WO2005111522A1 - Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes - Google Patents

Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes Download PDF

Info

Publication number
WO2005111522A1
WO2005111522A1 PCT/EP2005/005054 EP2005005054W WO2005111522A1 WO 2005111522 A1 WO2005111522 A1 WO 2005111522A1 EP 2005005054 W EP2005005054 W EP 2005005054W WO 2005111522 A1 WO2005111522 A1 WO 2005111522A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant mixture
hydrocarbon
circuit
rich stream
compressors
Prior art date
Application number
PCT/EP2005/005054
Other languages
English (en)
French (fr)
Inventor
Heinz Bauer
Hubert Franke
Rainer Sapper
Marc Schier
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to AU2005243086A priority Critical patent/AU2005243086B2/en
Publication of WO2005111522A1 publication Critical patent/WO2005111522A1/de
Priority to NO20065721A priority patent/NO20065721L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Definitions

  • the invention relates to a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, the liquefaction of the
  • Hydrocarbon-rich flow takes place against a refrigerant mixture circuit cascade consisting of three refrigerant mixture circuits, the first of the three refrigerant mixture circuits for pre-cooling, the second refrigerant mixture circuit for the actual liquefaction and the third refrigerant mixture circuit for subcooling the liquefied hydrocarbon-rich stream, and the refrigerant mixtures serving one or one be subjected to multi-stage compression.
  • the invention relates to a device for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, comprising one consisting of three refrigerant mixture circuits
  • Refrigerant mixture circuit cascade against which the liquefaction of the hydrocarbon-rich stream takes place, the first of the three refrigerant mixture circuits serving for pre-cooling, the second refrigerant mixture circuit serving for the actual liquefaction and the third refrigerant mixture circuit for subcooling the liquefied hydrocarbon-rich stream, and having several single- or multi-stage compressors, which serve to compress the refrigerant mixtures.
  • German Offenlegungsschrift 197 16 415 A generic method and a generic device for liquefying a hydrocarbon-rich stream is known from German Offenlegungsschrift 197 16 415. With the citation of German Offenlegungsschrift 197 16 415, its disclosure content is included in the disclosure content of the present patent application.
  • Natural gas liquefaction plants are either designed as so-called LNG baseload plants - plants for liquefying natural gas to supply natural gas as primary energy - or as so-called peak shaving plants - plants for liquefying natural gas to meet peak demand.
  • LNG baseload plants are usually operated with refrigeration circuits that consist of hydrocarbon mixtures. These mixture cycles are more energy efficient than expander cycles and, with the large liquefaction capacities of the baseload plants, enable relatively low energy consumption.
  • the first mixture circuit is used for pre-cooling
  • the second mixture circuit for liquefaction and the third mixture circuit for subcooling the hydrocarbon-rich stream or natural gas.
  • higher-boiling hydrocarbons are separated between pre-cooling and liquefaction. These are at least those components of the hydrocarbon-rich stream or natural gas to be liquefied that would freeze out in the subsequent cooling - that is to say C 5+ - hydrocarbons and aromatics. Often, those hydrocarbons - in particular propane and butane - which would undesirably increase the calorific value of the liquefied natural gas are also separated off before liquefaction.
  • Raw gas pressure is the temperature level of the separation of these components from the hydrocarbon-rich stream to be liquefied - in Hereinafter referred to as C 3+ separation - set within comparatively narrow limits.
  • the first mixture circuit is now used exclusively for pre-cooling the hydrocarbon-rich stream to be liquefied before this C 3+ separation, it inevitably accounts for a share of the total compressor output of about 40 to 50%, while the remaining compressor output of 60 to 50% distributed to the second and third mixture circuit.
  • German patent application 103 44 030 shows a generic liquefaction process in which the compressors of the refrigerant mixture circuits are driven by three essentially identical drives. Drives - this applies particularly to gas turbines - are only available in discrete power levels. Depending on the process or system size selected, it is therefore often not advisable to use three identical drives. Rather, it would be sufficient if the required drive power could only be provided by two identical or two approximately identical drives instead of three.
  • the object of the present invention is to provide a generic method and a generic device which takes into account the aforementioned problem. To solve this problem, it is proposed on the process side that the compressors are combined to form two compressor trains and that the compressors are driven by two identical or two approximately identical drives.
  • the device according to the invention is characterized in that the compressors are combined to form two compressor trains and the compressors are assigned two identical or approximately identical drives.
  • the drives are preferably designed as gas turbines, electric motors and / or steam turbines.
  • a generator is assigned to the more powerful compressor train and an electric motor is assigned to the less powerful compressor train and the generator is coupled to the electric motor.
  • the excess power generated at the generator can be supplied to the electric motor so that it can support the drive of the less powerful compressor train.
  • the hydrocarbon-rich stream to be liquefied is cooled in the heat exchanger E1 against the two evaporating partial refrigerant mixture streams 4b and 4d of the first mixture circuit 4a to 4e and then fed via line 1a to a separation unit S which is shown only as a black box.
  • At least one partial flow of one of the two partial flows 3b and 3d of the second refrigerant mixture circuit 3a to 3e can be used for the provision of cold in the separation unit S.
  • the choice of which of the two partial flows 3b and / or 3d in turn at least one partial flow is used for this cooling provision is determined by the temperature level (s) required in the separation unit S.
  • the hydrocarbon-rich stream to be liquefied is then fed via line 1c to a second heat exchanger E2 and liquefied therein against the evaporating refrigerant mixture stream 3b of the second refrigeration circuit 3a to 3b.
  • the hydrocarbon-rich stream is fed via line 1d to a third heat exchanger E3 and is subcooled there against the mixed refrigerant stream 2b of the third refrigeration cycle 2a to 2c.
  • the subcooled liquid product is then fed to 1e its further use via line •.
  • the compressors V2, V3, V3 'and V4 of the refrigeration circuits 2a to 2c, 3a to 3f and 4a to 4e are now combined according to the invention into two compressor trains.
  • the first compressor train is formed by the compressor V4 of the pre-cooling circuit and the high-pressure compressor V3 of the liquefaction circuit
  • the second compressor train is formed by the compressor V2 of the supercooling circuit and the low-pressure compressor V3 'of the liquefaction circuit.
  • An equivalent alternative is to be regarded as an embodiment in which the compressors V4 and V3 'form the first compressor train and the compressors V2 and V3 form the second compressor train.
  • the circuit compressor of the liquefaction circuit is "divided" according to the invention into two compressors or compressor trains.
  • a partial flow 3c of the refrigerant mixture of the liquefaction circuit is fed to a low-pressure compressor V3 'and a partial flow 3e of the refrigerant mixture of the liquefaction circuit is fed to a high-pressure compressor V3.
  • the two aforementioned compressors compress the refrigerant mixture flows preferably to the same final pressures.
  • a drive GT1 and GT2 is assigned to each of the two compressor trains, which according to the invention are two identical or two approximately identical drives.
  • Suitable drives are in particular gas turbines, electric motors and / or steam turbines.
  • coolers or heat exchangers connected downstream of the compressors V2, V3, V3 'and V4, in which the refrigerant mixture is cooled against a suitable cooling medium, for example water or air.
  • the refrigerant mixture compressed in the compressor V4 of the first mixture circuit is fed via line 4a to the heat exchanger E1 and, after cooling, is divided into two partial streams 4b and 4d in the latter.
  • the refrigerant mixture in these partial flows 4b and 4d is evaporated after expansion in the valves d and e or expansion devices at different pressure levels in the heat exchanger E1 and then via the line 4c or 4e Compressor V4 upstream of the first stage (partial flow 4c) or at an intermediate pressure level (partial flow 4e).
  • the refrigerant mixture of the second refrigeration circuit 3a to 3f compressed in the compressor V3 is fed to the heat exchangers E1 and E2 via the lines 3f and 3a. and cooled in it.
  • the partial stream 3b of this mixed refrigerant stream which is passed through the heat exchanger E2 is vaporized after the expansion in the valve b in the heat exchanger E2 against process streams to be cooled and then fed via line 3c to the input stage of the compressor V3 '.
  • the partial stream 3d of the refrigerant mixture of the second refrigerant mixture circuit 3a to 3f which is already drawn off after the heat exchanger E1, is expanded in the valve c and then evaporated in the heat exchanger E1 against process streams to be cooled before it flows via line 3e.
  • Compressor V3 is supplied. With this procedure, the aforementioned refrigerant mixture part stream 3d contributes to the pre-cooling of the hydrocarbon-rich stream in the heat exchanger E1.
  • the sub-stream 3d of the refrigerant mixture of the second refrigerant mixture circuit 3a to 3f used for the pre-cooling of the hydrocarbon-rich stream must be evaporated to a pressure which is higher than the evaporation pressure of the refrigerant mixture sub-stream 3b of the second refrigerant mixture circuit 3a to 3f.
  • the distribution of the cooling capacity of the second mixture circuit to the heat exchangers E1 and E2 and thus to the pre-cooling and liquefaction of the hydrocarbon-rich stream to be liquefied can be set almost arbitrarily.

Abstract

Es werden ein Verfahren und eine Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, aufweisend eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade gegen die die Verflüssigung des Kohlenwasserstoff-reichen Stromes erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung (E1), der zweite Kältemittelgemischkreislauf der eigentlichen Verflüssigung (E2) und der dritte Kältemittelgemischkreislauf der Unterkühlung (E3) des verflüssigten Kohlenwasserstoff-reichen Stromes dient, und aufweisend mehrere ein- oder mehrstufige Verdichter, die der Verdichtung der Kältemittelgemische dienen, beschrieben. Erfindungsgemäß werden die Verdichter (V2, V3, V3', V4) zu zwei Verdichtersträngen zusammengefasst und der Antrieb der Verdichter (V2, V3, V3', V4) erfolgt durch zwei identische oder zwei annähernd identische Antriebe (GT1, GT2).

Description

Beschreibung
Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des
Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kaltemittelgemischkreislauf der eigentlichen Verflüssigung und der dritte Kaltemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes dient, und wobei die Kältemittelgemische einer ein- oder mehrstufigen Verdichtung unterworfen werden.
Ferner betrifft die Erfindung eine Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, aufweisend eine aus drei Kältemittelgemischkreisläufen bestehende
Kältemittelgemischkreislaufkaskade gegen die die Verflüssigung des Kohlenwasserstoff-reichen Stromes erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kaltemittelgemischkreislauf der eigentlichen Verflüssigung und der dritte Kaltemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes dient, und aufweisend mehrere ein- oder mehrstufige Verdichter, die der Verdichtung der Kältemittelgemische dienen.
Ein gattungsgemäßes Verfahren sowie eine gattungsgemäße Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes ist aus der deutschen Offenlegungsschrift 197 16 415 bekannt. Mit der Zitierung der deutschen Offenlegungsschrift 197 16 415 sei deren Offenbarungsgehalt in den Offenbarungsgehalt der vorliegenden Patentanmeldung aufgenommen.
Erdgasverflüssigungsanlagen werden entweder als so genannte LNG-Baseload-Plants - also Anlagen zur Verflüssigung von Erdgas zur Versorgung mit Erdgas als Primärenergie - oder als so genannte Peak-Shaving-Plants - also Anlagen zur Verflüssigung von Erdgas zur Deckung des Spitzenbedarfs - ausgelegt. LNG-Baseload-Plants werden im Regelfall mit Kältekreisläufen betrieben, die aus Kohlenwasserstoffgemischen bestehen. Diese Gemischkreisläufe sind energetisch effizienter als Expander-Kreisläufe und ermöglichen bei den großen Verflüssigungsleistungen der Baseload-Plants entsprechend relativ niedrige Energieverbräuche.
Bei gattungsgemäßen Verflüssigungsverfahren dient grundsätzlich der erste Gemischkreislauf der Vorkühlung, der zweite Gemischkreislauf der Verflüssigung und der dritte Gemischkreislauf der Unterkühlung des Kohlenwasserstoff-reichen Stromes bzw. Erdgases.
Zwischen der Vorkühlung und der Verflüssigung findet - sofern erforderlich - die Abtrennung von höhersiedenden Kohlenwasserstoffen statt. Das sind mindestens diejenigen Komponenten des zu verflüssigenden Kohlenwasserstoff-reichen Stromes bzw. Erdgases, die bei der nachfolgenden Abkühlung ausfrieren würden - also C5+- Kohlenwasserstoffe und Aromate. Oftmals werden zudem diejenigen Kohlenwasserstoffe -r gemeint sind hierbei insbesondere Propan und Butan -, die den Heizwert des verflüssigten Erdgases unerwünscht erhöhen würden, vor der Verflüssigung abgetrennt.
Dieses Abtrennen von höhersiedenden Kohlenwasserstoffen geschieht üblicherweise dadurch, dass eine so genannte HHC(Heavy Hydrocarbon)-Kolonne (im englischen Sprachgebrauch 'Scrub Column' genannt), die der Abtrennung der schweren Kohlenwasserstoffe sowie von Benzol aus dem zu verflüssigenden Kohlenwasserstoff- reichen Strom dient, vorgesehen wird. Eine derartige Verfahrensführung ist ebenfalls in der bereits erwähnten deutschen Offenlegungsschrift 197 16 415 beschrieben; siehe bspw. deren Figur 2 sowie die zugehörige Figurenbeschreibung.
Durch die Vorgabe dieses Schnittes zwischen denjenigen Komponenten des zu verflüssigenden Kohlenwasserstoff-reichen Stromes, die schließlich das verflüssigte Produkt darstellen - es sind dies im Wesentlichen Methan und Ethan - und denjenigen Komponenten, die aus den vorgenannten Gründen abgetrennt werden (müssen), wird bei gegebenem Rohgasdruck das Temperaturniveau der Abtrennung dieser Komponenten aus dem zu verflüssigenden Kohlenwasserstoff-reichen Strom - im Folgenden als C3+-Abtrennung bezeichnet - in vergleichsweise engen Grenzen festgelegt.
Wird der erste Gemischkreislauf nunmehr ausschließlich zur Vorkühlung des zu verflüssigenden Kohlenwasserstoff-reichen Stromes vor dieser C3+-Abtrennung verwendet, entfällt auf diesen zwangsläufig ein Anteil an der Gesamtverdichterleistung von etwa 40 bis 50 %, während sich die restliche Verdichterleistung von 60 bis 50 % auf den zweiten sowie den dritten Gemischkreislauf verteilt.
Im Sinne einer wirtschaftlichen Ausnutzung der verfügbaren Verdichter und Antriebe ist es jedoch wünschenswert, dass die (Kreislauf)Verdichter der drei Gemischkreisläufe in etwa die gleiche Antriebsleistung, also jeweils ca. 33,33 % der Gesamtantriebsleistung, erhalten. Dies gilt insbesondere für große Verflüssigungsanlagen mit einer Verflüssigungsleistung größer 5 Millionen Tonnen LNG pro Jahr, da die Zahl der verfügbaren Verdichter und Antriebe für derartige Größenordnungen stark eingeschränkt ist. Durch eine Vereinheitlichung der Antriebe und Verdichter der drei Kältekreisläufe kann die mit erprobten Antrieben bzw. Verdichtern erreichbare Verflüssigungsleistung des Verflüssigungsprozesses maximiert werden. Eine entsprechende Lösung bzw. Verfahrensweise ist in der nicht vorveröffentlichten deutschen Patentanmeldung 103 44 030 beschrieben; mit der Zitierung dieser Patentanmeldung sei deren Offenbarungsgehalt in den Offenbarungsgehait der vorliegenden Patentanmeldung aufgenommen.
Die deutsche Patentanmeldung 103 44 030 zeigt einen gattungsgemäßen Verflüssigungsprozess, bei dem die Verdichter der Kältemittelgemischkreisläufe von drei im Wesentlichen identischen Antrieben angetrieben werden. Antriebe - dies gilt insbesondere für Gasturbinen - sind doch nur in diskreten Leistungsstufen verfügbar. In Abhängigkeit von der gewählten Prozess- bzw. Anlagengröße ist deshalb oftmals eine Verwendung von drei identischen Antrieben nicht zweckmäßig. Vielmehr wäre es ausreichend, wenn die erforderliche Antriebsleistung statt durch drei lediglich durch zwei identische oder zwei annähernd identische Antriebe erbracht werden könnte.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren sowie eine gattungsgemäße Vorrichtung anzugeben, das bzw. die dem vorgenannten Problem Rechnung trägt. Zur Lösung dieser Aufgabe wird verfahrensseitig vorgeschlagen, dass die Verdichter zu zwei Verdichtersträngen zusammengefasst werden und der Antrieb der Verdichter durch zwei identische oder zwei annähernd identische Antriebe erfolgt.
Die erfindungsgemäße Vorrichtung ist dadurch gekennzeichnet, dass die Verdichter zu zwei Verdichtersträngen zusammengefasst sind und den Verdichtern zwei identische oder annähernd identische Antriebe zugeordnet sind.
Unter dem Begriff "annähernd identische Antriebe" seien Antriebe zu verstehen, die sich in ihrer Leistung um nicht mehr als 5 % voneinander unterscheiden.
Das erfindungsgemäße Verfahren sowie die erfindungsgemäße Vorrichtung ermöglichen es nunmehr, die erforderliche Antriebsleistung aller Verdichter durch lediglich zwei identische beziehungsweise annähernd identische Antriebe bereit zu stellen.
Hierbei sind die Antriebe vorzugsweise als Gasturbinen, Elektromotoren und/oder Dampfturbinen ausgebildet.
Die Erfindung weiterbildend wird für den Fall, dass zwischen den beiden Verdichtersträngen ein Leistungsunterschied besteht, vorgeschlagen, dass dem leistungsstärkeren Verdichterstrang ein Generator und dem leistungsschwächeren Verdichterstrang ein Elektromotor zugeordnet sind und der Generator mit dem Elektromotor gekoppelt wird.
Die an dem Generator anfallenden Überschussleistung kann dem Elektromotor zugeführt werden, so dass dieser den Antrieb des leistungsschwächeren Verdichterstranges unterstützen kann.
Das erfindungsgemäße Verfahren, die erfindungsgemäße Vorrichtung sowie weitere Ausgestaltungen des- bzw. derselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert. Bei der anhand der Figur beschriebenen Verfahrensweise erfolgt die Abkühlung und Verflüssigung des Kohlenwasserstoff-reichen Stromes, der über Leitung 1 dem Wärmetauscher E1 zugeführt wird, gegen eine Kältemittelgemischkreislaufkaskade, bestehend aus drei Kältemittelgemischkreisläufen. Diese weisen im Regelfall unterschiedliche Zusammensetzungen auf, wie sie bspw. in der vorerwähnten deutschen Offenlegungsschrift 197 16 415 beschrieben sind.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom wird im Wärmetauscher E1 gegen die beiden verdampfenden Kältemittelgemischteilströme 4b und 4d des ersten Gemischkreislaufes 4a bis 4e abgekühlt und anschließend über Leitung 1a einer lediglich als Black-Box dargestellten Trenneinheit S zugeführt.
In dieser Trenneinheit S erfolgt die vorbeschriebene C3+-Abtrennung, wobei die aus dem zu verflüssigenden Kohlenwasserstoff-reichen Strom abgetrennten Komponenten über die Leitung 1b aus der Trenneinheit S abgezogen werden.
Entsprechend einer vorteilhaften, in der Figur nicht dargestellten Ausgestaltung des erfindungsgemäßen Verfahrens kann zumindest ein Teilstrom eines der beiden Teilströme 3b und 3d des zweiten Kältemittelgemischkreislaufes 3a bis 3e, auf den im Folgenden noch näher eingegangen werden wird, für die Kältebereitstellung in der Abtrenneinheit S verwendet wird. Hierbei wird die Wahl, von welchem der beiden Teilströme 3b und/oder 3d wiederum zumindest ein Teilstrom für diese Kältebereitstellung herangezogen wird, von dem in der Abtrenneinheit S erforderlichen Temperaturniveau(s) bestimmt werden.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom wird sodann über Leitung 1c einem zweiten Wärmetauscher E2 zugeführt und in diesem gegen den verdampfenden Kältemittelgemischteiistrom 3b des zweiten Kältekreislaufes 3a bis 3b verflüssigt.
Nach erfolgter Verflüssigung wird der Kohlenwasserstoff-reiche Strom über Leitung 1d einem dritten Wärmetauscher E3 zugeführt und in diesem gegen den Kältemittelgemischstrom 2b des dritten Kältekreislaufes 2a bis 2c unterkühlt. Das unterkühlte Flüssigprodukt wird anschließend über Leitung 1e seiner weiteren Verwendung zugeführt. Wie aus der Figur ersichtlich, sind die Verdichter V2, V3, V3' sowie V4 der Kältekreisläufe 2a bis 2c, 3a bis 3f und 4a bis 4e erfindungsgemäß nunmehr zu zwei Verdichtersträngen zusammengefasst. Hierbei wird der erste Verdichterstrang von dem Verdichter V4 des Vorkühlkreislaufes sowie dem Hochdruck- Verdichter V3 des Verflüssigungskreislaufes gebildet, während der zweite Verdichterstrang von dem Verdichter V2 des Unterkühlungskreislaufes sowie dem Niederdruck-Verdichter V3' des Verflüssigungskreislaufes gebildet ist. Als gleichwertige Alternative ist eine Ausführung anzusehen, bei der die Verdichter V4 und V3' den ersten Verdichterstrang und die Verdichter V2 und V3 den zweiten Verdichterstrang bilden.
Der Kreislaufverdichter des Verflüssigungskreislaufes wird erfindungsgemäß auf zwei Verdichter bzw. Verdichterstränge "aufgeteilt". Dies hat zur Folge, dass - wie nachfolgend noch erläutert wird - ein Teilstrom 3c des Kältemittelgemisches des Verflüssigungskreislaufes einem Niederdruck-Verdichter V3' und ein Teilstrom 3e des Kältemittelgemisches des Verflüssigungskreislaufes einem Hochdruck- Verdichter V3 zugeführt werden. Hierbei verdichten die beiden vorgenannten Verdichter die Kältemittelgemischströme vorzugsweise auf gleiche Enddrücke.
Beiden Verdichtersträngen ist jeweils ein Antrieb GT1 und GT2 zugeordnet, wobei es sich erfindungsgemäß um zwei identische oder zwei annähernd identische Antriebe handelt.
Geeignete Antriebe sind insbesondere Gasturbinen, Elektromotoren und/oder Dampfturbinen.
In der Figur nicht dargestellt sind die den Verdichtern V2, V3, V3' bzw. V4 nachgeschalteten Kühler bzw. Wärmetauscher, in denen das Kältemittelgemisch gegen ein geeignetes Kühlmedium - bspw. Wasser oder Luft - abgekühlt wird.
Das im Verdichter V4 verdichtete Kältemittelgemisch des ersten Gemischkreislaufes wird über die Leitung 4a dem Wärmetauscher E1 zugeführt und in diesem nach erfolgter Abkühlung in zwei Teilströme 4b und 4d aufgeteilt. Das Kältemittelgemisch in diesen Teilströmen 4b und 4d wird nach erfolgter Entspannung in den Ventilen d und e bzw. Entspannungsvorrichtungen auf unterschiedlichen Druckniveaus im Wärmetauscher E1 verdampft und anschließend über die Leitung 4c bzw. 4e dem Verdichter V4 vor der ersten Stufe (Teiistrom 4c) bzw. auf einem Zwischendruckniveau (Teilstrom 4e) zugeführt.
Das im Verdichter V3 verdichtete Kältemittelgemisch des zweiten Kältekreislaufes 3a bis 3f wird über die Leitungen 3f und 3a den Wärmetauschern E1 und E2 zugeführt . und in diesen abgekühlt. Derjenige Teilstrom 3b dieses Kältemittelgemischstromes, der durch den Wärmetauscher E2 geführt wird, wird nach erfolgter Entspannung im Ventil b im Wärmetauscher E2 gegen abzukühlende Verfahrensströme verdampft und anschließend über Leitung 3c der Eingangsstufe des Verdichters V3' zugeführt.
Derjenige Teilstrom 3d des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes 3a bis 3f, der bereits nach dem Wärmetauscher E1 abgezogen wird, wird im Ventil c entspannt und anschließend im Wärmetauscher E1 gegen abzukühlende Verfahrensströme verdampft, bevor er über Leitung 3e dem . Verdichter V3 zugeführt wird. Mit dieser Verfahrensführung trägt der erwähnte Kältemittelgemischteiistrom 3d der Vorkühlung des Kohlenwasserstoff-reichen Stromes im Wärmetauscher E1 bei.
Damit dies erreicht werden kann, muss der für die Vorkühlung des Kohlenwasserstoff- reichen Stromes verwendete Teilstrom 3d des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes 3a bis 3f auf einem Druck, der höher ist als der Verdampfungsdruck des Kältemittelgemischteilstromes 3b des zweiten Kältemittelgemischkreislaufes 3a bis 3f, verdampft werden. Durch die Wahl des Zwischendruckes, auf dem der Kältemittelgemischteiistrom 3e verdampft und dem Verdichter V3 zugeführt wird, und durch die Regelung der Mengenverteilung der beiden Kältemittelgemischteilströme 3b und 3d kann die Aufteilung der Kälteleistung des zweiten Gemischkreislaufes auf die Wärmetauscher E1 und E2 und damit auf die Vorkühlung und Verflüssigung des zu verflüssigenden Kohlenwasserstoff-reichen Stromes nahezu beliebig eingestellt werden.
Besteht zwischen den beiden Verdichtersträngen ein Leistungsunterschied, so kann, ' gemäß einer vorteilhaften Ausgestaltung der Erfindung, - wie dies in der Figur auch dargestellt ist - dem leistungsstärkeren Verdichterstrang ein Generator G und dem leistungsschwächeren Verdichterstrang ein Elektromotor M zugeordnet werden. Der mittels des Generators G erzeugte Strom treibt den Elektromotor M an, der dadurch den leistungsschwächeren Verdichterstrang bzw. dessen Antrieb GT2 unterstützt.
Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, schafft somit einen
Verflüssigungsprozess, bei dem die Verdichterstränge mit lediglich zwei identischen oder annähernd identischen Antrieben gekoppelt sind. Dadurch kann in einer Vielzahl von Anwendungsfällen eine optimale Anpassung an erhältliche Antriebe realisiert werden, woraus eine Reduzierung der erforderlichen Investitions- und Betriebskosten resultiert.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kaltemittelgemischkreislauf der eigentlichen Verflüssigung und der dritte Kaltemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoffreichen Stromes dient, und wobei die Kältemittelgemische einer ein- oder mehrstufigen Verdichtung unterworfen werden, dadurch gekennzeichnet, dass die Verdichter (V2, V3, V3', V4) zu zwei Verdichtersträngen zusammengefasst werden und der Antrieb der Verdichter (V2, V3, V3', V4) durch zwei identische oder zwei annähernd identische Antriebe (GT1 , GT2) erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Antriebe (GT1 , GT2) als Gasturbinen, Elektromotoren und/oder Dampfturbinen ausgebildet sind.
3. Verfahren nach Anspruch 1 oder 2, wobei zwischen den beiden Verdichtersträngen ein Leistungsunterschied besteht, dadurch gekennzeichnet, dass dem leistungsstärkeren Verdichterstrang ein Generator (G) und dem leistungsschwächeren Verdichterstrang ein Elektromotor (M) zugeordnet sind und der Generator (G) mit dem Elektromotor (M) gekoppelt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest ein Teilstrom (3d) des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes (3a - 3f) für die Vorkühlung des Kohlenwasserstoff- reichen Stromes (1 - 1e) verwendet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der für die Vorkühlung des Kohlenwasserstoff-reichen Stromes (1 , 1a, 1c - 1e) verwendete Teilstrom (3d) des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes (3a - 3f) auf einem Druck, der höher ist als der Verdampfungsdruck des restlichen Teilstromes (3b) des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes (3a - 3f), verdampft und dem Verdichter (V3) des zweiten Kältemittelgemischkreislaufes (3a - 3f) auf einem Zwischendruckniveau zugeführt wird.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Mengen und/oder Verdampfungsdrücke der beiden Teilströme (3b, 3d) des zweiten Käitemittelgemischkreislaufes (3a - 3f) veränderbar sind.
7. Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, aufweisend eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade gegen die die Verflüssigung des Kohlenwasserstoff-reichen Stromes erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kaltemittelgemischkreislauf der eigentlichen Verflüssigung und der dritte Kaltemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoffreichen Stromes dient, und aufweisend mehrere ein- oder mehrstufige Verdichter, die der Verdichtung der Kältemittelgemische dienen, dadurch gekennzeichnet, dass die Verdichter (V2, V3, V3', V4) zu zwei Verdichtersträngen zusammengefasst sind und den Verdichtern (V2, V3, V3', V4) zwei identische oder annähernd identische Antriebe (GT1, GT2) zugeordnet sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Antriebe (GT1 , GT2) Gasturbinen, Elektromotoren und/oder Dampfturbinen sind.
9. Vorrichtung nach Anspruch 7 oder 8, bei der zwischen den beiden Verdichtersträngen ein Leistungsunterschied besteht, dadurch gekennzeichnet, dass dem leistungsstärkeren Verdichterstrang ein Generator (G) und dem leistungsschwächeren Verdichterstrang ein Elektromotor (M) zugeordnet sind und der Generator (G) mit dem Elektromotor (M) gekoppelt ist
PCT/EP2005/005054 2004-05-13 2005-05-10 Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes WO2005111522A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2005243086A AU2005243086B2 (en) 2004-05-13 2005-05-10 Method and device for liquefying a hydrocarbon-enriched flow
NO20065721A NO20065721L (no) 2004-05-13 2006-12-12 Fremgangsmate og innretning for flytendegjoring av en hydrokarbonrik stromning.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410023814 DE102004023814A1 (de) 2004-05-13 2004-05-13 Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102004023814.6 2004-05-13

Publications (1)

Publication Number Publication Date
WO2005111522A1 true WO2005111522A1 (de) 2005-11-24

Family

ID=34969194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005054 WO2005111522A1 (de) 2004-05-13 2005-05-10 Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes

Country Status (5)

Country Link
AU (1) AU2005243086B2 (de)
DE (1) DE102004023814A1 (de)
NO (1) NO20065721L (de)
RU (1) RU2374576C2 (de)
WO (1) WO2005111522A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003628A1 (en) * 2014-07-03 2016-01-07 Uop Llc Methods and apparatuses for liquefying hydrocarbon streams

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012008961A1 (de) * 2012-05-03 2013-11-07 Linde Aktiengesellschaft Verfahren zum Rückverflüssigen einer Methan-reichen Fraktion
US10935312B2 (en) * 2018-08-02 2021-03-02 Air Products And Chemicals, Inc. Balancing power in split mixed refrigerant liquefaction system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521060A1 (de) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Verfahren zum kuehlen und verfluessigen von gasen
US4566885A (en) * 1983-11-18 1986-01-28 Shell Oil Company Gas liquefaction process
US5611216A (en) * 1995-12-20 1997-03-18 Low; William R. Method of load distribution in a cascaded refrigeration process
US5689141A (en) * 1995-02-14 1997-11-18 Chiyoda Corporation Compressor drive system for a natural gas liquefaction plant having an electric motor generator to feed excess power to the main power source
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
WO2003106906A1 (de) * 2002-06-14 2003-12-24 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
WO2005028975A2 (en) * 2003-09-23 2005-03-31 Statoil Asa Natural gas liquefaction process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566885A (en) * 1983-11-18 1986-01-28 Shell Oil Company Gas liquefaction process
DE3521060A1 (de) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Verfahren zum kuehlen und verfluessigen von gasen
US5689141A (en) * 1995-02-14 1997-11-18 Chiyoda Corporation Compressor drive system for a natural gas liquefaction plant having an electric motor generator to feed excess power to the main power source
US5611216A (en) * 1995-12-20 1997-03-18 Low; William R. Method of load distribution in a cascaded refrigeration process
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
WO2003106906A1 (de) * 2002-06-14 2003-12-24 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
WO2005028975A2 (en) * 2003-09-23 2005-03-31 Statoil Asa Natural gas liquefaction process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COLLINS C ET AL: "LIQUEFACTION PLANT DESIGN IN THE 1990S", HYDROCARBON PROCESSING, GULF PUBLISHING CO. HOUSTON, US, vol. 74, no. 4, 1 April 1995 (1995-04-01), pages 67 - 70,72,74, XP000498156, ISSN: 0018-8190 *
DR.T.SHUKRI: "LNG Technology Selection", HYDROCARBON ENGINEERING, February 2004 (2004-02-01), XP009051864 *
PEREZ V ET AL: "THE 4.5 MMTPA LNG TRAIN-A COST EFFECTIVE DESIGN", INTERNATIONAL CONFERENCE AND EXHIBITION ON LIQUEFIED NATURAL GAS, 4 May 1998 (1998-05-04), pages 1 - 15, XP001212640 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003628A1 (en) * 2014-07-03 2016-01-07 Uop Llc Methods and apparatuses for liquefying hydrocarbon streams

Also Published As

Publication number Publication date
DE102004023814A1 (de) 2005-12-01
RU2006143841A (ru) 2008-06-20
RU2374576C2 (ru) 2009-11-27
AU2005243086B2 (en) 2010-09-09
AU2005243086A1 (en) 2005-11-24
NO20065721L (no) 2006-12-12

Similar Documents

Publication Publication Date Title
WO2006094675A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19938216B4 (de) Verflüssigungsverfahren
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2006136269A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2006050913A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2003106906A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE10209799A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102009004109A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP2369279A1 (de) Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO1999058917A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19540142C1 (de) Verfahren zum Verflüssigen oder Teilverflüssigen von unter Druck stehenden Gasen oder Gasgemischen
DE102016000394A1 (de) Verfahren zum Abkühlen eines Mediums
DE19707475A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2005090885A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE10355935A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102004036708A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005243086

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005243086

Country of ref document: AU

Date of ref document: 20050510

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005243086

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006143841

Country of ref document: RU

122 Ep: pct application non-entry in european phase