WO1998057471A1 - Circuit de synchronisation absolue - Google Patents

Circuit de synchronisation absolue Download PDF

Info

Publication number
WO1998057471A1
WO1998057471A1 PCT/JP1998/002618 JP9802618W WO9857471A1 WO 1998057471 A1 WO1998057471 A1 WO 1998057471A1 JP 9802618 W JP9802618 W JP 9802618W WO 9857471 A1 WO9857471 A1 WO 9857471A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
baseband
circuit
demodulated
Prior art date
Application number
PCT/JP1998/002618
Other languages
English (en)
French (fr)
Inventor
Akihiro Horii
Kenichi Shiraishi
Original Assignee
Kabushiki Kaisha Kenwood
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kenwood filed Critical Kabushiki Kaisha Kenwood
Priority to EP98924615A priority Critical patent/EP0987862B1/en
Priority to CA002291021A priority patent/CA2291021C/en
Priority to DE0987862T priority patent/DE987862T1/de
Priority to DE69835953T priority patent/DE69835953T2/de
Priority to US09/445,213 priority patent/US6246281B1/en
Publication of WO1998057471A1 publication Critical patent/WO1998057471A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to an absolute phase conversion circuit that receives a reception phase shift keying modulation signal, compensates the phase rotation of the demodulated signal demodulated, and matches the phase rotation of the modulation signal on the transmission side.
  • Figure 4 shows a conventional absolute phase shift circuit in a receiver that receives satellite digital broadcasts.
  • a conventional absolute phase conversion circuit for example, an intermediate frequency signal obtained by frequency-converting a received wave subjected to 8-phase phase shift keying modulation to a predetermined frequency is input to the demodulation circuit 1, for example, where the number of quantization bits is 8 bits.
  • Baseband demodulated signals I (8), Q (8) (In this specification, the numbers in parentheses such as I (8), Q (8) indicate the number of bits. The number of bits is omitted, and they are simply written as I and Q).
  • the frame synchronization circuit 2 In response to the baseband demodulated signals I (8) and Q (8), the frame synchronization circuit 2 captures a frame synchronization signal, which is a known bit stream, and outputs a frame synchronization pulse and simultaneously captures the captured frame synchronization.
  • the phase rotation signal RT (3) is set to 3 bits because the modulation method is 8-phase phase shifting modulation.
  • phase rotation signal RT (3) is the This signal indicates the phase difference.
  • R ⁇ M31 which constitutes a remapper as an address signal, and the baseband demodulated signals I (8) and Q (8) are reversed in phase by the phase difference.
  • base-band demodulated signals I ′ (8) and Q ′ (8) (hereinafter, also referred to as I ′ and Q ′ with the number of bits omitted) are generated.
  • phase rotation of the received signal point arrangement is called remapping
  • remapper means a phase rotation circuit that performs remapping
  • FIG. Figure 5 (a) shows the signal point constellation when 8-phase shift keying modulation is used as the modulation method.
  • the 8-phase phase shift keying modulation method can transmit a 3-bit digital signal (abe) with one symbol, and the combinations are (0000), (001), ..., (11) 1) 8 ways. These symbols are converted to any of signal point arrangements 0 to 7 on the vector plane of I axis and Q axis in Fig. 5 (a).
  • the symbol length of the frame synchronization signal is 16 and that the pattern of the frame synchronization signal appears in the signal point arrangements “0” and “4” of FIG. 5 (a) with the same probability.
  • the frame synchronization circuit 2 of the receiver c captures this frame synchronization signal
  • the frame synchronization circuit 2 shown in Fig. 4 of the receiver captures the frame synchronization signal and arranges its signal points.
  • the signal point constellations “0” and “4” shown in FIG. When acquiring a frame synchronization signal consisting of “1”, “5”, or “2”, “6”, or signal point arrangement as shown in Fig. 5 (b).
  • the signal point arrangements "3" and “7” and the signal point arrangements on the receiving side are all inverted, and there are eight cases, and it is not known at which phase to capture.
  • ROM 31 which is a remapper based on the estimated reception phase difference outputs baseband demodulated signals I ′ and Q ′ as follows.
  • the frame synchronization signal consisting of the signal point arrangements “0” and “4” in FIG. 5A is captured on the receiving side.
  • phase rotation signal RT (3) is the phase rotation signal RT (3) in FIG.
  • Is the value of the phase rotation signal RT (3) is Is defined as in equation (1).
  • RT (3) “01” is output from the frame synchronization circuit, and the RM 31 constituting the remapper receives this and converts the input baseband demodulated signals I and Q to the next.
  • the phase is rotated by the angle ⁇ .
  • the storage capacity of R ⁇ M that forms the rematrix becomes large.
  • the absolute phase conversion circuit is configured such that the signal point arrangement of the baseband demodulated signals I and Q demodulated by the demodulation circuit that receives and demodulates the P-phase phase shift keying modulation signal is based on the original arrangement arranged on the transmission side.
  • a frame synchronization circuit for detecting a phase rotation angle of a reception phase with respect to the original signal point arrangement by comparing with the signal point arrangement, and outputting a phase rotation signal based on the phase rotation angle;
  • Phase rotating means for rotating the phase of the baseband demodulated signals I and Q demodulated by the demodulation circuit by several times (2 ⁇ ⁇ ) radians;
  • the phase rotation angle of the reception phase with respect to the signal point arrangement on the transmission side is detected, and a phase rotation signal based on the phase rotation angle is output from the frame synchronization circuit and demodulated by the demodulation circuit
  • the baseband demodulated signals I and Q are rotated by (27C / P) radians by the phase rotation means and demodulated by the demodulation circuit.
  • Receiving baseband demodulated signals I and Q and phase-rotated baseband demodulated signals I and Q output from the phase rotating means selectively inverts the sign of the baseband demodulated signal based on the phase-rotated signal, and The exchange of the baseband demodulated signal is performed by the logic conversion means, and the baseband demodulated signal matched with the signal point arrangement on the transmitting side is transmitted. Therefore, the phase rotating means only needs to rotate the baseband demodulated signals I and Q demodulated by the demodulating circuit by, for example, (2 ⁇ ⁇ ) radians.
  • FIG. 1 is a block diagram showing a configuration of an absolute phase shift circuit according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a truth table of a logic conversion circuit in the absolute phase shift circuit according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing a truth table of a logic conversion circuit in the absolute phase shift circuit according to one embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a conventional absolute phase shift circuit.
  • FIG. 5 is a signal point arrangement diagram for explaining the operation of the absolute phase shift circuit.
  • FIG. 1 is a block diagram illustrating a configuration of an absolute phase shift circuit according to an embodiment of the present invention. It illustrates a case where a received wave is received.
  • the frequency-converted intermediate frequency signal is demodulated in the demodulation circuit 1 into baseband demodulated signals I (8) and Q (8) having 8 quantization bits.
  • the frame synchronization circuit 2 captures a frame synchronization signal, which is a known bit stream, outputs a frame synchronization pulse and simultaneously captures the captured frame.
  • the baseband demodulated signals I (8) and Q (8) demodulated in the demodulation circuit 1 are supplied to a remapper R OM 3 for remapping, and the baseband demodulated signal i ( 8) and q (8).
  • R OM 3 is a phase rotation signal RT (3) corresponding to the phase rotation means, a baseband demodulation signal I (8), Q (8) demodulated in the demodulation circuit 1 and remapped in the R OM 3
  • the baseband demodulated signals i (8) and q (8) thus obtained are supplied to a logic conversion circuit 4 where the baseband demodulated signals i ′ (8) and Q ′ (8) that have been phase-rotated and converted into absolute phases are Output.
  • the baseband demodulated signals I '(8) and Q' (8) that have been absolutely phased are the input baseband demodulated signals I (8) and Q It is obtained by logically converting (8) based on the phase rotation signal RT (3) according to FIG. 2 (a).
  • phase rotation signal RT (3) "0 0 0”
  • baseband demodulation signal I '(8) baseband demodulation signal I (8)
  • baseband demodulation signal Q' (8) baseband demodulated signal Q (8).
  • equations (2) and (3) are used to convert the following equations (8) and (9).
  • this conversion is performed by inverting the sign of the baseband demodulated signal I (8) input to the logic conversion circuit 4 and performing a sign-inverted baseband demodulation signal.
  • the baseband demodulated signals I '(8) and Q' (8) that have been absolutely phased are input baseband demodulated signals i (8) and q It is obtained by logically converting (8) based on the phase rotation signal RT (3) according to FIG. 2 (b).
  • phase rotation signal RT (3) "001"
  • the baseband demodulation signal I '(8) baseband demodulation signal i (8)
  • baseband demodulation Signal Q ′ (8) baseband demodulated signal Q (8)
  • baseband demodulated signal i (8) and baseband demodulated signal q (8) output from ROM 3 are directly used as baseband demodulated signal I. '(8), and output as a baseband demodulated signal Q' (8) signal.
  • conversion based on the truth tables shown in Figs. 3 (a), (b), and (c), respectively, may be performed.
  • the storage capacity of the ROM 3 constituting the reminder is only 18 of the storage capacity of the ROM 31.
  • the phase shift circuit the case where the remapper is performed by table conversion in ROM 3 that composes the remmatsu is illustrated.
  • Equations (6) and (7) An adder and a multiplier that obtain the results of Equations (6) and (7) may be used.
  • the multiplier only needs to multiply the fixed value (1 ⁇ 2), so that the circuit scale is small.
  • R R when used as the remapper for the phase rotation means, its storage capacity is related to the number of quantization bits of the baseband demodulated signals I and Q. It can be reduced to 1Z8, and the effect that the chip area can be used effectively when the absolute phase shift circuit is integrated into an IC can be obtained. Furthermore, the circuit scale can be reduced even in the case of using an arithmetic unit instead of R OM, and the effect that the chip area can be used effectively when the absolute phase conversion circuit is converted to IC is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

明 細 書
絶対位相化回路
技術分野
本発明は、 受信位相シフ トキーィング変調信号を受信して復調し た復調信号の位相回転を補償して送信側における変調信号の位相に 一致させる絶対位相化回路に関する。
背景技術
衛星ディジタル放送を受信する受信機における従来の絶対位相化 回路は図 4に示す。 従来の絶対位相化回路では、 例えば 8相位相シ フ トキーィング変調された受信波を所定の周波数に周波数変換した 中間周波信号を入力して復調回路 1 において、 例えば量子化ビッ ト 数 8ビッ トのベースバンド復調信号 I ( 8 ) 、 Q ( 8 ) (本明細書 において、 I ( 8 ) 、 Q ( 8 ) 等の () 内の数字はビッ ト数を示し, 以下、 混乱を招かないときはビッ ト数を省略して単に I、 Qとも記 す) に復調される。 このベースバンド復調信号 I ( 8 ) 、 Q ( 8 ) を受けてフレーム同期回路 2にて既知のビッ トス トリームであるフ レーム同期信号を捕捉し、 フレーム同期パルスを出力すると同時に その捕捉したフレーム同期信号の信号点配置を、 送信側にて配置さ れた元の信号点配置と比較することにより現在の受信位相を求め、 位相回転信号 R T ( 3 ) = " X Y Z " を出力する。 この場合、 位相 回転信号 RT ( 3 ) を 3 ビッ トとしたのは変調方式が 8相位相シフ トキ一イング変調のためである。
このように 8相位相シフ トキーイング変調の場合を想定すると、 受信位相はそれぞれ 4 5度ずれた 8通り存在する。 求められた位相 回転信号 R T ( 3 ) は送信側信号点配置と現在の受信信号点配置の 位相差を示すものであり、 R T ( 3 ) をアドレス信号としてリマッ パを構成する R〇M 3 1に入力し、 位相差分だけベースバンド復調 信号 I ( 8 ) 、 Q ( 8 ) を逆に位相回転させることによって、 絶対 位相化されたベースバンド復調信号 I ' ( 8 ) 、 Q ' ( 8 ) (以下 ビッ ト数を省略して I ' 、 Q ' とも記す) を生成する。
本明細書では、 受信信号点配置の位相回転をリマッビングと呼び、 リマッパはリマッピングをさせる位相回転回路のことを意味してい る。
次に、 図 5によってリマッピングについて説明する。 図 5 ( a) は変調方式に 8相位相シフ トキーィング変調を用いた場合の信号点 配置を示す。 8相位相シフ トキーイング変調方式は 3 ビッ トのディ ジ夕ル信号 ( a b e ) を 1 シンポルで伝送でき、 その組合せは ( 0 0 0 ) 、 ( 0 0 1 ) 、 · · · ·、 ( 1 1 1 ) の 8通りである。 これ らシンボルは図 5 ( a ) の I軸一 Q軸のベク トル平面上における信 号点配置 0〜 7のいずれかに変換される。
ここで送信側において、 フレーム同期信号のシンボル長を 1 6と 仮定し、 フレーム同期信号のパターンを図 5 ( a) の信号点配置 " 0 " と "4 " に同確率にて出現するように変換された固定パ夕一 ンと仮定し、 それを受信機のフレーム同期回路 2で捕捉するとする c 受信機の図 4に示すフレーム同期回路 2がこのフレーム同期信号 を捕捉し、 その信号点配置を送信側の信号点配置と比較すると、 受 信機の復調回路 1 にて再生された搬送波の位相状態によっては送信 側と同じ図 5 ( a) に示した信号点配置 " 0 " 、 " 4 " からなるフ レーム同期信号を捕捉する場合と、 図 5 ( b) に示すように信号点 配置 " 1 " 、 " 5 " 、 または信号点配置 " 2 " 、 " 6 " 、 または信 号点配置 " 3 " 、 " 7 " 、 さらに前記受信側の信号点配置がすべて 反転した場合の 8通りあり、 どの位相にて捕捉するかはわからない。
しかし、 捕捉したフレーム同期信号の信号点配置を観測すること によって、 どの位相にて捕捉した、 つまりどの位相にてベースパン ド復調信号 I 、 Qが復調されたかが推定できる。 推定した受信位相 差をもとにリマッパである R O M 3 1は、 次のようにしてベースバ ンド復調信号 I ' 、 Q ' を出力する。
例えば、 図 5 ( a ) の信号点配置 " 0 " と " 4 " からなるフレー ム同期信号を受信側において捕捉したとする。 この場合、 受信側の 信号点配置が送信側の信号点配置と同じであるため、 リマツビング する必要はない。 従って、 フレーム同期回路からは位相回転信号 R T ( 3 ) = " 0 0 0 " が出力され、 R OM 3 1から I ' = 1 、 Q ' = Qの出力が送出される。
次に図 5 ( b ) の受信側の信号点配置 " 1 " と " 5 " からなるフ レーム同期信号を捕捉したとする。 この場合は、 図 5 ( a ) の信号 点配置 " 0 " と " 4 " で送信されたものが 4 5度反時計方向に位相 回転された状態、 すなわち受信位相回転角 Θ = 4 5度で受信した状 態である。 従ってこれを送信側の信号点配置と同じ位相に絶対位相 化するためには受信信号を時計方向に 4 5度位相回転させる必要が ある。 つまり図 5 ( b ) の " 1 " で受信した信号を " 0 " に、 また 図 5 ( b ) の " 5 " で受信した信号を " 4 " に位相回転させればよ い。
この逆位相回転はリマッパである R OM 3 1 にて行われ、 位相回 転角を示すパラメ一夕が図 4における位相回転信号 R T ( 3 ) であ るということになる。 ここで、 位相回転信号 R T ( 3 ) の値を下記 の ( 1 ) 式のように定義する。
R T ( 3 ) = Θ / 4 5 …… ( 1 ) ただし 0 = n · 4 5度であつて nは : 0〜 7の整数である。
Θ = 4 5度で受信した場合は前記のようにべ一スバンド復調信号 I、 Qを— 4 5度 (= — θ = Φ ) 位相回転させることによって絶対 位相化される。 ( 1 ) 式に従ってフレーム同期回路からは R T ( 3 ) = " 0 0 1 " が出力され、 リマツパを構成する R OM 3 1はこれを 受けて、 入力されたベースバンド復調信号 I、 Qを次の ( 2 ) 式お よび ( 3 ) 式にしたがい角度 φだけ位相回転させる。
I ' = I cos ( Φ ) - Q sin ( ) …… ( 2 )
Q ' = I sin ( φ ) + Q cos ( ) …… ( 3 ) ただし、 8相位相シフ トキーイング変調の場合である。
受信位相回転角 Θが 9 0度、 1 3 5度、 1 8 0度、 · · · · 、 3 1 5度の場合も同様にフレーム同期回路から RT ( 3 ) = " 0 1 0 " 、 " 0 1 1 " 、 " 1 0 0 " 、 · · · · 、 " 1 1 1 " が出力され、 リマ ッパを構成する R OM 3 1 にて ( 1 ) 式、 ( 2 ) 式、 ( 3 ) 式によ る位相変換を行い絶対位相化されたベースバンド復調信号 I ' 、 Q ' が得られる。
発明が解決しょうとする課題
しかしながら、 上記した従来の絶対位相化回路によるときはリマ ツバを構成する R〇 Mの記憶容量は大きいものとなるという問題点 があった。 R OMが必要とする記憶容量はベースバンド復調信号 I、 Qの量子化ビッ ト数に依存するが、 ベースバンド復調信号 I、 Qの 量子化ビッ ト数が 8ビッ トの場合、 1 9 (= 3 + 8 + 8 ) アドレス を必要とし、 リマツバを構成する R OMの記憶容量は 2 1 9 X 1 6 (ビッ ト) という大きなものになってしまう。
発明の概要
本発明は、 リマツパを構成する位相回転手段が簡単ですむ絶対位 相化回路を提供することを目的とする。
本発明にかかる絶対位相化回路は、 P相位相シフトキーイング変 調信号を受けて復調する復調回路によって復調されたベースバンド 復調信号 Iおよび Qの信号点配置を送信側にて配置された元の信号 点配置と比較することにより前記元の信号点配置に対する受信位相 の位相回転角を検知して位相回転角に基づく位相回転信号を出力す るフレーム同期回路と、
前記復調回路によって復調されたべ一スバンド復調信号 Iおよび Qを ( 2 π Ζ Ρ ) ラジアンの数倍だけ位相回転させる位相回転手段 と、
前記復調回路によって復調されたベースバンド復調信号 Iおよび Qと位相回転手段からの出力された位相回転ベースバンド復調信号 i および qとを受けて、 前記位相回転信号に基づいて選択的にベー スバンド復調信号の符号反転およびべ一スパンド復調信号の交換を 行って送信側の信号点配置に一致させたベースバンド復調信号を送 出する論理変換手段と、
を備えたことを特徴とする。
本発明にかかる絶対位相化回路によれば、 送信側の信号点配置に 対する受信位相の位相回転角が検知されて位相回転角に基づく位相 回転信号がフレーム同期回路から出力され、 復調回路によって復調 されたベースバンド復調信号 Iおよび Qが ( 2 7C / P ) ラジアンだ け位相回転手段によって位相回転させられ、 復調回路によって復調 されたベースバンド復調信号 Iおよび Qと位相回転手段から出力さ れた位相回転ベースバンド復調信号 Iおよび Qとを受けて、 位相回 転信号に基づいて選択的にベースバンド復調信号の符号反転および ベースバンド復調信号の交換が論理変換手段によって行われて送信 側の信号点配置に一致させたベースバンド復調信号が送出される。 したがって、 位相回転手段は復調回路によって復調されたべ一スバ ンド復調信号 Iおよび Qを例えば ( 2 π Ζ Ρ ) ラジアンだけ位相回 転させれば足りるため簡単な構成ですむ。
図面の簡単な説明
第 1図は、 本発明の実施の一形態にかかる絶対位相化回路の構成 を示すブロック図である。
第 2図は、 本発明の実施の一形態にかかる絶対位相化回路におけ る論理変換回路の真理値表を示す図である。
第 3図は、 本発明の実施の一形態にかかる絶対位相化回路におけ る論理変換回路の真理値表を示す図である。
第 4図は、 従来の絶対位相化回路の構成を示すプロック図である 第 5図は、 絶対位相化回路の作用の説明に共する信号点配置図で ある。
発明の実施の形態
本発明にかかる絶対位相化回路を実施の一形態によって説明する < 図 1は本発明の実施の一形態にかかる絶対位相化回路の構成を示す ブロック図であり、 8相位相シフ トキ一イング変調された受信波を 受信した場合を例示している。
本発明の実施の一形態にかかる絶対位相化回路は、 8相位相シフ トキ一イング変調された受信波 (Ρ = 8 = 2 3 ) を所定の周波数に 周波数変換した中間周波信号を復調回路 1 において、 量子化ビッ ト 数 8 ビッ トのベースバンド復調信号 I ( 8 ) 、 Q ( 8 ) に復調され る。 このベースバンド復調信号 I ( 8 ) 、 Q ( 8 ) を受けてフレー ム同期回路 2にて既知のビッ トス トリームであるフレーム同期信号 を捕捉し、 フレーム同期パルスを出力すると同時にその捕捉したフ レーム同期信号の信号点配置を、 送信側にて配置された元の信号点 配置と比較することにより現在の受信位相を求め、 位相回転信号 R T ( 3 ) = "XY Z " を出力する。
復調回路 1において復調されたベースバンド復調信号 I ( 8 ) 、 Q ( 8 ) はリマッパを構成する R OM 3に供給してリマッピングし、 R OM 3においてリマッピングされたべ一スバンド復調信号 i ( 8) , q ( 8 ) とする。 ここで、 R OM 3は位相回転手段に対応している 位相回転信号 R T ( 3 ) 、 復調回路 1 において復調されたベース バンド復調信号 I ( 8 ) 、 Q ( 8 ) および R OM 3においてリマツ ビングされたベースバンド復調信号 i ( 8 ) 、 q ( 8 ) は論理変換 回路 4に供給して位相回転させて絶対位相化されたベースバンド復 調信号 i ' ( 8 ) 、 Q ' ( 8 ) を出力する。
先ず R O M 3におけるリマッピングについて説明する。 R〇 M 3 は R OM 3 1に入力された位相回転信号 R T ( 3 ) は入力されず、 復調回路 1 において復調されたベースバンド復調信号 I ( 8 ) およ び Q ( 8 ) を受けて、 0 = 2 πΖΡ = 2 ττΖ 8 = 4 5度の場合に対 する位相回転のみを行う。
っまり * =— 0 =— 4 5度を ( 2 ) 式および ( 3 ) 式に代入し、 下記の (4) 式および ( 5 ) 式を求め、 演算すると下記の ( 6 ) 式 および ( 7 ) 式が得られる。 i ( 8 ) = 1 cos(— 4 5 ° )— Q sin ( - 4 5 ° ) …… ( 4 ) q ( 8 ) = 1 sin ( - 4 5 ° ) + Q cos (— 4 5 ° ) ( 5 ) i ( 8 ) = I il/ l) - Q (- l/ l) ={l/ l) ( I + Q)
…… ( 6 )
Q ( 8 ) = I (- 1 / l) + Q (l / 2) = (l / 2) (- I + Q)
··■··· ( 7 ) すなわち、 R〇M 3において、 入力されたベースバンド復調信号 I ( 8 ) および Q ( 8 ) は時計方向に 4 5度位相回転させたベース バンド復調信号にリマッピングされることになる。
位相回転信号 R T ( 3 ) 、 復調回路 1 において復調されたベース バンド復調信号 I ( 8 ) 、 Q ( 8 ) および R O M 3においてリマツ ビングされたベースバンド復調信号 i ( 8 ) 、 q ( 8 ) が入力され た論理変換回路 4における論理変換について説明する。 図 2 ( a ) 、 ( b ) は論理変換回路 4の作用を示す真理値表であり、 0 = n · 2 πΖΡとしたとき図 2 ( a) は n =偶数、 すなわち n = 0、 2、 4、 6のときに対するものであり、 図 2 ( b ) は n =奇数、 すなわち n = 1、 3、 5、 7のときに対するものである。
位相回転信号 RT ( 3 ) に基づき、 n =偶数のとき、 絶対位相化 されたベースバンド復調信号 I ' ( 8 ) 、 Q ' ( 8 ) は入力される ベースバンド復調信号 I ( 8 ) 、 Q ( 8 ) を位相回転信号 R T ( 3 ) に基づき図 2 ( a ) にしたがって論理変換することで得られる。
例えば位相回転信号 R T ( 3 ) = " 0 0 0 " の場合は絶対位相で 受信しているのでベースバンド復調信号 I ' ( 8 ) =ベースバンド 復調信号 I ( 8 ) 、 ベースバンド復調信号 Q ' ( 8 ) =ベースバン ド復調信号 Q ( 8 ) である。 次に位相回転信号 R T ( 3 ) = " 0 1 0 " の場合は、 位相回転角 0 = 9 0度である。 従来は ( 2 ) 式、 ( 3 ) 式により、 下記の ( 8 ) 式および ( 9 ) 式のように変換して いた。
I ' = I cos (— 9 0 )— Q sin (- 9 0 ° ) = Q ( 8 )
…… ( 8 )
Q ' = I sin(— 9 0 ) + Q cos (― 9 0 ° ) =— I ( 8 )
…… ( 9 ) しかしこの変換は、 論理変換回路 4に入力されたベースバンド復 調信号 I ( 8 ) を符号反転し、 符号反転したベースバンド復調信号
1 ( 8 ) とベースバンド復調信号 Q ( 8 ) を交換することで簡単に 得られる。
位相回転信号 R T ( 3 ) = " 1 0 0 " 、 R T ( 3 ) = " 1 1 0 " の場合についても同様に図 2 ( a) にしたがって変換することで得 られる。
位相回転信号 RT ( 3 ) に基づき、 n =奇数のとき、 絶対位相化 されたベースバンド復調信号 I ' ( 8 ) 、 Q ' ( 8 ) は入力される ベースバンド復調信号 i ( 8 ) 、 q ( 8 ) を位相回転信号 R T ( 3 ) に基づき図 2 ( b ) にしたがって論理変換することで得られる。 例えば位相回転信号 R T ( 3 ) = " 0 0 1 " の場合は位相回転角 0 = 4 5度であり、 ベースバンド復調信号 I ' ( 8 ) =ベースバン ド復調信号 i ( 8 ) 、 ベースバンド復調信号 Q ' ( 8 ) =ベースバ ンド復調信号 Q ( 8 ) であって、 R OM 3から出力されたベースバ ンド復調信号 i ( 8 ) 、 ベースバンド復調信号 q ( 8 ) をそのまま ベースバンド復調信号 I ' ( 8 ) 、 ベースバンド復調信号 Q ' ( 8 ) 信号として出力すればよい。 次に位相回転信号 R T ( 3 ) = " 0 1 1 " の場合は、 位相回転角
0 = 1 3 5度である。 位相回転角 0 = 4 5度に対する位相回転され たベースバンド復調信号 i ( 8 ) 、 ベ一スバンド復調信号 Q ( 8 ) をさらに位相回転角 0 = 9 0度の位相回転を行うのと等しい。 した がって、 次の ( 1 0 ) 式および ( 1 1 ) 式に示すごとくである。
I ' = i cos(_ 9 0 ° ) _ q sin(— 9 0 ° )= q ( 8 )
…… ( 1 0 )
Q ' = i sin(— 9 0 ° ) + Q COS(— 9 0 ° ) =— i ( 8 )
······ ( 1 1 ) したがって、 論理変換回路 4に入力されたベースバンド復調信号
1 ( 8 ) を符号反転し、 符号反転したベースバンド復調信号 i ( 8 ) とベースバンド復調信号 q ( 8 ) を変換することで簡単に得られる。 位相回転信号 R T ( 3 ) = " 1 0 1 " 、 R T ( 3 ) = " 1 1 1 " の 場合についても同様に図 2 ( b ) にしたがって変換することで得ら れる。
本発明の実施の一形態にかかる絶対位相化回路では、 リマッパを 構成する ROM 3によって 0 = 4 5度の場合に対する位相回転を行 う場合を例示したが、 61 = 1 3 5度、 0 = 2 2 5度、 0 = 3 1 5度 の位相回転を行わせてもよく、 この場合は、 論理変換回路 4におけ る論理変換は、 0 = 1 3 5度、 θ = 2 2 5度、 0 = 3 1 5度の位相 回転に対して、 それぞれ図 3 ( a ) 、 ( b) 、 ( c ) に示す真理値 表に基づく変換をすればよい。
本発明の実施の一形態にかかる絶対位相化回路では、 リマツパを 構成する ROM 3の記憶容量は R OM 3 1の記憶容量の 1 8です むことになる。 また、 上記した本発明の実施の一形態にかかる絶対 位相化回路では、 リマツバを構成する R OM 3においてテーブル変 換によりリマッパを行う場合を例示したが、 R〇 M 3に変わって
( 6 ) 式および ( 7 ) 式の結果を得る加算器および乗算器を使用し ても良い。 この場合の乗算器は固定値 ( 1 ΖΛΓ 2 ) を乗算するだけ でよいため、 その回路規模は小さくてすむことになる。
以上説明したように、 本発明にかかる絶対位相化回路によれば、 位相回転手段にリマッパとして R ΟΜを用いたときはその記憶容量 はベースバンド復調信号 I 、 Qの量子化ビッ ト数に関係なく 1 Z 8 に削減できて、 絶対位相化回路を I C化する場合チップ面積を有効 に使用することができるという効果が得られる。 さらに、 R O Mに 変わって演算器による場合も回路規模は少なくてすみ、 絶対位相化 回路を I C化する場合チップ面積を有効に使用することができると いう効果が得られる。

Claims

請 求 の 範 囲
. P相位相シフ トキーイング変調信号を受けて復調する復調回路 によって復調されたベースバンド復調信号 Iおよび Qの信号点配 置を送信側にて配置された元の信号点配置と比較することにより 前記元の信号点配置に対する受信位相の位相回転角を検知して位 相回転角に基づく位相回転信号を出力するフレーム同期回路と、 前記復調回路によって復調されたベースバンド復調信号 I およ び Qを ( 2 ττ Ζ Ρ ) ラジアンの奇数倍だけ位相回転させる位相回 転手段と、
前記復調回路によって復調されたベースバンド復調信号 Iおよ び Qと位相回転手段からの出力された位相回転ベースバンド復調 信号 iおよび Qとを受けて、 前記位相回転信号に基づいて選択的 にベースバンド復調信号の交換を行って送信側の信号点配置に一 致させたベースバンド復調信号を送出する論理変換手段と、
を備えたことを特徴とする絶対位相化回路。
. 請求項 1 に記載の絶対位相化回路において、 該論理変換手段は 前記検知位相回転角が 2 π Ζ Ρの奇数倍であるときは、 復調信号 i と qを用いた論理変換を行い、 偶数倍であるときは位相回転べ 一スパンド復調信号 I と Qを用いた論理変換を行っている絶対位 相化回路。
PCT/JP1998/002618 1997-06-13 1998-06-15 Circuit de synchronisation absolue WO1998057471A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP98924615A EP0987862B1 (en) 1997-06-13 1998-06-15 Absolute phase synchronizing circuit
CA002291021A CA2291021C (en) 1997-06-13 1998-06-15 Absolute phasing circuit
DE0987862T DE987862T1 (de) 1997-06-13 1998-06-15 Schaltung zur absoluten phasierung
DE69835953T DE69835953T2 (de) 1997-06-13 1998-06-15 Schaltung zur absoluten Phasensynchronisation
US09/445,213 US6246281B1 (en) 1997-06-13 1998-06-15 Absolute phasing circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09171185A JP3115255B2 (ja) 1997-06-13 1997-06-13 絶対位相化回路
JP9/171185 1997-06-13

Publications (1)

Publication Number Publication Date
WO1998057471A1 true WO1998057471A1 (fr) 1998-12-17

Family

ID=15918588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002618 WO1998057471A1 (fr) 1997-06-13 1998-06-15 Circuit de synchronisation absolue

Country Status (7)

Country Link
US (1) US6246281B1 (ja)
EP (1) EP0987862B1 (ja)
JP (1) JP3115255B2 (ja)
CN (1) CN1117456C (ja)
CA (1) CA2291021C (ja)
DE (2) DE987862T1 (ja)
WO (1) WO1998057471A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2296382C (en) * 1997-07-24 2007-09-11 Kabushiki Kaisha Kenwood Received signal phase detecting circuit
US6683921B1 (en) 1997-12-17 2004-01-27 Kabushiki Kaisha Kenwood Received-signal absolute phasing apparatus of receiver
CN1124009C (zh) * 1997-12-29 2003-10-08 株式会社建伍 接收机的帧同步信号捕获电路
JP4940297B2 (ja) * 2006-05-19 2012-05-30 エルジー エレクトロニクス インコーポレイティド 効率的で効果的な無線通信のための無線資源を用いて操作する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178653A (ja) * 1982-04-13 1983-10-19 Nec Corp 多相psk通信方式
JPS62216557A (ja) * 1986-03-18 1987-09-24 Nec Corp 位相▲あい▼▲まい▼度除去回路
JPH04334238A (ja) * 1991-05-10 1992-11-20 Nec Corp 誤り訂正復号回路
JPH06120995A (ja) * 1992-03-19 1994-04-28 Fujitsu Ltd ディジタル無線用受信機のフレーム同期回路
JPH06276239A (ja) * 1993-03-19 1994-09-30 Nec Corp 位相曖昧度除去回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025455A (en) * 1989-11-30 1991-06-18 The United States Of America As Represented By The Administer, National Aeronautics And Space Administration Phase ambiguity resolution for offset QPSK modulation systems
JP3228353B2 (ja) * 1991-10-07 2001-11-12 日本電信電話株式会社 適応位相制御付き復調方法及び装置
JPH06112985A (ja) 1992-09-25 1994-04-22 Kenwood Corp 角度算出用romテーブル
JPH06205055A (ja) * 1992-12-28 1994-07-22 Nippon Telegr & Teleph Corp <Ntt> ディジタル処理型直交変調器
JPH07297870A (ja) * 1994-04-26 1995-11-10 Matsushita Electric Ind Co Ltd Tdmaデータ受信装置
JPH1056486A (ja) 1996-08-09 1998-02-24 Fujitsu Ltd 復調装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178653A (ja) * 1982-04-13 1983-10-19 Nec Corp 多相psk通信方式
JPS62216557A (ja) * 1986-03-18 1987-09-24 Nec Corp 位相▲あい▼▲まい▼度除去回路
JPH04334238A (ja) * 1991-05-10 1992-11-20 Nec Corp 誤り訂正復号回路
JPH06120995A (ja) * 1992-03-19 1994-04-28 Fujitsu Ltd ディジタル無線用受信機のフレーム同期回路
JPH06276239A (ja) * 1993-03-19 1994-09-30 Nec Corp 位相曖昧度除去回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0987862A4 *

Also Published As

Publication number Publication date
DE987862T1 (de) 2000-08-31
DE69835953T2 (de) 2007-09-13
CA2291021C (en) 2008-04-01
CA2291021A1 (en) 1998-12-17
CN1117456C (zh) 2003-08-06
EP0987862A4 (en) 2005-08-03
EP0987862A1 (en) 2000-03-22
JPH114267A (ja) 1999-01-06
JP3115255B2 (ja) 2000-12-04
US6246281B1 (en) 2001-06-12
CN1260091A (zh) 2000-07-12
EP0987862B1 (en) 2006-09-20
DE69835953D1 (de) 2006-11-02

Similar Documents

Publication Publication Date Title
JP3363025B2 (ja) デジタル複素フェーザジェネレータおよびデジタル受信機における両方向周波数変換の方法
WO1998057471A1 (fr) Circuit de synchronisation absolue
EP1039709A1 (en) Receiver
US6697440B1 (en) Demodulator of receiver
JPH0621992A (ja) 復調器
US6678342B1 (en) Absolute-phasing synchronization capturing circuit
US6690745B1 (en) Circuit for detecting the phase of received signal
JPH1056486A (ja) 復調装置
JP3088346B2 (ja) 絶対位相化同期捕捉回路
JPH09233138A (ja) 情報伝送システムおよび情報受信装置、並びに情報伝送方法
JP3168912B2 (ja) 時間ダイバーシチ受信装置
AU731683B2 (en) Diversity apparatus with improved ability of reproducing carrier wave in synchronous detection
JP3115259B2 (ja) 絶対位相化同期捕捉回路
JP3115263B2 (ja) 受信信号位相検出回路
JP3115258B2 (ja) 絶対位相化同期捕捉回路
JP3278669B2 (ja) 受信機の復調装置
JPH06303270A (ja) デジタル多分解能送信システム
JPH11215200A (ja) 8pskデマッパ
JP3043332B2 (ja) 受信機
JP3115261B2 (ja) 信号点配置分散値算出回路
JP3269643B2 (ja) 遅延検波回路
JPH1117755A (ja) 位相判定回路
JPS6340060B2 (ja)
JP2004364046A (ja) 位相変調信号復調装置
JPH11317779A (ja) 受信機の受信信号絶対位相化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98806082.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2291021

Country of ref document: CA

Ref document number: 2291021

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09445213

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998924615

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998924615

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998924615

Country of ref document: EP