネオペンチルグリコールカーボネ一ト 50重量部と £—力プロラク トン 50重量部の混合物 (実施例 II一 3) を使用し、 熱媒温度を 160°Cにした他は、 実施例 II— 1と同様にして行った。 なお、 排出される樹脂 の温度は 1 81°C (実施例 II一 3) 、 185°C (実施例 II— 4、 ランダム共重合 体) であった。 結果を表 1に示す。
(実施例 II一 5)
実施例 II一 1の押出機の後段に、 リボンヒーターで加熱された配管を介して、 押出機 2を直列に設け、 プロックコポリマー部を重合するための第 2の連続式反 応器とした。 押出機 2には、 コポリマー部用のタンク 2を設けて、 ネオペンチル グリコ一ルカーボネートを入れ、 0. 5 k g/h rの速度で押出機 2に供給した。 前段で実施例 II— 1と同様に重合されたエチレンダリコール開始ポリ力プロラ クトンの後にポリネオペンチルダリコールカーボネートを重合させた。 なお、 押 出機 2の出口から排出される樹脂温度は 1 70°Cであった。 結果を表 1に示す。
(比較例 Π— 1)
開始剤及び M e A 1 BMPの両者の代りに、 アルミニウムトリブトキシドのみ を 0. 08 2重量部用いた以外は実施例 II一 1と同様にして行った。 アルミニゥ ムトリブトキシドはあらかじめ 2重量%のヘプタン溶液としたものを使用した。 排出される樹脂の温度は、 1 7 7°Cであった。 結果を表 1に示す。
(比較例 II一 2)
触媒としてテトラプチルチタネ一卜を 0. 0 34重量部用いた以外は実施例 II 一 2と同様にして行った。
排出される樹脂の温度は 1 70°Cであった。 結果を表 1に示す。
(比較例 II一 3)
触媒として、 ジブチル錫ジラウレ一トを 0. 063重量部用いた以外は実施例 II- 1と同様にして行った。
しかしながら、 得られた樹脂は低粘度であり、 ペレッ トは得られなかった。
(比較例 II一 4 : E—力プロラク トンの回分重合)
ステンレス製の 20リ ッ トル反応器に ε一力プロラク トン (1 5 k g, 1 3 2 mo 1 ) を入れ、 内部を窒素置換した。 ついで、 エチレングリコ一ル (9. 3 g, 0. 1 5mo 1 ) を加え、 さらに参考例 4で得られた 2, 6—ジ t e r t—ブチ ルー 4ーメチルフエノ一ルニ置換アルミ系ルイス酸をェチレングリコ一ルに対し て 0. l mo 1倍になるように加えて、 1 70°Cにて 3時間撹拌した。 この間に モノマーは完全に消費した。 反応物を反応器下部に取り付けたギア一ポンプによ り取り出した。 得られたカーボネート重合体の収量は 1 4 . 2 k gであり、 G P Cにより測定した標準ポリスチレン換算重量平均分子量 Mwは 1 5 0 , 0 0 0、 分子量分布値は 2 . 0であったが、 ゲル状の不均一点の数が多かった。
結果を表 1に示す。
Figure imgf000035_0001
表 1から明らかなように、 従来触媒より本発明の触媒を用いる製造方法により より容易に連続的にラク トン類の重合が行われ、 得られる重合物は分子量分布が 狭く、 かつゲル状の不均一物も少なく、 これらを原料とする製品の品質が高くな ることが期待される。 産業上の利用可能性
本発明の製造方法によれば、 ラク トン重合体、 カーボネート重合体、 ラク トン 一カーボネートランダム共重合体およびラク トン一力一ボネ一トブロック共重合 体を効率よく短時間で製造することができ、 得られる重合体は分子量分布値 (M w/M n ) が殆ど 1に近いか、 あるいは単一構造成分の純度が非常に高いので、 剛性、 靱性、 耐候性、 耐擦傷性、 耐低温性、 塗装加工性など諸物性に優れた高品 位のポリウレタンの原料、 塗料原料、 樹脂改質剤等に有用である。
また、 本発明の製造方法によれば、 押出機中での生産性の高い連続重合反応が 可能となり、 さらに" ぶつ" などのゲル状の不均一物が少ない、 分子量が 1 0, 0 0 0〜2 0 0, 0 0 0のように高く、 分子量分布が 1 . 0〜2 . 5のように狭 レ、、 単一構造成分の純度が非常に高い、 高品位のラク トン重合体、 カーボネート 重合体およびラク トン—カーボネート共重合体重合体が生産性よく得られる。 得 られる重合体は、 樹脂改質剤、 塗料、 表面改質、 粘接着剤などの分野で、 製品の 高付加価値、 高機能化を必要とする用途に有用である。
また、 それ自身各種成形材料として使用することができ、 その構成成分が均一 に保たれていることから、 特にフィルム、 繊維のような分野にも好適に使用でき る。

Claims

1. 開始剤 (a) を用いて、 ラク トン単量体 (b 1) 、 環状カーボネート単量 体 (b 2) 、 又はラク トン単量体 (b 1) と環状カーボネート単量体 (b 2) の 混合物 (b 3) を開環付加反応せるにあたり、 下記一般式 T 1で示されるチタン 冑
系ルイス酸触媒 (cT) を用いることを特徴とする単分散重合体の製造方法。
Υ γの Ί
[X -Ti —一 o o~Y (T 1)
- Υ Υ 」 ρ 囲
(ここで Xはアルコキシ基 (ROで表わす時、 Rはアルキル基で任意の置換基を 有していてもよい。 ) 、 塩素、 臭素、 沃素から選択され、 Υは水素または任意の 置換基であり、 Ρは 1〜4の整数の内のいずれかである。 )
2. 開始剤 (a) 1モル当量に対し、 ラク トン単体 (b l) と環状カーボネー ト単量体 (b 2) の合計 1〜100未満モル当量倍の混合物 (b 3) を反応させ、 ラク トン一力一ボネートランダム共重合体を得ることを特徴とする請求項 1に記 載の単分散重合体の製造方法。
3. 開始剤 (a) を用い、 ラク トン単量体 (b 1) または環状カーボネート単 量体 (b 2) のいずれか一方をそれが消費されるまで開環付加反応させた後、 残 りの単量体を開環付加反応させるにあたり、 下記一般式 T 1で示されるチタン系 ルイス酸触媒 (cT) を用い、 ラク トン一カーボネートブロック共重合体を得る ことを特徴とする単分散重合体の製造方法。
Figure imgf000037_0001
(ここで Xはアルコキシ基 (ROで表わす時、 Rはアルキル基で任意の置換基を 有していてもよい。 ) 、 塩素、 臭素、 沃素から選択され、 Yは水素または任意の 置換基であり、 Pは 1〜4の整数の内のいずれかである。 )
4. チタン系ルイス酸触媒 (cT) が下記一般式 T 2で示される化合物である ことを特徴とする請求項 1〜 3のいずれかに記載の単分散重合体の製造方法。
Z Y
[XL -Ti -0— (( )ト Y (T 2)
Z Y 」 p
(ここで Xはアルコキシ基 (ROで表わす時、 Rはアルキル基で任意の置換基を 有していてもよい。 ) 、 塩素、 臭素、 沃素から選択され、 Yは水素または任意の 置換基であり、 Zは t e r t—プチル基、 フヱ二ル基、 塩素、 臭素、 沃素から選 択され、 Pは 1〜3の整数の内のいずれかである。 )
5. 開始剤 (a) が分子内に 2〜 10個の水酸基を有する多価アルコールであ るかまたは分子內に 1個の水酸基と 1個のラジカル重合性二重結合を共に有する アルコールであることを特徴とする請求項 1〜 4のいずれかに記載の単分散重合 体の製造方法。
6. チタン系ルイス酸触媒 (c T) が下記一般式 T 3で示される化合物である ことを特徴とする請求項 1〜 5のいずれかに記載の単分散重合体の製造方法。
Figure imgf000038_0001
(ここで Rは任意の置換基を有してもよいアルキル基であり、 Yは水素または任 意の置換基であり、 Pは 1〜3の整数の内のいずれかである。 )
7. 押出機中で開始剤 (a) を用いて、 ラク トン単量体 (b 1) 、 環状カーボ ネート単量体 (b 2) 、 又はラク トン単量体 (b l) と環状カーボネート単量体
(b 2) の混合物 (b 3) を連続的に開環付加反応させるにあたり、 下記一般式 A 1で示されるアルミニウム系ルイス酸触媒 (c A) または下記一般式 T1で示 されるチタン系ルイス酸触媒 (cT) を触媒として用いることを特徴とするラク トン重合体の製造方法。
Figure imgf000039_0001
(ここで、 Rは炭素数 1〜4のアルキル基であり、 Yは水素または任意の置換基 であり、 Pは 1、 2及び 3のいずれかである。 )
Figure imgf000039_0002
(ここで Xはアルコキシ基 (R Oで表わす時、 Rはアルキル基で任意の置換基を 有していてもよい。 ) 、 塩素、 臭素、 沃素から選択され、 Υは水素または任意の 置換基であり、 Ρは 1〜4の整数の内のいずれかである。 )
8 . アルミニウム系ルイス酸触媒 (c A) が下記一般式 A 2で示さる化合物で あり、 チタン系ルイス酸触媒 (c T) が下記一般式 T 2で示される化合物である 請求項 7に記載の製造方法。
Figure imgf000039_0003
(ここで Rは炭素数 1〜4のアルキル基であり、 Xは t e r t —ブチル基、 フエ ニル基、 塩素、 臭素、 沃素から選択され、 Yは水素または任意の置換基であ る。 )
Figure imgf000039_0004
(ここで Xはアルコキシ基 (R Oで表わす時、 Rはアルキル基で任意の置換基を 有していてもよい。 ) 、 塩素、 臭素、 沃素から選択され、 Yは水素または任意の 置換基であり、 Zは t e r t—ブチル基、 フエニル基、 塩素、 臭素、 沃素から選 択され、 Pは 1〜3の整数の内のいずれかである。 )
9. 重量平均分子量 (Mw) 力 S1 0, 000〜 200, 000であり、 重量平均 分子量 (Mw) と数平均分子量 (Mn) との比] lw/Mnが 1. 0~2. 5であるラ ク トン重合体、 環状カーボネート重合体またはラク トン一環状カーボネート共重 合体。
1 0. MwZMnが 1. 2〜2. 0である請求項 9記載のラクトン重合体、 環状力 —ボネ一ト重合体またはラク トン一環状カーボネート共重合体。
1 1. ゲル状物含有率が 20個 /0. 1 m2以下の請求項 9又は 1 0に記載のラク トン重合体、 環状カーボネート重合体またはラクトン一環状カーボネート共重合 体。
1 2. 重量平均分子量 (Mw) 力 S l O O, 000〜 200, 000である請求項 9 記載のラク トン重合体。
1 3. 重量平均分子量 (Mw) が 1 0, 000〜 200, 000である請求項 9記 載の環状カーボネート重合体
1 4. 重量平均分子量 (Mw) が 30, 000〜200, 000である請求項 9記 載のラク トン一環状カーボネートブロック共重合体。
1 5. 重量平均分子量 (Mw) が 1 0 , 000〜200, 000である請求項 9記 載のラク トン一環状カーボネートランダム共重合体。
PCT/JP1998/004674 1997-10-15 1998-10-15 Procedes de preparation de polymeres monodisperses, procedes de polymerisation en continu de monomeres cycliques et polymeres obtenus par ces procedes WO1999019379A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98947897A EP0943641B1 (en) 1997-10-15 1998-10-15 Processes for the preparation of monodisperse polymers, processes for the continuous polymerization of cyclic monomers, and polymers prepared thereby
US09/331,022 US6191250B1 (en) 1997-10-15 1998-10-15 Processes for the preparation of a monodisperse polymers, processes for the continuous polymerization of cyclic monomers, and polymers prepared thereby
JP51998599A JP4311768B2 (ja) 1997-10-15 1998-10-15 単分散重合体の製造方法、並びに、環状モノマーの連続重合方法及びそれによる重合体
DE69820223T DE69820223T2 (de) 1997-10-15 1998-10-15 Verfahren zur herstellung von monodispersen polymeren, verfahren zur kontinuierlichen polymerisation von cyclischen monomeren und daraus hergestellte polymere

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/297870 1997-10-15
JP29786997 1997-10-15
JP29787097 1997-10-15
JP9/297869 1997-10-15

Publications (1)

Publication Number Publication Date
WO1999019379A1 true WO1999019379A1 (fr) 1999-04-22

Family

ID=26561274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004674 WO1999019379A1 (fr) 1997-10-15 1998-10-15 Procedes de preparation de polymeres monodisperses, procedes de polymerisation en continu de monomeres cycliques et polymeres obtenus par ces procedes

Country Status (5)

Country Link
US (1) US6191250B1 (ja)
EP (1) EP0943641B1 (ja)
JP (1) JP4311768B2 (ja)
DE (1) DE69820223T2 (ja)
WO (1) WO1999019379A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191250B1 (en) * 1997-10-15 2001-02-20 Daicel Chemical Industries, Ltd. Processes for the preparation of a monodisperse polymers, processes for the continuous polymerization of cyclic monomers, and polymers prepared thereby
JP2015120732A (ja) * 2006-02-08 2015-07-02 サウディ ベーシック インダストリーズ コーポレイション エチレンをオリゴマー化するための触媒組成物およびプロセス

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933098B2 (en) 2000-01-11 2005-08-23 Sipix Imaging Inc. Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7715088B2 (en) 2000-03-03 2010-05-11 Sipix Imaging, Inc. Electrophoretic display
US7408696B2 (en) 2000-03-03 2008-08-05 Sipix Imaging, Inc. Three-dimensional electrophoretic displays
US6947202B2 (en) * 2000-03-03 2005-09-20 Sipix Imaging, Inc. Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance
US6833943B2 (en) 2000-03-03 2004-12-21 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US20070237962A1 (en) * 2000-03-03 2007-10-11 Rong-Chang Liang Semi-finished display panels
US7158282B2 (en) * 2000-03-03 2007-01-02 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7233429B2 (en) * 2000-03-03 2007-06-19 Sipix Imaging, Inc. Electrophoretic display
US7557981B2 (en) * 2000-03-03 2009-07-07 Sipix Imaging, Inc. Electrophoretic display and process for its manufacture
US6865012B2 (en) 2000-03-03 2005-03-08 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6788449B2 (en) * 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7052571B2 (en) * 2000-03-03 2006-05-30 Sipix Imaging, Inc. Electrophoretic display and process for its manufacture
US6831770B2 (en) 2000-03-03 2004-12-14 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6829078B2 (en) 2000-03-03 2004-12-07 Sipix Imaging Inc. Electrophoretic display and novel process for its manufacture
US6885495B2 (en) * 2000-03-03 2005-04-26 Sipix Imaging Inc. Electrophoretic display with in-plane switching
US8282762B2 (en) * 2001-01-11 2012-10-09 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and process for its manufacture
US6795138B2 (en) * 2001-01-11 2004-09-21 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and novel process for its manufacture
TW527529B (en) * 2001-07-27 2003-04-11 Sipix Imaging Inc An improved electrophoretic display with color filters
TW539928B (en) 2001-08-20 2003-07-01 Sipix Imaging Inc An improved transflective electrophoretic display
TWI308231B (en) * 2001-08-28 2009-04-01 Sipix Imaging Inc Electrophoretic display
JP2003301005A (ja) * 2002-04-09 2003-10-21 Daicel Chem Ind Ltd 架橋性ビニル重合体及びその製造方法
US8023071B2 (en) * 2002-11-25 2011-09-20 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display
TWI297089B (en) * 2002-11-25 2008-05-21 Sipix Imaging Inc A composition for the preparation of microcups used in a liquid crystal display, a liquid crystal display comprising two or more layers of microcup array and process for its manufacture
GB0228888D0 (en) * 2002-12-11 2003-01-15 Johnson Matthey Plc Polymerisation reaction and catalyst therefor
GB2447269A (en) * 2007-03-06 2008-09-10 Johnson Matthey Plc Catalyst for the ring-opening polymerisation of a cyclic organic compound
US7666973B2 (en) * 2007-07-30 2010-02-23 Tyco Healthcare Group Lp Carbonate copolymers
EP2096132A1 (en) * 2008-02-26 2009-09-02 Total Petrochemicals Research Feluy Monomers issued from renewable resources and process for polymerising them
EP2871477B1 (en) * 2013-05-27 2019-05-15 Miura Co., Ltd. Fractionation apparatus for dioxins

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120633A (ja) * 1981-12-31 1983-07-18 ユニオン・カ−バイド・コ−ポレ−シヨン ポリエステル化触媒としての配位錯化合物
JPS63189428A (ja) * 1987-01-30 1988-08-05 Nippon Polyurethan Kogyo Kk ポリエステルの製造方法
JPH0374429A (ja) * 1989-06-12 1991-03-29 General Electric Co <Ge> コポリエステルカーボネートの製造法
JPH04114031A (ja) * 1990-09-01 1992-04-15 Nippon Shokubai Co Ltd ラクトン重合体およびその製造方法
JPH04323204A (ja) * 1991-04-22 1992-11-12 Kansai Paint Co Ltd リビング重合体の製造方法
JPH05247184A (ja) * 1992-03-03 1993-09-24 Daicel Chem Ind Ltd ラクトン重合体の製造方法
JPH06287280A (ja) * 1993-04-05 1994-10-11 Tokuyama Soda Co Ltd ポリ(2−オキセタノン)およびその製造方法
JPH0797453A (ja) * 1993-01-29 1995-04-11 Shiro Kobayashi 開環重合法および開環重合用酵素触媒
JPH07292083A (ja) * 1994-03-04 1995-11-07 Daicel Chem Ind Ltd 単分散重合体およびそれらの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019379A1 (fr) * 1997-10-15 1999-04-22 Daicel Chemical Industries, Ltd. Procedes de preparation de polymeres monodisperses, procedes de polymerisation en continu de monomeres cycliques et polymeres obtenus par ces procedes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120633A (ja) * 1981-12-31 1983-07-18 ユニオン・カ−バイド・コ−ポレ−シヨン ポリエステル化触媒としての配位錯化合物
JPS63189428A (ja) * 1987-01-30 1988-08-05 Nippon Polyurethan Kogyo Kk ポリエステルの製造方法
JPH0374429A (ja) * 1989-06-12 1991-03-29 General Electric Co <Ge> コポリエステルカーボネートの製造法
JPH04114031A (ja) * 1990-09-01 1992-04-15 Nippon Shokubai Co Ltd ラクトン重合体およびその製造方法
JPH04323204A (ja) * 1991-04-22 1992-11-12 Kansai Paint Co Ltd リビング重合体の製造方法
JPH05247184A (ja) * 1992-03-03 1993-09-24 Daicel Chem Ind Ltd ラクトン重合体の製造方法
JPH0797453A (ja) * 1993-01-29 1995-04-11 Shiro Kobayashi 開環重合法および開環重合用酵素触媒
JPH06287280A (ja) * 1993-04-05 1994-10-11 Tokuyama Soda Co Ltd ポリ(2−オキセタノン)およびその製造方法
JPH07292083A (ja) * 1994-03-04 1995-11-07 Daicel Chem Ind Ltd 単分散重合体およびそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0943641A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191250B1 (en) * 1997-10-15 2001-02-20 Daicel Chemical Industries, Ltd. Processes for the preparation of a monodisperse polymers, processes for the continuous polymerization of cyclic monomers, and polymers prepared thereby
JP2015120732A (ja) * 2006-02-08 2015-07-02 サウディ ベーシック インダストリーズ コーポレイション エチレンをオリゴマー化するための触媒組成物およびプロセス

Also Published As

Publication number Publication date
US6191250B1 (en) 2001-02-20
JP4311768B2 (ja) 2009-08-12
EP0943641A1 (en) 1999-09-22
EP0943641A4 (en) 2001-05-02
EP0943641B1 (en) 2003-12-03
DE69820223D1 (de) 2004-01-15
DE69820223T2 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
WO1999019379A1 (fr) Procedes de preparation de polymeres monodisperses, procedes de polymerisation en continu de monomeres cycliques et polymeres obtenus par ces procedes
KR102362026B1 (ko) 열가소성 수지 및 광학 부재
EP1557439B1 (en) Polyester resin, polyester resin composition, sheet or film obtained therefrom and hollow molded container
KR102067687B1 (ko) 열안정성 및 가공성이 향상된 폴리알킬렌 카보네이트를 포함하는 수지 조성물의 경제적 제조방법
US5852164A (en) Polyester, process for producing the same and molding product therefrom
TWI551650B (zh) 聚酯及聚碳酸酯的混合物
JP5526579B2 (ja) ポリカーボネート樹脂組成物、並びにそれを用いた成形品の製造方法及び成形品
KR101950530B1 (ko) 폴리카보네이트의 제조 방법 및 투명 필름
CN1286711A (zh) 聚碳酸酯共聚物及其制造方法
CN103842405A (zh) 聚碳酸酯及其制备方法
CN113667110B (zh) 一种光学聚碳酸酯树脂及其制备方法
JP3414029B2 (ja) 単分散重合体およびそれらの製造方法
JP7117932B2 (ja) 熱可塑性樹脂および光学部材
KR20140075516A (ko) 고분지형 폴리카보네이트 수지 및 그 제조방법
JP5655495B2 (ja) ポリカーボネート樹脂及びその製造方法
JP2004250623A (ja) ポリエステル樹脂、その製造方法および成形品
CN1286712A (zh) 聚碳酸酯的制造方法和光盘基板
JP5786556B2 (ja) 樹脂成形品の製造方法
CN113950500A (zh) 热塑性树脂、由其构成的光学膜、二醇化合物、二酯化合物
JP2014148672A (ja) ポリカーボネート樹脂の製造方法
US20230151145A1 (en) Polymer resin and manufacturing method thereof
WO2021029337A1 (ja) グラフト共重合体、グラフト共重合体の製造方法及びその用途
CN113912831A (zh) 一种高折射率聚碳酸酯及其制备方法和应用
CN116515094B (zh) 一种阻燃可降解聚酯及可降解共聚阻燃剂的制备方法
WO2022124106A1 (ja) チタン含有複合材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1998947897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09331022

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998947897

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998947897

Country of ref document: EP