CN109631492A - 一种采用混合冷剂级联的天然气液化装置及方法 - Google Patents

一种采用混合冷剂级联的天然气液化装置及方法 Download PDF

Info

Publication number
CN109631492A
CN109631492A CN201811527323.0A CN201811527323A CN109631492A CN 109631492 A CN109631492 A CN 109631492A CN 201811527323 A CN201811527323 A CN 201811527323A CN 109631492 A CN109631492 A CN 109631492A
Authority
CN
China
Prior art keywords
heat exchanger
fin heat
plate
liquefaction
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811527323.0A
Other languages
English (en)
Inventor
肖荣鸽
高旭
高春
戴政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201811527323.0A priority Critical patent/CN109631492A/zh
Publication of CN109631492A publication Critical patent/CN109631492A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种采用混合冷剂级联的天然气液化装置及方法,首先将通过预处理单元的高压天然气进入预冷板翅式换热器,与预冷混合制冷剂循环换热,冷却至‑50℃~‑55℃;再进入重烃分离罐,脱出天然气中的重烃组分;再进入液化板翅式换热器,与液化混合制冷剂循环换热,冷却至‑118℃~‑122℃;再进入深冷板翅式换热器,与深冷混合制冷剂循环换热,冷却至‑155℃~‑160℃;再经节流阀节流降压至150kPa,进入分离器,气相作为厂区的燃料气,液相为液化天然气(LNG)产品进入LNG储罐;本发明将预处理后的天然气和3种混合制冷剂在冷箱中的板翅式换热器中换热,既可以实现对环境低温的充分利用,也能最大限度提高驱动机功率的利用率。

Description

一种采用混合冷剂级联的天然气液化装置及方法
技术领域
本发明涉及天然气液化技术领域,特别涉及一种采用混合冷剂级联的天然气液化装置及方法,主要针对基本负荷型LNG工厂的天然气液化。
背景技术
国内对于天然气的需求迅速增长,但国内天然气用户与资源分布极不均匀。中国的天然气资源大多分布在中西部地区和海上,很多天然气用户市场的资源供应严重缺乏,因此要实现天然气资源的合理利用,首要任务是从根本上解决运输与利用之间的矛盾。液化天然气技术的出现使天然气的远距离运输得以实现。
在整个LNG产业链中,天然气液化是其中资金、技术最为密集的关键环节,其费用大约为整个LNG产业链的30~40%。天然气液化技术是一项科技含量很高的系统工程,其工业链由净化、液化、储存、运输、接收一系列环节组成。
近年来,大型天然气液化工艺技术呈现多样化。混合制冷剂液化天然气流程因其低能耗的优点,已被广泛采用于大型LNG液化工厂。主要应用于工业的混合冷剂流程有:单混合冷剂工艺(SMR)、丙烷预冷混合冷剂工艺(C3MR)、AP-X膨胀工艺等。SMR流程无预冷循环,采用一种混合制冷剂,效率较低,流程能耗很高。C3MR,AP-X流程预冷段都采用丙烷冷剂制冷,预冷的最低温度受丙烷沸点的限制。
发明内容
为了克服上述现有技术的缺陷,本发明的目的在于提供一种采用混合冷剂级联的天然气液化装置及方法,将通过预处理单元的高压天然气(NG)和三种混合制冷剂在冷箱换热器中换热,将天然气液化为液化天然气,既可以实现对环境低温的充分利用,也能最大限度提高驱动机功率的利用率。
为了达到上述目的,本发明的技术方案为:
一种采用混合冷剂级联的天然气液化装置,包括天然气液化回路装置、预冷混合冷剂循环装置、液化混合冷剂循环装置和深冷混合冷剂循环装置;
所述的天然气液化回路装置包括预冷板翅式换热器ET-101(17)、分离器V-101(9)、液化板翅式换热器ET-201(16)、深冷板翅式换热器ET-301(15)、节流阀S-101(11)、分离器V-102(12)和LNG储罐V-103(13);预冷板翅式换热器ET-101(17)的天然气入口与预处理后的天然气管线连通,预冷板翅式换热器ET-101(17)的天然气出口与分离器V-101(9)的入口连通,分离器V-101(9)的气相出口与液化板翅式换热器ET-201(16)的天然气入口连通,液化板翅式换热器ET-201(16)的天然气出口与深冷板翅式换热器ET-301(15)的天然气入口连通,深冷板翅式换热器ET-301(15)的天然气出口经节流阀S-101(11)与分离器V-102(12)的入口连通,分离器V-102(12)的液相出口与LNG储罐V-103(13)的入口连通;
所述的预冷混合冷剂循环装置包括节流阀S-201(8)、压缩机C-201(7)、空冷器AC-201(6)、水冷器E-201(5)、分离器V-201(4)、压缩机C-202(3)、离心泵P-201(24)、空冷器AC-202(2)和水冷器E-202(1);水冷器E-202(1)的出口与预冷板翅式换热器ET-101(17)的预冷混合冷剂入口连通,预冷板翅式换热器ET-101(17)的预冷混合冷剂出口经节流阀S-201(8)与预冷板翅式换热器ET-101(17)的预冷混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的预冷混合冷剂反流出口与压缩机C-201(7)的入口连通,压缩机C-201(7)的出口与空冷器AC-201(6)的入口连通,空冷器AC-201(6)的出口与水冷器E-201(5)的入口连通,水冷器E-201(5)的出口与分离器V-201(4)的入口连通,分离器V-201(4)的气相出口与压缩机C-202(3)的入口连通,分离器V-201(4)的液相出口与离心泵P-201(24)的入口连通,压缩机C-202(3)的出口和离心泵P-201(24)的出口与空冷器AC-202(2)的入口连通,空冷器AC-202(2)的出口与水冷器E-202(1)的入口连通;
所述的液化混合冷剂循环装置包括液化板翅式换热器ET-201(16)、节流阀S-301(10)、压缩机C-301(21)、空冷器AC-301(22)和水冷器E-301(23);水冷器E-301(23)的出口与预冷板翅式换热器ET-101(17)的液化混合冷剂入口连通,预冷板翅式换热器ET-101(17)的液化混合冷剂出口与液化板翅式换热器ET-201(16)的液化混合冷剂入口连通,液化板翅式换热器ET-201(16)的液化混合冷剂出口经节流阀S-301(10)与液化板翅式换热器ET-201(16)的液化混合冷剂反流入口连通,液化板翅式换热器ET-201(16)的液化混合冷剂反流出口与预冷板翅式换热器ET-101(17)的液化混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的液化混合冷剂反流出口与压缩机C-301(21)的入口连通,压缩机C-301(21)的出口与空冷器AC-301(22)的入口连通,空冷器AC-301(22)的出口与水冷器E-301(23)的入口连通;
所述的深冷混合冷剂循环装置包括液化板翅式换热器ET-201(16)、深冷板翅式换热器ET-301(15)、节流阀S-401(14)、压缩机C-401(18)、空冷器AC-401(19)和水冷器E-401(20);水冷器E-401(20)的出口与预冷板翅式换热器ET-101(17)的深冷混合冷剂入口连通,预冷板翅式换热器ET-101(17)的深冷混合冷剂出口与液化板翅式换热器ET-201(16)的深冷混合冷剂入口连通,液化板翅式换热器ET-201(16)的深冷混合冷剂出口与深冷板翅式换热器ET-301(15)的深冷混合冷剂入口连通,深冷板翅式换热器ET-301(15)的深冷混合冷剂出口与节流阀S-401(14)的入口连通,节流阀S-401(14)的出口与深冷板翅式换热器ET-301(15)的深冷混合冷剂反流入口连通,深冷板翅式换热器ET-301(15)的深冷混合冷剂反流出口与液化板翅式换热器ET-201(16)的深冷混合冷剂反流入口连通,液化板翅式换热器ET-201(16)的深冷混合冷剂反流出口与预冷板翅式换热器ET-101(17)的深冷混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的深冷混合冷剂反流出口与压缩机C-401(18)的入口连通,压缩机C-401(18)的出口与空冷器AC-401(19)的入口连通,空冷器AC-401(19)的出口与水冷器E-401(20)的入口连通。
基于上述装置的一种采用混合冷剂级联的天然气液化方法,包括如下步骤:
(1)天然气液化回路:
首先将通过预处理单元的高压天然气NG进入预冷板翅式换热器ET-101(17),冷却至-50℃~-55℃;
再进入重烃分离罐V-101(9),脱出天然气中的重烃组分;
再进入液化板翅式换热器ET-201(16),冷却至-118℃~-122℃;
再进入深冷板翅式换热器ET-301(15),冷却至-155℃~-160℃;
再经节流阀S-101(11)节流降压至150KPa,进入分离器V-102(12),气相作为厂区的燃料气,液相为液化天然气LNG产品进入LNG储罐V-103(13)。
(2)预冷混合冷剂循环:
1.8MPa~2.2MPa高压的预冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再经过节流阀S-201(8)节流降压至0.17MPa~0.24MPa,重新进入预冷板翅式换热器ET-101(17)汽化为冷却天然气、预冷剂高压部分、液化冷剂和深冷剂提供冷量;
然后预冷剂经低压压缩机C-201(7)压缩后依次进入级间空冷器AC-201(6)和水冷器E-201(5)冷却,此时会凝析出部分液相,需要经分离器V-201(4)分离,气相部分进入高压压缩机C-202(3)加压,液相部分进入液体离心泵P-201(24)加压,再将气、液两相混合后,最后再依次进入级间空冷器AC-202(2)和水冷器E-202(1)冷却,恢复为至初始状态的预冷剂,完成预冷循环。
(3)液化混合制冷剂循环:
2.1MPa~2.5MPa的高压的液化混合制冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再进入液化板翅式换热器ET-201(16)冷却至-118℃~-122℃;
通过节流阀S-301(10)节流降压至0.22MPa~0.27MPa,重新依次进入液化板翅式换热器ET-201(16)和预冷板翅式换热器ET-101(17)汽化为液化天然气、液化冷剂高压部分和深冷剂提供冷量;
然后液化冷剂经压缩机C-301(21)压缩后依次进入空冷器AC-301(22)和水冷器E-301(23)冷却,恢复为至初始状态的液化冷剂,完成液化循环。
(4)深冷混合制冷剂循环:
2.8MPa~3.2MPa高压的深冷混合制冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再进入液化板翅式换热器ET-201(16)冷却至-118℃~-122℃;
再进入深冷板翅式换热器ET-301(15)冷却至-155℃~-160℃;
通过节流阀S-401(14)节流降压0.35MPa~0.42MPa,重新依次进入深冷板翅式换热器ET-301(15)、液化板翅式换热器ET-201(16)和预冷板翅式换热器ET-101(17)汽化为深冷天然气、深冷剂高压部分和液化冷剂提供冷量;
然后深冷剂经压缩机C-401(18)压缩后依次进入空冷器AC-401(19)和水冷器E-401(20)冷却,恢复为至初始状态的深冷剂,完成深冷循环。
本发明混合冷剂级联流程克服了丙烷预冷固有的局限性,具有更多可调参数来优化处于设计点外的流程性能。根据不同原料气条件和季节气温变化,可将液化循环的部分制冷量转移到预冷部分,从而更好地平衡制冷负荷,既可以实现对环境低温的充分利用,也能最大限度提高驱动机功率的利用率,并使压缩机在宽温度范围内保持较高效率点运行。提高了流程对原料天然气和外界条件的适应性;液化过程中天然气与混合冷剂在换热器内的传热温差均匀,效率高,流程能耗更低。
附图说明
图1是本发明的结构示意图。
具体实施方式
下面结合附图对本发明做详细叙述。
参照图1,一种采用混合冷剂级联的天然气液化装置,包括天然气液化回路装置、预冷混合冷剂循环装置、液化混合冷剂循环装置和深冷混合冷剂循环装置;
所述的天然气液化回路装置包括预冷板翅式换热器ET-101(17)、分离器V-101(9)、液化板翅式换热器ET-201(16)、深冷板翅式换热器ET-301(15)、节流阀S-101(11)、分离器V-102(12)和LNG储罐V-103(13);预冷板翅式换热器ET-101(17)的天然气入口与预处理后的天然气管线连通,预冷板翅式换热器ET-101(17)的天然气出口与分离器V-101(9)的入口连通,分离器V-101(9)的气相出口与液化板翅式换热器ET-201(16)的天然气入口连通,液化板翅式换热器ET-201(16)的天然气出口与深冷板翅式换热器ET-301(15)的天然气入口连通,深冷板翅式换热器ET-301(15)的天然气出口经节流阀S-101(11)与分离器V-102(12)的入口连通,分离器V-102(12)的液相出口与LNG储罐V-103(13)的入口连通;
所述的预冷混合冷剂循环装置包括节流阀S-201(8)、压缩机C-201(7)、空冷器AC-201(6)、水冷器E-201(5)、分离器V-201(4)、压缩机C-202(3)、离心泵P-201(24)、空冷器AC-202(2)和水冷器E-202(1);水冷器E-202(1)的出口与预冷板翅式换热器ET-101(17)的预冷混合冷剂入口连通,预冷板翅式换热器ET-101(17)的预冷混合冷剂出口经节流阀S-201(8)与预冷板翅式换热器ET-101(17)的预冷混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的预冷混合冷剂反流出口与压缩机C-201(7)的入口连通,压缩机C-201(7)的出口与空冷器AC-201(6)的入口连通,空冷器AC-201(6)的出口与水冷器E-201(5)的入口连通,水冷器E-201(5)的出口与分离器V-201(4)的入口连通,分离器V-201(4)的气相出口与压缩机C-202(3)的入口连通,分离器V-201(4)的液相出口与离心泵P-201(24)的入口连通,压缩机C-202(3)的出口和离心泵P-201(24)的出口与空冷器AC-202(2)的入口连通,空冷器AC-202(2)的出口与水冷器E-202(1)的入口连通;
所述的液化混合冷剂循环装置包括液化板翅式换热器ET-201(16)、节流阀S-301(10)、压缩机C-301(21)、空冷器AC-301(22)和水冷器E-301(23);水冷器E-301(23)的出口与预冷板翅式换热器ET-101(17)的液化混合冷剂入口连通,预冷板翅式换热器ET-101(17)的液化混合冷剂出口与液化板翅式换热器ET-201(16)的液化混合冷剂入口连通,液化板翅式换热器ET-201(16)的液化混合冷剂出口经节流阀S-301(10)与液化板翅式换热器ET-201(16)的液化混合冷剂反流入口连通,液化板翅式换热器ET-201(16)的液化混合冷剂反流出口与预冷板翅式换热器ET-101(17)的液化混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的液化混合冷剂反流出口与压缩机C-301(21)的入口连通,压缩机C-301(21)的出口与空冷器AC-301(22)的入口连通,空冷器AC-301(22)的出口与水冷器E-301(23)的入口连通;
所述的深冷混合冷剂循环装置包括液化板翅式换热器ET-201(16)、深冷板翅式换热器ET-301(15)、节流阀S-401(14)、压缩机C-401(18)、空冷器AC-401(19)和水冷器E-401(20);水冷器E-401(20)的出口与预冷板翅式换热器ET-101(17)的深冷混合冷剂入口连通,预冷板翅式换热器ET-101(17)的深冷混合冷剂出口与液化板翅式换热器ET-201(16)的深冷混合冷剂入口连通,液化板翅式换热器ET-201(16)的深冷混合冷剂出口与深冷板翅式换热器ET-301(15)的深冷混合冷剂入口连通,深冷板翅式换热器ET-301(15)的深冷混合冷剂出口与节流阀S-401(14)的入口连通,节流阀S-401(14)的出口与深冷板翅式换热器ET-301(15)的深冷混合冷剂反流入口连通,深冷板翅式换热器ET-301(15)的深冷混合冷剂反流出口与液化板翅式换热器ET-201(16)的深冷混合冷剂反流入口连通,液化板翅式换热器ET-201(16)的深冷混合冷剂反流出口与预冷板翅式换热器ET-101(17)的深冷混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的深冷混合冷剂反流出口与压缩机C-401(18)的入口连通,压缩机C-401(18)的出口与空冷器AC-401(19)的入口连通,空冷器AC-401(19)的出口与水冷器E-401(20)的入口连通。
基于上述装置的一种采用混合冷剂级联的天然气液化方法,包括如下步骤:
(1)天然气液化回路:
首先将通过预处理单元的高压天然气NG进入预冷板翅式换热器ET-101(17),冷却至-50℃~-55℃;
再进入重烃分离罐V-101(9),脱出天然气中的重烃组分;
再进入液化板翅式换热器ET-201(16),冷却至-118℃~-122℃;
再进入深冷板翅式换热器ET-301(15),冷却至-155℃~-160℃;
再经节流阀S-101(11)节流降压至150KPa,进入分离器V-102(12),气相作为厂区的燃料气,液相为液化天然气LNG产品进入LNG储罐V-103(13)。
(2)预冷混合冷剂循环:
1.8MPa~2.2MPa高压的预冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再经过节流阀S-201(8)节流降压至0.17MPa~0.24MPa,重新进入预冷板翅式换热器ET-101(17)汽化为冷却天然气、预冷剂高压部分、液化冷剂和深冷剂提供冷量;
然后预冷剂经低压压缩机C-201(7)压缩后依次进入级间空冷器AC-201(6)和水冷器E-201(5)冷却,此时会凝析出部分液相,需要经分离器V-201(4)分离,气相部分进入高压压缩机C-202(3)加压,液相部分进入液体离心泵P-201(24)加压,再将气、液两相混合后,最后再依次进入级间空冷器AC-202(2)和水冷器E-202(1)冷却,恢复为至初始状态的预冷剂,完成预冷循环。
(3)液化混合制冷剂循环:
2.1MPa~2.5MPa的高压的液化混合制冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再进入液化板翅式换热器ET-201(16)冷却至-118℃~-122℃;
通过节流阀S-301(10)节流降压至0.22MPa~0.27MPa,重新依次进入液化板翅式换热器ET-201(16)和预冷板翅式换热器ET-101(17)汽化为液化天然气、液化冷剂高压部分和深冷剂提供冷量;
然后液化冷剂经压缩机C-301(21)压缩后依次进入空冷器AC-301(22)和水冷器E-301(23)冷却,恢复为至初始状态的液化冷剂,完成液化循环。
(4)深冷混合制冷剂循环:
2.8MPa~3.2MPa高压的深冷混合制冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再进入液化板翅式换热器ET-201(16)冷却至-118℃~-122℃;
再进入深冷板翅式换热器ET-301(15)冷却至-155℃~-160℃;
通过节流阀S-401(14)节流降压0.35MPa~0.42MPa,重新依次进入深冷板翅式换热器ET-301(15)、液化板翅式换热器ET-201(16)和预冷板翅式换热器ET-101(17)汽化为深冷天然气、深冷剂高压部分和液化冷剂提供冷量;
然后深冷剂经压缩机C-401(18)压缩后依次进入空冷器AC-401(19)和水冷器E-401(20)冷却,恢复为至初始状态的深冷剂,完成深冷循环。
本发明首先将通过预处理单元的高压天然气(NG)进入预冷板翅式换热器,与预冷混合制冷剂循环换热,冷却至-50℃~-55℃;再进入重烃分离罐,脱出天然气中的重烃组分;再进入液化板翅式换热器,与液化混合制冷剂循环换热,冷却至-118℃~-122℃;再进入深冷板翅式换热器,与深冷混合制冷剂循环换热,冷却至-155℃~-160℃;再经节流阀节流降压至150kPa,进入分离器,气相作为厂区的燃料气,液相为液化天然气(LNG)产品进入LNG储罐。将预处理后的天然气和3种混合制冷剂在冷箱中的板翅式换热器中换热,天然气液化为液化天然气,既可以实现对环境低温的充分利用,也能最大限度提高驱动机功率的利用率。

Claims (2)

1.一种采用混合冷剂级联的天然气液化装置,其特征在于,包括天然气液化回路装置、预冷混合冷剂循环装置、液化混合冷剂循环装置和深冷混合冷剂循环装置;
所述的天然气液化回路装置包括预冷板翅式换热器ET-101(17)、分离器V-101(9)、液化板翅式换热器ET-201(16)、深冷板翅式换热器ET-301(15)、节流阀S-101(11)、分离器V-102(12)和LNG储罐V-103(13);预冷板翅式换热器ET-101(17)的天然气入口与预处理后的天然气管线连通,预冷板翅式换热器ET-101(17)的天然气出口与分离器V-101(9)的入口连通,分离器V-101(9)的气相出口与液化板翅式换热器ET-201(16)的天然气入口连通,液化板翅式换热器ET-201(16)的天然气出口与深冷板翅式换热器ET-301(15)的天然气入口连通,深冷板翅式换热器ET-301(15)的天然气出口经节流阀S-101(11)与分离器V-102(12)的入口连通,分离器V-102(12)的液相出口与LNG储罐V-103(13)的入口连通;
所述的预冷混合冷剂循环装置包括节流阀S-201(8)、压缩机C-201(7)、空冷器AC-201(6)、水冷器E-201(5)、分离器V-201(4)、压缩机C-202(3)、离心泵P-201(24)、空冷器AC-202(2)和水冷器E-202(1);水冷器E-202(1)的出口与预冷板翅式换热器ET-101(17)的预冷混合冷剂入口连通,预冷板翅式换热器ET-101(17)的预冷混合冷剂出口经节流阀S-201(8)与预冷板翅式换热器ET-101(17)的预冷混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的预冷混合冷剂反流出口与压缩机C-201(7)的入口连通,压缩机C-201(7)的出口与空冷器AC-201(6)的入口连通,空冷器AC-201(6)的出口与水冷器E-201(5)的入口连通,水冷器E-201(5)的出口与分离器V-201(4)的入口连通,分离器V-201(4)的气相出口与压缩机C-202(3)的入口连通,分离器V-201(4)的液相出口与离心泵P-201(24)的入口连通,压缩机C-202(3)的出口和离心泵P-201(24)的出口与空冷器AC-202(2)的入口连通,空冷器AC-202(2)的出口与水冷器E-202(1)的入口连通;
所述的液化混合冷剂循环装置包括液化板翅式换热器ET-201(16)、节流阀S-301(10)、压缩机C-301(21)、空冷器AC-301(22)和水冷器E-301(23);水冷器E-301(23)的出口与预冷板翅式换热器ET-101(17)的液化混合冷剂入口连通,预冷板翅式换热器ET-101(17)的液化混合冷剂出口与液化板翅式换热器ET-201(16)的液化混合冷剂入口连通,液化板翅式换热器ET-201(16)的液化混合冷剂出口经节流阀S-301(10)与液化板翅式换热器ET-201(16)的液化混合冷剂反流入口连通,液化板翅式换热器ET-201(16)的液化混合冷剂反流出口与预冷板翅式换热器ET-101(17)的液化混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的液化混合冷剂反流出口与压缩机C-301(21)的入口连通,压缩机C-301(21)的出口与空冷器AC-301(22)的入口连通,空冷器AC-301(22)的出口与水冷器E-301(23)的入口连通;
所述的深冷混合冷剂循环装置包括液化板翅式换热器ET-201(16)、深冷板翅式换热器ET-301(15)、节流阀S-401(14)、压缩机C-401(18)、空冷器AC-401(19)和水冷器E-401(20);水冷器E-401(20)的出口与预冷板翅式换热器ET-101(17)的深冷混合冷剂入口连通,预冷板翅式换热器ET-101(17)的深冷混合冷剂出口与液化板翅式换热器ET-201(16)的深冷混合冷剂入口连通,液化板翅式换热器ET-201(16)的深冷混合冷剂出口与深冷板翅式换热器ET-301(15)的深冷混合冷剂入口连通,深冷板翅式换热器ET-301(15)的深冷混合冷剂出口与节流阀S-401(14)的入口连通,节流阀S-401(14)的出口与深冷板翅式换热器ET-301(15)的深冷混合冷剂反流入口连通,深冷板翅式换热器ET-301(15)的深冷混合冷剂反流出口与液化板翅式换热器ET-201(16)的深冷混合冷剂反流入口连通,液化板翅式换热器ET-201(16)的深冷混合冷剂反流出口与预冷板翅式换热器ET-101(17)的深冷混合冷剂反流入口连通,预冷板翅式换热器ET-101(17)的深冷混合冷剂反流出口与压缩机C-401(18)的入口连通,压缩机C-401(18)的出口与空冷器AC-401(19)的入口连通,空冷器AC-401(19)的出口与水冷器E-401(20)的入口连通。
2.基于上述装置的一种采用混合冷剂级联的天然气液化方法,其特征在于,包括如下步骤:
(1)天然气液化回路:
首先将通过预处理单元的高压天然气NG进入预冷板翅式换热器ET-101(17),冷却至-50℃~-55℃;
再进入重烃分离罐V-101(9),脱出天然气中的重烃组分;
再进入液化板翅式换热器ET-201(16),冷却至-118℃~-122℃;
再进入深冷板翅式换热器ET-301(15),冷却至-155℃~-160℃;
再经节流阀S-101(11)节流降压至150KPa,进入分离器V-102(12),气相作为厂区的燃料气,液相为液化天然气LNG产品进入LNG储罐V-103(13)。
(2)预冷混合冷剂循环:
1.8MPa~2.2MPa高压的预冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再经过节流阀S-201(8)节流降压至0.17MPa~0.24MPa,重新进入预冷板翅式换热器ET-101(17)汽化为冷却天然气、预冷剂高压部分、液化冷剂和深冷剂提供冷量;
然后预冷剂经低压压缩机C-201(7)压缩后依次进入级间空冷器AC-201(6)和水冷器E-201(5)冷却,此时会凝析出部分液相,需要经分离器V-201(4)分离,气相部分进入高压压缩机C-202(3)加压,液相部分进入液体离心泵P-201(24)加压,再将气、液两相混合后,最后再依次进入级间空冷器AC-202(2)和水冷器E-202(1)冷却,恢复为至初始状态的预冷剂,完成预冷循环。
(3)液化混合制冷剂循环:
2.1MPa~2.5MPa的高压的液化混合制冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再进入液化板翅式换热器ET-201(16)冷却至-118℃~-122℃;
通过节流阀S-301(10)节流降压至0.22MPa~0.27MPa,重新依次进入液化板翅式换热器ET-201(16)和预冷板翅式换热器ET-101(17)汽化为液化天然气、液化冷剂高压部分和深冷剂提供冷量;
然后液化冷剂经压缩机C-301(21)压缩后依次进入空冷器AC-301(22)和水冷器E-301(23)冷却,恢复为至初始状态的液化冷剂,完成液化循环。
(4)深冷混合制冷剂循环:
2.8MPa~3.2MPa高压的深冷混合制冷剂进入预冷板翅式换热器ET-101(17)预冷到-50℃~-55℃;
再进入液化板翅式换热器ET-201(16)冷却至-118℃~-122℃;
再进入深冷板翅式换热器ET-301(15)冷却至-155℃~-160℃;
通过节流阀S-401(14)节流降压0.35MPa~0.42MPa,重新依次进入深冷板翅式换热器ET-301(15)、液化板翅式换热器ET-201(16)和预冷板翅式换热器ET-101(17)汽化为深冷天然气、深冷剂高压部分和液化冷剂提供冷量;
然后深冷剂经压缩机C-401(18)压缩后依次进入空冷器AC-401(19)和水冷器E-401(20)冷却,恢复为至初始状态的深冷剂,完成深冷循环。
CN201811527323.0A 2018-12-13 2018-12-13 一种采用混合冷剂级联的天然气液化装置及方法 Pending CN109631492A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811527323.0A CN109631492A (zh) 2018-12-13 2018-12-13 一种采用混合冷剂级联的天然气液化装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811527323.0A CN109631492A (zh) 2018-12-13 2018-12-13 一种采用混合冷剂级联的天然气液化装置及方法

Publications (1)

Publication Number Publication Date
CN109631492A true CN109631492A (zh) 2019-04-16

Family

ID=66073705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811527323.0A Pending CN109631492A (zh) 2018-12-13 2018-12-13 一种采用混合冷剂级联的天然气液化装置及方法

Country Status (1)

Country Link
CN (1) CN109631492A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413573A (zh) * 2022-01-20 2022-04-29 四川空分设备(集团)有限责任公司 基于绕管式换热器的天然气液化系统及工艺
WO2022095691A1 (zh) * 2020-11-05 2022-05-12 华南理工大学 一种煤基富甲烷合成气深冷分离制lng的工艺与系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6818394A (zh) * 1967-12-20 1969-06-24
EP0975923A1 (de) * 1997-04-18 2000-02-02 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
CN1784578A (zh) * 2003-03-18 2006-06-07 气体产品与化学公司 用于气体液化的集成式多回路制冷工艺
CN101223410A (zh) * 2005-06-23 2008-07-16 林德股份公司 用于液化富烃流的方法
CN101625189A (zh) * 2009-08-13 2010-01-13 上海交通大学 利用变压吸附余压预冷的煤层气级联式液化工艺
CN101967413A (zh) * 2010-06-07 2011-02-09 杭州福斯达实业集团有限公司 采用单一混合工质制冷来液化天然气的方法和装置
CN102954668A (zh) * 2011-08-19 2013-03-06 李志远 一种利用多组分制冷剂双级压缩生产液化天然气的方法
CN103322769A (zh) * 2012-03-20 2013-09-25 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化系统
CN103694961A (zh) * 2013-11-12 2014-04-02 北京市燃气集团有限责任公司 适用于预冷温度为-40至-60℃的天然气液化系统的多元混合制冷剂

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6818394A (zh) * 1967-12-20 1969-06-24
EP0975923A1 (de) * 1997-04-18 2000-02-02 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
CN1784578A (zh) * 2003-03-18 2006-06-07 气体产品与化学公司 用于气体液化的集成式多回路制冷工艺
CN101223410A (zh) * 2005-06-23 2008-07-16 林德股份公司 用于液化富烃流的方法
CN101625189A (zh) * 2009-08-13 2010-01-13 上海交通大学 利用变压吸附余压预冷的煤层气级联式液化工艺
CN101967413A (zh) * 2010-06-07 2011-02-09 杭州福斯达实业集团有限公司 采用单一混合工质制冷来液化天然气的方法和装置
CN102954668A (zh) * 2011-08-19 2013-03-06 李志远 一种利用多组分制冷剂双级压缩生产液化天然气的方法
CN103322769A (zh) * 2012-03-20 2013-09-25 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化系统
CN103694961A (zh) * 2013-11-12 2014-04-02 北京市燃气集团有限责任公司 适用于预冷温度为-40至-60℃的天然气液化系统的多元混合制冷剂

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
丁贺,孙恒,何明,刘立雄: "MFC液化流程的分析和优化", 《低温与超导》 *
贾荣,林文胜: "小型天然气液化装置三组分SMR流程分析", 《上海市制冷学会2015年学术年会论文集》 *
顾安忠,鲁雪生: "《液化天然气技术手册》", 31 January 2010, 机械工业出版社 *
马小明,刘慧华: "液化天然气技术与装备", 《化工装备技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022095691A1 (zh) * 2020-11-05 2022-05-12 华南理工大学 一种煤基富甲烷合成气深冷分离制lng的工艺与系统
CN114413573A (zh) * 2022-01-20 2022-04-29 四川空分设备(集团)有限责任公司 基于绕管式换热器的天然气液化系统及工艺
CN114413573B (zh) * 2022-01-20 2023-11-17 四川空分设备(集团)有限责任公司 基于绕管式换热器的天然气液化系统及工艺

Similar Documents

Publication Publication Date Title
CN101893367A (zh) 一种利用混合制冷剂液化天然气的方法
CN102748919A (zh) 单循环混合冷剂四级节流制冷系统及方法
CN103363778B (zh) 小型撬装式单阶混合制冷剂天然气液化系统及其方法
CN101008545A (zh) 一种用于天然气液化的新型ⅱ阶混合制冷工艺
WO2013071789A1 (zh) 采用单一混合工质制冷液化天然气的装置和方法
WO2022095691A1 (zh) 一种煤基富甲烷合成气深冷分离制lng的工艺与系统
CN109631492A (zh) 一种采用混合冷剂级联的天然气液化装置及方法
CN102927791A (zh) 带预冷的双复合冷剂制冷系统及方法
CN103398545B (zh) 一种原料气多级压缩节流的生产液化天然气的系统
CN104807287A (zh) 一种小型天然气液化制冷系统及方法
CN102628634B (zh) 三循环复叠式制冷天然气液化系统及方法
CN110017628A (zh) 一种基于氩循环的lng冷能利用系统及方法
CN203310202U (zh) 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统
CN102620460B (zh) 带丙烯预冷的混合制冷循环系统及方法
CN204630250U (zh) 一种小型天然气液化制冷系统
CN102645084B (zh) 一种混合冷剂三级制冷制备液化天然气的方法及装置
CN102304403B (zh) 一种丙烯预冷混合冷剂液化天然气的方法及装置
CN207881278U (zh) 一种基于氩循环的lng冷能利用系统
CN107543368B (zh) 一种残余bog气体再回收系统
CN202973761U (zh) 带预冷的双复合冷剂制冷系统
CN211977383U (zh) 氦液化及不同温度等级氦气冷源供给装置
CN204705107U (zh) 一种双膨胀制冷工艺的天然气液化系统
CN103673501B (zh) 高效多级节流天然气液化设备及液化天然气的制备方法
CN203615677U (zh) 高效多级节流天然气液化设备
CN202630581U (zh) 三循环复叠式制冷天然气液化系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190416

RJ01 Rejection of invention patent application after publication