WO2010112206A2 - Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion - Google Patents

Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion Download PDF

Info

Publication number
WO2010112206A2
WO2010112206A2 PCT/EP2010/002034 EP2010002034W WO2010112206A2 WO 2010112206 A2 WO2010112206 A2 WO 2010112206A2 EP 2010002034 W EP2010002034 W EP 2010002034W WO 2010112206 A2 WO2010112206 A2 WO 2010112206A2
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
cooled
temperature level
hydrocarbon
liquid fraction
Prior art date
Application number
PCT/EP2010/002034
Other languages
English (en)
French (fr)
Other versions
WO2010112206A3 (de
Inventor
Heinz Bauer
Daniel Garthe
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to AU2010230576A priority Critical patent/AU2010230576B2/en
Priority to BRPI1013386A priority patent/BRPI1013386A2/pt
Priority to CN201080015211.2A priority patent/CN102575896B/zh
Priority to RU2011144360/06A priority patent/RU2538156C2/ru
Publication of WO2010112206A2 publication Critical patent/WO2010112206A2/de
Priority to NO20111413A priority patent/NO20111413A1/no
Publication of WO2010112206A3 publication Critical patent/WO2010112206A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Definitions

  • the invention relates to a process for liquefying a hydrocarbon-rich fraction, wherein the cooling and liquefaction of the hydrocarbon-rich fraction in the indirect heat exchange against the refrigerant mixture of a
  • the refrigerant mixture cycle takes place, the refrigerant mixture is compressed at least two stages and separated after each compression stage in a gaseous and a liquid fraction, wherein the gaseous fraction of the last compression stage is cooled to the lowest temperature level, while the liquid fraction of the or at least one of the intermediate compression stages to one above the is cooled to the lowest temperature levels.
  • the cycle compressor required for this liquefaction process has two compression stages V1 and V2.
  • the compressed in the first compression stage V1 refrigerant mixture usually a compression to 10 to 40 bar, preferably 15 to 25 bar - is preferably partially condensed in the aftercooler or heat exchanger E1 against ambient air or water and fed via line 1 to a separator D1. In this there is a separation into a gaseous and a liquid fraction.
  • the gaseous fraction is fed via line 2 to the second compressor stage V2 and in this compressed to the desired final pressure, which is usually between 25 and 80 bar, preferably between 30 and 50 bar.
  • the second compression stage V2 is also followed by an aftercooler E2, in which the compressed refrigerant fraction is preferably cooled to ambient air or water. Via line 4, this refrigerant fraction is then fed to a further separator D2.
  • the withdrawn at the top of the separator D2 via line 5 gaseous refrigerant fraction is fed to the main heat exchanger E, cooled in this against process streams to be heated and withdrawn at the cold end of the heat exchanger E via line 7.
  • the heat exchanger E is preferably designed as a multi-flow heat exchanger, in particular as a plate heat exchanger or coiled heat exchanger.
  • the hydrocarbon-rich fraction to be liquefied which is for example a natural gas stream, is fed to the heat exchanger E.
  • the liquefied product stream is withdrawn via line 21 from the heat exchanger E and fed to its further use or intermediate storage.
  • the refrigerant fraction withdrawn from the heat exchanger E via line 7 is depressurized in the valve a and passed through the heat exchanger E via the line 8 in countercurrent to the hydrocarbon-rich fraction 20 to be cooled and liquefied. Via the line sections 8 and 8 1 , this refrigerant fraction is then fed to the first compression stage V1.
  • the liquid fraction obtained in the sump of the second separator D2 is depressurized in the valve c to the pressure of the first separator D1 and returned before it.
  • the withdrawn via line 3 from the separator D1 liquid refrigerant fraction is usually present in the boiling state.
  • a boiling refrigerant liquid usually suffers from a pressure loss due to friction and / or due to a rising pipeline guidance. This pressure loss inevitably leads to a partial outgassing of lighter components of this refrigerant fraction. It therefore comes to the undesirable formation of a two-phase flow. This can lead to unstable flow conditions in the pipelines and / or incorrect distributions - which are unequal proportions of gas and liquid in parallel flow paths, for example heat exchangers - in the following apparatuses.
  • Object of the present invention is to provide a generic method for liquefying a hydrocarbon-rich, which avoids the aforementioned disadvantages.
  • a method for liquefying a hydrocarbon-rich fraction which is characterized in that the liquid fraction which is cooled to a lying above the lowest temperature level temperature level, before the indirect heat exchange with the hydrocarbon-rich fraction to be liquefied is cooled.
  • the liquid fraction which is cooled to a higher temperature level, is cooled to a temperature between 2 and 15 ° C., preferably between 4 and 7 ° C., below the temperature, before the indirect heat exchange with the hydrocarbon-rich fraction to be liquefied, the the has compressed refrigerant mixture in the separation into a gaseous and a liquid fraction lies,
  • Fraction and the refrigerant mixture in a multi-flow heat exchanger which is preferably designed as a plate heat exchanger or coiled heat exchanger, takes place and
  • a heat exchanger E3 is now provided, which allows a heat exchange between the two liquid fractions withdrawn from the separators D1 and D2 via the lines 3 and 6. Since the withdrawn via line 6 from the separator D2 liquid fraction in the valve c is relaxed to the pressure of the separator D1, the liquid fraction cooled by partial evaporation to a temperature which is below the achievable in the aftercoolers E1 and E2 process temperature. The thus cooled, after the valve c in the line 6 present liquid fraction cools or subcooled now in the heat exchanger E3 via line 3 withdrawn from the separator D1 liquid fraction. In this case, the liquid fraction 3 is cooled or supercooled by 2 to 15 ° C., preferably by 4 to 7 ° C., below the process temperature which can be reached in the aftercoolers E 1 and E 2.
  • the heat exchanger E3 is preferably designed as a counterflow heat exchanger, for example as a straight tube exchanger.
  • the heat exchanger E3 is arranged such that it is arranged below the valve C and above the separator D1. This gradient between valve c, heat exchanger E3 and separator D1 leads to keep the two-phase flow of the stream 6 to relaxation in the valve c stable.
  • the process according to the invention for liquefying a hydrocarbon-rich fraction is further proposed to relax, at least temporarily, at least a partial stream of the fraction which is cooled to the lowest temperature level and the expanded liquid fraction of that fraction which is cooled to a temperature level above the lowest temperature level to mix.
  • Such a process control is, for example, realized by the fact that deducted via the lines 11 and / or 12 refrigerant mixture partial streams at the cold end of the heat exchange E or at a suitable intermediate temperature, relaxed in the valve d and e and the relaxed liquid fraction 9 are admixed.
  • a suitable intermediate temperature is present when the refrigerant fraction 5 has a sub-cooling of at least 5 0 C 1 preferably of at least 10 0 C above the boiling state.
  • valve d or e will be provided in most cases.
  • Such a process management makes it possible to improve the regulation of the temperature or the temperature profile in the heat exchange E.
  • the embodiment shown in Figure 2 has due to the realized in her integration of the subcooling of the liquid fraction 3 in the compression V1 / V2 the advantage that a temperature of the liquid fraction 3 before being fed into the heat exchanger e can be achieved, which is below that temperature that would be realizable in the event of cooling against ambient air or cooling water, without the need for this additional cooling by a separate refrigeration system and / or by another cold process stream.
  • the procedure illustrated in FIG. 2 enables the desirable separation between the subcooling of the refrigerant 3 realized in the heat exchanger E3 and the operation of other system parts. This separation is particularly important when starting up the liquefaction process, since cold process streams are usually only available after the process has started up, and thus can not be used for subcooling right from the start.
  • the inventive method for liquefying a hydrocarbon-rich fraction allows for low design overhead - it is only an additional heat exchanger E3 provide - the elimination of the problems described above, as they occur in the counting of the prior art liquefaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Es wird ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion beschrieben, wobei die Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes erfolgt, das Kältemittelgemisch wenigstens zweistufig verdichtet und nach jeder Verdichtungsstufe in eine gasförmige und eine flüssige Fraktion aufgetrennt wird, wobei die gasförmige Fraktion der letzten Verdichtungsstufe auf das niedrigste Temperaturniveau abgekühlt wird, während die flüssige Fraktion der oder zumindest einer der Zwischenverdichtungsstufen auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird. Erfindungsgemäß wird die flüssige Fraktion (3), die auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird, vor dem indirekten Wärmetausch (E) mit der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion (20) abgekühlt (E3).

Description

Beschreibung
Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
Die Erfindung betrifft ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion, wobei die Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das Kältemittelgemisch eines
Kältemittelgemischkreislaufes erfolgt, das Kältemittelgemisch wenigstens zweistufig verdichtet und nach jeder Verdichtungsstufe in eine gasförmige und eine flüssige Fraktion aufgetrennt wird, wobei die gasförmige Fraktion der letzten Verdichtungsstufe auf das niedrigste Temperaturniveau abgekühlt wird, während die flüssige Fraktion der oder zumindest einer der Zwischenverdichtungsstufen auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird.
Bei Erdgasverflüssigungsprozessen mit Produktionsraten von 30.000 bis 3 Mio. jato LNG kommen oftmals Gemischkreisläufe mit lediglich einem Kreislaufverdichter - diese werden auch als SMR(Single Mixed Refrigerant)-Prozesse bezeichnet - zur Anwendung.
Ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion sei nachfolgend anhand des in der Figur 1 dargestellten Verflüssigungsprozesses näher erläutert.
Der für diesen Verflüssigungsprozess erforderliche Kreislaufverdichter weist zwei Verdichtungsstufen V1 und V2 auf. Das in der ersten Verdichtungsstufe V1 verdichtete Kältemittelgemisch - üblicherweise erfolgt eine Verdichtung auf 10 bis 40 bar, vorzugsweise 15 bis 25 bar - wird im Nachkühler bzw. Wärmetauscher E1 vorzugsweise gegen Umgebungsluft oder Wasser teilkondensiert und über Leitung 1 einem Abscheider D1 zugeführt. In diesem erfolgt eine Auftrennung in eine gasförmige sowie eine flüssige Fraktion. Die gasförmige Fraktion wird über Leitung 2 der zweiten Verdichterstufe V2 zugeführt und in dieser auf den gewünschten Enddruck, der üblicherweise zwischen 25 und 80 bar, vorzugsweise zwischen 30 und 50 bar liegt, verdichtet. Auch der zweiten Verdichtungsstufe V2 ist ein Nachkühler E2 nachgeordnet, in dem die verdichtete Kältemittelfraktion vorzugsweise gegen Umgebungsluft oder Wasser abgekühlt wird. Über Leitung 4 wird diese Kältemittelfraktion anschließend einem weiteren Abscheider D2 zugeführt.
Die am Kopf des Abscheiders D2 über Leitung 5 abgezogene gasförmige Kältemittelfraktion wird dem Hauptwärmetauscher E zugeführt, in diesem gegen anzuwärmende Verfahrensströme abgekühlt und am kalten Ende des Wärmetauschers E über Leitung 7 abgezogen. Der Wärmetauscher E ist vorzugsweise als Mehrstromwärmetauscher, insbesondere als Plattenwärmetauscher oder gewickelter Wärmetauscher ausgebildet.
Über Leitung 20 wird die zu verflüssigende Kohlenwasserstoff-reiche Fraktion, bei der es sich beispielsweise um einen Erdgasstrom handelt, dem Wärmetauscher E zugeführt. Nach erfolgter Verflüssigung wird der verflüssigte Produktstrom über Leitung 21 aus dem Wärmetauscher E abgezogen und seiner weiteren Verwendung oder einer Zwischenlagerung zugeführt.
Die über Leitung 7 aus dem Wärmetauscher E abgezogene Kältemittelfraktion wird im Ventil a kälteleistend entspannt und über die Leitung 8 im Gegenstrom zu der abzukühlenden und zu verflüssigenden Kohlenwasserstoff-reichen Fraktion 20 durch den Wärmetauscher E geführt. Über die Leitungsabschnitte 8 und 81 wird diese Kältemittelfraktion anschließend der ersten Verdichtungsstufe V1 zugeführt.
Die aus dem Sumpf des Abscheiders D1 über Leitung 3 abgezogene Flüssigfraktion wird nach Abkühlung im Wärmetauscher E über Leitung 9 aus diesem abgezogen, im Ventil b kälteleistend entspannt und anschließend über Leitung 10 im Gegenstrom zu der abzukühlenden und zu verflüssigenden Kohlenwasserstoff-reichen Fraktion durch den Wärmetauscher E geführt. Anschließend wird diese Kältemittelfraktion der zuvor beschriebenen Kältemittelfraktion in der Leitung 8 beigemischt und gemeinsam mit dieser über Leitung 8' der ersten Verdichtungsstufe V1 zugeführt.
Die im Sumpf des zweiten Abscheiders D2 anfallende Flüssigfraktion wird im Ventil c kälteleistend auf den Druck des ersten Abscheiders D1 entspannt und vor diesen zurückgeführt. Die über Leitung 3 aus dem Abscheider D1 abgezogene flüssige Kältemittelfraktion liegt üblicherweise im Siedezustand vor. Eine siedende Kältemittelflüssigkeit erleidet jedoch in der Regel einen Druckverlust durch Reibung und/oder aufgrund einer steigenden Rohrleitungsführung. Dieser Druckverlust führt zwangsweise zu einem teilweisen Ausgasen leichter Bestandteile dieser Kältemittelfraktion. Es kommt daher zu der unerwünschten Ausbildung einer Zweiphasenströmung. Dies kann zu instabilen Strömungsverhältnissen in den Rohrleitungen und/oder zu Fehlverteilungen - hierunter sind ungleiche Anteile von Gas und Flüssigkeit in parallelen Strömungswegen, beispielsweise von Wärmetauschern, zu verstehen - in den nachfolgenden Apparaten führen.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen anzugeben, das die vorgenannten Nachteile vermeidet.
Zur Lösung dieser Aufgabe wird ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion vorgeschlagen, das dadurch gekennzeichnet ist, dass die flüssige Fraktion, die auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird, vor dem indirekten Wärmetausch mit der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion abgekühlt wird.
Aufgrund der erfindungsgemäß vorzusehenden Ab- bzw. Unterkühlung der flüssigen Kältemittelfraktion können die Entstehung eines Zweiphasenstromes und die mit ihm verbundenen Nachteile wirkungsvoll vermieden werden.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Verflüssigen eines Kohlenwasserstoff-reichen Fraktion, die Gegenstände der abhängigen Patentansprüche darstellen, sind dadurch gekennzeichnet, dass
die flüssige Fraktion, die auf ein höheres Temperaturniveau abgekühlt wird, vor dem indirekten Wärmetausch mit der zu verflüssigenden Kohlenwasserstoff- reichen Fraktion auf eine Temperatur abgekühlt wird, die zwischen 2 und 15 0C, vorzugsweise zwischen 4 und 7 0C, unterhalb der Temperatur, die das verdichtete Kältemittelgemisch bei der Auftrennung in eine gasförmige und eine flüssige Fraktion aufweist, liegt,
die Abkühlung der flüssigen Fraktion, die auf ein höheres Temperaturniveau abgekühlt wird, im indirekten Wärmetausch gegen die oder eine siedende Fraktion, die aus der einer nachfolgenden Verdichtungsstufe nachgeschalteten Auftrennung in eine gasförmige und eine flüssige Fraktion stammt, erfolgt,
- der Wärmetausch zwischen der zu verflüssigenden Kohlenwasserstoff-reichen
Fraktion und dem Kältemittelgemisch in einem Mehrstromwärmetauscher, der vorzugsweise als Plattenwärmetauscher oder gewickelter Wärmetauscher ausgebildet ist, erfolgt und
- zumindest zeitweilig wenigstens ein Teilstrom derjenigen Fraktion, die auf das niedrigste Temperaturniveau abgekühlt wird, entspannt und der entspannten Flüssigfraktion derjenigen Fraktion, die auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird, zugemischt wird.
Das erfindungsgemäße Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion sowie weitere Ausgestaltungen desselben seien nachfolgend anhand des in der Figur 2 dargestellten Ausführungsbeispieles näher erläutert. Bei der Beschreibung des in der Figur 2 dargestellten Ausführungsbeispieles wird nachfolgend lediglich auf die Unterschiede zu der in der Figur 1 dargestellten Verfahrensführung eingegangen.
Erfindungsgemäß ist nunmehr ein Wärmetauscher E3 vorgesehen, der einen Wärmeaustausch zwischen den beiden aus den Abscheidern D1 und D2 über die Leitungen 3 und 6 abgezogenen Flüssigfraktionen ermöglicht. Da die über Leitung 6 aus dem Abscheider D2 abgezogene Flüssigfraktion im Ventil c auf den Druck des Abscheiders D1 entspannt wird, kühlt sich die Flüssigfraktion durch Teilverdampfung auf eine Temperatur ab, die unterhalb der in den Nachkühlern E1 und E2 erreichbaren Prozesstemperatur liegt. Die derart abgekühlte, nach dem Ventil c in der Leitung 6 vorliegende Flüssigfraktion kühlt bzw. unterkühlt nunmehr im Wärmetauscher E3 die über Leitung 3 aus dem Abscheider D1 abgezogene Flüssigfraktion. Hierbei erfolgt eine Ab- bzw. Unterkühlung der Flüssigfraktion 3 um 2 bis 15 0C, vorzugsweise um 4 bis 7 0C, unter der in den Nachkühlern E1 und E2 erreichbaren Prozesstemperatur.
Die derart abgekühlte, über Leitung 3 aus dem Abscheider D1 abgezogene Flüssigfraktion kann nunmehr dem Wärmetauscher E zugeführt und durch ihn geführt werden, ohne dass die eingangs beschriebenen nachteiligen Effekte auftreten.
Der Wärmetauscher E3 ist vorzugsweise als Gegenstromwärmetauscher, beispielsweise als Geradrohrtauscher, ausgebildet. In vorteilhafter weise wird in der Praxis der Wärmetauscher E3 derart angeordnet, dass er unterhalb des Ventils c und oberhalb des Abscheiders D1 angeordnet ist. Dieses Gefälle zwischen Ventil c, Wärmetauscher E3 und Abscheider D1 führt dazu, die Zweiphasenströmung des Stromes 6 nach Entspannung im Ventil c stabil zu halten.
Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Fraktion weiterbildend wird vorgeschlagen, zumindest zeitweilig wenigstens einen Teilstrom derjenigen Fraktion, die auf das niedrigste Temperaturniveau abgekühlt wird, zu entspannen und der entspannten Flüssigfraktion derjenigen Fraktion, die auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird, zuzumischen. Eine derartige Verfahrensführung wird bspw. dadurch realisiert, dass über die Leitungen 11 und/oder 12 Kältemittelgemisch-Teilströme am kalten Ende des Wärmetausches E bzw. bei einer geeigneten Zwischentemperatur abgezogen, im Ventil d bzw. e entspannt und der entspannten Flüssigfraktion 9 zugemischt werden. Eine geeignete Zwischentemperatur liegt dann vor, wenn die Kältemittelfraktion 5 eine Unterkühlung von wenigstens 5 0C1 vorzugsweise von wenigstens 10 0C gegenüber dem Siedezustand aufweist. In der Praxis wird in den meisten Fällen entweder Ventil d oder e vorgesehen werden. Eine derartige Verfahrensführung ermöglicht es, die Regelung der Temperatur bzw. des Temperaturprofils im Wärmetausches E zu verbessern.
Die in der Figur 2 dargestellte Ausführungsform hat aufgrund der bei ihr realisierten Integration der Unterkühlung der Flüssigfraktion 3 in die Verdichtung V1/V2 den Vorteil, dass eine Temperatur der Flüssigfraktion 3 vor der Zuführung in den Wärmetauscher E erreicht werden kann, die unterhalb derjenigen Temperatur liegt, die im Falle einer Abkühlung gegen Umgebungsluft oder Kühlwasser realisierbar wäre, ohne dass es hierzu einer zusätzlichen Kühlung durch eine separate Kälteanlage und/oder durch einen anderen kalten Prozessstrom bedarf.
Die in der Figur 2 dargestellte Verfahrensweise ermöglicht die wünschenswerte Trennung zwischen der im Wärmetauscher E3 realisierten Unterkühlung des Kältemittels 3 und dem Betrieb anderer Anlagenteile. Diese Trennung ist insbesondere beim Anfahren des Verflüssigungsprozesses von Bedeutung, da kalte Prozessströme üblicherweise erst nach dem Anfahren des Prozesses verfügbar sind, somit also nicht von Anfang an zur Unterkühlung herangezogen werden können.
Das erfindungsgemäße Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion ermöglicht bei geringem konstruktiven Mehraufwand - es ist lediglich ein zusätzlicher Wärmetauscher E3 vorzusehen - die Beseitigung der eingangs beschriebenen Probleme, wie sie bei den zum Stand der Technik zählenden Verflüssigungsprozessen auftreten.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion, wobei die Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes erfolgt, das Kältemittelgemisch wenigstens zweistufig verdichtet und nach jeder Verdichtungsstufe in eine gasförmige und eine flüssige Fraktion aufgetrennt wird, wobei die gasförmige Fraktion der letzten Verdichtungsstufe auf das niedrigste Temperaturniveau abgekühlt wird, während die flüssige Fraktion der oder zumindest einer der Zwischenverdichtungsstufen auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird, dadurch gekennzeichnet, dass die flüssige Fraktion (3), die auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird, vor dem indirekten Wärmetausch (E) mit der zu verflüssigenden Kohlenwasserstoff- reichen Fraktion (20) abgekühlt wird (E3).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die flüssige Fraktion (3), die auf ein höheres Temperaturniveau abgekühlt wird, vor dem indirekten Wärmetausch (E) mit der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion (20) auf eine Temperatur abgekühlt wird (E3), die zwischen 2 und 15 0C, vorzugsweise zwischen 4 und 7 0C, unterhalb der Temperatur, die das verdichtete Kältemittelgemisch bei der Auftrennung (D1) in eine gasförmige und eine flüssige Fraktion aufweist, liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abkühlung (E3) der flüssigen Fraktion (3), die auf ein höheres Temperaturniveau abgekühlt wird, im indirekten Wärmetausch gegen die oder eine siedende Fraktion (6), die aus der einer nachfolgenden Verdichtungsstufe (V2) nachgeschalteten Auftrennung (D2) in eine gasförmige und eine flüssige Fraktion stammt, erfolgt.
4. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Wärmetausch zwischen der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion (20) und dem Kältemittelgemisch (3, 5, 7, 9) in einem Mehrstromwärmetauscher (E), der vorzugsweise als Plattenwärmetauscher oder gewickelter Wärmetauscher ausgebildet ist, erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest zeitweilig wenigstens ein Teilstrom (11 , 12) derjenigen Fraktion (5, 7), die auf das niedrigste Temperaturniveau abgekühlt wird (E), entspannt (d, e) und der entspannten Flüssigfraktion derjenigen Fraktion (9), die auf ein oberhalb des niedrigsten Temperaturniveaus liegendes Temperaturniveau abgekühlt wird (E), zugemischt wird.
PCT/EP2010/002034 2009-04-02 2010-03-30 Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion WO2010112206A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2010230576A AU2010230576B2 (en) 2009-04-02 2010-03-30 Method for liquefying a hydrocarbon-rich fraction
BRPI1013386A BRPI1013386A2 (pt) 2009-04-02 2010-03-30 processo para liquefazer uma fração rica em hidrocarboneto
CN201080015211.2A CN102575896B (zh) 2009-04-02 2010-03-30 液化富烃馏分的方法
RU2011144360/06A RU2538156C2 (ru) 2009-04-02 2010-03-30 Способ сжижения фракции, обогащенной углеводородами
NO20111413A NO20111413A1 (no) 2009-04-02 2011-10-18 Fremgangsmate for kondensasjon av en hydrokarbonrik fraksjon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009016046.9 2009-04-02
DE102009016046A DE102009016046A1 (de) 2009-04-02 2009-04-02 Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion

Publications (2)

Publication Number Publication Date
WO2010112206A2 true WO2010112206A2 (de) 2010-10-07
WO2010112206A3 WO2010112206A3 (de) 2012-10-11

Family

ID=42675003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/002034 WO2010112206A2 (de) 2009-04-02 2010-03-30 Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion

Country Status (11)

Country Link
CN (1) CN102575896B (de)
AR (1) AR076136A1 (de)
AU (1) AU2010230576B2 (de)
BR (1) BRPI1013386A2 (de)
CL (1) CL2011002391A1 (de)
DE (1) DE102009016046A1 (de)
MY (1) MY161644A (de)
NO (1) NO20111413A1 (de)
PE (1) PE20120848A1 (de)
RU (1) RU2538156C2 (de)
WO (1) WO2010112206A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323880B2 (en) 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011010633A1 (de) * 2011-02-08 2012-08-09 Linde Ag Verfahren zum Abkühlen eines ein- oder mehrkomponentigen Stromes
DE102014018412A1 (de) * 2014-12-09 2016-06-09 Linde Aktiengesellschaft Abfackelfreies Anfahren eines Erdgasverflüssigungsprozesses
DE102015004125A1 (de) * 2015-03-31 2016-10-06 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
US10753676B2 (en) 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process
US10852059B2 (en) * 2017-09-28 2020-12-01 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325231A (en) * 1976-06-23 1982-04-20 Heinrich Krieger Cascade cooling arrangement
FR2540612A1 (fr) * 1983-02-08 1984-08-10 Air Liquide Procede et installation de refroidissement d'un fluide, notamment de liquefaction de gaz naturel
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
DE19722490C1 (de) * 1997-05-28 1998-07-02 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
GB9712304D0 (en) * 1997-06-12 1997-08-13 Costain Oil Gas & Process Limi Refrigeration cycle using a mixed refrigerant
GB2326464B (en) * 1997-06-12 2001-06-06 Costain Oil Gas & Process Ltd Refrigeration cycle using a mixed refrigerant
US6347531B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Single mixed refrigerant gas liquefaction process
US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
US6742357B1 (en) * 2003-03-18 2004-06-01 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
US20080173043A1 (en) * 2005-03-09 2008-07-24 Sander Kaart Method For the Liquefaction of a Hydrocarbon-Rich Stream
CN201417042Y (zh) * 2009-04-27 2010-03-03 赵德泉 简化的混合制冷剂液化流程的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323880B2 (en) 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system

Also Published As

Publication number Publication date
BRPI1013386A2 (pt) 2016-03-29
CN102575896B (zh) 2015-04-22
CN102575896A (zh) 2012-07-11
AR076136A1 (es) 2011-05-18
DE102009016046A1 (de) 2010-10-07
RU2538156C2 (ru) 2015-01-10
WO2010112206A3 (de) 2012-10-11
CL2011002391A1 (es) 2012-02-10
MY161644A (en) 2017-04-28
RU2011144360A (ru) 2013-05-10
PE20120848A1 (es) 2012-07-11
AU2010230576A1 (en) 2011-09-15
NO20111413A1 (no) 2011-10-18
AU2010230576B2 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
WO2006094675A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102010011052A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE102010044646A1 (de) Verfahren zum Abtrennen von Stickstoff und Wasserstoff aus Erdgas
WO2010112206A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE102007010032A1 (de) Verfahren zum Abtrennen von Stickstoff aus verflüssigtem Erdgas
DE102015001858A1 (de) Kombinierte Abtrennung von Schwer- und Leichtsiedern aus Erdgas
EP2484999A2 (de) Verfahren zum Abkühlen eines ein-oder mehrkomponentigen Stromes
DE102005010054A1 (de) Verfahren zum gleichzeitigen Gewinnen einer Helium- und einer Stickstoff-Reinfraktion
DE102009008230A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102005029275A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102009015766A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
EP2669613A1 (de) Verfahren und Vorrichtung zur Stickstoffverflüssigung
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
DE102009004109A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102007047147A1 (de) Verfahren zur Heliumanreicherung
DE102009009477A1 (de) Verfahren zum Abtrennen von Stickstoff
WO2006094676A1 (de) Helium-gewinnung bei lng-anlagen
WO2016155863A1 (de) Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion
WO2013164069A2 (de) Verfahren zum rückverflüssigen einer methan-reichen fraktion
WO1999058917A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102015007529A1 (de) Verfahren und Anlage zur Abtrennung von Methan aus einem methanhaltigen Synthesegasstrom
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102004036708A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015211.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712899

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010230576

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010230576

Country of ref document: AU

Date of ref document: 20100330

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 001669-2011

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 2011002391

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011144360

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10712899

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013386

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013386

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110930