WO2006094675A1 - Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes - Google Patents

Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes Download PDF

Info

Publication number
WO2006094675A1
WO2006094675A1 PCT/EP2006/001804 EP2006001804W WO2006094675A1 WO 2006094675 A1 WO2006094675 A1 WO 2006094675A1 EP 2006001804 W EP2006001804 W EP 2006001804W WO 2006094675 A1 WO2006094675 A1 WO 2006094675A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiling
fraction
refrigerant
hydrocarbon
refrigerant mixture
Prior art date
Application number
PCT/EP2006/001804
Other languages
English (en)
French (fr)
Inventor
Hans Schmidt
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to US11/817,379 priority Critical patent/US20090205366A1/en
Priority to BRPI0609292-6A priority patent/BRPI0609292A2/pt
Priority to CA002600027A priority patent/CA2600027A1/en
Priority to EP06707313A priority patent/EP1864062A1/de
Priority to AU2006222325A priority patent/AU2006222325B2/en
Publication of WO2006094675A1 publication Critical patent/WO2006094675A1/de
Priority to NO20075003A priority patent/NO20075003L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0092Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen

Definitions

  • the invention relates to a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream.
  • Natural gas liquefaction plants are designed either as so-called LNG baseload plants - plants for liquefying natural gas to supply natural gas as primary energy - or as so-called peak shaving plants - plants for liquefying natural gas to meet peak demand.
  • a method for liquefying a hydrocarbon-rich stream in particular a natural gas stream, is known, according to which the liquefaction of the hydrocarbon-rich stream takes place in the heat exchange against a two-component refrigerant mixture stream; one component is a component of the hydrocarbon-rich stream to be liquefied, while the other component is a heavy hydrocarbon, preferably propane or propylene. Before these components cool down and relax, the refrigerant mixture is separated into a higher-boiling and a lower-boiling refrigerant fraction.
  • a disadvantage of the procedure described in DE-A 102 09 799 is that the provision of two refrigerant components can lead to relatively large temperature differences in the heat exchangers. These temperature differences in turn require correspondingly high compressor outputs.
  • the object of the present invention is to provide a generic method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, which avoids the disadvantages of the known methods and moreover enables the realization of a lower specific energy requirement.
  • Hydrocarbon-rich stream is, one of the components is propane, propylene or a C 4 hydrocarbon, - is one of the components C 2 H 4 or C 2 H 6 , the compression of the refrigerant mixture stream is carried out by means of an at least two-stage compression, before cooling and refrigerant relaxation of the refrigerant mixture, the refrigerant mixture is separated into a higher-boiling and a lower-boiling refrigerant fraction, and the higher-boiling and the lower-boiling refrigerant fraction after their cold-performing depressurizations at different pressures
  • Compression can be supplied.
  • the refrigerant mixture is a three-component refrigerant mixture
  • the refrigerant fractions are cooled separately, expanded to provide separate cooling, and heated separately against the hydrocarbon-rich stream to be liquefied
  • the refrigerant mixture flow is compressed by means of an at least two-stage compression and the higher-boiling refrigerant fraction is mixed with the lower-boiling refrigerant fraction at an intermediate pressure stage
  • At least one C 4 to C 6 hydrocarbon is or are used as further component (s) of the refrigerant mixture; the use of additional refrigerant mixture components makes sense especially for larger liquefaction capacities from 10 t / h
  • a dry, pretreated hydrocarbon-rich stream for example natural gas
  • a dry, pretreated hydrocarbon-rich stream for example natural gas
  • Heat exchanger E liquefied and possibly supercooled.
  • the hydrocarbon-rich stream has a pressure between 10 and 60 bar, for example.
  • the liquefied and possibly supercooled hydrocarbon-rich stream is then fed via line X 'for its further use.
  • the figure does not show a possible separation of undesired components, such as higher ones Hydrocarbons.
  • the corresponding refrigeration circuit preferably has a two-stage compressor unit, consisting of the compressor stages C1 and C2. Each compressor stage is followed by an air or water cooler, not shown in the figure.
  • the refrigeration circuit also has a high-pressure separator D. The provision of only one high-pressure separator D considerably reduces the operational complexity of the method according to the invention, compared with the known refrigerant mixture circuits.
  • the refrigerant mixture is separated into a lower-boiling and a higher-boiling fraction.
  • the lower-boiling fraction is removed from the separator D via line 2, cooled in the heat exchanger E, condensed and supercooled and then relaxed at the cold end of the heat exchanger E in the expansion valve b with a cooling effect.
  • the relaxed fraction is fed back to the heat exchanger E via line 3, vaporized in it against process streams to be cooled and superheated, and then fed via line 4 to the first compressor stage C1.
  • the compressed lower-boiling fraction is fed via line 8 to the second compressor stage C2 - the admixing of the higher-boiling fraction will be discussed in more detail below - and to the desired final circuit pressure, which is between 20 and 60 bar is compressed.
  • the second compressor stage C2 is also followed by a heat exchanger, not shown in the figure, as a cooler.
  • the refrigerant mixture cooled and partially condensed in this is fed back to separator D via line 1.
  • a higher-boiling liquid fraction is drawn off from the bottom of the separator D via line 5, cooled in the heat exchanger E and then expanded in the expansion valve a to the desired intermediate pressure in a cooling manner. Subsequently, this fraction is in turn fed to the heat exchanger E via line 6, evaporated in it against process streams to be cooled and superheated and then fed via line 7 to the compressor unit before its second compressor stage C2.
  • the liquefaction process allows at least a partial stream 9 of the lower-boiling refrigerant fraction 2 to be drawn off from the heat exchanger E after cooling and partial condensation via the line 9 shown in dashed lines and fed to a separator D 1 shown in dashed lines (so-called “cold”).
  • the gaseous fraction drawn off at the top of the separator D 'via the line 10 shown in broken lines is in turn fed to the heat exchanger E, supercooled and expanded in the valve b for the purpose of providing the peak cold required for the liquefaction process.
  • the liquid fraction drawn off from the bottom of the separator D 1 via the dashed line is subcooled in the heat exchanger E, is relieved of cold in the valve c, is fed to the heat exchanger E via line 12 and is added to the refrigerant fraction in line 3.
  • the higher-boiling fractions obtained in the separator D 'and possibly further “cold separators” are preferably supercooled, depressurized to the pressure of the (first) higher-boiling fraction and fed to the compressor stage to which the (first) higher-boiling fraction is also fed .
  • This embodiment of the method according to the invention is shown in the figure by the dotted line 13.
  • Addition to the low-pressure refrigerant flow in line sections 3 and 4 makes sense.
  • the liquefaction of the hydrocarbon-rich stream against the refrigerant mixture takes place in plate heat exchangers.
  • the process control in liquefaction plants with a liquefaction capacity of up to 10 to 15 t / h can be implemented in a single plate heat exchanger.
  • the inventive method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream avoids all the disadvantages of the prior art cited at the beginning.

Abstract

Es wird ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes beschrieben, wobei: - die Verflüssigung des Kohlenwasserstoff-reichen Stromes (X, X' ) im Wärmetausσh (E) gegen ein drei- oder mehrkomponentiges Kältemittelgemisch erfolgt, - die Verdichtung des Kältemittelgemischstromes (4, 7) mittels einer wenigstens zweistufigen Verdichtung (Cl, C2) erfolgt, vor der Abkühlung (E) und kälteleistenden Entspannung (a, b c) des Kältemittelgemisches eine Auf trennung (D) des Kältemittelgemisches in eine höher siedende (5) und eine tiefer siedende Kältemittelfraktion (2) erfolgt und - die höher siedende (5) und die tiefer siedende Kältemittelfraktion (2) nach ihren kälteleistenden Entspannungen (a, b, c) am warmen Ende des Wärmetausches (E) auf unterschiedlichen Drücken der Verdichtung (Cl, C2) zugeführt werden (4, 7).

Description

Beschreibung
Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes.
Erdgasverflüssigungsanlagen werden entweder als sog. LNG-Baseload-Anlagen - also Anlagen zur Verflüssigung von Erdgas zur Versorgung mit Erdgas als Primärenergie - oder als sog. Peak Shaving Plants - also Anlagen zur Verflüssigung von Erdgas zur Deckung des Spitzenbedarfs - ausgelegt.
Größere LNG-Anlagen werden im Regelfall mit Kältekreisläufen betrieben, die aus Kohlenwasserstoffgemischen bestehen. Diese Gemischkreisläufe sind energetisch effizienter als Expander-Kreisläufe und ermöglichen relativ niedrige spezifische Energieverbräuche.
Aus der DE-A 102 09 799 ist ein Verfahren zum Verflüssigen eines Kohlenwasserstoffreichen Stromes, insbesondere eines Erdgasstromes, bekannt, gemäß dem die Verflüssigung des Kohlenwasserstoff-reichen Stromes im Wärmetausch gegen einen zweikomponentigen Kältemittelgemischstrom erfolgt; hierbei ist die eine Komponente ein Bestandteil des zu verflüssigenden Kohlenwasserstoff-reichen Stromes, während die andere Komponente ein schwerer Kohlenwasserstoff, vorzugsweise Propan oder Propylen, ist. Vor der Abkühlung und kälteleistenden Entspannung dieser Komponenten erfolgt eine Auftrennung des Kältemittelgemisches in eine höher siedende und eine tiefer siedende Kältemittelfraktion.
Von Nachteil bei der in der DE-A 102 09 799 beschriebenen Verfahrensweise ist, dass das Vorsehen von zwei Kältemittelkomponenten zu verhältnismäßig großen Temperaturdifferenzen in den Wärmetauschern führen kann. Diese Temperaturdifferenzen wiederum erfordern entsprechend hohe Verdichterleistungen.
Aus der US-A 6,347,531 ist ein ähnliches Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes bekannt. Bei diesem wird das Niederdruck- Kältemittel durch den Kreislaufverdichter kalt angesaugt. Sog. kaltansaugende Verdichter haben jedoch den Nachteil, dass sie im Betrieb, insbesondere während des An- und Abfahrens, umständlicher als nicht-kaltansaugende Verdichter zu betreiben sind. Des Weiteren ist bei dem in der US-A 6,347,531 beschriebenen Verflüssigungsverfahren von Nachteil, dass das Kältemittel auf einem Zwischendruck teilverflüssigt wird, woraus ein größerer apparativer Aufwand resultiert.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes anzugeben, das die Nachteile der bekannten Verfahren vermeidet und darüber hinaus die Realisierung eines niedrigeren spezifischen Energiebedarfes ermöglicht.
Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes vorgeschlagen, wobei - die Verflüssigung des Kohlenwasserstoff-reichen Stromes im Wärmetausch gegen ein drei- oder mehrkomponentiges Kältemittelgemisch erfolgt, eine der Komponenten ein Bestandteil des zu verflüssigenden
Kohlenwasserstoff-reichen Stromes ist, eine der Komponenten Propan, Propylen oder ein C4-Kohlenwasserstoff ist, - eine der Komponenten C2H4 oder C2H6 ist, die Verdichtung des Kältemittelgemischstromes mittels einer wenigstens zweistufigen Verdichtung erfolgt, vor der Abkühlung und kälteleistenden Entspannung des Kältemittelgemisches eine Auftrennung des Kältemittelgemisches in eine höher siedende und eine tiefer siedende Kältemittelfraktion erfolgt und die höher siedende und die tiefer siedende Kältemittelfraktion nach ihren kälteleistenden Entspannungen auf unterschiedlichen Drücken der
Verdichtung zugeführt werden.
Es hat sich überraschenderweise gezeigt, dass der spezifische Energieaufwand der Verflüssigung mittels des erfindungsgemäßen Verfahrens um ca. 30 % verringert werden kann. Des Weiteren können die Temperaturdifferenzen innerhalb des bzw. der Wärmetauscher beträchtlich verringert werden. Dies hat zur Folge, dass der instationäre Betrieb einfacher beherrschbar ist. Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes sind:
das Kältemittelgemisch ist ein dreikomponentiges Kältemittelgemisch
die Kältemittelfraktionen werden getrennt abgekühlt, getrennt kälteleistend entspannt und getrennt gegen den zu verflüssigenden Kohlenwasserstoff- reichen Strom angewärmt
- eine weitere Komponente des Kältemittelgemisches ist Stickstoff
die Verdichtung des Kältemittelgemischstromes erfolgt mittels einer wenigstens zweistufigen Verdichtung und die höher siedende Kältemittelfraktion wird der tiefer siedenden Kältemittelfraktion auf einer Zwischendruckstufe zugemischt
als weitere Komponente(n) des Kältemittelgemisches wird bzw. werden wenigstens ein C4- bis C6-Kohlenwasserstoff verwendet; die Verwendung weiterer Kältemittelgemischkomponenten macht insbesondere bei größeren Verflüssigungsleistungen ab 10 t/h Sinn
zumindest ein Teilstrom der tiefer siedenden Kältemittelfraktion wird partiell kondensiert und die dabei gewonnene Flüssigfraktion unterkühlt und entspannt
Das erfindungsgemäße Verfahren sowie weitere Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.
Gemäß der in der Figur dargestellten Verfahrensweise wird dem erfindungsgemäßen Verflüssigungsverfahren über Leitung X ein trockener, vorbehandelter Kohlenwasserstoff-reicher Strom, beispielsweise Erdgas, zugeführt und im
Wärmetauscher E verflüssigt und ggf. unterkühlt. Der Kohlenwasserstoff-reiche Strom weist beispielsweise einen Druck zwischen 10 und 60 bar auf. Der verflüssigte und ggf. unterkühlte Kohlenwasserstoff-reiche Strom wird anschließend über Leitung X' seiner weiteren Verwendung zugeführt. In der Figur nicht dargestellt ist eine ggf. vorzusehende Abtrennung unerwünschter Komponenten, wie beispielsweise höhere Kohlenwasserstoffe. Hierzu sei auf die entsprechenden Ausführungen in der vorgenannten DE-A 102 09 799 verwiesen.
Die Abkühlung und Verflüssigung des Kohlenwasserstoff-reichen Stromes X, X' erfolgt erfindungsgemäß im Wärmetausch gegen einen drei- oder mehrkomponentigen Kältemittelgemischstrom, wobei eine der Komponenten ein Bestandteil des zu verflüssigenden Kohlenwasserstoff-reichen Stromes - vorzugsweise Methan -, eine der Komponenten Propan, Propylen oder ein C4-Kohlenwasserstoff und eine der Komponenten C2H4 oder C2H6 ist.
Der entsprechende Kältekreislauf weist vorzugsweise eine zweistufige Verdichtereinheit auf, bestehend aus den Verdichterstufen C1 und C2. Jeder Verdichterstufe ist ein in der Figur nicht dargestellter Luft- oder Wasserkühler nachgeschaltet. Ferner weist der Kältekreislauf einen Hochdruck-Abscheider D auf. Das Vorsehen lediglich eines Hochdruck-Abscheiders D reduziert - verglichen mit den bekannten Kältemittelgemischkreisläufen - den betriebstechnischen Aufwand des erfindungsgemäßen Verfahrens erheblich.
Im Abscheider D wird das Kältemittelgemisch in eine tiefer siedende und eine höher siedende Fraktion aufgetrennt. Die tiefer siedende Fraktion wird dem Abscheider D über Leitung 2 entnommen, im Wärmetauscher E abgekühlt, kondensiert sowie unterkühlt und anschließend am kalten Ende des Wärmetauschers E im Entspannungsventil b kälteleistend entspannt. Über Leitung 3 wird die entspannte Fraktion wieder dem Wärmetauscher E zugeführt, in ihm gegen abzukühlende Verfahrensströme verdampft sowie überhitzt und anschließend über Leitung 4 der ersten Verdichterstufe C1 zugeführt.
Nach Verdichtung und in der Figur nicht dargestellter Abkühlung wird die verdichtete tiefer siedende Fraktion über Leitung 8 der zweiten Verdichterstufe C2 zugeführt - auf die Zumischung der höher siedenden Fraktion wird im Folgenden noch näher eingegangen werden - und auf den gewünschten Kreislaufenddruck, der beispielsweise zwischen 20 und 60 bar liegt, verdichtet. Auch der zweiten Verdichterstufe C2 ist ein in der Figur nicht dargestellter Wärmetauscher als Kühler nachgeschaltet. Das in diesem abgekühlte und teilweise kondensierte Kältemittelgemisch wird über Leitung 1 wieder dem Abscheider D zugeführt. Aus dem Sumpf des Abscheiders D wird über Leitung 5 eine höher siedende Flüssigfraktion abgezogen, im Wärmetauscher E abgekühlt und anschließend im Entspannungsventil a kälteleistend auf den gewünschten Zwischendruck entspannt. Anschließend wird diese Fraktion über Leitung 6 wiederum dem Wärmetauscher E zugeführt, in ihm gegen abzukühlende Verfahrensströme verdampft sowie überhitzt und anschließend über Leitung 7 der Verdichtereinheit vor deren zweiter Verdichterstufe C2 zugeführt.
Entsprechend einer vorteilhaften Ausgestaltung des erfindungsgemäßen
Verflüssigungsverfahrens kann zumindest ein Teilstrom 9 der tiefer siedenden Kältemittelfraktion 2 nach einer Abkühlung und partiellen Kondensation über die gestrichelt dargestellte Leitung 9 aus dem Wärmetauscher E abgezogen und einem gestrichelt dargestellten (sog. "kalten") Abscheider D1 zugeführt werden. Die am Kopf des Abscheiders D' über die gestrichelt dargestellte Leitung 10 abgezogene gasförmige Fraktion wird wiederum dem Wärmetauscher E zugeführt, unterkühlt und zum Zwecke der Bereitstellung der für den Verflüssigungsprozess erforderlichen Spitzenkälte im Ventil b entspannt.
Die über die gestrichelt dargestellte Leitung 11 aus dem Sumpf des Abscheiders D1 abgezogene Flüssigfraktion wird im Wärmetauscher E unterkühlt, im Ventil c kälteleistend entspannt, über Leitung 12 dem Wärmetauscher E zugeführt und der Kältemittelfraktion in der Leitung 3 beigemischt.
Neben diesem Abscheider D1 können weitere, sog. "kalte Abscheider" vorgesehen werden. Diese führen zu einer Verbesserung des spezifischen Energiebedarfes des erfindungsgemäßen Verflüssigungsverfahrens, machen jedoch aufgrund des zusätzlich erforderlichen apparativen Aufwandes nur bei größeren Verflüssigungsanlagen Sinn.
Die in dem Abscheider D' und ggf. weiteren "kalten Abscheidern" gewonnenen, höher siedenden Fraktionen werden vorzugsweise unterkühlt, auf den Druck der (ersten) höher siedenden Fraktion entspannt und derjenigen Verdichterstufe zugeführt, der auch die (erste) höher siedende Fraktion zugeführt wird. Diese Ausgestaltung des erfindungsgemäßen Verfahrens ist in der Figur durch die punktiert gezeichnete Leitung 13 dargestellt. Je nach Temperaturprofil im Wärmetauscher E ist auch eine Zumischung zu dem Niederdruck-Kältemittelstrom in den Leitungsabschnitten 3 und 4 sinnvoll.
Entsprechend einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen das Kältemittelgemisch in Plattenwärmetauschern. Aufgrund der erfindμngsgemäßen Verfahrensführung kann bei Verflüssigungsanlagen mit einer Verflüssigungskapazität von bis zu 10 bis 15 t/h die Prozessführung in einem einzigen Plattenwärmetauscher realisiert werden.
Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, vermeidet sämtliche Nachteile des eingangs zitierten Standes der Technik.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei
- die Verflüssigung des Kohlenwasserstoff-reichen Stromes (X, X') im - Wärmetausch (E) gegen ein drei- oder mehrkomponentiges Kältemittelgemisch erfolgt,
- eine der Komponenten ein Bestandteil des zu verflüssigenden Kohlenwasserstoff-reichen Stromes ist,
- eine der Komponenten Propan, Propylen oder ein C4-Kohlenwasserstoff ist, - eine der Komponenten C2H4 oder C2H6 ist,
- die Verdichtung des Kältemittelgemischstromes (4, 7) mittels einer wenigstens zweistufigen Verdichtung (C1 , C2) erfolgt,
- vor der Abkühlung (E) und kälteleistenden Entspannung (a, b, c) des Kältemittelgemisches eine Auftrennung (D) des Kältemittelgemisches in eine höher siedende (5) und eine tiefer siedende Kältemittelfraktion (2) erfolgt und
- die höher siedende (5) und die tiefer siedende Kältemittelfraktion (2) nach ihren kälteleistenden Entspannungen (a, b, c) am warmen Ende des Wärmetausches (E) auf unterschiedlichen Drücken der Verdichtung (C1 , C2) zugeführt werden (4, 7).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Kältemittelgemisch ein dreikomponentiges Kältemittelgemisch ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Kältemittelfraktionen (2, 5) getrennt abgekühlt (E), getrennt kälteleistend entspannt (a, b, c) und getrennt gegen den zu verflüssigenden Kohlenwasserstoff-reichen Strom (X, X1) angewärmt werden (E).
4. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine weitere Komponente des Kältemittelgemisches Stickstoff ist.
5. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als weitere Komponente(n) des Kältemittelgemisches wenigstens ein C4- bis C6-Kohlenwasserstoff verwendet wird bzw. werden.
6. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest ein Teilstrom (9) der tiefer siedenden Kältemittelfraktion (2) partiell kondensiert (D') und die dabei gewonnene Flüssigfraktion (11) unterkühlt (E) und entspannt (c) wird.
7. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein oder mehrere weitere Teilströme der tiefer siedenden Kältemittelfraktion (2) partiell kondensiert und die dabei gewonnene Flüssigfraktion unterkühlt (E) und entspannt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die bei der oder den partiellen Kondensationen (D1) eines oder mehrere Teilströme der tiefer siedenden Kältemittelfraktion (2) gewonnene, weitere höher siedende Fraktion (11) unterkühlt, auf den Druck der höher siedenden Fraktion (6, 7) entspannt und derjenigen Verdichterstufe (C2) zugeführt wird (13), der auch die höher siedende Fraktion (6, 7) zugeführt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die bei der oder den partiellen Kondensationen (D') eines oder mehrere Teilströme der tiefer siedenden Kältemittelfraktion (2) gewonnene, weitere höher siedende Fraktion (11 ) unterkühlt, auf den Druck der niedriger siedenden Fraktion (3, 4) entspannt und derjenigen Verdichterstufe (C1) zugeführt wird, der auch die niedriger siedende Fraktion (3, 4) zugeführt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Verflüssigung des Kohlenwasserstoff-reichen Stromes
(X, X1) gegen das Kältemittelgemisch in Plattenwärmetauschem, vorzugsweise in einem einzigen Plattenwärmetauscher (E) erfolgt.
PCT/EP2006/001804 2005-03-04 2006-02-28 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes WO2006094675A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/817,379 US20090205366A1 (en) 2005-03-04 2006-02-28 Method for liquefaction of a stream rich in hydrocarbons
BRPI0609292-6A BRPI0609292A2 (pt) 2005-03-04 2006-02-28 processo para liquefação de uma corrente rica em hidrocarbonetos
CA002600027A CA2600027A1 (en) 2005-03-04 2006-02-28 Method for liquefaction of a stream rich in hydrocarbons
EP06707313A EP1864062A1 (de) 2005-03-04 2006-02-28 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
AU2006222325A AU2006222325B2 (en) 2005-03-04 2006-02-28 Method for liquefaction of a stream rich in hydrocarbons
NO20075003A NO20075003L (no) 2005-03-04 2007-10-03 Fremgangsmate for kondensasjon av en hydrokarbonrik strom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005010055A DE102005010055A1 (de) 2005-03-04 2005-03-04 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102005010055.4 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006094675A1 true WO2006094675A1 (de) 2006-09-14

Family

ID=36508129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/001804 WO2006094675A1 (de) 2005-03-04 2006-02-28 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Country Status (10)

Country Link
US (1) US20090205366A1 (de)
EP (1) EP1864062A1 (de)
CN (1) CN101189483A (de)
AU (1) AU2006222325B2 (de)
BR (1) BRPI0609292A2 (de)
CA (1) CA2600027A1 (de)
DE (1) DE102005010055A1 (de)
NO (1) NO20075003L (de)
RU (1) RU2007136598A (de)
WO (1) WO2006094675A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459173A (en) * 2008-04-17 2009-10-21 Linde Ag Method of liquefying a hydrocarbon-rich fraction
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049040A (ko) * 2010-03-25 2016-05-04 더 유니버시티 오브 맨체스터 냉동 방법
CN102336626B (zh) * 2010-07-28 2014-03-12 中国石油化工股份有限公司 丁二烯抽提装置废气的利用方法
CN102304403B (zh) * 2011-08-08 2013-07-24 成都赛普瑞兴科技有限公司 一种丙烯预冷混合冷剂液化天然气的方法及装置
KR101392750B1 (ko) * 2012-06-29 2014-05-09 한국에너지기술연구원 천연가스 액화시스템 및 액화 방법
WO2014189261A1 (ko) * 2013-05-20 2014-11-27 한국가스공사 천연가스 액화공정
KR101615443B1 (ko) * 2014-08-01 2016-04-25 한국가스공사 천연가스 액화공정
KR101630518B1 (ko) * 2014-08-01 2016-06-14 한국가스공사 천연가스 액화공정
CN107436072B (zh) * 2017-08-14 2019-11-29 新地能源工程技术有限公司 带有制冷剂补充装置的天然气液化系统及方法
FR3098574B1 (fr) * 2019-07-10 2021-06-25 Air Liquide Dispositif de réfrigération et/ou de liquéfaction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3747359A (en) * 1969-08-01 1973-07-24 Linde Ag Gas liquefaction by a fractionally condensed refrigerant
GB1392972A (en) * 1972-09-25 1975-05-07 Petrocarbon Dev Ltd Cooling fluids at low temperatures
US4094655A (en) * 1973-08-29 1978-06-13 Heinrich Krieger Arrangement for cooling fluids
US4274849A (en) * 1974-11-21 1981-06-23 Campagnie Francaise d'Etudes et de Construction Technip Method and plant for liquefying a gas with low boiling temperature
US4325231A (en) * 1976-06-23 1982-04-20 Heinrich Krieger Cascade cooling arrangement
DE19612173C1 (de) * 1996-03-27 1997-05-28 Linde Ag Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
US6347531B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Single mixed refrigerant gas liquefaction process
DE10209799A1 (de) * 2002-03-06 2003-09-25 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404008A (en) * 1982-02-18 1983-09-13 Air Products And Chemicals, Inc. Combined cascade and multicomponent refrigeration method with refrigerant intercooling
US4755200A (en) * 1987-02-27 1988-07-05 Air Products And Chemicals, Inc. Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes
MY118329A (en) * 1995-04-18 2004-10-30 Shell Int Research Cooling a fluid stream
US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3747359A (en) * 1969-08-01 1973-07-24 Linde Ag Gas liquefaction by a fractionally condensed refrigerant
GB1392972A (en) * 1972-09-25 1975-05-07 Petrocarbon Dev Ltd Cooling fluids at low temperatures
US4094655A (en) * 1973-08-29 1978-06-13 Heinrich Krieger Arrangement for cooling fluids
US4274849A (en) * 1974-11-21 1981-06-23 Campagnie Francaise d'Etudes et de Construction Technip Method and plant for liquefying a gas with low boiling temperature
US4325231A (en) * 1976-06-23 1982-04-20 Heinrich Krieger Cascade cooling arrangement
DE19612173C1 (de) * 1996-03-27 1997-05-28 Linde Ag Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
US6347531B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Single mixed refrigerant gas liquefaction process
DE10209799A1 (de) * 2002-03-06 2003-09-25 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FINN A J ET AL: "DEVELOPMENTS IN NATURAL GAS LIQUEFACTION", HYDROCARBON PROCESSING, GULF PUBLISHING CO. HOUSTON, US, vol. 78, no. 4, April 1999 (1999-04-01), pages 47 - 50,53, XP000825425, ISSN: 0018-8190 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459173A (en) * 2008-04-17 2009-10-21 Linde Ag Method of liquefying a hydrocarbon-rich fraction
GB2459173B (en) * 2008-04-17 2010-11-17 Linde Ag Method of liquefying a hydrocarbon-rich fraction
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10502483B2 (en) 2010-03-17 2019-12-10 Chart Energy & Chemicals, Inc. Integrated pre-cooled mixed refrigerant system and method
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408676B2 (en) 2015-07-08 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Also Published As

Publication number Publication date
CN101189483A (zh) 2008-05-28
RU2007136598A (ru) 2009-04-10
AU2006222325B2 (en) 2011-03-24
AU2006222325A1 (en) 2006-09-14
BRPI0609292A2 (pt) 2010-03-09
NO20075003L (no) 2007-10-03
DE102005010055A1 (de) 2006-09-07
EP1864062A1 (de) 2007-12-12
CA2600027A1 (en) 2006-09-14
US20090205366A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2006094675A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19722490C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19937623B4 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
EP2484999A2 (de) Verfahren zum Abkühlen eines ein-oder mehrkomponentigen Stromes
DE102005029275A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE10226596A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung einer C3+-reichen Fraktion mit hoher Ausbeute
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
WO2010091804A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102014012316A1 (de) Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
WO2003074955A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2010112206A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2017054929A1 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102009004109A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE19728153A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO1999058917A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102012020470A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006222325

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2600027

Country of ref document: CA

Ref document number: 200680007021.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006222325

Country of ref document: AU

Date of ref document: 20060228

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006222325

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: DZP2007000623

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2007136598

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006707313

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006707313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11817379

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0609292

Country of ref document: BR

Kind code of ref document: A2