WO2004010064A1 - Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3/c4-reichen fraktion - Google Patents

Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3/c4-reichen fraktion Download PDF

Info

Publication number
WO2004010064A1
WO2004010064A1 PCT/EP2003/007003 EP0307003W WO2004010064A1 WO 2004010064 A1 WO2004010064 A1 WO 2004010064A1 EP 0307003 W EP0307003 W EP 0307003W WO 2004010064 A1 WO2004010064 A1 WO 2004010064A1
Authority
WO
WIPO (PCT)
Prior art keywords
rich fraction
separation column
fed
rich
fraction
Prior art date
Application number
PCT/EP2003/007003
Other languages
English (en)
French (fr)
Inventor
Rudolf Stockmann
Martin Gwinner
Pentti Paurola
Original Assignee
Linde Aktiengesellschaft
Statoil Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft, Statoil Asa filed Critical Linde Aktiengesellschaft
Priority to AU2003281633A priority Critical patent/AU2003281633A1/en
Priority to US10/521,944 priority patent/US20060005573A1/en
Publication of WO2004010064A1 publication Critical patent/WO2004010064A1/de
Priority to NO20050944A priority patent/NO20050944L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/64Propane or propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Definitions

  • the invention relates to a process for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, with simultaneous recovery of a C 3 / C 4 -rich fraction, the liquefaction of the hydrocarbon-rich stream taking place in the heat exchange with at least one refrigerant and / or refrigerant mixture stream and the hydrocarbon-rich stream to be liquefied after pre-cooling a separation column in which higher hydrocarbons are separated from the hydrocarbon-rich stream to be liquefied, and then subjected to further cooling and liquefaction, the separation column being subjected to subsequent cooling of the hydrocarbon -rich stream obtained C 2+ -rich fraction is fed as reflux liquid.
  • Generic processes which are implemented in particular in natural gas liquefaction plants, are either known as LNG baseload plants - plants for the liquefaction of natural gas to supply natural gas as primary energy - or as peak shaving plants - plants for liquefying natural gas to cover the Peak demand - designed.
  • the aforementioned peak shaving plants are operated with expansion turbines or refrigerant mixtures in the refrigeration circuits.
  • the refrigeration circuits often contain only one or a few components.
  • LNG Baseload Plants are usually operated with refrigeration circuits that consist of hydrocarbon mixtures. These mixed cycles are energetically more efficient than expander cycles and, with the large liquefaction capacities of the Baseload Plants, enable relatively low energy consumption. In these plants, the heavy hydrocarbons contained in the natural gas must be separated in order to generate the inventory of the mixture cycles, to cover losses during operation and due to product requirements.
  • the higher hydrocarbons - in this case the C + -rich hydrocarbons and benzene - are then separated from the stream to be liquefied in the separation column.
  • a C 2- rich fraction is drawn off at the top of the separation column and subjected to further cooling and liquefaction.
  • the C 3+ hydrocarbon fraction obtained in the bottom of the separation column is enriched with higher hydrocarbons to the extent that the desired calorific value is set in the C 2 -rich top product of the separation column.
  • the fraction containing higher hydrocarbons, which is separated from the stream to be liquefied in the separation column, is usually subsequently rectified into its constituents, some of which are called make-up fractions - for example C 2 H 6 or C 3 H 8 - for the or the mixture cycles are used or are obtained as further product streams and are optionally passed on for further processing.
  • the above-mentioned C 3+ -rich fraction is separated, for example, using the following rectification columns: demethanizer, deethanizer, depropanizer and possibly debutanizer. These columns enable the following fractions to be generated: methane, ethane and ethane make-up, propane and propane make-up, LPG (liquid gas) and a C 5+ fraction.
  • the object of the present invention is to provide a generic method which enables a C 3 / C 4 -rich fraction - the so-called LPG fraction - to be obtained with the highest possible C 3 yield.
  • a C Cs-rich fraction be fed directly and / or indirectly to the separation column as additional reflux liquid, the feed point of the C 4 / C 5 -rich fraction being at the top of the separation column or identical to the feed point of the C 2+ -rich fraction.
  • a mass transition zone is provided between the feed point of the Oj / Cs-rich fraction and the feed point of the C 2+ -rich fraction ,
  • a mass transition zone can be provided below the common entry point in accordance with an alternative, advantageous embodiment of the method according to the invention.
  • the C 4 / Cs-rich fraction fed to the separation column as additional reflux liquid can be in one Depropanizer side column, to which a C + -rich fraction drawn off from the Depropanizer is fed, can be obtained.
  • a debutanizer can also be used to generate the C A / C 5 -reic e fraction required as additional reflux liquid.
  • Figure 1 An embodiment of the process according to the invention, in which the C Cs-rich fraction is obtained in a Depropanizer side column
  • Figure 2 An embodiment of the process according to the invention, in which the C 4 / C 5 -rich fraction is obtained in a side column of the separation column
  • a precooled and - if necessary - pretreated natural gas stream which has a temperature between -10 and -25 ° C., is fed via line 1 to the separation column T1.
  • the pretreatment steps that may be necessary such as drying, CO 2 removal, sulfur removal, etc., are not discussed in more detail below; the usual procedures are known to the person skilled in the art.
  • the natural gas stream introduced via line 1 typically has a pressure between 30 and 90 bar.
  • a C 2 -rich fraction is drawn off via line 2 and cooled in the heat exchanger E1 to a temperature between -25 and -55 ° C. and partially condensed.
  • the partially condensed stream is then fed to a separator D via line 3.
  • the benzene content of the C Cs-rich fraction fed to the separation column T1 as additional reflux liquid - which will be discussed in the following - is less than 500 ppm, preferably even less than 300 ppm.
  • the C 2- rich fraction drawn off at the top of the separation column T1 via line 2 has a benzene content of less than 1 ppm. An undesired freezing out of the benzene in the liquefaction part downstream of the separation column T1 can thereby be effectively avoided.
  • Ci-rich fraction is drawn off via line 4 and subjected to the further cooling and liquefaction not shown in FIGS. 1 and 2.
  • a C 2+ -rich fraction is drawn off from the bottom of the separator D via line 5 and the separation column T1 is added to its upper region as reflux liquid.
  • a mass transition zone M is arranged above the feed point of the C 2+ -rich fraction fed via line 5 to the separation column T1. This typically has 3 to 10 additional floors; this corresponds to about 2 to 7 theoretical floors.
  • a C 3+ -rich fraction is drawn off from the bottom of the separation column T1 via line 6 and, if appropriate, is subjected to further process steps.
  • a partial stream of the C 3+ -rich fraction drawn off from the bottom of the separation column T1 is fed to the separation column T1 via line 7, in which a heat exchanger E2 is arranged, as a reboiler stream.
  • the generally multistage rectification of the C 3+ -rich fraction drawn off from the bottom of the separation column T1 via line 6, with its different process variants, is likewise well known to the person skilled in the art.
  • the line area 6 'shown in dashed lines stands for the most varied of procedures, for example the supply of the C 3+ -rich fraction drawn off via line 6 into a demethanizer and a downstream deethanizer.
  • a C 3 is fed via line 9 - hydrocarbon product fraction withdrawn and cooled in heat exchanger E3. A partial stream of this fraction is then fed via line 10 to the depropanizer T2 as a return.
  • Product lines with a high C 3 purity can be drawn off in gaseous or liquid form via lines 22 and 23; These serve, for example, as a C make-up for the mixed refrigerant circuits.
  • the remaining part of the C 3 / C 4 product fraction - the so-called LPG product fraction - drawn off at the top of the Depropanizer T2 via line 12 is admixed; the fractions thus combined are then discharged via line 13 and possibly passed on for further processing.
  • a C 5+ -rich hydrocarbon fraction is drawn off from the bottom of the depropanizer T2 via line 8 and, if desired, also fed to further processing.
  • a C 4+ hydrocarbon fraction is removed from the depropanizer T2 via the side draw 14 and fed to the side column T3.
  • the side column T3 is used in particular to largely remove benzene from the C 4+ hydrocarbon fraction supplied.
  • T3 is at the top of the column.
  • Line 16 a Oj / Cs-rich fraction is drawn off, cooled in the heat exchanger E4 and fed via line 17 to a branch point at which a partial stream is fed as a return line via line 18 to the column T3, while the remaining portion of the C 4 / C 5 -rich Fraction via lines 19 and 20 of the separation column T1 is fed as an additional reflux liquid.
  • a C 5+ -rich fraction is drawn off from the bottom of the side column T3 via line 15 and fed to the depropanizer T2 in its lower region.
  • the fraction rich in CVCs fed to the separation column T1 as additional reflux liquid is preferably subcooled in a heat exchanger E5 to a temperature between -30 and -50 ° C.
  • the optimal inlet temperature of the C / C 5 -rich fraction fed to the separation column T1 is essentially determined by the conditions within the separation column T1. Instead of a direct supply of the C 4 / C 5 -rich fraction used as additional reflux liquid, it can also be supplied to the separator D - completely or partially - via the line 21 shown in broken lines. The (partial) stream fed to the separator D would then be fed from the bottom thereof via line 5 with the C 2+ -rich fraction to the separation column T1.
  • a current is taken from the separation column T1 in the lower region thereof via line 30 and fed to the side column T4.
  • a C 5+ -rich fraction is drawn off from the bottom of this side column T4 via line 31 and fed to the separation column T1.
  • a C / Cs-rich fraction is drawn off via line 32 and cooled in the heat exchanger E6; a partial stream of this fraction is fed via line 33 of the side column T4 as reflux.
  • the residual stream of the C Cs-rich fraction drawn off from the top of the side column T4 via line 32 forms the additional reflux fraction for the separation column T1 and is fed to it via lines 34 and 35.
  • a heat exchanger E7 which serves to cool or subcool the C 4 / C 5 -rich fraction, can be provided in line 34.
  • the Oj / Cs-rich fraction used as additional reflux liquid can be fed to the separator D either partially or completely via the line 36 shown in broken lines.
  • the C 3 content of the C 4 / C 5 -rich fraction fed to the separation column T1 is as small as possible in order to separate the C 3+ components in the separation column T1 with the highest possible To be able to realize yield.
  • the content of C 4 components in that of the separation column T1 fed CJCs-rich fraction should be as small as possible so as not to deteriorate the high yield of C 4 hydrocarbons already achieved in the separation column T1. Consequently, the content of C 5 hydrocarbons should be chosen to be as large as possible in order to effect an efficient separation of C 3+ hydrocarbons.
  • the LPG obtained by means of the method according to the invention is therefore of great economic value, since LPG can be liquefied at ambient temperatures, has a high energy content and is easy to transport. In addition, LPG can be burned in an environmentally friendly way.
  • the C 3 yield of the process according to the invention is more than 60%, that of the LPG is more than 90%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Es wird ein Verfahren zum Verflüssigen eines Erdgasstromes mit gleichzeitiger Gewinnung einer C3/C4-reichen Fraktion beschrieben, wobei die Verflüssigung des Erdgasstromes im Wärmetausch gegen wenigstens einen Kältemittel- und/oder Kältemittelgemischstrom erfolgt und der zu verflüssigende Erdgasstrom nach einer Vorkühlung einer Trennkolonne, in der höhere Kohlenwasserstoffe aus dem Erdgasstrom abgetrennt werden, unterworfen und anschliessend einer weiteren Abkühlung und Verflüssigung unterworfen wird, wobei der Trennkolonne eine in der nachfolgenden Abkühlung des Erdgasstromes gewonnene C2+-reiche Fraktion als Rücklaufflüssigkeit zugeführt wird. Erfindungsgemäss wird der Trennkolonne (T1) als zusätzliche Rücklaufflüssigkeit eine C4/C5-reiche Fraktion (20, 35) direkt und/oder indirekt zugeführt, wobei der Einspeisepunkt der C4/C5-reichen Fraktion (20, 35) am Kopf der Trennkolonne (T1) liegt oder identisch mit dem Einspeisepunkt der C2+ reichen Fraktion (5) ist.

Description

Beschreibung
Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung einer CgΛlVreichen Fraktion
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, mit gleichzeitiger Gewinnung einer C3/C4-reichen Fraktion, wobei die Verflüssigung des Kohlenwasserstoff-reichen Stromes im Wärmetausch gegen wenigstens einen Kältemittel- und/oder Kaltemittelgemischstrom erfolgt und die zu verflüssigende Kohlenwasserstoff-reiche Strom nach einer Vorkühlung einer Trennkolonne, in der höhere Kohlenwasserstoffe aus dem zu verflüssigenden Kohlenwasserstoff-reichen Strom abgetrennt werden, unterworfen und anschließend einer weiteren Abkühlung und Verflüssigung unterworfen wird, wobei der Trennkolonne eine in der nachfolgenden Abkühlung des Kohlenwasserstoff-reichen Stromes gewonnene C2+-reiche Fraktion als Rücklaufflüssigkeit zugeführt wird.
Gattungsgemäße Verfahren, die insbesondere in Erdgasverflüssigungsanlagen , realisiert werden, werden entweder als sog. LNG Baseload Plants - also Anlagen zur Verflüssigung von Erdgas zur Versorgung mit Erdgas als Primärenergie - oder als sog. Peak Shaving Plants - also Anlagen zur Verflüssigung von Erdgas zur Deckung des Spitzenbedarfs - ausgelegt.
Die vorgenannten Peak Shaving Plants werden mit Expansionsturbinen oder Kältemittelmischungen in den Kältekreisläufen betrieben. Die Kältekreisläufe enthalten oft nur eine oder wenige Komponenten.
LNG Baseload Plants werden im Regelfall mit Kältekreisläufen betrieben, die aus Kohlenwasserstoffgemischen bestehen. Diese Gemischkreisläufe sind energetisch effizienter als Expander-Kreisläufe und ermöglichen bei den großen Verflüssigungsleistungen der Baseload Plants entsprechend relativ niedrige Energieverbräuche. Bei diesen Anlagen müssen zur Erzeugung des Inventars der Gemischkreisläufe, zur Deckung von Verlusten im Betrieb und aufgrund von Produktanforderungen die im Erdgas enthaltenen schweren Kohlenwasserstoffe abgetrennt werden.
Dies geschieht üblicherweise dadurch, dass der zur verflüssigende Kohlenwasserstoffreiche Strom auf eine Temperatur von -10 bis -25 °C vorgekühlt und anschließend einer Trennkolonne zugeführt wird. Mittels einer geeigneten Kolonnenfiguration werden in der Trennkolonne sodann die höheren Kohlenwasserstoffe - gemeint sind hier die C +-reichen Kohlenwasserstoffe sowie Benzol - aus dem zu verflüssigenden Strom abgetrennt. Am Kopf der Trennkolonne wird eine C2--reiche Fraktion abgezogen und der weiteren Abkühlung sowie Verflüssigung unterworfen. Die im Sumpf der Trennkolonne gewonnene C3+-Kohlenwasserstofffraktion wird hierbei soweit mit höheren Kohlenwasserstoffen angereichert, dass in dem C2--reichen Kopfprodukt der Trennkolonne der gewünschte Heizwert eingestellt ist.
Die in der Trennkolonne aus dem zu verflüssigenden Strom abgetrennte, höhere Kohlenwasserstoffe enthaltende Fraktion wird im Regelfall anschließend rektifikatorisch in ihre Bestandteile zerlegt, wobei diese teilweise als sog. Make-up-Fraktionen - beispielsweise C2H6 oder C3H8 - für den oder die Gemischkreisläufe verwendet oder als weitere Produktströme gewonnen und ggf. einer Weiterverarbeitung zugeführt werden.
Die Auftrennung der vorgenannten C3+-reichen Fraktion wird bspw. mit folgenden Rektifikationskolonnen durchgeführt: Demethanizer, Deethanizer, Depropanizer und evtl. Debutanizer. Diese Kolonnen ermöglichen die Erzeugung folgender Fraktionen: Methan, Ethan und Ethan-Make-Up, Propan und Propan-Make-Up, LPG (Flüssiggas) sowie eine C5+-Fraktion.
Nachteilig bei der vorbeschriebenen Verfahrensweise ist jedoch, dass die Ausbeute an C -Kohlenwasserstoffen vergleichsweise gering ist.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren anzugeben, das die Gewinnung einer C3/C4-reichen Fraktion - der sog. LPG-Fraktion - mit möglichst hoher C3-Ausbeute ermöglicht. Zur Lösung dieser Aufgabe wird vorgeschlagen, dass der Trennkolonne als zusätzliche Rücklaufflüssigkeit eine C Cs-reiche Fraktion direkt und/oder indirekt zugeführt wird, wobei der Einspeisepunkt der C4/C5-reichen Fraktion am Kopf der Trennkolonne liegt oder identisch mit dem Einspeisepunkt der C2+-reichen Fraktion ist.
Unter dem Begriff "indirekt zugeführt" sei hierbei eine Verfahrensweise zu verstehen, bei der die der Trennkolonne als zusätzliche Rücklaufflüssigkeit zugeführte C4/C5- reiche Fraktion einem anderen Strom, der der Trennkolonne zugeführt wird, beigemischt wird.-
Erfindungsgemäß werden der Trennkolonne nunmehr zwei unterschiedliche Fraktionen als Rücklaufflüssigkeiten zugeführt.
Darüber hinaus wird - entsprechend einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens - sofern der Einspeisepunkt der CVCs-reichen Fraktion am Kopf der Trennkolonne liegt, zwischen dem Einspeisepunkt der Oj/Cs- reichen Fraktion und dem Einspeisepunkt der C2+-reichen Fraktion eine Massenübergangszone vorgesehen wird.
Fallen der Einspeisepunkt der C4/C5-reichen Fraktion und der Einspeisepunkt der Gereichen Fraktion zusammen, so kann - entsprechend einer alternativen, vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens - unterhalb des gemeinsamen Einspeisepunkts eine Massenübergangszone vorgesehen werden.
Zur Erzeugung der als zusätzlichen Rücklaufflüssigkeit benötigten C^Cs-reichen Fraktion sind nunmehr zwei Verfahrensweisen, die auch miteinander kombiniert werden können, denkbar.
Sofern die in der Trennkolonne gewonnenen höheren Kohlenwasserstoffe in mehreren, der Trennkolonne nachgeschalteten Schritten rektifikatorisch aufgetrennt werden, wobei einer dieser Schritte die Zuführung der höheren Kohlenwasserstoffe in einen Depropanizer umfasst, kann die der Trennkolonne als zusätzliche Rücklaufflüssigkeit zugeführte C4/Cs-reiche Fraktion in einer Depropanizer-Seitenkolonne, der eine aus dem Depropanizer abgezogene C +-reiche Fraktion zugeführt wird, gewonnen werden. Umfasst die der Trennkolonne nachgeschaltete rektifikatorische Auftrennung der höheren Kohlenwasserstoffe einen Debutanizer so kann auch in diesem die als zusätzliche Rücklaufflüssigkeit benötigte CA/C5-reic e Fraktion erzeugt werden.
Auch besteht die Möglichkeit, die der Trennkolonne als zusätzliche Rücklaufflüssigkeit zugeführte Cψ'Cs-reiche Fraktion in einer Seitenkolonne der Trennkolonne zu gewinnen, indem dieser Seitenkolonne aus der Trennkolonne eine C4+-reiche Fraktion zugeführt wird.
Das erfindungsgemäße Verfahren sowie weitere Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand der in den Figuren 1 und 2 dargestellten Ausführungsbeispiele näher erläutert.
Hierbei zeigen:
Figur 1: Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens, bei dem die C Cs-reiche Fraktion in einer Depropanizer-Seitenkolonne gewonnen wird
Figur 2: Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens, bei dem die C4/C5-reiche Fraktion in einer Seitenkolonne der Trennkolonne gewonnen wird
Gemäß der in der Figur 1 dargestellten Verfahrensweise wird ein vorgekühiter und - falls erforderlich - vorbehandelter Erdgasstrom, der eine Temperatur zwischen -10 und -25 °C aufweist über Leitung 1 der Trennkolonne T1 zugeführt. Auf die ggf. notwendigen Vorbehandlungsschritte, wie beispielsweise Trocknung, COz-Entfemung, Schwefelentfernung, etc. sei im Folgenden nicht näher eingegangen; die gängigen Verfahrensweisen sind dem Fachmann bekannt. Der über Leitung 1 herangeführte Erdgasstrom weist typischerweise einen Druck zwischen 30 und 90 bar auf.
Am Kopf der Trenπkolonne T1 wird über Leitung 2 eine C2--reiche Fraktion abgezogen und im Wärmetauscher E1 auf eine Temperatur zwischen -25 und -55 °C abgekühlt und dabei partiell kondensiert. Der partiell kondensierte Strom wird anschließend über Leitung 3 einem Abscheider D zugeführt. Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens beträgt der Benzol-Gehalt der der Trennkolonne T1 als zusätzliche Rücklaufflüssigkeit zugeführten C Cs-reichen Fraktion - auf die im Folgenden noch eingegangen werden wird - weniger als 500 ppm, vorzugsweise sogar weniger als 300 ppm. Dies hat zur Folge, dass die am Kopf der Trennkolonne T1 über Leitung 2 abgezogene C2--reiche Fraktion einen Benzol-Gehalt von weniger als 1 ppm aufweist. Ein unerwünschtes Ausfrieren des Benzols in dem der Trennkolonne T1 nachgeschalteten Verflüssigungsteil kann dadurch wirkungsvoll vermieden werden.
Am Kopf des Abscheiders D wird über Leitung 4 eine Ci-reiche Fraktion abgezogen und der weiteren, in den Figuren 1 und 2 nicht dargestellten Abkühlung und Verflüssigung unterworfen.
Aus dem Sumpf des Abscheiders D wird über Leitung 5 eine C2+-reiche Fraktion abgezogen und der Trennkolonne T1 in deren oberen Bereich als Rücklaufflüssigkeit aufgegeben.
Oberhalb des Einspeisepunktes der über Leitung 5 der Trennkolonne T1 zugeführten C2+-reichen Fraktion ist eine Massenübergangszone M angeordnet. Diese weist typischerweise 3 bis 10 zusätzliche Böden auf; dies entspricht etwa 2 bis 7 theoretischen Böden.
Aus dem Sumpf der Trennkolonne T1 wird über Leitung 6 eine C3+-reiche Fraktion abgezogen und ggf. weiteren Prozessschritten unterworfen. Ein Teilstrom der aus dem Sumpf der Trennkolonne T1 abgezogenen C3+-reichen Fraktion wird hierbei der Trennkolonne T1 über Leitung 7, in der ein Wärmetauscher E2 angeordnet ist, als Reboilerstrom zugeführt.
Die im Regelfall mehrstufige Rektifikation der aus dem Sumpf der Trennkolonne T1 über Leitung 6 abgezogenen C3+-reichen Fraktion ist mit ihren unterschiedlichen Verfahrensvarianten dem Fachmann ebenfalls hinlänglich bekannt. Der gestrichelt gezeichnete Leitungsbereich 6' stehe hierbei für unterschiedlichste Verfahrensweisen, also beispielsweise die Zuführung der über Leitung 6 abgezogenen C3+-reichen Fraktion in einen Demethanizer sowie einen nachgeschalteten Deethanizer. Über Leitung 6" wird eine wie auch immer behandelte C3+-Kohlenwasserstoff-reiche Fraktion dem Depropanizer T2 zugeführt.
Am Kopf des Depropanizers T2 wird über Leitung 9 eine C3- Kohlenwasserstoffproduktfraktion abgezogen und im Wärmetauscher E3 abgekühlt. Ein Teilstrom dieser Fraktion wird anschließend über Leitung 10 dem Depropanizer T2 als Rücklauf aufgegeben. Über die Leitungen 22 und 23 können Produktströme mit einer hohen C3-Reinheit gasförmig bzw. flüssig abgezogen werden; diese dienen bspw. als C -Make-up für die Kältemittelgemischkreisläufe. Der restliche Teil der am Kopf des Depropanizers T2 über Leitung 12 abgezogenen C3/C4-Produktfraktion - der sog. LPG- Produktfraktion - zugemischt wird; die so vereinigten Fraktionen werden anschließend über Leitung 13 abgegeben und ggf. einer Weiterverarbeitung zugeführt.
Aus dem Sumpf des Depropanizers T2 wird über Leitung 8 eine C5+-reiche Kohlenwasserstofffraktion abgezogen und falls gewünscht ebenfalls einer Weiterverarbeitung zugeführt.
Über den Seitenabzug 14 wird dem Depropanizer T2 eine C4+- Kohlenwasserstofffraktion entnommen und der Seitenkolonne T3 zugeführt. Die Seitenkolonne T3 dient insbesondere dazu, Benzol weitgehend aus der zugeführten C4+-Kohlenwasserstofffraktion zu entfernen. Zu diesem Zweck wird am Kopf der Kolonne T3 über. Leitung 16 eine Oj/Cs-reiche Fraktion abgezogen, im Wärmetauscher E4 abgekühlt und über Leitung 17 einem Verzweigepunkt zugeführt, an dem ein Teilstrom über Leitung 18 der Kolonne T3 als Rücklauf aufgegeben wird, während der restliche Anteil der C4/C5-reichen Fraktion über die Leitungen 19 und 20 der Trennkolonne T1 als zusätzliche Rücklaufflüssigkeit zugeführt wird.
Aus dem Sumpf der Seitenkolonne T3 wird über Leitung 15 eine C5+-reichen Fraktion abgezogen und dem Depropanizer T2 in dessen unteren Bereich zugeführt.
Die der Trennkolonne T1 als zusätzliche Rücklaufflüssigkeit zugeführte CVCs-reiche Fraktion wird in einem Wärmetauscher E5 vorzugsweise auf eine Temperatur zwischen -30 und -50 °C unterkühlt. Die optimale Eintrittstemperatur der der Trennkolonne T1 zugeführten C /C5-reichen Fraktion wird im Wesentlichen von den Bedingungen innerhalb der Trennkolonne T1 bestimmt. Anstelle einer unmittelbaren Zuführung der als zusätzlichen Rücklaufflüssigkeit verwendeten C4/C5-reichen Fraktion, kann diese auch - vollständig oder teilweise - über die strichpunktiert gezeichnete Leitung 21 dem Abscheider D zugeführt werden. Der dem Abscheider D zugeführte (Teil)Strom würde dann aus dessen Sumpf über Leitung 5 mit der C2+-reichen Fraktion der Trennkolonne T1 zugeführt.
Bei der in der Figur 2 dargestellten Ausführungsform des erfindungsgemäßen Verfahrens wird die als zusätzliche Rücklaufflüssigkeit benötigte C4/C5-reiche Fraktion nunmehr nicht in einer Seitenkolonne des Depropanizers T2 gewonnen, sondern in einer der Trennkolonne T1 zugeordneten Seitenkolonne T4.
Dazu wird der Trennkolonne T1 in deren unteren Bereich über Leitung 30 ein Strom entnommen und der Seitenkolonne T4 zugeführt. Aus dem Sumpf dieser Seitenkolonne T4 wird über Leitung 31 eine C5+-reiche Fraktion abgezogen und der Trennkolonne T1 zugeführt.
Am Kopf der Seitenkolonne T4 wird über Leitung 32 eine C /Cs-reiche Fraktion abgezogen und im Wärmetauscher E6 abgekühlt; ein Teilstrom dieser Fraktion wird über Leitung 33 der Seitenkolonne T4 als Rücklauf aufgegeben. Der Reststrom der über Leitung 32 aus dem Kopf der Seitenkolonne T4 abgezogenen C Cs-reichen Fraktion bildet die zusätzliche Rücklauffraktion für die Trennkolonne T1 und wird dieser über die Leitungen 34 und 35 zugeführt.
Wiederum kann in der Leitung 34 ein Wärmetauscher E7, der der Ab- bzw. Unterkühlung der C4/C5-reichen Fraktion dient, vorgesehen sein.
Auch bei dieser Verfahrensführung kann die als zusätzliche Rücklaufflüssigkeit verwendete Oj/Cs-reiche Fraktion entweder teilweise oder vollständig über die strichpunktiert gezeichnete Leitung 36 dem Abscheider D zugeführt werden.
Zu beachten ist, dass eine Verfahrensführung gewählt wird, bei der der C3-Gehalt der der Trennkolonne T1 zugeführten C4/C5-reichen Fraktion möglichst klein ist, um in der Trennkolonne T1 eine Abtrennung der C3+~Komponenten mit möglichst hoher Ausbeute realisieren zu können. Auch der Gehalt an C4-Komponenten in der der Trennkolonne T1 zugeführten CJCs-reichen Fraktion sollte möglichst klein sein, um die in der Trennkolonne T1 bereits erreichte hohe Ausbeute an C4-KohIenwasserstoffen nicht zu verschlechtern. Folglich sollte der Gehalt an C5-Kohlenwasserstroffen möglichst groß gewählt werden, um eine effiziente Abtrennung von C3+-Kohlenwasserstoffen zu bewirken.
Das mittels des erfindungsgemäßen Verfahrens gewonnene LPG ist deshalb von großem wirtschaftlichen Wert, da LPG bei Umgebungstemperaturen verflüssigbar ist, einen hohen Energieinhalt aufweist und gut transportierbar ist. Darüber hinaus kann LPG umweltfreundlich verbrannt werden. Die C3-Ausbeute des erfindungsgemäßen Verfahrens liegt bei mehr als 60 %, die des LPG's bei mehr als 90 %.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, mit gleichzeitiger Gewinnung einer C3/C - reichen Fraktion, wobei die Verflüssigung des Kohlenwasserstoff-reichen Stromes im Wärmetausch gegen wenigstens einen Kältemittel- und/oder
Kaltemittelgemischstrom erfolgt und die zu verflüssigende Kohlenwasserstoffreiche Strom nach einer Vorkühlung einer Trennkolonne, in der höhere Kohlenwasserstoffe aus dem zu verflüssigenden Kohlenwasserstoff-reichen Strom abgetrennt werden, unterworfen und anschließend einerweiteren Abkühlung und Verflüssigung unterworfen wird, wobei der Trennkolonπe eine in der nachfolgenden Abkühlung des Kohlenwasserstoff-reichen Stromes gewonnene C2+-reiche Fraktion als Rücklaufflüssigkeit zugeführt wird, dadurch gekennzeichnet, dass der Trennkolonne (T1) als zusätzliche Rücklaufflüssigkeit eine C^Cs-reiche Fraktion (20, 35) direkt und/oder indirekt zugeführt wird, wobei der Einspeisepunkt der C^Cs-reichen Fraktion (20, 35) am Kopf der Trennkolonne
(T1) liegt oder identisch mit dem Einspeisepunkt der C2+-reichen Fraktion (5) ist.
2. Verfahren nach Anspruch , wobei der Einspeisepunkt der C /C5-reichen Fraktion am Kopf der Trennkolonne liegt, dadurch gekennzeichnet, dass zwischen dem
Einspeisepunkt der C4/C5-reichen Fraktion (20, 35) und dem Einspeisepunkt der C2+-reichen Fraktion (5) eine Massenübergangszone (M) vorgesehen wird.
3. Verfahren nach Anspruch 1, wobei der Einspeisepunkt der C^Cs-reichen Fraktion identisch mit dem Einspeisepunkt der C2+-reichen Fraktion ist, dadurch gekennzeichnet, dass unterhalb des gemeinsamen Einspeisepunkts eine Massenübergangszone (M) vorgesehen wird.
4. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, bei dem die in der Trennkolonne gewonnenen höheren Kohlenwasserstoffe in mehreren Schritten rektifikatorisch aufgetrennt werden, wobei einer dieser Schritte die Zuführung der höheren Kohlenwasserstoffe in einen Depropanizer (T2) umfasst, dadurch gekennzeichnet, dass die der Trennkolonne (T1) als zusätzliche Rücklaufflüssigkeit zugeführte C4/C5-reiche Fraktion (20, 35) in einer Depropanizer-Seitenkolonne (T3), der eine aus dem Depropanizer (T2) abgezogene C4+-reiche Fraktion (14) zugeführt wird, gewonnen wird.
5. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, bei dem die in der Trennkolonne gewonnenen höheren Kohlenwasserstoffe in mehreren Schritten rektifikatorisch aufgetrennt werden, wobei einer dieser Schritte die Zuführung der höheren Kohlenwasserstoffe in einen Debutanizer umfasst, dadurch gekennzeichnet, dass die der Trennkolonne (T1) als zusätzliche Rücklaufflüssigkeit zugeführte CVCδ-reiche Fraktion (20, 35) in dem Debutanizer gewonnen wird.
6. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die der Trennkolonne (T1) als zusätzliche Rücklaufflüssigkeit zugeführte C4/C5-reiche Fraktion (20, 35) in einer Seitenkolonne (T4) der Trennkolonne (T1) gewonnen wird, indem dieser
Seitenkolonne (T4) aus der Trennkolonne (T1) eine C +-reiche Fraktion (30) zugeführt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die der Trennkolonne (TT) als zusätzliche
Rücklaufflüssigkeit zugeführte CVCs-reiche Fraktion (20, 35) vor ihrer Zuführung abgekühlt wird (E5, E7).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die der Trennkolonne (T1) als zusätzliche Rücklaufflüssigkeit zugeführte C^Cs-reiche Fraktion (20, 35) bei ihrer Abkühlung (E5, E7) zumindest teilweise kondensiert wird.
9. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Benzol-Gehalt der der Trennkolonne (T1) als zusätzliche Rücklaufflüssigkeit zugeführten C4/C5-reiche Fraktion (20, 35) weniger als 500 ppm, vorzugsweise weniger als 300 ppm beträgt.
PCT/EP2003/007003 2002-07-23 2003-07-01 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3/c4-reichen fraktion WO2004010064A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003281633A AU2003281633A1 (en) 2002-07-23 2003-07-01 Method for liquefying a hydrocarbon-rich flow while simultaneously obtaining a cless thansbgreater than3less than/sbgreater than/cless thansbgreater than4less than/sbgreater than-rich fraction
US10/521,944 US20060005573A1 (en) 2002-07-23 2003-07-01 Method for liquefying a hydrocarbon-rich flow while simultaneously obtaining a c3/c4-rich fraction
NO20050944A NO20050944L (no) 2002-07-23 2005-02-22 Fremgangsmate for kondensering av en hydrokarbonrik strom med samtidig utvinning av en C3/C4-rik fraksjon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10233410A DE10233410A1 (de) 2002-07-23 2002-07-23 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung einer C3/C4-reichen Fraktion
DE10233410.2 2002-07-23

Publications (1)

Publication Number Publication Date
WO2004010064A1 true WO2004010064A1 (de) 2004-01-29

Family

ID=30128278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/007003 WO2004010064A1 (de) 2002-07-23 2003-07-01 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3/c4-reichen fraktion

Country Status (6)

Country Link
US (1) US20060005573A1 (de)
AU (1) AU2003281633A1 (de)
DE (1) DE10233410A1 (de)
NO (1) NO20050944L (de)
RU (1) RU2313743C2 (de)
WO (1) WO2004010064A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123240A1 (en) * 2005-05-19 2006-11-23 Air Products And Chemicals, Inc. Integrated ngl recovery and liquefied natural gas production
NO339384B1 (no) * 2003-04-16 2016-12-05 Air Prod & Chem Integrert høytrykks ngl-gjenvinning ved fremstilling av flytende naturgass
CN110173959A (zh) * 2019-05-15 2019-08-27 挪威极地航运公司 一种蒸发气再液化回收系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959512B1 (fr) * 2010-04-29 2012-06-29 Total Sa Procede de traitement d'un gaz naturel contenant du dioxyde de carbone
DE102012020354A1 (de) * 2012-10-16 2014-04-17 Linde Aktiengesellschaft Verfahren zum Abtrennen schwerer Kohlenwasserstoffe aus einer Kohlenwasserstoff-reichen Fraktion
CA2906366A1 (en) * 2013-03-15 2014-09-25 Conocophillips Company Mixed-reflux for heavies removal in lng processing
FR3042984B1 (fr) * 2015-11-03 2019-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Optimisation d’un procede de deazotation d’un courant de gaz naturel
CA2949012C (en) * 2016-01-22 2018-02-20 Encana Corporation Process and apparatus for processing a hydrocarbon gas stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150962A (en) * 1975-12-15 1979-04-24 Uop Inc. Pretreatment of raw natural gas prior to liquefaction
US4854955A (en) * 1988-05-17 1989-08-08 Elcor Corporation Hydrocarbon gas processing
DE10027903A1 (de) * 2000-06-06 2001-12-13 Linde Ag Verfahren zum Gewinnen einer C¶2¶¶+¶-reichen Fraktion
DE10205366A1 (de) * 2002-02-08 2003-08-21 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung eines LPG-Stromes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902329A (en) * 1970-10-28 1975-09-02 Univ California Distillation of methane and hydrogen from ethylene
US4436540A (en) * 1982-10-15 1984-03-13 Exxon Research & Engineering Co. Low pressure separation for light hydrocarbon recovery
US4540422A (en) * 1984-04-18 1985-09-10 Phillips Petroleum Company Control of the concentration of methylacetylene and propadiene in a propylene/propane fractionation column
DE19728153C2 (de) * 1997-07-03 1999-09-23 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE10005722A1 (de) * 2000-02-09 2001-08-16 Linde Ag Verfahren zur Tieftemperaturzerlegung eines im wesentlichen aus Wasserstoff, Methan und C3-, C4- oder C3/C4-Kohlenwasserstoffen bestehenden Stromes
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150962A (en) * 1975-12-15 1979-04-24 Uop Inc. Pretreatment of raw natural gas prior to liquefaction
US4854955A (en) * 1988-05-17 1989-08-08 Elcor Corporation Hydrocarbon gas processing
DE10027903A1 (de) * 2000-06-06 2001-12-13 Linde Ag Verfahren zum Gewinnen einer C¶2¶¶+¶-reichen Fraktion
DE10205366A1 (de) * 2002-02-08 2003-08-21 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung eines LPG-Stromes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIU C-H: "LPG-RECOVERY PROCESSES FOR BASELOAD LNG PLANTS EXAMINED", OIL AND GAS JOURNAL, PENNWELL PUBLISHING CO. TULSA, US, 24 November 1997 (1997-11-24), pages 59 - 63, XP001093790, ISSN: 0030-1388 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO339384B1 (no) * 2003-04-16 2016-12-05 Air Prod & Chem Integrert høytrykks ngl-gjenvinning ved fremstilling av flytende naturgass
WO2006123240A1 (en) * 2005-05-19 2006-11-23 Air Products And Chemicals, Inc. Integrated ngl recovery and liquefied natural gas production
CN110173959A (zh) * 2019-05-15 2019-08-27 挪威极地航运公司 一种蒸发气再液化回收系统
CN110173959B (zh) * 2019-05-15 2021-04-02 挪威极地航运公司 一种蒸发气再液化回收系统

Also Published As

Publication number Publication date
US20060005573A1 (en) 2006-01-12
RU2005105044A (ru) 2006-06-10
AU2003281633A8 (en) 2004-02-09
RU2313743C2 (ru) 2007-12-27
AU2003281633A1 (en) 2004-02-09
NO20050944L (no) 2005-02-22
DE10233410A1 (de) 2004-02-12

Similar Documents

Publication Publication Date Title
DE60220954T2 (de) Konfiguration und verfahren zur gewinnung von flüssigem erdgas unter verwendung eines unterkühlten rückflussverfahrens
EP2386814B1 (de) Stickstoff-Abtrennung aus Erdgas
DE69618736T2 (de) Verfahren und Vorrichtung zur Verflüssigung und Behandlung von Erdgas
DE69415454T2 (de) Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas
AT394567B (de) Verfahren zur abtrennung einer c2+-kohlenwasserstoff-fraktion aus erdgas
AT413600B (de) Verfahren zur verflüssigung eines erdgasstroms, enthaltend mindestens eine einfrierbare komponente
DE19722490C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
US20110239701A1 (en) Method of rejecting nitrogen from a hydrocarbon stream to provide a fuel gas stream and an apparatus therefor
DE60102174T2 (de) Verfahren zur Gewinnung von C2+ Kohlenwasserstoff
DE3445961A1 (de) Verfahren zur abtrennung von c(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen aus einem gasstrom
WO2016128110A1 (de) Kombinierte abtrennung von schwer- und leichtsiedern aus erdgas
DE3510097A1 (de) Verfahren zum abtrennen von co(pfeil abwaerts)2(pfeil abwaerts) aus einem gasgemisch
DE3531307A1 (de) Verfahren zur abtrennung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen aus erdgas
EP0318504B1 (de) Verfahren zum Abtrennen höherer Kohlenwasserstoffe aus einem Gasgemisch
DE3511636A1 (de) Verfahren zur gewinnung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)- oder von c(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen
DE3639779A1 (de) Verfahren zur gewinnung von co(pfeil abwaerts)2(pfeil abwaerts) aus einem co(pfeil abwaerts)2(pfeil abwaerts)-reichen erdgas
WO2004010064A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3/c4-reichen fraktion
DE69402474T2 (de) Kryogenisches Verfahren und Apparat zur Herstellung von flüssigem Stickstoff
EP1834144B1 (de) Verfahren zum abtrennen einer c2+ reichen fraktion aus lng
DE69908478T2 (de) Trennung von Kohlenmonoxid in Kohlenmonoxid und Wasserstoff enthaltenden Gasgemischen
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
EP0872537B1 (de) Verfahren zur Ethylenerzeugung aus einem Kohlenwasserstoffeinsatz
EP2347206B1 (de) Verfahren zum abtrennen von stickstoff
DE10205366A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung eines LPG-Stromes
EP1032798B1 (de) Verfahren und anlage zum abtrennen von c2 - oder c2+ - kohlenwasserstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: DZP2005000055

Country of ref document: DZ

ENP Entry into the national phase

Ref document number: 2005105044

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2006005573

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521944

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10521944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP