WO2006136269A1 - Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes - Google Patents

Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes Download PDF

Info

Publication number
WO2006136269A1
WO2006136269A1 PCT/EP2006/005138 EP2006005138W WO2006136269A1 WO 2006136269 A1 WO2006136269 A1 WO 2006136269A1 EP 2006005138 W EP2006005138 W EP 2006005138W WO 2006136269 A1 WO2006136269 A1 WO 2006136269A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cycle
hydrocarbon
mixture
stage
Prior art date
Application number
PCT/EP2006/005138
Other languages
English (en)
French (fr)
Inventor
Heinz Bauer
Rainer Sapper
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to BRPI0612316-3A priority Critical patent/BRPI0612316A2/pt
Priority to AU2006261281A priority patent/AU2006261281A1/en
Publication of WO2006136269A1 publication Critical patent/WO2006136269A1/de
Priority to NO20080356A priority patent/NO20080356L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Definitions

  • the invention relates to a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, wherein the liquefaction of the hydrocarbon-rich stream takes place against a consisting of three refrigerant mixture cycles refrigerant mixed cycle cascade.
  • first mixed refrigerant cycle should always be understood as meaning a carbon dioxide refrigerant circuit.
  • German Patent Application 197 16 415 A generic method for liquefying a hydrocarbon-rich stream is known from German Patent Application 197 16 415. With the citation of German Patent Application 197 16 415 whose disclosure content is included in the disclosure of the present patent application.
  • Natural gas liquefaction plants are designed either as so-called LNG baseload plants, ie plants for the liquefaction of natural gas to supply natural gas as primary energy, or as peak shaving plants, ie plants for the liquefaction of natural gas to cover the peak demand.
  • LNG baseload plants are operated with refrigeration circuits consisting of hydrocarbon mixtures. These mixture cycles are more energy efficient than expander circuits and allow for the large liquefaction of baseload plants accordingly relatively low energy consumption.
  • the first mixture cycle of the precooling, the second mixture cycle of the liquefaction and the third mixture cycle of the supercooling of the hydrocarbon-rich stream or natural gas have basically been used.
  • the refrigerant mixture of the first refrigerant mixture cycle used for precooling is usually evaporated to two or more different pressure levels in the above-described generic liquefaction. This achieves a good adaptation of the cooling supply to the cooling requirement of the warm process streams and thus reduces energy consumption. Therefore, in particular for so-called base-load systems or processes, a single-stage precooling is unusual due to the increased energy consumption associated with it.
  • Object of the present invention is to provide a generic method which avoids the aforementioned disadvantages.
  • a generic method for liquefying a hydrocarbon-rich stream is proposed, which is characterized in that the first and the second mixed refrigerant cycle precooling and the third refrigerant mixture cycle of liquefaction and supercooling of the hydrocarbon-rich stream is used.
  • the third refrigerant mixture cycle is designed as a two-stage refrigerant mixture cycle
  • the power consumption of the compressor of the first and second refrigerant mixture circuit is identical or substantially identical is the two-stage, third refrigerant mixture circuit to the power consumption of the compressor, 'wherein preferably all the compressors of the refrigerant mixture circuits have an identical or substantially identical power consumption,
  • pre-cooling is to be understood as cooling the liquefied hydrocarbon-rich stream to a temperature of at least -30 0 C to -70 0 C, preferably -40 0 C to -60 0 C.
  • the suction pressure of the two precooling circuits in the liquefaction process according to the invention can be significantly increased, namely typically to 5 bara and higher.
  • the suction pressure of the low-pressure stage of a two-stage precooling circuit is typically 2 to 3 bara.
  • the method according to the invention makes it possible to realize more compact systems or processes. Compared with liquefaction processes in which only two mixture cycles are used, the inventive method with three mixture cycles also has a lower specific energy consumption.
  • the hydrocarbon-rich stream to be liquefied is in the heat exchanger E1 against the evaporating mixed refrigerant stream 2b of the first mixture cycle 2a to 2c cooled. Subsequently, the hydrocarbon-rich stream is fed via line 1a to the heat exchanger E2 and further cooled in this against the evaporating refrigerant mixture stream 3b of the second mixture circuit 3a to 3c.
  • the cooled hydrocarbon-rich stream At the outlet of the heat exchanger E2 is the cooled hydrocarbon-rich stream at a temperature of -30 0 C to -70 0 C, preferably -40 0 C to -60 0 C before. It is now fed via line 1b to a separating unit S shown only as a black box.
  • the hydrocarbon-rich stream to be liquefied is then fed via line 1d to a third heat exchanger E3 and in this liquefied and undercooled against the evaporating refrigerant mixture stream 4b of the third refrigeration cycle 4a to 4c.
  • the supercooled liquid product is then fed via line 1e to its further use and / or (intermediate) storage.
  • the two refrigerant mixture circuits 2a to 2c and 3a to 3c used for pre-cooling the hydrocarbon-rich stream are in each case single-stage refrigerant mixture cycles.
  • the refrigerant mixtures compressed in the respective cycle compressor V2 or V3 are conducted via the line 2a or 3a through the heat exchanger E1 - in the case of the first refrigerant mixture cycle - or through both heat exchangers E1 and E2 - in the case of the second refrigerant mixture cycle.
  • the mixed refrigerant stream is evaporated in the heat exchanger E1 or E2 against cooled process streams and then fed via line 2c and 3c again to the cycle compressors V2 and V3.
  • the third refrigerant mixture cycle in which the compressed refrigerant mixture 4a is supplied after cooling in the heat exchangers E1, E ⁇ 2 and E3 via line 4b a relaxation device c, relaxed in this, then evaporated in the heat exchanger E3 against cooling process streams and then via line 4c the Input of the low-pressure compressor stage V4, which is connected downstream of the high-pressure compressor stage V4 1 , is supplied.
  • compressors V2, V3, V4 and V4 'downstream cooler or heat exchangers in which the refrigerant mixture against a cooling medium -.
  • the refrigerant mixture of the second refrigerant mixture cycle is usually partially condensed after compression at least against a cooling medium - for example. Water or air.
  • the power consumption of the compressors V2 and V3 of the first and second refrigerant mixture circuits 2a-2b and 3a-3b may be identical or substantially identical to the power consumption of the compressors V4 and V4 'of the two-stage, third refrigerant mixture cycle 4a-4b be designed.
  • Mixed refrigerant circuits 2a-2b, 3a-3b and 4a-4b have an identical or substantially identical power consumption.
  • the power consumption of the compressors V2 and V3 of the first and second refrigerant mixture circuits 2a-2b and 3a-3b may be identical or substantially identical to the power consumption of each of the two
  • this embodiment of the method according to the invention preferably three identical drives A2 / 3, A4 and A4 1 are used, the drive A2 / 3 the Verêtm V2 and V3 and the drives A4 and A4 'the compressors V4 and V4' are assigned.

Abstract

Es wird ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, beschrieben. Erfindungsgemäß dienen der erste und der zweite Kältemittelgemischkreislauf (2a - 2b, 3a - 3b) der Vorkühlung und der dritte Kältemittelgemischkreislauf (4a - 4b) der Verflüssigung und Unterkühlung des Kohlenwasserstoff-reichen Stromes dient. Hierbei sind der erste und/oder der zweite Kältemittelgemischkreislauf (2a - 2b, 3a - 3b) vorzugsweise als einstufige Kältemittelgemischkreisläufe ausgelegt, während der dritte Kältemittelgemischkreislauf (4a - 4b) vorzugsweise als ein zweistufiger Kältemittelgemischkreislauf ausgelegt ist.

Description

Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt.
Nachfolgend sei unter dem Begriff "erster Kältemittelgemischkreislauf' immer auch ein Kohlendioxid-Kältemittelkreislauf zu verstehen.
Ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes ist aus der deutschen Offenlegungsschrift 197 16 415 bekannt. Mit der Zitierung der deutschen Offenlegungsschrift 197 16 415 sei deren Offenbarungsgehalt in den Offenbarungsgehalt der vorliegenden Patentanmeldung aufgenommen.
Erdgasverflüssigungsanlagen werden entweder als so genannte LNG-Baseload-Plants - also Anlagen zur Verflüssigung von Erdgas zur Versorgung mit Erdgas als Primärenergie - oder als so genannte Peak-Shaving-Plants - also Anlagen zur Verflüssigung von Erdgas zur Deckung des Spitzenbedarfs - ausgelegt.
LNG-Baseload-Plants werden im Regelfall mit Kältekreisläufen betrieben, die aus Kohlenwasserstoffgemischen bestehen. Diese Gemischkreisläufe sind energetisch effizienter als Expander-Kreisläufe und ermöglichen bei den großen Verflüssigungsleistungen der Baseload-Plants entsprechend relativ niedrige Energieverbräuche.
Bei gattungsgemäßen Verflüssigungsverfahren dient bisher grundsätzlich der erste Gemischkreislauf der Vorkühlung, der zweite Gemischkreislauf der Verflüssigung und der dritte Gemischkreislauf der Unterkühlung des Kohlenwasserstoff-reichen Stromes bzw. Erdgases.
Zwischen der Vorkühlung und der Verflüssigung findet - sofern erforderlich - die Abtrennung von höhersiedenden Kohlenwasserstoffen statt. Das sind mindestens diejenigen Komponenten des zu verflüssigenden Kohlenwasserstoff-reichen Stromes bzw. Erdgases, die bei der nachfolgenden Abkühlung ausfrieren würden - also C5+- Kohlenwasserstoffe und Aromate. Oftmals werden zudem diejenigen Kohlenwasserstoffe - gemeint sind hierbei insbesondere Propan und Butan -, die den Heizwert des verflüssigten Erdgases unerwünscht erhöhen würden, vor der Verflüssigung abgetrennt.
Aus der deutschen Patentanmeldung 103 44 030 ist ebenfalls ein gattungsgemäßes Verflüssigungsverfahren bekannt; bei diesem wird zumindest ein Teilstrom des Kältemittelgemisches des zweiten Kältemittelgemischkreislaufes für die Vorkühlung des Kohlenwasserstoff-reichen Stromes verwendet. Dieses Verflüssigungsverfahren ermöglicht eine wirtschaftlichere Ausnutzung der verfügbaren Verdichter und Antriebe, da die (Kreislauf)Verdichter der drei Gemischkreisläufe in etwa die gleiche Antriebsleistung, also jeweils ca. 33,33 % der Gesamtantriebsleistung, erhalten. Somit können insbesondere große Verflüssigungsanlagen mit einer Verflüssigungsleistung größer 5 Millionen Tonnen LNG pro Jahr wirtschaftlicher betrieben werden, da durch eine Vereinheitlichung der Antriebe und Verdichter der drei Kältekreisläufe die mit erprobten Antrieben bzw. Verdichtern erreichbare Verflüssigungsleistung des Verflüssigungsprozesses maximiert werden kann.
Das zur Vorkühlung verwendete Kältemittelgemisch des ersten Kältemittelgemischkreislaufes wird bei den vorbeschriebenen gattungsgemäßen Verflüssigungsverfahren in der Regel auf zwei oder mehreren unterschiedlichen Druckniveaus verdampft. Damit wird eine gute Anpassung des Kälteangebots an den Kühlbedarf der warmen Prozessströme erreicht und somit der Energieverbrauch verringert. Insbesondere für sogenannte Base-Load-Anlagen bzw. -Prozesse ist daher eine einstufige Vorkühlung aufgrund des mit ihr verbundenen erhöhten Energieverbrauches unüblich.
Die vorbeschriebene, zum Stand der Technik zählende Verfahrensführung hat zur
Folge, dass mindestens ein Kältemittelgemischteilstrom, der der Vorkühlung dient, auf einem niedrigeren Druck als der restliche Kältemittelgemischteilstrom verdampft wird. Die Verwendung von verdampfendem Kältemittel bei niedrigem Druck führt jedoch zwangsläufig zu größeren und damit kostenintensiveren Apparaten, Maschinen sowie Rohrleitungen. Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren anzugeben, das die vorgenannten Nachteile vermeidet.
Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes vorgeschlagen, das dadurch gekennzeichnet ist, dass der erste und der zweite Kältemittelgemischkreislauf der Vorkühlung und der dritte Kältemittelgemischkreislauf der Verflüssigung und Unterkühlung des Kohlenwasserstoff-reichen Stromes dient.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes sind dadurch gekennzeichnet, dass
- der erste und/oder der zweite Kältemittelgemischkreislauf als einstufige
Kältemittelgemischkreisläufe ausgelegt sind,
der dritte Kältemittelgemischkreislauf als ein zweistufiger Kältemittelgemischkreislauf ausgelegt ist,
die Leistungsaufnahme der Verdichter des ersten und des zweiten Kältemittelgemischkreislaufes identisch oder im Wesentlichen identisch zu der Leistungsaufnahme der Verdichter des zweistufigen, dritten Kältemittelgemischkreislaufes ist, ' wobei vorzugsweise sämtliche Verdichter der Kältemittelgemischkreisläufe eine identische oder im Wesentlichen identische Leistungsaufnahme aufweisen,
die Leistungsaufnahme der Verdichter des ersten und des zweiten Kältemittelgemischkreislaufes identisch oder im Wesentlichen identisch zu der
Leistungsaufnahme jedes einzelnen der beiden Verdichter des zweistufigen, dritten Kältemittelgemischkreislaufes ist, und
als Antriebe für die Verdichter vorzugsweise Gasturbinen, Dampfturbinen und/oder Elektromotoren zur Anwendung kommen. Unter dem Begriff "Vorkühlung" sei ein Abkühlen des zu verflüssigenden Kohlenwasserstoff-reichen Stromes auf eine Temperatur von wenigstens -30 0C bis -70 0C, vorzugsweise -40 0C bis -60 0C zu verstehen.
Anstelle des bei den zum Stand der Technik zählenden Verflüssigungsverfahren realisierten zweistufigen Vorkühlkreislaufes werden nunmehr erfindungsgemäß zwei getrennte, jeweils einstufige Kältemittelgemischkreisläufe zur Vorkühlung des Kohlenwasserstoff-reichen Stromes herangezogen. Mittels einer geeigneten Wahl der Verfahrensbedingungen, wie Gemischzusammensetzungen, Druckprofil, etc., kann der Saugdruck der beiden Vorkühlkreisläufe bei dem erfindungsgemäßen Verflüssigungsverfahren deutlich angehoben werden, nämlich typischerweise auf 5 bara und höher. Im Vergleich dazu beträgt der Saugdruck der Niederdruckstufe eines zweistufigen Vorkühlkreislaufes typischerweise 2 bis 3 bara.
Das erfindungsgemäße Verfahren ermöglicht aufgrund der höheren Gasdichten der zur Vorkühlung herangezogenen Kältemittelgemischkreisläufe die Realisierung kompakterer Anlagen bzw. Prozesse. Verglichen mit Verflüssigungsverfahren, bei denen lediglich zwei Gemischkreisläufe zur Anwendung kommen, weist das erfindungsgemäße Verfahren mit drei Gemischkreisläufen zudem einen niedrigeren spezifischen Energieverbrauch auf.
Das erfindungsgemäße Verfahren sowie weitere Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.
Bei der anhand der Figur beschriebenen Verfahrensweise erfolgt die Abkühlung und Verflüssigung des Kohlenwasserstoff-reichen Stromes, der über Leitung 1 dem Wärmetauscher E1 zugeführt wird, gegen eine Kältemittelgemischkreislaufkaskade, bestehend aus drei Kältemittelgemischkreisläufen. Diese weisen im Regelfall unterschiedliche Zusammensetzungen auf, wie sie bspw. in der vorerwähnten deutschen Offenlegungsschrift 197 16 415 beschrieben sind.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom wird im Wärmetauscher E1 gegen den verdampfenden Kältemittelgemischstrom 2b des ersten Gemischkreislaufes 2a bis 2c abgekühlt. Anschließend wird der Kohlenwasserstoff-reiche Strom über Leitung 1a dem Wärmetauscher E2 zugeführt und in diesem gegen den verdampfenden Kältemittelgemischstrom 3b des zweiten Gemischkreislaufes 3a bis 3c weiter abgekühlt.
Am Ausgang des Wärmetauschers E2 liegt der abgekühlte Kohlenwasserstoff-reiche Strom unter einer Temperatur von -30 0C bis -70 0C, vorzugsweise -40 0C bis -60 0C vor. Er wird nunmehr über Leitung 1b einer lediglich als Black-Box dargestellten Trenneinheit S zugeführt.
In dieser erfolgt die vorbeschriebene C3+-Abtrennung, wobei die aus dem zu verflüssigenden Kohlenwasserstoff-reichen Strom abgetrennten Komponenten über die Leitung 1c aus der Trenneinheit S abgezogen werden.
Der zu verflüssigende Kohlenwasserstoff-reiche Strom wird sodann über Leitung 1d einem dritten Wärmetauscher E3 zugeführt und in diesem gegen den verdampfenden Kältemittelgemischstrom 4b des dritten Kältekreislaufes 4a bis 4c verflüssigt und unterkühlt.
Das unterkühlte Flüssigprodukt wird anschließend über Leitung 1e seiner weiteren Verwendung und/oder (Zwischen)Speicherung zugeführt.
Wie bereits erwähnt, handelt es sich bei den beiden der Vorkühlung des Kohlenwasserstoff-reichen Stromes dienenden Kältemittelgemischkreisläufe 2a bis 2c und 3a bis 3c jeweils um einstufige Kältemittelgemischkreisläufe.
Die in dem jeweiligen Kreislaufverdichter V2 bzw. V3 verdichteten Kältemittelgemische werden über die Leitung 2a bzw. 3a durch den Wärmetauscher E1 - im Falle des ersten Kältemittelgemischkreislaufes - bzw. durch beide Wärmetauscher E1 und E2 - im Falle des zweiten Kältemittelgemischkreislaufes - geführt. Nach erfolgter
Entspannung im Entspannungsventil a bzw. b wird der Kältemittelgemischstrom im Wärmetauscher E1 bzw. E2 gegen abzukühlende Verfahrensströme verdampft und anschließend über die Leitung 2c bzw. 3c wieder dem Kreislaufverdichtern V2 bzw. V3 zugeführt. Gleiches gilt für den dritten Kältemittelgemischkreislauf, bei dem das verdichtete Kältemittelgemisch 4a nach erfolgter Abkühlung in den Wärmetauschern E1 , EΞ2 und E3 über Leitung 4b einer Entspannungsvorrichtung c zugeführt, in dieser entspannt, anschließend im Wärmetauscher E3 gegen abzukühlende Verfahrensströme verdampft und sodann über Leitung 4c dem Eingang der Niederdruckverdichterstufe V4, der die Hochdruck-Verdichterstufe V41 nachgeschaltet ist, zugeführt wird.
Die mit der erfindungsgemäßen Verfahrensweise verbundene Anhebung des Betriebsdruckes sowie der Gasdichte des zweiten, zur Vorkühlung verwendeten Kältemittelgemischteilstromes 3a bis 3c fördert die Verwendung von gewickelten Wärmetauschern, bei denen das Kältemittelgemisch mantelseitig verdampft, für den Wärmeaustausch E2. Bei gattungsgemäßen, zum Stand der Technik zählenden Verflüssigungsverfahren können bisher oftmals keine derartigen gewickelten Wärmetauscher zur Anwendung kommen, da diese zu groß bauen würden, ihre maximal zulässigen Durchmesser in der Regel jedoch aufgrund von Fertigungs- und Transportmaßen begrenzt sind.
In der Figur nicht dargestellt sind die den Verdichtern V2, V3, V4 und V4' nachgeschalteten Kühler bzw. Wärmetauscher, in denen das Kältemittelgemisch gegen ein Kühlmedium - bspw. Wasser oder Luft - abgekühlt und im Falle des ersten Kältemittelgemischkreislaufes 2a bis 2c kondensiert wird. Das Kältemittelgemisch des zweiten Kältemittelgemischkreislaufes wird in der Regel nach der Verdichtung zumindest gegen ein Kühlmedium - bspw. Wasser oder Luft - teilweise kondensiert.
Gemäß weiterer vorteilhafter Ausgestaltungen des erfindungsgemäßen Verfahrens kann die Leistungsaufnahme der Verdichter V2 und V3 des ersten und des zweiten Kältemittelgemischkreislaufes 2a - 2b und 3a - 3b identisch oder im Wesentlichen identisch zu der Leistungsaufnahme der Verdichter V4 und V4' des zweistufigen, dritten Kältemittelgemischkreislaufes 4a - 4b ausgelegt sein. In diesem Falle weisen vorzugsweise sämtliche Verdichter V2, V3, V4 und V4' der
Kältemittelgemischkreisläufe 2a - 2b, 3a - 3b und 4a - 4b eine identische oder im Wesentlichen identische Leistungsaufnahme auf.
Bei dieser Ausgestaltung des erfindungsgemäßen Verfahrens können entweder zwei identische Antriebe, wobei ein Antrieb den Verdichtem V2 und V3 und ein Antrieb den Verdichtem V4 und V4' zugeordnet ist, oder vier identische Antriebe, die jeweils einen der Verdichter V2, V3, V4 bzw. V4' antreiben, vorgesehen werden.
Unter der Begriffsfolge "im Wesentlichen identisch" seien Leistungsaufnahmen zu verstehen, die sich um nicht mehr als +/- 2 % voneinander unterscheiden.
Alternativ zu der vorbeschriebenen Ausgestaltungen des erfindungsgemäßen Verfahrens kann die Leistungsaufnahme der Verdichter V2 und V3 des ersten und des zweiten Kältemittelgemischkreislaufes 2a - 2b und 3a - 3b identisch oder im Wesentlichen identisch zu der Leistungsaufnahme jedes einzelnen der beiden
Verdichter V4 und V41 des zweistufigen, dritten Kältemittelgemischkreislaufes 4a - 4b ausgelegt sein. Bei dieser Ausgestaltung des erfindungsgemäßen Verfahrens kommen vorzugsweise drei identische Antriebe A2/3, A4 und A41 zur Anwendung, wobei der Antrieb A2/3 den Verdichtem V2 und V3 und die Antriebe A4 und A4' den Verdichtern V4 bzw. V4' zugeordnet sind.
Vor allem im Falle einer stufenweisen Verfügbarkeit großer Antriebe, insbesondere Gasturbinen, kann somit eine Palette von Anlagengrößen abgedeckt werden. Die vorbeschriebene, letztgenannte Alternative eignet sich besonders bei kalten Kühlmedien, da in diesem Fall der Energiebedarf der Vorkühlung verringert ist.
Die vorbeschriebenen Ausgestaltungen des erfindungsgemäßen Verfahrens weisen somit insbesondere den Vorteil auf, dass bzgl. ihrer Leistung identische bzw. im Wesentlichen identische Antrieb A2/3, A4 und A41 zur Anwendung kommen können.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, dadurch gekennzeichnet, dass der erste und der zweite Kältemittelgemischkreislauf (2a - 2b, 3a - 3b) der Vorkühlung und der dritte Kältemittelgemischkreislauf (4a - 4b) der Verflüssigung und Unterkühlung des Kohlenwasserstoff-reichen Stromes dient.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der erste und/oder der zweite Kältemittelgemischkreislauf (2a - 2b, 3a - 3b) als einstufige Kältemittelgemischkreisläufe ausgelegt sind.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der dritte Kältemittelgemischkreislauf (4a - 4b) als ein zweistufiger Kältemittelgemischkreislauf ausgelegt ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die
Leistungsaufnahme der Verdichter (V2, V3) des ersten und des zweiten Kältemittelgemischkreislaufes (2a - 2b, 3a - 3b) identisch oder im Wesentlichen identisch zu der Leistungsaufnahme der Verdichter (V4, V4') des zweistufigen, dritten Kältemittelgemischkreislaufes (4a - 4b) ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass sämtliche Verdichter (V2, V3, V4, V41) der Kältemittelgemischkreisläufe (2a - 2b, 3a - 3b, 4a - 4b) eine identische oder im Wesentlichen identische Leistungsaufnahme aufweisen.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die
Leistungsaufnahme der Verdichter (V2, V3) des ersten und des zweiten Kältemittelgemischkreislaufes (2a - 2b, 3a - 3b) identisch oder im Wesentlichen identisch zu der Leistungsaufnahme jedes einzelnen der beiden Verdichter (V4, V4') des zweistufigen, dritten Kältemittelgemischkreislaufes (4a - 4b) ist.
7. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Antriebe (A2/3, A4, A4') für die Verdichter (V2, V3, V4, V4') Gasturbinen, Dampfturbinen und/oder Elektromotoren zur Anwendung kommen.
PCT/EP2006/005138 2005-06-23 2006-05-30 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes WO2006136269A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0612316-3A BRPI0612316A2 (pt) 2005-06-23 2006-05-30 processo para a liquefação de uma corrente rica em hidrocarboneto
AU2006261281A AU2006261281A1 (en) 2005-06-23 2006-05-30 Method for liquefying a hydrocarbon-rich flow
NO20080356A NO20080356L (no) 2005-06-23 2008-01-17 Fremgangmsate for kondensering av hydrokarbonrik strom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029275.5 2005-06-23
DE200510029275 DE102005029275A1 (de) 2005-06-23 2005-06-23 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Publications (1)

Publication Number Publication Date
WO2006136269A1 true WO2006136269A1 (de) 2006-12-28

Family

ID=36642438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/005138 WO2006136269A1 (de) 2005-06-23 2006-05-30 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Country Status (7)

Country Link
CN (1) CN101223410A (de)
AU (1) AU2006261281A1 (de)
BR (1) BRPI0612316A2 (de)
DE (1) DE102005029275A1 (de)
NO (1) NO20080356L (de)
RU (1) RU2008101527A (de)
WO (1) WO2006136269A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331740B1 (no) 2008-08-29 2012-03-12 Hamworthy Gas Systems As Fremgangsmate og system for optimalisert LNG produksjon
NO331154B1 (no) * 2008-11-04 2011-10-24 Hamworthy Gas Systems As System for kombinert syklusmekanisk drift i kryogene kondensasjonsprosesser.
CN102445052A (zh) * 2011-12-16 2012-05-09 南京林业大学 一种用于零散气源点的沼气液化工艺及装置
CN102628634B (zh) * 2012-04-26 2013-10-30 中国石油集团工程设计有限责任公司 三循环复叠式制冷天然气液化系统及方法
CN102927791A (zh) * 2012-11-30 2013-02-13 中国石油集团工程设计有限责任公司 带预冷的双复合冷剂制冷系统及方法
DE102015002164A1 (de) * 2015-02-19 2016-08-25 Linde Aktiengesellschaft Verfahren zum Verflüssigen von Erdgas
CN105737516A (zh) * 2016-04-18 2016-07-06 中国寰球工程公司 混合制冷剂预冷氮气膨胀的天然气液化系统及方法
CN109631492A (zh) * 2018-12-13 2019-04-16 西安石油大学 一种采用混合冷剂级联的天然气液化装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296696A (de) * 1968-12-17 1972-11-15
DE3521060A1 (de) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Verfahren zum kuehlen und verfluessigen von gasen
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
US20040182108A1 (en) * 2003-03-18 2004-09-23 Roberts Mark Julian Integrated multiple-loop refrigeration process for gas liquefaction
WO2005028975A2 (en) * 2003-09-23 2005-03-31 Statoil Asa Natural gas liquefaction process
WO2006050913A1 (de) * 2004-11-12 2006-05-18 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296696A (de) * 1968-12-17 1972-11-15
DE3521060A1 (de) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Verfahren zum kuehlen und verfluessigen von gasen
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
US20040182108A1 (en) * 2003-03-18 2004-09-23 Roberts Mark Julian Integrated multiple-loop refrigeration process for gas liquefaction
WO2005028975A2 (en) * 2003-09-23 2005-03-31 Statoil Asa Natural gas liquefaction process
WO2006050913A1 (de) * 2004-11-12 2006-05-18 Linde Aktiengesellschaft Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Also Published As

Publication number Publication date
BRPI0612316A2 (pt) 2010-11-03
DE102005029275A1 (de) 2006-12-28
CN101223410A (zh) 2008-07-16
AU2006261281A1 (en) 2006-12-28
RU2008101527A (ru) 2009-07-27
NO20080356L (no) 2008-01-17

Similar Documents

Publication Publication Date Title
DE60017951T2 (de) Hybridkreislauf zur Herstellung von flüssigem Erdgas
DE60016536T2 (de) Gasverflüssigungsverfahren durch partiel Kondensation von gemischtem Kältemittel bei zwischengelagerten Temperaturen
DE19722490C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2006136269A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2006094675A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19937623B4 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2006050913A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
WO2003106906A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute
DE102012017653A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE102014012316A1 (de) Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
DE10209799A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2017054929A1 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP2369279A1 (de) Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102012008961A1 (de) Verfahren zum Rückverflüssigen einer Methan-reichen Fraktion
WO2005090885A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2002088612A1 (de) Verfahren zum abtrennen von stickstoff aus einer stickstoff-enthaltenden, kohlenwasserstoff-reichen fraktion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006261281

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200680022325.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2008101527

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006261281

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006261281

Country of ref document: AU

122 Ep: pct application non-entry in european phase

Ref document number: 06753973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0612316

Country of ref document: BR

Kind code of ref document: A2