WO2006050913A1 - Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes - Google Patents

Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes Download PDF

Info

Publication number
WO2006050913A1
WO2006050913A1 PCT/EP2005/011948 EP2005011948W WO2006050913A1 WO 2006050913 A1 WO2006050913 A1 WO 2006050913A1 EP 2005011948 W EP2005011948 W EP 2005011948W WO 2006050913 A1 WO2006050913 A1 WO 2006050913A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
hydrocarbon
compressors
refrigerant
liquefaction
Prior art date
Application number
PCT/EP2005/011948
Other languages
English (en)
French (fr)
Inventor
Heinz Bauer
Martin Gwinner
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to AU2005303932A priority Critical patent/AU2005303932B2/en
Publication of WO2006050913A1 publication Critical patent/WO2006050913A1/de
Priority to NO20072961A priority patent/NO20072961L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Definitions

  • the invention relates to a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, wherein the liquefaction of the
  • Hydrocarbon-rich stream is against a consisting of three mixed refrigerant circuits refrigerant mixture cycle cascade, wherein the first of the three refrigerant mixture precooling, the second mixed refrigerant cycle of the liquefaction and the third refrigerant mixture cycle of the subcooling of the liquefied hydrocarbon-rich stream is used.
  • first mixed refrigerant cycle 1 always means a carbon dioxide refrigerant circuit.
  • German Patent Application 197 16 415 A generic method for liquefying a hydrocarbon-rich stream is known from German Patent Application 197 16 415. With the citation of German Patent Application 197 16 415 whose disclosure content is included in the disclosure of the present patent application.
  • Natural gas liquefaction plants are designed either as so-called LNG baseload plants, ie plants for the liquefaction of natural gas to supply natural gas as primary energy, or as peak shaving plants, ie plants for the liquefaction of natural gas to cover the peak demand.
  • LNG baseload plants are operated with refrigeration circuits consisting of hydrocarbon mixtures. These mixture cycles are more energy efficient than expander circuits and allow for the large liquefaction of baseload plants accordingly relatively low energy consumption.
  • liquefaction method basically serves the first ' mixture cycle of precooling, the second mixture circuit of the liquefaction and the third mixture cycle of supercooling of the hydrocarbon-rich stream or natural gas. Between the pre-cooling and the liquefaction takes place - if necessary - the separation of higher-boiling hydrocarbons instead. These are at least those components of the hydrocarbon-rich stream or natural gas to be liquefied which would freeze out on subsequent cooling - ie C 5 + hydrocarbons and aromatics. Often, in addition, those hydrocarbons, meaning propane and butane in particular, which would undesirably increase the calorific value of the liquefied natural gas, are separated off prior to liquefaction.
  • compressor drives and in particular gas turbines are only available in discrete stages.
  • gas turbines are only available in discrete stages.
  • the use of three substantially identical or identical drives is often not appropriate.
  • the process procedure according to the invention is large capacity advantage, in particular for single-stranded liquefaction plants.
  • the inventive method for liquefying a hydrocarbon-rich stream further forming is proposed that the compressors of the first and second refrigerant mixture cycle and the compressor of the third
  • Refrigerant mixture cycle can be driven by means of two substantially identical and / or equal power drives.
  • This embodiment of the method according to the invention makes sense, in particular, when compressor drives are available that account for 50% of the required
  • the hydrocarbon-rich stream to be liquefied is cooled in the heat exchanger E1 against the two evaporating refrigerant mixture partial streams 4b and 4d of the first mixture circuit 4a to 4e and the evaporating refrigerant partial stream 3d of the second mixture circuit 3a to 3e and then via line 1a a separation unit shown only as a black box S supplied.
  • the partial stream drawn off via the lines 4d and 4e is dispensed with. Furthermore, the compressor V4 in this case, no side feed - as shown in the figure - on.
  • the above-described C 3+ separation takes place, wherein the components separated from the hydrocarbon-rich stream to be liquefied are withdrawn from the separation unit S via the line 1 b.
  • At least a partial flow of one of the two partial flows 3b and 3d of the second refrigerant mixture cycle 3a to 3e will normally be used for the provision of refrigeration in the separation unit S.
  • the choice of which of the two Partial flows 3b and / or 3d, in turn, at least a partial flow is used for this refrigeration provision are determined by the required in the separation unit S temperature level (s).
  • the hydrocarbon-rich stream to be liquefied is then fed via line 1c to a second heat exchanger E2 and liquefied therein against the evaporating refrigerant mixture substream 3b of the second refrigeration cycle 3a to 3b.
  • the supercooled liquid product is then fed via line 1e to its further use and / or (intermediate) storage.
  • the subcooling refrigeration cycle 2a to 2c now according to the invention two compressors V2 and V2 1 connected in series.
  • the pre-cooling and the liquefaction refrigeration cycle have only one compressor V4 and V3 respectively.
  • the compressors V2, V2 ⁇ V3 and V4 used are identical or identical in terms of their performance according to the invention
  • each compressor V2, V2 ', V3 and V4 can be provided by an identical or substantially identical drive A2, A2', A3 and A4. ' .
  • each must be 'compressors V2, V2 1, V3 and V4 and compressor drive A2, A2 1, A3 and A4 25%, to provide at least 23-27% of the total power.
  • the drives A2, A2 ⁇ A3 and A4 for the compressors V2, V2 ', V3 and V4 are preferably gas, steam turbines and / or electric motors.
  • compressors V2, V2 1 , V3 and V4 downstream cooler or heat exchangers in which the refrigerant mixture against a cooling medium - eg. Water - cooled and in the case of the first refrigerant (mixture) circuit 4a to 4e is condensed.
  • the compressed in the compressor V4 refrigerant mixture of the first mixture cycle is supplied via the line 4a to the heat exchanger E1 and divided into this after cooling in two partial streams 4b and 4d.
  • the refrigerant mixture in these partial streams 4b and 4d is evaporated after relaxation in the valves d and e or investigationssvprraumen at different pressure levels in the heat exchanger E1 and then via the line 4c and 4e the compressor V4 before the first stage (part stream 4c) or supplied at an intermediate pressure level (partial flow 4e).
  • the compressed in the compressor V3 refrigerant mixture of the second refrigeration circuit 3a to 3e is passed through line 3a through the heat exchangers E1 and E2 and cooled in this.
  • the partial stream 3b of this mixed refrigerant stream, which is passed through the heat exchanger E2, is vaporized after relaxation in the valve b in the heat exchanger E2 against the process streams to be cooled and then fed via line 3c to the input stage of the compressor V3.
  • a partial stream 3d of the refrigerant mixture of the second mixed refrigerant cycle 3a to 3e is withdrawn after the heat exchanger E1, relaxed in the valve c and then evaporated in the heat exchanger E1 against cooled process streams before this refrigerant mixture partial stream is fed via line 3e at an intermediate pressure level to the cycle compressor V3.
  • the mentioned mixed refrigerant partial stream 3d contributes to the precooling of the hydrocarbon-rich stream in the heat exchanger E1.
  • the partial flow 3d of the refrigerant mixture of the second mixed refrigerant cycle 3a to 3e used for the precooling of the hydrocarbon rich stream must be evaporated to a pressure higher than the evaporating pressure of the mixed refrigerant partial stream 3b of the second mixed refrigerant cycle 3a to 3e.
  • the distribution of the cooling capacity of the second mixture cycle to the heat exchangers E1 and E2 and thus the precooling and liquefaction of the hydrocarbon-rich stream to be liquefied can be set almost arbitrarily.
  • the inventive method for further liquefying a hydrocarbon-rich stream is proposed that the compressors V4 and V3 of the first and second refrigerant mixture cycle and the compressor V2 and V2 1 of the third refrigerant mixture cycle are driven by two substantially identical or power-driven drives.
  • This embodiment of the method according to the invention is particularly advantageous if the total output of the compressors V2, V2 ', V3 and V4 can be provided by two sufficiently powerful drives. Plant availability is typically higher when the number of drives required to operate is minimized, which is the case if only two drives are used instead of four.
  • the inventive method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream thus enabling even more economical utilization of available compressors and drives than is possible in the known liquefaction processes.
  • large, single-stream liquefaction plants with a liquefaction capacity greater than 5 million tonnes LNG per year benefit from the procedure according to the invention.

Abstract

Es wird ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des Kohlenwasserstoff­reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kältemittelgemischkreislauf der Verflüssigung und der dritte Kältemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes dient, beschreiben. Erfindungsgemäß erfolgt die Verdichtung des Kältemittelgemisches (2c) des dritten Kältemittelgemischkreislaufes mittels zweier hinter einander geschalteter und im Wesentlichen leistungsgleicher Verdichter (V2, V2') und die Verdichtung des Kältemittelgemisches (3c, 3e, 4c, 4e) des ersten und des zweiten Kältemittelgemischkreislaufes jeweils mittels eines zu den Verdichtern (V2, V2' des dritten Kältemittelgemischkreislaufes im Wesentlichen leistungsgleichen Verdichters (V4, V3). Hierbei werden die Verdichter (V4, V3) des ersten und zweiten Kältemittelgemisch kreislaufes und die Verdichter (V2, V2') des dritten Kältemittelgemischkreislauf es vorzugsweise mittels zweier im Wesentlichen identischer und/oder leistungsgle icher Antriebe angetrieben.

Description

Beschreibung
Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des
Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kältemittelgemischkreislauf der Verflüssigung und der dritte Kältemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes dient.
Nachfolgend sei unter dem Begriff "erster Kältemittelgemischkreislauf1 immer auch ein Kohlendioxid-Kältemittelkreislauf zu verstehen.
Ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes ist aus der deutschen Offenlegungsschrift 197 16 415 bekannt. Mit der Zitierung der deutschen Offenlegungsschrift 197 16 415 sei deren Offenbarungsgehalt in den Offenbarungsgehalt der vorliegenden Patentanmeldung aufgenommen.
Erdgasverflüssigungsanlagen werden entweder als so genannte LNG-Baseload-Plants - also Anlagen zur Verflüssigung von Erdgas zur Versorgung mit Erdgas als Primärenergie - oder als so genannte Peak-Shaving-Plants - also Anlagen zur Verflüssigung von Erdgas zur Deckung des Spitzenbedarfs - ausgelegt.
LNG-Baseload-Plants werden im Regelfall mit Kältekreisläufen betrieben, die aus Kohlenwasserstoffgemischen bestehen. Diese Gemischkreisläufe sind energetisch effizienter als Expander-Kreisläufe und ermöglichen bei den großen Verflüssigungsleistungen der Baseload-Plants entsprechend relativ niedrige Energieverbräuche.
Bei gattungsgemäßen Verflüssigungsverfahren dient grundsätzlich der erste ' Gemischkreislauf der Vorkühlung, der zweite Gemischkreislauf der Verflüssigung und der dritte Gemischkreislauf der Unterkühlung des Kohlenwasserstoff-reichen Stromes bzw. Erdgases. Zwischen der Vorkühlung und der Verflüssigung findet - sofern erforderlich - die Abtrennung von höhersiedenden Kohlenwasserstoffen statt. Das sind mindestens diejenigen Komponenten des zu verflüssigenden Kohlenwasserstoff-reichen Stromes bzw. Erdgases, die bei der nachfolgenden Abkühlung ausfrieren würden - also C5+- Kohlenwasserstoffe und Aromate. Oftmals werden zudem diejenigen Kohlenwasserstoffe - gemeint sind hierbei insbesondere Propan und Butan -, die den Heizwert des verflüssigten Erdgases unerwünscht erhöhen würden, vor der Verflüssigung abgetrennt.
Aus der nicht vorveröffentlichten deutschen Patentanmeldung 103 44 030 ist ebenfalls ein gattungsgemäßes Verflüssigungsverfahren bekannt; bei diesem wird zumindest ein Teilstrom des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes für die Vorkühlung des Kohlenwasserstoff-reichen Stromes verwendet. Das in der deutschen Patentanmeldung 103 44 030 beschriebene Verflüssigungsverfahren ermöglicht eine wirtschaftlichere Ausnutzung der verfügbaren Verdichter und Antriebe, da die (Kreislauf)Verdichter der drei Gemischkreisläufe in etwa die gleiche Antriebsleistung, also jeweils ca. 33,33 % der Gesamtantriebsleistung, erhalten. Somit können insbesondere große Verflüssigungsanlagen mit einer Verflüssigungsleistung größer 5 Millionen Tonnen LNG pro Jahr wirtschaftlicher betrieben werden, da durch eine
Vereinheitlichung der Antriebe und Verdichter der drei Kältekreisläufe die mit erprobten Antrieben bzw. Verdichtern erreichbare Verflüssigungsleistung des Verflüssigungsprozesses maximiert werden kann.
Grundsätzlich gilt, dass Verdichterantriebe und hierbei insbesondere Gasturbinen nur in diskreten Stufen verfügbar sind. Für eine beabsichtigte Anlagengröße bzw. Verflüssigungsleistung ist daher die Verwendung von drei im Wesentlichen identischen bzw. identischen Antrieben oftmals nicht passend.
Insbesondere bei kühlen Umgebungsbedingungen - gemeint sind Bedingungen, bei denen die Luft bzw. das Kühlwasser unter einer Temperatur von weniger als 15 bis 20 CC vorliegen - reduziert sich der Anteil des für die Vorkühlung erforderlichen Energiebedarfs soweit, dass eine wie in der vorgenannten deutschen Patentanmeldung 103 44 030 beschriebene Verfahrensführung als nicht mehr optimal angesehen werden kann. Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren anzugeben, das auch unter den vorgenannten Bedingungen eine im Hinblick auf den erforderlichen Energiebedarf optimierte Verfahrensführung ermöglicht.
Zur Lösung dieser Aufgabe wird vorgeschlagen, dass die Verdichtung des Kältemittelgemisches des dritten Kältemittelgemisch kreislaufes mittels zweier im Wesentlichen leistungsgleicher Verdichter und die Verdichtung des Kältemittelgemisches des ersten und des zweiten Kältemittelgemischkreislaufes jeweils mittels eines zu den Verdichtern des dritten Kältemittelgemischkreislaufes im Wesentlichen leistungsgleichen Verdichters erfolgt.
Mittels der erfindungsgemäßen Verfahrensweise wird nunmehr erreicht, dass die Verdichter- und damit Antriebesleistungen dergestalt aufgeteilt sind, dass -weniger Kälteleistung für die Vorkühlung des zu verflüssigenden Kohlenwasserstoff-reichen bzw. Erdgas-Stromes zur Verfügung steht. Die erforderliche Gesamtantriebsleistung der drei Kältemittelgemischkreisläufe kann nunmehr auf vier Verdichterantriebe verteilt werden.
' Die erfindungsgemäße Verfahrensführung ist insbesondere für einsträngige Verflüssigungsanlagen großer Kapazität von Vorteil.
Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes weiterbildend wird vorgeschlagen, dass die Verdichter des ersten und zweiten Kältemittelgemischkreislaufes und die Verdichter des dritten
Kältemittelgemischkreislaufes mittels zweier im Wesentlichen identischer und/oder leistungsgleicher Antriebe angetrieben werden.
Diese Ausgestaltung des erfindungsgemäßen Verfahrens macht insbesondere dann Sinn, wenn Verdichterantriebe zur Verfügung stehen, die 50 % der erforderlichen
Gesamtleistung abgeben können. In diesem Fall lässt sich ein Zusammenfassen der Verdichter des Vorkühl- sowie Verflüssigungskreislaufes und der Verdichter des Unterkühlungskreislaufes zu zwei Antriebssträngen gleicher bzw. im Wesentlichen gleicher Leistung realisieren. Unter den verwendeten Begriffsfolgen "im Wesentlichen leistungsgleiche Verdichter" bzw. "im Wesentlichen identische und/oder leistungsgleiche Antriebe" seien Verdichter bzw. Antriebe zu verstehen, deren Leistungen sich um nicht mehr als +/- 2 % voneinander unterscheiden.
Das erfindungsgemäße Verfahren sowie weitere Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.
Bei der anhand der Figur beschriebenen Verfahrensweise erfolgt die Abkühlung und Verflüssigung des Kohlenwasserstoff-reichen Stromes, der über Leitung 1 dem Wärmetauscher E1 zugeführt wird, gegen eine Kältemittelgemischkreislaufkaskade, bestehend aus drei Kältemittelgemischkreisläufen. Diese weisen im Regelfall unterschiedliche Zusammensetzungen auf, wie sie bspw. in der vorerwähnten deutschen Offenlegungsschrift 197 16 415 beschrieben sind.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom wird im Wärmetauscher E1 gegen die beiden verdampfenden Kältemittelgemischteilströme 4b und 4d des ersten Gemischkreislaufes 4a bis 4e und den verdampfenden Kältemittelteilstrom 3d des zweiten Gemischkreislaufes 3a bis 3e abgekühlt und anschließend über Leitung 1a einer lediglich als Black-Box dargestellten Trenneinheit S zugeführt.
Sofern alternativ zu dem ersten Kältemittelgemischkreislauf ein (Kohlendioxid)- Kältemittelkreislauf zur Anwendung kommt, entfällt der über die Leitungen 4d und 4e abgezogene Teilstrom. Des Weiteren weist der Verdichter V4 in diesem Falle keine Seiteneinspeisung - wie sie in der Figur dargestellt ist - auf.
In der Trenneinheit S erfolgt die vorbeschriebene C3+-Abtrennung, wobei die aus dem zu verflüssigenden Kohlenwasserstoff-reichen Strom abgetrennten Komponenten über die Leitung 1b aus der Trenneinheit S abgezogen werden.
Zumindest ein Teilstrom eines der beiden Teilströme 3b und 3d des zweiten Kältemittelgemischkreislaufes 3a bis 3e, auf den im Folgenden noch näher eingegangen werden wird, wird im Regelfall für die Kältebereitstellung in der Abtrenneinheit S verwendet werden. Hierbei wird die Wahl, von welchem der beiden Teilströme 3b und/oder 3d wiederum zumindest ein Teilstrom für diese Kältebereitstellung herangezogen wird, von dem in der Abtrenneinheit S erforderlichen Temperatumiveau(s) bestimmt werden.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom wird sodann über Leitung 1c einem zweiten Wärmetauscher E2 zugeführt und in diesem gegen den verdampfenden Kältemittelgemischteilstrom 3b des zweiten Kältekreislaufes 3a bis 3b verflüssigt.
Nach erfolgter Verflüssigung wird der Kohlenwasserstoff-reiche Strom über Leitung 1 d einem dritten Wärmetauscher E3'zugeführt und in diesem gegen den
Kältemittelgemischstrom 2b des dritten Kältekreislaufes 2a bis 2c unterkühlt. Das unterkühlte Flüssigprodukt wird anschließend über Leitung 1e seiner weiteren Verwendung und/oder (Zwischen)Speicherung zugeführt.
Im Unterschied zu dem in der vorgenannten deutschen Patentanmeldung 103 44 030 beschriebenen Verfahren weist der Unterkühlungs-Kältekreislauf 2a bis 2c nunmehr erfindungsgemäß zwei hintereinander geschaltete Verdichter V2 und V21 auf. Der Vorkühlungs- sowie der Verflüssigungs-Kältekreislauf weisen lediglich jeweils einen Verdichter V4 bzw. V3 auf. Die verwendeten Verdichter V2, V2\ V3 und V4 sind darüber hinaus erfindungsgemäß bezüglich ihrer Leistung identisch bzw. im
Wesentlichen identisch ausgebildet. Dies hat zur Folge, dass der Leistungsbedarf jedes Verdichters V2, V2', V3 und V4 durch einen identischen bzw. im Wesentlichen identischen Antrieb A2, A2', A3 und A4 bereitgestellt werden kann. ' .
Eine entsprechende Anpassung des Leistungsbedarfes des Vorkühlungs- sowie des Verflüssigungs-Kältekreislaufes an den Leistungsbedarf der beiden Verdichter V2 und V2' des Verflüssigungs-Kältekreislaufes ist erforderlich. Somit muss jeder' Verdichter V2, V21, V3 und V4 bzw. Verdichterantrieb A2, A21, A3 und A4 25 %, zumindest zwischen 23 und 27 % der Gesamtleistung bereitstellen.
Als Antriebe A2, A2\ A3 und A4 für die Verdichter V2, V2', V3 und V4 kommen vorzugsweise Gas-, Dampfturbinen und/oder Elektromotoren zur Anwendung.
In der Figur nicht dargestellt sind die den Verdichtern V2, V21, V3 und V4 nachgeschalteten Kühler bzw. Wärmetauscher, in denen das Kältemittelgemisch gegen ein Kühlmedium - bspw. Wasser - abgekühlt und im Falle des ersten Kältemittel(gemisch)kreislaufes 4a bis 4e kondensiert wird.
Das im Verdichter V4 verdichtete Kältemittelgemisch des ersten Gemischkreislaufes wird über die Leitung 4a dem Wärmetauscher E1 zugeführt und in diesem nach erfolgter Abkühlung in zwei Teilströme 4b und 4d aufgeteilt. Das Kältemittelgemisch in diesen Teilströmen 4b und 4d wird nach erfolgter Entspannung in den Ventilen d und e bzw. Entspannungsvprrichtungen auf unterschiedlichen Druckniveaus im Wärmetauscher E1 verdampft und anschließend über die Leitung 4c bzw. 4e dem Verdichter V4 vor der ersten Stufe (Teilstrom 4c) bzw. auf einem Zwischendruckniveau (Teilstrom 4e) zugeführt.
Das im Verdichter V3 verdichtete Kältemittelgemisch des zweiten Kältekreislaufes 3a bis 3e wird über Leitung 3a durch die Wärmetauscher E1 und E2 geführt und in diesen abgekühlt. Derjenige Teilstrom 3b dieses Kältemittelgemischstromes, der durch den Wärmetauscher E2 geführt wird, wird nach erfolgter Entspannung im Ventil b im Wärmetauscher E2 gegen abzukühlende Verfahrensströme verdampft und anschließend über Leitung 3c der Eingangsstufe des Verdichters V3 zugeführt.
Ein Teilstrom 3d des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes 3a bis 3e wird nach dem Wärmetauscher E1 abgezogen, im Ventil c entspannt und anschließend im Wärmetauscher E1 gegen abzukühlende Verfahrensströme, verdampft, bevor dieser Kältemittelgemischteilstrom über Leitung 3e auf einem Zwischendruckniveau dem Kreislaufverdichter V3 zugeführt wird. Somit trägt der erwähnte Kältemittelgemischteilstrom 3d zu der Vorkühlung des Kohlenwasserstoff¬ reichen Stromes im Wärmetauscher E1 bei.
Damit dies erreicht werden kann, muss der für die Vorkühlung des Kohlenwasserstoff¬ reichen Stromes verwendete Teilstrom 3d des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes 3a bis 3e auf einem Druck, der höher ist als der Verdampfungsdruck des Kältemittelgemischteilstromes 3b des zweiten Kältemittelgemischkreislaufes 3a bis 3e, verdampft werden.
Durch die Wahl des Zwischendruckes, auf dem der Kältemittelgemischteilstrom 3e verdampft und dem Verdichter V3 zugeführt wird, und d urch die Regelung der Mengenverteilung der beiden Kältemittel gemischteilströme 3b und 3d kann die Aufteilung der Kälteleistung des zweiten Gemischkreislaufes auf die Wärmetauscher E1 und E2 und damit auf die Vorkühlung und Verflüssigung des zu verflüssigenden Kohlenwasserstoff-reichen Stromes nahezu beliebig eingestellt werden.
Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes weiterbildend wird vorgeschlagen, dass die Verdichter V4 und V3 des ersten und zweiten Kältemittelgemischkreislaufes und die Verdichter V2 und V21 des dritten Kältemittelgemischkreislaufes mittels zweier im Wesentlichen identischer bzw. leistungsgieicher Antriebe angetrieben werden.
Diese in der Figur nicht dargestellte Ausgestaltung des erfindungsgemäßen Verfahrens ist insbesondere dann von Vorteil, wenn die Gesamtleistung der Verdichter V2, V2', V3 und V4 durch zwei hinreichend leistungsstarke Antriebe bereitgestellt werden kann. Die Anlagenverfügbarkeit ist in der Regel höher, wenn die zum Betrieb erforderliche Anzahl von Antrieben minimiert wird, was der Fall ist, wenn statt vier nur zwei Antriebe verwendet werden.
Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, ermöglicht somit eine noch wirtschaftlichere Ausnutzung der verfügbaren Verdichter und Antriebe als dies bei den bekannten Verflüssigungsprozessen möglich ist. Insbesondere große, einsträngige Verflüssigungsanlagen mit einer Verflüssigungsleistung größer 5 Millionen Tonnen LNG pro Jahr profitieren von der erfindungsgemäßen Verfahrensweise.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kältemittelgemischkreislauf der Verflüssigung und der dritte Kältemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff¬ reichen Stromes dient, dadurch gekennzeichnet, dass die Verdichtung des Kältemittelgemisches (2c) des dritten Kältemittelgemischkreislaufes mittels zweier im Wesentlichen leistungsgleicher Verdichter (V2, V2') und die Verdichtung des Kältemittelgemisches (3c, 3e, 4c, 4e) des ersten und des zweiten Kältemittelgemischkreislaufes jeweils mittels eines zu den Verdichtern (V2, V21) des dritten Kältemittelgemischkreislaufes im Wesentlichen leistungsgleichen Verdichters (V4, V3) erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Verdichter (V4, V3) des ersten und zweiten Kältemittelgemischkreislaufes und die Verdichter (V2, V2') des dritten Kältemittelgemischkreislaufes mittels zweier im Wesentlichen identischer und/oder leistungsgleicher Antriebe angetrieben werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Antriebe (A2, A21, A3, A4) für die Verdichter (V2, V21, V4, V3) Gas-, Dampfturbinen und/oder Elektromotoren zur Anwendung kommen .
PCT/EP2005/011948 2004-11-12 2005-11-08 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes WO2006050913A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2005303932A AU2005303932B2 (en) 2004-11-12 2005-11-08 Method for liquefying a hydrocarbon-rich flow
NO20072961A NO20072961L (no) 2004-11-12 2007-06-11 Fremgangsmate for kondensering av en hydrokarbonrik stromning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054674.6 2004-11-12
DE200410054674 DE102004054674A1 (de) 2004-11-12 2004-11-12 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Publications (1)

Publication Number Publication Date
WO2006050913A1 true WO2006050913A1 (de) 2006-05-18

Family

ID=35539700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/011948 WO2006050913A1 (de) 2004-11-12 2005-11-08 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Country Status (6)

Country Link
CN (1) CN100535563C (de)
AU (1) AU2005303932B2 (de)
DE (1) DE102004054674A1 (de)
NO (1) NO20072961L (de)
RU (1) RU2373465C2 (de)
WO (1) WO2006050913A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136269A1 (de) * 2005-06-23 2006-12-28 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2008015224A2 (en) * 2006-08-02 2008-02-07 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
CN101688752B (zh) * 2007-07-12 2012-09-05 国际壳牌研究有限公司 用于使烃流冷却的方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393126B (zh) * 2011-10-25 2013-11-06 中国寰球工程公司 双循环混合冷剂的天然气液化系统和方法
CN102538391B (zh) * 2012-02-19 2013-09-04 中国石油集团工程设计有限责任公司 多级单组分制冷天然气液化方法
DE102015002164A1 (de) * 2015-02-19 2016-08-25 Linde Aktiengesellschaft Verfahren zum Verflüssigen von Erdgas
EP3361197A1 (de) 2017-02-14 2018-08-15 Linde Aktiengesellschaft Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
EP3361196A1 (de) 2017-02-14 2018-08-15 Linde Aktiengesellschaft Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
US20030089125A1 (en) * 2000-03-15 2003-05-15 Fredheim Arne Olay Natural gas liquefaction process
WO2003106906A1 (de) * 2002-06-14 2003-12-24 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
WO2005028975A2 (en) * 2003-09-23 2005-03-31 Statoil Asa Natural gas liquefaction process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030089125A1 (en) * 2000-03-15 2003-05-15 Fredheim Arne Olay Natural gas liquefaction process
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
WO2003106906A1 (de) * 2002-06-14 2003-12-24 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
WO2005028975A2 (en) * 2003-09-23 2005-03-31 Statoil Asa Natural gas liquefaction process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KLEIN NAGELVOORT R ET AL: "LIQUEFACTION CYCLE DEVELOPMENTS", INTERNATIONAL CONFERENCE ON LNG, 17 October 1989 (1989-10-17), pages 1 - 18, XP001122807 *
SHUKRI T: "LNG TECHNOLOGY SELECTION", INTERNATIONAL JOURNAL OF HYDROCARBON ENGINEERING, PALLADIAN PUBLICATIONS, ELSTEAD, GB, February 2004 (2004-02-01), pages 71 - 74, XP009051864, ISSN: 1364-3177 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136269A1 (de) * 2005-06-23 2006-12-28 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2008015224A2 (en) * 2006-08-02 2008-02-07 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
WO2008015224A3 (en) * 2006-08-02 2008-10-30 Shell Int Research Method and apparatus for liquefying a hydrocarbon stream
US9400134B2 (en) 2006-08-02 2016-07-26 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
CN101688752B (zh) * 2007-07-12 2012-09-05 国际壳牌研究有限公司 用于使烃流冷却的方法和装置

Also Published As

Publication number Publication date
AU2005303932B2 (en) 2010-12-23
NO20072961L (no) 2007-06-11
AU2005303932A1 (en) 2006-05-18
RU2007121845A (ru) 2008-12-20
RU2373465C2 (ru) 2009-11-20
CN101057117A (zh) 2007-10-17
CN100535563C (zh) 2009-09-02
DE102004054674A1 (de) 2006-05-24

Similar Documents

Publication Publication Date Title
WO2006050913A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE602004006266T2 (de) Verfahren und vorrichtung zur gleichzeitigen produktion eines erdgases zur verflüssigung und einer flüssigen fraktion aus erdgas
DE69920147T2 (de) Erdgasverflüssigung mit Hilfe zweier Kühlmittelgemischkreisläufe
DE19722490C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE4440401A1 (de) Verfahren zum Verflüssigen von Erdgas
DE102005029275A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102014005936A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE10226596A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung einer C3+-reichen Fraktion mit hoher Ausbeute
WO2006072365A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
WO2010091804A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
WO2003074955A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
EP2369279A1 (de) Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102005053267A1 (de) Verfahren zur Bereitstellung von Prozesskälte für verfahrenstechnische Prozesse
WO2005090885A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP0168519A2 (de) Vorrichtung zum Verflüssigen eines tiefsiedenden Gases, insbesondere Heliumgas
DE10355935A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2016155863A1 (de) Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005303932

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580038698.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2005303932

Country of ref document: AU

Date of ref document: 20051108

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: DZP2007000363

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2007121845

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05801879

Country of ref document: EP

Kind code of ref document: A1