WO2016155863A1 - Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion - Google Patents

Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion Download PDF

Info

Publication number
WO2016155863A1
WO2016155863A1 PCT/EP2016/000353 EP2016000353W WO2016155863A1 WO 2016155863 A1 WO2016155863 A1 WO 2016155863A1 EP 2016000353 W EP2016000353 W EP 2016000353W WO 2016155863 A1 WO2016155863 A1 WO 2016155863A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
fraction
hydrocarbon
column
liquefied
Prior art date
Application number
PCT/EP2016/000353
Other languages
English (en)
French (fr)
Inventor
Heinz Bauer
Michael Warter
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to MX2017012533A priority Critical patent/MX2017012533A/es
Priority to MYPI2017703662A priority patent/MY184147A/en
Priority to RU2017134420A priority patent/RU2690508C2/ru
Priority to CN201680019896.5A priority patent/CN107532847B/zh
Priority to CA2981084A priority patent/CA2981084C/en
Priority to US15/560,789 priority patent/US10508244B2/en
Priority to AU2016239338A priority patent/AU2016239338B2/en
Publication of WO2016155863A1 publication Critical patent/WO2016155863A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/06Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas by cooling or compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Definitions

  • the invention relates to a method for obtaining a liquefied
  • Hydrocarbon-rich fraction (product fraction), which has a nitrogen content of - £ 1 mol%, wherein the hydrocarbon-rich fraction against a
  • Refrigeration circuit is liquefied and supercooled and then subjected to a rectificatory nitrogen separation.
  • refrigeration cycle is to be understood in the following as meaning any refrigeration system and any refrigeration cycle by means of which a hydrocarbon-rich fraction can be liquefied and subsequently subcooled.
  • Nitrogen-containing natural gases require in their liquefaction appropriate measures to increase the nitrogen concentration in LNG (Liquefied Natural Gas) does not exceed 1 mol%, as in this case unwanted and dangerous stratification of LNG different Density in the LNG storage tank can arise.
  • a known method for discharging nitrogen is to withdraw a fuel gas stream at the cold end of the natural gas liquefaction process, which has a significantly increased nitrogen content compared to the raw gas.
  • the LNG can reach its specification of a maximum of 1 mol% of nitrogen, even if the nitrogen concentration in the raw gas is well over 1 mol%. If a gas turbine is to reduce at least a subset of this fuel gas, so here too, depending on the design of the gas turbine, a maximum allowable nitrogen concentration of 15 to 45 mol% is observed.
  • a highly concentrated nitrogen stream containing> 99 mol% nitrogen is usually withdrawn and discharged directly to the atmosphere.
  • This highly concentrated nitrogen stream can be separated by separating the fuel gas in a so-called NRU (Nitrogen Rejection Unit) after the actual natural gas liquefaction process or by means of an integrated N 2 / CH 4 separation in the natural gas liquefaction process, as is known, for example, from US Pat. No. 7,520,143.
  • NRU Nonrogen Rejection Unit
  • N 2 / CH 4 separation a highly concentrated nitrogen fraction, a nitrogen-hydrocarbon mixture and an LNG product fraction are withdrawn from the separation process.
  • nitrogen is separated off in a column from the entire crude gas stream and discharged in a technically pure manner. This strong nitrogen enrichment starting from the nitrogen content in the raw gas to typically 2:99 mol%
  • Nitrogen which takes place because of the increased pressure in a bad gas-liquid equilibrium, requires a comparatively high and thus energy-intensive separation work. In many cases, however, it is desirable to deliver no further fraction in addition to LNG and a highly concentrated nitrogen fraction.
  • the object of the present invention is to provide a generic method for recovering a liquefied hydrocarbon-rich product fraction having a nitrogen content of ⁇ 1 mol%, wherein, while maintaining low investment and operating costs, the delivery of a nitrogen-hydrocarbon mixture avoided is and next to the liquefied
  • a return collector is arranged, from which a gaseous and / or liquid high-purity nitrogen stream is withdrawn.
  • Hydrocarbon-rich product fraction which has a nitrogen content of ⁇ 1 mol%, allows the decomposition of the hydrocarbon-rich fraction to be liquefied or liquefied natural gas into specification LNG and so-called.
  • Technically pure nitrogen Other product (Ström) s, in particular nitrogen-methane mixtures do not occur.
  • the nitrogen stripping column reduced at a relatively low pressure, which is advantageous for the gas-liquid equilibrium and thus for the separation cost, the nitrogen content to ⁇ 1 mol% in the withdrawn from the bottom of the nitrogen stripping column product fraction without the purity of the withdrawn at the top of this column nitrogen-enriched fraction special requirements are made in terms of their nitrogen content.
  • This nitrogen-enriched fraction only allows a subset of the hydrocarbon-rich fraction to be liquefied.
  • the liquefied and supercooled hydrocarbon-rich fraction (2) is expanded to a pressure between 1.1 and 2.0 bar, preferably between 1.15 and 1.5 bar, - the nitrogen-enriched fraction withdrawn at the top of the nitrogen stripping column is compressed to a pressure between 25 and 50 bar, preferably between 30 and 45 bar, the high pressure nitrogen column is operated at a pressure between 20 and 30 bar, preferably between 22 and 27 bar, the amount of Aufkochstromes between 10 and 70 %, preferably between 20 and 50% of the amount of compressed nitrogen-enriched fraction, the high purity nitrogen stream withdrawn from the recycle collector has a nitrogen content of at least 98 mole%, preferably at least 99 mole%, at the top of the nitrogen stripping column withdrawn nitrogen-enriched fraction has a nitrogen content between 10 and 60 mol%, preferably between 30 and 50 mol%, provided that at least a point of the process fuel gas is required, as fuel gas, a partial flow of the hydrocarbon-rich
  • Fraction and / or a partial stream of the compressed, cooled nitrogen-enriched fraction is used.
  • Hydrocarbon-rich product fraction and further advantageous embodiments thereof are explained in more detail with reference to the embodiment shown in the figure 1.
  • the liquefied hydrocarbon-rich fraction 1 is in the
  • Refrigeration circuit K shown only in schematic form. Its structure is not important for the realization of the method according to the invention. It must merely be designed so that it has sufficient cooling capacity for the liquefaction and supercooling of the hydrocarbon-rich fraction and for the liquefaction and supercooling of the nitrogen-enriched fraction 5 withdrawn at the top of the nitrogen stripping column T1, which will be discussed in more detail below. can provide.
  • the illustrated three heat exchangers E1 to E3 any combinations of heat exchangers can be realized, which is why, for example, the use of a so-called. Wound heat exchanger is possible.
  • the supercooled hydrocarbon-rich fraction 2 has a temperature between -150 and -160 ° C. It is in the valve V1 to a pressure between 1, 1 and 2.0 bar, preferably relaxed between 1, 15 and 1, 5 bar and a nitrogen stripping T1 in the head area as reflux 3 abandoned. Via the heat exchanger or reboiler E4, the heating of which will be explained below, a nitrogen content of ⁇ 1 mol% is set in the bottom of the nitrogen stripping column T1. Thus, from the bottom of the nitrogen stripping column T1, a product fraction 4 having a nitrogen content of ⁇ 1 mol% can be withdrawn. This product fraction 4 is then fed to its further use, for example intermediate storage in an LNG storage tank.
  • a nitrogen-enriched fraction 5 is withdrawn, which has a higher nitrogen content compared to the liquefied hydrocarbon-rich fraction 3.
  • Their nitrogen content is between 10 and 60 mol%, preferably between 30 and 50 mol%. It is compressed in the compressor C1 to a pressure between 25 and 50 bar, preferably between 30 and 45 bar.
  • the liquefied nitrogen-enriched fraction 7 is expanded in the valve V2 and fed via line 8 of the high-pressure nitrogen column T2. This is operated at a pressure of 20 to 30 bar, preferably from 22 to 27 bar.
  • Top condenser of the high-pressure nitrogen column T2 is used for the above-described heat exchanger E4, in which condensing nitrogen from the high-pressure nitrogen column T2 covers the heat demand of aufkochenden in the bottom of the nitrogen stripping T1 T1 hydrocarbon-rich stream or LNGs.
  • a return collector D1 is arranged, from which a gaseous and / or a liquid high-purity nitrogen stream 10 is withdrawn or be. This is so-called technical pure nitrogen, which has a nitrogen content of at least 98 mol%, preferably of at least 99 mol%.
  • the high-pressure nitrogen column T2 is supplied at a suitable temperature, a partial flow of the cooled against the refrigeration circuit K nitrogen-enriched fraction 5/6 via the valve V3 as Aufkochstrom.
  • the amount of Aufkochstromes 9 is preferably between 10 and 70%, in particular between 20 and 50% of the amount of compressed nitrogen-enriched fraction 6.
  • the Aufkochstrom 9 can be withdrawn between the heat exchangers E1 and E2, but also between the heat exchangers E2 and E3 ,
  • a nitrogen-depleted fraction 11 is withdrawn, which has a lower compared to the nitrogen-enriched fraction 5 nitrogen content. It is expanded in the valve V4 and fed to the nitrogen stripping column T1 below the feed point of the liquefied hydrocarbon-rich fraction 3.
  • a partial stream of the hydrocarbon-rich fraction 1 to be liquefied can be used as fuel gas and / or a partial stream of the compressed, nitrogen-enriched fraction 6 to be cooled.

Abstract

Es wird ein Verfahren zum Gewinnen einer verflüssigten Kohlenwasserstoff-reichen Fraktion (Produktfraktion), die einen Stickstoffgehalt von ≤ 1 Mol-% aufweist, beschrieben, wobei die Kohlenwasserstoff-reiche Fraktion gegen einen Kältekreislauf verflüssigt und unterkühlt und anschließend einer rektifikatorischen Stickstoff-Abtrennung unterworfen wird. Erfindungsgemäß wird die verflüssigte und unterkühlte Kohlenwasserstoff-reiche Fraktion (2) entspannt (V1) und einer Stickstoff-Strippkolonne (T1) zugeführt, aus deren Sumpf die Produktfraktion (4) abgezogen, aus deren Kopf eine Stickstoffangereicherte Fraktion (5) abgezogen, verdichtet (C1 ), gegen den Kältekreislauf (K) verflüssigt und unterkühlt (E1 - E3), entspannt (V2) und einer Hochdruck-Stickstoff-Kolonne (T2) zugeführt, ein Teilstrom der gegen den Kältekreislauf (K) abgekühlten Stickstoff-angereicherten Fraktion der Hochdruck-Stickstoff-Kolonne (T2) als Aufkochstrom (9) zugeführt und aus deren Sumpf eine Stickstoff-abgereicherte Fraktion (11) abgezogen und der Strippkolonne (T1) zugeführt, wobei die beiden Kolonnen (T1, T2) über einen Wärmetauscher (E4), der als Aufkocher der Stickstoff-Strippkolonne (T1) und als Kopfkondensator der Hochdruck-Stickstoff-Kolonne (T2) dient, thermisch gekoppelt sind und zwischen den beiden Kolonnen (T1, 12) ein Rücklaufsammler (D1) angeordnet ist, aus dem ein gasförmiger und/oder flüssiger hochreiner Stickstoffstrom abgezogen wird.

Description

Beschreibung
Verfahren zum Abtrennen von Stickstoff aus einer Kohlenwasserstoff-reichen Fraktion
Die Erfindung betrifft ein Verfahren zum Gewinnen einer verflüssigten
Kohlenwasserstoff-reichen Fraktion (Produktfraktion), die einen Stickstoffgehalt von -£ 1 Mol-% aufweist, wobei die Kohlenwasserstoff-reiche Fraktion gegen einen
Kältekreislauf verflüssigt und unterkühlt und anschließend einer rektifikatorischen Stickstoff-Abtrennung unterworfen wird.
Unter dem Begriff "Kältekreislauf' sei im Folgenden jede Kälteanlage und jeder Kältekreislauf zu verstehen, mittels derer bzw. dessen eine Kohlenwasserstoff-reiche Fraktion verflüssigt und anschließend unterkühlt werden kann. Lediglich beispielhaft genannt seien Kältemittel(gemisch)kreisläufe mit und ohne Phasenwechsel,
Expanderkreisläufe, Absorptionkälteanlagen, etc. Stickstoff-haltige Erdgase erfordern bei ihrer Verflüssigung geeignete Maßnahmen, um die Stickstoff-Konzentration im LNG (Liquefied Natural Gas) nicht über 1 Mol-% anwachsen zu lassen, da in diesem Fall unerwünschte und gefährliche Schichtungen von LNG unterschiedlicher Dichte im LNG-Lagertank entstehen können. Eine bekannte Methode zur Ausschleusung von Stickstoff besteht darin, einen Brenngasstrom am kalten Ende des Erdgas-Verflüssigungsprozesses abzuziehen, der einen gegenüber dem Rohgas deutlich erhöhten Stickstoffgehalt aufweist. Somit kann das LNG seine Spezifikation von maximal 1 Mol-% Stickstoff erreichen, auch wenn die Stickstoff- Konzentration im Rohgas deutlich über 1 Mol-% liegt. Wenn eine Gasturbine wenigstens eine Teilmenge dieses Brenngases abnehmen soll, so ist auch hier je nach Bauart der Gasturbine eine maximal zulässige Stickstoff-Konzentration von 15 bis 45 Mol-% zu beachten.
Liegt der Stickstoffgehalt im Erdgas jedoch so hoch, dass nicht gleichzeitig der maximal zulässige Stickstoffgehalt im LNG und im Brenngas eingehalten werden kann, so wird üblicherweise ein hochkonzentrierter Stickstoffstrom, der > 99 Mol-% Stickstoff enthält, abgezogen und direkt an die Atmosphäre abgegeben. Dieser hochkonzentrierte Stickstoffstrom kann durch Auftrennung des Brenngases in einer sog. NRU (Nitrogen Rejection Unit) nach dem eigentlichen Erdgasverflüssigungsprozess oder mittels einer in den Erdgasverflüssigungsprozess integrierten N2/CH4-Trennung, wie sie bspw. aus dem US-Patent 7,520,143 bekannt ist, erfolgen. Bei dieser
N2/CH4-T rennung werden eine hochkonzentrierte Stickstofffraktion, ein Stickstoff- Kohlenwasserstoff-Gemisch und eine LNG-Produktfraktion aus dem Trennprozess abgezogen. Hierbei wird aus dem gesamten Rohgasstrom Stickstoff in einer Kolonne abgetrennt und technisch rein abgegeben. Diese starke Stickstoff-Anreicherung ausgehend vom Stickstoffgehalt im Rohgas bis auf typischerweise 2: 99 Mol-%
Stickstoff, die wegen des erhöhtes Drucks bei einem schlechten Gas-Flüssigkeits- Gleichwicht stattfindet, erfordert eine vergleichsweise hohe und damit energieintensive Trennarbeit. In vielen Fällen ist es jedoch erwünscht, neben LNG und einer hochkonzentrierten Stickstofffraktion keine weitere Fraktion abzugeben.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Gewinnen einer verflüssigten Kohlenwasserstoff-reichen Produktfraktion, die einen Stickstoffgehalt von < 1 Mol-% aufweist, anzugeben, bei dem unter Beibehaltung niedriger Investitions- und Betriebskosten die Abgabe eines Stickstoff- Kohlenwasserstoff-Gemisches vermieden wird und neben der verflüssigten
Kohlenwasserstoff-reichen Produktfraktion nur eine hochkonzentrierte
Stickstofffraktion, die einen Stickstoffgehalt von wenigstens 98 Mol-%, vorzugsweise > 99 Mol-% aufweist, anfällt.
Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Gewinnen einer verflüssigten Kohlenwasserstoff-reichen Produktfraktion, die einen Stickstoffgehalt von < 1 Mol-% aufweist, vorgeschlagen, das dadurch gekennzeichnet ist, dass
a) die verflüssigte und unterkühlte Kohlenwasserstoff-reiche Fraktion entspannt und einer Stickstoff-Strippkolonne zugeführt,
b) aus deren Sumpf die Produktfraktion abgezogen,
c) aus deren Kopf eine Stickstoff-angereicherte Fraktion abgezogen, verdichtet, gegen den Kältekreislauf verflüssigt und unterkühlt, entspanntund einer Hochdruck-Stickstoff-Kolonne zugeführt,
d) ein Teilstrom der gegen den Kältekreislauf abgekühlten Stickstoffangereicherten Fraktion der Hochdruck-Stickstoff-Kolonne als Aufkochstrom zugeführt und
e) aus deren Sumpf eine Stickstoff-abgereicherte Fraktion abgezogen und der Strippkolonne zugeführt wird, f) wobei die beiden Kolonnen über einen Wärmetauscher, der als Aufkocher der Stickstoff-Strippkolonne und als Kopfkondensator der Hochdruck-Stickstoff- Kolonne dient, thermisch gekoppelt sind und
g) zwischen den beiden Kolonnen ein Rücklaufsammler angeordnet ist, aus dem ein gasförmiger und/oder flüssiger hochreiner Stickstoffstrom abgezogen wird.
Das erfindungsgemäße Verfahren zum Gewinnen einer verflüssigten
Kohlenwasserstoff-reichen Produktfraktion, die einen Stickstoffgehalt von < 1 Mol-% aufweist, ermöglicht die Zerlegung der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion bzw. des zu verflüssigenden Erdgases in spezifikationsgerechtes LNG sowie sog. technisch reinen Stickstoff. Weitere Produkt(ström)e, insbesondere Stickstoff- Methan-Mischungen fallen nicht an. Die Stickstoff-Strippkolonne reduziert bei einem vergleichsweise niedrigen Druck, der für das Gas-Flüssig-Gleichgewicht und somit für den Trennaufwand vorteilhaft ist, den Stickstoffgehalt auf ί 1 Mol-% in der aus dem Sumpf der Stickstoff-Strippkolonne abgezogenen Produktfraktion, ohne dass an die Reinheit der am Kopf dieser Kolonne abgezogenen Stickstoff-angereicherten Fraktion besondere Anforderungen in Bezug auf deren Stickstoffgehalt gestellt werden. Diese Stickstoff-angereicherte Fraktion stellt nur noch eine Teilmenge der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion darf. Da nur diese Stickstoff-angereicherte Fraktion in der Hochdruck-Stickstoff-Kolonne der endgültigen Stickstoffanreicherung auf > 98 Mol-% unterworfen wird, wird der apparative und energetische Aufwand im Vergleich zu den aus dem Stand der Technik bekannten Verfahren wesentlich reduziert. Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum
Gewinnen einer verflüssigten Kohlenwasserstoff-reichen Produktfraktion, die
Gegenstände der abhängigen Patentansprüche darstellen, sind dadurch
gekennzeichnet, dass die zu verflüssigende Kohlenwasserstoff-reiche Fraktion einen
Stickstoffgehalt von wenigstens 2 Mol-%, vorzugsweise von wenigstens 3 Mol-% aufweist, die verflüssigte und unterkühlte Kohlenwasserstoff-reiche Fraktion (2) auf einen Druck zwischen 1 ,1 und 2,0 bar, vorzugsweise zwischen 1 ,15 und 1 ,5 bar entspannt wird, - die am Kopf der Stickstoff-Strippkolonne abgezogene Stickstoff-angereicherte Fraktion auf einen Druck zwischen 25 und 50 bar, vorzugsweise zwischen 30 und 45 bar verdichtet wird, die Hochdruck-Stickstoff-Kolonne bei einem Druck zwischen 20 und 30 bar, vorzugsweise zwischen 22 und 27 bar betrieben wird, die Menge des Aufkochstromes zwischen 10 und 70 %, vorzugsweise zwischen 20 und 50 % der Menge der verdichteten Stickstoff-angereicherten Fraktion beträgt, der aus dem Rücklaufsammler abgezogene hochreine Stickstoffstrom einen Stickstoffgehalt von wenigstens 98 Mol-%, vorzugsweise von wenigstens 99 Mol-% aufweist, die am Kopf der Stickstoff-Strippkolonne abgezogene Stickstoff-angereicherte Fraktion einen Stickstoffgehalt zwischen 10 und 60 Mol-%, vorzugsweise zwischen 30 und 50 Mol-% aufweist, sofern an wenigstens einer Stelle des Verfahrens Brenngas benötigt wird, als Brenngas ein Teilstrom der zu verflüssigenden Kohlenwasserstoff-reichen
Fraktion und/oder ein Teilstrom der verdichteten, abzukühlenden Stickstoffangereicherten Fraktion verwendet wird.
Das erfindungsgemäße Verfahren zum Gewinnen einer verflüssigten
Kohlenwasserstoff-reichen Produktfraktion sowie weitere vorteilhafte Ausgestaltungen desselben seien anhand des in den Figur 1 dargestellten Ausführungsbeispieles näher erläutert.
Die zu verflüssigende Kohlenwasserstoff-reiche Fraktion 1 wird in den
Wärmetauschern bzw. Wärmetauscherbereichen E1 , E2 und E3 gegen einen Kältekreislauf verflüssigt und unterkühlt. Der Übersichtlichkeit halber ist der
Kältekreislauf K lediglich in schematisierter Form dargestellt. Sein Aufbau ist für die Realisierung des erfindungsgemäßen Verfahrens nicht von Bedeutung. Er muss lediglich derart ausgelegt sein, dass er ausreichend Kälteleistung für die Verflüssigung und Unterkühlung der Kohlenwasserstoff-reichen Fraktion sowie für die Verflüssigung und Unterkühlung der am Kopf der Stickstoff-Strippkolonne T1 abgezogenen Stickstoffangereicherten Fraktion 5, auf die im Folgenden noch näher eingegangen werden wird, bereitstellen kann. Bei der in der Figur 1 dargestellten Ausführungsform erfolgen die Verflüssigung und Unterkühlung der Kohlenwasserstoff-reichen Fraktion 1 sowie der vorgenannten Stickstoff-angereicherten Fraktion 5 in drei Wärmetauschern bzw.
Wärmetauscherbereichen E1 bis E3, wobei der Wärmetauscher E1 der Abkühlung, Wärmetauscher E2 der Verflüssigung und Wärmetauscher E3 der Unterkühlung der vorgenannten Fraktionen dienen. Anstelle der dargestellten drei Wärmetauscher E1 bis E3 sind beliebige Kombinationen von Wärmetauschern realisierbar, weswegen bspw. auch die Verwendung eines sog. gewickelten Wärmetauschers möglich ist.
Die unterkühlte Kohlenwasserstoff-reiche Fraktion 2 weist eine Temperatur zwischen -150 und -160 °C auf. Sie wird im Ventil V1 auf einen Druck zwischen 1 ,1 und 2,0 bar, vorzugsweise zwischen 1 ,15 und 1 ,5 bar entspannt und einer Stickstoff-Strippkolonne T1 in deren Kopfbereich als Rücklauf 3 aufgegeben. Über den Wärmetauscher bzw. Aufkocher E4, dessen Beheizung nachfolgend erläutert werden wird, wird im Sumpf der Stickstoff-Strippkolonne T1 ein Stickstoffgehalt von < 1 Mol-% eingestellt. Somit kann aus dem Sumpf der Stickstoff-Strippkolonne T1 eine Produktfraktion 4, die einen Stickstoffgehalt von < 1 Mol-% aufweist, abgezogen werden. Diese Produktfraktion 4 wird sodann ihrer weiteren Verwendung, beispielsweise einer Zwischenlagerung in einem LNG-Speicherbehälter, zugeführt.
Am Kopf der Stickstoff-Strippkolonne T1 wird eine Stickstoff-angereicherte Fraktion 5 abgezogen, die einen im Vergleich zu der verflüssigten Kohlenwasserstoff-reichen Fraktion 3 höheren Stickstoffgehalt aufweist. Ihr Stickstoffgehalt beträgt zwischen 10 und 60 Mol-%, vorzugsweise zwischen 30 und 50 Mol-%. Sie wird im Verdichter C1 auf einen Druck zwischen 25 und 50 bar, vorzugsweise zwischen 30 und 45 bar verdichtet. Im nachgeschalteten Wärmetauscher E5 erfolgt eine Abführung der
Verdichtungswärme und Abkühlung der verdichteten Stickstoff-angereicherten Fraktion 6 auf Umgebungstemperatur. Anschließend wird sie wie die Kohlenwasserstoff-reiche Fraktion 1 in den Wärmetauschern E1 bis E3 auf eine Temperatur zwischen -150 und -160 °C abgekühlt; dies hat eine Vollkondensation und anschließende Unterkühlung der Stickstoff-angereicherten Fraktion zur Folge.
Die verflüssigte Stickstoff-angereicherte Fraktion 7 wird im Ventil V2 entspannt und über Leitung 8 der Hochdruck-Stickstoff-Kolonne T2 zugeführt. Diese wird bei einem Druck von 20 bis 30 bar, vorzugsweise von 22 bis 27 bar betrieben. Als
Kopfkondensator der Hochdruck-Stickstoff-Kolonne T2 dient der vorbeschriebene Wärmetauscher E4, in dem kondensierender Stickstoff aus der Hochdruck-Stickstoff- Kolonne T2 den Wärmebedarf des im Sumpf der Stickstoff-Strippkolonne T1 aufkochenden Kohlenwasserstoff-reichen Stromes bzw. LNGs deckt. Zwischen den beiden Kolonnen T1/T2 ist ein Rücklaufsammler D1 angeordnet, aus dem ein gasförmiger und/oder ein flüssiger hochreiner Stickstoffstrom 10 abgezogen wird bzw. werden. Hierbei handelt es sich um sog. technischen reinen Stickstoff, der einen Stickstoffgehalt von wenigstens 98 Mol-%, vorzugsweise von wenigstens 99 Mol-% aufweist.
Der Hochdruck-Stickstoff-Kolonne T2 wird bei geeigneter Temperatur ein Teilstrom der gegen den Kältekreislauf K abgekühlten Stickstoff-angereicherten Fraktion 5/6 über das Ventil V3 als Aufkochstrom zugeführt. Die Menge des Aufkochstromes 9 beträgt vorzugsweise zwischen 10 und 70 %, insbesondere zwischen 20 und 50 % der Menge der verdichteten Stickstoff-angereicherten Fraktion 6. Der Aufkochstrom 9 kann zwischen den Wärmetauschern E1 und E2, aber auch zwischen den Wärmetauschern E2 und E3 abgezogen werden.
Aus dem Sumpf der Hochdruck-Stickstoff-Kolonne T2 wird eine Stickstoff- abgereicherte Fraktion 11 abgezogen, die einen im Vergleich zu der Stickstoff- angereicherten Fraktion 5 niedrigeren Stickstoffgehalt aufweist. Sie wird im Ventil V4 entspannt und der Stickstoff-Strippkolonne T1 unterhalb des Einspeisepunktes der verflüssigten Kohlenwasserstoff-reichen Fraktion 3 zugespeist.
Sofern an wenigstens einer Stelle des Verfahrens Brenngas benötigt wird, kann als Brenngas ein Teilstrom der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion 1 und/oder ein Teilstrom der verdichteten, abzukühlenden Stickstoff-angereicherten Fraktion 6 verwendet werden.

Claims

Patentansprüche
Verfahren zum Gewinnen einer verflüssigten Kohlenwasserstoff-reichen Fraktion (Produktfraktion), die einen Stickstoffgehalt von < 1 Mol-% aufweist, wobei die Kohlenwasserstoff-reiche Fraktion gegen einen Kältekreislauf verflüssigt und unterkühlt und anschließend einer rektifikatorischen Stickstoff-Abtrennung unterworfen wird,
dadurch gekennzeichnet, dass
a) die verflüssigte und unterkühlte Kohlenwasserstoff-reiche Fraktion (2) entspannt (V1) und einer Stickstoff-Strippkolonne (T1) zugeführt,
b) aus deren Sumpf die Produktfraktion (4) abgezogen,
c) aus deren Kopf eine Stickstoff-angereicherte Fraktion (5) abgezogen, verdichtet (C1), gegen den Kältekreislauf (K) verflüssigt und unterkühlt (E1 - E3), entspannt (V2) und einer Hochdruck-Stickstoff-Kolonne (T2) zugeführt, d) ein Teilstrom der gegen den Kältekreislauf (K) abgekühlten Stickstoffangereicherten Fraktion der Hochdruck-Stickstoff-Kolonne (T2) als
Aufkochstrom (9) zugeführt und
e) aus deren Sumpf eine Stickstoff-abgereicherte Fraktion (11) abgezogen und der Strippkolonne (T1) zugeführt wird,
f) wobei die beiden Kolonnen (T1 , T2) über einen Wärmetauscher (E4), der als Aufkocher der Stickstoff-Strippkolonne (T1) und als Kopfkondensator der Hochdruck-Stickstoff-Kolonne (T2) dient, thermisch gekoppelt sind und g) zwischen den beiden Kolonnen (T1 , T2) ein Rücklaufsammler (D1) angeordnet ist, aus dem ein gasförmiger und/oder flüssiger hochreiner Stickstoffstrom abgezogen wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die zu verflüssigende Kohlenwasserstoff-reiche Fraktion (1) eine Stickstoffgehalt von wenigstens 2 Mol-%, vorzugsweise von wenigstens 3 Mol-% aufweist.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die verflüssigte und unterkühlte Kohlenwasserstoff-reiche Fraktion (2) auf einen Druck zwischen 1 ,1 und 2,0 bar, vorzugsweise zwischen 1 ,15 und 1 ,5 bar entspannt wird (V1).
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die am Kopf der Stickstoff-Strippkolonne (T1) abgezogene Stickstoff-angereicherte Fraktion auf einen Druck zwischen 25 und 50 bar, vorzugsweise zwischen 30 und 45 bar verdichtet wird (C1 ).
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Hochdruck-Stickstoff-Kolonne (T2) bei einem Druck zwischen 20 und 30 bar, vorzugsweise zwischen 22 und 27 bar betrieben wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Menge des Aufkochstromes (9) zwischen 10 und 70 %, vorzugsweise zwischen 20 und 50 % der Menge der verdichteten Stickstoff-angereicherten Fraktion (5, 6) beträgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der aus dem Rücklaufsammler (D1) abgezogene hochreine Stickstoffstrom einen Stickstoffgehalt von wenigstens 98 Mol-%, vorzugsweise von wenigstens
99 Mol-% aufweist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die am Kopf der Stickstoff-Strippkolonne (T1 ) abgezogene Stickstoff-angereicherte Fraktion einen Stickstoffgehalt zwischen 10 und 60 Mol-%, vorzugsweise zwischen 30 und 50 Mol-% aufweist.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei an wenigstens einer Stelle des Verfahrens Brenngas, insbesondere als Brennstoff für einen Verdichterantrieb benötigt wird, dadurch gekennzeichnet, dass als Brenngas ein Teilstrom der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion (1) und/oder ein Teilstrom der verdichteten, zu verflüssigenden Stickstoff-angereicherten Fraktion (6) verwendet wird.
PCT/EP2016/000353 2015-03-31 2016-03-01 Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion WO2016155863A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2017012533A MX2017012533A (es) 2015-03-31 2016-03-01 Metodo para remover nitrogeno a partir de una fraccion rica en hidrocarburo.
MYPI2017703662A MY184147A (en) 2015-03-31 2016-03-01 Method for removing nitrogen from a hydrocarbon-rich fraction
RU2017134420A RU2690508C2 (ru) 2015-03-31 2016-03-01 Способ удаления азота из обогащенной углеводородом фракции
CN201680019896.5A CN107532847B (zh) 2015-03-31 2016-03-01 用于从富烃馏分去除氮的方法
CA2981084A CA2981084C (en) 2015-03-31 2016-03-01 Method for removing nitrogen from a hydrocarbon-rich fraction
US15/560,789 US10508244B2 (en) 2015-03-31 2016-03-01 Method for removing nitrogen from a hydrocarbon-rich fraction
AU2016239338A AU2016239338B2 (en) 2015-03-31 2016-03-01 Method for removing nitrogen from a hydrocarbon-rich fraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015004120.7A DE102015004120A1 (de) 2015-03-31 2015-03-31 Verfahren zum Abtrennen von Stickstoff aus einer Kohlenwasserstoff-reichen Fraktion
DE102015004120.7 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016155863A1 true WO2016155863A1 (de) 2016-10-06

Family

ID=55527507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/000353 WO2016155863A1 (de) 2015-03-31 2016-03-01 Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion

Country Status (9)

Country Link
US (1) US10508244B2 (de)
CN (1) CN107532847B (de)
AU (1) AU2016239338B2 (de)
CA (1) CA2981084C (de)
DE (1) DE102015004120A1 (de)
MX (1) MX2017012533A (de)
MY (1) MY184147A (de)
RU (1) RU2690508C2 (de)
WO (1) WO2016155863A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686528B2 (en) 2019-04-23 2023-06-27 Chart Energy & Chemicals, Inc. Single column nitrogen rejection unit with side draw heat pump reflux system and method
US20230324116A1 (en) * 2022-04-11 2023-10-12 Bizzybee LLC Systems and methods for separating a mixture of compressed-gas solvents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049830A1 (de) * 2000-10-09 2002-04-18 Linde Ag Verfahren zum Abtrennen von Stickstoff aus einer Stickstoff-enthaltenden Kohlenwasserstoff-reichen Fraktion
US7520143B2 (en) 2005-04-22 2009-04-21 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
DE102009008229A1 (de) * 2009-02-10 2010-08-12 Linde Ag Verfahren zum Abtrennen von Stickstoff

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415345A (en) * 1982-03-26 1983-11-15 Union Carbide Corporation Process to separate nitrogen from natural gas
US4455158A (en) * 1983-03-21 1984-06-19 Air Products And Chemicals, Inc. Nitrogen rejection process incorporating a serpentine heat exchanger
US4878932A (en) * 1989-03-21 1989-11-07 Union Carbide Corporation Cryogenic rectification process for separating nitrogen and methane
GB2298034B (en) * 1995-02-10 1998-06-24 Air Prod & Chem Dual column process to remove nitrogen from natural gas
JPH0933166A (ja) * 1995-07-21 1997-02-07 Teisan Kk 超高純度窒素製造方法及び装置
GB0220791D0 (en) * 2002-09-06 2002-10-16 Boc Group Plc Nitrogen rejection method and apparatus
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
DE102005008059A1 (de) * 2005-02-22 2006-08-31 Linde Ag Verfahren zum Abtrennen von Stickstoff aus einer Stickstoff-enthaltenden Kohlenwasserstoff-reichen Fraktion
DE102007010032A1 (de) * 2007-03-01 2008-09-04 Linde Ag Verfahren zum Abtrennen von Stickstoff aus verflüssigtem Erdgas
FR2936864B1 (fr) * 2008-10-07 2010-11-26 Technip France Procede de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en helium et d'un courant d'hydrocarbures deazote et installation associee.
US8627681B2 (en) * 2009-03-04 2014-01-14 Lummus Technology Inc. Nitrogen removal with iso-pressure open refrigeration natural gas liquids recovery
GB2455462B (en) * 2009-03-25 2010-01-06 Costain Oil Gas & Process Ltd Process and apparatus for separation of hydrocarbons and nitrogen
US20100251765A1 (en) * 2009-04-01 2010-10-07 Air Products And Chemicals, Inc. Cryogenic Separation of Synthesis Gas
US9021832B2 (en) * 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
WO2013055305A1 (en) * 2011-10-14 2013-04-18 Price, Brian, C. Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049830A1 (de) * 2000-10-09 2002-04-18 Linde Ag Verfahren zum Abtrennen von Stickstoff aus einer Stickstoff-enthaltenden Kohlenwasserstoff-reichen Fraktion
US7520143B2 (en) 2005-04-22 2009-04-21 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
DE102009008229A1 (de) * 2009-02-10 2010-08-12 Linde Ag Verfahren zum Abtrennen von Stickstoff

Also Published As

Publication number Publication date
CA2981084A1 (en) 2016-10-06
MX2017012533A (es) 2018-01-18
DE102015004120A1 (de) 2016-10-06
MY184147A (en) 2021-03-23
AU2016239338B2 (en) 2021-03-04
CN107532847B (zh) 2020-05-22
CA2981084C (en) 2023-02-14
US20180051215A1 (en) 2018-02-22
RU2690508C2 (ru) 2019-06-04
AU2016239338A1 (en) 2017-10-12
RU2017134420A (ru) 2019-04-30
CN107532847A (zh) 2018-01-02
US10508244B2 (en) 2019-12-17
RU2017134420A3 (de) 2019-04-30

Similar Documents

Publication Publication Date Title
EP2386814B1 (de) Stickstoff-Abtrennung aus Erdgas
DE1551562C3 (de) Verfahren zur Gewinnung einer methanreichen unter Druck stehenden Flüssigkeit aus verflüssigtem Naturgas
DE102010011052A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE102010044646A1 (de) Verfahren zum Abtrennen von Stickstoff und Wasserstoff aus Erdgas
WO2008104308A2 (de) Verfahren zum abtrennen von stickstoff aus verflüssigtem erdgas
WO2016128110A1 (de) Kombinierte abtrennung von schwer- und leichtsiedern aus erdgas
DE102013013883A1 (de) Kombinierte Abtrennung von Schwer- und Leichtsiedern aus Erdgas
DE102011109234A1 (de) Verflüssigen eines Methan-reichen Gases
DE102013011640A1 (de) Verfahren zum Abtrennen von Sauergasen aus Erdgas
WO2006092266A1 (de) Verfahren zum gleichzeitigen gewinnen einer helium-und einer stickstoff-reinfraktion
DE102009008230A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102009015766A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
WO2010112206A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
WO2016155863A1 (de) Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
EP2669613A1 (de) Verfahren und Vorrichtung zur Stickstoffverflüssigung
WO2010060533A1 (de) Helium-gewinnung
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102007047147A1 (de) Verfahren zur Heliumanreicherung
DE102005010053A1 (de) Helium-Gewinnung bei LNG-Anlagen
DE102016000393A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE102009009477A1 (de) Verfahren zum Abtrennen von Stickstoff
WO2013164069A2 (de) Verfahren zum rückverflüssigen einer methan-reichen fraktion
WO2004010064A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3/c4-reichen fraktion
DE102016003305A1 (de) Verfahren zum Abtrennen einer ethanreichen Fraktion aus Erdgas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16709698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560789

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2981084

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012533

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016239338

Country of ref document: AU

Date of ref document: 20160301

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017134420

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 16709698

Country of ref document: EP

Kind code of ref document: A1