WO2010091804A2 - Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes - Google Patents

Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes Download PDF

Info

Publication number
WO2010091804A2
WO2010091804A2 PCT/EP2010/000614 EP2010000614W WO2010091804A2 WO 2010091804 A2 WO2010091804 A2 WO 2010091804A2 EP 2010000614 W EP2010000614 W EP 2010000614W WO 2010091804 A2 WO2010091804 A2 WO 2010091804A2
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
rich fraction
refrigerant mixture
hydrocarbon
liquefied
Prior art date
Application number
PCT/EP2010/000614
Other languages
English (en)
French (fr)
Other versions
WO2010091804A3 (de
Inventor
Heinz Bauer
Rainer Sapper
Daniel Garthe
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to RU2011137411/06A priority Critical patent/RU2537480C2/ru
Priority to CN201080007356.8A priority patent/CN102449419B/zh
Priority to AU2010213188A priority patent/AU2010213188B2/en
Priority to BRPI1008539-4A priority patent/BRPI1008539B1/pt
Publication of WO2010091804A2 publication Critical patent/WO2010091804A2/de
Priority to NO20111214A priority patent/NO20111214A1/no
Publication of WO2010091804A3 publication Critical patent/WO2010091804A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/18External refrigeration with incorporated cascade loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/902Details about the refrigeration cycle used, e.g. composition of refrigerant, arrangement of compressors or cascade, make up sources, use of reflux exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Definitions

  • the invention relates to a method for liquefying a hydrocarbon-rich fraction while simultaneously separating a C 2+ -rich fraction, wherein the cooling and liquefaction of the hydrocarbon-rich fraction in the indirect heat exchange with the refrigerant mixture of a mixed refrigerant cycle, in which the refrigerant mixture is compressed at least two stages , And the separation of the C 2+ -rich fraction is carried out at an adjustable temperature level, wherein the refrigerant mixture is separated into a gaseous and a liquid fraction, supercooling both fractions, substantially relaxed to the suction pressure of the first compressor stage and at least partially evaporated.
  • a generic method for liquefying a hydrocarbon-rich fraction is known for example from DE-A 19722490. Such liquefaction processes are used, for example, in natural gas liquefaction. In the case of generic liquefaction processes, it is generally necessary to separate off certain components, since they would precipitate at the required low temperatures and / or would violate the specified product quality. In the simplest case, it is sufficient to provide only one separator, which serves to separate the unwanted components from the hydrocarbon-rich fraction to be liquefied. The selective separation of lighter natural gas constituents, such as ethane, on the other hand, places significantly higher demands on both the process control and the controllability under varying boundary conditions.
  • Small to medium capacity natural gas liquefaction processes including production rates of 30,000 to 1 million tpd of LNG - often use closed loop compressor cycles - also referred to as SMR (Single Mixed Refrigerant) processes.
  • SMR Single Mixed Refrigerant
  • These have the disadvantage that the liquid refrigerant phase can be vaporized only at a pressure level.
  • the targeted setting and regulation of a desired temperature profile is therefore difficult, since the number of intervention options or degrees of freedom in such processes is limited.
  • Appropriate Temperature profiles are required, for example, to drive the partial condensation of the hydrocarbon-rich fraction to be liquefied exactly to a certain temperature, which is required for the desired separation of the undesirable components.
  • Object of the present invention is to provide a generic method for liquefying a hydrocarbon-rich fraction with simultaneous separation of a C 2+ -rich fraction, which avoids the disadvantages described above.
  • a generic method for liquefying a hydrocarbon-rich fraction is given, which is both robust and on the other hand allows an efficient and controllable separation of ethane and higher hydrocarbons in the course of a natural gas liquefaction process. Therefore, the course of evaporation of a mixed refrigerant stream is to be designed so that it can be used directly to control a separation of ethane and higher hydrocarbons.
  • a generic method for liquefying a hydrocarbon-rich fraction with simultaneous removal of a C 2+ -rich fraction is proposed, which is characterized in that at least temporarily relaxes at least a partial flow of the liquefied, formerly gaseous fraction of the refrigerant mixture and the relaxed Liquid fraction of the refrigerant mixture is mixed.
  • the temperature profile during the evaporation of the refrigerant mixed from the two aforementioned fractions can be influenced in such a way that, according to the task, the temperature of the mixed refrigerant in the upper region of the respective heat exchanger, which serve to cool and partially condense the hydrocarbon-rich fraction to be liquefied, always below the temperature of the fraction to be liquefied.
  • the procedure according to the invention makes it possible to sufficiently regulate the temperature of the hydrocarbon-rich fraction to be liquefied on entering the separation apparatus or separation column to be separated for the C 2+ -rich fraction, so that the setting of a desired concentration of the C 2+ hydrocarbons in the liquefaction product or LNG (Liquefied f ⁇ atural gas) is possible.
  • the partial flow of the liquefied, formerly gaseous fraction of the refrigerant mixture is drawn off at the cold end of the heat exchange between the hydrocarbon-rich fraction to be liquefied and the refrigerant mixture and / or at a suitable intermediate temperature, and is mixed with the expanded liquid fraction of the refrigerant mixture, wherein a suitable intermediate temperature then is present when the refrigerant mixture a
  • a multi-flow heat exchanger which is preferably designed as a plate heat exchanger or coiled heat exchanger takes place
  • Hydrocarbon-rich fraction is fed to the top and / or bottom of the separation column, and
  • the separation column sump temperature is set by means of a reboiler associated with the separation column.
  • FIGS. 1 and 2 The embodiments of the process according to the invention for liquefying a hydrocarbon-rich fraction shown in FIGS. 1 and 2 have a separation column T which is sufficient to separate off a C 2+
  • Fraction from the liquefied hydrocarbon-rich fraction serves.
  • the fraction to be liquefied which is referred to below as natural gas stream, is fed via line 1 to a multi-flow heat exchanger E3.
  • This is preferably designed as a soldered aluminum plate heat exchanger.
  • the multi-flow heat exchanger E3 may be formed as a wound heat exchanger.
  • aluminum plate heat exchangers are preferably used for a liquefaction capacity of 30,000 to 500,000 tpy LNG, wound heat exchangers preferably for a liquefaction capacity of 100,000 to 1,000,000 tpy LNG.
  • the natural gas stream is cooled in the heat exchanger E3, partially condensed and then expanded via valve a in the head region of the separation column T.
  • a methane-rich gas fraction is withdrawn via line 2, liquefied in the heat exchanger E3 and subcooled and then withdrawn via line 3, in which a control valve e is provided and fed to their further use or intermediate storage.
  • This fraction represents the liquefaction product (LNG).
  • LNG liquefaction product
  • a C 2+ -rich liquid fraction is withdrawn via line 4, which likewise has a control valve d, and fed to its further use.
  • the bottom temperature of the separation column T and the composition of the withdrawn via line 4 liquid fraction can be influenced by the reboiler E4 and / or the addition of a partial flow of the natural gas stream via line 6 and expansion valve c.
  • the refrigerant mixture cycle consists of a two-stage compressor unit, consisting of a first and a second compressor stage C1 or C2.
  • the two compressor stages each have a cooler E1 or E2 downstream.
  • a low-pressure separator D1 a medium-pressure separator D2 and a high-pressure separator D3 are provided.
  • the refrigerant mixture circulating in the refrigeration circuit is supplied via line 11 to the first compressor stage C1.
  • a liquid fraction which will be discussed below, is withdrawn, which is withdrawn via line 13 from the top of the separator D2
  • Gas phase of the refrigerant mixture of the second compressor stage C2 supplied and in this to the desired final pressure - this is usually between 30 and 80 bar, preferably between 40 and 60 bar - compressed.
  • the refrigerant mixture is cooled in the cooler E2, partially condensed and fed via line 14 to the high-pressure separator D3.
  • the liquid fraction obtained in the bottom of the precipitator D3 is returned via line 16, in which an expansion valve k is provided, before the medium-pressure separator D2.
  • the gaseous refrigerant portion is withdrawn via line 15, liquefied in the heat exchanger E3 and supercooled and withdrawn therefrom via line 17.
  • the expansion valve g is a relaxation of this fraction or a partial flow of this fraction to the lowest cycle pressure before being passed through line 18 through the heat exchanger E3 and thereby completely evaporated.
  • the fully evaporated fraction is then fed to the separator D1.
  • the liquid refrigerant fraction is withdrawn via line 20 from the bottom of the separator D2, fed to the heat exchanger E3 and subcooled in this.
  • the supercooled liquid fraction is withdrawn from the heat exchanger E3, relaxed in the valve F to the lowest cycle pressure and then fed via line 22 again to the heat exchanger E3.
  • the fraction evaporated in it is mixed via line 23 of the already mentioned, vaporized fraction in line 10.
  • valves f and g is usually a relaxation to a pressure that corresponds to the suction pressure of the first compressor stage C1 except for unavoidable pressure drops.
  • the liquid fraction of the refrigerant mixture to be fed to the heat exchanger E3 is not already drawn off from the separator D2 but from the separator D3 via line 20 '.
  • the liquid fraction obtained in the bottom of the precipitator D2 is therefore fed to the separator D3 via line 16 ', in which a pump P is arranged.
  • the process control according to FIG. 1 will therefore be used preferably at smaller plant capacities (30,000 to 500,000 t / d LNG), while the process management illustrated in FIG. 2 will preferably be realized at larger plant capacities (100,000 to 1,000,000 LNG).
  • At least temporarily, at least a partial stream of the liquefied, formerly gaseous fraction of the refrigerant mixture 15 is expanded and admixed with the expanded liquid fraction of the refrigerant mixture in the line 22.
  • two possible mixed refrigerant partial streams 19 and 24 are shown, which can be admixed to the relaxed refrigerant mixture in the line 22 after a relaxation in the valve h or j.
  • valve h or j will be provided in most cases.
  • the refrigerant mixture partial streams 19 and 24 can be used separately or together to control the temperature or the temperature profile.
  • the refrigerant mixture partial streams 19 and 24 are withdrawn at the cold end of the heat exchange E3 and / or at a suitable intermediate temperature via line 19 and 24, in the valve h and j relaxed and the relaxed liquid fraction of the refrigerant mixture 22 admixed.
  • a suitable intermediate temperature is present when the refrigerant mixture 15 has a supercooling of at least 5 0 C, preferably of at least 10 0 C compared to the boiling state.

Abstract

Es wird ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion unter gleichzeitiger Abtrennung einer C2+-reichen Fraktion beschrieben, wobei die Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes, in dem das Kältemittelgemisch wenigstens zweistufig verdichtet wird, und die Abtrennung der C2+- reichen Fraktion auf einem einstellbaren Temperaturniveau erfolgt, wobei das Kältemittelgemisch in eine gasförmige und eine flüssige Fraktion aufgetrennt wird, beide Fraktionen unterkühlt, im Wesentlichen auf den Saugdruck der ersten Verdichterstufe entspannt und zumindest teilverdampft werden. Erfindungsgemäß wird zumindest zeitweilig wenigstens ein Teilstrom (19, 24) der verflüssigten, vormals gasförmigen Fraktion des Kältemittelgemisches (15) entspannt (j, h) und der entspannten Flüssigfraktion des Kältemittelgemisches (21) zugemischt.

Description

Beschreibung
Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
Die Erfindung betrifft ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion unter gleichzeitiger Abtrennung einer C2+-reichen Fraktion, wobei die Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes, in dem das Kältemittelgemisch wenigstens zweistufig verdichtet wird, und die Abtrennung der C2+-reichen Fraktion auf einem einstellbaren Temperaturniveau erfolgt, wobei das Kältemittelgemisch in eine gasförmige und eine flüssige Fraktion aufgetrennt wird, beide Fraktionen unterkühlt, im Wesentlichen auf den Saugdruck der ersten Verdichterstufe entspannt und zumindest teilverdampft werden.
Ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion ist beispielsweise aus der DE-A 19722490 bekannt. Derartige Verflüssigungsverfahren kommen beispielsweise bei der Erdgasverflüssigung zur Anwendung. Bei gattungsgemäßen Verflüssigungsverfahren ist es im Regelfall erforderlich, bestimmte Komponenten abzutrennen, da diese bei den erforderlichen tiefen Temperaturen fest ausfallen und/oder die spezifizierte Produktqualität verletzen würden. Im einfachsten Falle genügt es, lediglich einen Abscheider vorzusehen, der der Abtrennung der unerwünschten Komponenten aus der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion dient. Die selektive Abtrennung leichterer Erdgasbestandteile, wie beispielsweise Ethan, stellt hingegen wesentlich höhere Anforderungen, sowohl an die Verfahrensführung als auch an die Regelbarkeit unter veränderlichen Randbedingungen.
Bei Erdgasverflüssigungsprozessen kleiner bis mittlerer Kapazität - darunter seien Produktionsraten von 30.000 bis 1 Mio. jato LNG zu verstehen - kommen oftmals Gemischkreisläufe mit lediglich einem Kreislaufverdichter - diese werden auch als SMR(Single Mixed Refrigerant)-Prozesse bezeichnet - zur Anwendung. Diese haben den Nachteil, dass die flüssige Kältemittelphase lediglich bei einem Druckniveau verdampft werden kann. Das gezielte Einstellen und Regeln eines gewünschten Temperaturprofils ist folglich schwierig, da die Zahl der Eingriffsmöglichkeiten bzw. Freiheitsgrade bei derartigen Prozessen beschränkt ist. Entsprechende Temperaturprofile sind beispielsweise erforderlich, um die Teilkondensation der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion exakt bis zu einer bestimmten Temperatur voranzutreiben, die für die angestrebte Abtrennung der unerwünschten Komponenten benötigt wird.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion unter gleichzeitiger Abtrennung einer C2+-reichen Fraktion anzugeben, das die vorbeschriebenen Nachteile vermeidet. Insbesondere soll ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion angegeben werden, das zum einen robust ist und zum anderen eine effiziente und kontrollierbare Abtrennung von Ethan und höheren Kohlenwasserstoffen im Zuge eines Erdgasverflüssigungsprozesses ermöglicht. Daher ist der Verdampfungsverlauf eines Kältemittelgemischstroms so zu gestalten, dass dieser unmittelbar zur Regelung einer Abtrennung von Ethan und höheren Kohlenwasserstoffen eingesetzt werden kann.
Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion unter gleichzeitiger Abtrennung einer C2+- reichen Fraktion vorgeschlagen, das dadurch gekennzeichnet ist, dass zumindest zeitweilig wenigstens ein Teilstrom der verflüssigten, vormals gasförmigen Fraktion des Kältemittelgemisches entspannt und der entspannten Flüssigfraktion des Kältemittelgemisches zugemischt wird.
Mittels einer Variation der Mengenverhältnisse der flüssigen Fraktion und der verflüssigten, vormals gasförmigen Fraktion kann das Temperaturprofil während der Verdampfung des aus den beiden vorgenannten Fraktionen gemischten Kältemittels derart beeinflusst werden, dass aufgabengemäß die Temperatur des gemischten Kältemittels im oberen Bereich des- bzw. derjenigen Wärmetauscher, die der Abkühlung und Teilkondensation der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion dienen, immer unter der Temperatur der zu verflüssigenden Fraktion liegt. Die erfindungsgemäße Verfahrensweise ermöglicht eine hinreichende Regelbarkeit der Temperatur der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion beim Eintritt in die für die Abtrennung der C2+-reichen Fraktion vorzusehende Abtrennvorrichtung bzw. Trennkolonne, so dass die Einstellung einer gewünschten Konzentration der C2+-Kohlenwasserstoffe im Verflüssigungsprodukt bzw. LNG (Liquefied f^atural Gas) möglich ist.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion unter gleichzeitiger Abtrennung einer C2+-reichen Fraktion, die Gegenstände der abhängigen Patentansprüche darstellen, sind dadurch gekennzeichnet, dass
der Teilstrom der verflüssigten, vormals gasförmigen Fraktion des Kältemittelgemisches am kalten Ende des Wärmetausches zwischen der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion und dem Kältemittelgemisch und/oder bei einer geeigneten Zwischentemperatur abgezogen, entspannt und der entspannten Flüssigfraktion des Kältemittelgemisches zugemischt wird, wobei eine geeignete Zwischentemperatur dann vorliegt, wenn das Kältemittelgemisch eine
Unterkühlung von wenigstens 5 0C, vorzugsweise von wenigstens 10 0C gegenüber dem Siedezustand aufweist,
der Wärmetausch zwischen der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion und dem Kältemittelgemisch in einem Mehrstromwärmetauscher, der vorzugsweise als Plattenwärmetauscher oder gewickelter Wärmetauscher ausgebildet ist, erfolgt,
sofern die Abtrennung der C2+-reichen Fraktion in wenigstens einer Trennkolonne erfolgt, zumindest zeitweilig ein Teilstrom der zu verflüssigenden
Kohlenwasserstoff-reichen Fraktion dem Kopfbereich und/oder dem Sumpfbereich der Trennkolonne zugeführt wird, und
sofern die Abtrennung der C2+-reichen Fraktion in wenigstens einer Trennkolonne erfolgt, mittels eines der Trennkolonne zugeordneten Aufkochers die Trennkolonnen-Sumpftemperatur eingestellt wird.
Das erfindungsgemäße Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion unter gleichzeitiger Abtrennung einer C2+-reichen Fraktion sowie weitere vorteilhafte Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand der in den Figuren 1 und 2 dargestellten Ausführungsbeispiele näher erläutert.
Nachfolgend wird bei der Erläuterung des in der Figur 2 dargestellten Ausführungsbeispieles nur auf die Unterschiede zu der in der Figur 1 dargestellten Verfahrensweise eingegangen.
Die in den Figuren 1 und 2 dargestellten Ausführungsbeispiele des erfindungsgemäßen Verfahrens zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion weisen eine Trennkolonne T auf, die der Abtrennung einer C2+-reichen
Fraktion aus der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion dient. Die zu verflüssigende Fraktion, die nachfolgend als Erdgasstrom bezeichnet wird, wird über Leitung 1 einem Mehrstromwärmetauscher E3 zugeführt.
Dieser ist vorzugsweise als gelöteter Aluminium-Plattenwärmetauscher ausgebildet. In Abhängigkeit von der Anlagengröße werden vorzugsweise 1 bis 6 parallele Wärmetauschereinheiten vorgesehen. Alternativ kann der Mehrstromwärmetauscher E3 als gewickelter Wärmetauscher ausgebildet sein. Hierbei werden Aluminium- Plattenwärmetauscher vorzugsweise für eine Verflüssigungskapazität von 30,000 bis 500,000 jato LNG, gewickelte Wärmetauscher vorzugsweise für eine Verflüssigungskapazität von 100,000 bis 1 ,000,000 jato LNG verwendet.
Der Erdgasstrom wird im Wärmetauscher E3 abgekühlt, partiell kondensiert und anschließend über Ventil a in den Kopfbereich der Trennkolonne T entspannt. Am Kopf der Trennkolonne T wird über Leitung 2 eine Methan-reiche Gasfraktion abgezogen, im Wärmetauscher E3 verflüssigt sowie unterkühlt und anschließend über Leitung 3, in der ein Regelventil e vorgesehen ist, abgezogen und ihrer weiteren Verwendung bzw. Zwischenspeicherung zugeführt. Diese Fraktion stellt das Verflüssigungsprodukt (LNG) dar. Aus dem Sumpf der Trennkolonne T wird über Leitung 4, die ebenfalls ein Regelventil d aufweist, eine C2+-reiche Flüssigfraktion abgezogen und ihrer weiteren Verwendung zugeführt.
Mittels einer Zuführung eines Teilstromes des Erdgasstromes über Leitung 5 und Regelventil b kann die Kopftemperatur der Trennkolonne T und damit die Zusammensetzung der über Leitung 2 abgezogenen Methan-reichen Gasfraktion beeinflusst werden. Auch die Sumpftemperatur der Trennkolonne T sowie die Zusammensetzung der über Leitung 4 abgezogenen Flüssigfraktion können durch den Aufkocher E4 und/oder die Zugabe eines Teilstromes des Erdgasstromes über Leitung 6 und Entspannungsventil c beeinflusst werden.
Der Kältemittelgemischkreislauf besteht aus einer zweistufigen Verdichtereinheit, bestehend aus einer ersten und einer zweiten Verdichterstufe C1 bzw. C2. Den beiden Verdichterstufen ist jeweils ein Kühler E1 bzw. E2 nachgeschaltet. Des Weiteren sind ein Niederdruck-Abscheider D1 , ein Mitteldruck-Abscheider D2 sowie ein Hochdruck- Abscheider D3 vorgesehen.
Aus dem Kopf des Niederdruck-Abscheiders D1 , der der Sicherheit der ersten Verdichterstufe C1 dient, wird über Leitung 11 das in dem Kältekreislauf zirkulierende Kältemittelgemisch die ersten Verdichterstufe C1 zugeführt. In dieser wird das Kältemittelgemisch auf einen gewünschten Zwischendruck - dieser beträgt üblicherweise zwischen 7 und 35 bar, vorzugsweise zwischen 10 und 25 bar - verdichtet, anschließend im Kühler E1 abgekühlt, partiell kondensiert und über Leitung 12 dem Mitteldruck-Abscheider D2 zugeführt. Während aus diesem über Leitung 20 eine Flüssigfraktion, auf die im Folgenden noch eingegangen werden wird, abgezogen wird, wird die über Leitung 13 aus dem Kopf des Abscheiders D2 abgezogene
Gasphase des Kältemittelgemisches der zweiten Verdichterstufe C2 zugeführt und in dieser auf den gewünschten Enddruck - dieser beträgt üblicherweise zwischen 30 und 80 bar, vorzugsweise zwischen 40 und 60 bar - verdichtet. Anschließend wird das Kältemittelgemisch im Kühler E2 abgekühlt, partiell kondensiert und über Leitung 14 dem Hochdruck-Abscheider D3 zugeführt. Die im Sumpf des Abscheiders D3 anfallende Flüssigfraktion wird über Leitung 16, in der ein Entspannungsventil k vorgesehen ist, vor den Mitteldruck-Abscheider D2 zurückgeführt.
Am Kopf des Abscheiders D3 wird über Leitung 15 der gasförmige Kältemittelanteil abgezogen, im Wärmetauscher E3 verflüssigt sowie unterkühlt und aus diesem über Leitung 17 abgezogen. Im Entspannungsventil g erfolgt eine Entspannung dieser Fraktion bzw. eines Teilstromes dieser Fraktion auf den niedrigsten Kreislaufdruck, bevor sie über Leitung 18 durch den Wärmetauscher E3 geführt und dabei vollständig verdampft wird. Über Leitung 10 wird die vollständig verdampfte Fraktion anschließend dem Abscheider D1 zugeführt. Bei der in der Figur 1 dargestellten Verfahrensweise wird der flüssige Kältemittelanteil über Leitung 20 aus dem Sumpf des Abscheiders D2 abgezogen, dem Wärmetauscher E3 zugeführt und in diesem unterkühlt. Über Leitung 21 wird die unterkühlte Flüssigfraktion aus dem Wärmetauscher E3 abgezogen, im Ventil f auf den niedrigsten Kreislaufdruck entspannt und anschließend über Leitung 22 erneut dem Wärmetauscher E3 zugeführt. Die in ihm verdampfte Fraktion wird über Leitung 23 der bereits erwähnten, verdampften Fraktion in der Leitung 10 beigemischt.
In den Ventilen f und g erfolgt üblicherweise eine Entspannung auf einen Druck, der bis auf unvermeidliche Druckabfälle dem Saugdruck der ersten Verdichterstufe C1 entspricht. Durch die geeignete Wahl der Zusammensetzung, Menge und/oder des Verdampfungsdruckes des Kältemittelgemisches können sowohl die Endtemperatur als auch der Mengenstrom der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion bzw. des zu verflüssigenden Erdgasstromes eingestellt werden.
Im Unterschied zu der in der Figur 1 dargestellten Verfahrensweise wird bei dem in der Figur 2 dargestellten Ausführungsbeispiel die dem Wärmetauscher E3 zuzuführende Flüssigfraktion des Kältemittelgemisches nicht bereits aus dem Abscheider D2, sondern aus dem Abscheider D3 über Leitung 20' abgezogen. Die im Sumpf des Abscheiders D2 anfallende Flüssigfraktion wird daher über Leitung 16', in der eine Pumpe P angeordnet ist, dem Abscheider D3 zugeführt.
Die in der Figur 2 dargestellte Verfahrensführung ist im Vergleich zu der in der Figur 1 dargestellten Verfahrensführung etwas effizienter - sie ermöglicht eine
Wirkungsgradverbesserung von 1 bis 5 % -, benötigt jedoch eine Pumpe, die erhöhte Investitionskosten und einen größeren Wartungsaufwand verursacht. Die Verfahrensführung gemäß Figur 1 wird daher vorzugsweise bei kleineren Anlagenkapazitäten (30,000 bis 500,000 jato LNG) zur Anwendung kommen, während die in der Figur 2 dargestellte Verfahrensführung vorzugsweise bei größeren Anlagenkapazitäten (100,000 bis 1 ,000,000 jato LNG) realisiert werden wird.
Aufgrund der vorbeschriebenen Entspannung der flüssigen unterkühlten sowie der verflüssigten, vormals gasförmigen Fraktion des Kältemittelgemisches in den Ventilen f und g auf einen im Wesentlichen identischen Verdampfungsdruck ist der Temperaturverlauf des Kältemittelsstroms im Wärmetauscher E3 stromabwärts des Ventils f nicht frei wählbar. Die Zusammensetzungen der gasförmigen und flüssigen Kältemittelfraktionen wiederum sind durch die Gleichgewichte in den Abscheidern D2 und D3 gekoppelt. Daher kann die Ventilstellung des Ventils f nicht in ausreichendem Maße das Temperaturprofil im oberen bzw. wärmeren Teil des Wärmetauschers E3 beeinflussen.
Erfindungsgemäß wird deshalb zumindest zeitweilig wenigstens ein Teilstrom der verflüssigten, vormals gasförmigen Fraktion des Kältemittelgemisches 15 entspannt und der entspannten Flüssigfraktion des Kältemittelgemisches in der Leitung 22 zugemischt. In den Figuren sind zwei mögliche Kältemittelgemisch-Teilströme 19 und 24 dargestellt, die nach einer Entspannung im Ventil h bzw. j dem entspannten Kältemittelgemisch in der Leitung 22 zugemischt werden können. In der Praxis wird in den meisten Fällen entweder Ventil h oderj vorgesehen werden. Grundsätzlich gilt jedoch, dass die Kältemittelgemisch-Teilströme 19 und 24 separat oder gemeinsam der Regelung der Temperatur bzw. des Temperaturprofils herangezogen werden können.
Hierbei wird bzw. werden die Kältemittelgemisch-Teilströme 19 bzw. 24 am kalten Ende des Wärmetausches E3 und/oder bei einer geeigneten Zwischentemperatur über Leitung 19 bzw. 24 abgezogen, im Ventil h bzw. j entspannt und der entspannten Flüssigfraktion des Kältemittelgemisches 22 zugemischt. Eine geeignete Zwischentemperatur liegt dann vor, wenn das Kältemittelgemisch 15 eine Unterkühlung von wenigstens 5 0C, vorzugsweise von wenigstens 10 0C gegenüber dem Siedezustand aufweist.
Mittels der erfindungsgemäßen Verfahrensweise wird eine hinreichende Regelbarkeit der Temperatur der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion bzw. des Erdgasstromes 1 beim Eintritt in die Trennkolonne T gegeben, wie sie für die Einstellung einer gewünschten Konzentration der C2+-Kohlenwasserstoffe im Verflüssigungsprodukt bzw. LNG erforderlich ist.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion unter gleichzeitiger Abtrennung einer C2+-reichen Fraktion, wobei die Abkühlung und Verflüssigung der Kohlenwasserstoff-reichen Fraktion im indirekten Wärmetausch gegen das Kältemittelgemisch eines Kältemittelgemischkreislaufes, in dem das
Kältemittelgemisch wenigstens zweistufig verdichtet wird, und die Abtrennung der C2+-reichen Fraktion auf einem einstellbaren Temperaturniveau erfolgt, wobei das Kältemittelgemisch in eine gasförmige und eine flüssige Fraktion aufgetrennt wird, beide Fraktionen unterkühlt, im Wesentlichen auf den Saugdruck der ersten Verdichterstufe entspannt und zumindest teilverdampft werden, dadurch gekennzeichnet, dass zumindest zeitweilig wenigstens ein Teilstrom (19, 24) der verflüssigten, vormals gasförmigen Fraktion des Kältemittelgemisches (15) entspannt (j, h) und der entspannten Flüssigfraktion des Kältemittelgemisches (21) zugemischt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Teilstrom (19, 24) der verflüssigten, vormals gasförmigen Fraktion des Kältemittelgemisches (15) am kalten Ende des Wärmetausches (E3) zwischen der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion (1 , 2) und dem Kältemittelgemisch (15, 17, 18,
20, 20', 22) und/oder bei einer geeigneten Zwischentemperatur abgezogen, entspannt (j, h) und der entspannten Flüssigfraktion des Kältemittelgemisches (21) zugemischt wird, wobei eine geeignete Zwischentemperatur dann vorliegt, wenn das Kältemittelgemisch (15) eine Unterkühlung von wenigstens 5 0C, vorzugsweise von wenigstens 10 0C gegenüber dem Siedezustand aufweist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wärmetausch zwischen der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion (1 , 2) und dem Kältemittelgemisch (15, 17, 18, 20, 20', 22) in einem Mehrstromwärmetauscher (E3), der vorzugsweise als Plattenwärmetauscher oder gewickelter Wärmetauscher ausgebildet ist, erfolgt.
4. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, wobei die Abtrennung der C2+-reichen Fraktion in wenigstens einer Trennkolonne erfolgt, dadurch gekennzeichnet, dass zumindest zeitweilig ein Teilstrom (5) der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion dem Kopfbereich der Trennkolonne (T) zugeführt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, wobei die Abtrennung der C2+-reichen Fraktion in wenigstens einer Trennkolonne erfolgt, dadurch gekennzeichnet, dass zumindest zeitweilig ein Teilstrom (6) der zu verflüssigenden Kohlenwasserstoff-reichen Fraktion dem Sumpfbereich der
Trennkolonne (T) zugeführt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 5, wobei die Abtrennung der C2+-reichen Fraktion in wenigstens einer Trennkolonne erfolgt, dadurch gekennzeichnet, dass mittels eines der Trennkolonne (T) zugeordneten
Aufkochers (E4) die Trennkolonnen-Sumpftemperatur eingestellt wird.
PCT/EP2010/000614 2009-02-10 2010-02-02 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes WO2010091804A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2011137411/06A RU2537480C2 (ru) 2009-02-10 2010-02-02 Способ сжижения потока с высоким содержанием углеводородов
CN201080007356.8A CN102449419B (zh) 2009-02-10 2010-02-02 用于液化富烃流的方法
AU2010213188A AU2010213188B2 (en) 2009-02-10 2010-02-02 Method for liquefying a hydrocarbon-rich stream
BRPI1008539-4A BRPI1008539B1 (pt) 2009-02-10 2010-02-02 Processo para liquefazer uma fração rica em hidrocarbonetos
NO20111214A NO20111214A1 (no) 2009-02-10 2011-09-08 Fremgangsmate for a gjore en hydrokarbonrik strom flytende

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008230A DE102009008230A1 (de) 2009-02-10 2009-02-10 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102009008230.1 2009-02-10

Publications (2)

Publication Number Publication Date
WO2010091804A2 true WO2010091804A2 (de) 2010-08-19
WO2010091804A3 WO2010091804A3 (de) 2012-09-20

Family

ID=42317492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000614 WO2010091804A2 (de) 2009-02-10 2010-02-02 Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes

Country Status (11)

Country Link
CN (1) CN102449419B (de)
AR (1) AR075133A1 (de)
AU (1) AU2010213188B2 (de)
BR (1) BRPI1008539B1 (de)
CL (1) CL2011001938A1 (de)
DE (1) DE102009008230A1 (de)
MY (1) MY159967A (de)
NO (1) NO20111214A1 (de)
PE (1) PE20120675A1 (de)
RU (1) RU2537480C2 (de)
WO (1) WO2010091804A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636001A (zh) * 2011-02-08 2012-08-15 林德股份公司 用于冷却单组分或多组分的流的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021637A1 (de) * 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
DE102013016695A1 (de) * 2013-10-08 2015-04-09 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE102014005936A1 (de) * 2014-04-24 2015-10-29 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
US20160109177A1 (en) * 2014-10-16 2016-04-21 General Electric Company System and method for natural gas liquefaction
DE102015002443A1 (de) * 2015-02-26 2016-09-01 Linde Aktiengesellschaft Verfahren zum Verflüssigen von Erdgas
DE102015004125A1 (de) * 2015-03-31 2016-10-06 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722490C1 (de) 1997-05-28 1998-07-02 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1619728C3 (de) * 1967-12-21 1974-02-07 Linde Ag, 6200 Wiesbaden Tieftemperaturrektifikations verfahren zum Trennen von Gasgemischen aus Bestandteilen, deren Siedetemperaturen weit auseinanderliegen
DE3531307A1 (de) * 1985-09-02 1987-03-05 Linde Ag Verfahren zur abtrennung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen aus erdgas
US5983665A (en) * 1998-03-03 1999-11-16 Air Products And Chemicals, Inc. Production of refrigerated liquid methane
US6158240A (en) * 1998-10-23 2000-12-12 Phillips Petroleum Company Conversion of normally gaseous material to liquefied product
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US7082787B2 (en) * 2004-03-09 2006-08-01 Bp Corporation North America Inc. Refrigeration system
RU2297580C1 (ru) * 2005-08-23 2007-04-20 Михаил Васильевич Кнатько Способ сжижения природного газа

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722490C1 (de) 1997-05-28 1998-07-02 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636001A (zh) * 2011-02-08 2012-08-15 林德股份公司 用于冷却单组分或多组分的流的方法
AU2012200383B2 (en) * 2011-02-08 2016-06-16 Linde Aktiengesellschaft Method for cooling a single-component or multi-component stream
CN102636001B (zh) * 2011-02-08 2016-12-14 林德股份公司 用于冷却单组分或多组分的流的方法

Also Published As

Publication number Publication date
MY159967A (en) 2017-02-15
BRPI1008539A2 (pt) 2016-03-15
CN102449419B (zh) 2015-10-07
RU2011137411A (ru) 2013-03-20
AR075133A1 (es) 2011-03-09
CN102449419A (zh) 2012-05-09
BRPI1008539B1 (pt) 2020-08-04
CL2011001938A1 (es) 2011-10-28
DE102009008230A1 (de) 2010-08-12
WO2010091804A3 (de) 2012-09-20
AU2010213188A1 (en) 2011-08-18
RU2537480C2 (ru) 2015-01-10
AU2010213188B2 (en) 2015-12-24
PE20120675A1 (es) 2012-06-03
NO20111214A1 (no) 2011-09-08

Similar Documents

Publication Publication Date Title
EP2386814B1 (de) Stickstoff-Abtrennung aus Erdgas
WO2010091804A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP1864062A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2007045364A2 (de) Rückgewinnungssystem für die weiterverarbeitung eines spaltqasstroms einer ethylenanlage
DE102010044646A1 (de) Verfahren zum Abtrennen von Stickstoff und Wasserstoff aus Erdgas
DE102010011052A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
WO2008104308A2 (de) Verfahren zum abtrennen von stickstoff aus verflüssigtem erdgas
WO2016128110A1 (de) Kombinierte abtrennung von schwer- und leichtsiedern aus erdgas
DE102013013883A1 (de) Kombinierte Abtrennung von Schwer- und Leichtsiedern aus Erdgas
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP2484999A2 (de) Verfahren zum Abkühlen eines ein-oder mehrkomponentigen Stromes
DE10226596A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes mit gleichzeitiger Gewinnung einer C3+-reichen Fraktion mit hoher Ausbeute
DE102005029275A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2006050913A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
WO2010112206A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
DE102012017485A1 (de) Verfahren zum Abtrennen von C2+-Kohlenwasserstoffen oder von C3+-Kohlenwasserstoffen aus einer Kohlenwasserstoff-reichen Fraktion
WO2017054929A1 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
EP2312247A1 (de) Verfahren und Vorrichtung zur Gewinnung von flüssigem Stickstoff durch Tieftemperatur-Luftzerlegung
WO2008095713A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2016155863A1 (de) Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion
DE102015004125A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007356.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703167

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010213188

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 001423-2011

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010213188

Country of ref document: AU

Date of ref document: 20100202

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011137411

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10703167

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008539

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1008539

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110810