US3763658A - Combined cascade and multicomponent refrigeration system and method - Google Patents

Combined cascade and multicomponent refrigeration system and method Download PDF

Info

Publication number
US3763658A
US3763658A US00002447A US3763658DA US3763658A US 3763658 A US3763658 A US 3763658A US 00002447 A US00002447 A US 00002447A US 3763658D A US3763658D A US 3763658DA US 3763658 A US3763658 A US 3763658A
Authority
US
United States
Prior art keywords
feed stream
refrigerant
heat exchanger
heat exchange
multicomponent refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00002447A
Inventor
L Gaumer
C Newton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Application granted granted Critical
Publication of US3763658A publication Critical patent/US3763658A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates

Definitions

  • ABSTRACT A refrigeration system and method are disclosed for liquefying a feed stream by first subjecting the feed stream to heat exchange with a single component refrigerant in a closed, cascade cycle and, thereafter, subjecting the feed stream to heat exchange with a multicomponent refrigerant in a multiple zone heat exchanger forming a portion of a second, closed refrigerant cycle.
  • Such cascade cycles have commonly included a plurality of individual refrigerants having decreasing atmospheric boiling points each of which is circulated in a closed cycle in heat exchange relationship with the feed stream and with each other.
  • individual refrigerants require a very large number of separate heat exchangers, pumps, compressors and associated piping and valving for the separate, closed loops of each state.
  • the cooling curves of individual refrigerants do not closely match the continuous cooling curve of the feed stream, and this is of particular importance with respect to the low temperature end of the cascade system wherein very substantial amounts of horsepower are wasted by this inherent inefficiency in such cascade systems.
  • the present invention constitutes a substantial improvement over both the classical cascade-type systems and the prior art multicomponent systems just described. This is based upon the discovery that maximum efficiency and minimum capital investment can be obtained by first cooling the feed stream in a plurality of stages using the same single component refrigerant at progressively lower pressures and temperatures, followed by, liquefying and subcooling the feed stream by heat exchange with a fourcomponent refrigerant in a simplified, two-zone exchanger.
  • the present invention is based upon the use of the same single component refrigerant to cool and partially condense the multicomponent refrigerantsuch that the fractional condensate and vapor fraction of the multicomponent refrigerant are formed independently of the heat exchange functions occurring in the main exchanger. That is, contrary to the prior art systems, the multicomponent refrigerant is not subjected to heat exchange with itself to form successive fractions. As a result, the complexity and cost of the complete refrigeration system is greatly reduced while, at the same time, achieving all of the thermodynamic benefits of having very closely matched cooling curves.
  • the use of only four components in the multicomponent refrigerant results in a refrigerant of relatively low average molecular weight, and permits the use of a much higher, substantially more efficient compressor discharge for the multicomponent refrigerant.
  • FIGURE of the drawings is a schematic, flow diagram of the complete refrigeration system illustrating one preferred embodiment of the invention.
  • the natural gas feed stream enters the system in line 10, after having been freed of carbon dioxide impurities, and may be at a pressure of 73 5 psia and a temperature of approximately 107F.
  • the feed stream is passed through a first heat exchanger 12 which forms the first of three, cascade heat changer 12 to a first temperature level in the order of F., and is passed to a phase separator 14 from which condensed water is removed and discharged through line 16.
  • the partly dried natural gas feed stream is then passed through line 18 to one or other of a pair of driers 20 which remove the remaining moisture from the feed stream.
  • the driers contain a suitable well known dessicant and are suitably piped and valved so as to be capable of alternate regeneration as is well known in the art.
  • the dried feed stream is then passed through line 22 to a second single component refrigerant heat exchanger 24 wherein the feed stream is cooled to approximately 30F.
  • the cooled feed stream is then passed through line 26 to benzene scrub column 28 from which benzene and other heavy hydrocarbons are removed as condensate through discharge line 30.
  • a minor amount of lighter hydrocarbons including methane, ethane, and propane are also removed and may be sent to a fractionation system (not shown) so as to provide make-up referigerants as will be subsequently described.
  • a major portion of the flow from the bottom of column 28 is recirculated through a steam reboiler 32 so as to provide vapor to the bottom trays of the column.
  • the natural gas feed stream leaves column 28 as overhead vapor and passes through line 34 to a third single component refrigerant heat exchanger 36 wherein it is cooled to approximately 29F.
  • the feed stream is then passed to a second phase separator 38 from which additional condensed hydrocarbons are separated and passed through line 40 back to the benzene column, via pump 42 and line 44, so as to provide reflux for the column.
  • the natural gas feed stream leaves the top of phase separator 38 as vapor and may consist of over 90 percent methane at a pressure of approximately 705 psia and at a temperature in the order of 29F.
  • the feed stream is then passed through line 46 to one tube circuit 48 of a two zone heat exchanger 50.
  • the feed stream passes upwardly through tube circuit 48 and is cooled by a counter-flow of a first multicomponent refrigerant fraction sprayed downwardly over the tube bundle from spray header 52.
  • This multicomponent refrigerant portion of the cycle will be hereinafter described in detail however, it may be noted that the feed stream is cooled to approximately l70F by the time it reaches the top of tube circuit 48 in the first zone.
  • the feed stream then passes directly into a second tube circuit 54 in the second zone and passes upwardly through this tube circuit in which it is cooled by second counterflowing multicomponent refrigerant fraction sprayed downwardly from spray header 56.
  • the feed stream is withdrawn from the top of tube circuit 54 as a totally liquid and subcooled stream having a temperature in the order of 262F and a pressure in the order of 650 psia.
  • the liquefied and deeply subcooled feed stream is then expanded in valve 58 to a pressure in the order of 75 psia and a temperature in the order of 258F. Because of the deep subcooling, no flash occurs and the liquid may be delivered directly to a storage tank in which it may be stored at atmospheric pressure and a temperature in the order of 258F.
  • the propane, or other single component refrigerant is compressed in a compressor having a first stage 60 and a second stage 62.
  • the compressed propane is cooled and totally condensed in water cooler 64 and is expanded in valve 66 before entering heat exchanger 12 at a temperature in the order of 65F and a pressure of approximately 1 l psia.
  • Heat exchanger 12, as well as the other propane exchangers may be of conventional design as, for example, having U-tubes submerged in the liquid propane.
  • a portion of the liquid propane is vaporized in cooling the feed stream in the U- tubes and this vapor is returned through line 68 to an intermediate stage of compressor 62.
  • the remaining liquid refrigerant from exchanger 12 is passed through line 70 to branch lines 72 and 90.
  • the portion in branch line 72 is expanded by valve 74 to a pressure in the order of 61 psia and is introduced into exchanger 24 at a temperature in the order of 25F.
  • a second portion of the liquid refrigerant is vaporized in cooling the feed stream in exchanger 24 and is returned through line 76 to the suction side of compressor 62.
  • the remaining liquid propane from exchanger 24 is passed through line 78 and expanded in valve 80 to a pressure in the order of 18 psia and is introduced into exchanger 36 at a temperature in the order of 35F.
  • the single component refrigerant is also utilized to cool, and partly condense, the multicomponent refrigerant which is subsequently utilized to liquefy and subcool the feed stream in exchanger 50.
  • This cooling of the multicomponent refrigerant by the single component refrigerant is affected in heat exchanger 86 and 88 by the second portion of the liquid propane from exchanger 12 which is supplied through main line and branch line 90.
  • This portion of the propane refrigerant is expanded in valve 92 to a pressure in the order of 61 psia and is introduced into exchanger 86 at a temperature in the order of 25F.
  • a portion of the propane is vaporized in cooling the multicomponent refrigerant and is withdrawn from exchanger 86 through line 87 and is returned to the suction side of compressor 62.
  • the remaining liquid propane is passed from exchanger 86 to exchanger 88 via line 93 and expansion valve 94 such that the propane enters exchanger 88 at a pressure in the order of 18 psia and at a temperature of approximately 35F.
  • This portion is vaporized in partially condensing the multicomponent refrigerant and the propane vapor is withdrawn and returned to the suction side of compressor 60 via lines 96 and 84.
  • the propane refrigerant portion of the system comprises a closed cycle wherein the feed stream is cooled by the propane in exchangers 12, 24 and 36 while the multicomponent refrigerant is partially condensed in the propane exchangers 86 and 88.
  • a make-up line 97 may be provided downstream of valve 66 so that liquid propane may be added as required.
  • gaseous propane may be added to suction side of the compressors if liquid propane is not available.
  • the compressed multicomponent refrigerant vapor in line 108 may be at apressure of 61 l psia and a temperature in the order of 107F. It is then passed through line 108 to heat exchanger 86 wherein it is cooled by the propane to approximately 30F. Thereafter, it is passed directly through the second propane exchanger 88 from which it is discharged at a temperature in the order of 27F and is passed through line 109 to phase separator 110.
  • the multicomponent refrigerant has been partially condensed such that the liquid condensate in the bottom of separator 110 preferably comprises about 2 mole percent of nitrogen, 24 mole percent of methane, 48 molepercent of ethane, and 26 mole percent of propane.
  • This single-step partial condensation of the multicomponent refrigerant condenses a substantial portion of the total refrigerant flow such as, for example, 30-70 percent by volume per unit time. Accordingly, it is necessary that the multicomponent refrigerant be precooled to a temperature substantially below the freezing point of .water, and preferably to a temperature in the order of OF to 100F. More specifically, ithas been found that the multicomponent refrigerant should be precooled in exchanger 88 to approximtely the same temperature level as the feed stream in exchanger 36 which is in the range of 0F to -50F. 1
  • the liquid condensate in separator 1 10 is passed through line 112 to tube circuit 114 of heat exchanger 50 wherein it is subcooled to a temperature in the order of 170lF.
  • This subcooled liquid is expandedin valve 116 to a pressure in the order of 49 psia, whereby a small portion flashes to vapor, and its temperature drops to -182F
  • This liquid, andthe flashed vapor is injected into exchanger 50 via line 118 and spray header 52 so as to provide refrigerant flowing downwardly over tube circuits 48, 122 and 114.
  • the overhead vapor preferably has a composition of 20 mole percent nitrogen, 58 mole percent methane, 19 mole percent ethane, and 3 mole percent propane.
  • This vapor is passed through line 120 to'tube circuit 122 wherein the vapor is cooled and condensed by reason of the downwardly sprayed refrigerant fraction just described.
  • the condensed multicomponent refrigerant in tube circuit 122 passes directly into a second tube circuit 124 wherein it is subcooled to a temperature in the order of 262F.
  • This subcooled liquid fraction is expanded in valve 128 to a pressure in the order of 51 psia whereby a small portion is flashed to vapor and the temperature drops to approximately 269F.
  • This liquid and flashed vapor is injected into exchanger 50 via line 130 and spray header 56 so as to provide downwardly flowing refrigerant over the tube circuits 54 and 124.
  • the multicomponent liquid fraction from spray header 56 is vaporized and thereby subcools both the feed stream in circuit 54 and the multicomponent liquid fraction in circuit 124.
  • the multicomponent liquid fraction sprayed from spray header 52 is vaporized in heat exchange with tube circuits 48, 122, and 114.
  • all of the multicomponent refrigerant is recombined in vapor phase at the bottom of heat exchanger 50 and it is withdrawn and passed through lines 136 and 138 to the suction side of compressor 100.
  • the multicomponent refrigerant portion of the system forms a separate, closed cycle whereby the feed stream is most efficiently cooled from the propane level down to the flnal subcooled temperature of 262F.
  • a make-up line 140 and valve 142 may be provided to add such multicomponent refrigerant as is required to compensate for unavoidable losses.
  • this make-up refrigerant may be obtained by fractionating the hydrocarbons discharged through line 30 from benzene column 28 and adding additional nitrogen.
  • the present invention provides a refrigerant cycle in which the feed stream is progressively cooled first by a plurality of cascade heat exchangers and secondly by an integral multicomponent heat exchanger having first and second spray zones or stages wherein the feed stream is subjected to cooling by progressive vaporization of two multicomponent liquid fractions. It will also be noted that in connection with this two-zone multicomponent exchanger, the multicomponent refrigerant is subjected to only one partial condensation, namely the partial condensation occurring in heat exchangers 86 and 88.
  • the condensate formed in these exchangers and separated in separator 110 is merely subcooled and injected into the'main heat exchanger 50, while the uncondensed portion is cooled and subcooled in the main heat exchanger before it is injected back into the shell side. It will therefore be apparent that the number of tube circuits, phase separators, and associated piping and valving is an absolute minimum while, at the same time, all of the advantages of multicomponent refrigeration are achieved in liquefying and subcooling the feed.
  • spray headers 52 and 56 should be designed for uniform distribution of the multicomponent liquids and flashed vapors over the tube circuits.
  • a phase separator may be inserted between valve 116 and header 52, as well as between valve 128 and header 56 so as to separate the two phase fluids.
  • the separated liquids in the bottoms of these separators may be passed to the respective spray headers, and the separated vapors are injected into exchanger 50 through lines (not shown) which enter the exchanger shell immediately adjacent headers 52 and 56.
  • both the liquid refrigerant and the small amount of flashed vapor are injected into the column at the location of headers 52 and 56.
  • a method of totally liquefying a gaseous, methanerich feed stream comprising the steps of:
  • step (j) expanding said totally liquefied methane-rich feed stream from the superatmospheric pressure at which it is totally liquefied in step (j) to a substantially reduced pressure.
  • the method as claimed in claim 1 further including the step of maintaining the composition of said multicomponent refrigerant so as to have an average molecular weight within the range of 24-28.
  • the method as claimed in claim 2 further including the step of maintaining a multicomponent refrigerant composition comprising 2-12 mole percent of nitrogen, 35-45 mole percent of methane, 32-42 mole percent of ethane, and 9-19 mole percent of propane.
  • step (j) 4. The method as claimed in claim 1 wherein said precooled methane-rich feed stream is cooled in step (j) to a subcooled temperature which is sufficiently below its liquefaction temperature to maintain substantially all of said feed stream in liquid phase upon expansion thereof according to step (1).
  • said multicomponent refrigerant consists of only four components, three of said components comprising C to C hydrocarbons and the fourth component being a nonhydrocarbon component having a normal boiling point substantially below that of methane.
  • a method of liquefying at least the major portion of a gaseous, methane-rich feed stream comprising the steps of:
  • conduit means connected to said fifth heat exv cooled methane-rich feed stream to a temperature changer means and to said compressor for returnsubstantially below minus 200F solely by divering said vaporized first and second fractions to said sive heat exchange with said first and second subcompressor as said multicomponent refrigerant, cooled liquid fractions undergoing vaporization, k. conduit means connected to said fifth heat exm. returning both of said vaporized liquid fractions changer means for withdrawing said totally liquefor recompression according to step (c), and tied feed stream from said second stage of said fifth n. expanding said liquefied methane-rich feed stream heat exchanger means, and
  • a refrigeration system for totally liquefying a gasing said totally liquefied feed stream to a substaneous methane-rich feed stream at superatmospheric pressure comprising the combination of:
  • first multi-stage heat exchanger means connected to a source of a single component refrigerant and 2 to said feed stream for precooling said feed stream in heat exchange with said single component refrigerantundergoing vaporization at a plurality of progressively lower temperatures
  • first multiple stage heat exchanger means for precooling said feed stream to a temperature within the range of 0F to 50F in progressive heat exb.
  • a compressor for compressing said multicompotional component having a boiling point substannent refrigerant to a superatmospheric pressure, tially below that of methane,
  • a compressor-after-cooler connected to said comc. means for maintaining the composition of said pressor for cooling said compressed multicompomulticomponent refrigerant with an average monent refrigerant to a first lower temperature, lecular weight within the range of 24-28,
  • second multi-stage heat exchanger means cond. a compressor for compressing said separate multinected to said after-cooler and to a source of a sincomponent refrigerant to a pressure within the gle component refrigerant for further cooling said range of 600 to 1,200 psia, cooled multicomponent refrigerant to a sufficiently e. a compressor after-cooler connected to said comlower temperature to partially condense 30 percent pressor for first precooling said compressed multito 70 percent thereof in heat exchange with said component refrigerant, single component refrigerant undergoing vaporizaf.
  • second multiple stage heat exchanger means contion at a plurality of progressively lower temperanected to said after-cooler for further precooling tures, and partially condensing a substantial portion of f. a single phase separator connected to said second said multicomponent refrigerant in heat exchange multi-stage heat exchanger means for separating with a single component hydrocarbon refrigerant said partially condensed multicomponent refrigerat a plurality of progressively lower temperatures ant into a vapor fraction and a condensed liquid and pressures, fraction, g. a single phase separator connected to said second g.
  • third heat exchanger means connected to said heat exchanger means for separating said partially phase separator and including expansion means for condensed multicomponent refrigerant into a sinsubcooling said condensed. liquid fraction in heat gle vapor fraction and a single condensed fraction, exchange with itself, after expansion in said expanexapnsion sion means, to form a first subcooled liquid frach.
  • third heat exchanger means connected to said seption, arator and including expansion means for subcoolh.
  • fourth heat exchanger means connected to said ing said condensed liquid fraction in heat exchange phase separator means and including expansion with itself, after expansion in said expansion means for liquefying and subcooling said vapor means, to form a first subcooled liquid fraction, fraction in heat-exchange with said first subcooled i.
  • fourth heat exchanger means connected to said liquid fraction, and with itself after expansion in said expansionmeans, to form a'second subcooled liquid fraction
  • fifth heat exchanger means connected to said first heat exchanger means including first and second densed feed stream into a vapor fraction and a liquid condensate
  • a scrub column intermediate said first and second
  • third heat exchanger means for precooling and first and second subcooled liquid fractions underpartially condensing a substantial portion of said going vaporization in said first and second stages.
  • expansion means connected to said fifth heat exdensed multicomponent refrigerant into a vapor changer means for reducing the pressure of said fraction and a condensed liquid fraction, further cooled feed stream to a reduced pressure.
  • fourth heat exchanger means connected to said 11.
  • first and second heat exchanger means forprogressivelyh. fifth heat exchanger means connected to said sepasively precooling and partially condensing said feed rator for liquefying and subcooling said vapor fracstream in heat exchange relationship with a single tion in heat exchange with said first subcooled liqcomponent hydrocarbon refrigerant undergoing uid fraction, and with itself after expansion, to form vaporization at two progressively lower temperaa second subcooled liquid fraction, and tures
  • sixth heat exchanger means for liquefying at least b. a phase separator separating said partially conthe major portion of said precooled feed stream in heat exchange with said first and second subcooled liquid fractions undergoing vaporization.
  • the refrigeration system as claimed in claim 11 further including reboiler means operatively connected to said scrub column for heating a portion of said removed benzene and heavy hydrocarbons and reinjecting the same into the bottom portion of said column as reboil fluid.

Abstract

A refrigeration system and method are disclosed for liquefying a feed stream by first subjecting the feed stream to heat exchange with a single component refrigerant in a closed, cascade cycle and, thereafter, subjecting the feed stream to heat exchange with a multicomponent refrigerant in a multiple zone heat exchanger forming a portion of a second, closed refrigerant cycle.

Description

United States Patent 1 Gaumer, Jr. et al.
COMBINED CASCADE AND MULTICOMPONENT REFRIGERATION SYSTEM AND METHOD Inventors: Lee S. Gaumer, Jr.; Charles L.
Newton, both of Allentown, Pa.
Assignee: Air Products and Chemicals, Inc.,
Allentown, Pa.
Filed: Jan. 12, 1970 Appl. No.: 2,447
Related U.S. Application Data Continuation-impart of Ser. No. 825,526, May 19, 1969, abandoned.
U.S. Cl 62/40, 62/11, 62/28, 62/335, 62/510 Int. Cl. F25j 1/00, F25j 1/02, F25j 5/00 Field of Search 62/9, 11, 23, 24, 62/27, 28, 36, 40
References Cited UNITED STATES PATENTS 12/1968 Grunberg 62/40 [4 1 Get. 9, 1973 3,274,787 9/1966 Grenier 62/28 3,364,685 1/1968 Perret 62/9 3,066,492 12/1962 Grunberg 62/9 3,578,073 5/1971 Bosquain 62/40 3,581,510 6/1971 Hughes 3,581,511 6/1971 Peck 62/11 Primary Examiner-Norman Yudkoff Assistant ExaminerArthur F. Purcell Attorney-Ronald B. Sherer, James C. Simmons and B. Max Klevit [57] ABSTRACT A refrigeration system and method are disclosed for liquefying a feed stream by first subjecting the feed stream to heat exchange with a single component refrigerant in a closed, cascade cycle and, thereafter, subjecting the feed stream to heat exchange with a multicomponent refrigerant in a multiple zone heat exchanger forming a portion of a second, closed refrigerant cycle.
12 Claims, 1 Drawing Figure TO STORAGE PATENTEI] 1 73 INVENTORS LEE 8. GAUMER, JR. CHARLES L. NEWTON 9 m: $7 3 mN on 0Q N mm mm ww ew QF ATTORNEY COMBINED CASCADE AND, MULTICOMPONENT REFRIGERATION SYSTEM AND METHOD CROSS REFERENCE The present application is a continuation-in-part of 5 BACKGROUND OF THE INVENTION For many years, cascade-type refrigeration cycles have been used to cool and liquefy feed streams such as natural gas so that is can be stored or shipped as a liquid instead of as a gas. Such cascade cycles have commonly included a plurality of individual refrigerants having decreasing atmospheric boiling points each of which is circulated in a closed cycle in heat exchange relationship with the feed stream and with each other. Unfortunately, the use of such individual refrigerants requires a very large number of separate heat exchangers, pumps, compressors and associated piping and valving for the separate, closed loops of each state. Even more importantly, the cooling curves of individual refrigerants do not closely match the continuous cooling curve of the feed stream, and this is of particular importance with respect to the low temperature end of the cascade system wherein very substantial amounts of horsepower are wasted by this inherent inefficiency in such cascade systems.
In an effort to solve the above-indicated disadvantages, new cycles have been proposed wherein six or more refrigerants are mixed to form a multicomponent refrigerant which is subjected to multiple partial condensations and the condensate from each partial condensation is heat exchanged against the feed stream. Since each condensate is itself a multicomponent refrigerant, its cooling curve more closely approaches that of the feed stream, and significant savings in horsepower can be achieved. At the same time however, extremely large and complex heat exchangers are required since individual tube bundles are required for each of the many condensates, vapor fractions and portions of the feed. In addition, many phase separators and spray headers are required to handle the individual fractions resulting from the multiple partial condensations. Also, the previous use of multicomponent refrigerants having six or more components has required substantial sacrifices in efficiency due to the fact that the refrigerant compressor discharge pressure had to be a compromise between the widely varying optimum pressure for the highest and lowest boiling point components of the multicomponent refrigerant.
SUMMARY OF THE INVENTION The present invention constitutes a substantial improvement over both the classical cascade-type systems and the prior art multicomponent systems just described. This is based upon the discovery that maximum efficiency and minimum capital investment can be obtained by first cooling the feed stream in a plurality of stages using the same single component refrigerant at progressively lower pressures and temperatures, followed by, liquefying and subcooling the feed stream by heat exchange with a fourcomponent refrigerant in a simplified, two-zone exchanger. Moreover, the present invention is based upon the use of the same single component refrigerant to cool and partially condense the multicomponent refrigerantsuch that the fractional condensate and vapor fraction of the multicomponent refrigerant are formed independently of the heat exchange functions occurring in the main exchanger. That is, contrary to the prior art systems, the multicomponent refrigerant is not subjected to heat exchange with itself to form successive fractions. As a result, the complexity and cost of the complete refrigeration system is greatly reduced while, at the same time, achieving all of the thermodynamic benefits of having very closely matched cooling curves. In addition, the use of only four components in the multicomponent refrigerant results in a refrigerant of relatively low average molecular weight, and permits the use of a much higher, substantially more efficient compressor discharge for the multicomponent refrigerant.
BRIEF DESCRIPTION OF THE DRAWINGS The FIGURE of the drawings is a schematic, flow diagram of the complete refrigeration system illustrating one preferred embodiment of the invention.
DETAILED DESCRIPTION Referring to the drawing, the natural gas feed stream enters the system in line 10, after having been freed of carbon dioxide impurities, and may be at a pressure of 73 5 psia and a temperature of approximately 107F. The feed stream is passed through a first heat exchanger 12 which forms the first of three, cascade heat changer 12 to a first temperature level in the order of F., and is passed to a phase separator 14 from which condensed water is removed and discharged through line 16. While this first temperature level could be achieved using a higher boiling point refrigerant, followed by a lower boiling point refrigerant for the subsequently lower temperature levels, the use of the same single component refrigerant for achieving all of the precooling temperatures achieves significant economics as will become more fully apparent.
The partly dried natural gas feed stream is then passed through line 18 to one or other of a pair of driers 20 which remove the remaining moisture from the feed stream. The driers contain a suitable well known dessicant and are suitably piped and valved so as to be capable of alternate regeneration as is well known in the art.
The dried feed stream is then passed through line 22 to a second single component refrigerant heat exchanger 24 wherein the feed stream is cooled to approximately 30F. The cooled feed stream is then passed through line 26 to benzene scrub column 28 from which benzene and other heavy hydrocarbons are removed as condensate through discharge line 30. A minor amount of lighter hydrocarbons including methane, ethane, and propane are also removed and may be sent to a fractionation system (not shown) so as to provide make-up referigerants as will be subsequently described. A major portion of the flow from the bottom of column 28 is recirculated through a steam reboiler 32 so as to provide vapor to the bottom trays of the column.
The natural gas feed stream leaves column 28 as overhead vapor and passes through line 34 to a third single component refrigerant heat exchanger 36 wherein it is cooled to approximately 29F. The feed stream is then passed to a second phase separator 38 from which additional condensed hydrocarbons are separated and passed through line 40 back to the benzene column, via pump 42 and line 44, so as to provide reflux for the column. The natural gas feed stream leaves the top of phase separator 38 as vapor and may consist of over 90 percent methane at a pressure of approximately 705 psia and at a temperature in the order of 29F.
The feed stream is then passed through line 46 to one tube circuit 48 of a two zone heat exchanger 50. The feed stream passes upwardly through tube circuit 48 and is cooled by a counter-flow of a first multicomponent refrigerant fraction sprayed downwardly over the tube bundle from spray header 52. This multicomponent refrigerant portion of the cycle will be hereinafter described in detail however, it may be noted that the feed stream is cooled to approximately l70F by the time it reaches the top of tube circuit 48 in the first zone. The feed stream then passes directly into a second tube circuit 54 in the second zone and passes upwardly through this tube circuit in which it is cooled by second counterflowing multicomponent refrigerant fraction sprayed downwardly from spray header 56. The feed stream is withdrawn from the top of tube circuit 54 as a totally liquid and subcooled stream having a temperature in the order of 262F and a pressure in the order of 650 psia. The liquefied and deeply subcooled feed stream is then expanded in valve 58 to a pressure in the order of 75 psia and a temperature in the order of 258F. Because of the deep subcooling, no flash occurs and the liquid may be delivered directly to a storage tank in which it may be stored at atmospheric pressure and a temperature in the order of 258F.
Referring back to heat exchangers 12, 24 and 36, the propane, or other single component refrigerant, is compressed in a compressor having a first stage 60 and a second stage 62. The compressed propane is cooled and totally condensed in water cooler 64 and is expanded in valve 66 before entering heat exchanger 12 at a temperature in the order of 65F and a pressure of approximately 1 l psia. Heat exchanger 12, as well as the other propane exchangers, may be of conventional design as, for example, having U-tubes submerged in the liquid propane. Thus, a portion of the liquid propane is vaporized in cooling the feed stream in the U- tubes and this vapor is returned through line 68 to an intermediate stage of compressor 62. The remaining liquid refrigerant from exchanger 12 is passed through line 70 to branch lines 72 and 90. The portion in branch line 72 is expanded by valve 74 to a pressure in the order of 61 psia and is introduced into exchanger 24 at a temperature in the order of 25F. A second portion of the liquid refrigerant is vaporized in cooling the feed stream in exchanger 24 and is returned through line 76 to the suction side of compressor 62. The remaining liquid propane from exchanger 24 is passed through line 78 and expanded in valve 80 to a pressure in the order of 18 psia and is introduced into exchanger 36 at a temperature in the order of 35F. This portion of the refrigerant is vaporized in cooling the feed stream and the refrigerant vapor is returned through lines 82 and 84 to the suction side of compressor 60. Thus, it will be apparent that the feed stream is successively cooled in three single component refrigerant heat exchangers wherein the same refrigerant is utilized at progressively decreasing pressures and temperatures in a three-stage, cascade refrigerant cycle. Of course, the temperature of the feed stream at this point is dependent upon the pressure of the single component refrigerant and the particular refrigerant which is selected. However, it has been found that the temperature of the feed stream at this point should be below 32F, but above l00F. In addition, it has been found that the optimum temperature should be between 0F and 50F depending upon the feed stream composition.
In addition to cooling the feed stream in the above described cascade cycle, the single component refrigerant is also utilized to cool, and partly condense, the multicomponent refrigerant which is subsequently utilized to liquefy and subcool the feed stream in exchanger 50. This cooling of the multicomponent refrigerant by the single component refrigerant is affected in heat exchanger 86 and 88 by the second portion of the liquid propane from exchanger 12 which is supplied through main line and branch line 90. This portion of the propane refrigerant is expanded in valve 92 to a pressure in the order of 61 psia and is introduced into exchanger 86 at a temperature in the order of 25F. A portion of the propane is vaporized in cooling the multicomponent refrigerant and is withdrawn from exchanger 86 through line 87 and is returned to the suction side of compressor 62. The remaining liquid propane is passed from exchanger 86 to exchanger 88 via line 93 and expansion valve 94 such that the propane enters exchanger 88 at a pressure in the order of 18 psia and at a temperature of approximately 35F. This portion is vaporized in partially condensing the multicomponent refrigerant and the propane vapor is withdrawn and returned to the suction side of compressor 60 via lines 96 and 84. Thus, the propane refrigerant portion of the system comprises a closed cycle wherein the feed stream is cooled by the propane in exchangers 12, 24 and 36 while the multicomponent refrigerant is partially condensed in the propane exchangers 86 and 88. In order to compensate for any loss of refrigerant in the propane cycle, a make-up line 97 may be provided downstream of valve 66 so that liquid propane may be added as required. Alternatively, gaseous propane may be added to suction side of the compressors if liquid propane is not available.
Reference is now made to the multicomponent refrigerant portion of the system. While a great many different multicomponent mixtures could be employed in the above described system, it has been discovered that very high efficiency is obtained with a mixture consisting of only four components; namely, nitrogen, methane, ethane and propane. Furthermore, it has been discovered that the preferred composition of these four components should comprise 2-12 mole percent of nitrogen, 35-45 mole percent of methane, 32-42 mole percent of ethane, and 9-19 mole percent of propane. For example, the optimum refrigerant composition for one particular natural gas feed stream was found to comprise approximately 10 mole percent of nitrogen,
Component Molecular weight X Mole percent Nitrogen 28 X 280 Methane l6 1 X40 640 Ethane 30 X35 1050 Propane 44 X 660 Total molecular weight 2630 2630 total molecular weight/100 26,30 average molecular weight For slightly different natural gas feed streams, other optimum refrigerant compositions were found within the above-indicated ranges of component mole percents. In each case, it was unexpectedly discovered that the average molecular weight was found to be between 24 and 28 when using a single component refrigerant to precool the feed and multicomponent refrigerant prior sults when the relatively light molecular weight refrigerant is compressed to a pressure between 500 1,200
psia with the optimum range being in the order of 600 'l,000 psia. Thus, by way of example, the compressed multicomponent refrigerant vapor in line 108 may be at apressure of 61 l psia and a temperature in the order of 107F. It is then passed through line 108 to heat exchanger 86 wherein it is cooled by the propane to approximately 30F. Thereafter, it is passed directly through the second propane exchanger 88 from which it is discharged at a temperature in the order of 27F and is passed through line 109 to phase separator 110. At this point, the multicomponent refrigerant has been partially condensed such that the liquid condensate in the bottom of separator 110 preferably comprises about 2 mole percent of nitrogen, 24 mole percent of methane, 48 molepercent of ethane, and 26 mole percent of propane. This single-step partial condensation of the multicomponent refrigerant condenses a substantial portion of the total refrigerant flow such as, for example, 30-70 percent by volume per unit time. Accordingly, it is necessary that the multicomponent refrigerant be precooled to a temperature substantially below the freezing point of .water, and preferably to a temperature in the order of OF to 100F. More specifically, ithas been found that the multicomponent refrigerant should be precooled in exchanger 88 to approximtely the same temperature level as the feed stream in exchanger 36 which is in the range of 0F to -50F. 1
Referring back tothe drawing, the liquid condensate in separator 1 10 is passed through line 112 to tube circuit 114 of heat exchanger 50 wherein it is subcooled to a temperature in the order of 170lF. This subcooled liquid is expandedin valve 116 to a pressure in the order of 49 psia, whereby a small portion flashes to vapor, and its temperature drops to -182F This liquid, andthe flashed vapor, is injected into exchanger 50 via line 118 and spray header 52 so as to provide refrigerant flowing downwardly over tube circuits 48, 122 and 114.
Referring back to phase separatorl 10, the overhead vapor preferably has a composition of 20 mole percent nitrogen, 58 mole percent methane, 19 mole percent ethane, and 3 mole percent propane. This vapor is passed through line 120 to'tube circuit 122 wherein the vapor is cooled and condensed by reason of the downwardly sprayed refrigerant fraction just described. The condensed multicomponent refrigerant in tube circuit 122 passes directly into a second tube circuit 124 wherein it is subcooled to a temperature in the order of 262F. This subcooled liquid fraction is expanded in valve 128 to a pressure in the order of 51 psia whereby a small portion is flashed to vapor and the temperature drops to approximately 269F. This liquid and flashed vapor is injected into exchanger 50 via line 130 and spray header 56 so as to provide downwardly flowing refrigerant over the tube circuits 54 and 124. In flowing downwardly over these two tube circuits, the multicomponent liquid fraction from spray header 56 is vaporized and thereby subcools both the feed stream in circuit 54 and the multicomponent liquid fraction in circuit 124. Similarly, the multicomponent liquid fraction sprayed from spray header 52 is vaporized in heat exchange with tube circuits 48, 122, and 114. As a result, all of the multicomponent refrigerant is recombined in vapor phase at the bottom of heat exchanger 50 and it is withdrawn and passed through lines 136 and 138 to the suction side of compressor 100. Thus, the multicomponent refrigerant portion of the system forms a separate, closed cycle whereby the feed stream is most efficiently cooled from the propane level down to the flnal subcooled temperature of 262F.
A make-up line 140 and valve 142 may be provided to add such multicomponent refrigerant as is required to compensate for unavoidable losses. As previously mentioned, this make-up refrigerant may be obtained by fractionating the hydrocarbons discharged through line 30 from benzene column 28 and adding additional nitrogen.
From the foregoing description it will be apparent that the present invention provides a refrigerant cycle in which the feed stream is progressively cooled first by a plurality of cascade heat exchangers and secondly by an integral multicomponent heat exchanger having first and second spray zones or stages wherein the feed stream is subjected to cooling by progressive vaporization of two multicomponent liquid fractions. It will also be noted that in connection with this two-zone multicomponent exchanger, the multicomponent refrigerant is subjected to only one partial condensation, namely the partial condensation occurring in heat exchangers 86 and 88. Thus, the condensate formed in these exchangers and separated in separator 110 is merely subcooled and injected into the'main heat exchanger 50, while the uncondensed portion is cooled and subcooled in the main heat exchanger before it is injected back into the shell side. It will therefore be apparent that the number of tube circuits, phase separators, and associated piping and valving is an absolute minimum while, at the same time, all of the advantages of multicomponent refrigeration are achieved in liquefying and subcooling the feed.
Lastly, it is to be understood that spray headers 52 and 56 should be designed for uniform distribution of the multicomponent liquids and flashed vapors over the tube circuits. Alternatively, a phase separator may be inserted between valve 116 and header 52, as well as between valve 128 and header 56 so as to separate the two phase fluids. In this event, the separated liquids in the bottoms of these separators may be passed to the respective spray headers, and the separated vapors are injected into exchanger 50 through lines (not shown) which enter the exchanger shell immediately adjacent headers 52 and 56. In either event, both the liquid refrigerant and the small amount of flashed vapor are injected into the column at the location of headers 52 and 56.
Having described one preferred embodiment of the present invention, what is claimed is:
1. A method of totally liquefying a gaseous, methanerich feed stream comprising the steps of:
a. supplying said methane-rich feed stream at a superatmospheric pressure,
b. precooling said gaseous superatmospheric feed stream to a temperature within the range of OF to 50F in progressive heat exchange steps with a single component hydrocarbon refrigerant undergoing vaporization at a plurality of progressively lower temperatures and pressures,
c. providing a separate and distinct multicomponent refrigerant including three hydrocarbon components having different boiling points and a fourth component having a boiling point substantially below that of methane,
d. compressing said multicomponent refrigerant to a pressure within the range of 600-1 ,200 psia,
e. first cooling said compressed multicomponent refrigerant to a first lower temperature by passing said multicomponent refrigerant through a compressor after-cooler in heat exchange with a nonhydrocarbon cooling fluid, partially condensing a substantial portion of said multicomponent refrigerant by further precooling said multicomponent refrigerant to a temperature within the range of F to -50F in progressive heat exchange with a single component hydrocarbon refrigerant undergoing vaporization at a plurality of progressively lower pressures and temperatures,
. phase separating all of said precooled and partially condensed multicomponent refrigerant to form a single vapor fraction and a single liquid fraction,
. subcooling said liquid fraction in heat exchange with itself after expansion to form a first subcooled liquid fraction,
. liquefying and subcooling all of said vapor fraction in heat exchange with said first subcooled liquid fraction, and with itself after expansion, to form a second subcooled liquid fraction,
j. totally liquefying said precooled methane-rich feed stream by further cooling said precooled methanerich feed stream to at least its liquefaction temperature, at the superatmospheric pressure thereof, solely by progressive heat exchange steps with said first and second subcooled liquid fractions undergoing vaporization,
k. returning both of said vaporized liquid fractions for recompression according to step (d), and
l. expanding said totally liquefied methane-rich feed stream from the superatmospheric pressure at which it is totally liquefied in step (j) to a substantially reduced pressure.
2. The method as claimed in claim 1 further including the step of maintaining the composition of said multicomponent refrigerant so as to have an average molecular weight within the range of 24-28.
3. The method as claimed in claim 2 further including the step of maintaining a multicomponent refrigerant composition comprising 2-12 mole percent of nitrogen, 35-45 mole percent of methane, 32-42 mole percent of ethane, and 9-19 mole percent of propane.
4. The method as claimed in claim 1 wherein said precooled methane-rich feed stream is cooled in step (j) to a subcooled temperature which is sufficiently below its liquefaction temperature to maintain substantially all of said feed stream in liquid phase upon expansion thereof according to step (1).
5. The method as claimed in claim I wherein said multicomponent refrigerant consists of only four components, three of said components comprising C to C hydrocarbons and the fourth component being a nonhydrocarbon component having a normal boiling point substantially below that of methane.
6. The method as claimed in claim 2 wherein said average molecular weight is maintained in the order of 26.
7. The method as claimed in claim 1 wherein said multicomponent refrigerant is compressed to a pressure within the range of 725-1,200 psia.
'8. A method of liquefying at least the major portion of a gaseous, methane-rich feed stream comprising the steps of:
a. supplying said methane-rich feed stream at a superatmospheric pressure,
b. precooling said gaseous, superatmospheric feed stream to a temperature within the range of 0F to 50F in progressive heat exchange steps with a single component hydrocarbon refrigerant undergoing vaporization at a plurality of progressively lower temperatures and pressures,
c. providing a separate and distinct multicomponent refrigerant including three components comprising C -C hydrocarbons and one non-hydrocarbon component having a boiling point substantially below that of methane,
d. maintaining the composition of said multicomponent refrigerant by maintaining 35-45 mole percent of the C hydrocarbon component, maintaining 32-43 mole percent of the C, hydrocarbon component, maintaining 9-19 mole percent of the C hydrocarbon component, and maintaining 2-12 mole percent of the non-hydrocarbon component,
e. further maintaining the composition of said multicomponent refrigerant so as to maintain the average molecular weight of said multicomponent refrigerant within the range of 24-28,
f. compressing said multicomponent refrigerant to a pressure within the range of 600-1 ,200 psia,
g. first precooling said compressed multicomponent refrigerant by passage through a compressor aftercooler in heat exchange with a first cooling fluid,
h. partially condensing 30 to percent of said precooled multicomponent refrigerant by further precooling said multicomponent refrigerant to a temperature within the range of 0F to 50F in heat exchange steps with a single component hydrocarbon refrigerant undergoing vaporization at a plurality of progressively lower pressures and temperatures,
. phase separating all of said precooled and partially condensed multicomponent refrigerant to form a single vapor fraction and a single liquid fraction,
j. subcooling said liquid fraction in heat exchange i. fifth heat exchanger means consisting of no more than two stages for further cooling said precooled feed stream to at least its liquefaction temperature, at the superatmospheric pressure thereof, and towith itself after expansion to form a first subcooled 5 tally liquefying said precooled feedstream by passliquid fraction, ing said feed stream in heat exchange with said first k. liquefying and subcooling all of said vapor fraction subcooled liquid fraction undergoing vaporization in heat exchange with said firstsubcooled liquid in the first stage thereof, followed by passing said fraction, and with itself after expansion, to form a feed stream in heat exchange with said second subsecond subcooled liquid fraction, cooled liquid fraction undergoing vaporization in l. liquefying at least the major portion of said methe second stage thereof,
thane-rich feed stream by further cooling said prej. conduit means connected to said fifth heat exv cooled methane-rich feed stream to a temperature changer means and to said compressor for returnsubstantially below minus 200F solely by progresing said vaporized first and second fractions to said sive heat exchange with said first and second subcompressor as said multicomponent refrigerant, cooled liquid fractions undergoing vaporization, k. conduit means connected to said fifth heat exm. returning both of said vaporized liquid fractions changer means for withdrawing said totally liquefor recompression according to step (c), and tied feed stream from said second stage of said fifth n. expanding said liquefied methane-rich feed stream heat exchanger means, and
to a reduced pressure for storage. 1. expansion means in said conduit means for expand- 9. A refrigeration system for totally liquefying a gasing said totally liquefied feed stream to a substaneous methane-rich feed stream at superatmospheric pressure comprising the combination of:
a. first multi-stage heat exchanger means connected to a source of a single component refrigerant and 2 to said feed stream for precooling said feed stream in heat exchange with said single component refrigerantundergoing vaporization at a plurality of progressively lower temperatures,
a. first multiple stage heat exchanger means for precooling said feed stream to a temperature within the range of 0F to 50F in progressive heat exb. means for supplying a separate and distinct multichange with a single component hydrocarbon reple component refrigerant comprising at least three frigerant at a plurality of progressively lower preshydrocarbon components having different boiling sure and temperatures, 7 points and at least one non-hydrocarbon compob. means for supplying a separate multicomponent nent having a boiling point substantially below that refrigerant including three hydrocarbon compoof methane, nents having different boiling points and one addic. a compressor for compressing said multicompotional component having a boiling point substannent refrigerant to a superatmospheric pressure, tially below that of methane,
d. a compressor-after-cooler connected to said comc. means for maintaining the composition of said pressor for cooling said compressed multicompomulticomponent refrigerant with an average monent refrigerant to a first lower temperature, lecular weight within the range of 24-28,
e. second multi-stage heat exchanger means cond. a compressor for compressing said separate multinected to said after-cooler and to a source of a sincomponent refrigerant to a pressure within the gle component refrigerant for further cooling said range of 600 to 1,200 psia, cooled multicomponent refrigerant to a sufficiently e. a compressor after-cooler connected to said comlower temperature to partially condense 30 percent pressor for first precooling said compressed multito 70 percent thereof in heat exchange with said component refrigerant, single component refrigerant undergoing vaporizaf. second multiple stage heat exchanger means contion at a plurality of progressively lower temperanected to said after-cooler for further precooling tures, and partially condensing a substantial portion of f. a single phase separator connected to said second said multicomponent refrigerant in heat exchange multi-stage heat exchanger means for separating with a single component hydrocarbon refrigerant said partially condensed multicomponent refrigerat a plurality of progressively lower temperatures ant into a vapor fraction and a condensed liquid and pressures, fraction, g. a single phase separator connected to said second g. third heat exchanger means connected to said heat exchanger means for separating said partially phase separator and including expansion means for condensed multicomponent refrigerant into a sinsubcooling said condensed. liquid fraction in heat gle vapor fraction and a single condensed fraction, exchange with itself, after expansion in said expanexapnsion sion means, to form a first subcooled liquid frach. third heat exchanger means connected to said seption, arator and including expansion means for subcoolh. fourth heat exchanger means connected to said ing said condensed liquid fraction in heat exchange phase separator means and including expansion with itself, after expansion in said expansion means for liquefying and subcooling said vapor means, to form a first subcooled liquid fraction, fraction in heat-exchange with said first subcooled i. fourth heat exchanger means connected to said liquid fraction, and with itself after expansion in said expansionmeans, to form a'second subcooled liquid fraction,
separator and including expansion means for liquefying and subcoolingsaid vapor fraction in heat exchange with said first subcooled liquid fraction,
and with itself after expnsion in said expansion means, to form a second subcooled liquid fraction,
j. fifth heat exchanger means connected to said first heat exchanger means including first and second densed feed stream into a vapor fraction and a liquid condensate, c. a scrub column intermediate said first and second (1. means supplying a separate multicomponent refrigerant comprising at least three components having different boiling points including one component having a boiling point substantially below stages for further cooling said feed stream to at that of methane,
least minus 200F solely by heat exchange with said e. third heat exchanger means for precooling and first and second subcooled liquid fractions underpartially condensing a substantial portion of said going vaporization in said first and second stages. multicomponent refrigerant in heat exchange with k. passage means connected to the first stage of said a single component hydrocarbon refrigerant underfifth heat exchanger means for returning said first going vaporization, and second vaporized fractions to said compressor, f. a phase separator connected to said third heat exand changer means for separating said partially conl. expansion means connected to said fifth heat exdensed multicomponent refrigerant into a vapor changer means for reducing the pressure of said fraction and a condensed liquid fraction, further cooled feed stream to a reduced pressure. 15 g. fourth heat exchanger means connected to said 11. A refrigeration system for liquefying at least the separator for subcooling said condensed liquid major portion of a methane-rich feed stream comprisfraction in heat exchange with itself after expaning the combination of: sion to form a first subcooled liquid fraction,
a. first and second heat exchanger means for progresh. fifth heat exchanger means connected to said sepasively precooling and partially condensing said feed rator for liquefying and subcooling said vapor fracstream in heat exchange relationship with a single tion in heat exchange with said first subcooled liqcomponent hydrocarbon refrigerant undergoing uid fraction, and with itself after expansion, to form vaporization at two progressively lower temperaa second subcooled liquid fraction, and tures, i. sixth heat exchanger means for liquefying at least b. a phase separator separating said partially conthe major portion of said precooled feed stream in heat exchange with said first and second subcooled liquid fractions undergoing vaporization. 12. The refrigeration system as claimed in claim 11 further including reboiler means operatively connected to said scrub column for heating a portion of said removed benzene and heavy hydrocarbons and reinjecting the same into the bottom portion of said column as reboil fluid.
moved from said feed stream,

Claims (11)

  1. 2. The method as claimed in claim 1 further including the step of maintaining the composition of said multicomponent refrigerant so as to have an average molecular weight within the range of 24-28.
  2. 3. The method as claimed in claim 2 further including the step of maintaining a multicomponent refrigerant composition comprising 2-12 mole percent of nitrogen, 35-45 mole percent of methane, 32-42 mole percent of ethane, and 9-19 mole percent of propane.
  3. 4. The method as claimed in claim 1 wherein said precooled methane-rich feed stream is cooled in step (j) to a subcooled temperature which is sufficiently below its liquefaction temperature to maintain substantially all of said feed stream in liquid phase upon expansion thereof according to step (1).
  4. 5. The method as claimed in claim 1 wherein said multicomponent refrigerant consists of only four components, three of said components comprising C1 to C3 hydrocarbons and the fourth component being a non-hydrocarbon component having a normal boiling point substantially below that of methane.
  5. 6. The method as claimed in claim 2 wherein said average molecular weight is maintained in the order of 26.
  6. 7. The method as claimed in claim 1 wherein said multicomponent refrigerant is compressed to a pressure within the range of 725-1,200 psia.
  7. 8. A method of liquefying at least the major portion of a gaseous, methane-rich feed stream comprising the steps of: a. supplying said methane-rich feed stream at a superatmospheric pressure, b. precooling said gaseous, superatmospheric feed stream to a temperature within the range of 0*F to -50*F in progressive heat exchange steps with a single component hydrocarbon refrigerant undergoing vaporization at a plurality of progressively lower temperatures and pressures, c. providing a separate and distinct multicomponent refrigerant including three components comprising C1-C3 hydrocarbons and one non-hydrocarbon component having a boiling point substantially below that of methane, d. maintaining the composition of said multicomponent refrigerant by maintaining 35-45 mole percent of the C1 hydrocarbon component, maintaining 32-43 mole percent of the C2 hydrocarbon component, maintaining 9-19 mole percent of the C3 hydrocarbon component, and maintaining 2-12 mole percent of the non-hydrocarbon component, e. further maintaining thE composition of said multicomponent refrigerant so as to maintain the average molecular weight of said multicomponent refrigerant within the range of 24-28, f. compressing said multicomponent refrigerant to a pressure within the range of 600-1,200 psia, g. first precooling said compressed multicomponent refrigerant by passage through a compressor after-cooler in heat exchange with a first cooling fluid, h. partially condensing 30 to 70 percent of said precooled multicomponent refrigerant by further precooling said multicomponent refrigerant to a temperature within the range of 0*F to -50*F in heat exchange steps with a single component hydrocarbon refrigerant undergoing vaporization at a plurality of progressively lower pressures and temperatures, i. phase separating all of said precooled and partially condensed multicomponent refrigerant to form a single vapor fraction and a single liquid fraction, j. subcooling said liquid fraction in heat exchange with itself after expansion to form a first subcooled liquid fraction, k. liquefying and subcooling all of said vapor fraction in heat exchange with said first subcooled liquid fraction, and with itself after expansion, to form a second subcooled liquid fraction, l. liquefying at least the major portion of said methane-rich feed stream by further cooling said precooled methane-rich feed stream to a temperature substantially below minus 200*F solely by progressive heat exchange with said first and second subcooled liquid fractions undergoing vaporization, m. returning both of said vaporized liquid fractions for recompression according to step (c), and n. expanding said liquefied methane-rich feed stream to a reduced pressure for storage.
  8. 9. A refrigeration system for totally liquefying a gaseous methane-rich feed stream at superatmospheric pressure comprising the combination of: a. first multi-stage heat exchanger means connected to a source of a single component refrigerant and to said feed stream for precooling said feed stream in heat exchange with said single component refrigerant undergoing vaporization at a plurality of progressively lower temperatures, b. means for supplying a separate and distinct multiple component refrigerant comprising at least three hydrocarbon components having different boiling points and at least one non-hydrocarbon component having a boiling point substantially below that of methane, c. a compressor for compressing said multicomponent refrigerant to a superatmospheric pressure, d. a compressor after-cooler connected to said compressor for cooling said compressed multicomponent refrigerant to a first lower temperature, e. second multi-stage heat exchanger means connected to said after-cooler and to a source of a single component refrigerant for further cooling said cooled multicomponent refrigerant to a sufficiently lower temperature to partially condense 30 percent to 70 percent thereof in heat exchange with said single component refrigerant undergoing vaporization at a plurality of progressively lower temperatures, f. a single phase separator connected to said second multi-stage heat exchanger means for separating said partially condensed multicomponent refrigerant into a vapor fraction and a condensed liquid fraction, g. third heat exchanger means connected to said phase separator and including expansion means for subcooling said condensed liquid fraction in heat exchange with itself, after expansion in said expansion means, to form a first subcooled liquid fraction, h. fourth heat exchanger means connected to said phase separator means and including expansion means for liquefying and subcooling said vapor fraction in heat exchange with said first subcooled liquid fraction, and with itself after expansion in said expansion means, to form a second subcooled liquid fraction, i. fifth heat exchanger means consisting of no more than two staGes for further cooling said precooled feed stream to at least its liquefaction temperature, at the superatmospheric pressure thereof, and totally liquefying said precooled feed stream by passing said feed stream in heat exchange with said first subcooled liquid fraction undergoing vaporization in the first stage thereof, followed by passing said feed stream in heat exchange with said second subcooled liquid fraction undergoing vaporization in the second stage thereof, j. conduit means connected to said fifth heat exchanger means and to said compressor for returning said vaporized first and second fractions to said compressor as said multicomponent refrigerant, k. conduit means connected to said fifth heat exchanger means for withdrawing said totally liquefied feed stream from said second stage of said fifth heat exchanger means, and l. expansion means in said conduit means for expanding said totally liquefied feed stream to a substantially reduced pressure.
  9. 10. A refrigeration system for liquefying at least the major portion of a gaseous methane-rich feed stream at a superatmospheric pressure comprising the combination of: a. first multiple stage heat exchanger means for precooling said feed stream to a temperature within the range of 0*F to -50*F in progressive heat exchange with a single component hydrocarbon refrigerant at a plurality of progressively lower pressures and temperatures, b. means for supplying a separate multicomponent refrigerant including three hydrocarbon components having different boiling points and one additional component having a boiling point substantially below that of methane, c. means for maintaining the composition of said multicomponent refrigerant with an average molecular weight within the range of 24-28, d. a compressor for compressing said separate multicomponent refrigerant to a pressure within the range of 600 to 1,200 psia, e. a compressor after-cooler connected to said compressor for first precooling said compressed multicomponent refrigerant, f. second multiple stage heat exchanger means connected to said after-cooler for further precooling and partially condensing a substantial portion of said multicomponent refrigerant in heat exchange with a single component hydrocarbon refrigerant at a plurality of progressively lower temperatures and pressures, g. a single phase separator connected to said second heat exchanger means for separating said partially condensed multicomponent refrigerant into a single vapor fraction and a single condensed fraction, h. third heat exchanger means connected to said separator and including expansion means for subcooling said condensed liquid fraction in heat exchange with itself, after expansion in said expansion means, to form a first subcooled liquid fraction, i. fourth heat exchanger means connected to said separator and including expansion means for liquefying and subcooling said vapor fraction in heat exchange with said first subcooled liquid fraction, and with itself after expansion in said expansion means, to form a second subcooled liquid fraction, j. fifth heat exchanger means connected to said first heat exchanger means including first and second stages for further cooling said feed stream to at least minus 200*F solely by heat exchange with said first and second subcooled liquid fractions undergoing vaporization in said first and second stages. k. passage means connected to the first stage of said fifth heat exchanger means for returning said first and second vaporized fractions to said compressor, and l. expansion means connected to said fifth heat exchanger means for reducing the pressure of said further cooled feed stream to a reduced pressure.
  10. 11. A refrigeration system for liquefying at least the major portion of a methane-rich feed stream comprising the combination of: a. first and second heat exchanger means for progressively precooling and partially condensing said feed stream in heat exchange relationship with a single component hydrocarbon refrigerant undergoing vaporization at two progressively lower temperatures, b. a phase separator separating said partially condensed feed stream into a vapor fraction and a liquid condensate, c. a scrub column intermediate said first and second heat exchangers, means injecting said precooled feed stream from said first heat exchanger into said scrub column, and means injecting said liquid condensate into said scrub column as reflux whereby benzene and other heavy hydrocarbons are removed from said feed stream, d. means supplying a separate multicomponent refrigerant comprising at least three components having different boiling points including one component having a boiling point substantially below that of methane, e. third heat exchanger means for precooling and partially condensing a substantial portion of said multicomponent refrigerant in heat exchange with a single component hydrocarbon refrigerant undergoing vaporization, f. a phase separator connected to said third heat exchanger means for separating said partially condensed multicomponent refrigerant into a vapor fraction and a condensed liquid fraction, g. fourth heat exchanger means connected to said separator for subcooling said condensed liquid fraction in heat exchange with itself after expansion to form a first subcooled liquid fraction, h. fifth heat exchanger means connected to said separator for liquefying and subcooling said vapor fraction in heat exchange with said first subcooled liquid fraction, and with itself after expansion, to form a second subcooled liquid fraction, and i. sixth heat exchanger means for liquefying at least the major portion of said precooled feed stream in heat exchange with said first and second subcooled liquid fractions undergoing vaporization.
  11. 12. The refrigeration system as claimed in claim 11 further including reboiler means operatively connected to said scrub column for heating a portion of said removed benzene and heavy hydrocarbons and re-injecting the same into the bottom portion of said column as reboil fluid.
US00002447A 1970-01-12 1970-01-12 Combined cascade and multicomponent refrigeration system and method Expired - Lifetime US3763658A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US244770A 1970-01-12 1970-01-12

Publications (1)

Publication Number Publication Date
US3763658A true US3763658A (en) 1973-10-09

Family

ID=21700811

Family Applications (1)

Application Number Title Priority Date Filing Date
US00002447A Expired - Lifetime US3763658A (en) 1970-01-12 1970-01-12 Combined cascade and multicomponent refrigeration system and method

Country Status (7)

Country Link
US (1) US3763658A (en)
CA (1) CA933855A (en)
DE (1) DE2023614B2 (en)
GB (1) GB1297082A (en)
IT (1) IT1032004B (en)
MY (1) MY7300305A (en)
NO (1) NO132703C (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874184A (en) * 1973-05-24 1975-04-01 Phillips Petroleum Co Removing nitrogen from and subsequently liquefying natural gas stream
US3970441A (en) * 1973-07-17 1976-07-20 Linde Aktiengesellschaft Cascaded refrigeration cycles for liquefying low-boiling gaseous mixtures
US4057972A (en) * 1973-09-14 1977-11-15 Exxon Research & Engineering Co. Fractional condensation of an NG feed with two independent refrigeration cycles
US4065278A (en) * 1976-04-02 1977-12-27 Air Products And Chemicals, Inc. Process for manufacturing liquefied methane
US4094655A (en) * 1973-08-29 1978-06-13 Heinrich Krieger Arrangement for cooling fluids
US4112700A (en) * 1974-08-09 1978-09-12 Linde Aktiengesellschaft Liquefaction of natural gas
USRE30085E (en) * 1965-03-31 1979-08-28 Compagnie Francaise D'etudes Et De Construction Technip Method and apparatus for the coding and low temperature liquefaction of gaseous mixtures
JPS58153075A (en) * 1982-02-18 1983-09-10 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Method of cooling and liquefying methane-rich gas flow
EP0094010A2 (en) * 1982-05-10 1983-11-16 Air Products And Chemicals, Inc. Process for liquefied natural gas
US4504296A (en) * 1983-07-18 1985-03-12 Air Products And Chemicals, Inc. Double mixed refrigerant liquefaction process for natural gas
GB2147984A (en) * 1983-10-11 1985-05-22 Exxon Production Research Co A process for the liquefaction of natural gas
EP0153649A2 (en) * 1984-02-13 1985-09-04 Air Products And Chemicals, Inc. Deep flash LNG cycle
US4702757A (en) * 1986-08-20 1987-10-27 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
US4704147A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
US4704148A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Cycle to produce low purity oxygen
EP0252455A2 (en) * 1986-07-10 1988-01-13 Air Products And Chemicals, Inc. Control of a multicomponent refrigeration system for the liquefaction of natural gas
US4911741A (en) * 1988-09-23 1990-03-27 Davis Robert N Natural gas liquefaction process using low level high level and absorption refrigeration cycles
EP0414107A2 (en) * 1989-08-21 1991-02-27 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
US5291736A (en) * 1991-09-30 1994-03-08 Compagnie Francaise D'etudes Et De Construction "Technip" Method of liquefaction of natural gas
US5335508A (en) * 1991-08-19 1994-08-09 Tippmann Edward J Refrigeration system
US5440894A (en) * 1993-05-05 1995-08-15 Hussmann Corporation Strategic modular commercial refrigeration
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US6250244B1 (en) * 1995-10-05 2001-06-26 Bhp Petroleum Pty Ltd Liquefaction apparatus
US6298688B1 (en) 1999-10-12 2001-10-09 Air Products And Chemicals, Inc. Process for nitrogen liquefaction
US6308531B1 (en) * 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
US6347532B1 (en) 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
US6427483B1 (en) 2001-11-09 2002-08-06 Praxair Technology, Inc. Cryogenic industrial gas refrigeration system
US6662589B1 (en) 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
US20040083756A1 (en) * 2002-11-01 2004-05-06 Jean-Pierre Tranier Combined air separation natural gas liquefaction plant
US20040187520A1 (en) * 2001-06-08 2004-09-30 Wilkinson John D. Natural gas liquefaction
US20050198998A1 (en) * 2004-03-09 2005-09-15 Guang-Chung Lee Refrigeration system
US20050204773A1 (en) * 2004-03-19 2005-09-22 Sanyo Electric Co., Ltd. Refrigerating machine
US20060000234A1 (en) * 2004-07-01 2006-01-05 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20060112725A1 (en) * 2004-08-06 2006-06-01 Owen Ryan O Natural gas liquefaction process
US20070276542A1 (en) * 2006-05-25 2007-11-29 Honeywell International Inc. System and method for optimization of gas lift rates on multiple wells
US20080000265A1 (en) * 2006-06-02 2008-01-03 Ortloff Engineers, Ltd. Liquefied Natural Gas Processing
US20080016908A1 (en) * 2006-07-24 2008-01-24 Ransbarger Weldon L Lng system with enhanced refrigeration efficiency
US20080190117A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank and operation of the same
US20080202159A1 (en) * 2007-02-21 2008-08-28 Honeywell International Inc. Apparatus and method for optimizing a liquefied natural gas facility
WO2008006867A3 (en) * 2006-07-14 2008-10-30 Shell Int Research Method and apparatus for cooling a hydrocarbon stream
US20080282731A1 (en) * 2007-05-17 2008-11-20 Ortloff Engineers, Ltd. Liquefied Natural Gas Processing
US20080295527A1 (en) * 2007-05-31 2008-12-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship with nitrogen generator and method of operating the same
US20080308175A1 (en) * 2007-06-15 2008-12-18 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and Apparatus for Treating Boil-Off Gas in an LNG Carrier Having a Reliquefaction Plant, and LNG Carrier Having Said Apparatus for Treating Boil-Off Gas
US20090199759A1 (en) * 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US20090259081A1 (en) * 2008-04-10 2009-10-15 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and system for reducing heating value of natural gas
US20090266086A1 (en) * 2007-04-30 2009-10-29 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Floating marine structure having lng circulating device
US20090314030A1 (en) * 2006-08-02 2009-12-24 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
US20100024474A1 (en) * 2007-01-25 2010-02-04 Sander Kaart Method and apparatus for cooling a hydrocarbon stream
US20100122542A1 (en) * 2008-11-17 2010-05-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and apparatus for adjusting heating value of natural gas
US20100147024A1 (en) * 2008-12-12 2010-06-17 Air Products And Chemicals, Inc. Alternative pre-cooling arrangement
US20100154469A1 (en) * 2008-12-19 2010-06-24 Chevron U.S.A., Inc. Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles
DE102009018248A1 (en) 2009-04-21 2010-10-28 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
CN101880560A (en) * 2009-05-05 2010-11-10 气体产品与化学公司 Pre-cooled liquifying method
CN102304403A (en) * 2011-08-08 2012-01-04 成都赛普瑞兴科技有限公司 Method and device for liquefying natural gas by using propylene precooling mixed cryogen
CN102393126A (en) * 2011-10-25 2012-03-28 中国寰球工程公司 Natural gas liquefaction system and method with bi-circulating mixed refrigerant
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
DE102012017653A1 (en) 2012-09-06 2014-03-06 Linde Ag Process for liquefying a hydrocarbon-rich fraction
US20140157824A1 (en) * 2012-12-06 2014-06-12 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Method for improved thermal performing refrigeration cycle
US20140157822A1 (en) * 2012-12-06 2014-06-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal performing refrigeration cycle
US8794030B2 (en) 2009-05-15 2014-08-05 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
ITFI20130076A1 (en) * 2013-04-04 2014-10-05 Nuovo Pignone Srl "INTEGRALLY-GEARED COMPRESSORS FOR PRECOOLING IN LNG APPLICATIONS"
US8850849B2 (en) 2008-05-16 2014-10-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
WO2014204817A3 (en) * 2013-06-18 2015-02-19 Pioneer Energy, Inc. Systems and methods for separating alkane gases with applications to raw natural gas processing
CN104848653A (en) * 2014-02-17 2015-08-19 博莱克·威奇公司 Method and apparatus for LNG recovery
US20160177955A1 (en) * 2013-08-07 2016-06-23 Hanwha Techwin Co., Ltd. Compression system
WO2017072019A1 (en) 2015-10-27 2017-05-04 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
US10443930B2 (en) 2014-06-30 2019-10-15 Black & Veatch Holding Company Process and system for removing nitrogen from LNG
US10443927B2 (en) * 2015-09-09 2019-10-15 Black & Veatch Holding Company Mixed refrigerant distributed chilling scheme
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
EP3604993A2 (en) 2018-08-02 2020-02-05 Air Products And Chemicals, Inc. Balancing power in split mixed refrigerant liquefaction system
EP3368630B1 (en) 2015-10-27 2020-12-02 Linde GmbH Low-temperature mixed--refrigerant for hydrogen precooling in large scale
CN113958867A (en) * 2021-10-19 2022-01-21 中控智网(北京)能源技术有限公司 Control method, system, equipment and storage medium for natural gas pipeline
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11480389B2 (en) 2017-09-13 2022-10-25 Air Products And Chemicals, Inc. Multi-product liquefaction method and system
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
FR3132565A3 (en) 2022-05-11 2023-08-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hydrogen liquefaction method and apparatus
EP4230937A1 (en) 2022-02-21 2023-08-23 Linde GmbH Method and system for generating a liquefied hydrocarbon product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694961A (en) * 2013-11-12 2014-04-02 北京市燃气集团有限责任公司 Multi-component mixing refrigerant for nature gas liquefaction system with pre-cooling temperature of -40 to -60 DEG C

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066492A (en) * 1959-05-15 1962-12-04 Air Liquide Process for the liquefaction of a gas
US3274787A (en) * 1961-06-01 1966-09-27 Air Liquide Method for cooling a gaseous mixture to a low temperature
US3364685A (en) * 1965-03-31 1968-01-23 Cie Francaise D Etudes Et De C Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
US3418819A (en) * 1965-06-25 1968-12-31 Air Liquide Liquefaction of natural gas by cascade refrigeration
US3578073A (en) * 1967-03-31 1971-05-11 Air Liquide Heat exchange apparatus with integral formation of heat exchangers and separators
US3581510A (en) * 1968-07-08 1971-06-01 Phillips Petroleum Co Gas liquefaction by refrigeration with parallel expansion of the refrigerant
US3581511A (en) * 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066492A (en) * 1959-05-15 1962-12-04 Air Liquide Process for the liquefaction of a gas
US3274787A (en) * 1961-06-01 1966-09-27 Air Liquide Method for cooling a gaseous mixture to a low temperature
US3364685A (en) * 1965-03-31 1968-01-23 Cie Francaise D Etudes Et De C Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
US3418819A (en) * 1965-06-25 1968-12-31 Air Liquide Liquefaction of natural gas by cascade refrigeration
US3578073A (en) * 1967-03-31 1971-05-11 Air Liquide Heat exchange apparatus with integral formation of heat exchangers and separators
US3581510A (en) * 1968-07-08 1971-06-01 Phillips Petroleum Co Gas liquefaction by refrigeration with parallel expansion of the refrigerant
US3581511A (en) * 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30085E (en) * 1965-03-31 1979-08-28 Compagnie Francaise D'etudes Et De Construction Technip Method and apparatus for the coding and low temperature liquefaction of gaseous mixtures
US3874184A (en) * 1973-05-24 1975-04-01 Phillips Petroleum Co Removing nitrogen from and subsequently liquefying natural gas stream
US3970441A (en) * 1973-07-17 1976-07-20 Linde Aktiengesellschaft Cascaded refrigeration cycles for liquefying low-boiling gaseous mixtures
US4094655A (en) * 1973-08-29 1978-06-13 Heinrich Krieger Arrangement for cooling fluids
US4057972A (en) * 1973-09-14 1977-11-15 Exxon Research & Engineering Co. Fractional condensation of an NG feed with two independent refrigeration cycles
US4112700A (en) * 1974-08-09 1978-09-12 Linde Aktiengesellschaft Liquefaction of natural gas
US4065278A (en) * 1976-04-02 1977-12-27 Air Products And Chemicals, Inc. Process for manufacturing liquefied methane
JPS58153075A (en) * 1982-02-18 1983-09-10 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Method of cooling and liquefying methane-rich gas flow
US4404008A (en) * 1982-02-18 1983-09-13 Air Products And Chemicals, Inc. Combined cascade and multicomponent refrigeration method with refrigerant intercooling
JPS6155024B2 (en) * 1982-02-18 1986-11-26 Air Prod & Chem
EP0094010A2 (en) * 1982-05-10 1983-11-16 Air Products And Chemicals, Inc. Process for liquefied natural gas
EP0094010A3 (en) * 1982-05-10 1985-01-16 Air Products And Chemicals, Inc. Process for liquefied natural gas
US4504296A (en) * 1983-07-18 1985-03-12 Air Products And Chemicals, Inc. Double mixed refrigerant liquefaction process for natural gas
GB2147984A (en) * 1983-10-11 1985-05-22 Exxon Production Research Co A process for the liquefaction of natural gas
US4548629A (en) * 1983-10-11 1985-10-22 Exxon Production Research Co. Process for the liquefaction of natural gas
US4541852A (en) * 1984-02-13 1985-09-17 Air Products And Chemicals, Inc. Deep flash LNG cycle
EP0153649A3 (en) * 1984-02-13 1986-10-01 Air Products And Chemicals, Inc. Deep flash lng cycle
EP0153649A2 (en) * 1984-02-13 1985-09-04 Air Products And Chemicals, Inc. Deep flash LNG cycle
EP0252455A2 (en) * 1986-07-10 1988-01-13 Air Products And Chemicals, Inc. Control of a multicomponent refrigeration system for the liquefaction of natural gas
EP0252455A3 (en) * 1986-07-10 1988-09-14 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system
US4809154A (en) * 1986-07-10 1989-02-28 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system
US4702757A (en) * 1986-08-20 1987-10-27 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
US4704147A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
US4704148A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Cycle to produce low purity oxygen
US4911741A (en) * 1988-09-23 1990-03-27 Davis Robert N Natural gas liquefaction process using low level high level and absorption refrigeration cycles
EP0414107A3 (en) * 1989-08-21 1991-04-03 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
EP0414107A2 (en) * 1989-08-21 1991-02-27 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
US5335508A (en) * 1991-08-19 1994-08-09 Tippmann Edward J Refrigeration system
US5291736A (en) * 1991-09-30 1994-03-08 Compagnie Francaise D'etudes Et De Construction "Technip" Method of liquefaction of natural gas
US5440894A (en) * 1993-05-05 1995-08-15 Hussmann Corporation Strategic modular commercial refrigeration
US6250244B1 (en) * 1995-10-05 2001-06-26 Bhp Petroleum Pty Ltd Liquefaction apparatus
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
US6298688B1 (en) 1999-10-12 2001-10-09 Air Products And Chemicals, Inc. Process for nitrogen liquefaction
US6308531B1 (en) * 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
US6347532B1 (en) 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
USRE39637E1 (en) 1999-10-12 2007-05-22 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
US7010937B2 (en) 2001-06-08 2006-03-14 Elkcorp Natural gas liquefaction
US20090293538A1 (en) * 2001-06-08 2009-12-03 Ortloff Engineers, Ltd. Natural gas liquefaction
US20040187520A1 (en) * 2001-06-08 2004-09-30 Wilkinson John D. Natural gas liquefaction
US6427483B1 (en) 2001-11-09 2002-08-06 Praxair Technology, Inc. Cryogenic industrial gas refrigeration system
US20040083756A1 (en) * 2002-11-01 2004-05-06 Jean-Pierre Tranier Combined air separation natural gas liquefaction plant
US7143606B2 (en) 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
US6662589B1 (en) 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
US7082787B2 (en) 2004-03-09 2006-08-01 Bp Corporation North America Inc. Refrigeration system
US20050198998A1 (en) * 2004-03-09 2005-09-15 Guang-Chung Lee Refrigeration system
US20050204773A1 (en) * 2004-03-19 2005-09-22 Sanyo Electric Co., Ltd. Refrigerating machine
US20060000234A1 (en) * 2004-07-01 2006-01-05 Ortloff Engineers, Ltd. Liquefied natural gas processing
US7216507B2 (en) 2004-07-01 2007-05-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20060112725A1 (en) * 2004-08-06 2006-06-01 Owen Ryan O Natural gas liquefaction process
US7637121B2 (en) 2004-08-06 2009-12-29 Bp Corporation North America Inc. Natural gas liquefaction process
US20070276542A1 (en) * 2006-05-25 2007-11-29 Honeywell International Inc. System and method for optimization of gas lift rates on multiple wells
US8571688B2 (en) 2006-05-25 2013-10-29 Honeywell International Inc. System and method for optimization of gas lift rates on multiple wells
US7631516B2 (en) 2006-06-02 2009-12-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20080000265A1 (en) * 2006-06-02 2008-01-03 Ortloff Engineers, Ltd. Liquefied Natural Gas Processing
WO2008006867A3 (en) * 2006-07-14 2008-10-30 Shell Int Research Method and apparatus for cooling a hydrocarbon stream
JP2009543894A (en) * 2006-07-14 2009-12-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method and apparatus for liquefying a hydrocarbon stream
US20090241593A1 (en) * 2006-07-14 2009-10-01 Marco Dick Jager Method and apparatus for cooling a hydrocarbon stream
US7591149B2 (en) * 2006-07-24 2009-09-22 Conocophillips Company LNG system with enhanced refrigeration efficiency
US20080016908A1 (en) * 2006-07-24 2008-01-24 Ransbarger Weldon L Lng system with enhanced refrigeration efficiency
US9400134B2 (en) 2006-08-02 2016-07-26 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
US20090314030A1 (en) * 2006-08-02 2009-12-24 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
US20100024474A1 (en) * 2007-01-25 2010-02-04 Sander Kaart Method and apparatus for cooling a hydrocarbon stream
US8549876B2 (en) 2007-01-25 2013-10-08 Shell Oil Company Method and apparatus for cooling a hydrocarbon stream
US11168837B2 (en) 2007-02-12 2021-11-09 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US10508769B2 (en) 2007-02-12 2019-12-17 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US8943841B2 (en) 2007-02-12 2015-02-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank ship having LNG circulating device
US20080190118A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank and unloading of lng from the tank
US8028724B2 (en) 2007-02-12 2011-10-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and unloading of LNG from the tank
US20080190117A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank and operation of the same
US20090211262A1 (en) * 2007-02-12 2009-08-27 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship having lng circulating device
US10352499B2 (en) 2007-02-12 2019-07-16 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US20080190352A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship and operation thereof
US8820096B2 (en) 2007-02-12 2014-09-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US20080202159A1 (en) * 2007-02-21 2008-08-28 Honeywell International Inc. Apparatus and method for optimizing a liquefied natural gas facility
AU2008218811B2 (en) * 2007-02-21 2012-01-19 Honeywell International Inc. Apparatus and method for optimizing a liquefied natural gas facility
US7946127B2 (en) * 2007-02-21 2011-05-24 Honeywell International Inc. Apparatus and method for optimizing a liquefied natural gas facility
US20090266086A1 (en) * 2007-04-30 2009-10-29 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Floating marine structure having lng circulating device
US20080282731A1 (en) * 2007-05-17 2008-11-20 Ortloff Engineers, Ltd. Liquefied Natural Gas Processing
US9869510B2 (en) 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20080295527A1 (en) * 2007-05-31 2008-12-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship with nitrogen generator and method of operating the same
US20080308175A1 (en) * 2007-06-15 2008-12-18 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and Apparatus for Treating Boil-Off Gas in an LNG Carrier Having a Reliquefaction Plant, and LNG Carrier Having Said Apparatus for Treating Boil-Off Gas
US8959930B2 (en) * 2007-06-15 2015-02-24 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and apparatus for treating boil-off gas in an LNG carrier having a reliquefaction plant, and LNG carrier having said apparatus for treating boil-off gas
US7841288B2 (en) 2008-02-11 2010-11-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US20100012015A1 (en) * 2008-02-11 2010-01-21 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US7644676B2 (en) 2008-02-11 2010-01-12 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US20090199759A1 (en) * 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US20090199591A1 (en) * 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas with butane and method of storing and processing the same
US9086188B2 (en) 2008-04-10 2015-07-21 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and system for reducing heating value of natural gas
US20090259081A1 (en) * 2008-04-10 2009-10-15 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and system for reducing heating value of natural gas
US8850849B2 (en) 2008-05-16 2014-10-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20100122542A1 (en) * 2008-11-17 2010-05-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and apparatus for adjusting heating value of natural gas
US20100147024A1 (en) * 2008-12-12 2010-06-17 Air Products And Chemicals, Inc. Alternative pre-cooling arrangement
US20100154469A1 (en) * 2008-12-19 2010-06-24 Chevron U.S.A., Inc. Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles
DE102009018248A1 (en) 2009-04-21 2010-10-28 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
WO2010121752A3 (en) * 2009-04-21 2012-10-11 Linde Aktiengesellschaft Method for liquefying a hydrocarbon-rich fraction
CN102575897A (en) * 2009-04-21 2012-07-11 林德股份公司 Method for liquefying a hydrocarbon-rich fraction
RU2568697C2 (en) * 2009-04-21 2015-11-20 Линде Акциенгезелльшафт Liquefaction of fraction enriched with hydrocarbons
NO346539B1 (en) * 2009-04-21 2022-09-26 Linde Ag Process for the condensation of a hydrocarbon-rich fraction
CN102575897B (en) * 2009-04-21 2014-11-26 林德股份公司 Method for liquefying a hydrocarbon-rich fraction
WO2010121752A2 (en) 2009-04-21 2010-10-28 Linde Aktiengesellschaft Method for liquefying a hydrocarbon-rich fraction
JP2010261038A (en) * 2009-05-05 2010-11-18 Air Products & Chemicals Inc Method and apparatus for liquefying natural gas stream
US20100281915A1 (en) * 2009-05-05 2010-11-11 Air Products And Chemicals, Inc. Pre-Cooled Liquefaction Process
CN101880560A (en) * 2009-05-05 2010-11-10 气体产品与化学公司 Pre-cooled liquifying method
US8794030B2 (en) 2009-05-15 2014-08-05 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
CN102304403A (en) * 2011-08-08 2012-01-04 成都赛普瑞兴科技有限公司 Method and device for liquefying natural gas by using propylene precooling mixed cryogen
CN102393126A (en) * 2011-10-25 2012-03-28 中国寰球工程公司 Natural gas liquefaction system and method with bi-circulating mixed refrigerant
CN102393126B (en) * 2011-10-25 2013-11-06 中国寰球工程公司 Natural gas liquefaction system and method with bi-circulating mixed refrigerant
DE102012017653A1 (en) 2012-09-06 2014-03-06 Linde Ag Process for liquefying a hydrocarbon-rich fraction
US20140157824A1 (en) * 2012-12-06 2014-06-12 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Method for improved thermal performing refrigeration cycle
US20140157822A1 (en) * 2012-12-06 2014-06-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal performing refrigeration cycle
CN105264316A (en) * 2013-04-04 2016-01-20 诺沃皮尼奥内股份有限公司 Integrally-geared compressors for precooling in LNG applications
JP2016519277A (en) * 2013-04-04 2016-06-30 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Gear coupled compressor for precooling in LNG applications
CN105264316B (en) * 2013-04-04 2018-06-19 诺沃皮尼奥内股份有限公司 For the overall gear formula compressor precooled in being applied in LNG
WO2014161937A3 (en) * 2013-04-04 2015-07-23 Nuovo Pignone Srl Integrally-geared compressors for precooling in lng applications
ITFI20130076A1 (en) * 2013-04-04 2014-10-05 Nuovo Pignone Srl "INTEGRALLY-GEARED COMPRESSORS FOR PRECOOLING IN LNG APPLICATIONS"
US9719024B2 (en) 2013-06-18 2017-08-01 Pioneer Energy, Inc. Systems and methods for controlling, monitoring, and operating remote oil and gas field equipment over a data network with applications to raw natural gas processing and flare gas capture
US10000704B2 (en) 2013-06-18 2018-06-19 Pioneer Energy Inc. Systems and methods for controlling, monitoring, and operating remote oil and gas field equipment over a data network with applications to raw natural gas processing and flare gas capture
WO2014204817A3 (en) * 2013-06-18 2015-02-19 Pioneer Energy, Inc. Systems and methods for separating alkane gases with applications to raw natural gas processing
US20160177955A1 (en) * 2013-08-07 2016-06-23 Hanwha Techwin Co., Ltd. Compression system
CN104848653A (en) * 2014-02-17 2015-08-19 博莱克·威奇公司 Method and apparatus for LNG recovery
CN104848653B (en) * 2014-02-17 2018-03-16 博莱克·威奇公司 The method and apparatus of recovering liquid methane gas
AU2014265028B2 (en) * 2014-02-17 2019-08-22 Black & Veatch Corporation Lng recovery from syngas using a mixed refrigerant
US10436505B2 (en) 2014-02-17 2019-10-08 Black & Veatch Holding Company LNG recovery from syngas using a mixed refrigerant
US10443930B2 (en) 2014-06-30 2019-10-15 Black & Veatch Holding Company Process and system for removing nitrogen from LNG
US10443927B2 (en) * 2015-09-09 2019-10-15 Black & Veatch Holding Company Mixed refrigerant distributed chilling scheme
EP3368630B1 (en) 2015-10-27 2020-12-02 Linde GmbH Low-temperature mixed--refrigerant for hydrogen precooling in large scale
WO2017072019A1 (en) 2015-10-27 2017-05-04 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11480389B2 (en) 2017-09-13 2022-10-25 Air Products And Chemicals, Inc. Multi-product liquefaction method and system
RU2766164C2 (en) * 2018-08-02 2022-02-08 Эр Продактс Энд Кемикалз, Инк. Power balancing in liquefication split system with mixed refrigerant
US10935312B2 (en) 2018-08-02 2021-03-02 Air Products And Chemicals, Inc. Balancing power in split mixed refrigerant liquefaction system
EP3604993A2 (en) 2018-08-02 2020-02-05 Air Products And Chemicals, Inc. Balancing power in split mixed refrigerant liquefaction system
CN113958867A (en) * 2021-10-19 2022-01-21 中控智网(北京)能源技术有限公司 Control method, system, equipment and storage medium for natural gas pipeline
CN113958867B (en) * 2021-10-19 2024-01-23 中控创新(北京)能源技术有限公司 Control method, system, equipment and storage medium for natural gas pipeline
EP4230937A1 (en) 2022-02-21 2023-08-23 Linde GmbH Method and system for generating a liquefied hydrocarbon product
FR3132565A3 (en) 2022-05-11 2023-08-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hydrogen liquefaction method and apparatus

Also Published As

Publication number Publication date
NO132703B (en) 1975-09-08
DE2023614A1 (en) 1971-07-22
GB1297082A (en) 1972-11-22
MY7300305A (en) 1973-12-31
CA933855A (en) 1973-09-18
DE2023614B2 (en) 1978-06-15
IT1032004B (en) 1979-05-30
NO132703C (en) 1975-12-17

Similar Documents

Publication Publication Date Title
US3763658A (en) Combined cascade and multicomponent refrigeration system and method
US4065278A (en) Process for manufacturing liquefied methane
US3645106A (en) Process for liquefying natural gas employing a multicomponent refrigerant for obtaining low temperature cooling
CA2035620C (en) Method of liquefying natural gas
US4430103A (en) Cryogenic recovery of LPG from natural gas
US6347531B1 (en) Single mixed refrigerant gas liquefaction process
US6308531B1 (en) Hybrid cycle for the production of liquefied natural gas
US3205669A (en) Recovery of natural gas liquids, helium concentrate, and pure nitrogen
US4435198A (en) Separation of nitrogen from natural gas
US6347532B1 (en) Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
US7127914B2 (en) Hybrid gas liquefaction cycle with multiple expanders
KR100962627B1 (en) Integrated multiple-loop refrigeration process for gas liquefaction
US5291736A (en) Method of liquefaction of natural gas
JP4741468B2 (en) Integrated multi-loop cooling method for gas liquefaction
US3721099A (en) Fractional condensation of natural gas
US4251247A (en) Method and apparatus for cooling a gaseous mixture
US3970441A (en) Cascaded refrigeration cycles for liquefying low-boiling gaseous mixtures
US4331461A (en) Cryogenic separation of lean and rich gas streams
US3319429A (en) Methods for separating mixtures of normally gaseous materials
US5579655A (en) Process and apparatus for the liquefaction of hydrogen
US3531943A (en) Cryogenic process for separation of a natural gas with a high nitrogen content
JPH07280431A (en) Recover method of ethylene from supply gas
US20230194161A1 (en) Standalone high-pressure heavies removal unit for lng processing
US20230098976A1 (en) Refrigeration systems associated with cryogenic process plants for ethane or propane recovery from natural gas
CA1059425A (en) Process for manufacturing liquefied methane