WO2008022689A2 - Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes - Google Patents

Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes Download PDF

Info

Publication number
WO2008022689A2
WO2008022689A2 PCT/EP2007/006578 EP2007006578W WO2008022689A2 WO 2008022689 A2 WO2008022689 A2 WO 2008022689A2 EP 2007006578 W EP2007006578 W EP 2007006578W WO 2008022689 A2 WO2008022689 A2 WO 2008022689A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
stream
partial
refrigeration cycle
hydrocarbon
Prior art date
Application number
PCT/EP2007/006578
Other languages
English (en)
French (fr)
Other versions
WO2008022689A3 (de
Inventor
Heinz Bauer
Hubert Hubert
Rainer Sapper
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Publication of WO2008022689A2 publication Critical patent/WO2008022689A2/de
Publication of WO2008022689A3 publication Critical patent/WO2008022689A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant

Definitions

  • the invention relates to a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, by indirect heat exchange with a nitrogen refrigeration cycle, wherein the nitrogen circulating in the nitrogen refrigeration cycle subjected to a multi-stage compression, cooled, divided into at least two partial streams and these on different temperature levels are subjected to a cold-performing relaxation.
  • nitrogen refrigeration cycle is to be understood below as any refrigeration cycle in which a preferably non-combustible gas or gas mixture containing at least 70% nitrogen circulates.
  • a preferably non-combustible gas or gas mixture containing at least 70% nitrogen circulates.
  • nitrogen in particular argon and helium are other possible components of the gas mixture.
  • nitrogen refrigeration cycles are often used. These are characterized on the one hand by a comparatively simple operation and on the other hand by the use of a non-flammable refrigerant.
  • two or more nitrogen expansion turbines are often provided, their operating conditions being selected so that comparatively narrow temperature differences between the cold and the warm process streams can be achieved.
  • Object of the present invention is to provide a generic method for liquefying a hydrocarbon-rich stream, in which the aforementioned disadvantages can be avoided.
  • a generic method for liquefying a hydrocarbon-rich stream is proposed, which is characterized in that the relaxed at the higher temperature level nitrogen partial stream of the multi-stage compression is fed to a medium pressure level and relaxed at the colder or coldest temperature level Nitrogen partial stream is present after its expansion at least partially liquefied.
  • the relaxed at a higher temperature level nitrogen partial stream is now not combined before the multi-stage compression with the relaxed at a low temperature level nitrogen partial stream , but fed to the multi-stage compression at an intermediate pressure level.
  • n-th partial stream of the compressed nitrogen stream is cooled down to such an extent that, during the adiabatic or alternatively work-performing expansion, this partial nitrogen stream at least partially liquefied present. If n is greater than two, the relaxation takes place with formation of liquid to an intermediate pressure level of the cycle compressor.
  • the partial liquefaction of nitrogen ensures a constant temperature of the liquefied hydrocarbon-rich stream even in transient operating conditions - ie in the case of load changes and control actions of all kinds, as by means of a liquid refrigerant, a constant process temperature can be maintained much easier than with heating a gaseous refrigerant is the case. Since the liquefied nitrogen can spontaneously feed mass to the gas inventory, unwanted pressure changes within the nitrogen refrigeration cycle caused by control interventions are avoided.
  • the compressed nitrogen stream is divided into at least three sub-streams, the provision of the peak cooling of the liquefaction process by a cold-performing expansion of a nitrogen partial stream to a low pressure level and by evaporation of the partially liquid nitrogen
  • precooling circuit is preferably designed as a two- or multi-stage pure substance refrigeration cycle and
  • the refrigerant of the pre-cooling preferably light paraffinic
  • nitrogen refrigeration cycle is to be understood below as any refrigeration cycle in which a preferably non-combustible gas or gas mixture containing at least 70% nitrogen circulates.
  • argon and helium are further conceivable components that can be added to the nitrogen.
  • the hydrocarbon-rich stream to be liquefied - in this case, this is a natural gas stream, if necessary, subjected to the prior art counting, not shown in the figure pretreatment - is fed via line A a first heat exchanger E1 and in this against a cooled only in schematic form shown Vorkühlniklauf VK.
  • a first heat exchanger E1 in this case, a natural gas stream, if necessary, subjected to the prior art counting, not shown in the figure pretreatment - is fed via line A a first heat exchanger E1 and in this against a cooled only in schematic form shown Vorkühlniklauf VK.
  • Pre-cooling circuit VK is, for example, a two-stage or multi-stage pure substance refrigeration cycle in which light paraffinic (ethane, propane) or olefinic (ethylene, propylene) hydrocarbons or non-combustible refrigerants, such as carbon dioxide, are used as refrigerants.
  • this pre-cooling circuit VK is not mandatory. If it is omitted, the precooling of the natural gas stream to be liquefied takes place exclusively against the refrigerant (mixture) of the nitrogen refrigeration cycle to be described.
  • the pre-cooled natural gas stream is then fed via line B a heat exchanger E2 and liquefied in this against a nitrogen refrigerant circuit, which will be discussed in more detail below.
  • the liquefied natural gas stream via line C is fed to a further heat exchanger E3 and subcooled in this against the liquid portion of the line 13 to the heat exchanger E3 supplied partial flow of the nitrogen refrigeration cycle.
  • the liquefied and supercooled natural gas stream is then fed to an expansion valve v, in this to the desired discharge pressure relaxed and fed via line E its further use or (intermediate) storage.
  • the nitrogen refrigeration cycle has an at least two-stage compressor unit, consisting of the compressor stages V1 and V2. These are by means of any drive M - are provided for this purpose electric motors, gas turbine and / or steam turbine drives - driven.
  • the option "steam turbine drive” is suitable for use in offshore liquefaction plants.
  • the cooled at the lower temperature level nitrogen partial stream 12 is supplied after heating and evaporation in the heat exchanger E2 via line 1 of the first compressor stage V1.
  • This withdrawn via line 2 from the first compressor stage V1 nitrogen stream is cooled in one of the compressor stage downstream cooler and then fed after admixture of the brought over line 16 nitrogen residual stream, via line 3 of the second compressor stage V2.
  • this residual nitrogen flow consists of the nitrogen partial stream 12 which has been cooled to a relatively high temperature and the liquid nitrogen partial stream 17 vaporized in the heat exchanger E3 at the same pressure level.
  • the compressor stage V2 is a compression to a medium pressure. Also this compressor stage V2 is followed by a cooler, via which the heat of compression is dissipated. The compressed to the intermediate pressure gaseous nitrogen flow is now supplied via the line sections 4 and 5 and 4 and 7, the third compressor stages V3 and V3 '. In these there is a compression to the desired end of cycle pressure.
  • the compressed nitrogen streams are then combined via the line sections 6 and 8 and fed via line 9 to the above-described heat exchanger E1.
  • For the purpose of dissipating the heat of compressor also undergoes the combined nitrogen flow in the line 9 a cooling in a designated cooler.
  • the nitrogen stream is fed via line 10 to the heat exchanger E2 and further cooled in this.
  • the heat exchanger E2 is now a separation into three nitrogen partial streams, two of which are supplied via the lines 11 and 14 to the expansion devices or turbines X and X '. In these, the two nitrogen substreams are depressurized at different temperature and pressure levels.
  • the two expansion devices or turbines X and X ' coupled to the third compressor stages V3 and V3' - represented by the dotted lines - that they drive the compressor stages V3 and V3 'or at least make a contribution to their drive
  • the third, coldest nitrogen partial stream is fed via line 13 and expansion valve v 'to the heat exchanger E3, in which it is present after a relaxation to the intermediate pressure of the compressor unit V1 / V2 at least partially liquefied.
  • the heat exchanger E3 is preferably designed as a so-called. Liquid buffer container to unwanted
  • the (X) partial nitrogen stream which is cooled at a low temperature level, is then fed via the line 12 to the heat exchanger E2. In this takes place - as already described - a warming of this nitrogen partial stream, which is then fed via line 1 of the first compressor stage V1.
  • the relaxed at a higher pressure level (X 1 ) nitrogen partial stream is fed via the line 15 to the heat exchanger E2 and warmed in this against the cooled and liquefied natural gas stream.
  • the evaporated nitrogen partial stream is withdrawn from the heat exchanger E3 and fed to the heat exchanger E2 and warmed in it. Downstream of the heat exchanger E2 or this, the heat exchanger is the E2 fed via line 17 nitrogen partial stream to the fed via line 15 nitrogen partial stream. Subsequently, this nitrogen residual flow is - as already mentioned - mixed via line 16 to the nitrogen stream in line 2.
  • nitrogen partial stream supplied via line 11 to the expansion device or turbine X would be fed to the heat exchanger E3 after expansion in at least partially liquefied form, vaporized in this zone against the natural gas stream C to be supercooled and then the intermediate pressure stage of the compressor unit V1 / V2 be supplied.
  • the inventive method for liquefying a hydrocarbon-rich stream allows a simpler compared to the prior art operation of a liquefaction process with a nitrogen refrigeration cycle.

Abstract

Es wird ein Verfahren zum Verflüssigen eines Kohlenwasserstoffreichen Stromes, insbesondere eines Erdgas-Stromes, durch indirekten Wärmetausch mit einem Stickstoff-Kältekreislauf, wobei der in dem Stickstoff-Kältekreislauf zirkulierende Stickstoff einer mehrstufigen Verdichtung unterworfen, abgekühlt, in wenigstens zwei Teilströme aufgeteilt und diese auf unterschiedlichen Temperaturniveaus einer kälteleistenden Entspannung unterworfen werden, beschrieben. Erfindungsgemäß wird der auf dem höheren Temperatumiveau entspannte (X') Stickstoff-Teilstrom (15, 16) der mehrstufigen Verdichtung (V1, V2,...) auf einem mittleren Druckniveau zugespeist und der auf dem kälteren oder kältesten Temperaturniveau entspannte Stickstoff -Teilstrom (12, 13) liegt nach seiner Entspannung (X, v') zumindest teilweise verflüssigt vor.

Description

Beschreibung
Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoffreichen Stromes, insbesondere eines Erdgas-Stromes, durch indirekten Wärmetausch mit einem Stickstoff-Kältekreislauf, wobei der in dem Stickstoff-Kältekreislauf zirkulierende Stickstoff einer mehrstufigen Verdichtung unterworfen, abgekühlt, in wenigstens zwei Teilströme aufgeteilt und diese auf unterschiedlichen Temperaturniveaus einer kälteleistenden Entspannung unterworfen werden.
Unter dem Begriff Stickstoff-Kältekreislauf sei nachfolgend jeder Kältekreislauf zu verstehen, in dem ein vorzugsweise nichtbrennbares Gas oder Gasgemisch , das wenigstens 70 % Stickstoff enthält, zirkuliert. Neben der Komponente Stickstoff sind insbesondere Argon und Helium weitere mögliche Komponenten des Gasgemisches.
Bei Erdgasverflüssigungsanlagen mit kleinen (< 100.000 jato LNG) und mittleren (< 1 Mio. jato LNG) Verflüssigungskapazitäten kommen oftmals Stickstoff-Kältekreisläufe zur Anwendung. Diese zeichnen sich zum einen durch einen vergleichsweise einfachen Betrieb und zum anderen durch die Verwendung eines unbrennbaren Kältemittels aus. Zur Erhöhung des Wirkungsgrades gattungsgemäßer Verflüssigungsverfahren werden oftmals zwei oder mehr Stickstoff- Entspannungsturbinen vorgesehen, wobei deren Betriebsbedingungen so gewählt werden, dass vergleichsweise enge Temperaturdifferenzen zwischen den kalten und den warmen Prozessströmen erreicht werden können.
Aus dem US-Patent 5,768,912 ist ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes bekannt. Den bekannten Verflüssigungsverfahren mit Stickstoff-Kältekreisläufen ist gemein, dass der in dem Kältekreislauf zirkulierende Stickstoff ausschließlich in der Gasphase vorliegt. Sobald jedoch zwei oder mehr Stickstoff-Entspannungsturbinen zur Anwendung kommen, beeinflussen erforderliche Regeleingriffe an einer der Stickstoff-Entspannungsturbinen zwangsläufig den Betrieb der anderen Entspannungsturbine(n), da in einem geschlossenen System, das mit einem ausschließlich gasförmigen Kältemittel gefüllt ist, lokale Druckänderungen zwangsläufig auf das gesamte System und damit auf die einzelnen Systemkomponenten wirken.
Des Weiteren ist es bei größer werdender Verflüssigungskapazität von Nachteil, das gesamte, innerhalb des Kältekreislaufes zirkulierende Kältemittel auf einen gemeinsamen Druck zu entspannen, da hierdurch der Saugvolumenstrom des Kreislaufverdichters vergleichsweise groß wird und teure sowie nicht einsträngig baubare Kreislaufverdichter erforderlich würden.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes anzugeben, bei dem die vorgenannten Nachteile vermieden werden können.
Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes vorgeschlagen, das dadurch gekennzeichnet ist, dass der auf dem höheren Temperaturniveau entspannte Stickstoff -Teilstrom der mehrstufigen Verdichtung auf einem mittleren Druckniveau zugespeist wird und der auf dem kälteren oder kältesten Temperaturniveau entspannte Stickstoff -Teilstrom nach seiner Entspannung zumindest teilweise verflüssigt vorliegt.
Erfindungsgemäß und im Gegensatz zu dem bekannten Stand der Technik, wie er beispielsweise in dem vorgenannten US-Patent beschrieben ist, wird der auf einem höheren Temperaturniveau entspannte Stickstoff-Teilstrom nunmehr nicht vor der mehrstufigen Verdichtung mit dem auf einem niedrigen Temperaturniveau entspannten Stickstoff-Teilstrom vereinigt, sondern der mehrstufigen Verdichtung auf einem Zwischendruckniveau zugeführt.
Die Rückverdichtung des Stickstoffes - ausgehend von mehreren Druckstufen - entlastet den Kreislaufverdichter in Bezug auf die Saugvolumina. Bei vorgegebener Verdichtergeometrie können mit der erfindungsgemäßen Verfahrensweise folglich größere Anlagenkapazitäten realisiert werden.
Erfolgt eine Aufteilung in n Stickstoff-Teilströme, so wird der n-te Teilstrom des verdichteten Stickstoffstromes soweit abgekühlt, dass bei der adiabaten oder alternativ arbeitsleistenden Entspannung dieser Stickstoff-Teilstrom zumindest teilweise verflüssigt vorliegt. Ist n größer als zwei, erfolgt die Entspannung unter Flüssigkeitsbildung auf ein Zwischendruckniveau des Kreislauf-Verdichters.
Die Teilverflüssigung des Stickstoffes stellt auch bei transienten Betriebszuständen - also im Falle von Laständerungen und Regeleingriffen aller Art - eine konstante Temperatur des verflüssigten Kohlenwasserstoff-reichen Stromes sicher, da mittels eines flüssigen Kältemittels eine konstante Prozesstemperatur wesentlich einfacher eingehalten werden kann, als dies mit Anwärmung eines gasförmigen Kältemittels der Fall ist. Da der verflüssigte Stickstoff spontan Masse dem Gasinventar zuführen kann, werden durch Regeleingriffe verursachte, unerwünschte Druckänderungen innerhalb des Stickstoff-Kältekreislaufes vermieden.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, die Gegenstände der abhängigen Patentansprüche darstellen, sind dadurch gekennzeichnet, dass
sofern der verdichtete Stickstoffstrom in wenigstens drei Teilströme aufgeteilt wird, die Bereitstellung der Spitzenkälte des Verflüssigungsprozesses durch eine kälteleistende Entspannung eines Stickstoff-Teilstromes auf ein Niederdruckniveau und durch Verdampfen des teilweise flüssigen Stickstoff-
Teilstromes auf einem Zwischendruckniveau erfolgt,
die Vorkühlung des zu verflüssigenden Kohlenwasserstoff-reichen Stromes und des in dem Stickstoff-Kältekreislauf zirkulierende Stickstoffes mittels eines Vorkühlkreislaufes erfolgt,
wobei der Vorkühlkreislauf vorzugsweise als zwei- oder mehrstufiger Reinstoff- Kältekreislauf ausgebildet ist und
- als Kältemittel des Vorkühlkreislaufes vorzugsweise leichte paraffinische
(Ethan, Propan) oder olefinische (Ethylen, Propylen) Kohlenwasserstoffe o der ein nicht-brennbares Kältemittel, vorzugsweise Kohlendioxid, zur Anwendung kommen. Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes sowie weitere vorteilhafte Ausgestaltungen desselben seien nachfolgend anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.
Es sei nochmals betont, dass unter dem Begriff Stickstoff-Kältekreislauf nachfolgend jeder Kältekreislauf zu verstehen ist, in dem ein vorzugsweise nichtbrennbares Gas oder Gasgemisch, das wenigstens 70 % Stickstoff enthält, zirkuliert. Hierbei sind insbesondere Argon und Helium weitere denkbare Komponenten, die dem Stickstoff zugemischt werden können.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom - im vorliegenden Falle sei dies ein Erdgasstrom, der falls erforderlich einer, zum Stand der Technik zählenden, in der Figur nicht dargestellten Vorbehandlung unterworfen wird - wird über Leitung A einem ersten Wärmetauscher E1 zugeführt und in diesem gegen einen lediglich in schematisierter Form dargestellten Vorkühlkreislauf VK abgekühlt. Bei diesem
Vorkühlkreislauf VK handelt es sich beispielsweise um einen zwei- oder mehrstufigen Reinstoff-Kältekreislauf, in dem als Kältemittel leichte paraffinische (Ethan, Propan) oder olefinische (Ethylen, Propylen) Kohlenwasserstoffe oder auch nicht-brennbare Kältemittel, wie beispielsweise Kohlendioxid, zur Anwendung kommen. Dieser Vorkühlkreislauf VK ist jedoch nicht zwingend erforderlich. Entfällt er, erfolgt die Vorkühlung des zu verflüssigenden Erdgasstromes ausschließlich gegen das Kältemittel(gemisch) des noch zu beschreibenden Stickstoff-Kältekreislaufes.
Der vorgekühlte Erdgasstrom wird anschließend über Leitung B einem Wärmetauscher E2 zugeführt und in diesem gegen einen Stickstoff-Kältekreislauf, auf den im Folgenden noch näher eingegangen werden wird, verflüssigt.
Anschließend wird der verflüssigte Erdgasstrom über Leitung C einem weiteren Wärmetauscher E3 zugeführt und in diesem gegen den flüssigen Anteil des über Leitung 13 dem Wärmetauscher E3 zugeführten Teilstrom des Stickstoff- Kältekreislaufes unterkühlt.
Über Leitung D wird der verflüssigte und unterkühlte Erdgasstrom anschließend einem Entspannungsventil v zugeführt, in diesem auf den gewünschten Abgabedruck entspannt und über Leitung E seiner weiteren Verwendung oder (Zwischen)Speicherung zugeführt.
Der Stickstoff-Kältekreislauf weist eine wenigstens zweistufige Verdichtereinheit, bestehend aus den Verdichterstufen V1 und V2 auf. Diese werden mittels eines beliebigen Antriebes M - vorgesehen werden hierzu Elektromotoren, Gasturbinen- und/oder Dampfturbinenantriebe - angetrieben. Insbesondere die Option "Dampfturbinenantrieb" eignet sich zur Anwendung bei Offshore- Verflüssigungsanlagen.
Der auf dem niedrigeren Temperaturniveau kälteleistend entspannte Stickstoff- Teilstrom 12 wird nach Anwärmung und Verdampfung im Wärmetauscher E2 über Leitung 1 der ersten Verdichterstufe V1 zugeführt. Dieser über Leitung 2 aus der ersten Verdichterstufe V1 abgezogene Stickstoffstrom wird in einem der Verdichterstufe nachgeschalteten Kühler abgekühlt und anschließend nach Zumischung des über Leitung 16 herangeführten Stickstoff-Reststromes, über Leitung 3 der zweiten Verdichterstufe V2 zugeführt. Dieser Stickstoff-Reststrom besteht bei der in der Figur dargestellten Ausführungsform des erfindungsgemäßen Verfahrens aus dem auf einem höheren Temperatumiveau kälteleistend entspannten Stickstoff-Teilstrom 12 und dem im Wärmetauscher E3 auf dem gleichen Druckniveau verdampften flüssigen Stickstoff- Teilstrom 17.
In der Verdichterstufe V2 erfolgt eine Verdichtung auf einen Mitteldruck. Auch dieser Verdichterstufe V2 ist ein Kühler nachgeschaltet, über den die Verdichtungswärme abgeführt wird. Der auf den Mitteldruck verdichtete gasförmige Stickstoffstrom wird nunmehr über die Leitungsabschnitte 4 und 5 sowie 4 und 7 den dritten Verdichterstufen V3 und V3' zugeführt. In diesen erfolgt eine Verdichtung auf den gewünschten Kreislaufenddruck.
Die verdichteten Stickstoffströme werden anschließend über die Leitungsabschnitte 6 und 8 zusammengeführt und über Leitung 9 dem vorbeschriebenen Wärmetauscher E1 zugeführt. Zum Zwecke des Abführens der Verdichterwärme erfährt auch der vereinigte Stickstoffstrom in der Leitung 9 eine Abkühlung in einem dafür vorgesehenen Kühler. Nach Abkühlung im Wärmetauscher E1 wird der Stickstoffstrom über Leitung 10 dem Wärmetauscher E2 zugeführt und in diesem weiter abgekühlt. Im Wärmetauscher E2 erfolgt nunmehr eine Auftrennung in drei Stickstoff-Teilströme, von denen zwei über die Leitungen 11 und 14 den Entspannungsvorrichtungen bzw. -turbinen X und X' zugeführt werden. In diesen werden die beiden Stickstoff-Teilströme auf unterschiedlichen Temperatur- und Druckniveaus kälteleistend entspannt.
In vorteilhafter weise sind die beiden Entspannungsvorrichtungen bzw. -turbinen X und X' mit den dritten Verdichterstufen V3 und V3' derart gekoppelt - dargestellt durch die punktierten Leitungen -, dass sie die Verdichterstufen V3 und V3' antreiben oder zumindest einen Beitrag zu deren Antrieb leisten. Der dritte, kälteste Stickstoff- Teilstrom wird über Leitung 13 und Entspannungsventil v' dem Wärmetauscher E3 zugeführt, in dem er nach einer Entspannung auf den Zwischendruck der Verdichtereinheit V1/V2 zumindest teilweise verflüssigt vorliegt. Der Wärmetauscher E3 ist vorzugsweise als ein sog. Flüssigpufferbehälter ausgelegt, um unerwünschte
Druckänderungen innerhalb des Stickstoff-Kältekreislaufes zu vermeiden. Aufgrund der gewählten Konstruktion für den Wärmetauscher E3 trägt lediglich der Flüssiganteil des über Leitung 13 zugeführten Stickstoff-Teilstromes zur Ab- bzw. Unterkühlung des Erdgasstromes C bei. Der Gasanteil dieses Stickstoff-Teilstromes verlässt den Wärmetauscher E3 unmittelbar über die Leitung 17 ohne am eigentlichen Wärmetausch beteiligt zu sein.
Der auf dem niedrigeren Temperaturniveau kälteleistend entspannte (X) Stickstoff- Teilstrom wird anschließend über die Leitung 12 dem Wärmetauscher E2 zugeführt. In diesem erfolgt - wie bereits beschrieben - eine Anwärmung dieses Stickstoff- Teilstromes, der anschließend über Leitung 1 der ersten Verdichterstufe V1 zugeführt wird.
Der auf einem höheren Druckniveau entspannte (X1) Stickstoff-Teilstrom wird über die Leitung 15 dem Wärmetauscher E2 zugeführt und in diesem gegen den abzukühlenden und zu verflüssigenden Erdgasstrom angewärmt.
Über Leitung 17 wird der verdampfte Stickstoff-Teilstrom aus dem Wärmetauscher E3 abgezogen und dem Wärmetauscher E2 zugeführt und in ihm angewärmt. Innerhalb des Wärmetauschers E2 oder diesem nachgeschaltet, wird der dem Wärmetauscher E2 über Leitung 17 zugeführte Stickstoff-Teilstrom dem über Leitung 15 zugeführten Stickstoff-Teilstrom zugemischt. Anschließend wird dieser Stickstoff-Reststrom - wie bereits erwähnt - über Leitung 16 dem Stickstoff-Strom in der Leitung 2 zugemischt.
Alternativ zu der anhand der Figur erläuterten Ausführungsform des erfindungsgemäßen Verfahrens zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes kann der dem Wärmetauscher E2 über Leitung 10 zugeführte Stickstoff- Teilstrom auch nur in zwei Teilströme aufgetrennt werden. Bei dieser Verfahrensalternative würde der über Leitung 11 der Entspannungsvorrichtung bzw. -turbine X zugeführte Stickstoff-Teilstrom nach erfolgter Entspannung in zumindest teilweise verflüssigter Form dem Wärmetauscher E3 zugeführt, in diesem gegen den zu unterkühlenden Erdgasstrom C verdampft und anschließend der Zwischendruckstufe der Verdichtereinheit V1/V2 zugeführt werden.
Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes ermöglicht einen gegenüber dem bekannten Stand der Technik einfacheren Betrieb eines Verflüssigungsprozesses mit einem Stickstoff-Kältekreislauf.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen eines Kohlenwasserstoffreichen Stromes, insbesondere eines Erdgas-Stromes, durch indirekten Wärmetausch mit einem Stickstoff-Kältekreislauf, wobei der in dem Stickstoff-Kältekreislauf zirkulierende Stickstoff einer mehrstufigen Verdichtung unterworfen, abgekühlt, in wenigstens zwei Teilströme aufgeteilt und diese auf unterschiedlichen Temperatumiveaus einer kälteleistenden Entspannung unterworfen werden, dadurch gekennzeichnet, dass der auf dem höheren Temperaturniveau entspannte (X') Stickstoff-Teilstrom (15, 16) der mehrstufigen Verdichtung (V1 , V2, ...) auf einem mittleren Druckniveau zugespeist wird und der auf dem kälteren oder kältesten
Temperaturniveau entspannte Stickstoff-Teilstrom (12, 13) nach seiner Entspannung (X, v') zumindest teilweise verflüssigt vorliegt.
2. Verfahren nach Anspruch 1 , wobei der verdichtete Stickstoffstrom in wenigstens drei Teilströme aufgeteilt wird, dadurch gekennzeichnet, dass die Bereitstellung der Spitzenkälte des Verflüssigungsprozesses durch eine kälteleistende Entspannung (v1) eines Stickstoff-Teilstromes (13) auf ein Niederdruckniveau und durch Verdampfen (E3) des teilweise flüssigen Stickstoff-Teilstromes (13, 17) auf einem Zwischendruckniveau erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vorkühlung (E1 ) des zu verflüssigenden Kohlenwasserstoff-reichen Stromes (A) und des in dem Stickstoff-Kältekreislauf zirkulierende Stickstoffes (9) mittels eines Vorkühlkreislaufes (VK) erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Vorkühlkreislauf (VK) als zwei- oder mehrstufiger Reinstoff-Kältekreislauf ausgebildet ist.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass als Kältemittel des Vorkühlkreislaufes leichte paraffinische (Ethan, Propan) oder olefinische (Ethylen, Propylen) Kohlenwasserstoffe oder ein nicht-brennbares Kältemittel, vorzugsweise Kohlendioxid, zur Anwendung kommt.
PCT/EP2007/006578 2006-08-25 2007-07-24 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes WO2008022689A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006039889.0 2006-08-25
DE102006039889A DE102006039889A1 (de) 2006-08-25 2006-08-25 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Publications (2)

Publication Number Publication Date
WO2008022689A2 true WO2008022689A2 (de) 2008-02-28
WO2008022689A3 WO2008022689A3 (de) 2009-02-19

Family

ID=38973319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/006578 WO2008022689A2 (de) 2006-08-25 2007-07-24 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Country Status (2)

Country Link
DE (1) DE102006039889A1 (de)
WO (1) WO2008022689A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496066C2 (ru) * 2008-04-23 2013-10-20 Статойл Аса Способ двойного расширения азота
CN103776238A (zh) * 2012-10-18 2014-05-07 林德股份公司 从合成气分离出甲烷的方法和设备
KR20140093952A (ko) * 2011-10-21 2014-07-29 싱글 뷰이 무어링스 인크. Lng 생산을 위한 다중 질소 팽창 공정

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331740B1 (no) 2008-08-29 2012-03-12 Hamworthy Gas Systems As Fremgangsmate og system for optimalisert LNG produksjon
US8464551B2 (en) * 2008-11-18 2013-06-18 Air Products And Chemicals, Inc. Liquefaction method and system
US10132561B2 (en) * 2009-08-13 2018-11-20 Air Products And Chemicals, Inc. Refrigerant composition control
ITUA20161513A1 (it) 2016-03-09 2017-09-09 Nuovo Pignone Tecnologie Srl Motocompressore - espantore integrato
JP6741565B2 (ja) * 2016-12-08 2020-08-19 川崎重工業株式会社 原料ガス液化装置及びその制御方法
US10788261B2 (en) 2018-04-27 2020-09-29 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
US10866022B2 (en) * 2018-04-27 2020-12-15 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874185A (en) * 1972-12-18 1975-04-01 Linde Ag Process for a more efficient liquefaction of a low-boiling gaseous mixture by closely matching the refrigerant warming curve to the gaseous mixture cooling curve
US3919852A (en) * 1973-04-17 1975-11-18 Petrocarbon Dev Ltd Reliquefaction of boil off gas
US4846862A (en) * 1988-09-06 1989-07-11 Air Products And Chemicals, Inc. Reliquefaction of boil-off from liquefied natural gas
US20050056051A1 (en) * 2003-09-17 2005-03-17 Roberts Mark Julian Hybrid gas liquefaction cycle with multiple expanders
WO2006120127A2 (en) * 2005-05-10 2006-11-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Liquefied natural gas separation process and installation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874185A (en) * 1972-12-18 1975-04-01 Linde Ag Process for a more efficient liquefaction of a low-boiling gaseous mixture by closely matching the refrigerant warming curve to the gaseous mixture cooling curve
US3919852A (en) * 1973-04-17 1975-11-18 Petrocarbon Dev Ltd Reliquefaction of boil off gas
US4846862A (en) * 1988-09-06 1989-07-11 Air Products And Chemicals, Inc. Reliquefaction of boil-off from liquefied natural gas
US20050056051A1 (en) * 2003-09-17 2005-03-17 Roberts Mark Julian Hybrid gas liquefaction cycle with multiple expanders
WO2006120127A2 (en) * 2005-05-10 2006-11-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Liquefied natural gas separation process and installation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VINK K J ET AL: "COMPARISON OF BASELOAD LIQUEFACTION PROCESSES//COMPARISON DES PROCEDES DE LIQUEFACTION DES USINES DE GRANDE CAPACITE" INTERNATIONAL CONFERENCE AND EXHIBITION ON LIQUEFIED NATURAL GAS, XX, XX, Nr. 12TH, 4. Mai 1998 (1998-05-04), Seiten 3.6/1-15, XP009081893 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496066C2 (ru) * 2008-04-23 2013-10-20 Статойл Аса Способ двойного расширения азота
KR20140093952A (ko) * 2011-10-21 2014-07-29 싱글 뷰이 무어링스 인크. Lng 생산을 위한 다중 질소 팽창 공정
JP2015501410A (ja) * 2011-10-21 2015-01-15 シングル ブイ ムーリングス インコーポレイテッド Lng生産のための多窒素膨張プロセス
KR101984337B1 (ko) 2011-10-21 2019-09-03 싱글 뷰이 무어링스 인크. Lng 생산을 위한 다중 질소 팽창 공정
CN103776238A (zh) * 2012-10-18 2014-05-07 林德股份公司 从合成气分离出甲烷的方法和设备

Also Published As

Publication number Publication date
WO2008022689A3 (de) 2009-02-19
DE102006039889A1 (de) 2008-02-28

Similar Documents

Publication Publication Date Title
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE60017951T2 (de) Hybridkreislauf zur Herstellung von flüssigem Erdgas
EP0975923B1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE60016536T2 (de) Gasverflüssigungsverfahren durch partiel Kondensation von gemischtem Kältemittel bei zwischengelagerten Temperaturen
DE19722490C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP1864062A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19937623B4 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102016005632A1 (de) Mischkolonne für Verfahren mit einem Einzelmischkältemittel
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE102005029275A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2003106906A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE102012017653A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
WO2003074955A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2017054929A1 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP2369279A1 (de) Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2005090885A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102016000394A1 (de) Verfahren zum Abkühlen eines Mediums
DE19540142C1 (de) Verfahren zum Verflüssigen oder Teilverflüssigen von unter Druck stehenden Gasen oder Gasgemischen
DE102004036708A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07786304

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07786304

Country of ref document: EP

Kind code of ref document: A2