WO2022078622A1 - Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts - Google Patents

Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts Download PDF

Info

Publication number
WO2022078622A1
WO2022078622A1 PCT/EP2021/025370 EP2021025370W WO2022078622A1 WO 2022078622 A1 WO2022078622 A1 WO 2022078622A1 EP 2021025370 W EP2021025370 W EP 2021025370W WO 2022078622 A1 WO2022078622 A1 WO 2022078622A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
pure substance
mixed
pure
Prior art date
Application number
PCT/EP2021/025370
Other languages
English (en)
French (fr)
Inventor
Heinz Bauer
Martin Kamann
Eva-Maria Katzur
Andreas KOSSMANN
Original Assignee
Linde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Gmbh filed Critical Linde Gmbh
Publication of WO2022078622A1 publication Critical patent/WO2022078622A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/22Compressor driver arrangement, e.g. power supply by motor, gas or steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream

Definitions

  • the present invention relates to a process and a plant for producing a liquefied hydrocarbon product according to the respective preambles of the independent patent claims.
  • mixed refrigerants made from different hydrocarbon components and nitrogen can be used in natural gas liquefaction.
  • one, two or three mixed refrigerant circuits can be used (single mixed refrigerant, SMR; dual mixed refrigerant, DMR; mixed fluid cascade, MFC).
  • SMR single mixed refrigerant
  • DMR dual mixed refrigerant
  • MFC mixed fluid cascade
  • C3MR propane pre-cooling
  • a method for liquefying a hydrocarbon mixture is known from WO 2010/121752 A2, in which a mixed refrigerant circuit is used.
  • the mixed refrigerant is liquefied therein after compression by means of a pure substance refrigerant circuit.
  • the liquefied mixture refrigerant is used to liquefy the hydrocarbon mixture and is vaporized in the course of this.
  • the vaporized mixture refrigerant is used to cool the hydrocarbon mixture before it is actually liquefied and then returned to the compression stage.
  • the present invention can be used in particular in connection with the liquefaction of natural gas after suitable processing, However, it is also suitable for the liquefaction of other hydrocarbon mixtures, in particular methane-rich hydrocarbon mixtures with a methane content of more than 80%, or possibly corresponding pure substances.
  • the object of the present invention is therefore to improve the liquefaction of a hydrocarbon mixture of the type explained.
  • the invention proposes a method and a plant for producing a liquefied hydrocarbon product with the respective features of the independent patent claims. Refinements of the invention are the subject matter of the dependent claims and the following description.
  • pressure level and “temperature level” to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values.
  • pressures and temperatures typically range within certain ranges, for example ⁇ 10% around an average value.
  • Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another. In particular, for example, pressure levels include unavoidable or expected pressure losses. The same applies to temperature levels.
  • a "heat exchanger” for use in the context of the present invention can be of any type which is conventional in the art. It is used for the indirect transmission of Heat between at least two, for example, countercurrent fluid flows to one another. In the latter case, it is a "counterflow heat exchanger".
  • a corresponding heat exchanger can be formed from a single heat exchanger section or from a plurality of heat exchanger sections connected in parallel and/or in series, for example from one or more coiled heat exchangers or corresponding sections.
  • a heat exchanger is also used in particular, in which a fluid to be cooled is guided in corresponding lines (e.g. a tube bundle) through a jacket space, into which a fluid used for cooling is expanded, which is partially evaporated in the jacket space.
  • a “pure substance refrigerant” is mentioned below, this is understood to mean a refrigerant that has more than 90 mole percent, in particular more than 95 mole percent or more than 99 mole percent, of a single component.
  • the component can in particular be ethylene, ethane, propylene or propane.
  • a “mixed refrigerant” is characterized in that it has several components, none of which is contained in a content of more than 80 mole percent, in particular more than 70 mole percent or more than 60 mole percent.
  • the components can be, in particular, ethane, propane, butane and pentane and unsaturated equivalents of these compounds.
  • such a mixed refrigerant can be propane-free or have propane in a content of at most 10 mole percent, in particular at most 5 mole percent or at most 1 mole percent.
  • the present invention can be used in particular in connection with the liquefaction of natural gas after appropriate processing, but is also suitable for the liquefaction of other hydrocarbon mixtures, in particular methane-rich hydrocarbon mixtures with a methane content of more than 80%, or possibly .corresponding pure substances.
  • a gaseous hydrocarbon mixture fed to the process according to the invention or a corresponding gaseous pure substance is referred to here as "Hydrocarbon feed" and the liquid obtained by liquefaction, which may contain all or part of the hydrocarbon feed, referred to as "hydrocarbon product".
  • cooling (in heat exchanger E7) and liquefaction (in heat exchanger E8) take place in indirect heat exchange with the refrigerant mixture of a mixed refrigerant circuit. More precisely, the cooling (in heat exchanger E7) takes place in the heat exchange against the fully evaporated mixed refrigerant of the mixed refrigerant circuit.
  • Compressed mixed refrigerant of the mixed refrigerant circuit is pre-cooled by means of a pure substance refrigerant circuit (comprising heat exchangers E1 to E4) and the composition of the mixed refrigerant and/or the compressor discharge pressure of the mixed refrigerant circuit are selected such that the refrigerant mixture is completely liquefied by the pure substance refrigerant circuit.
  • a pure substance refrigerant circuit comprising heat exchangers E1 to E4
  • the composition of the mixed refrigerant and/or the compressor discharge pressure of the mixed refrigerant circuit are selected such that the refrigerant mixture is completely liquefied by the pure substance refrigerant circuit.
  • cooling the mixture refrigerant in E1 to E4 above its critical pressure also leads to a single-phase state after E4.
  • a compressor C1 is required for the compression of the pure refrigerant.
  • Two additional compressors C1, C2 are used to compress the mixed refrigerant.
  • the determination of the optimal, i.e. minimum, drive power of the compressors C1, C2 and C3 results in different values for the individual machines, which makes it difficult to standardize the drives.
  • the compressor C1 used for the compression of the pure refrigerant also has a complex structure due to the three side feeds used.
  • the present invention proposes a method for producing a liquid hydrocarbon product, in which a gaseous hydrocarbon feedstock is subjected to cooling at least in part using a mixture refrigerant and to liquefaction to obtain the liquid hydrocarbon product, the mixture refrigerant being subjected at least in part to using a Pure refrigerant is subjected to pre-cooling.
  • the present invention is characterized in that the mixed refrigerant is conducted in a mixed refrigerant circuit and is compressed in it, and that the pure substance refrigerant is conducted in a pure substance refrigerant circuit and is compressed in this.
  • the compression of the mixed refrigerant in the mixed refrigerant circuit comprises the use of a first, a second and a third mixed refrigerant compressor, and the compression of the pure substance refrigerant in the pure substance refrigerant circuit comprises the use of a first and a second pure substance refrigerant compressor.
  • the pure substance refrigerant compressor C1 is divided into a first and a second pure substance refrigerant compressor (C1 and C1' according to FIG. 2, which is also attached).
  • the distribution is in particular such that the evaporated refrigerant from the heat exchanger E4, which can be designed as explained above for the prior art according to Figure 1, the suction side of the first pure substance refrigerant compressor C1 and the evaporated refrigerant from the heat exchanger E2 as a side feed also to the first pure substance refrigerant compressor C1 are supplied.
  • the vaporized refrigerant from the heat exchanger E3 on the suction side of the second pure-substance refrigerant compressor C1' and the vaporized refrigerant from the heat exchanger E1 as a side feed can also be fed to the second pure-substance refrigerant compressor C1'.
  • the previous high-pressure stage C3 or a corresponding mixed refrigerant compressor in a conventional arrangement, as shown in FIG. 1 is divided into two mixed refrigerant compressors C3 and C3′, as shown in FIG. 2, namely the second and third mixed refrigerant compressors. This interconnection is described again below in other words.
  • the first mixed refrigerant compressor is operated mechanically coupled to the second pure substance refrigerant compressor and the second mixed refrigerant compressor is operated mechanically coupled to the first pure substance refrigerant compressor.
  • the compressors mentioned can be driven in particular by means of a common shaft, or by means of a plurality of shafts which are driven at the same speed or at different speeds, for example using a gearbox.
  • the first mixed refrigerant compressor at least part of the mixed refrigerant is advantageously compressed from a first mixed refrigerant pressure level to a second mixed refrigerant pressure level
  • the second mixed refrigerant compressor at least part of the mixed refrigerant is advantageously compressed from the second mixed refrigerant pressure level to a third mixed refrigerant pressure level
  • the third mixture refrigerant compressor at least a portion of the mixture refrigerant is advantageously compressed from the third mixture refrigerant pressure level to a final mixture refrigerant pressure level.
  • the first mixture refrigerant pressure level can be in particular 5 to 10 bar, the second mixture refrigerant pressure level in particular 15 to 30 bar, the third mixture refrigerant pressure level in particular 40 to 70 bar, and the final mixture refrigerant pressure level in particular 80 to 130 bar.
  • parts of the pure substance refrigerant are advantageously compressed from a first pure substance refrigerant pressure level and from a second pure substance refrigerant pressure level to a pure substance refrigerant final pressure level, and in the second pure substance refrigerant compressor parts of the pure substance refrigerant are advantageously compressed from a third pure substance refrigerant pressure level and from a fourth pure substance refrigerant pressure level to the pure substance refrigerant final pressure level.
  • the first pure substance refrigerant pressure level can in particular be 1.05 to 2 bar, the second pure substance refrigerant pressure level in particular 3 to 5 bar, the third Pure substance refrigerant pressure level in particular at 2 to 3 bar, the fourth pure substance refrigerant pressure level in particular at 5 to 10 bar and the pure substance refrigerant end pressure level in particular at 10 to 20 bar.
  • At least part of the mixture refrigerant is vaporized at the first mixture refrigerant pressure level against at least part of the hydrocarbon charge, and said parts of the pure substance refrigerant are advantageously at the first, the second, the third and the fourth pure substance refrigerant pressure level against at least part of the mixture refrigerant evaporated.
  • the hydrocarbon feed for the proposed process comes from an upstream natural gas liquids separation and/or is at a pressure of less than 50 bar
  • the invention may include compressing at least a portion of the gaseous hydrocarbon feed using a feed compressor, and operating the third blended refrigerant compressor in mechanical coupling with the feed compressor.
  • the pure substance and mixed refrigerant compressors are combined in pairs in the manner explained. This results in an advantageous configuration that allows the use of drives with the same performance for the resulting three strands without any noticeable restriction of the thermodynamic efficiency.
  • the pressures between the individual stages of the mixed refrigerant circuit can be shifted within a certain range (in particular ⁇ 20%) without the total power requirement of the compressors increasing by more than 2%, preferably more than 1%.
  • the first mixture refrigerant compressor and the second pure substance refrigerant compressor are driven using a first drive
  • the second mixture refrigerant compressor and the first pure substance refrigerant compressor are advantageously driven using a second drive
  • the third blended refrigerant compressor and the feed compressor are advantageously driven using a third drive.
  • a (used) drive power of the first, second and third drive deviates by no more than 3 percentage points, in particular by no more than two percentage points, from one third of a total power of the first, second and third drive.
  • the power requirement of the three compressor trains - based on the total power of the six individual compressors - is advantageously in a range of ⁇ 3 percentage points, preferably in a range of ⁇ 2 percentage points, i.e. between 30 1/3 and 36 1/3 percent, and 31 1/3 and 35 1/3 percent, respectively.
  • the mixed refrigerant compressors and the pure substance refrigerant compressors can be operated within the scope of the present invention at first speeds which differ from one another by no more than 10%, 5% or 2% and which are in particular the same.
  • the insert compressor is advantageously operated at a second speed which deviates from the first speed by no more than 10%, 5% or 2% and in particular is the same.
  • the second speed can also be above the first speed by a predetermined factor, which is defined by a transmission that couples the third mixed refrigerant compressor to the compressor.
  • the first, second and third drives can each independently comprise a gas turbine, a steam turbine and/or an electric motor.
  • the first, the second and/or the third mixed refrigerant compressor are advantageously each operated at operating points which are at least 20 K, in particular at least 30 K, away from the dew point of the mixed refrigerant. In this way, the first, the second and/or the third mixed refrigerant compressor can be operated in particular without a suction tank.
  • the pure substance refrigerant used in the context of the present invention can contain, in particular, propane, propylene, ethane, ethylene or carbon dioxide more generally at least 90 mol% of a component whose critical temperature is greater than 0°C.
  • Figure 1 shows a system not according to the invention to illustrate the background of the invention.
  • FIG. 2 shows an advantageous embodiment of a system according to the invention in a schematic representation.
  • Processed natural gas NG is fed to an embodiment of a plant for natural gas liquefaction that is not according to the invention, as shown in FIG.
  • the present invention can also be used in connection with the liquefaction of other gas mixtures.
  • the natural gas NG is cooled in a heat exchanger E7 and then liquefied in a heat exchanger E8 before it is expanded via a turbine X1 or a valve (not shown) and discharged from the process as liquefied natural gas LNG.
  • the heat exchanger E8 is operated using a mixed refrigerant circuit, in which a mixed refrigerant is compressed in gaseous form in compressors C2, C3 and is post-cooled in heat exchangers or coolers E9, E10.
  • the compressed mixed refrigerant is passed through heat exchangers E1 to E4 and is liquefied in the process.
  • the mixed refrigerant is expanded in a turbine X2 or a valve (not shown).
  • Liquid separating in a container D6 is fed into the heat exchanger E8 via a valve V5 and evaporated there.
  • the vaporized mixed refrigerant is further heated in the heat exchanger E7, cooling the natural gas, and then fed back to the compression in the compressors C2, C3.
  • the heat exchangers E1 to E4 are operated using a pure refrigerant, which is compressed in a compressor C1 before it is liquefied (E5) and supercooled (E6) in heat exchangers or coolers.
  • the intermediate container D5 serves as a buffer.
  • the cooled and in particular liquefied pure substance refrigerant is expanded via a valve V1 into the heat exchanger E1, with an evaporated portion being returned via a container D1 for compression in the compressor C1.
  • a portion of the pure refrigerant remaining liquid in the heat exchanger E1 is expanded into the heat exchanger E2 via a valve V2, with an evaporated portion being returned via a container D2 for compression in the compressor C1.
  • a portion of the pure refrigerant that also remains liquid in the heat exchanger E2 is expanded into the heat exchanger E3 via a valve V3, with an evaporated portion being returned via a container D3 for compression in the compressor C1.
  • a portion of the pure refrigerant that also remains liquid in the heat exchanger E3 is expanded into the heat exchanger E4 via a valve V4, with an evaporated portion being returned via a container D4 for compression in the compressor C1.
  • No liquid portion of the pure refrigerant remains in the heat exchanger E4.
  • a plant for natural gas liquefaction according to an embodiment of the invention, as shown in FIG. 2 and denoted overall by 100, is also supplied with processed natural gas NG.
  • the invention can also be used in connection with the liquefaction of other gas mixtures.
  • components or process steps as are typical for the processing of natural gas NG are shown here. These include, in particular, an amine scrubber 11 for removing acid gases, in particular carbon dioxide and hydrogen sulfide, downstream of which a partial flow of the pure refrigerant can also be routed through a heat exchanger ET via a valve VT and can be used to cool the partially processed natural gas obtained in the amine scrubber 11.
  • an amine scrubber 11 for removing acid gases, in particular carbon dioxide and hydrogen sulfide, downstream of which a partial flow of the pure refrigerant can also be routed through a heat exchanger ET via a valve VT and can be used to cool the partially processed natural gas obtained in the amine scrubber 11.
  • the amine scrubbing 11 is followed by drying 12 and a separation 13 of natural gas liquids.
  • the latter can be subjected to a fractionation 14, in particular to obtain a fraction C2/C3 of hydrocarbons with two and three carbon atoms and a fraction C5+ of hydrocarbons with five and more carbon atoms.
  • this is advantageously followed by compression in an input compressor C4, which is followed by post-cooling in a heat exchanger E11.
  • the formed, compressed and processed natural gas stream is fed to the heat exchanger E7 as before.
  • a further deviation from the embodiment not according to the invention illustrated in FIG. 1 is that the compression of the mixed refrigerant in the mixed refrigerant circuit shown on the right in FIG. C3', is made, the second and the third mixed refrigerant compressor (C3 and C3') replacing the mixed refrigerant compressor C3 shown in FIG.
  • the compression of the pure substance refrigerant in the pure substance refrigerant circuit shown on the left in FIG. 2 includes the use of a first and a second pure substance refrigerant compressor C1, CT.
  • the pure substance refrigerant compressor C1 is divided into two different pure substance refrigerant compressors C1 and CT.
  • the distribution is such that the vaporized refrigerant from the heat exchanger E4 is also fed to the suction side of the pure substance refrigerant compressor C1 and the vaporized refrigerant from the heat exchanger E2 as a side feed to the pure substance refrigerant compressor C1.
  • the vaporized refrigerant from the heat exchanger E3 is also fed to the suction side of the pure substance refrigerant compressor CT and the vaporized refrigerant from the heat exchanger E1 as a side feed to the pure substance refrigerant compressor CT.
  • the first mixed refrigerant compressor C2 is operated mechanically coupled to the second pure substance refrigerant compressor CT and the second mixed refrigerant compressor C3 is operated mechanically coupled to the first pure substance refrigerant compressor C1.
  • aftercoolers E9, E10, E10' are arranged downstream of the first, second and third mixed refrigerant compressors C2, C3, C3'.
  • the third mixed refrigerant compressor C3′ is operated in mechanical coupling with the compressor C4 used.

Abstract

Ein Verfahren zur Erzeugung eines flüssigen Kohlenwasserstoffprodukts (LNG) wird vorgeschlagen, bei dem ein gasförmiger Kohlenwasserstoffeinsatz (NG) zumindest zu einem Teil unter Verwendung eines Gemischkältemittels einer Abkühlung und unter Erhalt des flüssigen Kohlenwasserstoffprodukts (LNG) einer Verflüssigung unterworfen wird, wobei das Gemischkältemittel zumindest zu einem Teil unter Verwendung eines Reinstoffkältemittels einer Vorkühlung unterworfen wird. Das Gemischkältemittel wird in einem Gemischkältemittelkreislauf geführt und in diesem verdichtet und das Reinstoffkältemittel wird in einem Reinstoffkältemittelkreislauf geführt und in diesem verdichtet. Es ist vorgesehen, dass die Verdichtung des Gemischkältemittels in dem Gemischkältemittelkreislauf die Verwendung eines ersten, eines zweiten und eines dritten Gemischkältemittelverdichters (C2, C3, C3') umfasst, die Verdichtung des Reinstoffkältemittels in dem Reinstoffkältemittelkreislauf die Verwendung eines ersten und eines zweiten Reinstoffkältemittelverdichters (C1, CT) umfasst, und der erste Gemischkältemittelverdichter (C2) in mechanischer Kopplung mit dem zweiten Reinstoffkältemittelverdichter (CT) und der zweite Gemischkältemittelverdichter (C3) in mechanischer Kopplung mit dem ersten Reinstoffkältemittelverdichter (C1) betrieben wird. Eine entsprechende Anlage (100) ist ebenfalls Gegenstand der Erfindung.

Description

Beschreibung
Verfahren und Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts
Die vorliegende Erfindung betrifft ein Verfahren und eine Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts gemäß den jeweiligen Oberbegriffen der unabhängigen Patentansprüche.
Hintergrund
Verfahren und Anlagen zur Verflüssigung von Erdgas sind bekannt und beispielsweise im Artikel "Natural Gas" in Ullmann's Encyclopedia of Industrial Chemistry, Onlinepublikation 15. Juli 2006, DOI: 10.1002/14356007. a17_073.pub2, insbesondere Abschnitt 3, "Liquefaction", oder bei Wang und Economides, "Advanced Natural Gas Engineering", Gulf Publishing 2010, DOI: 10.1016/C2013-0-15532-8, insbesondere Kapitel 6, "Liquefied Natural Gas (LNG)", beschrieben.
Insbesondere können bei der Erdgasverflüssigung Gemischkältemittel aus unterschiedlichen Kohlenwasserstoffbestandteilen und Stickstoff zum Einsatz kommen. Beispielsweise können dabei ein, oder zwei oder drei Gemischkältemittelkreisläufe eingesetzt werden (engl. Single Mixed Refrigerant, SMR; Dual Mixed Refrigerant, DMR; Mixed Fluid Cascade, MFC). Auch Gemischkältemittelkreisläufe mit Propanvorkühlung (C3MR) sind bekannt.
Beispielsweise ist aus der WO 2010/121752 A2 ein Verfahren zum Verflüssigen eines Kohlenwasserstoffgemischs bekannt, bei dem ein Gemischkältemittelkreislauf zum Einsatz kommt. Das Gemischkältemittel wird darin nach einer Verdichtung mittels eines Reinstoffkältemittelkreislaufs verflüssigt. Das verflüssigte Gemischkältemittel wird zur Verflüssigung des Kohlenwasserstoffgemischs eingesetzt und im Zuge dessen verdampft. Das verdampfte Gemischkältemittel wird zur Kühlung des Kohlenwasserstoffgemischs vor seiner eigentlichen Verflüssigung eingesetzt und anschließend der Verdichtung wieder zugeführt.
Die vorliegende Erfindung kann insbesondere im Zusammenhang mit der Verflüssigung von Erdgas nach einer geeigneten Aufbereitung zum Einsatz kommen, eignet sich jedoch auch für die Verflüssigung anderer Kohlenwasserstoffgemische, insbesondere methanreicher Kohlenwasserstoffgemische mit einem Gehalt von mehr als 80% Methan, oder auch ggf. entsprechender Reinstoffe.
Aus dem Stand der Technik bekannte Verfahren zur Verflüssigung von Kohlenwasserstoffgemischen der erläuterten Art erweisen sich häufig in der Praxis aus den nachfolgend erläuterten Gründen als verbesserungsbedürftig.
Die vorliegende Erfindung stellt sich daher die Aufgabe, die Verflüssigung eines Kohlenwasserstoffgemischs der erläuterten Art zu verbessern.
Offenbarung der Erfindung
Vor diesem Hintergrund schlägt die Erfindung ein Verfahren und eine Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts mit den jeweiligen Merkmalen der unabhängigen Patentansprüche vor. Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche und der nachfolgenden Beschreibung.
Vor der Erläuterung der Merkmale und Vorteile der vorliegenden Erfindung werden einige Grundlagen der vorliegenden Erfindung näher erläutert und nachfolgend verwendete Begriffe definiert.
Die vorliegende Anmeldung verwendet zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass entsprechende Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 10% um einen Mittelwert liegen. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche oder zu erwartende Druckverluste ein. Entsprechendes gilt für Temperaturniveaus.
Ein "Wärmetauscher" zum Einsatz im Rahmen der vorliegenden Erfindung kann in jeglicher fachüblichen Art ausgebildet sein. Er dient zur indirekten Übertragung von Wärme zwischen zumindest zwei z.B. im Gegenstrom zueinander geführten Fluidströmen. In letzterem Fall handelt es sich um einen "Gegenstromwärmetäuscher". Ein entsprechender Wärmetauscher kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, z.B. aus einem oder mehreren gewickelten Wärmetauschern oder entsprechenden Abschnitten.
Neben einem Gegenstromwärmetäuscher, der insbesondere als ein (gelöteter) Rippen- Platten-Wärmetauscher aus Aluminium (Brazed Aluminium Plate-Fin Heat Exchanger, PFHE; Bezeichnungen gemäß der deutschen und englischen Ausgabe der ISO 15547- 2:3005) ausgebildet sein kann, kommt im Rahmen der vorliegenden Erfindung insbesondere auch ein Wärmetauscher zum Einsatz, in dem ein abzukühlendes Fluid in entsprechenden Leitungen (beispielsweise einem Rohrbündel) durch einen Mantelraum geführt wird, in den ein zur Kühlung verwendetes Fluid entspannt wird, welches in dem Mantelraum teilweise verdampft wird.
Ist nachfolgend von einem "Reinstoffkältemittel" die Rede, sei hierunter ein Kältemittel verstanden, das mehr als 90 Molprozent, insbesondere mehr als 95 Molprozent oder mehr als 99 Molprozent, einer einzigen Komponente aufweist. Bei der Komponente kann es sich insbesondere um Ethylen, Ethan, Propylen oder Propan handeln. Dagegen zeichnet sich ein "Gemischkältemittel" dadurch aus, dass es mehrere Komponenten aufweist, von denen keine in einem Gehalt von mehr als 80 Molprozent, insbesondere mehr als 70 Molprozent oder mehr als 60 Molprozent, enthalten ist. Bei den Komponenten kann es sich insbesondere um Ethan, Propan, Butan und Pentan sowie ungesättigte Äquivalente dieser Verbindungen handeln. Insbesondere kann ein derartiges Gemischkältemittel aber propanfrei sein oder Propan in einem Gehalt von höchstens 10 Molprozent, insbesondere höchstens 5 Molprozent oder höchstens 1 Molprozent, aufweisen.
Die vorliegende Erfindung kann, wie erwähnt, insbesondere im Zusammenhang mit der Verflüssigung von Erdgas nach einer entsprechenden Aufbereitung zum Einsatz kommen, eignet sich jedoch auch für die Verflüssigung anderer Kohlenwasserstoffgemische, insbesondere methanreicher Kohlenwasserstoffgemische mit einem Gehalt von mehr als 80% Methan, oder auch ggf. entsprechender Reinstoffe. Ein dem erfindungsgemäßen Verfahren zugeführtes, gasförmiges Kohlenwasserstoffgemisch oder ein entsprechender gasförmiger Reinstoff wird hier als "Kohlenwasserstoffeinsatz" und die durch die Verflüssigung erhaltene Flüssigkeit, die den gesamten oder einen Teil des Kohlenwasserstoffeinsatzes enthalten kann, als "Kohlenwasserstoffprodukt" bezeichnet.
Merkmale und Vorteile der Erfindung
Bei dem in der oben erwähnten WO 2010/121752 A2 beschriebenen
Verflüssigungsverfahren, das auch unten unter Bezugnahme auf Figur 1 erläutert ist, deren Bezugszeichen nachfolgend verwendet werden, erfolgen die Abkühlung (in Wärmetauscher E7) und die Verflüssigung (in Wärmetauscher E8) im indirekten Wärmetausch gegen das Kältemittelgemisch eines Gemischkältemittelkreislaufes. Genauer erfolgt die Abkühlung (in Wärmetauscher E7) im Wärmetausch gegen das vollständige verdampfte Gemischkältemittel des Gemischkältemittelkreislaufes.
Verdichtetes Gemischkältemittel des Gemischkältemittelkreislaufes wird mittels eines Reinstoffkältemittelkreislaufes (umfassend Wärmetauscher E1 bis E4) vorgekühlt und die Zusammensetzung des Gemischkältemittels und/oder der Verdichterenddruck des Gemischkältemittelkreislaufes werden so gewählt, dass das Kältemittelgemisch durch den Reinstoffkältekreislauf vollständig verflüssigt wird. Alternativ dazu führt eine Abkühlung des Gemischkältemittels in E1 bis E4 oberhalb seines kritischen Drucks ebenfalls zu einem einphasigen Zustand nach E4.
In dem in der WO 2010/121752 A2 beschriebenen Verflüssigungsverfahren wird für die Verdichtung des Reinstoffkältemittels ein Verdichter C1 benötigt. Für die Verdichtung des Gemischkältemittels werden zwei weitere Verdichter C1 , C2 eingesetzt. Die Ermittlung der optimalen, d.h. minimalen, Antriebsleistung der Verdichter C1 , C2 und C3 ergibt dabei unterschiedliche Werte für die einzelnen Maschinen, wodurch die Vereinheitlichung der Antriebe erschwert wird. Der für die Verdichtung des Reinstoffkältemittels eingesetzte Verdichter C1 weist ferner aufgrund der verwendeten drei Seiteneinspeisungen einen komplexen Aufbau auf.
Durch den Einsatz der vorliegenden Erfindung wird insbesondere die Komplexität des für die Verdichtung des Reinstoffkältemittels eingesetzten Verdichters C1 gebrochen und es können ohne spürbaren Effizienzverlust ausschließlich identische Antriebe für alle Verdichter verwendet werden. Die vorliegende Erfindung schlägt dazu ein Verfahren zur Erzeugung eines flüssigen Kohlenwasserstoffprodukts vor, bei dem ein gasförmiger Kohlenwasserstoffeinsatz zumindest zu einem Teil unter Verwendung eines Gemischkältemittels einer Abkühlung und unter Erhalt des flüssigen Kohlenwasserstoffprodukts einer Verflüssigung unterworfen wird, wobei das Gemischkältemittel zumindest zu einem Teil unter Verwendung eines Reinstoffkältemittels einer Vorkühlung unterworfen wird. Die vorliegende Erfindung zeichnet sich dabei dadurch aus, dass das Gemischkältemittel in einem Gemischkältemittelkreislauf geführt und in diesem verdichtet wird, und dass das Reinstoffkältemittel in einem Reinstoffkältemittelkreislauf geführt und in diesem verdichtet wird. Erfindungsgemäß umfasst die die Verdichtung des Gemischkältemittels in dem Gemischkältemittelkreislauf die Verwendung eines ersten, eines zweiten und eines dritten Gemischkältemittelverdichters, und die Verdichtung des Reinstoffkältemittels in dem Reinstoffkältemittelkreislauf umfasst die Verwendung eines ersten und eines zweiten Reinstoffkältemittelverdichters.
Abweichend vom beschriebenen Stand der Technik wird also der Reinstoffkältemittelverdichter C1 , wie er zu Figur 1 beschrieben ist, in einen ersten und einen zweiten Reinstoffkältemittelverdichter (C1 und C1 ' gemäß der ebenfalls beigefügten Figur 2) aufgeteilt. Die Aufteilung erfolgt insbesondere dergestalt, dass das verdampfte Kältemittel aus dem Wärmetauscher E4, der wie zuvor zum Stand der Technik gemäß Figur 1 erläutert ausgebildet sein kann, der Saugseite des ersten Reinstoffkältemittelverdichters C1 und das verdampfte Kältemittel aus dem Wärmetauscher E2 als Seiteneinspeisung ebenfalls dem ersten Reinstoffkältemittelverdichter C1 zugeführt werden. Analog dazu kann das verdampfte Kältemittel aus dem Wärmetauscher E3 der Saugseite des zweiten Reinstoffkältemittelverdichters C1 ' und das verdampfte Kältemittel aus dem Wärmetauscher E1 als Seiteneinspeisung ebenfalls dem zweiten Reinstoffkältemittelverdichter C1 ' zugeführt werden. Weiterhin wird insbesondere die bisherige Hochdruckstufe C3 bzw. ein entsprechender Gemischkältemittelverdichter in einer konventionellen Anordnung, wie sie in Figur 1 gezeigt ist, in zwei Gemischkältemittelverdichter C3 und C3' aufgeteilt, wie sie in Figur 2 gezeigt sind, nämlich den zweiten und dritten Gemischkältemittelverdichter. Diese Verschaltung wird weiter unten nochmals mit anderen Worten beschrieben. Der erste Gemischkältemittelverdichter wird erfindungsgemäß in mechanischer Kopplung mit dem zweiten Reinstoffkältemittelverdichter und der zweite Gemischkältemittelverdichter in mechanischer Kopplung mit dem ersten Reinstoffkältemittelverdichter betrieben. Die genannten Verdichter können insbesondere mittels einer gemeinsamen Welle angetrieben werden, oder mittels mehrerer Wellen, die drehzahlgleich oder drehzahlunterschiedlich, beispielsweise unter Verwendung eines Getriebes, angetrieben werden.
Die obigen Erläuterungen nochmals mit anderen Worten zusammengefasst wird in dem ersten Gemischkältemittelverdichter vorteilhafterweise zumindest ein Teil des Gemischkältemittels von einem ersten Gemischkältemitteldruckniveau auf ein zweites Gemischkältemitteldruckniveau verdichtet, in dem zweiten Gemischkältemittelverdichter wird vorteilhafterweise zumindest ein Teil des Gemischkältemittels von dem zweiten Gemischkältemitteldruckniveau auf ein drittes Gemischkältemitteldruckniveau verdichtet, und in dem dritten Gemischkältemittelverdichter wird vorteilhafterweise zumindest ein Teil des Gemischkältemittels von dem dritten Gemischkältemitteldruckniveau auf ein Gemischkältemittelenddruckniveau verdichtet. Es erfolgt also insbesondere eine serielle Verdichtung des Gemischkältemittels.
Das erste Gemischkältemitteldruckniveau kann insbesondere bei 5 bis 10 bar, das zweite Gemischkältemitteldruckniveau insbesondere bei 15 bis 30 bar, das dritte Gemischkältemitteldruckniveau insbesondere bei 40 bis 70 bar, und das Gemischkältemittelenddruckniveau insbesondere bei 80 bis 130 bar liegen.
In dem ersten Reinstoffkältemittelverdichter werden vorteilhafterweise Teile des Reinstoffkältemittels von einem ersten Reinstoffkältemitteldruckniveau und von einem zweiten Reinstoffkältemitteldruckniveau auf ein Reinstoffkältemittelenddruckniveau verdichtet, und in dem zweiten Reinstoffkältemittelverdichter werden vorteilhafterweise Teile des Reinstoffkältemittels von einem dritten Reinstoffkältemitteldruckniveau und von einem vierten Reinstoffkältemitteldruckniveau auf das Reinstoffkältemittelenddruckniveau verdichtet.
Das erste Reinstoffkältemitteldruckniveau kann insbesondere bei 1 ,05 bis 2 bar, das zweite Reinstoffkältemitteldruckniveau insbesondere bei 3 bis 5 bar, das dritte Reinstoffkältemitteldruckniveau insbesondere bei 2 bis 3 bar, das vierte Reinstoffkältemitteldruckniveau insbesondere bei 5 bis 10 bar und das Reinstoffkältemittelenddruckniveau insbesondere bei 10 bis 20 bar liegen.
In dem erfindungsgemäßen Verfahren wird insbesondere zumindest ein Teil des Gemischkältemittels auf dem ersten Gemischkältemitteldruckniveau gegen zumindest einen Teil des Kohlenwasserstoffeinsatzes verdampft, und die genannten Teile des Reinstoffkältemittels werden vorteilhafterweise auf dem ersten, dem zweiten, dem dritten und dem vierten Reinstoffkältemitteldruckniveau gegen zumindest einen Teil des Gemischkältemittels verdampft.
In Fällen, in denen der Kohlenwasserstoffeinsatz für das vorgeschlagene Verfahren aus einer vorgeschalteten Natural Gas Liquids-Abtrennung Abtrennung stammt und/oder bei einem Druck von weniger als 50 bar vorliegt, ist es wünschenswert, den Druck auf mehr als 80 bar, vorzugsweise mehr als 100 bar, mittels eines Rohgasverdichters, hier als "Einsatzverdichter" bezeichnet, zu verdichten, um bei der Abkühlung und anschließenden Verflüssigung das Zweiphasengebiet zu vermeiden.
Insbesondere in solchen Fällen kann die Erfindung umfassen, dass zumindest ein Teil des gasförmigen Kohlenwasserstoffeinsatzes unter Verwendung eines Einsatzverdichters verdichtet wird, und dass der dritte Gemischkältemittelverdichter in mechanischer Kopplung mit dem Einsatzverdichter betrieben wird.
Die Reinstoff- und Gemischkältemittelverdichter werden in der erläuterten Weise paarweise zusammengefasst. Hierdurch ergibt sich eine vorteilhafte Konfiguration, die ohne spürbare Einschränkung der thermodynamischen Effizienz die Verwendung leistungsgleicher Antriebe für die sich ergebenden drei Stränge erlaubt. Als Freiheitsgrad können die Drücke zwischen den einzelnen Stufen des Gemischkältemittelkreislaufes im gewissen Rahmen (insbesondere ±20%) verschoben werden, ohne dass der gesamte Leistungsbedarf der Verdichter mehr als 2%, vorzugsweise mehr als 1% steigt.
Vorteilhafterweise werden dabei der erste Gemischkältemittelverdichter und der zweite Reinstoffkältemittelverdichter unter Verwendung eines ersten Antriebs angetrieben, der zweite Gemischkältemittelverdichter und der erste Reinstoffkältemittelverdichter werden vorteilhafterweise unter Verwendung eines zweiten Antriebs angetrieben, und der dritte Gemischkältemittelverdichter und der Einsatzverdichter werden vorteilhafterweise unter Verwendung eines dritten Antriebs angetrieben. Hierbei weicht vorteilhafterweise eine (verwendete Antriebs-)Leistung des ersten, zweiten, und dritten Antriebs jeweils um nicht mehr als 3 Prozentpunkte, insbesondere um nicht mehr als zwei Prozentpunkte, von einem Drittel einer Gesamtleistung des ersten, zweiten und dritten Antriebs ab.
Mit anderen Worten liegt der Leistungsbedarf der drei Verdichterstränge - bezogen auf die Gesamtleistung der sechs einzelnen Verdichter - vorteilhafterweise in einem Band von ±3 Prozentpunkten, vorzugsweise in einem Band von ±2 Prozentpunkten, also zwischen 30 1/3 und 36 1/3 Prozent, bzw. 31 1/3 und 35 1/3 Prozent.
Insbesondere können die Gemischkältemittelverdichter und die Reinstoffkältemittelverdichter im Rahmen der vorliegenden Erfindung mit ersten Drehzahlen betrieben werden, die um nicht mehr als 10%, 5% oder 2% voneinander abweichen, und die insbesondere gleich sind. Der Einsatzverdichter wird vorteilhafterweise mit einer zweiten Drehzahl betrieben, die um nicht mehr als 10%, 5% oder 2% von der ersten Drehzahl abweicht und insbesondere gleich dazu ist. Die zweite Drehzahl kann aber auch um einen vorgegebenen Faktor, der durch ein Getriebe definiert ist, das den dritten Gemischkältemittelverdichter mit dem Einsatzverdichter koppelt, oberhalb der ersten Drehzahlen liegen.
Der erste, zweite und dritte Antrieb können unabhängig voneinander jeweils eine Gasturbine, eine Dampfturbine und/oder einen Elektromotor umfassen.
Der erste, der zweite und/oder der dritte Gemischkältemittelverdichter werden vorteilhafterweise jeweils bei Betriebspunkten betrieben, die mindestens 20 K, insbesondere mindestens 30 K, vom Taupunkt des Gemischkältemittels entfernt sind. Auf diese Weise können der erste, der zweite und/oder der dritte Gemischkältemittelverdichter insbesondere ohne Saugbehälter betrieben werden.
Das im Rahmen der vorliegenden Erfindung verwendete Reinstoffkältemittel kann insbesondere Propan, Propylen, Ethan, Ethylen oder Kohlendioxid aufweisen oder allgemeiner mindestens 90 mol% einer Komponente umfassen, deren kritische Temperatur oberhalb von 0 °C liegt.
Zu der erfindungsgemäß bereitgestellten Anlage und ihren Merkmalen sei auf den entsprechenden unabhängigen Vorrichtungsanspruch und die obigen Erläuterungen bezüglich des erfindungsgemäßen Verfahrens ausdrücklich verwiesen, da diese eine entsprechende Vorrichtung in gleicher weise betreffen. Entsprechendes gilt insbesondere für eine Ausgestaltung einer entsprechenden Vorrichtung, die vorteilhafterweise zur Ausführung eines entsprechenden Verfahrens in einer beliebigen Ausgestaltung eingerichtet ist.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren, die eine Ausgestaltung der vorliegenden Erfindung gegenüber dem Stand der Technik veranschaulichen, weiter erläutert.
Kurze Beschreibung der Figuren
Figur 1 zeigt eine nicht erfindungsgemäße Anlage zur Veranschaulichung des Hintergrunds der Erfindung.
Figur 2 zeigt eine vorteilhafte Ausgestaltung einer erfindungsgemäßen Anlage in schematischer Darstellung.
In der folgenden weiteren Beschreibung werden nicht erfindungsgemäße und gemäß Ausgestaltungen der Erfindung ausgebildete Anlagen und anhand dieser entsprechende Verfahrensschritte beschrieben. Lediglich der Einfachheit halber, und zur Vermeidung von unnötigen Wiederholungen, werden nachfolgend für Verfahrensschritte und Anlagenkomponenten (beispielsweise einen Abkühlschritt und einen hierzu verwendeten Wärmetauscher) dieselben Bezugszeichen und Erläuterungen verwendet.
Ausführliche Beschreibung der Figuren
Einer nicht erfindungsgemäßen Ausgestaltung einer Anlage zur Erdgasverflüssigung, wie sie in Figur 1 dargestellt ist, wird aufbereitetes Erdgas NG zugeführt. Wie erwähnt, kann die vorliegende Erfindung aber auch im Zusammenhang mit der Verflüssigung anderer Gasgemische eingesetzt werden.
Das Erdgas NG wird in einem Wärmetauscher E7 abgekühlt und danach in einem Wärmetauscher E8 verflüssigt, bevor es über eine Turbine X1 bzw. ein Ventil (nicht dargestellt) entspannt und als Flüssigerdgas LNG aus dem Verfahren ausgeführt wird.
Der Wärmetauscher E8 wird unter Verwendung eines Gemischkältemittelkreislaufs betrieben, in dem ein Gemischkältemittel gasförmig in Verdichtern C2, C3 verdichtet und jeweils in Wärmetauschern bzw. Kühlern E9, E10 nachgekühlt wird. Das verdichtete Gemischkältemittel wird durch Wärmetauscher E1 bis E4 geführt und dabei verflüssigt. Nach anschließender weiterer Abkühlung in dem Wärmetauscher E8 wird das Gemischkältemittel in einer Turbine X2 bzw. einem Ventil (nicht dargestellt) entspannt. Sich in einem Behälter D6 abscheidende Flüssigkeit wird über ein Ventil V5 in den Wärmetauscher E8 eingespeist und dort verdampft. Das verdampfte Gemischkältemittel wird in dem Wärmetauscher E7 weiter erwärmt, wobei es das Erdgas kühlt, und anschließend wieder der Verdichtung in den Verdichtern C2, C3 zugeführt.
Die Wärmetauscher E1 bis E4 werden mittels eines Reinstoffkältemittels betrieben, das in einem Verdichter C1 verdichtet wird, bevor es in Wärmetauschern bzw. Kühlern verflüssigt (E5) und unterkühlt (E6) wird. Der dazwischengeschaltete Behälter D5 dient als Puffer. Das abgekühlte und insbesondere verflüssigte Reinstoffkältemittel wird über ein Ventil V1 in den Wärmetauscher E1 entspannt, wobei ein verdampfter Anteil über einen Behälter D1 zur Verdichtung in dem Verdichter C1 zurückgeführt wird. Ein in dem Wärmetauscher E1 flüssig verbleibender Anteil des Reinstoffkältemittels wird über ein Ventil V2 in den Wärmetauscher E2 entspannt, wobei ein verdampfter Anteil über einen Behälter D2 zur Verdichtung in dem Verdichter C1 zurückgeführt wird. Ein auch in dem Wärmetauscher E2 flüssig verbleibender Anteil des Reinstoffkältemittels wird über ein Ventil V3 in den Wärmetauscher E3 entspannt, wobei ein verdampfter Anteil über einen Behälter D3 zur Verdichtung in dem Verdichter C1 zurückgeführt wird. Ein auch in dem Wärmetauscher E3 flüssig verbleibender Anteil des Reinstoffkältemittels wird über ein Ventil V4 in den Wärmetauscher E4 entspannt, wobei ein verdampfter Anteil über einen Behälter D4 zur Verdichtung in dem Verdichter C1 zurückgeführt wird. In dem Wärmetauscher E4 verbleibt kein flüssiger Anteil des Reinstoffkältemittels. Einer Anlage zur Erdgasverflüssigung gemäß einer Ausgestaltung der Erfindung, wie sie in Figur 2 dargestellt und insgesamt mit 100 bezeichnet ist, wird ebenfalls aufbereitetes Erdgas NG zugeführt. Wie erwähnt, kann die Erfindung aber auch im Zusammenhang mit der Verflüssigung anderer Gasgemische eingesetzt werden.
Zusätzlich zu den in Figur 1 veranschaulichten Komponenten sind hier Komponenten bzw. Verfahrensschritte, wie sie zur Bearbeitung von Erdgas NG typisch sind, dargestellt. Diese umfassen insbesondere eine Aminwäsche 11 zur Entfernung von Sauergasen, insbesondere Kohlendioxid und Schwefelwasserstoff, stromab derer auch ein Teilstrom des Reinstoffkältemittels über ein Ventil VT durch einen Wärmetauscher ET geführt und zur Abkühlung des in der Aminwäsche 11 erhaltenen teilaufbereiteten Erdgases verwendet werden kann.
Der Aminwäsche 11 schließt sich im dargestellten Beispiel eine Trocknung 12 und eine Abtrennung 13 von Natural Gas Liquids an. Letztere können in einer Fraktionierung 14, insbesondere unter Erhalt einer Fraktion C2/C3 aus Kohlenwasserstoffen mit zwei und drei Kohlenstoffatomen und einer Fraktion C5+ aus Kohlenwasserstoffen mit fünf und mehr Kohlenstoffatomen, unterworfen werden. Wie erläutert, schließt sich hier aus den erläuterten Gründen vorteilhafterweise eine Verdichtung in einem Einsatzverdichter C4 an, dem eine Nachkühlung in einem Wärmetauscher E11 folgt. Nach optionaler Zuspeisung beliebiger leichter Fraktionen aus der Fraktionierung 14 der Natural Gas Liquids wird der gebildete, verdichtete und aufbereitete Erdgasstrom wie zuvor dem Wärmetauscher E7 zugeführt.
Eine weitere Abweichung zu der in Figur 1 veranschaulichten nicht erfindungsgemäßen Ausgestaltung besteht darin, dass die Verdichtung des Gemischkältemittels in dem rechts in Figur 2 dargestellten Gemischkältemittelkreislauf unter verwendung von drei statt zwei Verdichtern, also eines ersten, eines zweiten und eines dritten Gemischkältemittelverdichters C2, C3, C3', vorgenommen wird, wobei der zweite und der dritte Gemischkältemittelverdichter (C3 und C3') den in Figur 1 dargestellten Gemischkältemittelverdichter C3 ersetzen. Wie erwähnt, kann auch eine gewisse Lastverschiebung vorgenommen werden. Die Verdichtung des Reinstoffkältemittels in dem links in Figur 2 dargestellten Reinstoffkältemittelkreislauf umfasst die Verwendung eines ersten und eines zweiten Reinstoffkältemittelverdichters C1 , CT. Abweichend von dem in Figur 1 veranschaulichten Stand der Technik wird also der Reinstoffkältemittelverdichter C1 in zwei unterschiedliche Reinstoffkältemittelverdichter C1 und CT aufgeteilt.
Die Aufteilung erfolgt dergestalt, dass das verdampfte Kältemittel aus dem Wärmetauscher E4 der Saugseite des Reinstoffkältemittelverdichters C1 und das verdampfte Kältemittel aus dem Wärmetauscher E2 als Seiteneinspeisung ebenfalls dem Reinstoffkältemittelverdichter C1 zugeführt wird.
Analog dazu wird das verdampfte Kältemittel aus dem Wärmetauscher E3 der Saugseite des Reinstoffkältemittelverdichters CT und das verdampfte Kältemittel aus dem Wärmetauscher E1 als Seiteneinspeisung ebenfalls dem Reinstoffkältemittelverdichter CT zugeführt.
Wie lediglich aus Gründen der Anschaulichkeit nochmals im rechten Teil der Figur 2 gestrichelt veranschaulicht, wird der erste Gemischkältemittelverdichter C2 in mechanischer Kopplung mit dem zweiten Reinstoffkältemittelverdichter CT und der zweite Gemischkältemittelverdichter C3 in mechanischer Kopplung mit dem ersten Reinstoffkältemittelverdichter C1 betrieben. Stromab des ersten, zweiten und dritten Gemischkältemittelverdichters C2, C3, C3' sind im dargestellten Beispiel jeweils Nachkühler E9, E10, E10' angeordnet.
Wie ebenfalls lediglich aus Gründen der Anschaulichkeit nochmals im rechten Teil der Figur 2 gestrichelt veranschaulicht, wird der dritte Gemischkältemittelverdichter C3', wie hier veranschaulicht über ein Getriebe, in mechanischer Kopplung mit dem Einsatzverdichter C4 betrieben.

Claims

Patentansprüche Verfahren zur Erzeugung eines flüssigen Kohlenwasserstoffprodukts (LNG), bei dem ein gasförmiger Kohlenwasserstoffeinsatz (NG) zumindest zu einem Teil unter Verwendung eines Gemischkältemittels einer Abkühlung und unter Erhalt des flüssigen Kohlenwasserstoffprodukts (LNG) einer Verflüssigung unterworfen wird, wobei das Gemischkältemittel zumindest zu einem Teil unter Verwendung eines Reinstoffkältemittels einer Vorkühlung unterworfen wird, wobei das Gemischkältemittel in einem Gemischkältemittelkreislauf geführt und in diesem verdichtet wird und das Reinstoffkältemittel in einem Reinstoffkältemittelkreislauf geführt und in diesem verdichtet wird, dadurch gekennzeichnet, dass die Verdichtung des Gemischkältemittels in dem Gemischkältemittelkreislauf die Verwendung eines ersten, eines zweiten und eines dritten Gemischkältemittelverdichters (C2, C3, C3') umfasst, die Verdichtung des Reinstoffkältemittels in dem Reinstoffkältemittelkreislauf die Verwendung eines ersten und eines zweiten Reinstoffkältemittelverdichters (C1 , CT) umfasst, und der erste Gemischkältemittelverdichter (C2) in mechanischer Kopplung mit dem zweiten Reinstoffkältemittelverdichter (CT) und der zweite Gemischkältemittelverdichter (C3) in mechanischer Kopplung mit dem ersten Reinstoffkältemittelverdichter (C1) betrieben wird. Verfahren nach Anspruch 1 , bei dem in dem ersten Gemischkältemittelverdichter (C2) zumindest ein Teil des Gemischkältemittels von einem ersten Gemischkältemitteldruckniveau auf ein zweites Gemischkältemitteldruckniveau verdichtet wird, in dem zweiten Gemischkältemittelverdichter (C3) zumindest ein Teil des Gemischkältemittels von dem zweiten Gemischkältemitteldruckniveau auf ein drittes Gemischkältemitteldruckniveau verdichtet wird, in dem dritten Gemischkältemittelverdichter (C3') zumindest ein Teil des Gemischkältemittels von dem dritten Gemischkältemitteldruckniveau auf ein Gemischkältemittelenddruckniveau verdichtet wird, in dem ersten Reinstoffkältemittelverdichter (C1) Teile des Reinstoffkältemittels von einem ersten Reinstoffkältemitteldruckniveau und von einem zweiten Reinstoffkältemitteldruckniveau auf ein
Reinstoffkältemittelenddruckniveau verdichtet werden, in dem zweiten Reinstoffkältemittelverdichter (CT) Teile des Reinstoffkältemittels von einem dritten Reinstoffkältemitteldruckniveau und von einem vierten Reinstoffkältemitteldruckniveau auf das
Reinstoffkältemittelenddruckniveau verdichtet werden. ren nach Anspruch 2, bei dem zumindest ein Teil des Gemischkältemittels auf dem ersten Gemischkältemitteldruckniveau gegen zumindest einen Teil des Kohlenwasserstoffeinsatzes (NG) verdampft wird, und die Teile des Reinstoffkältemittels auf dem ersten, dem zweiten, dem dritten und dem vierten Reinstoffkältemitteldruckniveau gegen zumindest einen Teil des Gemischkältemittels verdampft werden. ren nach einem der vorstehenden Ansprüche, bei dem zumindest ein Teil des gasförmigen Kohlenwasserstoffeinsatzes (NG) unter Verwendung eines Einsatzverdichters (C4) verdichtet wird, und der dritte Gemischkältemittelverdichter (C3') in mechanischer Kopplung mit dem Einsatzverdichter (C4) betrieben wird. 15 Verfahren nach Anspruch 4, bei dem der erste Gemischkältemittelverdichter (02) und der zweite Reinstoffkältemittelverdichter (01') unter Verwendung eines ersten Antriebs (GT) angetrieben werden, der zweite Gemischkältemittelverdichter (03) und der erste Reinstoffkältemittelverdichter (01) unter Verwendung eines zweiten Antriebs (GT) angetrieben werden, und der dritte Gemischkältemittelverdichter (03) und der Einsatzverdichter (04) unter Verwendung eines dritten Antriebs (GT) angetrieben werden, wobei eine Leistung des ersten, zweiten, und dritten Antriebs (GT) jeweils um nicht mehr als 3 Prozentpunkte von einem Drittel einer Gesamtleistung des ersten, zweiten und dritten Antriebs (GT) abweicht. Verfahren nach Anspruch 4 oder 5, bei dem die Gemischkältemittelverdichter (02, 03, 03') und die Reinstoffkältemittelverdichter (01 , CT) mit ersten Drehzahlen betrieben werden, die um nicht mehr als 10% voneinander abweichen, und der Einsatzverdichter (04) mit einer zweiten Drehzahl betrieben wird, die um nicht mehr als 10% von den ersten Drehzahlen abweicht, oder die um einen vorgegebenen Faktor, der durch ein Getriebe definiert ist, das den dritten Gemischkältemittelverdichter (03') mit dem Einsatzverdichter (04) koppelt, oberhalb der ersten Drehzahlen liegt. Verfahren nach Anspruch 5, bei dem der erste, zweite und dritte Antrieb (GT) unabhängig voneinander eine Gasturbine, eine Dampfturbine und/oder einen Elektromotor umfassen. 16 Verfahren nach einem der vorstehenden Ansprüche, bei dem der erste, der zweite und/oder der dritte Gemischkältemittelverdichter (C2, C3, C3') jeweils bei Betriebspunkten betrieben werden, die mindestens 20 K vom Taupunkt des Gemischkältemittels entfernt sind. Verfahren nach Anspruch 8, bei dem der erste, der zweite und/oder der dritte Gemischkältemittelverdichter (C2, C3, C3') ohne Saugbehälter betrieben werden. Verfahren nach einem der vorstehenden Ansprüche, bei dem das
Re instoffkälte mittel Propan, Propylen, Ethan, Ethylen oder Kohlendioxid aufweist. Verfahren nach einem der vorstehenden Ansprüche, bei dem das
Re instoffkälte mittel mindestens 90 mol% einer Komponente aufweist, deren kritische Temperatur oberhalb von 0 °C liegt. Anlage (100) zur Erzeugung eines flüssigen Kohlenwasserstoffprodukts (LNG), die dazu eingerichtet ist, einen gasförmigen Kohlenwasserstoffeinsatz (NG) zumindest zu einem Teil unter Verwendung eines Gemischkältemittels einer Abkühlung und unter Erhalt des flüssigen Kohlenwasserstoffprodukts (LNG) einer Verflüssigung zu unterwerfen, wobei die Anlage (100) einen das Gemischkältemittel umfassenden Gemischkältemittelkreislauf und Mittel zur Verdichtung des Gemischkältemittels in diesem sowie einen das
Re instoffkälte mittel umfassenden Reinstoffkältemittelkreislauf und Mittel zur Verdichtung des Reinstoffkältemittels in diesem aufweist, dadurch gekennzeichnet, dass die Mittel zur Verdichtung des Gemischkältemittels in dem Gemischkältemittelkreislauf einen ersten, einen zweiten und einen dritten Gemischkältemittelverdichter (C2, C3, C3') umfassen, die Mittel zur Verdichtung des Reinstoffkältemittel in dem Reinstoffkältemittelkreislauf einen ersten und einen zweiten Reinstoffkältemittelverdichter (C1 , CT) umfassen, und 17 der erste Gemischkältemittelverdichter (02) in mechanischer Kopplung mit dem zweiten Reinstoffkältemittelverdichter (C1') und der zweite Gemischkältemittelverdichter (03) in mechanischer Kopplung mit dem ersten Reinstoffkältemittelverdichter (C1) betrieben wird. Anlage (100) nach Anspruch 12, die zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 11 eingerichtet ist.
PCT/EP2021/025370 2020-10-17 2021-09-28 Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts WO2022078622A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020006394.2 2020-10-17
DE102020006394.2A DE102020006394A1 (de) 2020-10-17 2020-10-17 Verfahren und Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts

Publications (1)

Publication Number Publication Date
WO2022078622A1 true WO2022078622A1 (de) 2022-04-21

Family

ID=78049182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/025370 WO2022078622A1 (de) 2020-10-17 2021-09-28 Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts

Country Status (2)

Country Link
DE (1) DE102020006394A1 (de)
WO (1) WO2022078622A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301131A1 (en) * 2006-05-19 2009-12-10 Shell Oil Company Method and apparatus for treating a hydrocarbon stream
WO2010121752A2 (de) 2009-04-21 2010-10-28 Linde Aktiengesellschaft Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
US20190249921A1 (en) * 2016-10-28 2019-08-15 Nuovo Pignone Tecnologie Srl Natural gas liquefaction system including an integrally-geared turbo-compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062230A1 (de) 2010-11-30 2012-05-31 Linde Aktiengesellschaft Verfahren zum Betrieb einer Anlage zum Verflüssigen eines kohlenwasserstoffreichen Stroms
DE102012020469A1 (de) 2012-10-18 2014-04-24 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301131A1 (en) * 2006-05-19 2009-12-10 Shell Oil Company Method and apparatus for treating a hydrocarbon stream
WO2010121752A2 (de) 2009-04-21 2010-10-28 Linde Aktiengesellschaft Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
US20190249921A1 (en) * 2016-10-28 2019-08-15 Nuovo Pignone Tecnologie Srl Natural gas liquefaction system including an integrally-geared turbo-compressor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Advanced Natural Gas Engineering", 2010, GULF PUBLISHING, article "Liquefaction"
"Natural Gas", ULLMANN'S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY, ONLINEPUBLIKATION, 15 July 2006 (2006-07-15)
"REFRIGERATION COMPRESSION ARRANGEMENTS FOR THE AP-X LNG PROCESS ED - Darl Kuhn", IP.COM, IP.COM INC., WEST HENRIETTA, NY, US, 6 July 2018 (2018-07-06), XP013179307, ISSN: 1533-0001 *
KRISHNAMURTHY GOWRI ET AL: "Drive your LNG project to success with optimal machinery selections", LNG JOURNAL, NELTON PUBLICATIONS, GRAVESEND, GB, no. 5, 1 May 2015 (2015-05-01), pages 36 - 41, XP009518797, ISSN: 1365-4314 *
PILLARELLA M ET AL: "THE C3MR LIQUEFACTION CYCLE: VERSATILITY FOR A FAST GROWING, EVER CHANGING LNG INDUSTRY", vol. 15TH, 24 May 2007 (2007-05-24), pages PS2 - 5/1, XP009108435, Retrieved from the Internet <URL:http://www.kgu.or.kr/admin/data/P-000/e24dba96efa969ae9c9e056d2dffb446.pdf> *

Also Published As

Publication number Publication date
DE102020006394A1 (de) 2022-04-21

Similar Documents

Publication Publication Date Title
DE102016005632A1 (de) Mischkolonne für Verfahren mit einem Einzelmischkältemittel
EP1864062A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP1834142A1 (de) Verfahren zum verfluessigen eines kohlenwasserstoff-reichen stromes
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
WO2006136269A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE2631134A1 (de) Verfahren zur verfluessigung von luft oder lufthauptbestandteilen
WO2006050913A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE60207689T3 (de) Wärmetauscher mit gewickelten Rohrschlangen
DE102009008230A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102014012316A1 (de) Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
WO2010112206A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
WO2022078622A1 (de) Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts
EP0795727A1 (de) Verfahren und Vorrichtung zur Verflüssigung eines tiefsiedenden Gases
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
WO2008095713A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2017054929A1 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
EP3924677A1 (de) Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102012008961A1 (de) Verfahren zum Rückverflüssigen einer Methan-reichen Fraktion
WO2022078621A1 (de) Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts
EP0168519A2 (de) Vorrichtung zum Verflüssigen eines tiefsiedenden Gases, insbesondere Heliumgas
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785764

Country of ref document: EP

Kind code of ref document: A1