WO2021029337A1 - グラフト共重合体、グラフト共重合体の製造方法及びその用途 - Google Patents

グラフト共重合体、グラフト共重合体の製造方法及びその用途 Download PDF

Info

Publication number
WO2021029337A1
WO2021029337A1 PCT/JP2020/030301 JP2020030301W WO2021029337A1 WO 2021029337 A1 WO2021029337 A1 WO 2021029337A1 JP 2020030301 W JP2020030301 W JP 2020030301W WO 2021029337 A1 WO2021029337 A1 WO 2021029337A1
Authority
WO
WIPO (PCT)
Prior art keywords
graft copolymer
group
mass
cellulose
copolymer according
Prior art date
Application number
PCT/JP2020/030301
Other languages
English (en)
French (fr)
Inventor
聖司 西岡
Original Assignee
住友精化株式会社
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, 株式会社村田製作所 filed Critical 住友精化株式会社
Priority to JP2021539257A priority Critical patent/JPWO2021029337A1/ja
Publication of WO2021029337A1 publication Critical patent/WO2021029337A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J169/00Adhesives based on polycarbonates; Adhesives based on derivatives of polycarbonates

Definitions

  • the present invention relates to a graft copolymer, a method for producing a graft copolymer, and its use.
  • graft copolymers having a stem polymer and a branch polymer bonded to the stem polymer have been studied in various ways, and are used as a novel functional resin utilizing the features of the stem polymer and the features of the branch polymer. It is a high-value material.
  • Patent Document 1 proposes a graft copolymer obtained by dispersing cellulosic fibers in water and radically polymerizing a vinyl-based monomer in the fibers.
  • Patent Document 2 proposes a graft copolymer obtained by ring-opening polymerization of a cyclic ester compound in the presence of a cellulosic derivative, in which caprolactone or the like is grafted onto a cellulosic resin.
  • the function based on the features of the graft portion will be exhibited.
  • the drawbacks of the cellulosic resin remain unimproved, or the performance is inferior to that of the cellulosic resin alone, and the conventional graft copolymer always eliminates the drawbacks of the cellulosic resin. It wasn't done. Due to such a problem, there is a limitation in the applicable applications of the conventional graft copolymer using a cellulosic resin as a trunk polymer.
  • the present invention has been made in view of the above, and is a graft copolymer in which a certain level of performance of a cellulosic resin is maintained while exhibiting a function caused by a graft portion (stem polymer portion). , It is an object of the present invention to provide a method for producing a graft copolymer and its use.
  • the present inventor has found that the above object can be achieved by using a cellulosic resin as the trunk polymer and polycarbonate as the branch polymer, and has completed the present invention.
  • the present invention includes, for example, the subjects described in the following sections.
  • Item 1 A graft copolymer having a stem polymer and a branch polymer bonded to the stem polymer.
  • the stem polymer contains a cellulosic resin and contains A graft copolymer in which the branch polymer comprises polycarbonate.
  • Item 2 Item 2.
  • Item 3 Item 2.
  • the graft copolymer according to Item 1 or 2 wherein the polycarbonate is an aliphatic polycarbonate.
  • Item 4 Item 3.
  • the graft copolymer according to Item 3 wherein the aliphatic polycarbonate is at least one selected from the group consisting of polyethylene carbonate, polypropylene carbonate and polytrimethylene carbonate.
  • Item 5 Item 2.
  • the graft copolymer according to any one of Items 1 to 4 wherein the cellulosic resin is at least one selected from the group consisting of alkyl cellulose, hydroxyalkyl cellulose and cellulose ester.
  • Item 6 Item 2.
  • Item 7 Item 2.
  • Item 8 A method for producing a graft copolymer, comprising a step of copolymerizing epoxide and carbon dioxide in the presence of a cellulosic resin.
  • Item 9 A method for producing a graft copolymer, comprising a step of performing ring-opening polymerization of cyclic carbonate in the presence of a cellulosic resin.
  • Item 10 A paste composition containing the graft copolymer according to any one of Items 1 to 7.
  • Item 10-1 Use of the graft copolymer according to any one of Items 1 to 7 in a paste composition.
  • Item 11 A resin composition containing the graft copolymer according to any one of Items 1 to 7.
  • Item 11-1 Use of the graft copolymer according to any one of Items 1 to 7 in a resin composition.
  • Item 12 A molded product containing the graft copolymer according to any one of Items 1 to 7.
  • Item 12-1 Use of the graft copolymer according to any one of Items 1 to 7 in a molded product.
  • Item 13 An adhesive composition containing the graft copolymer according to any one of Items 1 to 7.
  • Item 13-1 Use of the graft copolymer according to any one of Items 1 to 7 in an adhesive composition.
  • Item 14 An ink composition containing the graft copolymer according to any one of Items 1 to 7.
  • Item 14-1 Use of the graft copolymer according to any one of Items 1 to 7 in an ink composition.
  • Item 15 A coating composition containing the graft copolymer according to any one of Items 1 to 7.
  • Item 15-1 Use of the graft copolymer according to any one of Items 1 to 7 in a coating composition.
  • Item 16 A binder resin containing the graft copolymer according to any one of Items 1 to 7.
  • Item 16-1 Use of the graft copolymer according to any one of Items 1 to 7 in a binder resin.
  • Item 17 A dispersant containing the graft copolymer according to any one of Items 1 to 7.
  • Item 17-1 Use of the graft copolymer according to any one of Items 1 to 7 as a dispersant.
  • the graft copolymer according to the present invention exhibits a function caused by the graft portion, and maintains a certain level of performance of the cellulosic resin.
  • the graft copolymer of the present invention has a stem polymer and a branch polymer bonded to the stem polymer, the stem polymer containing a cellulose resin, and the branch polymer containing polycarbonate. According to such a graft copolymer, a certain level of performance of the cellulosic resin is maintained while the function caused by the graft portion is exhibited.
  • the functions caused by the graft portion include, for example, the excellent mechanical properties of the molded product containing the graft copolymer, the excellent thermal decomposition properties of the graft copolymer, and the paste composition containing the graft copolymer. It refers to excellent thixotropy.
  • the performance of the cellulosic resin refers to, for example, the spinnability when made into a paste composition, the transparency when made into a molded product, and the dispersion stability when used as a dispersion stabilizer.
  • the type of cellulosic resin constituting the stem polymer is not particularly limited, and for example, known cellulosic resins can be widely applied.
  • the cellulosic resin include alkyl celluloses such as methyl cellulose, ethyl cellulose, methyl ethyl cellulose, n-propyl cellulose, isopropyl cellulose, n-butyl cellulose, tert-butyl cellulose and n-hexyl cellulose; hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxy.
  • Hydroxyalkyl cellulose such as propyl cellulose and hydroxybutyl cellulose
  • Cellulose ester such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate
  • carboxyalkyl cellulose such as carboxymethyl cellulose, carboxyethyl cellulose and carboxypropyl cellulose
  • cellulose derivatives such as nitrocellulose, aldehyde cellulose, dialdehyde cellulose, sulfonated cellulose or cellulose can be mentioned.
  • the type of cellulosic resin constituting the stem polymer can be one or more.
  • the cellulosic resin is preferably one or more selected from the group consisting of alkyl cellulose, hydroxyalkyl cellulose and cellulose ester, more preferably alkyl cellulose, and ethyl cellulose. Is particularly preferable.
  • the degree of substitution of the cellulosic resin is not particularly limited, and various values can be used as long as the effect of the present invention is not impaired.
  • the degree of substitution of the cellulosic resin is 2 or more and 3 or less, and is generally 3.
  • the degree of substitution of the cellulosic resin means the total number of all hydroxyl groups in the structural unit of the cellulosic resin substituted with the branch polymer.
  • the stem polymer can contain structural units other than the cellulosic resin, or the stem polymer can be formed only of the cellulosic resin.
  • the content ratio thereof is 30% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, particularly preferably 5% by mass or less, based on the total structural units of the stem polymer. Can be 1% by mass or less.
  • the branch polymer contains polycarbonate.
  • Polycarbonate usually exists by being chemically bonded to a cellulosic resin which is a stem polymer. More specifically, in the graft copolymer of the present invention, the hydroxyl group in the structural unit of the cellulosic resin or the hydrogen atom of the hydroxyl group is replaced with polycarbonate.
  • the type of polycarbonate is not particularly limited, and for example, known polycarbonate can be widely applied.
  • the polycarbonate can be an aliphatic polycarbonate. In this case, it is easy to produce a graft copolymer, and the graft copolymer can have less residue after thermal decomposition and have better moldability.
  • the type thereof is not particularly limited, and for example, a structure having a structural unit represented by the following general formula (1) can be used.
  • R 1 , R 2 , R 3 and R 4 are the same or different, and may be substituted with a hydrogen atom or a substituent.
  • a linear or branched alkyl having 1 to 10 carbon atoms. Indicates an aryl group having 6 to 20 carbon atoms which may be substituted with a group or a substituent.
  • R 1, R 2, R 3 and R 4, 2 two but may be bonded to each other to form an aliphatic ring by from good ring members 3 may have 10 substituted with a substituent.
  • the linear or branched alkyl group having 1 to 10 carbon atoms is a linear or branched chain having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms.
  • Alkyl group in the form. The number of carbon atoms of this alkyl group is preferably 1 to 4, and particularly preferably 1 or 2.
  • the alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and n-. Examples thereof include a heptyl group, an n-octyl group, an n-nonyl group and an n-decyl group.
  • the number of substituents can be 1 or 2 or more.
  • substituents in this case include a hydroxy group, an alkoxy group, an ester group, a silyl group, a sulfanyl group, a cyano group, a nitro group, a sulfo group, a formyl group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, Chlorine atom, bromine atom, iodine atom) and the like.
  • alkoxy group here include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group and the like.
  • the aryl group having 6 to 20 carbon atoms means that the aryl group has 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms. It is an aryl group.
  • the aryl group preferably has 6 to 14 carbon atoms. Examples of the aryl group include a phenyl group, a naphthyl group, a tetrahydronaphthyl group and the like.
  • the number of substituents can be 1 or 2 or more.
  • substituents in this case include an alkyl group, a hydroxy group, an alkoxy group, an ester group, a silyl group, a sulfanyl group, a cyano group, a nitro group, a sulfo group, a formyl group, a carboxy group, an aryl group and a halogen atom (for example). Fluorine atom, chlorine atom, bromine atom, iodine atom) and the like.
  • Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like.
  • Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • R 1 , R 2 , R 3 and R 4 can be the same, or part or all may be different.
  • R 1 , R 2 , R 3 and R 4 may all be the same, R 1 , R 2 and R 3 may be the same and R 4 may be different, and R 1 , R 3 may be different.
  • R 4 may be the same and R 2 may be different, and R 1 , R 2 , R 3 and R 4 may all be different.
  • two of R 1 , R 2 , R 3 and R 4 may be bonded to each other to form an aliphatic ring having 3 to 10 ring members which may be substituted with a substituent. .. Specifically, two of R 1 , R 2 , R 3 , and R 4 are bonded to each other, and the number of substituted or unsaturated saturated or unsaturated ring members is 3 to 10 together with the carbon atom to which they are bonded. It can also form an aliphatic ring of. The aliphatic ring may be substituted with one or more substituents.
  • Examples of such an aliphatic ring include a 3- to 8-membered aliphatic ring which may be substituted with a substituent. More specific examples of the aliphatic ring include a cyclopentane ring, a cyclopentene ring, a cyclohexane ring, a cyclohexene ring, a cycloheptane ring and the like.
  • the substituents include, for example, an alkyl group, an aryl group, an alkoxy group, an acyloxy group, an alkoxycarbonyl group, a silyl group, a sulfanyl group, a cyano group and a nitro group. , Sulf group, formyl group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom) and the like.
  • Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like.
  • Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • acyloxy group examples include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like.
  • alkoxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
  • R 1 , R 2 , R 3 and R 4 are preferably the same or different, and are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms.
  • R 1 , R 2 and R 3 are preferably hydrogen atoms
  • R 4 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Further, among them, it is more preferably R 4 is a hydrogen atom, a methyl group or an ethyl group.
  • examples of the aliphatic polycarbonate include polytrimethylene carbonate, polytetramethylene carbonate, polyhexamethylene carbonate, and poly-2,2-dimethyltrimethylene carbonate. , Poly1,4-cyclohexanedimethylene carbonate and the like.
  • the type of polycarbonate constituting the branch polymer can be one type or two or more types.
  • the aliphatic polycarbonate as the branch polymer is preferably one or more selected from the group consisting of polyethylene carbonate, polypropylene carbonate and polytrimethylene carbonate. In this case, it is easy to produce a graft copolymer, and the graft copolymer can have less residue after thermal decomposition and have better moldability and transparency.
  • R 1 , R 2 , R 3 and R 4 are hydrogen atoms in the structural unit represented by the formula (1).
  • R 1 , R 2 and R 3 are hydrogen atoms and R 4 is a methyl group in the structural unit represented by the formula (1).
  • the polycarbonate constituting the branch polymer may have, for example, a structural unit other than the formula (1), or the terminal group may be modified.
  • the structural unit other than the formula (1) include structural units such as polyether, polyester, polyamide and polyacrylate, and structural units having a reactive group such as a carboxy group, a hydroxy group and an amino group.
  • Modifications of the terminal groups include modifications with acid anhydrides, cyclic acid anhydrides, acid halides, isocyanate compounds and the like.
  • its content is preferably 10 mol% or less, more preferably 5 mol% or less, based on the total structural unit of the polycarbonate. It is more preferably 3 mol% or less, and most preferably 1 mol% or less.
  • the content ratio of the cellulosic resin constituting the stem polymer and the polycarbonate constituting the branch polymer is not particularly limited as long as the effect of the present invention is not impaired.
  • the ratio of polycarbonate to the cellulosic resin is 10% by mass or more and 300% by mass or less. Is preferable. Above all, the ratio of polycarbonate to the cellulosic resin is preferably 50% by mass or more and 200% by mass or less.
  • the ratio of polycarbonate to cellulosic resin can be determined by nuclear magnetic resonance spectroscopy (NMR analysis).
  • NMR analysis nuclear magnetic resonance spectroscopy
  • the ratio of polycarbonate to the cellulosic resin is also referred to as "graft ratio”.
  • the mass average molecular weight of the graft copolymer of the present invention is not particularly limited, and can be, for example, 50,000 or more and 1 million or less.
  • the graft copolymer can have mechanical properties such as more excellent strength, elongation and fracture toughness, and is also excellent in moldability.
  • the mass average molecular weight of the graft copolymer is more preferably 150,000 or more and 600,000 or less.
  • the form of the graft copolymer of the present invention is not particularly limited and may be in various forms depending on the intended use.
  • Solution, molded body, etc. can be in various forms.
  • the graft copolymer of the present invention has the above-mentioned form, so that the residue after thermal decomposition is small, the moldability and transparency are excellent, and in addition, the features of both the cellulosic resin and the polycarbonate are balanced. It is well demonstrated.
  • the graft copolymer of the present invention is excellent in spinnability and thixotropy when made into a solution, and therefore has excellent printability, and can be suitably used for applications such as pastes, inks, and coating liquids.
  • the molded product of the graft copolymer of the present invention has high transparency and exhibits excellent mechanical properties (mechanical strength and elongation), and therefore, for example, it should be suitably used as a molded product of a sheet, a film or the like. Can be done.
  • the graft copolymer of the present invention is excellent in pyrolytic property as described above, it can be suitably used as a pyrolytic binder resin.
  • the graft copolymer of the present invention has excellent dispersibility in various dispersion media and can be suitably used as a dispersant.
  • the graft copolymer of the present invention is less likely to cause various problems of the graft copolymer using the conventional cellulosic resin as the trunk polymer.
  • the problem is that there is a large amount of residue after thermal decomposition, the problem that high transparency of the stem polymer is difficult to develop due to crystallization of the graft part, or the problem that sufficient hardness cannot be maintained for sheeting. It is unlikely to occur with the graft copolymer of the present invention.
  • the method for producing a graft copolymer of the present invention includes a step of copolymerizing epoxide and carbon dioxide in the presence of a cellulosic resin.
  • the method for producing a graft copolymer of the present invention includes a step of performing ring-opening polymerization of cyclic carbonate in the presence of a cellulosic resin.
  • the manufacturing method including the former process is referred to as "manufacturing method 1”
  • the manufacturing method including the latter process is referred to as "manufacturing method 2".
  • the above-mentioned graft copolymer of the present invention is produced, for example, by the production method 1 or the production method 2.
  • (Manufacturing method 1) In the production method 1, copolymerization of epoxide and carbon dioxide is performed in the presence of a cellulosic resin.
  • the cellulosic resin used in the production method 1 is a raw material for forming a stem polymer of a graft copolymer.
  • the polymer formed by the copolymerization of epoxide and carbon dioxide is polycarbonate. That is, the epoxide and carbon dioxide used in the production method 1 are raw materials for forming the branch polymer of the graft copolymer.
  • the type of cellulosic resin used in the production method 1 is not particularly limited, and for example, known cellulosic resins can be widely applied.
  • Specific examples of the cellulosic resin include alkyl celluloses such as methyl cellulose, ethyl cellulose, methyl ethyl cellulose, n-propyl cellulose, isopropyl cellulose, n-butyl cellulose, tert-butyl cellulose and n-hexyl cellulose; hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxy.
  • Hydroxyalkyl cellulose such as propyl cellulose and hydroxybutyl cellulose; Cellulose ester such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate; carboxyalkyl cellulose such as carboxymethyl cellulose, carboxyethyl cellulose and carboxypropyl cellulose
  • carboxyalkyl cellulose such as carboxymethyl cellulose, carboxyethyl cellulose and carboxypropyl cellulose
  • cellulose derivatives such as nitrocellulose, aldehyde cellulose, dialdehyde cellulose, sulfonated cellulose or cellulose can be mentioned.
  • the cellulosic resin used in the production method 1 may be one type or two or more types.
  • the cellulosic resin is preferably one or more selected from the group consisting of alkyl cellulose, hydroxyalkyl cellulose and cellulose ester, and is preferably ethyl cellulose, hydroxypropyl cellulose or cellulose acetate butyrate. More preferably, it is particularly preferably ethyl cellulose.
  • the mass average molecular weight of the cellulosic resin used in the production method 1 is not particularly limited.
  • the mass average molecular weight of the cellulosic resin used in the production method 1 is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 100,000 or more.
  • the mass average molecular weight of the cellulosic resin used in Production Method 1 is preferably 1 million or less, more preferably 750,000 or less, and even more preferably 500,000 or less.
  • the method for producing the cellulosic resin is not particularly limited, and for example, it can be produced by a known method. Alternatively, the cellulosic resin used in the present invention can also be obtained from a commercially available product or the like.
  • the epoxide used in the production method 1 is, for example, ethylene oxide, propylene oxide, trimethylene oxide (oxetan), 3,3-dimethyltrimethylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, 1 -Pentene oxide, 2-pentene oxide, 1-hexene oxide, 1-octene oxide, 1-dodecene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexane oxide, 3-phenylpropylene oxide, 3,3,3- Examples thereof include trifluoropropylene oxide, 3-naphthylpropylene oxide, 2-phenoxypropylene oxide, 3-naphthoxypropylene oxide, butadiene monooxide, 3-vinyloxypropylene oxide and 3-trimethylsilyloxypropylene oxide.
  • ethylene oxide, propylene oxide, trimethylene oxide and 1,2-butylene oxide are preferable, and ethylene oxide, propylene oxide and trimethylene oxide are more preferable, from the viewpoint of having high reactivity.
  • the obtained polycarbonate is polyethylene carbonate
  • the obtained polycarbonate is polypropylene carbonate
  • trimethylene oxide is polytrimethylene carbonate.
  • the polymerization reaction for copolymerizing epoxide and carbon dioxide can also be carried out in the presence of a metal catalyst.
  • the metal catalyst include zinc-based catalysts, aluminum-based catalysts, chromium-based catalysts, cobalt-based catalysts and the like.
  • a zinc-based catalyst or a cobalt-based catalyst is preferable because it has high polymerization activity in the polymerization reaction between epoxide and carbon dioxide.
  • Examples of the zinc-based catalyst include diethylzinc-aqueous catalyst, diethylzinc-pyrogalol-based catalyst, bis ((2,6-diphenyl) phenoxy) zinc, and N- (2,6-diisopropylphenyl) -3,5-di. -Tert-Butylsalicylic aldoiminato zinc, 2-((2,6-diisopropylphenyl) amide) -4-((2,6-diisopropylphenyl) imino) -2-pentenzinc acetate, zinc adipate, glutaric acid
  • Examples include zinc.
  • cobalt-based catalyst examples include cobalt acetate-acetic acid-based catalyst, N, N'-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexanediaminocobalt acetate, N, N'-bis (3,5-di-tert-butylsalicylidene).
  • co-catalyst When using a cobalt catalyst, it is preferable to use a co-catalyst.
  • co-catalysts pyridine, N, N-4-dimethylaminopyridine, N-methylimidazole, tetrabutylammonium chloride, tetrabutylammonium acetate, triphenylphosphine, bis (triphenylphosphoranylidene) ammonium chloride, bis (tri). Examples thereof include phenylphosphoranylidene) ammonium acetate.
  • the amount of the metal catalyst (co-catalyst if necessary) used in the polymerization reaction can be the same as the known copolymerization conditions of epoxide and carbon dioxide, and from the viewpoint of promoting the progress of the polymerization reaction, epoxide 1 It is preferably 0.001 mol or more, more preferably 0.005 mol or more with respect to the molar.
  • the amount of the metal catalyst (co-catalyst if necessary) used in the polymerization reaction is preferably 0.2 mol or less, more preferably 0, with respect to 1 mol of the epoxide, from the viewpoint of obtaining an effect commensurate with the amount used. .1 mol or less.
  • a reaction solvent may be used for the polymerization reaction if necessary.
  • the reaction solvent is not particularly limited, but various organic solvents can be used.
  • the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; methylene chloride, chloroform, 1,1-dichloroethane, and the like.
  • Halogenated hydrocarbon solvents such as 1,2-dichloroethane, chlorobenzene and bromobenzene; ether solvents such as dimethoxyethane, tetrahydrofuran, 2-methyltetrahexyl, 1,4-dioxane, 1,3-dioxolane and anisole; ethyl acetate , Ester solvents such as n-propyl acetate and isopropyl acetate; amide solvents such as N, N-dimethylformiamide, N, N-dimethylacetamide; carbonate solvents such as dimethyl carbonate, diethyl carbonate and propylene carbonate. Can be mentioned.
  • the amount of the reaction solvent used is preferably 100 to 10000 parts by mass with respect to 100 parts by mass of the epoxide from the viewpoint of allowing the reaction to proceed smoothly.
  • the method for polymerizing epoxide and carbon dioxide in the presence of a metal catalyst is not particularly limited, but for example, a cellulosic resin, an epoxide, a catalyst, and if necessary, a co-catalyst, a reaction solvent, etc. are charged and mixed in an autoclave. After that, a method of press-fitting carbon dioxide to cause a reaction can be mentioned.
  • the amount of carbon dioxide used in the polymerization reaction is preferably 0.5 to 10 mol, more preferably 0.6 to 5 mol, and further preferably 0.7 to 3 mol with respect to 1 mol of the epoxide.
  • the pressure of carbon dioxide is not particularly limited, but from the viewpoint of smooth progress of the reaction, it is preferably 0.1 MPa or more, more preferably 0.2 MPa or more, still more preferably 0.5 MPa or more, and the working pressure. From the viewpoint of obtaining an effect commensurate with the above, it is preferably 20 MPa or less, more preferably 10 MPa or less, still more preferably 5 MPa or less.
  • the polymerization reaction temperature in the polymerization reaction is not particularly limited, but from the viewpoint of shortening the reaction time, it is preferably 0 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 30 ° C. or higher, suppressing side reactions and yielding. From the viewpoint of improving the temperature, the temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 60 ° C. or lower.
  • the reaction time cannot be unconditionally determined because it varies depending on the polymerization reaction conditions, but it is usually preferably about 1 to 40 hours.
  • the ratio of the cellulosic resin and the epoxide used is not particularly limited, and can be appropriately set according to the target graft ratio and the degree of substitution of the cellulosic resin.
  • the amount of epoxide used is 100 parts by mass or more and 5000 parts by mass per 100 parts by mass of the cellulosic resin. It is preferably 250 parts by mass or more, and more preferably 2500 parts by mass or less.
  • the epoxide and carbon dioxide are polymerized to form polycarbonate, and the hydroxyl groups in the structural unit of the cellulosic resin are also formed. , Reacts with epoxides. As a result, a graft copolymer having a structure in which a hydroxyl group in the structural unit of the cellulosic resin or a hydrogen atom of the hydroxyl group is replaced with polycarbonate can be obtained.
  • the graft copolymer obtained by an appropriate method can be purified, if necessary.
  • ring-opening polymerization of the cyclic carbonate is performed in the presence of a cellulosic resin.
  • the cellulosic resin used in the production method 2 is a raw material for forming a stem polymer of a graft copolymer.
  • the polymer formed by ring-opening polymerization of cyclic carbonate is polycarbonate. That is, the cyclic carbonate used in the production method 2 is a raw material for forming the branch polymer of the graft copolymer.
  • the type of the cellulosic resin used in the production method 2 is not particularly limited, and the same cellulosic resin as in the production method 1 can be mentioned. Therefore, the cellulosic resin used in the production method 2 is preferably one or more selected from the group consisting of alkyl cellulose, hydroxyalkyl cellulose and cellulose ester, and is preferably ethyl cellulose, hydroxypropyl cellulose, or cellulose acetate butyrate. More preferably, it is ethyl cellulose, and particularly preferably ethyl cellulose.
  • the type of cyclic carbonate used in the production method 2 is not particularly limited, and a known cyclic carbonate capable of forming polycarbonate by ring-opening polymerization can be widely applied.
  • the cyclic carbonates include ethylene carbonate, propylene carbonate, trimethylene carbonate, 2,2-dimethyltrimethylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, isobutylene carbonate, cyclohexene carbonate, tetramethylene carbonate and the like. Can be mentioned.
  • the cyclic carbonate is preferably ethylene carbonate, propylene carbonate or trimethylene carbonate, and more preferably ethylene carbonate or propylene carbonate.
  • the obtained polycarbonate contains polyethylene carbonate
  • the obtained polycarbonate contains polypropylene carbonate
  • the obtained polycarbonate contains trimethylene carbonate
  • the method of ring-opening polymerization of cyclic carbonate is not particularly limited, and known ring-opening polymerization conditions can be widely adopted.
  • ring-opening polymerization of cyclic carbonate can be carried out in the presence of a catalyst.
  • catalysts sodium, potassium, sodium hydroxide, potassium hydroxide, triethylaluminum, aluminum triisopropoxide, n-butyllithium, titanium tetraisopropoxide, titanium tetrachloride, zirconium tetraisopropoxide, tin tetrachloride,
  • Metallic catalysts such as sodium stannate, tin octanoate, dibutyltin dilaurate; pyridine, 4-dimethylaminopyridine, 1,5,7-triazabicyclo [4.4.0] deca-5-ene (TBD), 1 , 8-Diazabicyclo [5.4.0] Undec-7-ene (DBU) and other base catalysts; methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, diphenylphosphate, phenol and other acid catalysts; 1 , 3-Bis (2-propyl)
  • a co-catalyst can also be used for the open polymerization of the cyclic carbonate.
  • co-catalysts N-cyclohexyl-N'-phenylthiourea, N, N'-bis [3,5-bis (trifluoromethyl) phenyl] thiourea, N- [3,5-bis (trifluoromethyl)) Phenyl] -N'-cyclohexylthiourea, (-)-spartane and the like.
  • the amount of the catalyst (co-catalyst if necessary) used for the ring-opening polymerization of the cyclic carbonate can be the same as the known ring-opening polymerization conditions for the cyclic carbonate. From the viewpoint of accelerating the progress of the polymerization reaction, the amount is preferably 0.001 mol or more, more preferably 0.005 mol or more, based on 1 mol of the cyclic carbonate. Further, the amount of the catalyst (co-catalyst if necessary) used in the polymerization reaction is preferably 0.2 mol or less, more preferably 0, based on 1 mol of the cyclic carbonate, from the viewpoint of obtaining an effect commensurate with the amount used. .1 mol or less.
  • a reaction solvent may be used if necessary.
  • the reaction solvent is not particularly limited, but various organic solvents can be used.
  • the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; methylene chloride, chloroform, 1,1-dichloroethane, and the like.
  • Halogenated hydrocarbon solvents such as 1,2-dichloroethane, chlorobenzene, bromobenzene; ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglime), triethylene glycol dimethyl ether (triglime), dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, Ether-based solvents such as 1,4-dioxane, 1,3-dioxolane and anisole; ester-based solvents such as ethyl acetate, n-propyl acetate and isopropyl acetate; N, N-dimethylformiamide, N, N-dimethylacetamide , N-Methylpyrrolidone and other amide-based solvents; examples thereof include carbonate-based solvents such as dimethyl carbonate and diethyl carbonate.
  • the amount of the reaction solvent used is preferably 100 to 10000 parts by mass with respect to 100 parts by mass of the epoxide from the viewpoint of smoothly proceeding the ring-opening polymerization.
  • Examples of ring-opening polymerization include a method in which a cellulosic resin, a cyclic carbonate, a catalyst, and if necessary, a co-catalyst, a reaction solvent, and the like are charged in a glass flask, mixed and reacted.
  • the reaction temperature of the ring-opening polymerization is not particularly limited, but from the viewpoint of shortening the reaction time, it is preferably 0 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 30 ° C. or higher, and from the viewpoint of suppressing deterioration of the cellulosic resin. Therefore, it is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 180 ° C. or lower.
  • the reaction time cannot be unconditionally determined because it varies depending on the polymerization reaction conditions, but it is usually preferably about 1 to 40 hours.
  • the ratio of the cellulosic resin to the cyclic carbonate is not particularly limited, and can be appropriately set according to the target graft ratio and the degree of substitution of the cellulosic resin.
  • the amount of cyclic carbonate used is 100 parts by mass or more and 5000 parts by mass per 100 parts by mass of the cellulosic resin. It is preferably 2 parts or less, and more preferably 200 parts by mass or more and 2000 parts by mass or less.
  • the cyclic carbonate is ring-opened polymerized to form polycarbonate, and the hydroxyl group in the structural unit of the cellulose resin is also cyclic carbonate. Reacts with.
  • a graft copolymer having a structure in which a hydroxyl group in the structural unit of the cellulosic resin or a hydrogen atom of the hydroxyl group is replaced with polycarbonate can be obtained.
  • the graft copolymer obtained by an appropriate method can be purified, if necessary.
  • the graft copolymer obtained by the production method 1 and the production method 2 is, for example, the above-mentioned graft copolymer of the present invention, there is little residue after thermal decomposition. Moreover, the graft copolymers obtained by the production method 1 and the production method 2 are also excellent in moldability and transparency.
  • the graft copolymer of the present invention or the graft copolymer obtained by the production method of the present invention can be applied to various uses.
  • the graft copolymer can be used as a constituent component of a paste composition, a resin composition, an adhesive composition, an ink composition, and a coating composition. It is also possible to form a molded product from a material containing a graft copolymer.
  • the graft copolymer can also be used as a binder resin, a dispersant and the like.
  • the components other than the paste composition can be the same as those of the known paste composition.
  • known paste compositions include conductive pastes and glass pastes that are widely used in various electronic materials and electronic components. Therefore, the paste composition can contain, for example, the graft copolymer of the present invention, a solvent, and a conductive material, and the conductive material includes known metals such as gold, silver, copper, and palladium. , Nickel and the like. Further, the paste composition can contain, for example, the graft copolymer of the present invention, a solvent, and a glass powder, and the glass powder includes, for example, CaO-Al 2 O 3- SiO 2 system, MgO-.
  • the content of the graft copolymer in the paste composition can be the same as the resin component contained in the known paste.
  • the graft copolymer When used as an adhesive composition, an ink composition, or a coating composition, it can be the same as each known composition except that the resin component is a graft copolymer. ..
  • the molding method is not particularly limited, and known molding methods and molding conditions can be widely applied.
  • the shape of the molded body is not particularly limited, and various shapes such as a sheet, a film, a plate, and a block can be used.
  • the graft copolymer is excellent in moldability, and it is possible to easily mold a sheet or a film, which has been difficult with conventional graft copolymers.
  • the raw material used for molding may be only the graft copolymer, or a raw material containing the graft copolymer and other resin materials may be used.
  • the binder resin may be only the graft copolymer, and if the performance of the binder resin is not impaired, other components may be added to the graft copolymer. It can also be included. As described above, since the graft copolymer has a small amount of residue after thermal decomposition, it can be suitably used as a binder resin for the purpose of burning off by thermal decomposition.
  • the dispersant may be only the graft copolymer, or may contain the graft copolymer and other components as long as the performance of the dispersant is not impaired. You can also.
  • the graft copolymer has excellent dispersibility in various dispersion media and can be suitably used as a dispersant.
  • the mass average molecular weight (Mw) of the graft copolymers obtained in each Example and Comparative Example was determined by the following method.
  • [Mass average molecular weight (Mw) of graft copolymer] A tetrahydrofuran solution having a graft copolymer concentration of 0.2% by mass was prepared, and the mass average molecular weight (Mw) of the graft copolymer was measured using a high performance liquid chromatograph (HPLC). The mass average molecular weight Mw of the graft copolymer was calculated by comparing this measured value with polystyrene having a known mass average molecular weight measured under the same conditions. The measurement conditions were as follows.
  • PPNCl bis (triphenylphosphoranylidene) ammonium chloride
  • Mw 220,000, ethoxylation rate
  • the autoclave was decompressed, the reaction mixture was diluted with chloroform, and then 30 parts by mass of hydrochloric acid acidic methanol was added to stop the reaction.
  • the mixture was concentrated under reduced pressure, 100 parts by mass of chloroform was added to the obtained residue to dissolve it, and this solution was added dropwise to 2000 parts by mass of methanol to precipitate a solid.
  • the obtained solid was filtered and dried at 70 ° C. for 8 hours to obtain a graft copolymer.
  • the obtained graft copolymer had a graft ratio of 200% by mass and an Mw of 380,000.
  • the precipitated solid was recovered by filtration, washed with 500 parts by mass of a 50 mass% methanol aqueous solution, and dried at 70 ° C. for 8 hours to obtain a graft copolymer.
  • the obtained graft copolymer had a graft ratio of 53% by mass and Mw of 290,000.
  • Example 3 A combination of 0.5 parts by mass of tin octanate and 0.5 parts by mass of 1,5,7-triazabicyclo [4.4.0] deca-5-ene (TBD) instead of 1 part by mass of sodium tinate.
  • TBD 1,5,7-triazabicyclo [4.4.0] deca-5-ene
  • a graft copolymer was obtained in the same manner as in Example 2 except that it was changed to.
  • the obtained graft copolymer had a graft ratio of 90% by mass and Mw of 300,000.
  • Example 4 Grafts were copolymerized in the same manner as in Example 2 except that 1 part by mass of sodium succinate was changed to 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) by 1 part by mass. A polymer was obtained. The obtained graft copolymer had a graft ratio of 10% by mass and Mw of 250,000.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • Mw 220,000, ethoxylation rate 48.0%
  • the precipitated solid was recovered by filtration, washed with 1000 parts by mass of a 50 mass% methanol aqueous solution, and dried at 70 ° C. for 8 hours to obtain a graft copolymer.
  • the obtained graft copolymer had a graft ratio of 80% by mass and Mw of 490,000.
  • Example 6 A graft copolymer was obtained in the same manner as in Example 5 except that the combination of 0.1 part by mass of tin octanate and 0.1 part by mass of TBD was changed instead of 1 part by mass of sodium stannate.
  • the obtained graft copolymer had a graft ratio of 140% by mass and an Mw of 520,000.
  • Example 7 A graft copolymer was obtained in the same manner as in Example 5 except that it was changed to 0.2 parts by mass of DBU instead of 1 part by mass of sodium stannate. The obtained graft copolymer had a graft ratio of 40% by mass and Mw of 280,000.
  • the precipitated solid was recovered by filtration, washed with 500 parts by mass of a 50 mass% methanol aqueous solution, and dried at 70 ° C. for 8 hours to obtain a graft copolymer.
  • the obtained graft copolymer had a graft ratio of 250% by mass and an Mw of 680,000.
  • Mw hydroxypropyl cellulose
  • the precipitated solid was recovered by filtration, washed with 500 parts by mass of a 50 mass% methanol aqueous solution, and dried at 70 ° C. for 8 hours to obtain a graft copolymer.
  • the obtained graft copolymer had a graft ratio of 70% by mass and Mw of 270,000.
  • the obtained graft copolymer had a graft ratio of 150% by mass and an Mw of 210,000.
  • the obtained reaction solution was added dropwise to 1000 parts by mass of a 50 mass% methanol aqueous solution to precipitate a solid.
  • the precipitated solid was recovered by filtration, washed with 500 parts by mass of a 50 mass% methanol aqueous solution, and dried at 70 ° C. for 8 hours to obtain a graft copolymer.
  • the obtained graft copolymer had a graft ratio of 280% by mass and an Mw of 660,000.
  • FIG. 1 shows a 1 H-NMR spectrum of the graft copolymer obtained in Example 1 in deuterated chloroform
  • FIG. 2 shows an IR spectrum of the graft copolymer obtained in Example 1.
  • Table 1 shows the production conditions of the graft copolymer of each example, and the results of the graft ratio and mass average molecular weight Mw of the obtained graft copolymer.
  • Example 1 From these results, it was found that the graft copolymer obtained in Example 1 had the desired structure.
  • a paste composition was prepared by dissolving the graft copolymers obtained in Examples 1 to 10, the graft copolymers obtained in Comparative Example 1, or the ethyl cellulose of Reference Example 1 in toluene at a concentration of 3% by mass.
  • the spinnability and thixotropy of the obtained paste composition were evaluated by the following methods, respectively.
  • ⁇ Thixotropy> The viscosity of the paste composition at a temperature of 25 ° C. and a rotation speed of 5 rpm and 50 rpm was measured using a B-type viscometer (LVDV-I + manufactured by Eiko Seiki Co., Ltd.). Then, the ratio of the viscosity at the rotation speed of 5 rpm to the viscosity at the rotation speed of 50 rpm was calculated as a thixotropy index (TI value) and used as an index of thixotropy.
  • TI value thixotropy index
  • the thermal decomposition start temperature of the graft copolymer obtained in each example, the graft copolymer obtained in Comparative Example 1, or the ethyl cellulose (Mw 220,000, ethoxylation rate 48.0%) of Reference Example 1 and The amount of decomposition residue at 500 ° C. was measured.
  • the thermal decomposition temperature and the amount of decomposition residue are heat using "TG / DTA7220" manufactured by SII Nanotechnology Co., Ltd., while raising the temperature from room temperature (20 ° C) to 500 ° C at a heating rate of 10 ° C / min in an air atmosphere. The change in weight was measured.
  • the thermal decomposition start temperature was in accordance with the definition of JIS K7120: 1987. Specifically, in the obtained decomposition curve, a line parallel to the horizontal axis passing through the mass before the start of test heating. The temperature at the intersection with the tangent line drawn so as to maximize the gradient between the bending points in the decomposition curve was defined as the thermal decomposition start temperature.
  • the decomposition residue amount was the sample before and after the measurement. The ratio of the residual amount to the sample mass before measurement was calculated based on the mass of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

熱分解後の残渣が少なく、しかも、透明性や成形性にも優れるグラフト共重合体、グラフト共重合体の製造方法及びその用途を提供する。 本発明のグラフト共重合体は、幹ポリマーと、該幹ポリマーに結合する枝ポリマーとを有するグラフト共重合体であって、前記幹ポリマーがセルロース系樹脂を含み、前記枝ポリマーがポリカーボネートを含む。本発明のグラフト共重合体の製造方法は、セルロース系樹脂の存在下、エポキシドと二酸化炭素との共重合を行う工程を備える、又は、セルロース系樹脂の存在下、環状カーボネートの開環重合を行う工程を備える。

Description

グラフト共重合体、グラフト共重合体の製造方法及びその用途
 本発明は、グラフト共重合体、グラフト共重合体の製造方法及びその用途に関する。
 幹ポリマーと、該幹ポリマーに結合する枝ポリマーとを有するグラフト共重合体は、従来から種々検討されており、幹ポリマーの特長と、枝ポリマーの特長とを活かした新規な機能性樹脂として利用価値が高い材料である。
 このようなグラフト共重合体として、セルロース誘導体が幹ポリマーであり、ビニル重合体が枝ポリマーである構造を有する材料が知られている。例えば、特許文献1には、セルロース繊維を水に分散させ、その中でビニル系モノマーをラジカル重合させることにより得られるグラフト共重合体が提案されている。また、特許文献2には、セルロース誘導体の存在下で環状エステル化合物を開環重合させることにより得られる、セルロース系樹脂にカプロラクトン等をグラフト化させたグラフト共重合体が提案されている。
特開2009-67817号公報 特開昭59-86621号公報
 上記のようにセルロース系樹脂を幹ポリマーとするグラフト共重合体においては、グラフト部分の特長に基づく機能の発現が期待される。しかし、その半面、セルロース系樹脂の欠点が改善されないままであったり、あるいは、セルロース系樹脂単独よりも劣る性能もあったりし、必ずしも、従来のグラフト共重合体は、セルロース系樹脂の欠点を解消できているわけではなかった。斯かる問題があったことから、従来のセルロース系樹脂を幹ポリマーとするグラフト共重合体では、適用できる用途に制限があった。この観点から、セルロース系樹脂を幹ポリマーとするグラフト共重合体においては、グラフト部分に起因にする機能が発現しつつ、セルロース系樹脂が有する性能については一定の水準を維持することが重要となる。
 本発明は、上記に鑑みてなされたものであり、グラフト部分(幹ポリマー部分)に起因にする機能が発現しつつ、セルロース系樹脂が有する性能については一定の水準が維持されたグラフト共重合体、グラフト共重合体の製造方法及びその用途を提供することを目的とする。
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、幹ポリマーをセルロース系樹脂、枝ポリマーをポリカーボネートとすることで上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1
幹ポリマーと、該幹ポリマーに結合する枝ポリマーとを有するグラフト共重合体であって、
前記幹ポリマーがセルロース系樹脂を含み、
前記枝ポリマーがポリカーボネートを含む、グラフト共重合体。
項2
前記セルロース系樹脂に対し、ポリカーボネートの割合が10質量%以上、300質量%以下である、項1に記載のグラフト共重合体。
項3
前記ポリカーボネートが脂肪族ポリカーボネートである、項1又は2に記載のグラフト共重合体。
項4
前記脂肪族ポリカーボネートがポリエチレンカーボネート、ポリプロピレンカーボネート及びポリトリメチレンカーボネートからなる群より選ばれる1種以上である、項3に記載のグラフト共重合体。
項5
前記セルロース系樹脂がアルキルセルロース、ヒドロキシアルキルセルロース及びセルロースエステルからなる群より選ばれる1種以上である、項1~4のいずれか1項に記載のグラフト共重合体。
項6
前記セルロース系樹脂がエチルセルロースである、項1~5のいずれか1項に記載のグラフト共重合体。
項7
質量平均分子量が5万以上、100万以下である、項1~6のいずれか1項に記載のグラフト共重合体。
項8
セルロース系樹脂の存在下、エポキシドと二酸化炭素との共重合を行う工程を備える、グラフト共重合体の製造方法。
項9
セルロース系樹脂の存在下、環状カーボネートの開環重合を行う工程を備える、グラフト共重合体の製造方法。
項10
項1~7のいずれか1項に記載のグラフト共重合体を含む、ペースト組成物。
項10-1
項1~7のいずれか1項に記載のグラフト共重合体のペースト組成物への使用。
項11
項1~7のいずれか1項に記載のグラフト共重合体を含む、樹脂組成物。
項11-1
項1~7のいずれか1項に記載のグラフト共重合体の樹脂組成物への使用。
項12
項1~7のいずれか1項に記載のグラフト共重合体を含む、成形体。
項12-1
項1~7のいずれか1項に記載のグラフト共重合体の成形体への使用。
項13
項1~7のいずれか1項に記載のグラフト共重合体を含む、接着剤組成物。
項13-1
項1~7のいずれか1項に記載のグラフト共重合体の接着剤組成物への使用。
項14
項1~7のいずれか1項に記載のグラフト共重合体を含む、インク組成物。
項14-1
項1~7のいずれか1項に記載のグラフト共重合体のインク組成物への使用。
項15
項1~7のいずれか1項に記載のグラフト共重合体を含む、コーティング組成物。
項15-1
項1~7のいずれか1項に記載のグラフト共重合体のコーティング組成物への使用。
項16
項1~7のいずれか1項に記載のグラフト共重合体を含む、バインダー樹脂。
項16-1
項1~7のいずれか1項に記載のグラフト共重合体のバインダー樹脂への使用。
項17
項1~7のいずれか1項に記載のグラフト共重合体を含む、分散剤。
項17-1
項1~7のいずれか1項に記載のグラフト共重合体の分散剤への使用。
 本発明に係るグラフト共重合体は、グラフト部分に起因にする機能が発現しつつ、セルロース系樹脂が有する性能については一定の水準が維持される。
実施例1で得られたグラフト共重合体の重クロロホルム中のH-NMRスペクトルを示す 実施例1で得られたグラフト共重合体のIRスペクトルを示す。
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。また、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。
 1.グラフト共重合体
 本発明のグラフト共重合体は、幹ポリマーと、該幹ポリマーに結合する枝ポリマーとを有し、前記幹ポリマーがセルロース系樹脂を含み、前記枝ポリマーがポリカーボネートを含む。斯かるグラフト共重合体によれば、グラフト部分に起因にする機能が発現しつつ、セルロース系樹脂が有する性能については一定の水準が維持される。
 ここで、グラフト部分に起因にする機能とは、例えば、グラフト共重合体を含む成形体の優れた機械特性、グラフト共重合体の優れた熱分解特性、グラフト共重合体を含むペースト組成物の優れたチキソトロピー性等をいう。また、セルロース系樹脂が有する性能とは、例えば、ペースト組成物にしたときの曵糸性、成形体にしたときの透明性、分散安定剤として使用したきの分散安定性をいう。
 本発明のグラフト共重合体において、幹ポリマーを構成するセルロース系樹脂の種類は特に限定されず、例えば、公知のセルロース系樹脂を広く適用することができる。セルロース系樹脂の具体例としては、メチルセルロース、エチルセルロース、メチルエチルセルロース、n-プロピルセルロース、イソプロピルセルロース、n-ブチルセルロース、tert-ブチルセルロース、n-ヘキシルセルロース等のアルキルセルロース;ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシブチルセルロース等のヒドロキシアルキルセルロース;酢酸セルロース、二酢酸セルロース、三酢酸セルロース、酢酸プロピオン酸セルロース、酢酸酪酸セルロース等のセルロースエステル;カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシプロピルセルロース等のカルボキシアルキルセルロース;その他、ニトロセルロース、アルデヒドセルロース、ジアルデヒドセルロース、スルホン化セルロース等のセルロース誘導体またはセルロースが挙げられる。幹ポリマーを構成するセルロース系樹脂の種類は1種又は2種以上とすることができる。
 中でも熱分解性がより優れるという観点から、セルロース系樹脂は、アルキルセルロース、ヒドロキシアルキルセルロース及びセルロースエステルからなる群より選ばれる1種以上であることが好ましく、アルキルセルロースであることがより好ましく、エチルセルロースであることが特に好ましい。
 本発明のグラフト共重合体において、セルロース系樹脂の置換度は特に限定されず、本発明の効果が阻害されない限りは種々の値とすることができる。例えば、セルロース系樹脂の置換度は2以上3以下であり、一般的には3となる。
 本明細書において、セルロース系樹脂の置換度とは、セルロース系樹脂の構造単位中の全水酸基のうち、枝ポリマーに置換された総数をいう。
 幹ポリマーはセルロース系樹脂以外の構造単位を含むことができ、あるいは、幹ポリマーはセルロース系樹脂のみで形成することもできる。幹ポリマーはセルロース系樹脂以外の構造単位を含む場合、その含有割合は、幹ポリマーの全構造単位に対して30質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは1質量%以下とすることができる。
 本発明のグラフト共重合体において、枝ポリマーはポリカーボネートを含む。ポリカーボネートは、通常は、幹ポリマーであるセルロース系樹脂に化学結合により結合して存在する。より具体的に本発明のグラフト共重合体は、セルロース系樹脂の構造単位中の水酸基又は該水酸基の水素原子がポリカーボネートに置換されている。
 ポリカーボネートの種類は特に限定されず、例えば、公知のポリカーボネートを広く適用することができる。例えば、ポリカーボネートは、脂肪族ポリカーボネートとすることができる。この場合、グラフト共重合体を製造しやすく、また、グラフト共重合体は、熱分解後の残渣がより少なく、より優れた成形性を有することができる。
 本発明のグラフト共重合体において、ポリカーボネートが脂肪族ポリカーボネートである場合、その種類は特に限定されず、例えば、下記一般式(1)で表される構造単位を有する構造とすることができる。
Figure JPOXMLDOC01-appb-C000001
 ここで、式(1)中、R、R、R及びRは同一又は異なって、水素原子、置換基で置換されていてもよい炭素数1から10の直鎖又は分岐のアルキル基、もしくは置換基で置換されていてもよい炭素数6から20のアリール基を示す。また、R、R、R及びRのうち、2つが互いに結合し、置換基で置換されていてもよい環員数3から10の脂肪族環を形成しても良い。
 式(1)において、炭素数1から10の直鎖又は分岐のアルキル基とは、炭素数1、2、3、4、5、6、7、8、9又は10の、直鎖又は分岐鎖状のアルキル基である。このアルキル基の炭素数は、1から4が好ましく、1又は2が特に好ましい。具体的にはアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
 式(1)において、炭素数1から10の直鎖又は分岐のアルキル基が置換基で置換されている場合、置換基の数は1又は2以上とすることができる。この場合の置換基としては、例えば、ヒドロキシ基、アルコキシ基、エステル基、シリル基、スルファニル基、シアノ基、ニトロ基、スルホ基、ホルミル基、カルボキシ基、アリール基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。ここでのアルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基等が挙げられる。
 式(1)において、炭素数6から20のアリール基とは、炭素数6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20のアリール基である。このアリール基の炭素数は、6から14が好ましい。アリール基としては、例えば、フェニル基、ナフチル基、テトラヒドロナフチル基等が挙げられる。
 式(1)において、炭素数6から20のアリール基が置換基で置換されている場合、置換基の数は1又は2以上とすることができる。この場合の置換基としては、例えば、アルキル基、ヒドロキシ基、アルコキシ基、エステル基、シリル基、スルファニル基、シアノ基、ニトロ基、スルホ基、ホルミル基、カルボキシ基、アリール基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。ここでのアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基等が挙げられる。また、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。
 式(1)において、R、R、R及びRは、同一とすることができ、あるいは、一部又は全部が異なっていてもよい。例えば、式(1)において、R、R、R及びRが全て同一でもよく、R、R、Rが同一でRは異なっていてもよく、R、R、Rが同一でRは異なっていてもよく、R、R、R、及びRが全て異なっていてもよい。
 式(1)において、R、R、R及びRのうち、2つが互いに結合し、置換基で置換されていてもよい環員数3から10の脂肪族環を形成することもできる。具体的には、R、R、R、Rのうちの二つが、互いに結合して、これらが結合する炭素原子と共に、置換若しくは非置換の飽和若しくは不飽和の環員数3から10の脂肪族環を形成することもできる。当該脂肪族環は、1又は2以上の置換基で置換されていてもよい。
 このような脂肪族環としては、例えば、置換基で置換されていてもよい3から8員環の脂肪族環が挙げられる。当該脂肪族環としては、より具体的には、シクロペンタン環、シクロペンテン環、シクロヘキサン環、シクロヘキセン環、シクロヘプタン環等が挙げられる。また、当該脂肪族環が置換基で置換されている場合、置換基としては、例えば、アルキル基、アリール基、アルコキシ基、アシルオキシ基、アルコキシカルボニル基、シリル基、スルファニル基、シアノ基、ニトロ基、スルホ基、ホルミル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。ここでのアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基等が挙げられる。また、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。また、アシルオキシ基としては、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等が挙げられる。また、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。
 式(1)において、R、R、R及びRは、同一又は異なって、水素原子又は炭素数1から4のアルキル基であることが好ましい。特に、R、R及びRは水素原子であり、Rは水素原子又は炭素数1から4のアルキル基であることが好ましい。また、中でも、Rは水素原子、メチル基又はエチル基であることが更に好ましい。
 前記式(1)で表される構造単位を有する脂肪族ポリカーボネートの他、脂肪族ポリカーボネートとしては、ポリトリメチレンカーボネート、ポリテトラメチレンカーボネート、ポリヘキサメチレンカーボネート、ポリ-2,2-ジメチルトリメチレンカーボネート、ポリ1,4-シクロヘキサンジメチレンカーボネート等を挙げることができる。
 枝ポリマーを構成するポリカーボネートの種類は1種又は2種以上とすることができる。
 本発明のグラフト共重合体において、枝ポリマーである脂肪族ポリカーボネートとしては、ポリエチレンカーボネート、ポリプロピレンカーボネート及びポリトリメチレンカーボネートからなる群より選ばれる1種以上であることが好ましい。この場合、グラフト共重合体を製造しやすく、また、グラフト共重合体は、熱分解後の残渣がより少なく、より優れた成形性及び透明性を有することができる。脂肪族ポリカーボネートがポリエチレンカーボネートである場合、式(1)で表される構造単位において、R、R、R及びRは水素原子である。脂肪族ポリカーボネートがポリプロピレンカーボネートである場合、式(1)で表される構造単位において、R、R及びRは水素原子であり、Rはメチル基である。
 枝ポリマーを構成するポリカーボネートは、例えば、式(1)以外の他の構造単位を有していても良く、また、末端基が修飾されていてもよい。式(1)以外の他の構造単位としては、ポリエーテル、ポリエステル、ポリアミド、ポリアクリレートなどの構造単位、カルボキシ基やヒドロキシ基、アミノ基などの反応性基を有する構造単位などが挙げられる。末端基の修飾としては、酸無水物、環状酸無水物、酸ハロゲン化物、イソシアネート化合物などによる修飾が挙げられる。ポリカーボネートが式(1)以外の他の構造単位を有する場合、その含有量は、ポリカーボネートの全構造単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、3モル%以下であることがさらに好ましく、1モル%以下であることが最も好ましい。
 本発明のグラフト共重合体は、幹ポリマーを構成するセルロース系樹脂と、枝ポリマーを構成するポリカーボネートの含有割合は、本発明の効果が阻害されない限り、特に制限されない。熱分解後の残渣がより少なく、より優れた成形性を有しやすいという観点から、グラフト共重合体は、セルロース系樹脂に対し、ポリカーボネートの割合が10質量%以上、300質量%以下であることが好ましい。中でも、セルロース系樹脂に対し、ポリカーボネートの割合が50質量%以上、200質量%以下であることが好ましい。
 セルロース系樹脂に対するポリカーボネートの割合は、核磁気共鳴分光分析(NMR分析)により求めることができる。なお、グラフト共重合体において、セルロース系樹脂に対するポリカーボネートの割合は、「グラフト率」ともいう。
 本発明のグラフト共重合体の質量平均分子量は特に制限されず、例えば、5万以上、100万以下とすることができる。この場合、グラフト共重合体は、より優れた強度、伸び及び破壊靭性等の機械物性を有することができ、また、成形性にも優れる。グラフト共重合体の質量平均分子量は15万以上、60万以下であることがさらに好ましい。
 本発明のグラフト共重合体の形態は特に限定されず、使用用途に応じて種々の形態とすることができ、例えば、粉末、顆粒、塊状、ペレット状、ストランド状、繊維状、液状、分散体、溶液、成形体等、種々の形態とすることができる。
 本発明のグラフト共重合体は、以上のような形態とすることで、熱分解後の残渣が少なく、成形性や透明性にも優れ、加えて、セルロース系樹脂及びポリカーボネートの両者の特長がバランスよく発揮される。例えば、本発明のグラフト共重合体は、溶液にしたときの曵糸性及びチキソトロピー性に優れるので、印刷性に優れ、例えば、ペースト、インク、コーティング液等の用途に好適に用いることができる。また、本発明のグラフト共重合体の成形体は、透明性が高く、かつ、優れた機械特性(機械強度及び伸び)を示すので、例えば、シート、フィルム等の成形体として好適に使用することができる。また、本発明のグラフト共重合体は、前述のように熱分解性に優れることから、熱分解性のバインダー樹脂として好適に使用することができる。さらに、本発明のグラフト共重合体は、各種分散媒に対する分散性に優れ、分散剤としても好適に使用することができる。
 本発明のグラフト共重合体は、従来のセルロース系樹脂を幹ポリマーとしたグラフト共重合体の種々の問題が起こりにくい。例えば、熱分解後の残渣が多いという問題、グラフト部分の結晶化によって、幹ポリマーの高い透明性が発現されにくいという問題、あるいは、シート化するのに十分な硬さを維持できないという問題が本発明のグラフト共重合体では起こりにくい。
 2.グラフト共重合体の製造方法
 本発明のグラフト共重合体の製造方法は、セルロース系樹脂の存在下、エポキシドと二酸化炭素との共重合を行う工程を備える。あるいは、本発明のグラフト共重合体の製造方法は、セルロース系樹脂の存在下、環状カーボネートの開環重合を行う工程を備える。以下、前者の工程を備える製造方法を「製造方法1」と表記し、後者の工程を備える製造方法を「製造方法2」と表記する。製造方法1又は製造方法2によって、例えば、前述の本発明のグラフト共重合体が製造される。
 (製造方法1)
 製造方法1では、セルロース系樹脂の存在下、エポキシドと二酸化炭素との共重合を行う。製造方法1で使用するセルロース系樹脂は、グラフト共重合体の幹ポリマーを形成するための原料である。また、製造方法1において、エポキシドと二酸化炭素との共重合で形成される重合体はポリカーボネートである。つまり、製造方法1で使用するエポキシドと二酸化炭素は、グラフト共重合体の枝ポリマーを形成するための原料である。
 製造方法1で使用するセルロース系樹脂の種類は特に限定されず、例えば、公知のセルロース系樹脂を広く適用することができる。セルロース系樹脂の具体例としては、メチルセルロース、エチルセルロース、メチルエチルセルロース、n-プロピルセルロース、イソプロピルセルロース、n-ブチルセルロース、tert-ブチルセルロース、n-ヘキシルセルロース等のアルキルセルロース;ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシブチルセルロース等のヒドロキシアルキルセルロース;酢酸セルロース、二酢酸セルロース、三酢酸セルロース、酢酸プロピオン酸セルロース、酢酸酪酸セルロース等のセルロースエステル;カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシプロピルセルロース等のカルボキシアルキルセルロース;その他、ニトロセルロース、アルデヒドセルロース、ジアルデヒドセルロース、スルホン化セルロース等のセルロース誘導体またはセルロースが挙げられる。製造方法1で使用するセルロース系樹脂は1種又は2種以上とすることができる。
 中でも熱分解性がより優れるという観点から、セルロース系樹脂は、アルキルセルロース、ヒドロキシアルキルセルロース及びセルロースエステルからなる群より選ばれる1種以上であることが好ましく、エチルセルロース、ヒドロキシプロピルセルロース、酢酸酪酸セルロースであることがさらに好ましく、エチルセルロースであることが特に好ましい。
 製造方法1で使用するセルロース系樹脂の質量平均分子量は、特に限定されない。例えば、製造方法1で使用するセルロース系樹脂の質量平均分子量は、5千以上が好ましく、1万以上がより好ましく、10万以上がさらに好ましい。また、製造方法1で使用するセルロース系樹脂の質量平均分子量は、100万以下が好ましく、75万以下がより好ましく、50万以下がさらに好ましい。セルロース系樹脂の製造方法は特に限定されず、例えば、公知の方法で製造することができる。あるいは、本発明で使用するセルロース系樹脂は、市販品等から入手することもできる。
 製造方法1で使用するエポキシドは、例えば、エチレンオキシド、プロピレンオキシド、トリメチレンオキシド(オキセタン)、3,3-ジメチルトリメチレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、1-ドデセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキサンオキシド、3-フェニルプロピレンオキシド、3,3,3-トリフルオロプロピレンオキシド、3-ナフチルプロピレンオキシド、2-フェノキシプロピレンオキシド、3-ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3-ビニルオキシプロピレンオキシド及び3-トリメチルシリルオキシプロピレンオキシド等が挙げられる。なかでも、高い反応性を有する観点から、エチレンオキシド、プロピレンオキシド、トリメチレンオキシド及び1,2-ブチレンオキシドが好ましく、エチレンオキシド、プロピレンオキシド及びトリメチレンオキシドであることがより好ましい。エポキシドがエチレンオキシドを含む場合、得られるポリカーボネートはポリエチレンカーボネート、エポキシドがプロピレンオキシドを含む場合、得られるポリカーボネートはポリプロピレンカーボネート、エポキシドがトリメチレンオキシドを含む場合、得られるポリカーボネートはポリトリメチレンカーボネートである。
 製造方法1において、エポキシドと二酸化炭素とを共重合するための重合反応は、金属触媒の存在下で行うこともできる。金属触媒としては、例えば、亜鉛系触媒、アルミニウム系触媒、クロム系触媒、コバルト系触媒等が挙げられる。これらの中でも、エポキシドと二酸化炭素との重合反応において、高い重合活性を有することから、亜鉛系触媒又はコバルト系触媒が好ましい。
 亜鉛系触媒としては、例えば、ジエチル亜鉛-水系触媒、ジエチル亜鉛-ピロガロール系触媒、ビス((2,6-ジフェニル)フェノキシ)亜鉛、N-(2,6-ジイソプロピルフェニル)-3,5-ジ-tert-ブチルサリチルアルドイミナト亜鉛、2-((2,6-ジイソプロピルフェニル)アミド)-4-((2,6-ジイソプロピルフェニル)イミノ)-2-ペンテン亜鉛アセテート、アジピン酸亜鉛、グルタル酸亜鉛等が挙げられる。
 コバルト系触媒としては、酢酸コバルト-酢酸系触媒、N,N′-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトアセテート、N,N′-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトペンタフルオロベンゾエート、N,N′-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトクロリド、N,N′-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトナイトレート、N,N′-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルト2,4-ジニトロフェノキシド、テトラフェニルポルフィリンコバルトクロリド、テトラフェニルポルフィリンコバルトアセテート、N,N´-ビス[2-(エトキシカルボニル)-3-オキソブチリデン]-1,2-シクロヘキサンジアミナトコバルトクロリド、N,N´-ビス[2-(エトキシカルボニル)-3-オキソブチリデン]-1,2-シクロヘキサンジアミナトコバルトペンタフルオロベンゾエート等が挙げられる。
 コバルト触媒を用いる場合は、助触媒を用いることが好ましい。助触媒としては、ピリジン、N,N-4-ジメチルアミノピリジン、N-メチルイミダゾール、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムアセテート、トリフェニルホスフィン、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド、ビス(トリフェニルホスホラニリデン)アンモニウムアセテート等が挙げられる。
 重合反応に用いられる金属触媒(必要に応じて助触媒)の使用量は、公知のエポキシド及び二酸化炭素の共重合条件と同様とすることができ、重合反応の進行を促進する観点から、エポキシド1モルに対して好ましくは0.001モル以上、より好ましくは0.005モル以上である。また、重合反応に用いられる金属触媒(必要に応じて助触媒)の使用量は、使用量に見合う効果を得る観点から、エポキシド1モルに対して好ましくは0.2モル以下、より好ましくは0.1モル以下である。
 重合反応には、必要に応じて反応溶媒を用いてもよい。反応溶媒としては、特に限定されないが、種々の有機溶媒を用いることができる。有機溶媒としては、例えば、ペンタン、ヘキサン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;塩化メチレン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、アニソール等のエーテル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;N,N-ジメチルホルミアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;炭酸ジメチル、炭酸ジエチル、炭酸プロピレン等のカーボネート系溶媒等が挙げられる。
 反応溶媒の使用量は、反応を円滑に進行させる観点から、エポキシド100質量部に対して、100から10000質量部が好ましい。
 エポキシドと二酸化炭素とを金属触媒の存在下で重合反応させる方法としては、特に限定されないが、例えば、オートクレーブに、セルロース系樹脂、エポキシド、触媒、及び必要により助触媒、反応溶媒等を仕込み、混合した後、二酸化炭素を圧入して、反応させる方法が挙げられる。
 重合反応において用いられる二酸化炭素の使用量は、エポキシド1モルに対して、好ましくは0.5から10モル、より好ましくは0.6から5モル、さらに好ましくは0.7から3モルである。
 重合反応において、二酸化炭素の圧力は特に限定されないが、反応を円滑に進行させる観点から、好ましくは0.1MPa以上、より好ましくは0.2MPa以上、さらに好ましくは0.5MPa以上であり、使用圧力に見合う効果を得る観点から、好ましくは20MPa以下、より好ましくは10MPa以下、さらに好ましくは5MPa以下である。
 重合反応における重合反応温度は、特に限定されないが、反応時間短縮の観点から、好ましくは0℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、副反応を抑制し、収率を向上させる観点から、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは60℃以下である。
 反応時間は、重合反応条件により異なるために一概には決定できないが、通常、1から40時間程度であることが好ましい。
 製造方法1において、セルロース系樹脂と、エポキシドとの使用割合は特に限定されず、目的とするグラフト率及び、セルロース系樹脂の置換度に応じて、適宜設定することができる。得られるグラフト共重合体の熱分解後の残渣がより少なく、より優れた成形性を有しやすいという観点から、セルロース系樹脂100質量部あたり、エポキシドの使用量が100質量部以上、5000質量部以下であることが好ましく、250質量部以上、2500質量部以下であることがさらに好ましい。
 上記のように、セルロース系樹脂の存在下、エポキシドと二酸化炭素との共重合を行うことで、エポキシドと二酸化炭素とが重合してポリカーボネートが生成すると共に、セルロース系樹脂の構造単位中の水酸基も、エポキシドと反応する。この結果、セルロース系樹脂の構造単位中の水酸基又は該水酸基の水素原子がポリカーボネートに置換された構造を有するグラフト共重合体が得られる。
 製造方法1においては、重合反応の後、必要に応じて適宜の方法で得られたグラフト共重合体の精製等をすることができる。
 (製造方法2)
 製造方法2では、セルロース系樹脂の存在下、環状カーボネートの開環重合を行う。製造方法2で使用するセルロース系樹脂は、グラフト共重合体の幹ポリマーを形成するための原料である。また、製造方法2において、環状カーボネートの開環重合で形成される重合体はポリカーボネートである。つまり、製造方法2で使用する環状カーボネートは、グラフト共重合体の枝ポリマーを形成するための原料である。
 製造方法2で使用するセルロース系樹脂の種類は特に限定されず、製造方法1と同様のセルロース系樹脂を挙げることができる。従って、製造方法2で使用するセルロース系樹脂は、アルキルセルロース、ヒドロキシアルキルセルロース及びセルロースエステルからなる群より選ばれる1種以上であることが好ましく、エチルセルロース、ヒドロキシプロピルセルロース、酢酸酪酸セルロースであることがさらに好ましく、エチルセルロースであることが特に好ましい。
 製造方法2で使用する環状カーボネートの種類は特に限定されず、開環重合によりポリカーボネートを形成することが可能な公知の環状カーボネートを広く適用することができる。具体的に環状カーボネートとして、エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、2,2-ジメチルトリメチレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、イソブチレンカーボネート、シクロヘキセンカーボネート、テトラメチレンカーボネート等が挙げられる。なかでも、高い反応性を有する観点から、環状カーボネートは、エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネートが好ましく、エチレンカーボネート、プロピレンカーボネートであることがより好ましい。エポキシドがエチレンカーボネートを含む場合、得られるポリカーボネートはポリエチレンカーボネート、エポキシドがプロピレンカーボネートを含む場合、得られるポリカーボネートはポリプロピレンカーボネート、エポキシドがトリメチレンカーボネートを含む場合、得られるポリカーボネートはポリトリメチレンカーボネートである。
 製造方法2において、環状カーボネートを開環重合する方法は特に限定されず、公知の開環重合の条件を広く採用することができる。例えば、環状カーボネートの開環重合は触媒の存在下で行うことができる。触媒としては、ナトリウム、カリウム、水酸化ナトリウム、水酸化カリウム、トリエチルアルミニウム、アルミニウムトリイソプロポキシド、n-ブチルリチウム、チタンテトライソプロポキシド、四塩化チタン、ジルコニウムテトライソプロポキシド、四塩化スズ、スズ酸ナトリウム、オクタン酸スズ、ジブチルスズジラウレート等の金属系触媒;ピリジン、4-ジメチルアミノピリジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等の塩基触媒;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、ジフェニルリン酸、フェノール等の酸触媒;1,3-ビス(2-プロピル)-4,5-ジメチルイミダゾール-2-イリデン、1,3-ジ-i-プロピルイミダゾール-2-イリデン等のN-ヘテロ環状カルベン等を挙げることができる。開環重合で使用する触媒は1種単独とすることができ、あるいは2種以上とすることもできる。
 環状カーボネートの開館重合は、助触媒を用いることもできる。助触媒としては、N-シクロヘキシル-N´-フェニルチオ尿素、N,N´-ビス[3,5-ビス(トリフルオロメチル)フェニル]チオ尿素、N-[3,5-ビス(トリフルオロメチル)フェニル]-N´-シクロヘキシルチオ尿素、(-)-スパルテイン等が挙げられる。
 環状カーボネートの開環重合に用いられる触媒(必要に応じて助触媒)の使用量は、公知の環状カーボネートの開環重合条件と同様とすることがでる。重合反応の進行を促進する観点から、環状カーボネート1モルに対して好ましくは0.001モル以上、より好ましくは0.005モル以上である。また、重合反応に用いられる触媒(必要に応じて助触媒)の使用量は、使用量に見合う効果を得る観点から、環状カーボネート1モルに対して好ましくは0.2モル以下、より好ましくは0.1モル以下である。
 環状カーボネートの開環重合では、必要に応じて反応溶媒を用いてもよい。反応溶媒としては、特に限定されないが、種々の有機溶媒を用いることができる。有機溶媒としては、例えば、ペンタン、ヘキサン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;塩化メチレン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;エチレングリコールジメチルエーテル(モノグライム)、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、アニソール等のエーテル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;N,N-ジメチルホルミアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒;炭酸ジメチル、炭酸ジエチル等のカーボネート系溶媒等が挙げられる。
 反応溶媒の使用量は、開環重合を円滑に進行させる観点から、エポキシド100質量部に対して、100から10000質量部が好ましい。
 開環重合は、例えば、ガラスフラスコに、セルロース系樹脂、環状カーボネート、触媒、及び必要により助触媒、反応溶媒等を仕込み、混合して反応させる方法が挙げられる。
 開環重合の反応温度は特に限定されないが、反応時間短縮の観点から、好ましくは0℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、セルロース系樹脂の劣化を抑制する観点から、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは180℃以下である。
 反応時間は、重合反応条件により異なるために一概には決定できないが、通常、1から40時間程度であることが好ましい。
 製造方法2において、セルロース系樹脂と、環状カーボネートとの使用割合は特に限定されず、目的とするグラフト率及び、セルロース系樹脂の置換度に応じて、適宜設定することができる。得られるグラフト共重合体の熱分解後の残渣がより少なく、より優れた成形性を有しやすいという観点から、セルロース系樹脂100質量部あたり、環状カーボネートの使用量が100質量部以上、5000質量部以下であることが好ましく、200質量部以上、2000質量部以下であることがさらに好ましい。
 上記のように、セルロース系樹脂の存在下、環状カーボネートの開環重合を行うことで、環状カーボネートが開環重合してポリカーボネートが生成すると共に、セルロース系樹脂の構造単位中の水酸基も、環状カーボネートと反応する。この結果、セルロース系樹脂の構造単位中の水酸基又は該水酸基の水素原子がポリカーボネートに置換された構造を有するグラフト共重合体が得られる。
 製造方法2においては、重合反応の後、必要に応じて適宜の方法で得られたグラフト共重合体の精製等をすることができる。
 製造方法1及び製造方法2で得られるグラフト共重合体は、例えば、前述の本発明のグラフト共重合体であることから、熱分解後の残渣が少ない。また、しかも、製造方法1及び製造方法2で得られるグラフト共重合体は、成形性や透明性にも優れる。
 3.グラフト共重合体の用途及び使用方法
 本発明のグラフト共重合体又は本発明の製造方法で得られるグラフト共重合体は、種々の用途に適用することができる。例えば、グラフト共重合体は、ペースト組成物、樹脂組成物、接着剤組成物、インク組成物、コーティング組成物の構成成分として使用することができる。また、グラフト共重合体を含む材料によって成形体を形成することもできる。その他、グラフト共重合体は、バインダー樹脂、分散剤等にも使用することができる。
 グラフト共重合体をペースト組成物として使用する場合、ペースト組成物以外の成分は公知のペースト組成物と同様とすることができる。公知のペースト組成物は、例えば、各種電子材料や電子部品等の用途に広く使用されている導電性ペーストやガラスペースト等を挙げることができる。従って、ペースト組成物は例えば、本発明のグラフト共重合体と、溶剤と、導電性材料とを含有することができ、導電性材料としては、公知の金属、例えば、金、銀、銅、パラジウム、ニッケル等を挙げることができる。また、ペースト組成物は例えば、本発明のグラフト共重合体と、溶剤と、ガラス粉末とを含有することができ、ガラス粉末としては、例えば、CaO-Al-SiO系、MgO-Al-SiO系、LiO-Al-SiO系等のケイ素酸化物;酸化ビスマスガラス、ケイ酸塩ガラス、鉛ガラス、亜鉛ガラス、ボロンガラス等のガラス粉末等を挙げることができる。ペースト組成物におけるグラフト共重合体の含有量は、公知のペーストに含まれる樹脂成分と同様とすることができる。
 グラフト共重合体を接着剤組成物、インク組成物、コーティング組成物として使用する場合も、樹脂成分がグラフト共重合体であることを除いては、公知の各組成物と同様とすることができる。
 グラフト共重合体を成形体として使用する場合、その成形方法は特に限定されず、公知の成形方法及び成形条件を広く適用することができる。成形体の形状も特に限定されず、シート、フィルム、板、ブロック等の他、種々の形状とすることができる。特にグラフト共重合体は成形性に優れるものであり、従来のグラフト共重合体では困難であったシート、フィルムの成形を容易に行うことができる。
 グラフト共重合体を成形する場合、成形に使用する原料はグラフト共重合体のみであってもよいし、グラフト共重合体とその他の樹脂材料を含む原料を使用することもできる。
 グラフト共重合体をバインダー樹脂として使用する場合、バインダー樹脂はグラフト共重合体のみであってもよいし、バインダー樹脂の性能が阻害されない程度であれば、グラフト共重合体に加えてその他の成分を含むこともできる。前述のようにグラフト共重合体は熱分解後の残渣が少ないことから、熱分解で焼失させることを目的とするバインダー樹脂として好適に使用することができる。
 グラフト共重合体を分散剤として使用する場合、分散剤はグラフト共重合体のみであってもよいし、分散剤の性能が阻害されない程度であれば、グラフト共重合体とその他の成分を含むこともできる。前述のようにグラフト共重合体は各種分散媒に対する分散性に優れ、分散剤として好適に使用することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。
 各実施例及び比較例で得られたでグラフト共重合体の質量平均分子量(Mw)は、以下の方法により行った。
 〔グラフト共重合体の質量平均分子量(Mw)〕
 グラフト共重合体濃度が0.2質量%であるテトラヒドロフラン溶液を調製し、高速液体クロマトグラフ(HPLC)を用いて、グラフト共重合体の質量平均分子量(Mw)を測定した。この測定値を、同一条件で測定した質量平均分子量が既知のポリスチレンと比較することにより、グラフト共重合体の質量平均分子量Mwを算出した。測定条件は、以下の通りとした。
・カラム:GPCカラム(昭和電工株式会社の商品名、Shodex OHPac SB-804,SB-805)
・カラム温度:40℃
・溶出液:テトラヒドロフラン
・流速:1.0mL/min
 (製造例1;コバルト触媒の製造)
 50mLフラスコに,(R,R)-N,N′-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルト(II)(Aldrich社より購入)150mg(0.25mmol)、ペンタフルオロ安息香酸53mg(0.25mmol)、及び塩化メチレン5mLを仕込み、空気雰囲気下で18時間攪拌した。揮発成分を減圧留去した後、減圧乾燥させ、コバルト錯体を暗緑色固体として得た(収量195mg,収率96%)。
 (実施例1)
 190mL容のオートクレーブに、製造例1で得られたコバルト錯体0.5質量部、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド(PPNCl)0.4質量部、エチルセルロース(Mw=22万、エトキシ化率48.0%)30質量部を仕込み、当該オートクレーブ内を二酸化炭素雰囲気に置換した。次いで、プロピレンオキシド120質量部を仕込み、オートクレーブ内の圧力が1.0MPaとなるまで二酸化炭素を充填し、その後、40℃で10時間攪拌することで反応混合物を得た。反応終了後、オートクレーブを脱圧し、反応混合物をクロロホルムで希釈したのち、塩酸酸性メタノール30質量部を加えて反応を停止させた。この混合物を減圧下で濃縮し、得られた残渣にクロロホルム100質量部を加えて溶解させ、この溶液をメタノール2000質量部中に滴下して固体を析出させた。得られた固体をろ過し、70℃で8時間乾燥させることで、グラフト共重合体体を得た。得られたグラフト共重合体は、グラフト率200質量%、Mwは38万であった。
 (実施例2)
 冷却管、温度計及び攪拌機を備え付けたセパラブルフラスコに、エチルセルロース(Mw=22万、エトキシ化率48.0%)30質量部、プロピレンカーボネート100質量部、スズ酸ナトリウム1質量部及びジグライム250質量部を仕込んだ。次いで、窒素雰囲気下で150℃まで昇温し、同温度で24時間攪拌して反応させた。得られた反応溶液を50質量%メタノール水溶液1000質量部に滴下させることで固体を析出させた。析出した固体をろ過により回収し、50質量%メタノール水溶液500質量部で洗浄後、70℃で8時間乾燥させることで、グラフト共重合体を得た。得られたグラフト共重合体はグラフト率53質量%、Mwは29万であった。
 (実施例3)
 スズ酸ナトリウム1質量部の代わりに、オクタン酸スズ0.5質量部及び1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)0.5質量部の組み合わせに変更したこと以外は、実施例2と同様の方法でグラフト共重合体を得た。得られたグラフト共重合体はグラフト率90質量%、Mwは30万であった。
 (実施例4)
 スズ酸ナトリウム1質量部の代わりに、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)1質量部に変更したこと以外は、実施例2と同様の方法でグラフト共重合体を得た。得られたグラフト共重合体はグラフト率10質量%、Mwは25万であった。
 (実施例5)
 冷却管、温度計及び攪拌機を備え付けたセパラブルフラスコに、エチルセルロース(Mw=22万、エトキシ化率48.0%)30質量部、エチレンカーボネート100質量部、スズ酸ナトリウム0.2質量部及びジグライム250質量部を仕込んだ。次いで、窒素雰囲気下で150℃まで昇温し、同温度で10時間攪拌して反応させた。得られた反応溶液を50質量%メタノール水溶液1000質量部に滴下させることで固体を析出させた。析出した固体をろ過により回収し、50質量%メタノール水溶液1000質量部で洗浄後、70℃で8時間乾燥させることで、グラフト共重合体を得た。得られたグラフト共重合体はグラフト率80質量%、Mwは49万であった。
 (実施例6)
 スズ酸ナトリウム1質量部の代わりに、オクタン酸スズ0.1質量部及びTBD0.1質量部の組み合わせに変更したこと以外は、実施例5と同様の方法でグラフト共重合体を得た。得られたグラフト共重合体はグラフト率140質量%、Mwは52万であった。
 (実施例7)
 スズ酸ナトリウム1質量部の代わりに、DBU0.2質量部に変更したこと以外は、実施例5と同様の方法でグラフト共重合体を得た。得られたグラフト共重合体はグラフト率40質量%、Mwは28万であった。
 (実施例8)
 冷却管、温度計及び攪拌機を備え付けたセパラブルフラスコに、エチルセルロース(Mw=22万、エトキシ化率48.0%)20質量部、トリメチレンカーボネート100質量部、メタンスルホン酸1質量部及びジグライム250質量部を仕込んだ。次いで、窒素雰囲気下で60℃まで昇温し、同温度で10時間攪拌して反応させた。得られた反応溶液を50質量%メタノール水溶液1000質量部に滴下させることで固体を析出させた。析出した固体をろ過により回収し、50質量%メタノール水溶液500質量部で洗浄後、70℃で8時間乾燥させることで、グラフト共重合体を得た。得られたグラフト共重合体はグラフト率250質量%、Mwは68万であった。
 (実施例9)
 冷却管、温度計及び攪拌機を備え付けたセパラブルフラスコに、ヒドロキシプロピルセルロース(Mw=18万)30質量部、プロピレンカーボネート60質量部、ジブチルスズジラウレート1質量部及びジグライム250質量部を仕込んだ。次いで、窒素雰囲気下で150℃まで昇温し、同温度で24時間攪拌して反応させた。得られた反応溶液を50質量%メタノール水溶液1000質量部に滴下させることで固体を析出させた。析出した固体をろ過により回収し、50質量%メタノール水溶液500質量部で洗浄後、70℃で8時間乾燥させることで、グラフト共重合体を得た。得られたグラフト共重合体はグラフト率70質量%、Mwは27万であった。
 (実施例10)
 ヒドロキシプロピルセルロースの代わりに酢酸酪酸セルロース(Mw=9万)に変更したこと以外は実施例9と同様に操作し、グラフト共重合体を得た。得られたグラフト共重合体はグラフト率150質量%、Mwは21万であった。
 (比較例1)
 冷却管、温度計及び攪拌機を備え付けたセパラブルフラスコに、エチルセルロース(Mw=22万、エトキシ化率48.0%)30質量部、ε-カプロラクトン100質量部、キシレン55質量部を仕込んだ。次いで、窒素雰囲気下に置換し、チタン酸ブチル0.24質量部をキシレン30質量部に溶解させた溶液を加え、145℃まで昇温し、同温度で14時間攪拌して反応させた。得られた反応溶液を50質量%メタノール水溶液1000質量部に滴下させることで固体を析出させた。析出した固体をろ過により回収し、50質量%メタノール水溶液500質量部で洗浄後、70℃で8時間乾燥させることで、グラフト共重合体を得た。得られたグラフト共重合体はグラフト率280質量%、Mwは66万であった。
 (参考例1)
 エチルセルロース(Mw=22万、エトキシ化率48.0%)を単独で準備した。
 図1には、実施例1で得られたグラフト共重合体の重クロロホルム中のH-NMRスペクトルを、図2には、実施例1で得られたグラフト共重合体のIRスペクトルを示す。
 表1には、各実施例のグラフト共重合体の製造条件と、得られたグラフト共重合体のグラフト率及び質量平均分子量Mwの結果を示している。
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、実施例1で得られたグラフト共重合体は目的とする構造を有していることがわかった。
 (評価例1;ペースト評価)
 実施例1から10で得られたグラフト共重合体、比較例1で得られたグラフト共重合体、または参考例1のエチルセルロースをトルエンに3質量%の濃度に溶解させペースト組成物を作成した。得られたペースト組成物の曵糸性、チキソトロピー性をそれぞれ以下の方法で評価した。
 <曵糸性の評価>
 ペースト組成物を収容した容器内に、ポリテトラフルオロエチレン製の直径2.9mmである円柱棒を沈め、その後、その円柱棒を5mm/秒の速度で液面に対して真上方向に引き上げた。このときの、液面最表面からの曵糸性を計測して曵糸性の評価を行った。
 <チキソトロピー性>
 B型粘度計(英弘精機株式会社性LVDV-I+)を用いて、温度25℃、回転数5rpm及び50rpmでのペースト組成物の粘度をそれぞれ測定した。そして、回転数50rpmの時の粘度に対する回転数5rpmの粘度の比をチキソトロピーインデックス(TI値)として算出してチキソトロピー性の指標とした。
 表2に示す曵糸性及びチキソトロピー性の結果から、各実施例で得られたグラフト共重合体は、溶液にした時の印刷性に優れているものと判断することができる。従って、各実施例で得られたグラフト共重合体は、ペースト組成物の他、インク組成物、コーティング組成物等に適しているといえる。一方、比較例1で得られたグラフト共重合体は、溶液にしたときにゲル状の不溶成分が発生し、均一なペースト組成物が得られなかった。従って、表2に示す比較例1の結果は、不溶成分が存在したまま測定した値を参考値として記載した。
Figure JPOXMLDOC01-appb-T000003
 (評価例2;フィルム評価)
 各実施例で得られたグラフト共重合体、比較例1で得られたグラフト共重合体、または参考例1のエチルセルロースを厚さ100μmのフィルムに成形し、透明性と機械強度の評価を行った。透明性の評価は、ヘイズメーター(日本電色工業製300A型)を用いてヘイズ値を測定した。機械強度の評価は引張試験機(島津製作所製万能試験機ASG-J)を用いて、25℃、50mm/分の速度で引張試験を行い、破断応力と破断ひずみを測定した。
 表3に示す破断応力及び破断ひずみの結果から、各実施例で得られたグラフト共重合体のシートは優れた透明性と、機械強度及び伸びを示すことがわかり、シートの他、フィルム等の成形体として好適に使用するできることが示された。一方、比較例1で得られたグラフト共重合体は機械強度および伸びは優れるものの、透明性に劣るものであり、透明性が求められる用途には使用できないことが示された。
Figure JPOXMLDOC01-appb-T000004
 (評価例3;熱分解性評価)
 各実施例で得られたグラフト共重合体、比較例1で得られたグラフト共重合体、または参考例1のエチルセルロース(Mw=22万、エトキシ化率48.0%)の熱分解開始温度及び500℃における分解残渣量を測定した。熱分解温度及び分解残渣量はエスアイアイ・ナノテクノロジー社製「TG/DTA7220を用い、空気雰囲気下、10℃/minの昇温速度で室温(20℃)から500℃まで昇温しながら、熱重量の変化を計測した。熱分解開始温度は、JIS K7120:1987の定義に従った。具体的には、得られた分解曲線において、試験加熱開始前の質量を通る横軸に平行な線と、分解曲線における屈曲点間の勾配が最大となるように引いた接線との交点における温度を、熱分解開始温度とした。分解残渣量(分解残渣率)は、測定前及び測定終了後のサンプルの質量を元に、測定前のサンプル質量に対する残渣量の割合を算出した。
 表4に示す結果から、各実施例で得られたグラフト共重合体は、優れた低温分解性を有し、また、低残渣となることがわかった。従って、各実施例で得られたグラフト共重合体は、熱分解性のバインダー樹脂として好適に使用できることが示された。一方、比較例1で得られたグラフト共重合体は分解開始温度が高く、残渣も多いものであり、バインダー樹脂としては実施例で得られたグラフト共重合体の方が優れていた。
Figure JPOXMLDOC01-appb-T000005
 (評価例3;分散性評価)
 各実施例で得られたグラフト共重合体、比較例1で得られたグラフト共重合体又は参考例1のエチルセルロース5質量部と、銀粒子(レーザー回折法による中位粒子径0.5μm)20質量部と、N-メチルピロリドン75質量部とを150rpmで1時間攪拌した。このように得られたペースト組成物を透明な円筒状容器に入れ、1時間後、8時間後及び24時間後のそれぞれの分散状態を確認した。目視判断で初期の状態を維持していた場合をA、沈降が起こり、全体の2割未満の上澄みが観測された場合をB、2割以上の上澄みが観測された場合をCとして評価した。
 表5に示す結果から、各実施例で得られたグラフト共重合体は、優れた分散安定性を有していることがわかった。従って、各実施例で得られたグラフト共重合体は、分散剤として使用できることが示された。一方、比較例1で得られたグラフト共重合体は、グラフト共重合体の一部がゲル状になり不溶化し均一なペースト組成物は得られなかった。不均一なペースト組成物のまま評価を続けると、2時間後から明らかな沈降が確認され、分散剤としては好適ではないことが示された。
Figure JPOXMLDOC01-appb-T000006

Claims (17)

  1. 幹ポリマーと、該幹ポリマーに結合する枝ポリマーとを有するグラフト共重合体であって、
    前記幹ポリマーがセルロース系樹脂を含み、
    前記枝ポリマーがポリカーボネートを含む、グラフト共重合体。
  2. 前記セルロース系樹脂に対し、ポリカーボネートの割合が10質量%以上、300質量%以下である、請求項1に記載のグラフト共重合体。
  3. 前記ポリカーボネートが脂肪族ポリカーボネートである、請求項1又は2に記載のグラフト共重合体。
  4. 前記脂肪族ポリカーボネートがポリエチレンカーボネート、ポリプロピレンカーボネート及びポリトリメチレンカーボネートからなる群より選ばれる1種以上である、請求項3に記載のグラフト共重合体。
  5. 前記セルロース系樹脂がアルキルセルロース、ヒドロキシアルキルセルロース及びセルロースエステルからなる群より選ばれる1種以上である、請求項1~4のいずれか1項に記載のグラフト共重合体。
  6. 前記セルロース系樹脂がエチルセルロースである、請求項1~5のいずれか1項に記載のグラフト共重合体。
  7. 質量平均分子量が5万以上、100万以下である、請求項1~6のいずれか1項に記載のグラフト共重合体。
  8. セルロース系樹脂の存在下、エポキシドと二酸化炭素との共重合を行う工程を備える、グラフト共重合体の製造方法。
  9. セルロース系樹脂の存在下、環状カーボネートの開環重合を行う工程を備える、グラフト共重合体の製造方法。
  10. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、ペースト組成物。
  11. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、樹脂組成物。
  12. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、成形体。
  13. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、接着剤組成物。
  14. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、インク組成物。
  15. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、コーティング組成物。
  16. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、バインダー樹脂。
  17. 請求項1~7のいずれか1項に記載のグラフト共重合体を含む、分散剤。
PCT/JP2020/030301 2019-08-09 2020-08-07 グラフト共重合体、グラフト共重合体の製造方法及びその用途 WO2021029337A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021539257A JPWO2021029337A1 (ja) 2019-08-09 2020-08-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-147344 2019-08-09
JP2019147344 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029337A1 true WO2021029337A1 (ja) 2021-02-18

Family

ID=74570301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030301 WO2021029337A1 (ja) 2019-08-09 2020-08-07 グラフト共重合体、グラフト共重合体の製造方法及びその用途

Country Status (3)

Country Link
JP (1) JPWO2021029337A1 (ja)
TW (1) TW202112892A (ja)
WO (1) WO2021029337A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225843A (ja) * 1984-04-24 1985-11-11 Daicel Chem Ind Ltd ジアゾ型複写材料
JPH08208706A (ja) * 1994-10-06 1996-08-13 Genzyme Corp ポリアニオン性多糖類と疎水性生物吸収ポリマーを含む組成物
JP2006233144A (ja) * 2005-02-28 2006-09-07 Sanyo Chem Ind Ltd セルロース誘導体の製造方法
JP2008525571A (ja) * 2004-12-23 2008-07-17 オルガノクリック エービー アミンおよびアルコールの修飾
JP2010243935A (ja) * 2009-04-09 2010-10-28 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2014001262A (ja) * 2012-06-15 2014-01-09 Sumitomo Seika Chem Co Ltd 耐ブロッキング性脂肪族ポリカーボネートおよびその製造方法
CN105131556A (zh) * 2015-09-27 2015-12-09 常州市奥普泰科光电有限公司 一种向日葵秸秆制备纳米纤维素/聚碳酸酯复合材料的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225843A (ja) * 1984-04-24 1985-11-11 Daicel Chem Ind Ltd ジアゾ型複写材料
JPH08208706A (ja) * 1994-10-06 1996-08-13 Genzyme Corp ポリアニオン性多糖類と疎水性生物吸収ポリマーを含む組成物
JP2008525571A (ja) * 2004-12-23 2008-07-17 オルガノクリック エービー アミンおよびアルコールの修飾
JP2006233144A (ja) * 2005-02-28 2006-09-07 Sanyo Chem Ind Ltd セルロース誘導体の製造方法
JP2010243935A (ja) * 2009-04-09 2010-10-28 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2014001262A (ja) * 2012-06-15 2014-01-09 Sumitomo Seika Chem Co Ltd 耐ブロッキング性脂肪族ポリカーボネートおよびその製造方法
CN105131556A (zh) * 2015-09-27 2015-12-09 常州市奥普泰科光电有限公司 一种向日葵秸秆制备纳米纤维素/聚碳酸酯复合材料的方法

Also Published As

Publication number Publication date
TW202112892A (zh) 2021-04-01
JPWO2021029337A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
US8530616B2 (en) Precise control of molecular weight and chain shape control in carbon dioxide/epoxide alternating copolymerization and preparation of low molecular weight poly(alkylene carbonate) thereby
JP4311768B2 (ja) 単分散重合体の製造方法、並びに、環状モノマーの連続重合方法及びそれによる重合体
US9284407B2 (en) Preparation of poly(alkylene carbonate) containing cross-linked high molecular weight chains
JP4997461B2 (ja) ポリカーボネートの製造方法及びポリカーボネート
JP4310248B2 (ja) ポリカーボネート組成物及びその製造方法
TW201040209A (en) Polycarbonate resin composition and method for producing the same
US20110251355A1 (en) Block and Graft Copolymers of Poly(Alkylene Carbonate) and Various Polymers
JP2014505154A (ja) 難燃二酸化炭素/エポキシド共重合体及びその製造方法
CN113667110B (zh) 一种光学聚碳酸酯树脂及其制备方法
KR101459132B1 (ko) 분지상 폴리카보네이트-폴리실록산 공중합체 및 그 제조방법
WO2021029337A1 (ja) グラフト共重合体、グラフト共重合体の製造方法及びその用途
JP7326351B2 (ja) 脂肪族ポリカーボネート
KR101637399B1 (ko) 폴리오르가노실록산 화합물 및 이를 포함하는 코폴리카보네이트 수지
TW200932782A (en) Copolymers comprising a trimethylene carbonate and poly (trimethylene ether) glycols
WO2012019424A1 (zh) 一种熔融酯交换法制备聚碳酸酯的方法
JP2013108074A (ja) 環状アルキレン基を有するポリアルキレンカーボネートジオール及びその共重合体並びにそれらの製造方法
KR101657261B1 (ko) 공중합 폴리카보네이트 수지 및 그 제조방법
KR101867384B1 (ko) 폴리카보네이트의 제조방법 및 이에 따라 제조된 폴리카보네이트
KR20150106642A (ko) 이산화탄소, 에폭사이드 및 고리형 무수물 삼원공중합체의 제조 방법
TWI757939B (zh) 聚碳酸酯樹脂及其製備方法
WO2021029340A1 (ja) 焼成用バインダー樹脂組成物及びペースト組成物
KR102573181B1 (ko) 폴리에스테르 올리고머 및 그 제조방법, 및 이 올리고머를 포함하며 내스크래치성 및 친환경성이 향상된 폴리에스테르-폴리카보네이트 블록 공중합체 및 그 제조방법
CN114854000B (zh) 一种生物基聚碳酸酯共聚物及其制备方法
US10689488B2 (en) Method for preparing polycarbonate polyol and composition comprising the polycarbonate polyol
KR102184946B1 (ko) 이산화탄소, 에폭사이드 및 고리형 무수물 삼원공중합체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021539257

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852964

Country of ref document: EP

Kind code of ref document: A1