CN102927791A - 带预冷的双复合冷剂制冷系统及方法 - Google Patents

带预冷的双复合冷剂制冷系统及方法 Download PDF

Info

Publication number
CN102927791A
CN102927791A CN2012105017103A CN201210501710A CN102927791A CN 102927791 A CN102927791 A CN 102927791A CN 2012105017103 A CN2012105017103 A CN 2012105017103A CN 201210501710 A CN201210501710 A CN 201210501710A CN 102927791 A CN102927791 A CN 102927791A
Authority
CN
China
Prior art keywords
precooling
precooling agent
mix refrigerant
agent
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105017103A
Other languages
English (en)
Inventor
刘家洪
孙林
宋德琦
蒲黎明
龙增兵
陆永康
陈运强
法玉晓
郭成华
仲文旭
陈磊
许涛
钟志良
琚宜林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp Engineering Design Co Ltd
Original Assignee
China National Petroleum Corp Engineering Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp Engineering Design Co Ltd filed Critical China National Petroleum Corp Engineering Design Co Ltd
Priority to CN2012105017103A priority Critical patent/CN102927791A/zh
Publication of CN102927791A publication Critical patent/CN102927791A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

Abstract

本发明公开了一种带预冷的双复合冷剂制冷系统及方法,净化天然气在四个蒸发器和两个换热器中温度逐渐降低,直至液化;液化过程所需的冷量由预冷剂、混合冷剂MR1、混合冷剂MR2三个系统提供,系统调节手段丰富,能够为天然气液化过程提供相匹配的冷量,从而体现出本专利在操作上的灵活性和对原料的适应性。本发明的优点是:天然气液化过程能耗低;大型液化工厂国产化不再受主换热器的形式限制;制冷压缩的大型化,采用本发明可以最大做到千万吨的LNG装置。

Description

带预冷的双复合冷剂制冷系统及方法
技术领域
本发明涉及一种天然气液化工艺,尤其是涉及一种带预冷的双复合冷剂制冷系统及方法。
背景技术
LNG具有清洁环保的性能,在无天然气管道到达地区的中小城镇城市燃气、工业燃料、城市燃气调峰及事故应急、燃气汽车、高档瓷器加工等诸多应用领域迅速推广。但受到国际原油价格的影响,天然气价格不断攀升,天然气液化厂效益天然气液化工厂原料成本不断增加,从而导致液化工厂利润空间不断下降。近年来国内外天然气液化厂已向大型化、规模化方向发展,目前单套最大液化能力已到达780万吨/年。能耗低、建设成本相对较低、又能应用于大规模的液化工艺是未来的我国液化技术的发展方向。
目前国内外天然气液化工艺大致可分为以下三种:
1)阶式制冷循环;2)混合冷剂制冷循环,又细分为带或不带预冷的单级混合冷剂循环和多级混合冷剂循环;3)膨胀制冷,又细分为带或不带预冷的单级膨胀制冷和多级膨胀制冷。
以上工艺因各自的特点而适应于不同处理规模的天然气液化厂。带膨胀制冷循环的天然气液化工艺因装置能耗过高,单套装置处理量小,近年来逐渐被单级混合冷剂制冷循环液化技术替代。单级混合冷剂制冷循环液化工艺是目前国内外50×104t/a以下处理规模的液化厂的主流工艺。而大于50×104t/a的液化天然气工厂都选的带预冷的混合冷剂制冷循环液化工艺及多级混合冷剂制冷液化流程。
从以上分析可以看出,带丙烷预冷的混合冷剂制冷循环液化工艺(C3/MRC)、多级混合冷剂制冷液化流程以及阶式制冷循环液化流程能适用于大型或超大型天然气液化工艺。
发明内容
为了克服现有技术的上述缺点,本发明提供了一种带预冷的双复合冷剂制冷系统及方法,采用预冷剂预冷和两个混合冷剂制冷,在预冷系统中天然气、混合冷剂MR1、混合冷剂MR2在预冷剂中被冷却,四个不同工作压力的预冷剂在四个不同的预冷换热器中被气化和换热;从预冷换热器出来的天然气、混合冷剂MR1和混合冷剂MR2进入液化主低温换热器液化,冷量由混合冷剂MR1节流提供;从液化主低温换热器出来的天然气、混合冷剂MR2进入过冷主低温换热器过冷。液化和过冷主低温换热器由若干台板翅式换热单元并联组成,原料天然气在液化换热器中液化并在过冷换热器过冷至-150℃~-163℃,然后节流进入LNG储罐。
本发明解决其技术问题所采用的技术方案是:一种带预冷的双复合冷剂制冷系统,包括由多级预冷剂蒸发器、预冷剂压缩机、预冷剂冷却器和预冷剂分离器依次连接构成的预冷剂预冷系统;由MR1压缩机、MR1冷却器、多级预冷剂蒸发器和液化主低温换热器依次连接构成的混合制冷剂MR1制冷系统;由MR2压缩机、MR2冷却器、多级预冷剂蒸发器、液化主低温换热器、过冷主低温换热器和MR2分离器依次连接构成的混合制冷剂MR2制冷系统。
本发明还提供了一种带预冷的双复合冷剂制冷方法,包括如下步骤: 
步骤一、预冷剂预冷系统将天然气、混合制冷剂MR1和混合制冷MR2剂预冷至-35℃:
从四级预冷剂蒸发器出来的预冷剂蒸气经预冷剂压缩机增压至1.32MPa.g后经预冷剂冷却器水冷至40℃,然后经预冷剂分离器进行气液分离,再通过一级J-T阀节流,压力降至0.630MPa.g后进入高压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;高压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机增压进行循环,液态预冷剂通过二级J-T阀节流,压力降至0.305MPa.g后进入中压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;中压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机增压进行循环,液态预冷剂通过三级J-T阀节流,压力降至0.244MPa.g后进入低压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;低压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机增压进行循环,液态预冷剂通过四级J-T阀节流,压力降至0.021MPa.g后进入低低压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;低低压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机1增压进行循环;经预冷剂预冷系统预冷后的天然气、混合制冷剂MR1和混合制冷剂MR2进入混合制冷剂MR1制冷系统;
步骤二、混合制冷剂MR1制冷系统将天然气和混合制冷剂MR2冷却至-100~-120℃:
混合制冷剂MR1经MR1压缩机增压至4.0~4.5MPa后经MR1冷却器水冷至40℃,进入预冷剂预冷系统冷却到-35℃后进入液化主低温换热器的液化段,当MR1冷却到-100~-120℃后出液化主低温换热器,通过五级J-T阀节流,压力降至0.3~0.5MPa后再进入液化主低温换热器,为MR1、MR2和天然气提供冷量,混合制冷剂MR1复热至-38℃~-40℃后出液化主低温换热器,直接进入MR1压缩机循环制冷;经混合制冷剂MR1制冷系统冷却后的天然气和混合制冷剂MR2进入混合制冷剂MR2制冷系统;
步骤三、混合制冷剂MR2制冷系统将天然气过冷至-150℃以下:
混合制冷剂MR2经MR2压缩机增压至4.0~4.5MPa后经MR2冷却器水冷至40℃,进入预冷剂预冷系统冷却到-35℃后进入过冷主低温换热器的液化段,当MR2冷却到-155℃以下后出过冷主低温换热器,通过六级J-T阀节流,压力降至0.3~0.5MPa后再进入过冷主低温换热器,为MR2和天然气提供冷量,混合冷剂MR2复热至-110℃~-120℃后出过冷主低温换热器,经MR2分离器进行气液分离后,进入MR2压缩机11循环制冷;
经混合制冷剂MR2制冷系统过冷后的天然气通过七级J-T阀节流进入LNG储罐。
与现有技术相比,本发明的积极效果是:净化天然气在四个蒸发器和两个换热器中温度逐渐降低,直至液化;液化过程所需的冷量由预冷剂、混合冷剂MR1、混合冷剂MR2三个系统提供,系统调节手段丰富,能够为天然气液化过程提供相匹配的冷量,从而体现出本专利在操作上的灵活性和对原料的适应性。与现有技术相比,具有以下优点:
1、天然气液化过程能耗低:
对于天然气液化而言,影响能耗的主要因素为制冷温度和制冷换热过程的换热温差。在相同的制冷温度工况下,换热温差越大,制冷系统的能耗越高。
采用本发明的带预冷的双复合冷剂制冷工艺进行天然气液化,整个换热过程温差较为均匀,无传热瓶颈,有效能损失小,节能明显。
2、液化过程换热器采用板翅式换热器:
国内外LNG工厂的主换热器设备主要是绕管换热器和板翅式换热器,绕管换热器现世界生产商只有APCI和LINDE两家,价格较高,而板翅式换热器在国内的生产厂家较多。国外大型LNG工厂中的主换热器都采用的绕管。
采用本发明的天然气液化工艺,主换热器采用板翅式换热器,大型液化工厂国产化不再受主换热器的形式限制。
3、制冷压缩的大型化:
LNG规模大型化的瓶颈主要受压缩机功率的限制,采用该工艺方案混合冷剂压缩MR1和混合冷剂压缩机MR2的功率能做到同样的大,采用本发明工艺可以最大做到千万吨的LNG装置。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1本发明的的系统原理示意图。
具体实施方式
本发明采用多级预冷剂蒸发器进行预冷,且预冷采用的级数(即预冷剂蒸发器的个数)越多越节约能耗。但是从操作和经济投资上看四级是最为合理的。采用四级预冷比采用三级预冷预冷压缩机的功率能节约10%。因此,本发明将以四级预冷剂蒸发器为例进行详细说明:
一种带预冷的双复合冷剂制冷系统,如图1所示,包括:预冷剂压缩机1、预冷剂冷却器2、预冷剂分离器3、高压预冷剂蒸发器4、中压预冷剂蒸发器5、低压预冷剂蒸发器6、低低压预冷剂蒸发器7、MR1压缩机8、MR1冷却器9、液化主低温换热器10、MR2压缩机11、MR2冷却器12、MR2分离器13、过冷主低温换热器14、一级J-T阀15、二级J-T阀16、三级J-T阀17、四级J-T阀18、五级J-T阀19、六级J-T阀20、七级J-T阀21等,其中:
1)四级预冷剂蒸发器(包括依次连接的高压预冷剂蒸发器4、中压预冷剂蒸发器5、低压预冷剂蒸发器6和低低压预冷剂蒸发器7)、预冷剂压缩机1、预冷剂冷却器2、预冷剂分离器3依次连接构成预冷剂预冷系统,其中:
四级预冷剂蒸发器的蒸气出口均接入预冷剂压缩机1,预冷剂压缩机1的出口依次与预冷剂冷却器2、预冷剂分离器3、一级J-T阀15、高压预冷剂蒸发器4、二级J-T阀16、中压预冷剂蒸发器5、三级J-T阀17、低压预冷剂蒸发器6、四级J-T阀18和低低压预冷剂蒸发器7连接;
2)MR1压缩机8、MR1冷却器9、四级预冷剂蒸发器和液化主低温换热器10依次连接,构成混合制冷剂MR1制冷系统;
3)MR2压缩机11、MR2冷却器12、四级预冷剂蒸发器、液化主低温换热器10、过冷主低温换热器14和MR2分离器13依次连接,构成混合制冷剂MR2制冷系统。
所述液化主低温换热器10和过冷主低温换热器14为板翅式换热器。
本发明还提供了一种带预冷的双复合冷剂制冷方法,包括如下步骤:
步骤一、预冷剂预冷系统将天然气、混合制冷剂MR1和混合制冷MR2剂预冷至-35℃:
从四级预冷剂蒸发器出来的预冷剂蒸气经预冷剂压缩机1增压至1.32MPa.g后经预冷剂冷却器2水冷至40℃,然后经预冷剂分离器3进行气液分离,再通过一级J-T阀15节流,压力降至0.630MPa.g后进入高压预冷剂蒸发器4,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;高压预冷剂蒸发器4蒸发的预冷剂回到预冷剂压缩机1增压进行循环,液态预冷剂通过二级J-T阀16节流,压力降至0.305MPa.g后进入中压预冷剂蒸发器5,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;中压预冷剂蒸发器5蒸发的预冷剂回到预冷剂压缩机1增压进行循环,液态预冷剂通过三级J-T阀17节流,压力降至0.244MPa.g后进入低压预冷剂蒸发器6,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;低压预冷剂蒸发器6蒸发的预冷剂回到预冷剂压缩机1增压进行循环,液态预冷剂通过四级J-T阀18节流,压力降至0.021MPa.g后进入低低压预冷剂蒸发器7,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;低低压预冷剂蒸发器7蒸发的预冷剂回到预冷剂压缩机1增压进行循环;
经预冷剂预冷系统预冷后的天然气、混合制冷剂MR1和混合制冷剂MR2进入混合制冷剂MR1制冷系统;
步骤二、混合制冷剂MR1制冷系统将天然气和混合制冷剂MR2冷却至-100~-120℃:
混合制冷剂MR1为液化段的制冷剂,由乙烯、丙烷、甲烷组成。
混合制冷剂MR1经MR1压缩机8增压至4.0~4.5MPa后经MR1冷却器9水冷至40℃,进入预冷剂预冷系统冷却到-35℃后进入液化主低温换热器10的液化段,当MR1冷却到-100~-120℃后出液化主低温换热器10,通过五级J-T阀19节流,压力降至0.3~0.5MPa后再进入液化主低温换热器10,为MR1、MR2和天然气提供冷量,混合制冷剂MR1复热至-38℃~-40℃后出液化主低温换热器10,直接进入MR1压缩机8循环制冷;
经混合制冷剂MR1制冷系统冷却后的天然气和混合制冷剂MR2进入混合制冷剂MR2制冷系统;
步骤三、混合制冷剂MR2制冷系统将天然气过冷至-150℃以下:
混合制冷剂MR2为过冷段的制冷剂,由乙烯、氮气、甲烷组成。
混合制冷剂MR2经MR2压缩机11增压至4.0~4.5MPa后经MR2冷却器12水冷至40℃,进入预冷剂预冷系统冷却到-35℃后进入过冷主低温换热器14的液化段,当MR2冷却到-155℃以下后出过冷主低温换热器14,通过六级J-T阀20节流,压力降至0.3~0.5MPa后再进入过冷主低温换热器14,为MR2和天然气提供冷量,混合冷剂MR2复热至-110℃~-120℃后出过冷主低温换热器14,经MR2分离器13进行气液分离后,进入MR2压缩机11循环制冷;
经混合制冷剂MR2制冷系统过冷后的天然气通过七级J-T阀21节流进入LNG储罐。
本发明工艺的基本原理是:较低温度级的循环将热量转给相邻的较高温度级的循环。第一级预冷剂制冷循环为天然气、混合制冷剂MR1和混合制冷剂MR2提供冷量;第二级混合制冷剂MR1循环为天然气、混合制冷剂MR1和混合制冷剂MR2提供冷量;第三级混合制冷剂MR2循环为天然气及混合制冷剂MR2自身提供冷量。通过四个蒸发器和两个板翅式换热器冷却,天然气的温度逐渐降低,直至液化。

Claims (4)

1.一种带预冷的双复合冷剂制冷系统,其特征在于:包括由多级预冷剂蒸发器、预冷剂压缩机、预冷剂冷却器和预冷剂分离器依次连接构成的预冷剂预冷系统;由MR1压缩机、MR1冷却器、多级预冷剂蒸发器和液化主低温换热器依次连接构成的混合制冷剂MR1制冷系统;由MR2压缩机、MR2冷却器、多级预冷剂蒸发器、液化主低温换热器、过冷主低温换热器和MR2分离器依次连接构成的混合制冷剂MR2制冷系统。
2.根据权利要求1所述的带预冷的双复合冷剂制冷系统,其特征在于:所述多级预冷剂蒸发器为四级预冷剂蒸发器,包括依次连接的高压预冷剂蒸发器、中压预冷剂蒸发器、低压预冷剂蒸发器和低低压预冷剂蒸发器。
3.根据权利要求1所述的带预冷的双复合冷剂制冷系统,其特征在于:所述液化主低温换热器和过冷主低温换热器为板翅式换热器。
4.一种带预冷的双复合冷剂制冷方法,其特征在于:包括如下步骤: 
步骤一、预冷剂预冷系统将天然气、混合制冷剂MR1和混合制冷MR2剂预冷至-35℃:
从四级预冷剂蒸发器出来的预冷剂蒸气经预冷剂压缩机增压至1.32MPa.g后经预冷剂冷却器水冷至40℃,然后经预冷剂分离器进行气液分离,再通过一级J-T阀节流,压力降至0.630MPa.g后进入高压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;高压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机增压进行循环,液态预冷剂通过二级J-T阀节流,压力降至0.305MPa.g后进入中压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;中压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机增压进行循环,液态预冷剂通过三级J-T阀节流,压力降至0.244MPa.g后进入低压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;低压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机增压进行循环,液态预冷剂通过四级J-T阀节流,压力降至0.021MPa.g后进入低低压预冷剂蒸发器,对天然气、混合制冷剂MR1和混合制冷剂MR2进行冷却;低低压预冷剂蒸发器蒸发的预冷剂回到预冷剂压缩机1增压进行循环;经预冷剂预冷系统预冷后的天然气、混合制冷剂MR1和混合制冷剂MR2进入混合制冷剂MR1制冷系统;
步骤二、混合制冷剂MR1制冷系统将天然气和混合制冷剂MR2冷却至-100~-120℃:
混合制冷剂MR1经MR1压缩机增压至4.0~4.5MPa后经MR1冷却器水冷至40℃,进入预冷剂预冷系统冷却到-35℃后进入液化主低温换热器的液化段,当MR1冷却到-100~-120℃后出液化主低温换热器,通过五级J-T阀节流,压力降至0.3~0.5MPa后再进入液化主低温换热器,为MR1、MR2和天然气提供冷量,混合制冷剂MR1复热至-38℃~-40℃后出液化主低温换热器,直接进入MR1压缩机循环制冷;经混合制冷剂MR1制冷系统冷却后的天然气和混合制冷剂MR2进入混合制冷剂MR2制冷系统;
步骤三、混合制冷剂MR2制冷系统将天然气过冷至-150℃以下:
混合制冷剂MR2经MR2压缩机增压至4.0~4.5MPa后经MR2冷却器水冷至40℃,进入预冷剂预冷系统冷却到-35℃后进入过冷主低温换热器的液化段,当MR2冷却到-155℃以下后出过冷主低温换热器,通过六级J-T阀节流,压力降至0.3~0.5MPa后再进入过冷主低温换热器,为MR2和天然气提供冷量,混合冷剂MR2复热至-110℃~-120℃后出过冷主低温换热器,经MR2分离器进行气液分离后,进入MR2压缩机11循环制冷;经混合制冷剂MR2制冷系统过冷后的天然气通过七级J-T阀节流进入LNG储罐。
CN2012105017103A 2012-11-30 2012-11-30 带预冷的双复合冷剂制冷系统及方法 Pending CN102927791A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105017103A CN102927791A (zh) 2012-11-30 2012-11-30 带预冷的双复合冷剂制冷系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105017103A CN102927791A (zh) 2012-11-30 2012-11-30 带预冷的双复合冷剂制冷系统及方法

Publications (1)

Publication Number Publication Date
CN102927791A true CN102927791A (zh) 2013-02-13

Family

ID=47642652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105017103A Pending CN102927791A (zh) 2012-11-30 2012-11-30 带预冷的双复合冷剂制冷系统及方法

Country Status (1)

Country Link
CN (1) CN102927791A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673501A (zh) * 2013-12-11 2014-03-26 辽宁哈深冷气体液化设备有限公司 高效多级节流天然气液化设备及液化天然气的制备方法
CN106595220A (zh) * 2016-12-30 2017-04-26 上海聚宸新能源科技有限公司 一种用于液化天然气的液化系统及其液化方法
CN108444211A (zh) * 2018-01-29 2018-08-24 中国海洋石油集团有限公司 一种基于板翅式换热器的大型天然气液化系统及工艺
CN108613478A (zh) * 2018-05-15 2018-10-02 中国石油工程建设有限公司 一种极寒地区天然气液化装置及方法
CN110418929A (zh) * 2017-03-16 2019-11-05 诺瓦泰克公共股份公司 用于天然气液化的设备和方法
CN112368532A (zh) * 2018-04-20 2021-02-12 查特能源化工股份有限公司 带有预冷却的混合制冷剂液化系统和方法
US11460244B2 (en) 2016-06-30 2022-10-04 Baker Hughes Oilfield Operations Llc System and method for producing liquefied natural gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041440A (zh) * 1988-09-23 1990-04-18 气体产品与化学公司 使用低级、高级和吸收制冷循环进行天然气液化的方法
WO1998048227A1 (de) * 1997-04-18 1998-10-29 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
US20040182108A1 (en) * 2003-03-18 2004-09-23 Roberts Mark Julian Integrated multiple-loop refrigeration process for gas liquefaction
CN101223410A (zh) * 2005-06-23 2008-07-16 林德股份公司 用于液化富烃流的方法
CN102620460A (zh) * 2012-04-26 2012-08-01 中国石油集团工程设计有限责任公司 带丙烯预冷的混合制冷循环系统及方法
CN202973761U (zh) * 2012-11-30 2013-06-05 中国石油集团工程设计有限责任公司 带预冷的双复合冷剂制冷系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041440A (zh) * 1988-09-23 1990-04-18 气体产品与化学公司 使用低级、高级和吸收制冷循环进行天然气液化的方法
WO1998048227A1 (de) * 1997-04-18 1998-10-29 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
US6253574B1 (en) * 1997-04-18 2001-07-03 Linde Aktiengesellschaft Method for liquefying a stream rich in hydrocarbons
US20040182108A1 (en) * 2003-03-18 2004-09-23 Roberts Mark Julian Integrated multiple-loop refrigeration process for gas liquefaction
CN100565059C (zh) * 2003-03-18 2009-12-02 气体产品与化学公司 用于气体液化的集成式多回路制冷工艺及系统
CN101223410A (zh) * 2005-06-23 2008-07-16 林德股份公司 用于液化富烃流的方法
CN102620460A (zh) * 2012-04-26 2012-08-01 中国石油集团工程设计有限责任公司 带丙烯预冷的混合制冷循环系统及方法
CN202973761U (zh) * 2012-11-30 2013-06-05 中国石油集团工程设计有限责任公司 带预冷的双复合冷剂制冷系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673501A (zh) * 2013-12-11 2014-03-26 辽宁哈深冷气体液化设备有限公司 高效多级节流天然气液化设备及液化天然气的制备方法
US11460244B2 (en) 2016-06-30 2022-10-04 Baker Hughes Oilfield Operations Llc System and method for producing liquefied natural gas
CN106595220A (zh) * 2016-12-30 2017-04-26 上海聚宸新能源科技有限公司 一种用于液化天然气的液化系统及其液化方法
CN106595220B (zh) * 2016-12-30 2022-07-12 上海聚宸新能源科技有限公司 一种用于液化天然气的液化系统及其液化方法
CN110418929A (zh) * 2017-03-16 2019-11-05 诺瓦泰克公共股份公司 用于天然气液化的设备和方法
CN110418929B (zh) * 2017-03-16 2021-11-23 诺瓦泰克公共股份公司 用于天然气液化的设备和方法
US11566840B2 (en) 2017-03-16 2023-01-31 Publichnoe Aktsionernoe Obshchestvo “NOVATEK” Arctic cascade method for natural gas liquefaction in a high-pressure cycle with pre-cooling by ethane and sub-cooling by nitrogen, and a plant for its implementation
US11774173B2 (en) 2017-03-16 2023-10-03 Publichnoe Aktsionernoe Obshchestvo “NOVATEK” Arctic cascade method for natural gas liquefaction in a high-pressure cycle with pre-cooling by ethane and sub-cooling by nitrogen, and a plant for its implementation
CN108444211A (zh) * 2018-01-29 2018-08-24 中国海洋石油集团有限公司 一种基于板翅式换热器的大型天然气液化系统及工艺
CN108444211B (zh) * 2018-01-29 2023-10-13 中国海洋石油集团有限公司 一种基于板翅式换热器的大型天然气液化系统及工艺
CN112368532A (zh) * 2018-04-20 2021-02-12 查特能源化工股份有限公司 带有预冷却的混合制冷剂液化系统和方法
CN108613478A (zh) * 2018-05-15 2018-10-02 中国石油工程建设有限公司 一种极寒地区天然气液化装置及方法

Similar Documents

Publication Publication Date Title
CN102927791A (zh) 带预冷的双复合冷剂制冷系统及方法
CN102538391B (zh) 多级单组分制冷天然气液化方法
CN104520660A (zh) 用于天然气液化的系统和方法
CN102564059A (zh) 双级多组分混合冷剂制冷天然气液化系统及方法
CN102628634B (zh) 三循环复叠式制冷天然气液化系统及方法
CN202813975U (zh) 一种基于缠绕管式换热器的非常规天然气液化系统
CN102620460B (zh) 带丙烯预冷的混合制冷循环系统及方法
CN216620451U (zh) 一种lng重整制氢和lng冷能液化氢气一体化系统
CN103398545B (zh) 一种原料气多级压缩节流的生产液化天然气的系统
CN203310202U (zh) 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统
CN102564057A (zh) 一种应用于基荷型天然气液化工厂的丙烷预冷混合冷剂液化系统
CN106595220B (zh) 一种用于液化天然气的液化系统及其液化方法
Li et al. Thermodynamic Analysis‐Based Improvement for the Boil‐off Gas Reliquefaction Process of Liquefied Ethylene Vessels
CN202973761U (zh) 带预冷的双复合冷剂制冷系统
CN104019626A (zh) 一种混合冷剂二级制冷制备液化天然气的方法及装置
CN202630581U (zh) 三循环复叠式制冷天然气液化系统
CN204630250U (zh) 一种小型天然气液化制冷系统
CN102645084B (zh) 一种混合冷剂三级制冷制备液化天然气的方法及装置
CN102304403B (zh) 一种丙烯预冷混合冷剂液化天然气的方法及装置
CN202547274U (zh) 多级单组分制冷天然气液化系统
CN102564061B (zh) 一种应用于基荷型天然气液化工厂的双级混合冷剂循环液化系统
CN104880024B (zh) 一种双膨胀制冷工艺的天然气液化系统
CN202692600U (zh) 一种双级混合冷剂循环天然气液化系统
Yu et al. Floating Liquid Natural Gas (FLNG) Liquefaction Process Analysis for South China Sea Deep Water Gas Field
CN103673501B (zh) 高效多级节流天然气液化设备及液化天然气的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130213