WO1998048227A1 - Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes - Google Patents

Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes Download PDF

Info

Publication number
WO1998048227A1
WO1998048227A1 PCT/EP1998/002198 EP9802198W WO9848227A1 WO 1998048227 A1 WO1998048227 A1 WO 1998048227A1 EP 9802198 W EP9802198 W EP 9802198W WO 9848227 A1 WO9848227 A1 WO 9848227A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant mixture
hydrocarbon
refrigerant
liquefying
mol
Prior art date
Application number
PCT/EP1998/002198
Other languages
English (en)
French (fr)
Inventor
Rudolf Stockmann
Wolfgang FÖRG
Manfred BÖLT
Manfred Steinbauer
Christian Pfeiffer
Pentti Paurola
Arne Olav Fredheim
Øystein SØRENSEN
Original Assignee
Linde Aktiengesellschaft
Den Norske Stats Oljeselskap A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft, Den Norske Stats Oljeselskap A.S. filed Critical Linde Aktiengesellschaft
Priority to US09/403,103 priority Critical patent/US6253574B1/en
Priority to AU76436/98A priority patent/AU735800B2/en
Priority to DE59810225T priority patent/DE59810225D1/de
Priority to EP98924120A priority patent/EP0975923B1/de
Publication of WO1998048227A1 publication Critical patent/WO1998048227A1/de
Priority to NO19995046A priority patent/NO310124B1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the invention relates to a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, by indirect heat exchange with the refrigerants in a refrigerant mixture circuit cascade.
  • liquefaction processes are known in which the cooling energy required for the liquefaction is provided by means of a refrigerant circuit cascade, but not a refrigerant mixture circuit cascade; see e.g. B. LINDE reports from technology and science, issue 75/1997, pages 3 - 8.
  • the refrigerant cycle cascade described therein consists of a propane or propylene, an ethane or ethylene and a methane refrigeration cycle. This refrigerant circuit cascade can be viewed as energetically optimized, but is comparatively complicated due to the 9 compressor stages.
  • liquefaction processes are known in which the cooling energy required for the liquefaction is provided by means of a cascade consisting of a refrigerant mixture circuit and a propane precooling circuit.
  • the object of the present invention is to provide a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, which has a reduced specific energy consumption compared to such dual-flow refrigeration processes and thereby realizes a smaller plant size and is associated therewith enables lower investment costs.
  • the refrigerant mixture circuit cascade consists of at least 3 different refrigerant mixture circuits having different refrigerant compositions.
  • the refrigerant mixture circuit cascade consists of at least three separate refrigerant mixture circuits. These have different refrigerant compositions because they have to generate cold at different temperatures.
  • the first of the three refrigerant mixture cycles - the so-called Precooling Refrigerant Cycle (PRC) - is used to cool and partially or completely condense the refrigerant mixtures required for liquefaction and subcooling, as well as to pre-cool the hydrocarbon-rich stream.
  • PRC Precooling Refrigerant Cycle
  • the second refrigeration mixture circuit - the so-called Liquefaction Refrigerant Qycle (LRC) - is used for partial or complete condensation of the refrigerant mixture required for subcooling and the condensation of the hydrocarbon-rich stream.
  • the third refrigerant mixture circuit - the so-called subcooling refrigerator cycle (SRC) - is used to sub-cool the liquefied hydrocarbon-rich stream.
  • a mixture of ethylene or ethane, propane and butane is used as the refrigerant for the first of the three refrigerant mixture cycles.
  • This PRC mixed refrigerant circuit is used to provide refrigerant in a temperature range from ambient temperature to between approx. -35 and approx. -55 ° C.
  • a mixture of methane, ethylene or ethane and propane is used as the refrigerant for the second of the three refrigerant mixture cycles.
  • a mixture of nitrogen, methane and ethylene or ethane is preferably used as the refrigerant.
  • the third or SRC refrigerant mixture circuit is used to provide the cooling down to approx. -85 and approx. -160 ° C.
  • the procedure according to the invention leads to a reduction in the specific energy consumption and the investment costs, since the three refrigerant mixture circuits are optimally adapted or can be adapted to the enthalpy-temperature curves of the hydrocarbon-rich stream to be liquefied and the refrigerant mixtures.
  • This procedure which is more efficient than a dual-flow refrigeration process, can either reduce the size of the liquefaction plant required, thereby reducing the cost of the plant, or increase the capacity of the hydrocarbon-rich electricity to be liquefied while the plant size remains the same.
  • the refrigerant preparation required for the liquefaction of the hydrocarbon-rich stream is carried out by at least three refrigerant mixture cycles.
  • a "P", "L” or “S” for PRC, LRC or SRC refrigerant mixture circuits is placed in front of the reference numerals of the individual refrigerant mixture circuits in FIGS. 1 to 5.
  • an optionally pretreated natural gas stream which has a temperature between 10 and 40 ° C. and a pressure between 30 and 70 bar, is fed via line 1 to a first heat exchanger E1.
  • the natural gas flow is pre-cooled to a temperature between -35 and -55 ° C. against the refrigerant mixture in the expansion valve P13 of the first or PRC-refrigerant mixture circuit that is expanded in line P14.
  • the refrigerant mixture of the third or SRC refrigerant mixture circuit is fed to the heat exchanger E1 via line S5 at a temperature between 10 and 40 ° C and a pressure between 30 and 60 bar and cooled in the heat exchanger E1 against the previously mentioned refrigerant mixture in line P14 and partially condensed, the refrigerant mixture in line P 14 at a pressure between 2 and 6 bar evaporated.
  • the refrigerant mixture of the SRC-refrigerant mixture circuit leaves the heat exchanger E1 via line S6 at a temperature between -35 and -55 ° C.
  • the refrigerant mixture of the second or LRC-refrigerant mixture circuit is fed to the heat exchanger E1 via line L5 with a temperature between 10 and 40 ° C and a pressure between 15 and 25 bar and condensed in the heat exchanger E1 against the refrigerant mixture of the PRC-refrigerant mixture circuit in line P14 .
  • the refrigerant mixture of the LRC-refrigerant mixture circuit is withdrawn from the heat exchanger E1 at a temperature between -35 and -55 ° C.
  • the evaporated and superheated refrigerant mixture of the PRC refrigerant mixture circuit in line P14 contains, according to an advantageous embodiment of the process according to the invention, essentially 0 to 40 mol% ethylene or ethane, 30 to 40 mol% propane and 20 to 30 mol% butane.
  • This refrigerant mixture is fed to the separator P1 at a pressure of 2 to 6 bar.
  • the gaseous refrigerant mixture drawn off at the top of the separator P1 via line P2 is compressed in the compressor P3 to a pressure between 6 and 10 bar.
  • the compressed refrigerant mixture in the cooler P4 is then cooled, preferably against sea water, against air or against an appropriate cooling medium, to a temperature between 10 and 40 ° C.
  • the refrigerant mixture is then fed to a further separator P6 via line P5.
  • the gaseous fraction of the refrigerant mixture obtained at the top of the separator P6 is fed to the second compressor stage P8 and compressed there to a pressure between 10 and 20 bar.
  • the liquid fraction from the separator P6 is pumped to a pressure between 10 and 20 bar by means of the pump P7, preferably a centrifugal pump, and then combined with the mixed refrigerant stream compressed in the compressor P8.
  • the compression of the refrigerant mixture of the first or PRC-refrigerant mixture circuit is preferably carried out in a two-stage, single-case centrifugal compression device which contains both the cooler P4 and the separator P6. In the case of very large quantities, an axial compression device can also be provided instead of the centrifugal compression device.
  • the compressed refrigerant mixture of the PRC-refrigerant mixture circuit is condensed in the cooler P9, preferably against sea water or an appropriate cooling medium, and slightly subcooled up to a temperature range of 10 to 40 ° C.
  • the refrigerant mixture is then fed via line P10 to the heat exchanger E1 and subcooled to a temperature of between -35 and -50 ° C against itself.
  • the evaporation temperature that can be achieved after the Joule-Thomson expansion in the expansion valve P13 - or alternatively in a expansion turbine - depends essentially on the degree of subcooling before expansion and on the evaporation pressure in the temperature range between -38 and -53 ° C.
  • the second or LRC refrigerant mixture circuit serves to liquefy the pre-cooled natural gas stream in line 2.
  • the refrigerant mixture of this LRC / refrigerant mixture circuit essentially consists of a mixture of 5 to 15 mol% methane, 0 to 80 mol% Ethylene or ethane and 10 to 20 mole% propane.
  • the precooled natural gas stream is fed to the heat exchanger E2 via line 2, cooled in it to a temperature between -80 and - 100 ° C. and then drawn off from the heat exchanger E2 via line 3.
  • the refrigerant mixture of the third or SRC-refrigerant mixture circuit is fed to the heat exchanger E2 via line S6 at a temperature between -35 and -50 ° C and condensed against the refrigerant of the LRC-refrigerant mixture circuit in line L10.
  • the refrigerant mixture in line L10 evaporates at a pressure level between 1.5 and 6 bar.
  • the cooled refrigerant mixture of the SRC-refrigerant mixture circuit is withdrawn from the heat exchanger E2 at a temperature between -80 and - 100 ° C via line S7.
  • the evaporated and overheated refrigerant mixture of the LRC-refrigerant mixture circuit in line L10 is fed to separator L1 at a pressure between 1.5 and 6 bar.
  • the gaseous refrigerant mixture obtained at the top of the separator L1 is fed via line L2 to the compressor L3 and compressed therein to a pressure between 10 and 20 bar.
  • the compressor E3 is preferably designed as a single-case axial or centrifugal compressor.
  • Such cold suction compressors have the advantage that the suction The medium does not have to be warmed up to the ambient temperature before being drawn in, which saves heating space and thus the heat exchangers can be made smaller and cheaper.
  • the compressed refrigerant mixture of the LRC-refrigerant mixture circuit is cooled in the cooler L4, preferably against sea water or an appropriate cooling medium, to a temperature between 10 and 40 ° C.
  • the refrigerant mixture drawn off from the cooler L4 via line L5 is, as already mentioned, liquefied in the heat exchanger E1, fed to the heat exchanger E2 via line L6 and subcooled to a temperature of between -80 and -100 ° C. against itself.
  • the evaporation temperature of the refrigerant mixture after the Joule-Thomson expansion in the expansion valve L9 - or alternatively in a expansion turbine - is between -82 and -1 12 ° C.
  • the third or SRC refrigerant mixture circuit serves to sub-cool the liquefied hydrocarbon-rich stream or natural gas stream. This subcooling is useful or necessary so that no more than the required amount of flash gas after the expansion of the liquefied hydrocarbon-rich stream is produced in a downstream nitrogen removal unit.
  • the refrigerant mixture of the third or SRC refrigerant mixture circuit consists, according to a further advantageous embodiment of the method according to the invention, essentially of a mixture of 0 to 10 mol% nitrogen, 40 to 65 mol% methane and 0 to 40 mol% ethylene or 0 to 30 mol% ethane.
  • the liquefied hydrocarbon-rich stream fed via line 3 to the heat exchanger E3 is subcooled in the heat exchanger E3 to a temperature of -150 to -160 ° C. After this supercooling, the hydrocarbon-rich or natural gas stream is drawn off from the heat exchanger E3 via line 4 and expanded essentially to atmospheric pressure by means of a Joule-Thomson expansion in the expansion valve 5 - or alternatively in a expansion turbine.
  • the refrigerant mixture of the third or SRC-refrigerant mixture circuit supplied to the heat exchanger E3 via line S9 is subcooled in the heat exchanger E3 and then also subjected to a Joule-Thomson expansion in the expansion valve S10.
  • a Joule-Thomson expansion in the expansion valve S10 instead of the relief valve S10 can again an expansion turbine can be provided. Relaxation in the S10 expansion valve takes place at a pressure level between 2 and 6 bar.
  • the evaporation of the refrigerant mixture in the heat exchanger E3 serves both to subcool the already liquefied hydrocarbon-rich stream and to self-subcool the refrigerant mixture of the SRC / refrigerant mixture circuit that has not yet expanded.
  • the evaporated and overheated refrigerant mixture of the SRC-refrigerant mixture circuit is fed to a separator S1 via line S11.
  • the gaseous refrigerant mixture obtained at the top of the separator S1 is fed to a compressor S3 via line S2.
  • the compressor S3 the mixture of refrigerants is compressed to a pressure between 35 and 60 bar.
  • the refrigerant mixture emerging from the compressor S3 is then cooled in the cooler S4, preferably against sea water or a corresponding cooling medium.
  • each of the three refrigerant mixture circuits has a separator / storage tank P11, L7 or S8 downstream of the respective expansion valve P13, L9 or S10.
  • these separators / storage tanks can also be provided at any other suitable location in the mixed-medium circuit.
  • the liquid fraction is drawn off from these separators / storage tanks P11, L7 and S8 via lines P16, L12 and S13 and fed to the respective vaporous top fraction (flash gas) of the mixture of refrigerants.
  • This procedure ensures a good distribution of liquid and gas and thus a good heat transfer in the heat exchangers E1, E2 and E3, in particular if it is a so-called plate-fin type heat exchanger.
  • Control valves P15, L11 and S12 are provided in lines P16, L12 and S13. These control valves are used to regulate the liquid level within the separator / storage tank P 11, L7 or S8.
  • the control valves P15, L11 and S12 are closed so that the separators / storage tanks P11, L7 and S8 are filled with the refrigerant mixture of the respective refrigerant mixture circuit; for this it makes sense that the separators / storage tanks P11, L7 and S8 control valves - which are not shown in Figures 1 to 5 - are provided.
  • the separators / storage tanks P11, L7 and S8 should preferably be dimensioned in such a way that they can store the entire refrigerant mixture quantity of a refrigerant mixture circuit.
  • the compressors P8, P3, L3 and S3 be driven by only one gas turbine drive G; represented by the dash-dotted line (Note: Even if the designations of the compressors or compressor stages in FIGS. 3 to 5 have been changed compared to FIGS. 1 and 2, the dash-dotted line makes it clear that even in these embodiments of the method according to the invention, only one Compressor drive is required.).
  • FIG. 2 shows a liquefaction process for natural gas which is essentially identical to that of FIG. 1.
  • the first, second and third or PRC, LRC and SRC refrigerant mixture circuits are only partially shown for the sake of clarity.
  • the hydrocarbon-rich stream or natural gas stream to be liquefied is fed to the heat exchanger E1 via line 1. At an appropriately selected temperature level, it is withdrawn from the heat exchanger E1 via line 1 'and fed to a separation column T1 which has a reboiler R1. This separation column T1 is used to separate heavy hydrocarbons which are drawn off at the bottom of the separation column T1 via line 8.
  • the natural gas depleted of heavy hydrocarbons at the top of the separation column T1 is in turn fed to the heat exchanger E1 via line 2 '. In this it is cooled further and fed as a partially condensed stream via line 2 "to a separator D.
  • the liquid fraction obtained in the bottom of the separator D is fed as return to the top of the separation zone T1 by means of the pump P1 via line 2"'.
  • the hydrocarbon-rich fraction obtained at the top of the separator is fed via line 2 to the heat exchanger E2 and liquefied therein.
  • the liquefied hydrocarbon-rich stream then passes via line 3 into the heat exchanger E3, in which it is supercooled.
  • the supercooled liquefied hydrocarbon-rich stream is then fed via line 4 to the separation column T2, and is passed through the column sump for the purpose of heating the reboiler R2 before the expansion in the expansion valve 5.
  • the separation column T2 is used to separate nitrogen and methane, a stream rich in these two components being drawn off at the top of the separation column T2 via line 6.
  • This nitrogen and methane-rich stream drawn off via line 6 - the so-called tail gas - is warmed in the heat exchanger E4 against a partial stream of the hydrocarbon-rich stream drawn off at the top of the separator D, which stream is fed to the heat exchanger E4 via line 9 .
  • the liquefied hydrocarbon-rich partial stream is then passed via line 10 and expansion valve 11 also to the separation column T2 - either on the same tray or any tray below the feed point of the hydrocarbon-rich stream in line 4.
  • the liquefied and supercooled natural gas drawn off from the bottom of the separation column T2 is fed to a storage device by means of the pump P2 via line 7.
  • Figure 3 shows a further advantageous embodiment of the method according to the invention.
  • the first or PRC refrigerant mixture circuit is modified.
  • the LRC and SRC refrigerant mixture circuits are identical to those as shown in Figure 1.
  • the compressed (P3) refrigerant mixture is cooled in the cooler P4 to a temperature between 10 and 40 ° C and liquefied in the process. It is then fed to the heat exchanger E1 via line P10 and supercooled in it. A partial flow of the supercooled mixture of refrigerants is expanded in the expansion valve P13 - or alternatively in an expansion turbine - and evaporated again in the heat exchanger E1. This mixed refrigerant flow is then fed via line P14 to the separator P1 at a pressure of 2 to 6 bar. The gaseous refrigerant mixture drawn off at the top of the separator P1 via line P2 is compressed in the compressor P3 to a pressure between 6 and 10 bar.
  • a second partial stream of the liquefied and supercooled mixture of refrigerants is withdrawn from the heat exchanger E1 at a higher temperature level and expanded in the expansion valve P17 - or alternatively in a expansion turbine.
  • the separator / storage tank that can be provided after the expansion valve P17 and the corresponding control valves are not shown in the figure.
  • this partial flow of the mixture of refrigerants is also evaporated in the heat exchanger E1 and fed to the separator P6 via line P18.
  • the gaseous refrigerant mixture drawn off at the top of the separator P6 via line P19 is likewise fed to the compressor P3 at an intermediate pressure stage.
  • the compressed refrigerant mixture in the cooler P4 is cooled and liquefied, preferably against sea water, against air or against an appropriate cooling medium, at a temperature between 10 and 40 ° C.
  • This embodiment of the method according to the invention has the following advantages and disadvantages compared to the embodiment shown in FIG. 1:
  • the enthalpy-temperature diagram of the refrigerant mixture stream to be evaporated and heated in the PRC-refrigerant mixture circuit can be better adapted to the enthalpy-temperature diagrams of all streams to be cooled (natural gas stream, PRC, LRC and SRC refrigerant mixture circuit).
  • the very large gas flow on the suction side of the compressor P3 is divided into two flows. This makes additional pipelines and control devices necessary. However, the dimensions of the pipelines are smaller. Overall, the energy consumption of this embodiment of the method according to the invention is lower.
  • FIGS. 4 and 5 show further advantageous refinements of the method according to the invention.
  • the first or PRC and / or the second or LRC refrigerant mixture circuit are modified.
  • the SRC refrigerant mixture circuit is identical to that as shown in Figures 1 and 3.
  • the SRC refrigerant mixture circuit is therefore not shown in full.
  • the first or PRC refrigerant mixture circuit is also identical to that as shown in FIG. 3.
  • the mixed refrigerant circuit is first fed to the heat exchanger E1 via line L5 and liquefied in it.
  • the refrigerant mixture is then fed via line L6 to the heat exchanger E2 and subcooled there.
  • a partial flow of the supercooled mixture of refrigerants is expanded in the expansion valve L9 - or alternatively in a expansion turbine - and evaporated in the heat exchanger E2.
  • This partial refrigerant mixture stream is then fed to the separator L1 via line L10.
  • the gaseous refrigerant mixture drawn off at the top of the separator L1 via line L2 is compressed in the compressor L3 to a pressure between 10 and 20 bar.
  • a second partial flow of the supercooled refrigerant mixture of the LRC-refrigerant mixture circuit is withdrawn from the heat exchanger E2 at a higher temperature level and expanded in the expansion valve L13 - or alternatively in a expansion turbine.
  • the separator / storage tank that can be provided after the expansion valve L13 and the corresponding control valves are not shown in the figure.
  • this partial flow of the mixture of refrigerants is also evaporated in the heat exchanger E2 and fed to the separator L15 via line L14.
  • the gaseous refrigerant mixture drawn off at the top of the separator L15 via line L16 is likewise fed to the compressor L3 at an intermediate pressure stage.
  • the compressed refrigerant mixture in the cooler L4 is cooled to a temperature between 10 and 40 ° C.
  • This embodiment of the method according to the invention has the following advantages and disadvantages compared to the embodiment shown in FIGS. 1 and 3:
  • the enthalpy-temperature diagrams of the currents to be cooled and heated can be better matched to one another. It must be checked in each individual case whether the energy saving achievable by this embodiment of the method according to the invention justifies the additional effort for the more complex process control or system.
  • the compressed and subsequently liquefied and partially liquefied refrigerant mixture in the cooler L21 to a temperature between 10 and 40 ° C. is first fed to a separator L13 via line L5.
  • the gaseous fraction of the refrigerant mixture is drawn off at the top of the separator L13 via line L6, liquefied in the heat exchanger E1 and subcooled in the heat exchanger E2.
  • the refrigerant mixture is then expanded in the expansion valve L9 - or alternatively in a expansion turbine - and evaporated in the heat exchanger E2, after which it is fed to the separator L1 via line L10.
  • the liquid portion of the refrigerant mixture is withdrawn from the bottom of the separator L13 via line L14, subcooled in the heat exchanger E1 and brought to a less low temperature level in the heat exchanger E2.
  • This liquefied and supercooled partial refrigerant mixture stream is then expanded in the expansion valve L15 - or alternatively in a expansion turbine -, likewise evaporated in the heat exchanger E2 and mixed with the evaporated partial refrigerant mixture stream in line L 10.
  • the separator / storage tank which can be provided after the expansion valve L15 and the corresponding control valves are not shown in FIG. 5.
  • the gaseous refrigerant mixture drawn off at the top of the separator L1 via line L2 is compressed in the compressor L3 to a pressure between 6 and 10 bar. This is followed, preferably against sea water, air or an appropriate cooling medium, by cooling the compressed mixture of refrigerants in cooler L4 to a temperature between 10 and 40 ° C.
  • the refrigerant mixture is then fed to another separator L17 via line L16.
  • the gaseous fraction of the refrigerant mixture at the top of the separator L17 is fed via line L18 to the second compressor stage L19 and compressed therein to a pressure between 12 and 25 bar.
  • the liquid fraction from the separator L17 is pumped by means of the pump L20, preferably a centrifugal pump, to a pressure between 12 and 25 bar and then combined with the refrigerant mixture stream compressed in the compressor L19.
  • the compression of the refrigerant mixture of the second or LRC / refrigerant mixture circuit is preferably carried out in a two-stage, single-case centrifugal compression device which contains both the cooler L4 and the separator L17.
  • an axial compression device can also be provided instead of the centrifugal compression device.
  • This embodiment of the method according to the invention has the following advantages and disadvantages compared to the embodiments shown in FIGS. 1, 2 and 3:
  • the enthalpy-temperature diagrams of the streams to be cooled and heated can be better matched to one another. Again, it must be checked in individual cases whether the energy saving achievable by this embodiment justifies the additional outlay for the more complex process control or system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgas-Stromes, durch indirekten Wärmetausch mit den Kältemitteln einer Kältemittelgemischkreislaufkaskade. Erfindungsgemäß besteht die Kältemittelgemischkreislaufkaskade aus wenigstens 3 unterschiedliche Kältemittelzusammensetzungen aufweisenden Kältemittelgemischkreisläufen. Hierbei dient der erste der 3 Kältemittelgemischkreisläufe der Vorkühlung (E1), der zweite Kältemittelgemischkreislauf der Verflüssigung (E2) und der dritte Kältemittelgemischkreislauf der Unterkühlung (E3) des zu verflüssigenden Kohlenwasserstoff-reichen Stromes (1). Das erfindungsgemäße Verfahren führt zu einer Verringerung des spezifischen Energieverbrauchs und der Investitionskosten, da die drei Kältemittelgemischkreisläufe optimal an die Enthalpie-Temperaturkurven des zu verflüssigenden Kohlenwasserstoffreichen Stromes sowie der Kältemittelgemische angepaßt sind bzw. angepaßt werden können.

Description

Beschreibung
Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgas-Stromes, durch indirekten Wärmetausch mit den Kältemitteln einer Kältemittelgemischkreislaufkaskade.
Auf möglicherweise notwendige Vorbehandlungsschritte des Kohlenwasserstoffreichen Stromes vor der Verflüssigung, wie z. B. Sauergas- und/oder Quecksilber- Entfernung, Entfernung von aromatischen Komponenten, etc., die nicht Gegenstand der vorliegenden Erfindung sind, wird im folgenden nicht näher eingegangen werden.
Heutzutage werden die meisten Baseload-LNG-Anlagen als sog. Dual-Flow- Refrigeration-Prozesse ausgelegt. Hierbei wird die für die Verflüssigung des Kohlenwasserstoff-reichen Stromes bzw. des Erdgases benötigte Kälteenergie mittels zweier separater Kältemittelgemischkreisläufe, die zu einer Kältemittelgemischkreislaufkaskade geschaltet sind, bereitgestellt. Ein derartiges Verflüssigungsverfahren ist z. B. aus der GB-PS 895 094 bekannt.
Desweiteren sind Verflüssigungsverfahren bekannt, bei denen die für die Verflüssigung benötigte Kälteenergie mittels einer Kältemittelkreislaufkaskade, nicht jedoch einer Kältemittelgemischkreislaufkaskade bereitgestellt wird; siehe z. B. LINDE-Berichte aus Technik und Wissenschaft, Heft 75/1997, Seite 3 - 8. Die darin beschriebene Kältemittelkreislaufkaskade besteht aus einem Propan- oder Propylen-, einem Ethan- oder Ethylen- und einem Methan-Kältekreislauf. Diese Kältemittelkreislaufkaskade kann zwar als energetisch optimiert angesehen werden, ist jedoch aufgrund der 9 Verdichterstufen vergleichsweise kompliziert.
Ferner sind, wie z. B. in der DE-AS 19 60 301 beschrieben, Verflüssigungsverfahren bekannt, bei denen die für die Verflüssigung benötigte Kälteenergie mittels einer Kaskade, bestehend aus einem Kältemittelgemischkreislauf sowie einem Propan- Vorkühlungskreislauf, bereitgestellt wird. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgas-Stromes, anzugeben, das gegenüber derartigen Dual-Flow-Refrigeration-Prozessen einen verringerten spezifischen Energieverbrauch aufweist und dabei die Realisierung einer geringeren Anlagengröße und damit verbunden geringeren Investitionskosten ermöglicht.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Kältemittelgemischkreislaufkaskade aus wenigstens 3 unterschiedliche Kältemittelzusammensetzungen aufweisenden Kältemittelgemischkreisläufen besteht.
Bei dem erfindungsgemäßen Verfahren -Triple-Flow-Mixed-Refrigerant-Cycle genannt - besteht die Kältemittelgemischkreislaufkaskade aus wenigstens drei separaten Kältemittelgemischkreisläufen. Diese weisen unterschiedliche Kältemittelzusammensetzungen auf, da sie Kälte bei unterschiedlichen Temperaturen erzeugen müssen.
Der erste der drei Kältemittelgemischkreisläufe - der sog. Precooling Refrigerant Cycle (PRC) - dient der Kühlung und der partiellen oder gänzlichen Kondensation der für die Verflüssigung und für die Unterkühlung benötigten Kältemittelgemische sowie der Vorkühiung des Kohlenwasserstoff-reichen Stromes. Der zweite Kälte itteigemischkreislauf - der sog. Liquefaction Refrigerant Qycle (LRC) - dient der partiellen oder gänzlichen Kondensation des für die Unterkühlung benötigten Kältemittelgemisches und der Kondensation des Kohlenwasserstoff-reichen Stromes. Der dritte Kältemitteigemischkreislauf - der sog. Subcooling Refrigerant Cycle (SRC) - dient der notwendigen Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes.
Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird für den ersten der drei Käitemittelgemischkreisläufe als Kältemittel ein Gemisch aus Ethylen oder Ethan, Propan und Butan verwendet. Dieser PRC- Kältemittelgemischkreislauf dient der Kältemittelbereitstellung in einem Temperaturbereich von Umgebungstemperatur bis zwischen ca. -35 und ca. -55°C. Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird für den zweiten der drei Käitemittelgemischkreisläufe als Kältemittel ein Gemisch aus Methan, Ethylen oder Ethan und Propan verwendet. Für den dritten der drei Käitemittelgemischkreisläufe wird vorzugsweise als Kältemittel ein Gemisch aus Stickstoff, Methan und Ethylen oder Ethan verwendet. Während der zweite bzw. LRC- Kältemitteigemischkreislauf Kälteenergie in einem Temperaturintervall von ca. -40 bis ca. -100°C bereitstellt, dient der dritte bzw. SRC-Kältemittelgemischkreislauf der Kältebereitstellung bis zwischen ca. -85 und ca. -160°C.
Die erfindungsgemäße Verfahrensführung führt zu einer Verringerung des spezifischen Energieverbrauchs und der Investitionskosten, da die drei Käitemittelgemischkreisläufe optimal an die Enthalpie-Temperaturkurven des zu verflüssigenden Kohlenwasserstoff- reichen Stromes sowie der Kältemittelgemische angepaßt sind bzw. angepaßt werden können. Durch diese im Vergleich zu einem Dual-Flow-Refrigeration-Prozeß effizientere Verfahrensweise läßt sich entweder die benötigte Verflüssigungsanlage verkleinern und damit die Kosten der Anlage verringern oder die Kapazität des zu verflüssigenden Kohlenwasserstoff-reichen Stromes kann bei gleichbleibender Anlagengröße vergrößert werden.
Das erfindungsgemäße Verfahren sowie weitere Ausgestaltungen desselben seien anhand der Figuren 1 bis 5 näher erläutert.
Bei dem erfindungsgemäßen Verfahren erfolgt die für die Verflüssigung des Kohlenwasserstoff-reichen Stromes benötigte Käitemittelbereitsteilung durch wenigstens drei Käitemittelgemischkreisläufe. Der Übersichtlichkeit halber wird in den Figuren 1 bis 5 den Bezugszeichen der einzelnen Käitemittelgemischkreisläufe jeweils ein "P", "L" oder "S" für PRC-, LRC- bzw. SRC-Kältemittelgemischkreislauf vorangestellt.
Gemäß dem in der Figur 1 dargestellten Verfahren wird ein gegebenenfalls vorbehandelter Erdgasstrom, der eine Temperatur zwischen 10 und 40°C und einen Druck zwischen 30 und 70 bar aufweist, über Leitung 1 einem ersten Wärmetauscher E1 zugeführt. In diesem Wärmetauscher E1 wird der Erdgasstrom gegen den in einem Entspannungsventil P13 entspannten Kältemittelgemisch des ersten bzw. PRC- Kältemittelgemischkreislaufes in Leitung P14 auf eine Temperatur zwischen -35 und - 55°C vorgekühlt.
Das Kältemittelgemisch des dritten bzw. SRC-Kältemittelgemischkreislaufes wird dem Wärmetauscher E1 über Leitung S5 mit einer Temperatur zwischen 10 und 40°C und einem Druck zwischen 30 und 60 bar zugeführt und in dem Wärmetauscher E1 gegen das bereits erwähnte Kältemittelgemisch in Leitung P14 abgekühlt und teilweise kondensiert, wobei das Kältemittelgemisch in Leitung P 14 bei einem Druck zwischen 2 und 6 bar verdampft. Das Kältemittelgemisch des SRC- Kältemittelgemischkreislaufes verläßt den Wärmetauscher E1 über Leitung S6 mit einer Temperatur zwischen -35 und -55°C.
Das Kältemittelgemisch des zweiten bzw. LRC-Kältemittelgemischkreislaufes wird dem Wärmetauscher E1 über Leitung L5 mit einer Temperatur zwischen 10 und 40°C und einem Druck zwischen 15 und 25 bar zugeführt und in dem Wärmetauscher E1 gegen das Kältemittelgemisch des PRC-Kältemittelgemischkreislaufes in Leitung P14 kondensiert. Das Kältemittelgemisch des LRC-Kältemittelgemischkreisiaufes wird aus dem Wärmetauscher E1 mit einer Temperatur zwischen -35 und -55°C abgezogen.
Das verdampfte und überhitzte Kältemittelgemisch des PRC- Kältemittelgemischkreislaufes in Leitung P14 enthält, gemäß einer vorteilhaften Ausgestaltung der erfindungsgemäßen Verfahrens, im wesentlichen 0 bis 40 Mol-% Ethylen oder Ethan, 30 bis 40 Mol-% Propan und 20 bis 30 Mol-% Butan. Dieses Kältemittelgemisch wird dem Abscheider P1 mit einem Druck von 2 bis 6 bar zugeführt. Das am Kopf des Abscheiders P1 über Leitung P2 abgezogene gasförmige Kältemittelgemisch wird in dem Verdichter P3 auf einen Druck zwischen 6 und 10 bar verdichtet. Anschließend erfolgt, vorzugsweise gegen Meerwasser, gegen Luft oder gegen ein entsprechendes Kühlmedium, ein Abkühlen des verdichteten Kältemittelgemisches im Kühler P4 auf eine Temperatur zwischen 10 und 40°C.
Daran anschließend wird das Kältemittelgemisch über Leitung P5 einem weiteren Abscheider P6 zugeführt. Die am Kopf des Abscheiders P6 anfallende gasförmige Fraktion des Kältemittelgemisches wird der zweiten Verdichterstufe P8 zugeführt und in dieser auf einen Druck zwischen 10 und 20 bar verdichtet. Die Flüssigfraktion aus dem Abscheider P6 wird mittels der Pumpe P7, vorzugsweise einer Zentrifugalpumpe, auf einen Druck zwischen 10 und 20 bar gepumpt und anschließend mit dem in dem Verdichter P8 verdichteten Kältemittelgemischstrom zusammengeführt.
Die Verdichtung des Kältemittelgemisches des ersten bzw. PRC- Kältemittelgemischkreislaufes erfolgt vorzugsweise in einer zweistufigen, eingehäusigen Zentrifugalkompressionsvorrichtung, die sowohl den Kühler P4 als auch den Abscheider P6 enthält. Im Falle sehr großer Mengen kann anstelle der Zentrifugalkompressionsvorrichtung auch eine Axialkompressionsvorrichtung vorgesehen werden. Das verdichtete Kältemittelgemisch des PRC-Kältemittelgemischkreislaufes wird in dem Kühler P9, vorzugsweise gegen Meerwasser oder ein entsprechendes Kühlmedium, kondensiert und geringfügig bis zu einem Temperaturbereich von 10 bis 40°C unterkühlt. Anschließend wird das Kältemittelgemisch über die Leitung P10 dem Wärmetauscher E1 zugeführt und in diesem bis auf eine Temperatur zwischen -35 und -50°C gegen sich selbst unterkühlt.
Die Verdampfungstemperatur, die nach der Joule-Thomson-Entspannung im Entspannungsventil P13 - oder alternativ dazu in einer Entspannungsturbine - erzielt werden kann, hängt im wesentlichen von dem Grad der Unterkühlung vor der Expansion sowie von dem Verdampfungsdruck im Temperaturbereich zwischen -38 und -53°C ab.
Der zweite bzw. LRC-Kältemittelgemischkreislauf dient, wie bereits eingangs erwähnt, der Verflüssigung des vorgekühlten Erdgasstromes in Leitung 2. Das Kältemittelgemisch dieses LRC-Kältemittelgemischkreislaufes besteht im wesentlichen aus einem Gemisch aus 5 bis 15 Mol-% Methan, 0 bis 80 Mol-% Ethylen oder Ethan und 10 bis 20 Mol-% Propan. Der vorgekühlte Erdgasstrom wird dem Wärmetauscher E2 über Leitung 2 zugeführt, in diesem bis auf eine Temperatur zwischen -80 und - 100°C abgekühlt und anschließend über Leitung 3 aus dem Wärmetauscher E2 abgezogen.
Das Kältemittelgemisch des dritten bzw. SRC-Kältemittelgemischkreislaufes wird dem Wärmetauscher E2 über Leitung S6 mit einer Temperatur zwischen -35 und -50°C zugeführt und gegen das Kältemittel des LRC-Kältemittelgemischkreislaufes in der Leitung L10 kondensiert. Das Kältemittelgemisch in der Leitung L10 verdampft auf einem Druckniveau zwischen 1 ,5 und 6 bar. Das abgekühlte Kältemittelgemisch des SRC-Kältemittelgemischkreislaufes wird mit einer Temperatur zwischen -80 und - 100°C über Leitung S7 aus dem Wärmetauscher E2 abgezogen.
Das verdampfte und überhitzte Kältemittelgemisch des LRC- Kältemittelgemischkreislaufes in der Leitung L10 wird dem Abscheider L1 mit einem Druck zwischen 1 ,5 und 6 bar zugeführt. Das am Kopf des Abscheiders L1 anfallende gasförmige Kältemittelgemisch wird über Leitung L2 dem Verdichter L3 zugeführt und in diesem auf einen Druck zwischen 10 und 20 bar verdichtet. Der Verdichter E3 ist vorzugsweise als ein eingehäusiger Axial- oder Zentrifugalverdichter ausgebildet. Derartige kaltansaugende Verdichter besitzen den Vorteil, daß das anzusaugende Medium vor dem Ansaugen nicht bis auf Umgebungstemperatur erwärmt werden muß, wodurch Heizfläche eingespart und damit die Wärmetauscher kleiner dimensioniert und billiger hergestellt werden können.
Das verdichtete Kältemittelgemisch des LRC-Kältemittelgemischkreislaufes wird in dem Kühler L4, vorzugsweise gegen Meerwasser oder ein entsprechendes Kühlmedium, bis auf eine Temperatur zwischen 10 und 40°C abgekühlt. Das aus dem Kühler L4 über Leitung L5 abgezogene Kältemittelgemisch wird, wie bereits erwähnt, in dem Wärmetauscher E1 verflüssigt, über Leitung L6 dem Wärmetauscher E2 zugeführt und in diesem bis auf eine Temperatur zwischen -80 und -100°C gegen sich selbst unterkühlt. Die Verdampfungstemperatur des Kältemittelgemisches nach der Joule-Thomson-Entspannung im Entspannungsventil L9 - oder alternativ dazu in einer Entspannungsturbine - liegt zwischen -82 und -1 12°C.
Der dritte bzw. SRC-Kältemittelgemischkreislauf dient der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes bzw. Erdgasstromes. Diese Unterkühlung ist sinnvoll bzw. notwendig, damit nicht mehr als die benötigte Menge des Flash-Gases nach der Expansion des verflüssigten Kohlenwasserstoff-reichen Stromes in einer stromabwärts angeordneten Stickstoff-Entfernungs-Einheit anfällt.
Das Kältemittelgemisch des dritten bzw. SRC-Kältemittelgemischkreislaufes besteht, gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens, im wesentlichen aus einem Gemisch von 0 bis 10 Mol-% Stickstoff, 40 bis 65 Mol-% Methan und 0 bis 40 Mol-% Ethylen oder 0 bis 30 Mol-% Ethan.
Der über Leitung 3 dem Wärmetauscher E3 zugeführte verflüssigte Kohlenwasserstoff- reiche Strom wird in dem Wärmetauscher E3 bis auf eine Temperatur von -150 bis - 160°C unterkühlt. Nach dieser Unterkühlung wird der Kohlenwasserstoff-reiche bzw. Erdgas-Strom über Leitung 4 aus dem Wärmetauscher E3 abgezogen und im wesentlichen auf atmosphärischen Druck mittels einer Joule-Thomson-Entspannung im Entspannungsventil 5 - oder alternativ dazu in einer Entspannungsturbine - entspannt.
Das dem Wärmetauscher E3 über Leitung S9 zugeführte Kältemittelgemisch des dritten bzw. SRC-Kältemittelgemischkreislaufes wird in dem Wärmetauscher E3 unterkühlt und anschließend im Entspannungsventil S10 ebenfalls einer Joule- Thomson-Entspannung unterworfen. Anstelle des Entspannungsventil S10 kann wiederum eine Entspannungsturbine vorgesehen werden. Die Entspannung im Entspannungsventil S10 erfolgt auf einem Druckniveau zwischen 2 und 6 bar. Die Verdampfung des Kältemittelgemisches im Wärmetauscher E3 dient sowohl der Unterkühlung des bereits verflüssigten Kohlenwasserstoff-reichen Stromes als auch der Eigenunterkühlung des noch nicht entspannten Kältemittelgemisches des SRC- Kältemittelgemischkreislaufes.
Das verdampfte und überhitzte Kältemittelgemisch des SRC- Kältemittelgemischkreislaufes wird über Leitung S11 einem Abscheider S1 zugeführt. Das am Kopf des Abscheiders S1 anfallende gasförmige Kältemittelgemisch wird über Leitung S2 einem Verdichter S3 zugeführt. In dem Verdichter S3 erfolgt eine Verdichtung des Käitemittelgemisches auf einem Druck zwischen 35 und 60 bar. Das aus dem Verdichter S3 austretende Kältemittelgemisch wird anschließend in dem Kühler S4, vorzugsweise gegen Meerwasser oder ein entsprechendes Kühlmedium, abgekühlt.
Jeder der drei Käitemittelgemischkreisläufe weist, gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens, stromabwärts des jeweiligen Entspannungsventiles P13, L9 bzw. S10 einen Abscheider/Speicherbehältern P11 , L7 bzw. S8 auf. Prinzipiell können diese Abscheider/Speicherbehältern auch an jeder anderen geeigneten Stelle der Käitemittelgemischkreisläufe vorgesehen werden.
Aus diesen Abscheidern/Speicherbehältern P11 , L7 und S8 wird die Flüssigfraktion über die Leitungen P16, L12 bzw. S13 abgezogen und der jeweils dampfförmigen Kopffraktion (Flashgas) des Käitemittelgemisches zugeführt. Durch diese Verfahrensweise wird eine gute Verteilung von Flüssigkeit und Gas und damit ein guter Wärmeübergang in den Wärmetauschern E1 , E2 und E3, insbesondere wenn es sich um sog. Plate-Fin-Typ-Wärmetauscher handelt, gewährleistet.
In den Leitungen P16, L12 und S13 sind Regelventile P15, L11 bzw. S12 vorgesehen. Diese Regelventile dienen dazu, den Flüssigkeitsstand innerhalb der Abscheider/Speicherbehälter P 11 , L7 bzw. S8 zu regulieren.
Im Falle eines Anlagenstillstandes werden die Regelventile P15, L11 und S12 geschlossen, so daß die Abscheider/Speicherbehälter P11 , L7 und S8 mit dem Kältemittelgemisch des jeweiligen Kältemittelgemischkreislaufes befüllt werden; dazu ist es sinnvoll, daß zusätzlich am Kopf der Abscheider/Speicherbehälter P11 , L7 und S8 Regelventile - die in den Figuren 1 bis 5 nicht dargestellt sind - vorgesehen werden. Dadurch wird eine Speicherung des Käitemittelgemisches am kältesten Punkt des jeweiligen Kältemittelgemischkreislaufes ermöglicht, wodurch die Anfahrprozedur bei der Wiederinbetriebnahme beschleunigt wird. Die Abscheider/Speicherbehälter P11 , L7 und S8 sind vorzugsweise so zu dimensionieren, daß sie die gesamte Kältemittelgemischmenge eines Kältemittelgemischkreislaufes speichern können.
Das erfindungsgemäße Verfahren weiterbildend wird vorgeschlagen, daß die Verdichter P8, P3, L3 und S3 von lediglich einem Gasturbinenantrieb G angetrieben werden; dargestellt durch die strichpunktierte Linie (Anmerkung: Auch wenn bei den Figuren 3 bis 5 die Bezeichnungen der Verdichter bzw. Verdichterstufen gegenüber den Figuren 1 und 2 geändert sind, so sei durch die strichpunktierte Linie klargestellt, daß auch bei diesen Ausgestaltungen des erfindungsgemäßen Verfahrens lediglich ein Verdichter-Antrieb erforderlich ist.).
In der Figur 2 ist ein Verflüssigungsverfahren für Erdgas dargestellt, das im wesentlichen identisch mit demjenigen der Figur 1 ist. Der erste, zweite und dritte bzw. PRC-, LRC- und SRC-Kältemittelgemischkreislauf sind der Übersichtlichkeit halber jedoch nur teilweise dargestellt.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom bzw. Erdgasstrom wird dem Wärmetauscher E1 über Leitung 1 zugeführt. Auf einem entsprechend gewählten Temperaturniveau wird er aus dem Wärmetauscher E1 über Leitung 1' abgezogen und einer Trennkolonne T1 , die einen Reboiler R1 aufweist, zugeführt. Diese Trennkolonne T1 dient der Abtrennung von schweren Kohlenwasserstoffen, die am Sumpf der Trennkolonne T1 über Leitung 8 abgezogen werden.
Das am Kopf der Trennkolonne T1 anfallende, an schweren Kohlenwasserstoffen abgereicherte Erdgas wird über Leitung 2' wiederum dem Wärmetauscher E1 zugeführt. In diesem wird es weiter abgekühlt und als teilkondensierter Strom über Leitung 2" einem Abscheider D zugeführt. Die im Sumpf des Abscheiders D anfallende Flüssigfraktion wird mittels der Pumpe P1 über Leitung 2"' als Rücklauf auf den Kopf der Trennkoionne T1 gegeben. Die am Kopf des Abscheiders anfallende Kohlenwasserstoff-reiche Fraktion wird über Leitung 2 dem Wärmetauscher E2 zugeführt und in diesem verflüssigt. Über Leitung 3 gelangt der verflüssigte Kohlenwasserstoff-reiche Strom anschließend in den Wärmetauscher E3, in dem er unterkühlt wird. Der unterkühlte verflüssigte Kohlenwasserstoff-reiche Strom wird anschließend über Leitung 4 der Trennkolonne T2 zugeführt, wobei er zum Zwecke des Beheizens des Reboilers R2 vor der Entspannung im Entspannungsventil 5 durch den Kolonnensumpf geführt wird.
Die Trennkolonne T2 dient der Abtrennung von Stickstoff und Methan, wobei ein an diesen beiden Komponenten reicher Strom am Kopf der Trennkolonne T2 über Leitung 6 abgezogen wird. Dieser über Leitung 6 abgezogene Stickstoff- und Methan-reiche Strom - das sog. Tail-Gas - wird im Wärmetauscher E4 gegen einen Teilstrom des am Kopf des Abscheiders D abgezogenen Kohlenwasserstoff-reichen Stromes, der dem Wärmetauscher E4 über Leitung 9 zugeführt wird, angewärmt. Der dabei verflüssigte Kohlenwasserstoff-reiche Teilstrom wird anschließend über Leitung 10 und Entspannungsventil 11 ebenfalls auf die Trennkolonne T2 - entweder auf dem gleichen Boden oder einem beliebigen Boden unterhalb der Zuführstelle des Kohlenwasserstoff- reichen Stromes in der Leitung 4 - gegeben.
Das aus dem Sumpf der Trennkolonne T2 abgezogene, verflüssigte und unterkühlte Erdgas wird mittels der Pumpe P2 über Leitung 7 einer Speicherung zugeführt.
Figur 3 zeigt eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens. Bei dieser Ausführungsform ist, gegenüber der in der Figur 1 dargestellten Ausführungsform, der erste bzw. PRC-Kältemittelgemischkreislauf modifiziert. Die LRC- und SRC-Kältemittelgemischkreisläufe hingegen sind identisch zu denjenigen, wie in der Figur 1 dargestellt.
Das verdichtete (P3) Kältemittelgemisch wird im Kühler P4 auf eine Temperatur zwischen 10 und 40°C abgekühlt und dabei verflüssigt. Anschließend wird es dem Wärmetauscher E1 über Leitung P10 zugeführt und in diesem unterkühlt. Ein Teilstrom des unterkühlten Käitemittelgemisches wird im Entspannungsventil P13 - oder alternativ dazu in einer Entspannungsturbine - entspannt und im Wärmetauscher E1 wieder verdampft. Anschließend wird dieser Kältemittelgemischteiistrom über Leitung P14 dem Abscheider P1 mit einem Druck von 2 bis 6 bar zugeführt. Das am Kopf des Abscheiders P1 über Leitung P2 abgezogene gasförmige Kältemittelgemisch wird in dem Verdichter P3 auf einen Druck zwischen 6 und 10 bar verdichtet. Ein zweiter Teilstrom des verflüssigten und unterkühlten Käitemittelgemisches wird auf einem höheren Temperaturniveau aus dem Wärmetauscher E1 abgezogen und im Entspannungsventil P17 - oder alternativ dazu in einer Entspannungsturbine - entspannt. Der Übersichtlichkeit halber werden der nach dem Entspannungsventil P17 vorsehbare Abscheider/Speicherbehälter sowie die entsprechenden Regelventile in der Figur nicht dargestellt. Nach erfolgter Entspannung P17 wird dieser Teilstrom des Käitemittelgemisches ebenfalls im Wärmetauscher E1 verdampft und über Leitung P18 dem Abscheider P6 zugeführt. Das am Kopf des Abscheiders P6 über Leitung P19 abgezogene gasförmige Kältemittelgemisch wird ebenfalls dem Verdichter P3 auf einer Zwischendruckstufe zugeführt.
Nach der Vermischung und Verdichtung der beiden beschriebenen Kältemittelgemischteilströme auf ca. 15 bis 20 bar in dem Verdichter P3, erfolgt, vorzugsweise gegen Meerwasser, gegen Luft oder gegen ein entsprechendes Kühlmedium, ein Abkühlen und Verflüssigen des verdichteten Käitemittelgemisches im Kühler P4 bei einer Temperatur zwischen 10 und 40°C.
Diese Ausführungsform des erfindungsgemäßen Verfahrens weist gegenüber der in der Figur 1 dargestellten Ausführungsform folgende Vor- und Nachteile auf:
Das Enthalpie-Temperatur-Diagramm des zu verdampfenden und anzuwärmenden Kältemittelgemischstromes des PRC-Kältemittelgemischkreislaufes kann besser an die Enthalpie-Temperatur-Diagramme aller abzukühlenden Ströme (Erdgas-Strom, PRC-, LRC- und SRC-Kältemittelgemischkreislauf) angepaßt werden. Der sehr große Gasstrom auf der Saugseite des Verdichters P3 wird auf zwei Ströme aufgeteilt. Dies macht zusätzliche Rohrleitungen und Regeleinrichtungen erforderlich. Die Abmessungen der Rohrleitungen sind jedoch kleiner. Insgesamt ist der Energieverbrauch dieser Ausführungsform des erfindungsgemäßen Verfahrens geringer.
Die Figuren 4 und 5 zeigen weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens. Bei diesen Ausführungsformen sind, gegenüber der in der Figur 1 dargestellten Ausführungsform, der erste bzw. PRC- und/oder der zweite bzw. LRC-Kältemittelgemischkreislauf modifiziert. Der SRC- Kältemittelgemischkreislauf hingegen ist identisch zu denjenigen, wie in den Figuren 1 und 3 dargestellt. Der Übersichtlichkeit halber wird deshalb auf eine vollständige Darstellung des SRC-Kältemittelgemischkreislaufes verzichtet. Bei der in der Figur 4 dargestellten Ausführungsform ist zudem der erste bzw. PRC- Kältemittelgemischkreislauf identisch zu demjenigen, wie in der Figur 3 dargestellt.
Das verdichtete und anschließend im Kühler L4 auf eine Temperatur zwischen 10 und 40°C abgekühlte Kältemittelgemisch des zweiten bzw. LRC-
Kältemittelgemischkreislaufes wird zunächst dem Wärmetauscher E1 über Leitung L5 zugeführt und in diesem verflüssigt. Anschließend wird das Kältemittelgemisch über Leitung L6 dem Wärmetauscher E2 zugeführt und in diesem unterkühlt. Ein Teilstrom des unterkühlten Käitemittelgemisches wird im Entspannungsventil L9 - oder alternativ dazu in einer Entspannungsturbine - entspannt und im Wärmetauscher E2 verdampft. Anschließend wird dieser Kältemittelgemischteilstrom über Leitung L10 dem Abscheider L1 zugeführt. Das am Kopf des Abscheiders L1 über Leitung L2 abgezogene gasförmige Kältemittelgemisch wird in dem Verdichter L3 auf einen Druck zwischen 10 und 20 bar verdichtet.
Ein zweiter Teilstrom des unterkühlten Käitemittelgemisches des LRC- Kältemittelgemischkreislaufes wird auf einem höheren Temperaturniveau aus dem Wärmetauscher E2 abgezogen und im Entspannungsventil L13 - oder alternativ dazu in einer Entspannungsturbine - entspannt. Der Übersichtlichkeit halber werden der nach dem Entspannungsventil L13 vorsehbare Abscheider/Speicherbehälter sowie die entsprechenden Regelventile in der Figur nicht dargestellt. Nach erfolgter Entspannung L13 wird dieser Teilstrom des Käitemittelgemisches ebenfalls im Wärmetauscher E2 verdampft und über Leitung L14 dem Abscheider L15 zugeführt. Das am Kopf des Abscheiders L15 über Leitung L16 abgezogene gasförmige Kältemittelgemisch wird ebenfalls dem Verdichter L3 auf einer Zwischendruckstufe zugeführt.
Nach der Vermischung der beiden beschriebenen Kältemittelgemischteilströme in dem Verdichter L3 erfolgt, vorzugsweise gegen Meerwasser, gegen Luft oder gegen ein entsprechendes Kühlmedium, ein Abkühlen des verdichteten Käitemittelgemisches im Kühler L4 auf eine Temperatur zwischen 10 und 40°C.
Diese Ausführungsform des erfindungsgemäßen Verfahrens weist gegenüber der in der Figur 1 bzw. 3 dargestellten Ausführungsform folgende Vor- und Nachteile auf: Auch hier können die Enthalpie-Temperatur-Diagramme der abzukühlenden und anzuwärmenden Ströme besser aneinander angepaßt werden. Ob die durch diese Ausführungsform des erfindungsgemäßen Verfahrens erreichbare Energieeinsparung den Mehraufwand für die komplexere Verfahrensführung bzw. Anlage rechtfertigt, ist im Einzelfall zu prüfen.
Im Falle der in der Figur 5 dargestellten Ausführungsform des erfindungsgemäßen Verfahrens ist gegenüber der in der Figur 1 dargestellten Ausführungsform lediglich der zweite bzw. LRC-Kältemittelgemischkreislauf modifiziert.
Das verdichtete und anschließend im Kühler L21 auf eine Temperatur zwischen 10 und 40°C abgekühlte und partiell verflüssigte Kältemittelgemisch wird zunächst über Leitung L5 einem Abscheider L13 zugeführt. Der gasförmige Anteil des Käitemittelgemisches wird am Kopf des Abscheiders L13 über Leitung L6 abgezogen, in dem Wärmetauscher E1 verflüssigt und in dem Wärmetauscher E2 unterkühlt. Anschließend wird das Kältemittelgemisch im Entspannungsventil L9 - oder alternativ dazu in einer Entspannungsturbine - entspannt und im Wärmetauscher E2 verdampft, wonach es über Leitung L10 dem Abscheider L1 zugeführt wird.
Der flüssige Anteil des Käitemittelgemisches wird aus dem Sumpf des Abscheiders L13 über Leitung L14 abgezogen, in dem Wärmetauscher E1 unterkühlt und in dem Wärmetauscher E2 bis auf ein weniger tiefes Temperatumiveau gebracht. Anschließend wird dieser verflüssigte und unterkühlte Kältemittelgemischteilstrom im Entspannungsventil L15 - oder alternativ dazu in einer Entspannungsturbine - entspannt, ebenfalls im Wärmetauscher E2 verdampft und dem verdampften Kältemittelgemischteilstrom in Leitung L 10 zugemischt. Der Übersichtlichkeit halber werden der nach dem Entspannungsventil L15 vorsehbare Abscheider/Speicherbehälter sowie die entsprechenden Regelventile in der Figur 5 nicht dargestellt.
Das am Kopf des Abscheiders L1 über Leitung L2 abgezogene gasförmige Kältemittelgemisch wird in dem Verdichter L3 auf einen Druck zwischen 6 und 10 bar verdichtet. Anschließend erfolgt, vorzugsweise gegen Meerwasser, gegen Luft oder gegen ein entsprechendes Kühlmedium, ein Abkühlen des verdichteten Käitemittelgemisches im Kühler L4 auf eine Temperatur zwischen 10 und 40°C. Daran anschließend wird das Kältemittelgemisch über Leitung L16 einem weiteren Abscheider L17 zugeführt. Die am Kopf des Abscheiders L17 anfallende gasförmige Fraktion des Käitemittelgemisches wird über Leitung L18 der zweiten Verdichterstufe L19 zugeführt und in dieser auf einen Druck zwischen 12 und 25 bar verdichtet. Die Flüssigfraktion aus dem Abscheider L17 wird mittels der Pumpe L20, vorzugsweise einer Zentrifugalpumpe, auf einen Druck zwischen 12 und 25 bar gepumpt und anschließend mit dem in dem Verdichter L19 verdichteten Kältemittelgemischstrom zusammengeführt.
Die Verdichtung des Käitemittelgemisches des zweiten bzw. LRC- Kältemittelgemischkreislaufes erfolgt vorzugsweise in einer zweistufigen, eingehäusigen Zentrifugalkompressionsvorrichtung, die sowohl den Kühler L4 als auch den Abscheider L17 enthält. Im Falle sehr großer Mengen kann anstelle der Zentrifugalkompressionsvorrichtung auch eine Axialkompressionsvorrichtung vorgesehen werden.
Diese Ausführungsform des erfindungsgemäßen Verfahrens weist gegenüber der in den Figur 1 , 2 bzw. 3 dargestellten Ausführungsformen folgende Vor- und Nachteile auf:
Auch bei der in der Figur 5 dargestellten Ausführungsform des erfindungsgemäßen Verfahrens können die Enthalpie-Temperatur-Diagramme der abzukühlenden und anzuwärmenden Ströme besser aneinander angepaßt werden. Ob die durch diese Ausführungsform erreichbare Energieeinsparung den Mehraufwand für die komplexere Verfahrensführung bzw. Anlage rechtfertigt, ist wiederum im Einzelfall zu prüfen.
Unter Umständen kann es sinnvoll sein, daß die in den Figuren 1 bis 5 dargestellten Verdichter und Antriebe bei einer Verflüssigungsanlage zweifach vorgesehen sind (z. B. 2 * 50 %). Mit der damit gegebenen Redundanz läßt sich auch im Falle einer Störung einer Maschine die Produktion zu wenigstens 50 % aufrechterhalten.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgas-Stromes, durch indirekten Wärmetausch mit den Kältemitteln einer Kältemittelgemischkreislaufkaskade, dadurch gekennzeichnet, daß die Kältemittelgemischkreislaufkaskade aus wenigstens 3 unterschiedliche Kältemittelzusammensetzungen aufweisenden Kältemittelgemischkreisläufen besteht.
2. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach Anspruch 1 , dadurch gekennzeichnet, daß der erste der 3 Käitemittelgemischkreisläufe der Vorkühlung (E1), der zweite Kältemitteigemischkreislauf der Verflüssigung (E2) und der dritte Kältemitteigemischkreislauf der Unterkühlung (E3) des zu verflüssigenden Kohlenwasserstoff-reichen Stromes (1) dient.
3. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Kältemittelgemisch des ersten der 3 Käitemittelgemischkreisläufe (P5, P10, ...) im wesentlichen 0 bis 40 Mol-% Ethylen oder Ethan, 30 bis 40 Mol-% Propan und 20 bis 30 Mol-% Butan enthält.
4. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kältemittelgemisch des zweiten der 3 Käitemittelgemischkreisläufe (L5, L6, ...) im wesentlichen 5 bis 15 Mol-% Methan, 0 bis 80 Mol-% Ethylen oder Ethan und 10 bis 20 Mol-% Propan enthält.
5. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kältemittelgemisch des dritten der 3 Käitemittelgemischkreisläufe (S5, S6, ...) im wesentlichen 0 bis 10 Mol-% Stickstoff, 40 bis 65 Mol-% Methan und 0 bis 40 Mol-% Ethylen oder 0 bis 30 Mol-% Ethan enthält.
6. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Vorkühlung (E1), die Verflüssigung (E2) und die Unterkühlung (E3) des zu verflüssigenden Kohlenwasserstoff-reichen Stromes (1) in wenigstens 3 Wärmetauschern (E1 , E2, E3) erfolgt und das entspannte Kältemittelgemisch eines jeden der 3 Käitemittelgemischkreisläufe vor der erneuten Verdichtung (P3, L3, S3) lediglich durch den letzten Wärmetauscher (E1 , E2 bzw. E3) geführt wird.
7. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verdichtung der Kältemittelgemische mittels kaltansaugender Verdichter (P3, L3, S3) erfolgt.
8. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die für die Verdichtung der Kältemittelgemische verwendeten Verdichter (P3, L3, S3) durch nur eine Antriebsvorrichtung (G), insbesondere eine Gasturbinen- Antriebsvorrichtung, angetrieben werden.
9. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Falle eines Anlagen- bzw. Verfahrensstillstandes wenigstens das Kältemittelgemisch eines der Käitemittelgemischkreisläufe in wenigstens einem Abscheider/ Speicherbehälter (P11 , L7, S8), der bzw. die vorzugsweise an der kältesten Stelle eines jeden Kältemittelgemischkreislaufes angeordnet sind, zwischengespeichert wird bzw. werden.
PCT/EP1998/002198 1997-04-18 1998-04-15 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes WO1998048227A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/403,103 US6253574B1 (en) 1997-04-18 1998-04-15 Method for liquefying a stream rich in hydrocarbons
AU76436/98A AU735800B2 (en) 1997-04-18 1998-04-15 Process for liquefying a hydrocarbon-rich stream
DE59810225T DE59810225D1 (de) 1997-04-18 1998-04-15 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP98924120A EP0975923B1 (de) 1997-04-18 1998-04-15 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
NO19995046A NO310124B1 (no) 1997-04-18 1999-10-15 Fremgangsmåte for å gjöre en karbonhydrogenrik ström flytende

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19716415A DE19716415C1 (de) 1997-04-18 1997-04-18 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19716415.3 1997-04-18

Publications (1)

Publication Number Publication Date
WO1998048227A1 true WO1998048227A1 (de) 1998-10-29

Family

ID=7827023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/002198 WO1998048227A1 (de) 1997-04-18 1998-04-15 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Country Status (8)

Country Link
US (1) US6253574B1 (de)
EP (1) EP0975923B1 (de)
AU (1) AU735800B2 (de)
DE (2) DE19716415C1 (de)
MY (1) MY125139A (de)
NO (1) NO310124B1 (de)
RU (1) RU2212601C2 (de)
WO (1) WO1998048227A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7386996B2 (en) 2000-03-15 2008-06-17 Den Norske Stats Oljeselskap A.S. Natural gas liquefaction process
CN102927791A (zh) * 2012-11-30 2013-02-13 中国石油集团工程设计有限责任公司 带预冷的双复合冷剂制冷系统及方法
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728153C2 (de) * 1997-07-03 1999-09-23 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
TW421704B (en) * 1998-11-18 2001-02-11 Shell Internattonale Res Mij B Plant for liquefying natural gas
DE19931790A1 (de) * 1999-07-08 2001-01-11 Linde Ag Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19937623B4 (de) * 1999-08-10 2009-08-27 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE10121339A1 (de) * 2001-05-02 2002-11-07 Linde Ag Verfahren zum Abtrennen von Stickstoff aus einer Stickstoff-entaltenden Kohlenwasserstoff Fraktion
US6427483B1 (en) * 2001-11-09 2002-08-06 Praxair Technology, Inc. Cryogenic industrial gas refrigeration system
DE10206388A1 (de) * 2002-02-15 2003-08-28 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE10209799A1 (de) * 2002-03-06 2003-09-25 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
US6751985B2 (en) 2002-03-20 2004-06-22 Exxonmobil Upstream Research Company Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
DE10226596A1 (de) * 2002-06-14 2004-01-15 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung einer C3+-reichen Fraktion mit hoher Ausbeute
US6691531B1 (en) * 2002-10-07 2004-02-17 Conocophillips Company Driver and compressor system for natural gas liquefaction
US6742357B1 (en) * 2003-03-18 2004-06-01 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
EP1613909B1 (de) * 2003-03-18 2013-03-06 Air Products And Chemicals, Inc. Integriertes mehrfachkreislauf-kühlverfahren zur gasverflüssigung
EP1471319A1 (de) * 2003-04-25 2004-10-27 Totalfinaelf S.A. Anlage und Verfahren zum Verflüssigen von Erdgas
WO2005028975A2 (en) * 2003-09-23 2005-03-31 Statoil Asa Natural gas liquefaction process
US7082787B2 (en) * 2004-03-09 2006-08-01 Bp Corporation North America Inc. Refrigeration system
EP1774233A4 (de) * 2004-06-23 2013-01-16 Exxonmobil Upstream Res Co Verflüssigungsverfahren mit gemischtem kühlmittel
RU2382962C2 (ru) * 2004-08-06 2010-02-27 Бп Корпорейшн Норт Америка Инк. Способ сжижения природного газа (варианты)
AU2006222005B2 (en) * 2005-03-09 2009-06-18 Shell Internationale Research Maatschappij B.V. Method for the liquefaction of a hydrocarbon-rich stream
JP5155147B2 (ja) * 2005-03-16 2013-02-27 フュエルコア エルエルシー 合成炭化水素化合物を生成するためのシステム、方法、および組成物
US20070157663A1 (en) * 2005-07-07 2007-07-12 Fluor Technologies Corporation Configurations and methods of integrated NGL recovery and LNG liquefaction
DE102005038266A1 (de) 2005-08-12 2007-02-15 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
US8181481B2 (en) * 2005-11-24 2012-05-22 Shell Oil Company Method and apparatus for cooling a stream, in particular a hydrocarbon stream such as natural gas
US20070283718A1 (en) * 2006-06-08 2007-12-13 Hulsey Kevin H Lng system with optimized heat exchanger configuration
RU2447382C2 (ru) * 2006-08-17 2012-04-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и устройство для сжижения потока сырья, содержащего углеводороды
DE102006039661A1 (de) * 2006-08-24 2008-03-20 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
US20080141711A1 (en) * 2006-12-18 2008-06-19 Mark Julian Roberts Hybrid cycle liquefaction of natural gas with propane pre-cooling
DE102007006370A1 (de) * 2007-02-08 2008-08-14 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102007007097A1 (de) 2007-02-13 2008-08-14 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
US9528759B2 (en) * 2008-05-08 2016-12-27 Conocophillips Company Enhanced nitrogen removal in an LNG facility
CA2732653C (en) * 2008-09-08 2014-10-14 Conocophillips Company System for incondensable component separation in a liquefied natural gas facility
US20100154469A1 (en) * 2008-12-19 2010-06-24 Chevron U.S.A., Inc. Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles
DE102010011052A1 (de) * 2010-03-11 2011-09-15 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP2369279A1 (de) 2010-03-12 2011-09-28 Ph-th Consulting AG Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
EP2426451A1 (de) * 2010-09-06 2012-03-07 Shell Internationale Research Maatschappij B.V. Verfahren und Vorrichtung zur Kühlung eines gasförmigen Kohlenwasserstoffstroms
EP2426452A1 (de) 2010-09-06 2012-03-07 Shell Internationale Research Maatschappij B.V. Verfahren und Vorrichtung zur Kühlung eines gasförmigen Kohlenwasserstoffstroms
DE102011010633A1 (de) * 2011-02-08 2012-08-09 Linde Ag Verfahren zum Abkühlen eines ein- oder mehrkomponentigen Stromes
DE102011014984A1 (de) 2011-03-24 2012-09-27 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP2597406A1 (de) 2011-11-25 2013-05-29 Shell Internationale Research Maatschappij B.V. Verfahren und Vorrichtung zum Entfernen von Stickstoff aus einer kryogenen Kohlenwasserstoffzusammensetzung
MY172968A (en) 2011-12-12 2019-12-16 Shell Int Research Method and apparatus for removing nitrogen from a cryogenic hydrocarbon composition
CN103998882B (zh) 2011-12-12 2016-04-13 国际壳牌研究有限公司 用于从低温烃类组合物中去除氮气的方法和装置
WO2013087571A2 (en) 2011-12-12 2013-06-20 Shell Internationale Research Maatschappij B.V. Method and apparatus for removing nitrogen from a cryogenic hydrocarbon composition
EP2604960A1 (de) 2011-12-15 2013-06-19 Shell Internationale Research Maatschappij B.V. Verfahren zum Betreiben eines Kompressors und System und Verfahren zum Herstellen eines flüssigen Kohlenwasserstoffstroms
CN103322769B (zh) * 2012-03-20 2015-07-08 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化系统
EP2642228A1 (de) * 2012-03-20 2013-09-25 Shell Internationale Research Maatschappij B.V. Verfahren zur Herstellung eines gekühlten Kohlenwasserstoffstroms und Vorrichtung dafür
CN102654347A (zh) * 2012-05-22 2012-09-05 中国海洋石油总公司 一种丙烷预冷双混合冷剂串联液化系统
FR2993643B1 (fr) * 2012-07-17 2014-08-22 Saipem Sa Procede de liquefaction de gaz naturel avec changement de phase
RU2642827C2 (ru) 2012-08-31 2018-01-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Системы привода с переменной скоростью, способ управления системой привода с переменной скоростью и способ охлаждения потока углеводородов
CN104813127B (zh) * 2012-11-16 2017-05-31 埃克森美孚上游研究公司 天然气的液化
MX2015006658A (es) * 2013-01-24 2015-08-10 Exxonmobil Upstream Res Co Produccion de gas natural licuado.
EP2796818A1 (de) 2013-04-22 2014-10-29 Shell Internationale Research Maatschappij B.V. Verfahren und Vorrichtung zur Erzeugung eines verflüssigten Kohlenwasserstoffstroms
WO2014173597A2 (en) 2013-04-22 2014-10-30 Shell Internationale Research Maatschappij B.V. Method and apparatus for producing a liquefied hydrocarbon stream
DE102013016695A1 (de) * 2013-10-08 2015-04-09 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP2869415A1 (de) 2013-11-04 2015-05-06 Shell International Research Maatschappij B.V. Modulare Anordnung zur Verarbeitung von Kohlenwasserstoffflüssigkeit und Verfahren zur Aufstellung und Verlagerung solch einer Anordnung
EP2977431A1 (de) 2014-07-24 2016-01-27 Shell Internationale Research Maatschappij B.V. Kohlenwasserstoffkondensatstabilisator und Verfahren zur Herstellung eines stabilisierten Kohlenwasserstoffkondensatstrom
EP2977430A1 (de) 2014-07-24 2016-01-27 Shell Internationale Research Maatschappij B.V. Kohlenwasserstoffkondensatstabilisator und Verfahren zur Herstellung eines stabilisierten Kohlenwasserstoffkondensatstrom
EP3032204A1 (de) 2014-12-11 2016-06-15 Shell Internationale Research Maatschappij B.V. Verfahren und System zur Herstellung eines gekühlten Kohlenwasserstoffstroms
DE102015002164A1 (de) * 2015-02-19 2016-08-25 Linde Aktiengesellschaft Verfahren zum Verflüssigen von Erdgas
DE102016004606A1 (de) 2016-04-14 2017-10-19 Linde Aktiengesellschaft Verfahrenstechnische Anlage und Verfahren zur Flüssiggasherstellung
RU2645185C1 (ru) 2017-03-16 2018-02-16 Публичное акционерное общество "НОВАТЭК" Способ сжижения природного газа по циклу высокого давления с предохлаждением этаном и переохлаждением азотом "арктический каскад" и установка для его осуществления
US11674748B2 (en) * 2017-05-21 2023-06-13 EnFlex, Inc. Process for separating hydrogen from an olefin hydrocarbon effluent vapor stream
GB2563021A (en) * 2017-05-30 2018-12-05 Linde Ag Refrigeration circuit system and method of maintaining a gas seal of a compressor system
US10753676B2 (en) * 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process
US10852059B2 (en) 2017-09-28 2020-12-01 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling system
US11248839B2 (en) 2017-12-15 2022-02-15 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US10571189B2 (en) 2017-12-21 2020-02-25 Shell Oil Company System and method for operating a liquefaction train
RU2694337C1 (ru) * 2018-07-02 2019-07-11 Андрей Владиславович Курочкин Установка выделения углеводородов c2+ из природного газа (варианты)
RU2694746C1 (ru) * 2018-08-06 2019-07-16 Андрей Владиславович Курочкин Установка получения углеводородов с2+ из природного газа (варианты)
RU2694731C1 (ru) * 2018-08-30 2019-07-16 Андрей Владиславович Курочкин Установка низкотемпературной фракционирующей абсорбции нтфа для переработки природного газа с выделением углеводородов c2+ (варианты)
RU2694735C1 (ru) * 2018-08-30 2019-07-16 Андрей Владиславович Курочкин Установка низкотемпературной сепарации с фракционирующей абсорбцией нтсфа для переработки природного газа с выделением углеводородов c2+ (варианты)
RU2681897C1 (ru) * 2018-08-30 2019-03-13 Андрей Владиславович Курочкин Установка низкотемпературной сепарации с дефлегмацией нтсд для переработки природного газа с выделением углеводородов c2+ (варианты)
RU2682595C1 (ru) * 2018-08-30 2019-03-19 Андрей Владиславович Курочкин Установка низкотемпературной дефлегмации нтд для переработки природного газа с получением углеводородов c2+ (варианты)
RU2695553C1 (ru) * 2018-11-20 2019-07-24 Андрей Владиславович Курочкин Установка низкотемпературной дефлегмации с сепарацией нтдс для подготовки природного газа с получением этан-бутановой фракции и способ ее работы
CN109631492A (zh) * 2018-12-13 2019-04-16 西安石油大学 一种采用混合冷剂级联的天然气液化装置及方法
RU2727501C1 (ru) * 2019-01-31 2020-07-22 Андрей Владиславович Курочкин Установка нтдр для выделения углеводородов с2+ из магистрального газа (варианты)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB895094A (en) * 1959-10-21 1962-05-02 Shell Int Research Improvements in or relating to process and apparatus for liquefying natural gas
GB1208196A (en) * 1967-12-20 1970-10-07 Messer Griesheim Gmbh Process for the liquifaction of nitrogen-containing natural gas
DE3521060A1 (de) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Verfahren zum kuehlen und verfluessigen von gasen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302416A (en) * 1965-04-16 1967-02-07 Conch Int Methane Ltd Means for maintaining the substitutability of lng
GB1291467A (en) * 1969-05-19 1972-10-04 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method
US4504296A (en) * 1983-07-18 1985-03-12 Air Products And Chemicals, Inc. Double mixed refrigerant liquefaction process for natural gas
US4755200A (en) * 1987-02-27 1988-07-05 Air Products And Chemicals, Inc. Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes
US5473900A (en) * 1994-04-29 1995-12-12 Phillips Petroleum Company Method and apparatus for liquefaction of natural gas
DE4440405C1 (de) * 1994-11-11 1996-05-23 Linde Ag Verfahren zum Zwischenspeichern eines Kältemittels
DE19540142C1 (de) * 1995-10-27 1997-03-27 Linde Ag Verfahren zum Verflüssigen oder Teilverflüssigen von unter Druck stehenden Gasen oder Gasgemischen
US5611216A (en) * 1995-12-20 1997-03-18 Low; William R. Method of load distribution in a cascaded refrigeration process
US5669234A (en) * 1996-07-16 1997-09-23 Phillips Petroleum Company Efficiency improvement of open-cycle cascaded refrigeration process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB895094A (en) * 1959-10-21 1962-05-02 Shell Int Research Improvements in or relating to process and apparatus for liquefying natural gas
GB1208196A (en) * 1967-12-20 1970-10-07 Messer Griesheim Gmbh Process for the liquifaction of nitrogen-containing natural gas
DE3521060A1 (de) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Verfahren zum kuehlen und verfluessigen von gasen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7386996B2 (en) 2000-03-15 2008-06-17 Den Norske Stats Oljeselskap A.S. Natural gas liquefaction process
NO337050B1 (no) * 2000-03-15 2016-01-11 Statoil Petroleum As Naturgasskondenseringsapparat og -fremgangsmåte for fremstilling av kondensert naturgass (LNG)
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10502483B2 (en) 2010-03-17 2019-12-10 Chart Energy & Chemicals, Inc. Integrated pre-cooled mixed refrigerant system and method
CN102927791A (zh) * 2012-11-30 2013-02-13 中国石油集团工程设计有限责任公司 带预冷的双复合冷剂制冷系统及方法
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408676B2 (en) 2015-07-08 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Also Published As

Publication number Publication date
EP0975923B1 (de) 2003-11-19
RU2212601C2 (ru) 2003-09-20
AU7643698A (en) 1998-11-13
AU735800B2 (en) 2001-07-12
DE59810225D1 (de) 2003-12-24
US6253574B1 (en) 2001-07-03
NO310124B1 (no) 2001-05-21
MY125139A (en) 2006-07-31
EP0975923A1 (de) 2000-02-02
NO995046D0 (no) 1999-10-15
DE19716415C1 (de) 1998-10-22
NO995046L (no) 1999-11-22

Similar Documents

Publication Publication Date Title
DE19716415C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE60020173T2 (de) Hybridkreislauf zur Verflüssigung von Erdgas
DE69927620T2 (de) Doppel Kühlmittelgemischkreislauf zur Erdgasverflüssigung
DE60016536T2 (de) Gasverflüssigungsverfahren durch partiel Kondensation von gemischtem Kältemittel bei zwischengelagerten Temperaturen
DE19722490C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19937623B4 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE2820212A1 (de) Verfahren zum verfluessigen von erdgas
DE3521060A1 (de) Verfahren zum kuehlen und verfluessigen von gasen
WO2003106906A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102016005632A1 (de) Mischkolonne für Verfahren mit einem Einzelmischkältemittel
WO2006136269A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE19728153C2 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
WO2021023393A1 (de) Verfahren und anlage zur herstellung von flüssigerdgas
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102016000393A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP2369279A1 (de) Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19648902A1 (de) Verfahren zur Realisierung eines Gemisch- Joule- Thomson-Prozesses und Vorrichtung zur Durchführung dieses Verfahrens
DE19707475A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2002088612A1 (de) Verfahren zum abtrennen von stickstoff aus einer stickstoff-enthaltenden, kohlenwasserstoff-reichen fraktion
DE19931790A1 (de) Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998924120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 76436/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998924120

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998544959

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09403103

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 76436/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998924120

Country of ref document: EP