DE4440401A1 - Verfahren zum Verflüssigen von Erdgas - Google Patents

Verfahren zum Verflüssigen von Erdgas

Info

Publication number
DE4440401A1
DE4440401A1 DE4440401A DE4440401A DE4440401A1 DE 4440401 A1 DE4440401 A1 DE 4440401A1 DE 4440401 A DE4440401 A DE 4440401A DE 4440401 A DE4440401 A DE 4440401A DE 4440401 A1 DE4440401 A1 DE 4440401A1
Authority
DE
Germany
Prior art keywords
natural gas
regeneration
gas stream
cleaned
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4440401A
Other languages
English (en)
Inventor
Hans Dr Ing Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE4440401A priority Critical patent/DE4440401A1/de
Priority to EP95117286A priority patent/EP0711969A3/de
Priority to US08/556,195 priority patent/US5551256A/en
Priority to AR33417395A priority patent/AR000098A1/es
Publication of DE4440401A1 publication Critical patent/DE4440401A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system

Description

Die Erfindung betrifft ein Verfahren zum Verflüssigen eines unter Druck stehenden Erd­ gasstromes, bei dem der Erdgasstrom zunächst mittels einer adsorptiven Abtrennvor­ richtung von CO₂ und H₂O gereinigt und der vorgereinigte Erdgasstrom anschließend in Wärmetausch mit wenigstens einem in einem Kältekreislauf geführten Kältemittel gebracht und verflüssigt wird und bei dem die adsorptive Abtrennvorrichtung mittels eines Regeneriergases, bestehend aus einem Teilstrom des vorgereinigten Erdgas­ stromes und gegebenenfalls weiterer Restgasströme, wie z. B. einem Flashgasstrom, regeneriert wird.
Ein Verfahren zum Verflüssigen eines unter Druck stehenden Erdgasstromes ist z. B. aus der DE-OS 28 20 212 bekannt. Bei diesem bekannten Verfahren wird der unter Druck stehende Erdgasstrom in Wärmetausch mit zwei im geschlossenen Kreisläufen geführten Kältemitteln, die jeweils verdichtet, mindestens teilweise verflüssigt und ent­ spannt werden, gebracht, wobei das Kühlmittel des ersten Kreislaufes zur Vorkühlung des Erdgases sowie des Kühlmittels des zweiten Kreislaufs und das Kühlmittel des zweiten Kreislaufs zur Verflüssigung des vorgekühlten Erdgases verwendet wird. Das verflüssigte Erdgas wird anschließend entspannt und nach der Vorkühlung in zwei Teilströme aufgeteilt, von denen der eine durch Wärmetausch mit dem Kühlmittel des zweiten Kreislaufs und der andere durch Wärmetausch mit dem bei der Entspannung des verflüssigten Erdgases gebildeten Flashgases verflüssigt wird. Das Flashgas wird nach dem Wärmetausch mit dem vorgekühlten Erdgas verdichtet, mindestens teilweise in Wärmetausch mit den Kühlmitteln des ersten und des zweiten Kreislaufs verflüssigt und anschließend wieder entspannt. Erdgas besteht in der Regel im wesentlichen aus Methan, geringen Anteilen an Ethan, Propan und höhersiedenden Kohlenwasserstoffen sowie geringe Mengen Stickstoff, Kohlendioxid und Wasser. Vor der Abkühlung und Verflüssigung sind all diejenigen Komponenten, die während des Abkühl- bzw. Verflüs­ sigungsprozesses ausfrieren und damit zu Verlegungen in Leitungen und Ventilen füh­ ren könnten, aus dem Erdgas abzutrennen. Dies geschieht sinnvollerweise mittels einer adsorptiven Abtrennvorrichtung. In dieser können Kohlendioxid und Wasser bis auf sehr kleine Restgehalte abgetrennt werden, so daß die Gefahr des Ausfrierens dieser Komponenten im Tieftemperaturteil nicht mehr besteht. Das verwendete Adsorptions­ mittel, vorzugsweise ein Molsieb, ist jedoch zyklisch zu regenerieren. Dazu kann, wie in der DE-OS 28 20 212 vorgeschlagen, ein Teilstrom des Flashgases verwendet werden, wodurch sich die Bereitstellung eines besonderen Regeneriergases erübrigt. Das aus einem regenerierten Adsorber abgezogene Regeneriergas kann aufgrund seiner Zu­ sammensetzung anschließend z. B. zum Antreiben einer Gasturbine verbrannt werden. Häufig wird als Regeneriergas auch ein Teil des aus der adsorptiven Abtrennvorrich­ tung austretenden Erdgasstromes verwendet.
Ziel und Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Verflüssigen ei­ nes unter Druck stehenden Erdgasstromes anzugeben, das gegenüber den bekannten Verfahren eine verbesserte Energiebilanz aufweist.
Dies wird erfindungsgemäß dadurch erreicht, daß während des Abkühl- und Ver­ flüssigungsprozesses des Erdgasstromes wenigstens der zur Regenerierung der adsorptiven Abtrennvorrichtung benötigte Erdgasteilstrom bei Erreichen derjenigen Temperatur abgetrennt wird, bei der der Wirkungsgrad der Kältenutzung durch die Drosselung auf den Regeneriergasdruck maximal ist.
Die Erfindung sowie weitere Ausgestaltungen davon seien anhand der Figur erläutert.
Über Leitung 1 wird der Erdgasstrom, bestehend aus 1,0 Mol-% N₂, 94,0 Mol-% Met­ han, 2,0 Mol-% Ethan, 1,22 Mol-% C3+-Kohlenwasserstoffen, 1,75 Mol-% Kohlendioxid und 0,03 Mol-% Wasser bei einer Temperatur von 18°C und einem Druck von 42 bar der Adsorptionsvorrichtung A zugeführt. Diese besteht aus wenigstens zwei, parallel zueinander angeordneten Adsorbern, die zyklisch Adsorptions- und Regenerierphasen durchlaufen. Der vorgereinigte Erdgasstrom mit 50 ppm CO₂ und < 1 ppm H₂O verläßt mit einer Temperatur von 38°C und einem Druck von 40 bar die Adsorptionsvorrichtung A und wird über Leitung 2 durch die Wärmetauscher E1 und E2 geführt. Der nunmehr auf -73°C abgekühlte Erdgasstrom wird dem Abscheider D zugeführt. In diesem Ab­ scheider D erfolgt eine Abtrennung von Aromaten und schweren Kohlenwasserstoffen, vorzugsweise C3+-Kohlenwasserstoffen, aus dem vorgereinigten Erdgasstrom. Diese Abtrennung von Aromaten und schweren Kohlenwasserstoffen ist notwendig, da diese ansonsten bei der Entspannung bzw. bei der weiteren Abkühlung ausfrieren würden. Die Aromaten- und schwere Kohlenwasserstoff-Fraktion wird über Leitung 4 aus dem Abscheider D abgezogen, im Ventil V2 kälteleistend entspannt und anschließend im indirekten Wärmetausch mit dem abzukühlenden Erdgasstrom in Leitung 2 mittels Lei­ tung 4′ durch die Wärmetauscher E2 und E1 geführt. Diese in Leitung 4′ geführte Frak­ tion besteht im wesentlichen aus 61,0 Mol-% Methan, 12,0 Mol-% Ethan, 10,0 Mol-% Propan und 17,0 Mol-% C4+-Kohlenwasserstoffe und weist am Austritt des Wärme­ tauschers E1 eine Temperatur von 36°C und einen Druck von 9 bar auf. Sie wird nun der Leitung 7′, auf die später noch eingegangen wird, beigemischt. Die von Aromaten und schweren Kohlenwasserstoffen befreite Erdgasfraktion, bestehend im wesentlichen aus 1,0 Mol-% Stickstoff, 97,0 Mol-% Methan, 1,8 Mol-% Ethan und 0,2 Mol-% C3+- Kohlenwasserstoffen wird über Leitung 3 vom Kopf des Abscheiders D abgezogen und in den Wärmetauschern E2 und E3 weiter abgekühlt, verflüssigt und unterkühlt. Am Ausgang des Wärmetauschers E3 weist diese Fraktion bei einem Druck von 39,6 bar eine Temperatur von -133°C auf. Es erfolgt nun eine Entspannung im Ventil V1, bevor die Erdgasfraktion bei Atmosphärendruck und einer Temperatur von -161°C mittels Leitung 3′ dem Speichertank T zugeführt wird. Aus diesem kann über Leitung 6 ver­ flüssigtes Erdgas abgezogen werden. Das innerhalb des Speichertanks T anfallende Flashgas wird über Leitung 7 aus diesem abgeführt und im Gegenstrom zu dem abzu­ kühlenden Erdgasstrom durch die Wärmetauscher E3, E2 und E1 geführt. Am Austritt des Wärmetauschers E1 erfolgt mittels des Verdichters V eine Druckerhöhung auf den notwendigen Regeneriergasdruck. Das so verdichtete Flashgas wird nun über Leitung 7′ dem bzw. den zu regenerierenden Adsorbern der Adsorptionsvorrichtung A zuge­ führt. Diesem verdichteten Flashgas wird, wie bereits beschrieben, die mittels Leitung 4′ durch die Wärmetauscher E2 und E1 geführte Aromaten- und/oder schwere Kohlen­ wasserstoff-Fraktion beigemischt. Die beiden, über Leitung 4′ und 7′ herangeführten Fraktionen können den Regeneriergasbedarf jedoch nicht vollständig decken. Aus die­ sem Grund ist es notwendig, einen Teil des vorgereinigten Erdgasstromes zu Regene­ riergaszwecken zu verwenden. Beim erfindungsgemäßen Verfahren wird der dafür be­ nötigte Teilstrom des Erdgasstromes zwischen den beiden Wärmetauschern E2 und E3 abgezogen. Die Abzugsstelle ist bezüglich der Temperatur so zu wählen, daß der Wir­ kungsgrad der Kältenutzung durch die Entspannung des Erdgasteilstromes auf den notwendigen Regeneriergasdruck maximal ist. Diese Menge wird über Leitung 5 abge­ führt, im Ventil V3 unter Ausnutzung des Joule-Thompson-Effekts kälteleistend ent­ spannt und anschließend mittels Leitung 5′ im Gegenstrom zu dem abzukühlenden Erdgasstrom durch die Wärmetauscher E2 und E1 geführt. Während der über Leitung 5 abgezweigte Erdgasteilstrom vor dem Entspannungsventil V3 eine Temperatur von -126°C bei einem Druck von 39,7 bar aufweist, erfolgt im Entspannungsventil V3 eine Entspannung auf 9,3 bar. Am Ausgang des Wärmetauschers E1 schließlich weist die­ ser Teilstrom in Leitung 5′ eine Temperatur von 36°C auf und wird über Leitung 7′ der Adsorptionsvorrichtung A als Regeneriergas zugeführt. Nach erfolgter Regenerierung wird das Regeneriergas über Leitung 8 aus der Adsorptionsvorrichtung A abgezogen. Die Deckung des für die Abkühlung und Verflüssigung des Erdgasstromes benötigten Kältebedarfs erfolgt mittels eines zusätzlichen Kältekreislaufes. Dieser Kältekreislauf sei hier nur schematisch dargestellt, wobei über Leitung 9 und 10 das Kältemittel bzw. Kältemittelgemisch zur Abkühlung und teilweisen Verflüssigung durch die Wärme­ tauscher E1, E2 und E3 bzw. durch den Wärmetauscher E1 geführt wird, in den Ent­ spannungsventilen V4 und V5 kälteleistend entspannt und anschließend mittels Leitung 9′ im Gegenstrom zu dem abzukühlenden Erdgasstrom durch die Wärmetauscher E3, E2 und E1 geleitet wird. Als Kältemittel haben sich Gemische aus Stickstoff und Methan oder Gemische aus Stickstoff, Methan sowie C₂- bis C₅-Kohlenwasserstoffen bewährt. Derartige Kältekreisläufe gehören jedoch zum Stand der Technik, so daß auf sie nicht näher eingegangen werden muß.
Es wäre auch denkbar, als den für die Regenerierung der Adsorptionsvorrichtung A benötigten Erdgasteilstrom, den am Sumpf des Abscheiders D abgezogenen Aromaten- und höhere Kohlenwasserstoff-reichen Strom zu verwenden. Dies ist jedoch nur dann möglich, wenn der Gehalt an Aromaten und höheren Kohlenwasserstoffen des die Adsorptionsvorrichtung A verlassenden Erdgasstromes so niedrig ist, daß auch bei einer Abkühlung auf diejenige Temperatur, die eine Entspannung auf den Regeneriergasdruck sinnvoll macht, diese Komponenten nicht bereits vor dem Abscheider D oder nach dem Entspannungsventil V2 ausfrieren und zu Verlegungen in den Leitungen führen. In der Regel wird schon aus Sicherheitsgründen der Abschei­ der D auf ein Temperaturniveau ausgelegt, das auch die Abtrennung einer größeren Menge an Aromaten und höheren Kohlenwasserstoffen ermöglicht.
Selbstverständlich ist es auch denkbar, nicht nur die zur Regenerierung der adsorptiven Abtrennvorrichtung benötigte Erdgasteilstrommenge aus dem Erdgasstrom abzu­ trennen, sondern die maximal an ein gegebenenfalls vorhandenes Niederdrucknetz abführbare Menge. Wie groß die aus dem Erdgasstrom abgetrennte Erdgasteilstrom­ menge sein wird, wird sich also immer nach den Randbedingungen, wie z. B. vorhandenes Niederdrucknetz, etc., orientieren.
Mittels des erfindungsgemäßen Verfahrens kann nun das Druckgefälle zwischen Erd­ gasdruck und Regeneriergasdruck als Kältequelle ausgenutzt werden. Dies führt dazu, daß die für den Kältekreislauf benötigte Energie verringert werden kann, so daß sich der spezifische Energieverbrauch bei der Erdgasverflüssigung erniedrigt. Gerade der spezifische Energiebedarf ist neben den Investitionskosten der bestimmende Faktor für derartige Verfahren. Da der Joule-Thompson-Effekt eine größere Temperaturdifferenz bewirkt als dies bei bekannten Verfahren, die einen Teil des Erdgasstromes zu Rege­ nerierzwecken bereits unmittelbar hinter der Druckwechseladsorptionsvorrichtung A abziehen, der Fall ist, wird die benötigte Wärmeaustauschfläche trotz leicht erhöhtem Wärmeumsatz geringer. Dadurch erniedrigen sich zusätzlich die Kosten für die Wärme­ tauscher im kalten Teil des Verfahrens. Zusammenfassend läßt sich feststellen, daß das erfindungsgemäße Verfahren ohne einen Mehraufwand an Investitionen zu einer Erniedrigung des spezifischen Energieverbrauchs führt. Der Energieverbrauch ist hierbei direkt proportional zu der Teilstrommenge, die unter Ausnutzung des Joule- Thompson-Effekts entspannt wird.

Claims (1)

1. Verfahren zum Verflüssigen eines unter Druck stehenden Erdgasstromes, bei dem der Erdgasstrom zunächst mittels einer adsorptiven Abtrennvorrichtung von CO₂ und H₂O gereinigt und der vorgereinigte Erdgasstrom anschließend in Wärme­ tausch mit wenigstens einem in einem Kältekreislauf geführten Kältemittel gebracht und verflüssigt wird und bei dem die adsorptive Abtrennvorrichtung mittels eines Regeneriergases, bestehend aus einem Teilstrom des vorgereinigten Erdgasstro­ mes und gegebenenfalls weiterer Restgasströme, wie z. B. einem Flashgasstrom, regeneriert wird, dadurch gekennzeichnet, daß während des Abkühl- und Ver­ flüssigungsprozesses des Erdgasstromes wenigstens der zur Regenerierung der adsorptiven Abtrennvorrichtung benötigte Erdgasteilstrom bei Erreichen derjenigen Temperatur abgetrennt wird, bei der der Wirkungsgrad der Kältenutzung durch die Drosselung auf den Regeneriergasdruck maximal ist.
DE4440401A 1994-11-11 1994-11-11 Verfahren zum Verflüssigen von Erdgas Withdrawn DE4440401A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE4440401A DE4440401A1 (de) 1994-11-11 1994-11-11 Verfahren zum Verflüssigen von Erdgas
EP95117286A EP0711969A3 (de) 1994-11-11 1995-11-02 Verfahren zum Verflüssigen von Erdgas
US08/556,195 US5551256A (en) 1994-11-11 1995-11-09 Process for liquefaction of natural gas
AR33417395A AR000098A1 (es) 1994-11-11 1995-11-09 Procedimiento para licuar una corriente de gas natural que se encuentrabajo presión.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4440401A DE4440401A1 (de) 1994-11-11 1994-11-11 Verfahren zum Verflüssigen von Erdgas

Publications (1)

Publication Number Publication Date
DE4440401A1 true DE4440401A1 (de) 1996-05-15

Family

ID=6533117

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4440401A Withdrawn DE4440401A1 (de) 1994-11-11 1994-11-11 Verfahren zum Verflüssigen von Erdgas

Country Status (4)

Country Link
US (1) US5551256A (de)
EP (1) EP0711969A3 (de)
AR (1) AR000098A1 (de)
DE (1) DE4440401A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707476A1 (de) * 1997-02-25 1998-08-27 Linde Ag Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19821242A1 (de) * 1998-05-12 1999-11-18 Linde Ag Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102006013686B3 (de) * 2006-03-22 2007-10-11 Technikum Corporation Verfahren zur Verflüssigung von Erdgas
WO2011161214A1 (de) 2010-06-24 2011-12-29 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Verfahren zur abtrennung von c2+-kohlenwasserstoffen aus erdgas oder erdölbegleitgas unter einsatz von membranen

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6581409B2 (en) 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
US7637122B2 (en) 2001-05-04 2009-12-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of a gas and methods relating to same
US7594414B2 (en) * 2001-05-04 2009-09-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7591150B2 (en) * 2001-05-04 2009-09-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7219512B1 (en) 2001-05-04 2007-05-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US20070137246A1 (en) * 2001-05-04 2007-06-21 Battelle Energy Alliance, Llc Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium
TW200914115A (en) * 2007-05-14 2009-04-01 Shell Int Research Process for producing purified natural gas from natural gas comprising water and carbon dioxide
US8899074B2 (en) 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US8555672B2 (en) 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
US8061413B2 (en) 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
GB2462125B (en) * 2008-07-25 2012-04-04 Dps Bristol Holdings Ltd Production of liquefied natural gas
GB2469077A (en) 2009-03-31 2010-10-06 Dps Bristol Process for the offshore liquefaction of a natural gas feed
RU2012117598A (ru) * 2009-09-28 2013-11-20 Конинклейке Филипс Элекроникс Н.В. Система и способ сжижения и хранения текучей среды
US8337593B2 (en) 2010-08-18 2012-12-25 Uop Llc Process for purifying natural gas and regenerating one or more adsorbers
DE102010044869A1 (de) * 2010-09-09 2012-03-15 Linde Aktiengesellschaft Erdgasverflüssigung
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
US9273639B2 (en) 2012-09-24 2016-03-01 Elwha Llc System and method for storing and dispensing fuel and ballast fluid
FR3063540A1 (fr) * 2017-03-01 2018-09-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de liquefaction de gaz naturel a l'aide d'un circuit de refrigeration ne comportant qu'une seule turbine
CN108709367A (zh) * 2018-05-22 2018-10-26 中石化宁波工程有限公司 一种二氧化碳的液化装置及使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2820212A1 (de) * 1978-05-09 1979-11-22 Linde Ag Verfahren zum verfluessigen von erdgas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878689A (en) * 1970-07-27 1975-04-22 Carl A Grenci Liquefaction of natural gas by liquid nitrogen in a dual-compartmented dewar
US3792590A (en) * 1970-12-21 1974-02-19 Airco Inc Liquefaction of natural gas
US4133663A (en) * 1976-03-29 1979-01-09 Air Products And Chemicals, Inc. Removing vinyl chloride from a vent gas stream
US5006138A (en) * 1990-05-09 1991-04-09 Hewitt J Paul Vapor recovery system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2820212A1 (de) * 1978-05-09 1979-11-22 Linde Ag Verfahren zum verfluessigen von erdgas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707476A1 (de) * 1997-02-25 1998-08-27 Linde Ag Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19707476C2 (de) * 1997-02-25 1999-08-05 Linde Ag Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19821242A1 (de) * 1998-05-12 1999-11-18 Linde Ag Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102006013686B3 (de) * 2006-03-22 2007-10-11 Technikum Corporation Verfahren zur Verflüssigung von Erdgas
WO2011161214A1 (de) 2010-06-24 2011-12-29 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Verfahren zur abtrennung von c2+-kohlenwasserstoffen aus erdgas oder erdölbegleitgas unter einsatz von membranen
DE102010030485A1 (de) 2010-06-24 2011-12-29 Dbi - Gastechnologisches Institut Ggmbh Freiberg Verfahren zur Abtrennung von C2+-Kohlwasserstoffen aus Erdgas oder Erdölbegleitgas unter Einsatz von Membranen

Also Published As

Publication number Publication date
EP0711969A2 (de) 1996-05-15
AR000098A1 (es) 1997-05-21
US5551256A (en) 1996-09-03
EP0711969A3 (de) 1997-02-05

Similar Documents

Publication Publication Date Title
DE4440401A1 (de) Verfahren zum Verflüssigen von Erdgas
DE19722490C1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102010044646A1 (de) Verfahren zum Abtrennen von Stickstoff und Wasserstoff aus Erdgas
DE1960515B1 (de) Verfahren und Vorrichtung zum Verfluessigen eines Gases
DE102005010055A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE19937623B4 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2008022689A2 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE2005634A1 (de)
DE102005029275A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2006050913A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE102012017653A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE4440406C1 (de) Verfahren zum Verflüssigen einer unter Druck stehenden kohlenwasserstoffreichen Fraktion
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102009004109A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE2009401A1 (de) Verfahren zum Verflüssigen tiefsie dender Gase
DE102016000393A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE102005000647A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP2369279A1 (de) Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
WO1999058917A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19517116C1 (de) Verfahren zur Verringerung des Energieverbrauchs
DE102004032710A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2005090886A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE19848280A1 (de) Wärmetauscher und Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal