WO2010121752A2 - Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion - Google Patents

Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion Download PDF

Info

Publication number
WO2010121752A2
WO2010121752A2 PCT/EP2010/002326 EP2010002326W WO2010121752A2 WO 2010121752 A2 WO2010121752 A2 WO 2010121752A2 EP 2010002326 W EP2010002326 W EP 2010002326W WO 2010121752 A2 WO2010121752 A2 WO 2010121752A2
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cycle
refrigerant mixture
hydrocarbon
rich fraction
Prior art date
Application number
PCT/EP2010/002326
Other languages
English (en)
French (fr)
Other versions
WO2010121752A3 (de
Inventor
Heinz Bauer
Hubert Franke
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to CN201080017277.5A priority Critical patent/CN102575897B/zh
Priority to NO20111495A priority patent/NO346539B1/no
Priority to RU2011147065/06A priority patent/RU2568697C2/ru
Priority to BRPI1013712-2A priority patent/BRPI1013712B1/pt
Priority to AU2010238844A priority patent/AU2010238844B2/en
Publication of WO2010121752A2 publication Critical patent/WO2010121752A2/de
Publication of WO2010121752A3 publication Critical patent/WO2010121752A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle

Definitions

  • the invention relates to a process for liquefying a hydrocarbon-rich fraction.
  • US Pat. No. 3,763,658 discloses a process for liquefying a hydrocarbon-rich fraction, which is used in particular in natural gas liquefaction processes.
  • a mixed refrigerant cycle of liquefaction and supercooling of the natural gas, while additionally a pure substance cycle is provided which pre-cools both the natural gas to be liquefied and the refrigerant mixture of the mixed refrigerant cycle pre-cools and partially liquefied.
  • Such a liquefaction process is particularly suitable for natural gas liquefaction processes with a capacity of between 1 and 6 million tonnes of LNG.
  • the natural gas to be liquefied is, as a rule, supplied to an aqueous amine wash, which is usually followed by a drying unit, before the actual cooling and liquefaction.
  • a partial flow of the above pure substance cycle for the condensation of water contained in natural gas can be used, whereby the amine washing downstream of the dryer is relieved.
  • composition of the refrigerant mixture and / or the compressor discharge pressure of the refrigerant mixture cycle is / are chosen such that the refrigerant mixture is completely liquefied by the pure substance refrigeration cycle.
  • pure refrigerant circuit 1 is to be understood as a refrigeration cycle in which the refrigerant is present in a concentration of at least 95 vol .-%.
  • cooling and liquefaction of the hydrocarbon-rich fraction are now carried out exclusively in indirect heat exchange with the refrigerant mixture of a refrigerant mixture cycle.
  • the still to be provided pure refrigerant circuit is used according to the invention exclusively to pre-cool the compressed refrigerant mixture of the refrigerant mixture cycle.
  • the composition of the refrigerant mixture and / or the compressor end pressure of the refrigerant mixture cycle are to be selected so that the refrigerant mixture through the Substantial refrigeration cycle can be cooled so far that it is completely liquefied.
  • the refrigerant mixture can be fed directly to a heat exchanger, which serves the liquefaction and subcooling of the hydrocarbon-rich fraction, without this separator must be preceded by a separator.
  • the advantage of a pre-cooling by means of a pure refrigerant refrigeration cycle can be substantially maintained with respect to energy consumption and suitability for relieving an optionally provided drying unit.
  • the apparatus required of the liquefaction process according to the invention is much lower in comparison to the above-described liquefaction process, since the number of heat exchangers is significantly reduced.
  • the refrigerant of the pure substance refrigeration cycle consists of at least 95% by volume of C 3 H 8 , C 3 H 6 , C 2 H 6 , C 2 H 4 or CO 2 ,
  • the refrigerant mixture of the refrigerant mixture cycle contains nitrogen, methane and at least two of the components from the group C 2 H 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 , and C 5 H 12 , and
  • the hydrocarbon-rich fraction to be liquefied which in the following is supposed to be a natural gas stream, is fed to an amine wash A.
  • a drying unit T which is preceded by a heat exchanger E1. In this takes place to relieve the drying unit T, a partial condensation of water contained in natural gas.
  • the thus pretreated natural gas stream is fed via line 2 to a heat exchanger E6 and cooled in this against the fully vaporized refrigerant mixture of the refrigerant mixture cycle, which will be discussed below.
  • the heat exchanger E6 is preferably designed as a plate heat exchanger.
  • the cooled natural gas stream is fed to a heat exchanger E7, which is preferably designed as a coiled heat exchanger.
  • a heat exchanger E7 which is preferably designed as a coiled heat exchanger.
  • the liquefaction and supercooling of the natural gas stream takes place in indirect heat exchange with the refrigerant mixture of the mixed refrigerant cycle.
  • the supercooled LNG product stream is withdrawn and fed to a temporary storage or directly to its further use.
  • the refrigerant mixture of the refrigerant mixture cycle is compressed in a single or multi-stage compressor unit to the desired compressor discharge pressure; shown in the figure are two compressor stages V2 and V2 ', wherein between the compressor stages preferably a not shown in the figure intercooler is provided. After cooling in the aftercooler E9, the compressed
  • Refrigerant mixture passed through the line 5 through four successive heat exchangers E2 to E5.
  • the refrigerant mixture in the indirect heat exchange with the refrigerant of the pure refrigerant circuit which will be discussed in more detail below, cooled so far that it is liquid at the output of the last heat exchanger E5 and thus present in single phase.
  • the composition of the refrigerant mixture and / or the compressor end pressure of the refrigerant mixture cycle are to be selected accordingly.
  • the refrigerant used for the pure refrigerant cycle is preferably C 3 H 8 , C 3 H 6 , C 2 H 6 , C 2 H 4 or CO 2 .
  • the refrigerant mixture of the refrigerant mixture cycle preferably contains nitrogen, methane and at least two of the components from the group C 2 H 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 , and C 5 H 12 .
  • the liquefied by the pure refrigerant circuit refrigerant mixture can now be fed via line 6 directly to the heat exchanger E7.
  • the provision of a heat exchanger E7 upstream separator is unnecessary.
  • the liquid refrigerant mixture is subcooled before it is withdrawn via line 7 and relaxed in the valve a to the lowest pressure.
  • a liquid expander can be provided, which serves to work-performing expansion of the refrigerant mixture at the cold end of the heat exchanger E7.
  • the expanded and re-supplied via line 7 to the heat exchanger E7 refrigerant mixture is used in the heat exchanger E7, the liquefaction and subcooling of the natural gas stream.
  • the refrigerant mixture evaporates completely in the liquefaction and supercooling of the natural gas stream, so that withdrawn via line 8, a fully vaporized refrigerant mixture stream from the heat exchanger E7 and the heat exchanger E6 is supplied.
  • the refrigerant mixture is overheated against the natural gas stream to be cooled before it is fed via line 9 again to the input of the cycle compressor unit V2 / V2 1 .
  • the already mentioned pure refrigerant circuit also has a multi-stage compressor unit V1, which is associated with a condenser E8.
  • the compressed to the desired final pressure refrigerant is supplied via line 10 to a branch point at which a partial flow of the refrigerant through the valve b in the already mentioned heat exchanger E1 relaxes and out of this over the Lines 11 and 13, the compressor unit V1 is supplied again.
  • a second partial flow is expanded via line 12 and valve c in the heat exchanger E2.
  • the number of heat exchangers is essentially determined by the ambient temperature and the number of impellers in the turbocompressor V1.
  • the inventive method for liquefying a hydrocarbon-rich fraction creates a liquefaction process, which has an improved overall economy with reduced equipment costs, and this must be paid for with a small increase in energy consumption.
  • the method according to the invention is particularly suitable for power ranges between 0.5 and 3 million tonnes of LNG.

Abstract

Es wird ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion beschrieben. Erfindungsgemäß erfolgen die Abkühlung (E6) und Verflüssigung (E7) der Kohlenwasserstoff-reichen Fraktion (1, 2) im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes (5 - 9), erfolgt die Abkühlung (E6) der Kohlenwasserstoff-reichen Fraktion (1, 2) im indirekten Wärmetausch gegen das vollständige verdampfte Kältemittelgemisch des Kältemittelgemischkreislaufes (5 - 9), wird das verdichtete Kältemittelgemisch des Kältemittelgemischkreislaufes (5 - 9) mittels eines Reinstoffkältekreislaufes (10 - 19) vorgekühlt, und werden die Zusammensetzung des Kältemittelgemisches und/oder der Verdichterenddruck des Kältemittelgemischkreislaufes (5 - 9) so gewählt, dass das Kältemittelgemisch durch den Reinstoffkältekreislauf (10 - 19) vollständig verflüssigt wird.

Description

Beschreibung
Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
Die Erfindung betrifft ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion.
Aus der US 3,763,658 ist ein Verfahren zum Verflüssigen einer Kohlenwasserstoffreichen Fraktion bekannt, das insbesondere bei Erdgasverflüssigungsprozessen Anwendung findet. Hierbei dient ein Kältemittelgemischkreislauf der Verflüssigung und Unterkühlung des Erdgases, während zusätzlich ein Reinstoffkreislauf vorgesehen ist, der sowohl das zu verflüssigende Erdgas vorkühlt als auch das Kältemittelgemisch des Kältemittelgemischkreislaufes vorkühlt und teilverflüssigt. Ein derartiges Verflüssigungsverfahren eignet sich insbesondere für Erdgasverflüssigungsprozesse mit einer Leistung zwischen 1 und 6 Mio. jato LNG.
Das zu verflüssigende Erdgas wird vor der eigentlichen Abkühlung und Verflüssigung im Regelfall einer wässrigen Aminwäsche, der üblicherweise eine Trocknungseinheit nachgeschaltet ist, zugeführt. Insbesondere in warmen Klimazonen kann ein Teilstrom des vorbeschriebenen Reinstoffkreislaufes zur Kondensation von im Erdgas enthaltenen Wasser verwendet werden, wodurch der der Aminwäsche nachgeschaltete Trockner entlastet wird.
Dieser Verflüssigungsprozess erfordert jedoch einen vergleichsweise hohen apparativen Aufwand. So sind je nach Ausführung bis zu neun Reinstoff-Verdampfer vom Kettle-Typ sowie zwei gewickelte Wärmetauscherbündel vorzusehen. Insbesondere bei kleineren Verflüssigungsleistungen - hierunter seien Leistungen von weniger als 3 Mio. jato LNG zu verstehen - weist die vorbeschriebene Prozessführung gegenüber den sog. SMR(Single Mixed Refrigerant)-Verflüssigungsprozessen, die keinen separaten Vorkühlkreislauf aufweisen, Nachteile auf, da der vorbeschriebene Verflüssigungsprozess höhere Investitionskosten bedingt, die auch durch seinen geringeren Energieverbrauch nicht kompensiert werden können. Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion anzugeben, das die vorbeschriebenen Nachteile vermeidet.
Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion vorgeschlagen, bei dem
a) die Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes erfolgen,
b) die Abkühlung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das vollständige verdampfte Kältemittelgemisch des Kältemittelgemischkreislaufes erfolgt,
c) das verdichtete Kältemittelgemisch des Kältemittelgemischkreislaufes mittels eines Reinstoffkältekreislaufes vorgekühlt wird, und
d) die Zusammensetzung des Kältemittelgemisches und/oder der Verdichterenddruck des Kältemittelgemischkreislaufes so gewählt wird bzw. werden, dass das Kältemittelgemisch durch den Reinstoffkältekreislauf vollständig verflüssigt wird.
Unter dem Begriff "Reinstoffkältekreislauf1 sei ein Kältekreislauf zu verstehen, in dem das Kältemittel in einer Konzentration von wenigstens 95 Vol.-% vorliegt.
Im Gegensatz zu dem vorbeschriebenen Verflüssigungsverfahren erfolgen Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion nunmehr ausschließlich im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes. Der weiterhin vorzusehende Reinstoffkältekreislauf dient erfindungsgemäß ausschließlich dazu, das verdichtete Kältemittelgemisch des Kältemittelgemischkreislaufes vorzukühlen. Hierbei sind die Zusammensetzung des Kältemittelgemisches und/oder der Verdichterenddruck des Kältemittelgemischkreislaufes so zu wählen, dass das Kältemittelgemisch durch den Reinstoffkältekreislauf soweit gekühlt werden kann, dass es vollständig verflüssigt vorliegt.
Als Folge davon kann das Kältemittelgemisch unmittelbar einem Wärmetauscher, der der Verflüssigung und Unterkühlung der Kohlenwasserstoff-reichen Fraktion dient, zugeführt werden, ohne dass diesem Wärmetauscher ein Abscheider vorgeschaltet werden muss.
Bei der erfindungsgemäßen Verfahrensweise kann dennoch der Vorteil einer Vorkühlung mittels eines Reinstoffkältekreislaufes in Bezug auf Energieverbrauch und Eignung zur Entlastung einer ggf. vorzusehenden Trocknungseinheit im Wesentlichen beibehalten werden. Der apparative Aufwand des erfindungsgemäßen Verflüssigungsverfahrens ist jedoch im Vergleich zu dem vorbeschriebenen Verflüssigungsverfahren wesentlich geringer, da die Anzahl der Wärmetauscher deutlich reduziert ist.
Zwar führt die erfindungsgemäße Verfahrensweise zu einer geringen Erhöhung des Energieverbrauches - die Erhöhung beträgt maximal 5 % -, jedoch verbessert sich die Gesamtwirtschaftlichkeit des Verflüssigungsprozesses, weswegen die erfindungsgemäße Verfahrensweise insbesondere im Leistungsbereich zwischen 0,5 und 3 Mio. jato LNG wirtschaftlicher als bekannte Verflüssigungsprozesse ist.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion, die Gegenstände der abhängigen Patentansprüche darstellen, sind dadurch gekennzeichnet, dass
das Kältemittel des Reinstoffkältekreislaufes zu wenigstens 95 Vol.-% aus C3H8, C3H6, C2H6, C2H4 oder CO2 besteht,
- das Kältemittelgemisch des Kältemittelgemischkreislaufes Stickstoff, Methan und wenigstens zwei der Komponenten aus der Gruppe C2H4, C2H6, C3H8, C4H10, und C5H12 enthält, und
das Kältemittelgemisch der Kältemittelgemischkreislaufes bei der Verflüssigung der Kohlenwasserstoff-reichen Fraktion vollständig verdampft. Das erfindungsgemäße Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion sowie weitere vorteilhafte Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.
Über Leitung 1 wird die zu verflüssigende Kohlenwasserstoff-reiche Fraktion, bei der es sich nachfolgend um einen Erdgasstrom handeln soll, einer Aminwäsche A zugeführt. Dieser nachgeschaltet ist eine Trocknungseinheit T, der ein Wärmetauscher E1 vorgeschaltet ist. In diesem erfolgt zur Entlastung der Trocknungseinheit T eine Teilkondensation von im Erdgas enthaltenen Wasser.
Der derart vorbehandelte Erdgasstrom wird über Leitung 2 einem Wärmetauscher E6 zugeführt und in diesem gegen das vollständig verdampfte Kältemittelgemisch des Kältemittelgemischkreislaufes, auf den im Folgenden noch eingegangen werden wird, abgekühlt. Der Wärmetauscher E6 ist vorzugsweise als Plattenwärmetauscher ausgeführt.
Über Leitung 3 wird der abgekühlte Erdgasstrom einem Wärmetauscher E7, der vorzugsweise als gewickelter Wärmetauscher ausgebildet ist, zugeführt. In diesem erfolgt die Verflüssigung und Unterkühlung des Erdgasstromes im indirekten Wärmetausch mit dem Kältemittelgemisch des Kältemittelgemischkreislaufes. Über Leitung 4 wird der unterkühlte LNG-Produktstrom abgezogen und einer Zwischenlagerung oder unmittelbar seiner weiteren Verwendung zugeführt.
Das Kältemittelgemisch des Kältemittelgemischkreislaufes wird in einer ein- oder mehrstufigen Verdichtereinheit auf den gewünschten Verdichterenddruck verdichtet; in der Figur dargestellt sind zwei Verdichterstufen V2 und V2', wobei zwischen den Verdichterstufen vorzugsweise ein in der Figur nicht dargestellter Zwischenkühler vorgesehen ist. Nach Abkühlung im Nachkühler E9 wird das verdichtete
Kältemittelgemisch über die Leitung 5 durch vier hintereinander geschaltete Wärmetauscher E2 bis E5 geführt. In diesen wird das Kältemittelgemisch im indirekten Wärmetausch mit dem Kältemittel des Reinstoffkältekreislaufes, auf den im Folgenden noch näher eingegangen werden wird, soweit abgekühlt, dass es am Ausgang des letzten Wärmetauschers E5 flüssig und damit einphasig vorliegt. Um diese Totalkondensation des Kältemittelgemisches des Kältemittelgemischkreislaufes am Ausgang des letzten Wärmetauschers E5 zu erreichen, sind die Zusammensetzung des Kältemittelgemisches und/oder der Verdichterenddruck des Kältemittelgemischkreislaufes entsprechend zu wählen.
Als Kältemittel für den Reinstoffkältekreislauf wird vorzugsweise C3H8, C3H6, C2H6, C2H4 oder CO2 verwendet. Das Kältemittelgemisch des Kältemittelgemischkreislaufes enthält vorzugsweise Stickstoff, Methan und wenigstens zwei der Komponenten aus der Gruppe C2H4, C2H6, C3H8, C4H10, und C5H12.
Das durch den Reinstoffkältekreislauf verflüssigte Kältemittelgemisch kann nunmehr über die Leitung 6 unmittelbar dem Wärmetauscher E7 zugeführt werden. Das Vorsehen eines dem Wärmetauscher E7 vorgeschalteten Abscheiders erübrigt sich dadurch. Im Wärmetauscher E7 wird das flüssige Kältemittelgemisch unterkühlt, bevor es über Leitung 7 abgezogen und im Ventil a auf den niedrigsten Druck entspannt wird.
Alternativ zu dem in der Figur dargestellten Ventil a kann ein Flüssigexpander vorgesehen werden, der der arbeitsleistenden Entspannung des Kältemittelgemisches am kalten Ende des Wärmetauschers E7 dient.
Das entspannte und über Leitung 7 erneut dem Wärmetauscher E7 zugeführte Kältemittelgemisch dient im Wärmtauscher E7 der Verflüssigung und Unterkühlung des Erdgasstromes. In vorteilhafter weise verdampft das Kältemittelgemisch bei der Verflüssigung und Unterkühlung des Erdgasstromes vollständig, so dass über Leitung 8 ein vollständig verdampfter Kältemittelgemischstrom aus dem Wärmetauscher E7 abgezogen und dem Wärmetauscher E6 zugeführt wird. In diesem wird das Kältemittelgemisch gegen den abzukühlenden Erdgasstrom überhitzt, bevor es über Leitung 9 erneut dem Eingang der Kreislaufverdichtereinheit V2/V21 zugeführt wird.
Der bereits erwähnte Reinstoffkältekreislauf weist ebenfalls eine mehrstufige Verdichtereinheit V1 auf, der ein Verflüssiger E8 zugeordnet ist. Das auf den gewünschten Enddruck verdichtete Kältemittel wird über Leitung 10 einem Verzweigepunkt zugeführt, an dem ein Teilstrom des Kältemittels über das Ventil b in den bereits erwähnten Wärmetauscher E1 entspannt und aus diesem über die Leitungen 11 und 13 wieder der Verdichtereinheit V1 zugeführt wird. Ein zweiter Teilstrom wird über Leitung 12 und Ventil c in den Wärmetauscher E2 entspannt.
Während der gasförmige Anteil des Kältemittels über Leitung 13 aus dem Wärmetauscher E2 abgezogen und der Verdichtereinheit V1 auf einer
Zwischendruckstufe zugeführt wird, wird der flüssige Anteil des Kältemittels über Leitung 14 aus dem Wärmetauscher E2 abgezogen und über Ventil d in den Wärmetauscher E3 entspannt. Erneut erfolgt eine Aufteilung in einen gasförmigen Kältemittelanteil, der über Leitung 15 der Verdichtereinheit V1 auf einer Zwischendruckstufe zugeführt wird, während über Leitung 16 der flüssige
Kältemittelanteil abgezogen und über Ventil e in den Wärmetauscher E4 entspannt wird. Auch aus diesem wird der gasförmige Kältemittelanteil über Leitung 17 der Verdichtereinheit V1 auf einer Zwischendruckstufe zugeführt, während über Leitung 18 der flüssige Kältemittelanteil abgezogen und über Ventil f in den letzten Wärmetauscher E5 entspannt wird. Über Leitung 19 wird das vollständig verdampfte Kältemittel der Verdichtereinheit V1 auf der niedrigsten Druckstufe zugeführt.
Anstelle der in der Figur dargestellten Abkühlung des Kältemittelgemisches in den Wärmetauschern E2 bis E5 können in der Praxis auch weniger als vier Wärmetauscher realisiert werden. Die Anzahl der Wärmetauscher wird im Wesentlichen durch die Umgebungstemperatur und die Zahl der Laufräder im Turboverdichter V1 bestimmt.
Das erfindungsgemäße Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion schafft einen Verflüssigungsprozess, der bei verringertem apparativen Aufwand eine verbesserte Gesamtwirtschaftlichkeit aufweist, wobei dies mit einer geringen Erhöhung des Energieverbrauches erkauft werden muss. Die erfindungsgemäße Verfahrensweise eignet sich insbesondere für Leistungsbereiche zwischen 0,5 und 3 Mio. jato LNG.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion, wobei a) die Abkühlung (E6) und Verflüssigung (E7) der Kohlenwasserstoff-reichen Fraktion (1 , 2) im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes (5 - 9) erfolgen, b) die Abkühlung (E6) der Kohlenwasserstoff-reichen Fraktion (1 , 2) im indirekten Wärmetausch gegen das vollständige verdampfte Kältemittelgemisch des Kältemittelgemischkreislaufes (5 - 9) erfolgt, c) das verdichtete Kältemittelgemisch des Kältemittelgemischkreislaufes (5 - 9) mittels eines Reinstoffkältekreislaufes (10 - 19) vorgekühlt wird, und d) die Zusammensetzung des Kältemittelgemisches und/oder der Verdichterenddruck des Kältemittelgemischkreislaufes (5 - 9) so gewählt wird bzw. werden, dass das Kältemittelgemisch durch den Reinstoffkältekreislauf (10 - 19) vollständig verflüssigt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Kältemittel des Reinstoffkältekreislaufes (10 - 19) zu wenigstens 95 Vol.-% aus C3H8, C3H6, C2H6, C2H4 oder CO2 besteht.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kältemittelgemisch des Kältemittelgemischkreislaufes (5 - 9) Stickstoff, Methan und wenigstens zwei der Komponenten aus der Gruppe C2H4, C2H6, C3H8, C4H10, und C5H12 enthält.
4. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Kältemittelgemisch der Kältemittelgemischkreislaufes (5 - 9) bei der Verflüssigung (E7) der Kohlenwasserstoff-reichen Fraktion (3) vollständig verdampft.
PCT/EP2010/002326 2009-04-21 2010-04-15 Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion WO2010121752A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080017277.5A CN102575897B (zh) 2009-04-21 2010-04-15 液化富烃馏分的方法
NO20111495A NO346539B1 (no) 2009-04-21 2010-04-15 Fremgangsmåte for kondensasjon av en hydrokarbonrik fraksjon
RU2011147065/06A RU2568697C2 (ru) 2009-04-21 2010-04-15 Способ сжижения фракции, обогащенной углеводородами
BRPI1013712-2A BRPI1013712B1 (pt) 2009-04-21 2010-04-15 método para liquefação de uma fração rica em hidrocarboneto
AU2010238844A AU2010238844B2 (en) 2009-04-21 2010-04-15 Method for liquefying a hydrocarbon-rich fraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009018248.9 2009-04-21
DE102009018248A DE102009018248A1 (de) 2009-04-21 2009-04-21 Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion

Publications (2)

Publication Number Publication Date
WO2010121752A2 true WO2010121752A2 (de) 2010-10-28
WO2010121752A3 WO2010121752A3 (de) 2012-10-11

Family

ID=42779621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/002326 WO2010121752A2 (de) 2009-04-21 2010-04-15 Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion

Country Status (11)

Country Link
CN (1) CN102575897B (de)
AR (1) AR075917A1 (de)
AU (1) AU2010238844B2 (de)
BR (1) BRPI1013712B1 (de)
CL (1) CL2011002392A1 (de)
DE (1) DE102009018248A1 (de)
MY (1) MY173948A (de)
NO (1) NO346539B1 (de)
PE (1) PE20121108A1 (de)
RU (1) RU2568697C2 (de)
WO (1) WO2010121752A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719425A1 (de) * 2019-04-01 2020-10-07 Linde GmbH Verfahren und anlage zum verflüssigen eines gases
DE102020006394A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts
DE102020006396A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts
RU2798109C2 (ru) * 2019-04-01 2023-06-15 Линде Гмбх Способ и установка для сжижения газа

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792113B (zh) * 2014-01-22 2018-09-28 北京中科富海低温科技有限公司 氦液化器及其控制方法
DE102015002822A1 (de) * 2015-03-05 2016-09-08 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
WO2017093377A1 (en) * 2015-12-03 2017-06-08 Shell Internationale Research Maatschappij B.V. Method of liquefying a co2 contaminated hydrocarbon-containing gas stream
US10663220B2 (en) * 2016-10-07 2020-05-26 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process and system
EP4230937A1 (de) 2022-02-21 2023-08-23 Linde GmbH Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763658A (en) 1970-01-12 1973-10-09 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292203A1 (fr) * 1974-11-21 1976-06-18 Technip Cie Procede et installation pour la liquefaction d'un gaz a bas point d'ebullition
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
CN1004228B (zh) * 1985-04-01 1989-05-17 气体产品与化学公司 两种混合致冷剂液化天然气的方法和设备
DE29823450U1 (de) * 1998-01-19 1999-06-02 Linde Ag Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
US6324867B1 (en) * 1999-06-15 2001-12-04 Exxonmobil Oil Corporation Process and system for liquefying natural gas
US6438994B1 (en) * 2001-09-27 2002-08-27 Praxair Technology, Inc. Method for providing refrigeration using a turboexpander cycle
DE60207689T3 (de) * 2002-05-27 2013-01-24 Air Products And Chemicals, Inc. Wärmetauscher mit gewickelten Rohrschlangen
RU2467268C2 (ru) * 2007-01-25 2012-11-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и устройство для охлаждения углеводородного потока

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763658A (en) 1970-01-12 1973-10-09 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719425A1 (de) * 2019-04-01 2020-10-07 Linde GmbH Verfahren und anlage zum verflüssigen eines gases
WO2020200516A1 (de) * 2019-04-01 2020-10-08 Linde Gmbh Verfahren und anlage zum verflüssigen eines gases
RU2798109C2 (ru) * 2019-04-01 2023-06-15 Линде Гмбх Способ и установка для сжижения газа
DE102020006394A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts
DE102020006396A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts
WO2022078622A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts
WO2022078621A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts

Also Published As

Publication number Publication date
AR075917A1 (es) 2011-05-04
RU2568697C2 (ru) 2015-11-20
NO20111495A1 (no) 2011-11-01
BRPI1013712A2 (pt) 2016-04-05
RU2011147065A (ru) 2013-05-27
AU2010238844B2 (en) 2015-11-26
AU2010238844A1 (en) 2011-09-15
NO346539B1 (no) 2022-09-26
CL2011002392A1 (es) 2012-02-10
DE102009018248A1 (de) 2010-10-28
WO2010121752A3 (de) 2012-10-11
CN102575897A (zh) 2012-07-11
PE20121108A1 (es) 2012-08-03
BRPI1013712B1 (pt) 2020-12-01
CN102575897B (zh) 2014-11-26
MY173948A (en) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE60016536T2 (de) Gasverflüssigungsverfahren durch partiel Kondensation von gemischtem Kältemittel bei zwischengelagerten Temperaturen
WO2006094675A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE2023614B2 (de) Verfahren zum Verflüssigen und Unterkühlen eines methanreichen Verbrauchsgasstromes
DE102006027199A1 (de) Verfahren zum Verflüssigen von Wasserstoff
DE102010011052A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19937623B4 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102005029275A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP1834142A1 (de) Verfahren zum verfluessigen eines kohlenwasserstoff-reichen stromes
WO2003106906A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE102014012316A1 (de) Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
WO2017054929A1 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
WO2008095713A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102009004109A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE19517116C1 (de) Verfahren zur Verringerung des Energieverbrauchs
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE2049181B2 (de) Verfahren zur Kälteerzeugung durch Kompression eines Gemisches von verschiedenen Kältemitteln mit unterschiedlichen Siedepunkten
DE102016000394A1 (de) Verfahren zum Abkühlen eines Mediums
WO2005090885A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017277.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10714582

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010238844

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010238844

Country of ref document: AU

Date of ref document: 20100415

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 001670-2011

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011147065

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10714582

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013712

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013712

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111019