WO1998012369A1 - Fibres acryliques contenant du chitosane et procede de preparation de ces fibres - Google Patents

Fibres acryliques contenant du chitosane et procede de preparation de ces fibres Download PDF

Info

Publication number
WO1998012369A1
WO1998012369A1 PCT/JP1997/002725 JP9702725W WO9812369A1 WO 1998012369 A1 WO1998012369 A1 WO 1998012369A1 JP 9702725 W JP9702725 W JP 9702725W WO 9812369 A1 WO9812369 A1 WO 9812369A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
fiber
content
weight
total
Prior art date
Application number
PCT/JP1997/002725
Other languages
English (en)
French (fr)
Inventor
Hiroaki Ohnishi
Yoshihiro Nishihara
Hiroshi Hosokawa
Seizo Oishi
Masako Iwamoto
Yasuyuki Fujii
Hajime Itoh
Naoto Ohsuga
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24513696A external-priority patent/JP3286180B2/ja
Priority claimed from JP29909996A external-priority patent/JP3450137B2/ja
Priority claimed from JP1997179863A external-priority patent/JP3544825B6/ja
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to GB9905546A priority Critical patent/GB2339717B/en
Publication of WO1998012369A1 publication Critical patent/WO1998012369A1/ja
Priority to US09/271,272 priority patent/US6551705B1/en
Priority to US09/605,707 priority patent/US6524508B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/463Compounds containing quaternary nitrogen atoms derived from monoamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter

Definitions

  • the present invention relates to an antibacterial acryl fiber that can be used for clothing, jewelry, interior decoration, material use, and the like without adversely affecting the human body and the environment, and a method for producing the same.
  • Antibacterial fiber has been widely used in recent years for the purpose of suppressing the growth of various germs and preventing the generation of unpleasant off-flavors.It is used as a textile product for clothing, infants, and the elderly, and recently demands health and comfort. In response to consumer needs, it is widely distributed throughout the market as a product for general consumers.
  • antibacterial agents are used for such antibacterial fibers, and there are various methods of compounding antibacterial agents into textile products.
  • an antibacterial agent a technique using an inorganic metal material represented by a silver-zeolite (JP-A-5-272008, etc.), a copper compound or a metal fine powder such as copper or zinc is used.
  • a method of adding to a fiber Japanese Patent Application Laid-Open No. 551-145040, etc.
  • a method of using a derivative of a quaternary ammonium salt Japanese Patent Application Laid-Open No.
  • Hinoki hinokitiol extracted from Aomori Hiba and Taiwan Hinoki has antibacterial, antifungal and insect repellent functions, and is a deacetylated product of the natural polysaccharide chitin obtained from crustaceans.
  • Some chitosan is said to have antibacterial and deodorant properties, anti-proliferative effect on MRSA, high moisture retention, prevention and improvement of atopic dermatitis, and many other functions. Is known.
  • Known methods of applying chitosan to acrylic fibers include a method using an adhesive, a method of kneading fine chitosan powder into a spinning solution, and a method of treating with an acidic solution of chitosan.
  • the adhesive will coagulate and harden due to the cohesive action of chitosan, and the amount of adhesive will be limited if the original function of chitosan is to be exhibited. As a result, washing durability is poor.
  • the antibacterial performance of the chitosan-containing acryl fiber obtained by immersing the acrylic fiber in a chitosan acidic solution and subsequently neutralizing it in an alkaline bath to precipitate on the fiber surface is determined by post-processing such as dyeing and softening. Or lost by washing.
  • the present invention is effective against many bacteria, and avoids deterioration of antibacterial and deodorant properties due to various processes applied to textile products such as post-processing such as dyeing, bleaching and softening of textiles, and washing, ironing and the like in use environments.
  • An object of the present invention is to provide an antibacterial acryl fiber containing chitosan, which does not generate harmful substances in all processes from production to disposal, and a method for producing the same.
  • the present invention is characterized in that it contains chitosan in an amount of 0.05 to 2% by weight as a total chitosan content and in an amount of from 0.03% by weight to less than a total chitosan content as an extractable chitosan content.
  • the present invention relates to chitosan-containing acryl fibers.
  • the present invention provides a method wherein the total chitosan content is 0.05 to 2% by weight, the chitosan is dispersed in fine particles in the fiber, and the fine particles in the cross section have an average circular equivalent diameter of 1 to 10%. It relates to a chitosan-containing acryl fiber having a wavelength of 0 nm. Further, the present invention provides a chitosan-containing composition characterized by containing chitosan having a total chitosan content of 0.05 to 2% by weight and a quaternary ammonium salt having a content of more than 3% by weight and more than the total chitosan content. Related to acryl fiber.
  • the acrylic fiber used in the present invention is obtained by spinning an acrylonitrile-based polymer obtained by (co) polymerizing acrylonitrile as a main component and a polymerizable unsaturated monomer. If the acrylonitrile unit content in the acrylonitrile-based polymer is less than 50% by weight, the clarity of dyeing and coloring, which are the characteristics of acrylic fibers, will deteriorate, and other physical properties such as thermal properties will also decrease. The content per unit is usually 50% by weight or more.
  • Examples of the unsaturated monomer polymerizable with acrylonitrile include acrylic acid, methacrylic acid, or alkyl esters thereof, vinyl acetate, acrylamide, vinyl chloride, and vinylidene chloride. Further, depending on the purpose, ionic unsaturated monomers such as vinylbenzene sodium sulfonate, sodium methallylsulfonate, sodium arylsulfonate, sodium acrylamide methylpropanesulfonate, sodium parasulfophenyl methallyl ether, etc. Can be used.
  • the chitosan used in the present invention is obtained by removing calcium carbonate and protein from chitin that forms the exoskeleton of a crustacean such as Rikiji and shrimp, and heating the chitin to remove the chitin. It is a basic polysaccharide obtained by acetylation.
  • the chitosan-containing acryl fiber of the present invention contains chitosan on the surface and inside of the acryl fiber.
  • chitosan is contained in a total chitosan content of 0.05 to 2% by weight and an extractable chitosan content of 0.03% by weight or more.
  • the total chitosan content is the total amount of chitosan present in the fiber, and is a value obtained by measuring the amount of chitosan after dissolving the acryl fiber containing chitosan in a solvent.
  • the extractable chitosan content is a value obtained by measuring the amount of chitosan that can extract chitosan-containing acrylic fiber in boiling acid.
  • This extractable chitosan has a weak interaction with the acrylonitrile-based polymer and is loosely bound. Chitosan is bundled and is considered to exist relatively near the surface of the fiber.
  • the present inventors presume that the extractable chitosan exerts the initial antibacterial performance. Chitosan, which cannot be extracted among all chitosans, is not easily eluted, so it has excellent durability and does not fall off easily during washing, but it is estimated that it migrates to the fiber surface over time and exhibits antibacterial properties over a long period of time. are doing. That is, in the present invention, the initial antibacterial property and durability can be simultaneously exhibited by the presence of chitosan in these two states.
  • the content of chitosan is preferably in the range of 0.05% by weight to 1% by weight.
  • the chitosan content that can be extracted is less than 0.3% by weight, the initial antibacterial activity may not be sufficient, so the content is more than 0.03% by weight, and is equal to the total chitosan content. Therefore, it is at least less than the total chitosan content because it cannot exhibit long-term antibacterial properties.
  • the difference between the total chitosan content and the extractable chitosan content i is preferably in the range of 0.03 to 0.8% by weight. If it is less than 0.03% by weight, the durability will be insufficient, and if it exceeds 0.8% by weight, the amount of chitosan exposed on the surface tends to be small and the initial antibacterial performance tends to be insufficient.
  • the total chitosan content is 0.05 to 2% by weight, and the chitosan is dispersed in the fiber as fine particles.
  • the reduced average diameter is 1 to 100 nm.
  • the surface area of the chitosan for exhibiting the antibacterial performance expected of the chitosan is small, and as a result, the effect is reduced.
  • the chitosan particles are dissolved and dropped by post-processing steps such as bleaching and dyeing and washing, the durability of the antibacterial performance is impaired.
  • the degree of dropping is determined by the size of the dispersed particles of chitosan. In other words, the particles are dissolved in units. Or, if they are present in large particles to shed, the shedding will be relatively large. Therefore, it is preferable to disperse as small particles as possible.
  • fine particles are dispersed in the fiber, and the average diameter of the fine particles in the cross section in terms of circle is preferably 1 to 100 nm or less.
  • “dispersed as fine particles in the fiber” means that when the cross section of the fiber is observed, the chitosan fine particles are uniformly observed in the cross section. It is shown that it exists in a distributed manner.
  • the evaluation of the dispersion state was performed by dyeing the fiber with ruthenium tetroxide, forming an ultra-thin section with a cross section of about 80 nm in thickness, and using a transmission electron microscope (JEM-100 CX, JEOL Ltd.).
  • the obtained chitosan distribution map can be obtained by analyzing with an image analyzer (Luzex I, Nireco Co., Ltd.).
  • the above-mentioned circle-converted diameter is an index indicating the size of the dispersed fine particles, and indicates the diameter of a circle corresponding to the occupied area in the image of each dispersed fine particle.
  • the size of the fine particles is preferably uniform. That is, the fact that the particle size varies means that the chitosan fine particles are present in a solid state, and that the dispersion is not sufficient. Therefore, the smaller the standard deviation of the circle-converted diameter, the better.
  • the measurement is performed on arbitrary 100 to 200 fine particles of chitosan.
  • the number of particles to be measured is preferably 100 or more, but if it is more than 200, it has no practical effect and data processing becomes complicated. 100 to 200 pieces are efficient.
  • the object of the present invention may not be achieved.If it is smaller than 1 nm, it tends to be easily dissolved and the durability tends to be inferior.
  • the standard deviation is preferably less than 100 nm. If the standard deviation of the circle-equivalent diameter is larger than 100 nm, a small but extremely large number of large particles may be present and the antibacterial performance and durability may be reduced, but the standard deviation is 100 nm or less. In this case, the particle size is substantially uniform to the extent that the object of the present invention can be substantially achieved, and there are no large particles that hinder achievement of the object of the present invention.
  • chitosan-dispersed fine particles are dispersed without agglomeration. It is more preferable in terms of utilization efficiency.
  • the average of the shape factor-SF defined by the following equation (Formula 1) of the chitosan fine particles in the cross section of the fiber is 100 to 300, and the standard deviation thereof is 150 or less. desirable.
  • ML represents the maximum length of the chitosan fine particles in the cross section of the fiber
  • A represents the area of the chitosan fine particles in the cross section of the fiber.
  • the shape factor SF is an index that is 100 in a perfect circle. If the average SF is 100 to 300, the image is practically dispersed in a circle on the image, and is actually dispersed in a spherical shape, indicating that it is not in an aggregated state. . Moreover, if the standard deviation is 150 or less, the shape is substantially uniform, but if it is larger than 150, a small number of agglomerated particles are present, thereby sufficiently achieving the object of the present invention. It becomes difficult. The measurement in this case is also performed for arbitrary 100 to 200 chitosan fine particles.
  • the first embodiment and the second embodiment are simultaneously satisfied.
  • the fiber contains a quaternary ammonium salt together with chitosan.
  • this configuration makes the flexibility afforded by containing chitosan permanent. That is, this embodiment contains 0.05 to 2% by weight of chitosan and a quaternary ammonium salt in a range of more than 3% by weight and more than the chitosan content.
  • the quaternary ammonium salt content is less than the chitosan content, the flexibility will be low and the dispersion stabilization and dry densification of chitosan during the manufacturing process of immersion in a mixed solution of chitosan and quaternary ammonium salt
  • the content exceeds 3% by weight, the dyeing property is reduced, or the operability is deteriorated due to falling off of quaternary ammonium salt in the spinning process.
  • chitosan and quaternary ammonium salt can be used to maintain stable dispersion of chitosan in the manufacturing process of immersion in a mixed solution of chitosan and quaternary ammonium salt, and to adhere fibers in the drying and densification process. It also has the advantage that prevention is possible.
  • a quaternary ammonium salt represented by the general formula (I) represented by the general formula (I)
  • X represents a halogen ion, organic acid Anion or Okiso acid ion
  • a is It represents the valence of X.
  • the organic acid anion is a carboxylate ion, a sulfonate ion, a sulfate ion, a phosphate ion, or a phosphonate ion, and in the case of a divalent or higher valent anion, a part thereof may be esterified.
  • carboxylate and sulfonate are preferred.
  • the use of an organic acid anion is preferable because generation can be suppressed in a post-process such as a spinning process.
  • oxo acid ions include perchlorate ions.
  • X is an aliphatic monocarboxylate ion having 2 to 8 carbon atoms, such as chloride ion, bromide ion, acetate ion, and propionate ion; a carbon atom having 3 to 8 carbon atoms, such as succinate ion and adipate ion.
  • (: I 2 alkyl sulfonate ion, aryl sulfonate ion such as benzene sulfonate ion, oxyacetic acid ion, tartaric acid ion, dalconic acid ion, etc.)
  • a carboxylate ion having 2 to 18 carbon atoms having the following substituents is preferred.
  • 1 ⁇ to 11 4 Particularly, an unsubstituted alkyl group having 1 to 1 8 carbon atoms, substituted with hydro hexyl group an alkyl group having 1 to 8 carbon atoms, and ( ⁇ - ( ⁇ . Alkyl force Ruponiruamino group And an alkyl group having 1 to 8 carbon atoms substituted with
  • Such quaternary ammonium salts include didecyldimethylammonium chloride, dihydroxyethyldecylethylammonium chloride, N-hydroxyethyl N, N-dimethyl N-stearylamidoethylammonium ethyl sulfo. Nate, bis (didecyldimethylammonium) adipate, didecyldimethylammonium Mondium dalconate is preferably used.
  • Chitosan-containing acryl fibers containing quaternary ammonium salts together with chitosan maintain a low fiber-to-fiber static friction coefficient even when the process oil is removed by a 30 minute treatment in boiling water. This means that the coefficient of static friction between the fibers and fibers is small and the flexibility is maintained even after the dyeing process and washing after forming the textile products. If 70% by weight or more of this fiber is used in the final fiber product, it is possible to reduce the amount of softener normally used in the final finishing process of the acryl fiber product.
  • the third embodiment may be combined with the first or second embodiment, or may be combined with both the first embodiment and the second embodiment.
  • the chitosan-containing acryl fiber of the present invention can be used alone, or in combination with other fibers, as spun yarn, fabric, nonwoven fabric, or the like.
  • the chitosan-containing acryl fiber of the present invention is mixed at 2% by weight or more in order to obtain antibacterial properties.
  • the fiber to be mixed with the chitosan-containing acryl fiber of the present invention is not particularly limited as long as it is selected according to the purpose of use, and known fibers such as ordinary acrylic fiber, cotton, rayon, wool, hemp, silk, polyester and the like can be used. No.
  • the first aspect of the production method of the present invention comprises a step of wet-spinning an acrylonitrile-based polymer solution to obtain acryl fibers in a water-swelled state, and a step of immersing a water-swelled acrylic fiber thread in an aqueous chitosan solution And a step of drying and densifying the water-swollen acrylic fiber filaments to which chitosan is attached.
  • a solution of the acrylonitrile-based polymer is discharged as a spinning solution from a nozzle into a coagulation bath and shaped into a fiber.
  • the solvent for dissolving the acrylonitrile-based polymer those used for ordinary spinning of acrylic fibers can be used.
  • a concentrated aqueous solution of an organic solvent such as dimethylacetamide, dimethylformamide and dimethylsulfoxide, and an inorganic substance such as nitric acid, rodane salt soda and zinc chloride can be used.
  • an organic solvent is preferred, and dimethylacetamide, dimethylformamide or dimethylsulfoxide is most preferred.
  • the fibrous thread is washed to remove the solvent, and if necessary, is stretched simultaneously with or separately from the washing.
  • the yarn immersed in the chitosan acidic aqueous solution may be in any state as long as it is in a water-swelled state, and may be at any stage before drying and densification. Any of a stage of a coagulated yarn after spinning, a stage of a washed yarn after washing the solvent, or a stage of a drawn yarn after stretching is performed.
  • Chitosan forms a salt in the presence of an acid and dissolves.
  • microvoids exist in the water-swelled acrylic fiber yarn, and the fiber structure is not dense but gradual. Therefore, in the present invention, the acrylic fiber in a water-swelled state is immersed in an acidic aqueous solution of chitosan, whereby the chitosan penetrates into the fiber and is taken in. Therefore, according to this manufacturing method, the distribution of the presence of chitosan on the surface and inside and the particle size of chitosan can be easily controlled, so that the chitosan falls off in the use environment such as post-processing and washing, and the antibacterial and deodorant performance of chitosan. Can be suppressed.
  • the degree of water swelling can be used as an index that relatively indicates the state of water swelling, that is, the state of microvoids / incomplete fiber structure.
  • the degree of water swelling was measured by measuring the weight in a wet state after removing water adhering to the surface or between fibers by dehydrating the water-swelled fiber with a drawing dehydrator, and the weight of the fiber after further drying the fiber. It is performed by calculating the amount of water that has penetrated into the fiber from the difference.
  • the degree of swelling of acryl fibers in water when immersed in an acidic aqueous solution of chitosan is preferably 30 to 200%.
  • the chitosan reaches the inside of the fiber yarn, and the chitosan does not easily fall off and has excellent antibacterial durability.
  • the content is within 200%, the amount of water brought into the yarn is small, which is preferable in the process.
  • the first embodiment of the chitosan-containing acrylic fiber of the present invention has a total chitosan content of 0.05 to 2% by weight and an extractable chitosan content of 0.03% by weight or more. Fibers containing less than the total chitosan content can be easily produced, especially the difference between the total chitosan content and the extractable chitosan content is between 0.03 and 0.8 weight % Can be easily adjusted.
  • the second aspect of the chitosan-containing acrylic fiber of the present invention that is, the chitosan fine particles present in the cross section of the fiber has an average circle-equivalent diameter of l to 100 nm, and in particular, has a shape factor of 1 to 100 nm. It can be easily adjusted so that the average of SF is 100 to 300 and its standard deviation is 150 or less.
  • the concentration of chitosan in the acidic aqueous solution of chitosan is about 5% by weight or less, which can be easily dissolved, and is appropriately changed so that the amount of chitosan applied becomes a predetermined amount.
  • the kind of the acid is not particularly limited, hydrochloric acid, acetic acid, lactic acid, formic acid and the like can be suitably used.
  • the acidity of the acid is preferably as low as possible within the range in which chitosan is dissolved in order to avoid corrosion of the device.
  • the immersion time, immersion temperature and the like of the acrylic fiber can be appropriately changed so as to obtain a predetermined chitosan content, a chitosan dispersion state, and other necessary physical properties.
  • the acrylic fiber immersed in the chitosan acidic aqueous solution may be immersed in an alkaline aqueous solution to neutralize the acid.
  • aqueous solution for example, a dilute solution such as sodium hydroxide or sodium bicarbonate is used.
  • the acrylic fiber is passed through a tank filled with a liquid containing a process oil containing a surfactant such as polyoxyethylene, ethylene oxide propylene oxide block polyether, etc., to perform the process oil solution treatment.
  • a surfactant such as polyoxyethylene, ethylene oxide propylene oxide block polyether, etc.
  • a second aspect of the production method of the present invention includes a step of wet-spinning an acrylonitrile-based polymer solution to obtain acryl fibers in a water-swelled state, and a step of converting the water-swelled acryl fibers into chitosan and quaternary.
  • the method includes a step of immersing in a mixed solution of ammonium salt or a step of immersing in an aqueous solution of chitosan and then immersing in a solution of quaternary ammonium salt, and a step of drying and densifying.
  • the step of wet-spinning the acrylonitrile polymer solution to obtain acryl fibers in a water-swelled state is the same as in the first embodiment.
  • acryl fibers in water swelling state are immersed in a solution containing a quaternary ammonium salt, the Since the humid salt also penetrates into the fiber and is taken into the fiber, the antibacterial property and the low fiber-to-fiber friction coefficient can be maintained for a long time.
  • the degree of water swelling at this time is preferably 30 to 200%.
  • chitosan acidic aqueous solution those similar to the chitosan acidic aqueous solution described in the first embodiment of the production method can be used.
  • the mixed solution of chitosan and quaternary ammonium salt contains both chitosan and quaternary ammonium salt in the same solution.
  • the concentration of chitosan and the concentration of quaternary ammonium salt are appropriately changed so that the applied amount of chitosan or quaternary ammonium salt is a predetermined amount.
  • the immersion time and immersion temperature of the acryl fiber can be appropriately changed so as to obtain a predetermined amount of chitosan or a quaternary ammonium salt applied, a chitosan dispersion state, and other necessary physical properties.
  • the process oil agent treatment may be performed separately, and the process oil agent is contained in the quaternary ammonium salt solution tank so that the quaternary ammonium salt adheres and the process oil agent treatment is performed at the same time. May go. It is preferable to add a process oil to the quaternary ammonium salt solution and treat the acrylic fiber yarn before drying and densification, since permanent flexibility becomes more remarkable. In this case, the chitosan may be provided at the same time.
  • a cationic or nonionic surfactant can be used in combination.
  • the weight Wl of the acryl fiber yarn obtained from the spinning process before drying and densification after water immersion for 10 minutes at an acceleration rate of 100 OG, and then the weight W2 after hot air drying at 11 for 3 hours It calculated using the formula of.
  • the chitosan concentration was determined from the calibration curve and converted to acryl fiber content.
  • the difference in bacterial count was 1.6 or more as the criteria for antimicrobial efficacy.
  • the washing method was in accordance with the method set by the council.
  • the static friction coefficient between fibers and fibers was measured using a fiber friction coefficient measuring device (Koa Shokai) using a radar method.
  • This spinning stock solution is wet-spun in a spinning bath filled with a 30% aqueous solution of dimethylacetamide at 40 ° C, stretched 5 times while washing the solvent in boiling water, and then drawn with 80% swelling. Then, the concentration of chitosan (Kyowa Technos Co., Ltd., Flownack C) was set to 0.01. After being immersed in a bath filled with an aqueous acetic acid solution changed between 0 and 3%, the solution was dehydrated so that the amount of water adhering to the fiber weight was 100%. Thereafter, drying and densification were carried out with 150 heat rollers.
  • relaxation treatment was performed in steam under a pressure of 2.5 kg / cm 2 to obtain chitosan-containing acryl fiber having a single fiber fineness of 3 denier.
  • the total chitosan content and the amount of extracted chitosan in this fiber were measured by the methods described above. No separation of chitosan in the oil bath and no sticking of fibers in the drying and densification process were observed.
  • the fibers were treated in boiling water having a bath ratio (fiber: water) of 1:50 for 30 minutes, washed with water, and air-dried, and then the coefficient of static friction between the fibers was measured.
  • This fiber was cut to a length of 5 lmm to produce a spun yarn.
  • the temperature was raised to C, kept at that temperature for 30 minutes, washed with water, dehydrated and dried.
  • the spun yarn after dyeing was evaluated for its color vividness by visual judgment, and at the same time, the bactericidal properties before and after washing 10 times. Table 1 summarizes the measurement and evaluation results.
  • Example 1 0.1% acetic acid aqueous solution of chitosan was sprayed on the dried and densified acryl fiber without passing through the chitosan acetic acid solution, and then 15 (drying was performed with a TC roller to obtain a total chitosan adhesion of 0.6%. An acrylic fiber having an extracted chitosan amount of ⁇ .05% was obtained, and processed in the same manner as in Example 1 to prepare a spun yarn and evaluated for antibacterial properties, etc. The results are also shown in Table 1.
  • This spinning stock solution is wet-spun in a spinning bath in which the concentration and temperature of the dimethyl acetate amide aqueous solution are changed, and the swelling degree is 100, 60, 40, 130% after being stretched 5 times while washing the solvent in boiling water.
  • the drawn yarn was continuously led to a bath filled with a 0.1% acetic acid aqueous solution of chitosan (Kyowa Technos Co., Ltd., Flownac C), and dehydrated so that the amount of water adhering to the fiber weight was 100%. After that, it was dried and densified with a heat roller of 15 CTC.
  • This acryl fiber was treated in the same manner as in Example 1 to prepare a spun yarn, and its antibacterial properties and the like were evaluated. The results are shown in Table 1.
  • the concentration of the spinning dope of Example 8 was 28% and 18%, respectively, and wet spinning was performed in a spinning bath filled with a 30% aqueous solution of dimethyl acetoamide at 40, and the solvent was washed in boiling water.
  • the stretched yarn having a swelling degree of 250% (Comparative Example 4) and 20% (Comparative Example 5) after being stretched 5 times is processed in the same manner as in Example 8 to produce a spun yarn, and has antibacterial properties was evaluated. The results are shown in Table 1.
  • This spinning stock solution was wet-spun in a spinning bath filled with 40 t of a 30% dimethylacetamide aqueous solution, and stretched 5 times while washing the solvent in boiling water. At this time, the degree of water swelling was 80%.
  • an oil bath containing 0.3% of polyoxyethylene degree of polymerization: 200
  • relaxation treatment was performed in pressurized steam of 2.5 kgZcm 2 to obtain chitosan-containing acryl fiber having a single fiber fineness of 3 denier.
  • the amount of attached chitosan and the amount of quaternary ammonium salt in this fiber were measured by the methods described above, and were 0.08% and 0.33%. No separation of chitosan in the oil bath and no sticking of fibers in the drying and densification process were observed.
  • This fiber was treated in boiling water having a bath ratio of 1:50 for 30 minutes, washed with water, and air-dried.
  • the coefficient of static friction between the fibers was measured to be 0.285.
  • the fiber was cut to a length of 5 lmm to produce a spun yarn.
  • 50 g of this spun yarn, 0.25 g of dye (Katiron b1ue KGLH, Hodogaya Chemical Co., Ltd.), 1 g of acetic acid, and 0.25 g of sodium acetate were added to 1000 g of pure water, and the temperature was raised to 100. After being kept at 30 ° C for 30 minutes, it was washed with water, dehydrated and dried.
  • the spun yarn after dyeing was evaluated for its color vividness by visual judgment, and at the same time, the antibacterial properties before and after 10 washes were evaluated. The results are summarized in Table 2.
  • Example 12 the concentration of chitosan in the oil bath, the concentration of acetic acid, the concentration of surfactant, and the moisture content after immersion in the acidic aqueous solution of chitosan were changed step by step to include i containing chitosan and containing didecyldimethylammonium chloride. Different amounts of acryl fibers were obtained. In each case, no separation of chitosan in the oil bath and no sticking of fibers in the dry densification process were observed. The operation was performed in the same manner as in Example 12 to evaluate the coefficient of static friction between fibers and the fiber and the antibacterial property.
  • Example 12 water-swelled acrylic fibers were added to an oil bath containing 0.2% of dimethyldidecylammonium chloride concentration and 0.2% of polyoxyethylene concentration as a process oil without containing chitosan in the oil bath.
  • the immersion was performed in the same manner as in Example 12 to obtain an acrylic fiber having a single fiber fineness of 3 denier.
  • the coefficient of static friction between the fibers measured in the same manner as in Example 12 was 0.455.
  • This fiber was dyed into a spun yarn by performing the same operation as in the example.As a result of evaluating the antibacterial properties before and after washing and 10 times after washing, no antibacterial property was exhibited as shown in Table 2. Power, ivy.
  • Example 12 30% of the acryl fiber obtained in Example 12 and 70% of cotton were mixed to prepare a spun yarn. After cationic dyeing under the same conditions as in Example 1, the antibacterial properties before and after washing 10 times were evaluated, and were 2.8 and 1.9, respectively.
  • the concentration of quaternary ammonium salt and surfactant in the oil bath was adjusted to 0.3% for dihydroxyethyldecylethylammonium chloride and 0.3% for polyoxyethylene (degree of polymerization: 200). Except for the above, an acrylic fiber was obtained in the same manner as in Example 12. The chitosan content was 0.09%, and the content of dihydroxyethyldecylethylammonium chloride was 0.29%. The coefficient of static friction between fibers is 0.320, antibacterial Was 2.8 before washing and 2.2 after 10 washes.
  • the quaternary ammonium salt and the surfactant in the oil bath were N-hydroxyethyl N, N-dimethyl N-stearyl amide ethyl ammonium dimethyl sulfonate at a concentration of 0.4%, ethylene oxide propylene.
  • Acrylic fibers were obtained in the same manner as in Example 12, except that the concentration of the oxide block polyether (ethylene oxide Z propylene oxide 4006, molecular weight 5000) was changed to 0.2%.
  • the content of chitosan in the raw cotton was 0.09%, and the content of N-hydroxyethyl N, N-dimethyl N-stearylamidoethylammonium methethyl sulfonate was 0.38%.
  • the coefficient of static friction between fibers was 0.290, and the antibacterial property was 2.6 before washing and 2. ⁇ after 10 washings.
  • the concentration of chitosan (Kyowa Technos Co., Ltd., Flownac C) was set at 0.1%, acetic acid concentration at 05%, and didecyldimethylammonium chloride concentration at 0.35%.
  • the chitosan content was 0.09% and the adhesion amount of didecyldimethylammonium chloride was 0.32%.
  • the coefficient of static friction between the fibers was 0.295, and the fungus fungi were 5.0 before washing and 4.8 after washing 10 times.
  • Example 12 the water-swollen acryl fibers were immersed in a mixture of chitosan and quaternary ammonium salt.
  • the immersion of the chitosan acidic aqueous solution and the immersion of the quaternary ammonium salt solution were separately performed. went.
  • Example 22 the concentration of chitosan in the chitosan solution tank and the concentration of didecyldimethylammonium chloride in the oil bath were changed stepwise to obtain acryl fibers containing chitosan and didedecyldimethylammonium chloride.
  • Table 2 shows the results of evaluation of the coefficient of static friction between fibers and the antibacterial property.
  • Raw cotton with a chitosan content of 2.48% and a didecyldimethylammonium chloride content of 2.96% (Comparative Example 11) has a large amount of chitosan adhering to the spinning drying roller and the spinning process to obtain spun yarn. I could not do it.
  • a spun yarn was produced by mixing 30% of the ataryl fiber obtained in Example 22 and 70% of cotton. After cationic dyeing under the same conditions as in Example 1, the antibacterial properties before and after washing 10 times were evaluated, and were 3.1 and 2.4, respectively.
  • Example 22 a quaternary ammonium salt and a surfactant in an oil bath were mixed with dihydroxyethyldecylethylammonium chloride at a concentration of 0.3% and polyoxyethylene.
  • Example 22 the quaternary ammonium salt and the surfactant in the oil bath were combined with N-hydroxyxethyl N.N-dimethyl N-stearylamidoethylammonium methylsulfonate at a concentration of 0.4%, Acrylic fibers were obtained in the same manner as in Example 22 except that the concentration of ethylene oxide propylene oxide block polyester (ethylene oxide Z propylene oxide denis 40Z60, molecular weight 5000) was 0.2%. Chitosan content in raw cotton is 0.1%, N-hydroxyethyl N, N The content of -dimethyl N-stearyl amide ethyl ammonium dimethyl sulfonate was 0.40%. The coefficient of static friction between fibers was 0.298, the antibacterial property was 3.2 before washing, and 2.3 after 10 times of washing.
  • ethylene oxide propylene oxide block polyester ethylene oxide Z propylene oxide denis 40Z60, molecular weight 5000
  • Example 22 the concentration of chitosan (Kyowa Technos Co., Ltd., Flownac C) in the oil bath was set to 0.1%, the concentration of acetic acid was set to 0.05%, and the concentration of didecyldimethylammonium chloride was set to 0.35%.
  • an acrylic fiber was obtained.
  • the chitosan content was 0.1%, and the content of didecyldimethylammonium chloride was 0.32%.
  • the coefficient of static friction between fibers is 0.295, the antibacterial property is 5.0 before washing, and 4.8 after 10 washes.
  • Acrylic fiber was obtained in the same manner as in Example 12, except that the quaternary ammonium salt in the oil bath was changed to a bis (didecyldimethylammonium) adipate concentration of 0.4%.
  • the chitosan content was 0.1% and the bis (didecyldimethylammonium) adipate content was 0.39%.
  • the coefficient of static friction between the fibers was 0.287, and the antibacterial activity was 4.8 before washing and 4.4 after 10 washes.
  • Acrylic fiber was obtained in the same manner as in Example 22, except that the quaternary ammonium salt in the oil bath was changed to a didecyldimethyl ammonium dalconate concentration of 0.5%.
  • the chitosan content was 0.1% and the didecyldimethylammonium gluconate content was 0.47%.
  • the coefficient of static friction between fibers was 0.269, and the antibacterial property was 5.2 before washing and 4.5 after 10 washes. table 1
  • the acryl fiber which does not reduce antibacterial performance with respect to post-processing, such as dyeing and bleaching of a fiber, and processing which a textile product receives in a use environment, such as washing and ironing, is obtained.
  • post-processing such as dyeing and bleaching of a fiber
  • processing which a textile product receives in a use environment such as washing and ironing
  • the fibers have flexibility, when the fibers of the present invention are used in 70% or more in the final fiber product, the amount of the softening agent used in the final finishing step can be significantly reduced. Further, according to the production method of the present invention, the fibers can be produced efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

明細書
キトサン含有アクリル繊維及びその製造方法
技術分野
本発明は人体、 環境に悪影響を与えることなく、 衣料、 装身具、 インテリア及 び資材用途等として用いることのできる抗菌性ァクリル繊維及びその製造方法に 関する。
背景技術
抗菌性繊維は、 雑菌の增殖を抑制し、 不快な異臭の発生を防止する目的で近年 広く使用されており、 衣料用、 幼児、 老人向け繊維製品として、 また最近では健 康と快適を強く求める消費者ニーズを受け、 一般消費者向け製品として市中に広 く流通している。
このような抗菌性繊維には、 種々の抗菌剤が用いられており、 繊維製品への抗 菌剤の複合処理方法も様々である。 例えば、 抗菌剤としては、 銀ーゼォライ ト系 を代表とする無機金属系物質を用いる技術 (特開平 5 - 2 7 2 0 0 8号公報等) 、 銅化合物または銅や亜鉛などの金属微粉末を繊維中に添加する方法 (特開昭 5 5 - 1 1 5 4 4 0号公報等) 、 四級アンモニゥム塩の誘導体を用いる方法 (特開 昭 5 9— 1 3 0 3 7 1号公報) 、 トリクロロカルバニリ ド等のハロジァリル尿素 化合物を用いる方法 (特開平2 _ 2 5 9 1 6 9号公報) 、 その他の化合物として サイアベンダゾール系化合物 (特開昭 6 1— 6 1 6号公報) 、 フヱノール系化合 物 (特開昭 6 0— 2 5 2 7 1 3号公報等) 、 脂肪酸エステル系化合物を用いる方 法 (特開昭 6 3— 6 1 7 3号公報等) などが知られている。
しかしながら、 銀、 銅化合物を複合化した繊維は、 晒し処理を行うと銀、 銅化 合物が変性し抗菌性が失われるという問題がある。 また一部の有機系化合物を複 合化した繊維においても、 染色、 柔軟処理等の後加工や洗濯によりに抗菌剤の脱 落による抗菌性の消失や、 後加工から廃棄までを含めた使用環境の条件下で有害 物質が生じる可能性を完全に否定できないという問題点がある。
こうした背景のもと、 最近天然抗菌剤の機能性付与剤が注目されている。 例え ば、 青森ヒバや台湾ヒノキから抽出されるヒノキチオールは抗菌、 防カビ性、 防 虫等の機能を持ち、 甲殻類等から得られる天然多糖類キチンの脱ァセチル化物で あるキトサンは抗菌防臭、 MR S Aに対する増殖抑制効果、 高保湿性、 アトピー 性皮膚炎の予防、 改善その他多くの機能を有すると言われ、 繊維に付与して衣類 に使用すると快適な感触が得られるという事例が知られている。
キトサンをアクリル繊維に付与する方法としては、 接着剤を用いる方法、 キト サン微粉末を紡糸原液に練り込む方法、 キトサンの酸性溶液で処理する方法等が 知られている。 しかしながら接着剤を用いてキトサンを繊維に付与しょうとする とキトサンの凝集作用で接着剤が凝集硬化してしまったり、 またキトサン本来の 機能を発現させようとすると接着剤の量が限定されることにより洗濯耐久性に劣 る。 またキトサンを微粉末に粉砕してァクリロ二トリル系重合体溶液に均一分散 し公知の方法で紡糸しょうとしても紡糸口金の紡糸孔に詰まる等の理由により生 産性よく紡糸することは困難である。
さらにアクリル繊維をキトサン酸性溶液に浸潰し、 引き続いてアル力リ浴で中 和して繊維表面に析出させる方法で得られたキトサン含有ァクリル繊維の抗菌性 能は、 染色、 柔軟処理等の後加工や洗濯によりに失われる。
こうした状況の下、 キトサンを用いた抗菌防臭機能の発現、 その効果の持続性 、 さらには繊維が本来有する繊維性能たとえば風合いの保持といった点から総合 的に判断して十分とは言い得ないのが現状である。
発明の開示
本発明は、 多くの細菌に対して効果があり、 繊維の染色、 晒し、 柔軟処理等の 後加工や洗濯、 アイロン等の繊維製品が使用環境で受ける様々な処理による抗菌 防臭性低下を回避し、 かつ生産から廃棄まで含めた全過程で有害な物質を生じな いキトサンを含有する抗菌ァクリル繊維およびその製造方法を提供することを目 的とする。
本発明は、 全キトサン含有量として 0. 0 5〜2重量%、 抽出可能なキトサン 含有量として 0. 0 3重量%以上全キトサン含有量未満の量のキトサンを含有す ることを特徴とするキトサン含有ァクリル繊維に関する。
また、 本発明は、 全キトサン含有量が 0. 0 5〜2重量%でぁり、 かつキトサ ンが繊維に微粒子で分散しており、 横断面における微粒子の円換算平均直径が 1 〜 1 0 0 n mであることを特徴とするキトサン含有ァクリル繊維に関する。 さらに本発明は、 全キトサン含有量 0. 0 5〜2重量%のキトサンと、 全キト サン含有量より多く 3重量%以下の第四級ァンモニゥム塩とを含有することを特 徴とするキトサン含有ァクリル繊維に関する。
本発明で用いられるアクリル系繊維は、 アクリロニトリルを主成分とし、 これ と重合可能な不飽和単量体とを (共) 重合して得られたアクリロニトリル系重合 体を紡糸して得られる。 ァクリロニトリル系重合体中のァクリロニトリル単位が 5 0重量%未満の場合は、 アクリル繊維の特徴である染色鮮明性、 発色性が悪化 するとともに、 熱特性をはじめとする他の物性も低下するので、 アタリロニトリ ル単位の含有量は通常 5 0重量%以上である。
アクリロニトリルと重合可能な不飽和単量体としては、 アクリル酸、 メタクリ ル酸、 または、 これらのアルキルエステル類、 酢酸ビニル、 アクリルアミ ド、 塩 化ビニル、 塩化ビニリデンが挙げられる。 さらに目的によってはビニルベンゼン スルホン酸ソ一ダ、 メタリルスルホン酸ソーダ、 ァリルスルホン酸ソ一ダ、 ァク リルアミ ドメチルプロパンスルホン酸ソーダ、 ソディウムパラスルホフエニール メタリルエーテル等のィォン性不飽和単量体を用いることができる。
本発明で用いられるキトサンは、 力二、 ェビ等の甲殻類の外骨格を形成するキ チン質から炭酸カルシウム、 夕ンパク質を除去して得られるキチンを濃アル力リ と加熱して脱ァセチル化して得られる塩基性多糖類である。
本発明のキトサン含有ァクリル繊維は、 上記のァクリル繊維の表面および内部 にキトサンを含有しているものである。
本発明のキトサン含有ァクリル繊維の第 1の態様では、 全キトサン含有量とし て 0. 0 5〜2重量%、 抽出可能なキトサン含有量として 0. 0 3重量%以上の キトサンを含有する。
全キトサン含有量は、 繊維中に存在する全てのキトサン量であり、 キトサンを 含有したァクリル繊維を溶剤に溶かした後にキトサン量を測定することで得られ る値である。
また、 抽出可能なキトサン含有量とは、 キトサンを含有したアクリル繊維を沸 騰した酸中で抽出できるキトサン量を測定することで得られる値である。 この抽 出可能なキトサンは、 ァクリルニトリル系重合体との相互作用が弱く緩やかに拘 束されているキトサンであり、 繊維の比較的表面近くに存在するものと考えられ る。
本発明者は、 抽出可能なキトサンにより初期抗菌性能が発現すると推定してい る。 また、 全キトサンのなかで抽出ができないキトサンは容易に溶出しないため に耐久性に優れ、 洗濯でも容易に脱落しないが、 経時的に繊維表面に移動し長期 間にわたり抗菌性を発揮するものと推定している。 即ち、 本発明ではキトサンが かかる 2種類の状態で存在することにより初期抗菌性と耐久性を同時に発現する ことができる。
全キトサン含有量が 0. 0 5重量%未満では初期抗菌性能、 耐久性とともに不 十分である。 一方、 2重量%を超える場合は性能の向上が望めないだけでなく、 繊維の染色性の低下、 あるいは紡績工程でのキトサン脱落による操業性の悪化と いった問題が発生することがある。 特にァクリル繊維の長所である発色鮮明性を 維持するためには、 キトサン含有量が 0. 0 5重量%〜 1重量%の範囲が特に好 ましい。
また、 抽出可能なキトサン含有量は、 ◦. 0 3重量%未満であると初期抗菌性 が十分でない場合があるので 0. 0 3重量%以上であり、 また全キトサン含有量 と等しい量であると長期的な抗菌性を発現し得ないので、 少なくとも全キトサン 含有量より少ない量である。 特に、 全キトサン含有量と抽出可能なキトサン含有 iとの差は 0. 0 3〜0. 8重量%の範囲にあることが好ましい。 これが 0. 0 3重量%未満では耐久性が不足し、 0. 8重量%を超えると表面に露出するキト サン量が少量となり初期抗菌性能が不十分となる傾向がある。
本発明のキトサン含有ァクリル繊維の第 2の態様は、 全キトサン含有量が 0. 0 5〜2重量%でぁり、 かつキトサンが繊維に微粒子で分散しており、 横断面に おける微粒子の円換算平均直径が 1〜 1 0 0 n mである。
キトサンが大きな粒子として分散する場合には、 キトサンに期待される抗菌性 能を発現するためのキトサンの表面積が小さく、 その結果効果は小さくなつてし まう。 また、 晒し、 染色といった後加工工程や洗濯によってキトサン粒子が溶解 脱落するために、 その抗菌性能の耐久性が損なわれるのであるが、 脱落の程度は 、 キトサンの分散粒子の大きさにより決まる。 つまりその粒子を単位として溶解 または脱落をするために、 大きい粒子で存在する場合には、 脱落が比較的大きく なる。 従ってできるだけ小さな粒子として分散することが好ましい。
本発明者の研究によれば、 繊維に微粒子で分散しており、 横断面における微粒 子の円換算平均直径が 1〜 1 0 0 n m以下であることが好ましいことがわかった 。 ここで 「繊維に微粒子で分散している」 とは、 繊維の横断面を観察したときに 、 キトサン微粒子が横断面に均一に観察されることを意味し、 キトサンが微粒子 状で繊維内部まで均一に分散して存在していることを示している。
かかる分散状態の評価は、 繊維を 4酸化ルテニウムで染色した後、 厚さ約 8 0 n mの横断面超薄切片とし、 透過型電子顕微鏡 (日本電子 (株) J EM— 1 0 0 C X) により得られたキトサン分布図を画像解析装置 (二レコ (株) L u z e x I) により解析することにより得ることができる。
前記の円換算直径は分散微粒子の大きさを表す指標であり、 各分散微粒子の画 像における専有面積に相当する円の直径を示す。 また、 その微粒子の大きさは均 一である方が好ましい。 即ち、 粒子の大きさにばらつきがあるということは、 キ トサン微粒子が固まつて存在していることであり、 分散が十分でないことを意味 するからである。 そのため円換算直径の標準偏差は小さいほど良い。 測定は、 任 意の 1 0 0〜2 0 0個のキトサン微粒子について行う。 測定微粒子の数は 1 0 0 個以上であることが好ましいが 2 0 0個よりも多くても、 実際上は何らの影響を 与えることがなく、 データ処理が煩雑になるので現実的ではなく、 1 0 0〜2 0 0個が効率的である。
円換算平均直径が 1 0 0 n mよりも大きいと本発明の目的を達成できない場合 があり、 1 n mよりも小さいと却って溶解しやすくなり耐久性が劣る傾向がある また、 キトサンの円換算直径の標準偏差は 1 O O n m以下であることが好ま しい。 円換算直径の標準偏差が 1 O O n mよりも大きいと、 少数ではあるが極端 な大粒子が存在し、 抗菌性能の発現と耐久性が低下することがあるが、 標準偏差 が 1 0 0 n m以下であれば実質的に本発明の目的を達成しうる程度に粒子径が均 一で、 本発明の目的の達成を阻害する程度の大粒子は存在しない。
さらにキトサン分散微粒子は、 凝集することなく分散していることがキトサン の利用効率の点でより好ましい。
即ち、 繊維の横断面におけるキトサン微粒子の下式 (数式 1 ) で定義されるシ ェ一プファクタ一 S Fの平均が 1 0 0〜3 0 0、 その標準偏差が 1 5 0以下であ ることが望ましい。
S F =ML 2 x n- 1 0 0 / ( 4 x A) (数式 1 )
(但し、 MLは繊維の横断面におけるキトサン微粒子の最大長を表し、 Aは繊 維の横断面におけるキトサン微粒子の面積を表す。 )
このシェ一プファクター S Fは真円において 1 0 0となるような指標である。 S Fの平均が 1 0 0〜3 0 0であれば実質的に囤像上は円で分散し、 現実には球 状で分散していることになり、 凝集状態にはないことを表している。 しかもその 標準偏差が 1 5 0以下であれば、 実質的に均一な形状であるが 1 5 0よりも大き いと、 少数ではあるが凝集粒子が存在するため、 本発明の目的を十分に達成する ことが難しくなる。 この場合の測定も任意のキトサン微粒子 1 0 0〜2 0 0個に ついて行う。
本発明において、 第 1の態様と第 2の態様を同時に満たすことがさらに好まし い。
また、 本発明のキトサン含有アクリル繊維の第 3の態様では、 キトサンととも に第四級アンモニゥム塩を繊維に含有する。 驚くべきことに、 この構成によりキ トサンを含有することによって得られる柔軟性が恒久的なものとなる。 即ち、 こ の態様では 0. 0 5〜2重量%のキトサンと、 キトサン含有量より多く 3重量% 以下の範囲の第四級アンモニゥム塩とを含有する。
第四級ァンモニゥム塩の含有量がキトサン含有量未満では、 柔軟性が低くなる と共に、 キトサンと第四級アンモニゥム塩の混合溶液に浸漬する製造工程時にお いてはキトサンの分散安定化、 乾燥緻密化時の繊維の膠着抑制等の効果が低くな り、 3重量%を超えると、 染色性の低下、 あるいは紡績工程での第四級アンモニ ゥム塩の脱落による操業性悪化の原因となる。
キトサンと第四級アンモニゥム塩の併用は、 キトサンと第四級アンモニゥム塩 の混合溶液に浸潰する製造工程においては、 キトサンの安定分散化を維持し、 さ らに乾燥緻密化工程で繊維の膠着防止が可能となる利点も有する。 特に、 キトサンによる抗菌性能を染色、 晒し等の後加工時、 あるいは洗濯処理 時においても維持し、 製造工程でキトサンの安定分散化を容易にするためには、 第四級アンモニゥム塩として、 一般式 (I )
[R 1 R2 R3 R4 N] + a X a - ( I )
(但し、 1^〜1¾4は互いに独立に置換基を有していてもよい炭素数 1〜1 8の アルキル基を表し、 Xはハロゲンイオン、 有機酸ァニオンまたはォキソ酸イオン を表し、 aは Xの価数を表す。 ) で示される化合物を用いることが好ましい。 ここで有機酸ァニオンはカルボキシレートイオン、 スルホネートイオン、 サル フエ一トイオン、 ホスフェートイオン、 ホスホネ一トイオンであり、 2価以上の ァニオンの場合一部がエステル化されていてもよい。 特にカルボキシレートとス ルホネートが好ましい。 有機酸ァニオンを用いると紡績工程等の後工程で発锖を 抑制できるので好ましい。 また、 ォキソ酸イオンとしては、 過塩素酸イオン等を 挙げることができる。
Xとして特に、 塩素イオン、 臭素イオン、 酢酸イオンおよびプロピオン酸ィォ ン等の炭素数 2〜 8の脂肪族モノカルボキシレ一トイオン、 コハク酸イオンおよ びアジピン酸ィォン等の炭素数 3〜 8の脂肪族ジカルボキシレ一トイオン、 メチ ルスルホン酸イオンおよびェチルスルホン酸イオン等の ( ,〜(: i 2アルキルスル ホネートイオン、 ベンゼンスルホン酸イオン等のァリールスルホネートイオン、 ォキシ酢酸ィォン、 酒石酸ィォンおよびダルコン酸ィォン等の置換基を有する炭 素数 2〜 1 8のカルボキシレ一トイオンが好ましい。
また、 1^〜1¾4の置換基としては、 ヒドロキシル基、 C ,〜C 2。アルキルカル ボニルアミノ基が好ましい。
また、 1^〜114として特に、 炭素数 1〜1 8の無置換のアルキル基、 ヒドロ キシル基で置換された炭素数 1〜8のアルキル基、 および (^〜(^。アルキル力 ルポニルァミノ基で置換された炭素数 1〜8のアルキル基が好ましい。
このような第四級アンモニゥム塩としては、 塩化ジデシルジメチルアンモニゥ ム、 塩化ジヒドロキシェチルデシルェチルアンモニゥ厶、 N—ヒドロキシェチ ル N, N—ジメチル N—ステアリルアミ ドエチルアンモニゥムェチルスルホネー ト、 ビス (ジデシルジメチルアンモニゥム) アジペート、 ジデシルジメチルアン モニゥムダルコネート等が好ましく用いられる。
キトサンとともに第四級アンモニゥム塩を含有するキトサン含有ァクリル繊維 は、 沸水中 3 0分処理により工程油剤を除去しても低い繊維一繊維間の静摩擦係 数を維持している。 このことは染色工程、 繊維製品となった後の洗濯を経ても繊 維一繊維間の静摩擦係数が小さく、 柔軟性が維持されることを意味する。 最終繊 維製品中にてこの繊維を 7 0重量%以上使用する場合は、 ァクリル繊維製品の最 終仕上げ工程時に通常使用する柔軟剤量を少なくすることが可能である。
本発明において、 第 3の態様と第 1または第 2の態様とを組み合わせてもよく 、 また第 1の態様と第 2の態様の両方と組み合わせることもできる。
本発明のキトサン含有ァクリル繊維は、 単独または他の繊維と複合して紡績糸 、 布帛、 不織布等として用いることができる。 他の繊維と複合して用いる場合、 抗菌性を得るためには、 本発明のキトサン含有ァクリル繊維が 2◦重量%以上混 合されていることが好ましい。 また、 抗菌性能と柔軟性を同時に得るためには、 キトサンと共に第四級アンモニゥム塩を含む態様のキトサン含有アクリル繊維を 7 0重量%以上混合することが好ましい。 本発明のキトサン含有ァクリル繊維と 混合する繊維としては、 使用目的に合わせて選択すればよく特に限定はされない 力、 通常のアクリル繊維、 綿、 レーヨン、 ウール、 麻、 絹、 ポリエステル等公知 の繊維が挙げられる。
次に本発明のキトサン含有ァクリル繊維の製造方法について説明する。
本発明の製造方法の第 1の態様は、 ァクリロニトリル系重合体溶液を湿式紡糸 して水膨潤状態のァクリル繊維を得る工程と、 水膨潤状態のアクリル繊維糸条を キトサン酸性水溶液に浸潰する工程と、 キトサンが付着された水膨潤状態のァク リル繊維糸状を乾燥緻密化する工程とを有する。
まず、 アクリロニトリル系重合体溶液を湿式紡糸するには、 前記のアタリロニ トリル系重合体の溶液を紡糸原液としてノズルより凝固浴中に吐出して繊維状に 賦形する。 ここでアクリロニトリル系重合体を溶解する溶剤としては、 通常のァ クリル繊維の紡糸に用いられるものを使用することができる。 例えばジメチルァ セトアミ ド、 ジメチルホルムアミ ド、 ジメチルスルホキシド等の有機溶剤、 硝酸 、 ロダン塩ソ一ダ、 塩化亜鉛等の無機物の濃厚水溶液を挙げることができる。 特 に、 アクリル繊維糸条のミクロポイド形成を考慮すると有機溶剤が好ましく、 ジ メチルァセトアミ ド、 ジメチルホルムアミ ドまたはジメチルスルホキシドが最も 好ましい。
本発明では繊維化された糸状を洗浄して溶剤を除去し、 必要に応じて洗浄と同 時にまたは別個に延伸する。 本発明の製造方法の第 1の態様において、 キトサン 酸性水溶液に浸漬する糸条は、 水膨潤状態にあればよいので、 乾燥緻密化前であ ればどの段階の糸条であってもよく、 紡糸後の凝固糸の段階、 溶剤を洗浄した後 の洗浄糸の段階、 または延伸を施した後の延伸糸の段階のいずれでもよい。
キトサンは酸の存在下に塩を形成して溶解する。 一方、 水膨潤状態のアクリル 繊維糸条にはミクロボイ ドが存在し、 また繊維組織も緻密ではなく緩やかである 。 そこで、 本発明では、 キトサンの酸性水溶液に水膨潤状態のアクリル繊維を浸 漬することによって、 キトサンが繊維の内部まで浸透して取り込まれる。 従って この製造方法によれば、 キトサンの表面と内部の存在分布や、 キトサンの粒径を 容易に制御することができるので、 後加工、 洗濯等の使用環境でのキトサン脱落 、 キトサンの抗菌防臭性能の失活を抑制することができる。
ここで水膨潤状態、 即ちミクロボイ ドゃ不完全な繊維組織の状態を相対的に表 す指標として水膨潤度を用いることができる。
水膨潤度の測定は、 水膨潤繊維を延伸脱水機にて脱水し、 表面あるいは繊維間 に付着した水を取り除いた後の湿潤状態の重量と、 これをさらに絶乾した後の繊 維重量の差から繊維内部に浸透していた水量を求めることで行う。
本発明では、 キトサン酸性水溶液に浸漬する際のァクリル繊維の水膨潤度は 3 0〜2 0 0 %であることが好ましい。 3 0 %以上とすることでキトサンが繊維糸 条の内部にまで至り、 脱落が起こりにくく抗菌性の耐久性に優れる。 また 2 0 0 %以内とすることで、 糸条の水分の持ち込みも少なく工程上好ましい。
また、 この条件により、 本発明のキトサン含有アクリル繊維の第 1の態様、 即 ち全キトサン含有量として 0. 0 5〜2重量%、 抽出可能なキトサン含有量とし て 0. 0 3重量%以上全キトサン含有量未満の量のキトサンを含有する繊維を容 易に製造することが可能で、 特に、 全キトサン含有量と抽出可能なキトサン含有 量との差を 0. 0 3〜0. 8重量%に容易に調整することができる。 また、 同時に本発明のキトサン含有アクリル繊維の第 2の態様、 即ち繊維の橫 断面に存在するキトサン微粒子の円換算平均直径が l〜 1 0 0 n mとなるように 、 また特にシヱ一プファクタ一 S Fの平均が 1 0 0〜3 0 0、 その標準偏差が 1 5 0以下となるように容易に調整することができる。
キトサン酸性水溶液中のキトサン濃度は、 容易に溶解できる 5重量%以下程度 であり、 キトサンの付与量が所定の量となるように適宜変更する。 酸の種類は特 に限定されないが、 塩酸、 酢酸、 乳酸、 蟻酸等が好適に使用できる。 また、 酸の 澳度は、 装置の腐食を避けるためにキトサンが溶解する範囲で低い程好ましい。 アクリル繊維の浸漬時間、 浸漬温度等は所定のキトサン含有量、 キトサン分散 状態、 その他必要な物性が得られるように適宜変更することができる。
次に、 必要に応じて、 キトサン酸性水溶液に浸潰した後のアクリル繊維を、 ァ ルカリ性水溶液に浸潰して酸を中和してもよい。 ここで用いられるアル力リ水溶 液としては、 例えば水酸化ナトリウム、 重炭酸ナトリウム等の希薄溶液を用いる 次に必要に応じて、 後工程での問題、 例えば乾燥工程での膠着を防止するため に、 アクリル繊維を、 ポリオキシエチレン、 エチレンオキサイ ドプロピレンォキ サイ ドブロックポリエーテル等の界面活性剤を含有する工程油剤を含む液を満た した槽を通過させて工程油剤処理を行う。 また、 キトサンと工程油剤とを同一の 液に含ませることによって、 キトサンの付与と工程油剤処理とを同時に行うこと もできる。
その後、 常法により乾燥緻密化してキトサン含有ァクリル繊維を得る。
また、 本発明の製造方法の第 2の態様は、 アクリロニトリル系重合体溶液を湿 式紡糸して水膨潤状態のァクリル繊維を得る工程と、 水膨潤状態のアクリル繊維 糸条をキトサンと第四級アンモニゥ厶塩の混合溶液に浸潰するか、 またはキトサ ン酸性水溶液に浸漬した後に第四級ァンモニゥム塩の溶液に浸潰する工程と、 乾 燥緻密化する工程とを有する。
ここで、 ァクリロ二卜リル系重合体溶液を湿式紡糸して水膨潤状態のァクリル 繊維を得る工程は前記の第 1の態様と同じである。 水膨潤状態のァクリル繊維を 第四級アンモニゥム塩を含む溶液に浸潰すると、 キトサンと同様に第四級アンモ 二ゥム塩も繊維の内部まで浸透して繊維中に取り込まれるので、 抗菌性とともに 低い繊維一繊維間摩擦係数を長期に渡って維持することができる。 このときの水 膨潤度は、 3 0〜2 0 0 %であることが好ましい。
キトサンと第四級アンモニゥム塩による処理を、 水膨潤状態のァクリル繊維糸 条をキトサンと第四級ァンモニゥム塩の混合溶液に浸漬して行った場合は、 工程 が簡略化され、 キトサン溶液の安定性が増す点で有利である。 一方キトサン酸性 水溶液に浸潰した後に第四級アンモニゥム塩の溶液に浸潰して行う場合は、 工程 管理が容易になると同時に、 キトサンの繊維中への含浸程度を独立して制御でき る点で有利である。
キトサン酸性水溶液は、 製造方法の第 1の態様で説明したキトサン酸性水溶液 と同様のものを使用することができる。 また、 キトサンと第四級アンモニゥム塩 の混合溶液は、 キ卜サンと第四級アンモニゥム塩の両方を同一の溶液に含むもの である。 キトサンの濃度および第四級アンモニゥ厶塩の濃度は、 キトサンまたは 第四級アンモニゥム塩の付与量が所定の量となるように適宜変更する。
ァクリル繊維の浸漬時間、 浸漬温度等は所定のキトサンまたは第四級アンモニ ゥム塩付与量、 キトサン分散状態、 その他必要な物性が得られるように適宜変更 することができる。
この態様において、 工程油剤処理は別途に行ってもよい力、 工程油剤を、 第四 級アンモニゥム塩の溶液の槽に含ませることで、 第四級アンモニゥム塩を付着さ せると同時に工程油剤処理を行ってもよい。 第四級アンモニゥム塩溶液に工程油 剤を添加し、 乾燥緻密化前のアクリル繊維糸条を処理することにより、 恒久的な 柔軟性がさらに顕著となるので好ましい。 この場合、 キトサンの付与を同時に行 つてもよい。
また、 第四級アンモニゥム塩のほかにカチオン系またはノニオン系界面活性剤 を併用することができる。
その後、 製造方法の第 1の態様と同様にして乾燥緻密化しキトサン含有ァクリ ル繊維を得ることができる。
実施例
以下の実施例により、 本発明を更に具体的に説明する。 なお、 実施例において 「重量%」 は単に 「%J と表示した。
くァクリル繊維糸条の水膨潤度の測定方法〉
紡糸工程より採取した乾燥緻密化以前のァクリル繊維糸条を 100 OGの加速 度の下で 10分間脘水した後の重量 Wl、 その後、 1 1 で 3時間熱風乾燥し た後の重量 W2から次の式を用いて算出した。
(水膨潤度) - { (Wl -W2) /W2} X 100 (%)
〈全キトサン含有量の測定法 A法〉
1) 秤量したアクリル繊維 0. 2gに 70%塩化亜鉛溶液 10mlを添加し、 繊 維を溶解した。
2) ジメチルァセトアミ ド 2m 1を添加して 1時間放置した。
3) ェ一リツヒ試薬 (P—ジメチルァミノべンズアルデヒドの 1 %エタノール溶 液) 1mlを添加した。
4) 2時間後に波長 435 nmで 3) の溶液の吸光度を測定した。
検量線からキトサン濃度を求め、 ァクリル繊維含有量に換算した。
〈抽出キトサン含有量の測定 B法〉
1 ) 秤量したキトサン含有ァクリル繊維 5 gを 6M塩酸 100mlに浸漬し、 沸 騰水中で 8時間加熱する。
2) ァクリル繊維を取り除き、 得られたキトサン抽出液 25m 1に蒸留水 150 m 1を加えながら減圧下で濃縮乾固する。
3) 乾固物を 10%酢酸溶液 1 Om 1に溶解し、 これにェ一リッヒ試薬 (p—ジ メチルァミノべンズアルデヒドの 1 %エタノール溶液) 1 m 1を添加し 5 °Cで 1 2時間静置する。
4) 波長 435 nmで 3) 溶液の吸光度を測定する。
5) 検量線からキトサン濃度を求め、 アクリル繊維中の含有量に換算する。
く第四級ァンモニゥム塩含有量の測定法〉
ァクリル繊維を DMSO— d6中に 4%となるように溶解し、 'H— NMRを測 定し、 ァクリロニトリル系重合体由来のピークと第四級アンモニゥム塩由来のピ 一クの面積比から繊維中の含有量を求めた。
く重合体の還元粘度〉 ァクリニトリル系重合体の還元粘度 7? r e dは、 ァクリニトリル系重合体をジ メチルホルムアミ ドに 0. 5%となるよう溶解した重合体溶液の粘度を 25でに おいてキャノンフエンスケ粘度計を用いて測定した。
く抗菌性能測定〉
繊維製品新機能評価協議会 (旧名称:繊維製品衛生加工協議会) で定めた以下 の菌数測定法に従い、 菌数増減値差を測定した。
試料布を 121 で 15分間滅菌処理した後、 所定量の黄色ブドウ状球菌のブ ィヨン懸濁液を注ぎ加えて植菌する。 これを密閉容器中に移し 37°Cで 18時間 培養した後、 生菌数を計測する。 植菌数に対する増減値 (=L o g (生菌数) 一 Log (植菌数) ) を求め、 無加工試料との差を菌数增減値差とする。
菌数増減値差 1. 6以上を抗菌性有効の基準とした。 尚、 洗濯方法は同協議会 で定めた方法に従った。
〈繊維一繊維間の静摩擦係数〉
レーダー法繊維摩擦係数測定機 (興亜商会製) を使用して繊維一繊維間の静摩 擦係数を測定した。
実施例 1〜 7、 比較例 1、 2
水系懸濁重合法により還元粘度 1. 96のアクリロニトリル系重合体 (ァクリ α二トリル Z酢酸ビニル =93/7重量比) を得た。 これをジメチルァセトアミ ドに共重合体濃度が 25%となるように溶解し紡糸原液とした。
この紡糸原液を 40°C、 30%ジメチルァセトアミ ド水溶液を満たした紡糸浴 中に湿式紡糸し、 沸水中で溶剤を洗浄しながら 5倍延伸を施した後の膨潤度 80 %の延伸糸を、 引き続き、 キトサン (共和テクノス株式会社フローナック C) の 濃度を 0. 01。/0〜3%の間で変更した酢酸水溶液を満たした浴に導いて浸潰し た後、 繊維重量に対する付着水分量が 100%となるように脱水した。 その後、 150 の熱ローラーで乾燥緻密化を行った。
さらに 2. 5 kg/cm2の加圧スチームの中で緩和処理を行い、 単繊維繊度 3デニールのキトサン含有ァクリル繊維を得た。 本繊維中の全キトサン含有量と 抽出キトサン量を前記の方法で測定した。 また、 油浴槽でのキトサンの分離、 乾 燥緻密化工程での繊維の膠着は認められなかった。 この繊維を浴比 (繊維:水) = 1 : 50の沸水中で 30分処理、 水洗、 風乾後 の繊維—繊維間の静摩擦係数を測定した。
またこの繊維を 5 lmm長にカッ トし、 紡績糸を作製した。 この紡績糸 50 g 、 染料 (保土ケ谷化学株式会社カチロン b 1 u e KGLH) 0. 25g、 酢酸 1 g、 酢酸ナトリウム 0. 25gを純水 1 OOOg中に添加し 100。Cまで昇温 し、 その温度 °Cで 30分保持した後、 水洗、 脱水、 乾燥した。 染色後の紡績糸に 対し肉眼判定で発色鮮明性を評価すると同時に、 洗濯前、 洗濯 10回後の坊菌性 を評価した。 測定および評価結果を表 1にまとめて示す。
比較例 3
実施例 1においてキトサン酢酸溶液に通さずに乾燥緻密化したァクリル繊維に 、 キトサン 0. 1%酢酸水溶液を噴霧し、 その後 15 (TCのローラーで乾燥を行 い、 全キトサン付着量 0. 06%、 抽出キトサン量◦. 05%のアクリル繊維を 得た。 実施例 1と同様の処理を施し、 紡績糸を作成し抗菌性等を評価した。 結果 を併せて表 1に示した。
実施例 8〜1 1
水系懸濁重合法により還元粘度 1. 85のアクリロニトリル系重合体 (ァクリ ロニトリル Z酢酸ビニル =93 7重量比) を用い、 これをジメチルァセトアミ ドに共重合体濃度が 25 %となるように溶解し紡糸原液とした。
この紡糸原液をジメチルァセ卜アミ ド水溶液の濃度と温度を変更した紡糸浴中 に湿式紡糸し、 沸水中で溶剤を洗浄しながら 5倍延伸を施した後の膨潤度 100 、 60、 40、 130%の延伸糸を、 引き続き、 キトサン (共和テクノス株式会 社フローナック C) 0. 1%酢酸水溶液を満たした浴に導き、 繊維重量に対する 付着水分量が 100%となるように脱水した。 その後、 15CTCの熱ローラ一で 乾燥緻密化を行った。
このァクリル繊維を実施例 1と同様の処理を施し紡績糸を作成し、 抗菌性等を 評価した。 結果を併せて表 1に示した。
比較例 4、 5
実施例 8の紡糸原液の濃度をそれぞれ 28 %、 18%とし40で、 30%ジメ チルァセトアミ ド水溶液を満たした紡糸浴中に湿式紡糸し、 沸水中で溶剤を洗浄 しながら 5倍延伸を施した後の膨潤度 250% (比較例 4) 、 20% (比較例 5 ) の延伸糸を、 実施例 8と同様に処理を施し紡績糸を作成し、 抗菌性等を評価し た。 結果を併せて表 1に示した。
実施例 12
水系懸濁重合法により還元粘度 1. 96のアクリロニトリル系重合体 (ァクリ ロニトリル/酢酸ビニル =93Z7重量比) を得た。 これをジメチルァセトアミ ドに共重合体濃度が 25%となるように溶解し紡糸原液とした。
この紡糸原液を 40t、 30%ジメチルァセトアミ ド水溶液を満たした紡糸浴 中に湿式紡糸し、 沸水中で溶剤を洗浄しながら 5倍延伸を施した。 このときの水 膨潤度は 80%であった。 引き続き、 キトサン (共和テクノス株式会社フローナ ック C) 0. 1%、 酢酸 0. 05%、 第四級アンモニゥム塩として塩化ジデシル ジメチルアンモニゥム 0. 35%、 および工程油剤として界面活性剤であるポリ ォキシエチレン (重合度 200) 0. 3%を含む油浴中に導いて浸潰した後、 繊 維重量に対する付着水分量が 100%となるように脱水した。 その後、 15〇°C の熱ローラ一で乾燥緻密化を行つた。
さらに 2. 5 kgZcm2の加圧スチームの中で緩和処理を行い、 単繊維繊度 3デニールのキトサン含有ァクリル繊維を得た。 本繊維中の付着キトサン量と第 四級アンモニゥム塩量を前記の方法で測定したところ 0. 08%と0. 33%で あった。 また、 油浴槽でのキトサンの分離、 乾燥緻密化工程での繊維の膠着は認 められなかった。
この繊維を浴比 1 : 50の沸水中で 30分処理、 水洗、 風乾後の繊維一繊維間 の静摩擦係数を測定したところ 0. 285であった。
またこの繊維を 5 lmm長にカットし、 紡績糸を作製した。 この紡績糸 50 g 、 染料 (保土ケ谷化学株式会社カチロン b 1 u e KGLH) 0. 25g, 酢酸 1 g、 酢酸ナトリウム 0. 25 gを純水 1000 g中に添加し 100でまで昇温 し、 その温度 °Cで 30分保持した後、 水洗、 脱水、 乾燥した。 染色後の紡績糸に 対し肉眼判定で発色鮮明性を評価すると同時に、 洗濯前、 洗濯 10回後の抗菌性 を評価した。 結果を表 2にまとめて示す。
実施例 13〜15、 比較例 6〜8 実施例 1 2において、 油浴槽中のキトサン濃度、 酢酸濃度、 界面活性剤濃度、 キトサン酸性水溶液浸漬後の付着水分率を段階的に変更し、 キトサン含有 i、 塩 化ジデシルジメチルアンモニゥム含有量の異なるァクリル繊維を得た。 いずれも 、 油浴槽でのキトサンの分離、 乾燥緻密化工程での繊維の膠着は認められなかつ た。 実施例 1 2と同様に操作して、 繊維一繊維間の静摩擦係数、 抗菌性を評価し た結果、 表 2のとおりであった。
キトサン含有量 2. 4 %、 塩化ジデシルジメチルアンモニゥム含有量 2. 8 8 %原綿 (比較例 7 ) と キトサン含有量 0. 4 %、 塩化ジデシルジメチルアンモ ニゥム含有量 3. 2 5 %原綿 (比較例 8 ) は紡糸乾燥ローラ一と、 紡績工程への キトサン付着が大きく紡績糸を得ることは出来なかった。
比較例 9
実施例 1 2において、 油浴中にキトサンを含有させずに、 塩化ジメチルジデシ ルアンモニゥム濃度 0. 2 %、 および工程油剤としてポリオキシエチレン濃度 0 . 2 %を含む油浴槽に水膨潤状態のアクリル繊維を浸潰したは実施例 1 2と同様 に操作して、 単繊維繊度 3デニールのアクリル繊維を得た。 実施例 1 2と同様に 測定した繊維一繊維間の静摩擦係数は 0. 4 5 5であった。
この繊維を実施例と同様な操作を行って染色した紡績糸とした後、 染色後洗濯 前、 洗濯 1 0回後の抗菌性を評価した結果、 表 2に示した通り抗菌性は発現しな 力、つた。
実施例 1 6
実施例 1 2で得られたァクリル繊維 3 0 %と綿 7 0 %を混合して紡績糸を作製 した。 実施例 1と同じ条件でカチオン染色した後、 洗濯前、 洗濯 1 0回後の抗菌 性を評価したところそれぞれ 2. 8と 1 . 9であった。
実施例 1 7
油浴中の第四級ァンモニゥム塩と界面活性剤を塩化ジヒドロキシェチルデシル ェチルアンモニゥムの濃度 0. 3 %、 ポリオキシエチレン (重合度 2 0 0 ) の濃 度 0. 3 %とした以外は実施例 1 2と同様にしてアクリル繊維を得た。 キトサン 含有量は 0. 0 9 %、 塩化ジヒドロキシェチルデシルェチルアンモニゥ厶の含有 量は 0. 2 9 %であった。 また繊維一繊維間の静摩擦係数は 0. 3 2 0、 抗菌性 は洗濯前 2. 8、 洗濯 10回後は 2. 2であった。
実施例 18
油浴中の第四級アンモニゥム塩と界面活性剤を N—ヒドロキシェチル N, N— ジメチル N—ステアリルアミ ドエチルアンモニゥムェチルスルホネ一トの濃度 0 . 4%、 エチレンオキサイ ドプロピレンオキサイ ドブロックポリエーテル (ェチ レンォキサイ ド Zプロピレンォキサイ ドニ 40 60、 分子量 5000) の濃度 0. 2%とした以外は実施例 12と同様にしてアクリル繊維を得た。 原綿中のキ トサン含有量は 0. 09%、 N—ヒドロキシェチル N、 N—ジメチル N—ステア リルアミ ドエチルアンモニゥムェチルスルホネートの含有量は 0. 38%であつ た。 また繊維一繊維間の静摩擦係数は 0. 290、 抗菌性は洗濯前 2. 6、 洗濯 10回後は 2. ◦であった。
実施例 19
油浴中のキトサン (共和テクノス株式会社フローナック C) 濃度 0. 1%、 酢 酸濃度◦. 05%、 塩化ジデシルジメチルアンモニゥム濃度 0. 35%に設定し 、 また工程油剤処理槽中のエチレンォキサイ ドプロピレンォキサイ ドブロックポ リエーテル (エチレンォキサイ ド Zプロピレンォキサイ ド =40/60、 分子量 5000) の濃度を 0. 2%した以外は実施例 12と同様にして、 アクリル繊維 を得た。 キトサン含有量は 0. 09%、 塩化ジデシルジメチルアンモニゥム付着 量は 0. 32%であった。 また、 繊維一繊維間の静摩擦係数は 0. 295、 枋菌 性は洗濯前 5. 0、 洗濯 10回後 4. 8であった。
実施例 20、 21
実施例 19において、 塩化ジデシルジメチルアンモニゥム濃度の濃度を変更し た以外は実施例 19と同様にしてアクリル繊維を得た。 結果を表 2に示す。
実施例 22
実施例 12では、 水膨潤状態のァクリル繊維をキトサンと第四級アンモニゥム 塩の混合液中に浸漬したが、 この実施例では、 キトサン酸性水溶液浸潰と第四級 アンモニゥム塩の溶液浸演を別途行った。 即ち、 キトサン (共和テクノス株式会 社フローナック C) 0. 1%、 酢酸 0. 05%の浸漬槽に導いた後、 塩化ジデシ ルジメチルアンモニゥム 0. 35%、 および工程油剤としてポリオキシエチレン (重合度 200) 0. 3%を含む油浴中に導いて浸潰した以外は実施例 12と同 様にしてキトサン含有アクリル繊維を得た。 繊維一繊維間の静摩擦係数、 抗菌性 を評価した結果は表 2のとおりであった。
実施例 23〜25、 比較例 10、 11
実施例 22においてキトサン溶液槽のキトサン濃度及び油浴槽中の塩化ジデシ ルジメチルアンモニゥムの濃度を段階的に変更し、 キトサンと塩化ジデシルジメ チルアンモニゥムを含有するァクリル繊維を得た。 繊維一繊維間の静摩擦係数、 抗菌性を評価した結果は表 2のとおりであつた。
キトサン含有量 2. 48%、 塩化ジデシルジメチルアンモニゥ厶含有量 2. 9 6%の原綿 (比較例 1 1) は紡糸乾燥ローラ一と、 紡績工程へのキトサン付着が 大きく紡績糸を得ることはできなかつた。
実施例 26
実施例 22で得られたアタリル繊維 30 %と綿 70 %を混合して紡績糸を作製 した。 実施例 1と同じ条件でカチオン染色した後、 洗濯前、 洗濯 10回後の抗菌 性を評価したところ、 それぞれ 3. 1および 2. 4であった。
実施例 27
実施例 22において、 油浴中の第四級アンモニゥム塩と界面活性剤を、 塩化ジ ヒドロキシェチルデシルェチルアンモニゥム濃度 0. 3%、 ポリオキシエチレン
(重合度 200) 濃度 0. 3%とした以外は実施例 22と同様にしてアクリル繊 維を得た。 原綿中のキトサン含有量は 0. 1%、 塩化ジヒドロキシェチルデシル ェチルアンモニゥム含有量は 0. 29%であった。 また繊維一繊維間の静摩擦係 数は 0. 334、 抗菌性は洗濯前 4. 26、 洗濯 10回後は 3. 5であった。 実施例 28
実施例 22において、 油浴中の第四級アンモニゥ厶塩と界面活性剤を、 N—ヒ ドロキシェチル N. N—ジメチル N—ステアリルアミ ドエチルアンモニゥ厶ェチ ルスルホネートの濃度 0. 4%、 エチレンオキサイ ドプロピレンオキサイ ドプロ ックポリエ一テル (エチレンォキサイ ド Zプロピレンォキサイ ドニ 40Z60、 分子量 5000) の濃度 0. 2%とした以外は実施例 22と同様にしてアクリル 繊維を得た。 原綿中のキトサン含有量は 0. 1 %、 N—ヒドロキシェチル N、 N —ジメチル N—ステアリルアミ ドエチルアンモニゥムェチルスルホネー卜の含有 量は 0. 40%であった。 また繊維一繊維間の静摩擦係数は 0. 298、 抗菌性 は洗濯前 3. 2、 洗濯 10回後は 2. 3であった。
実施例 29
実施例 22において、 油浴中のキトサン (共和テクノス株式会社フローナック C) 濃度を 0. 1%、 酢酸濃度を 0. 05%、 塩化ジデシルジメチルアンモニゥ ム濃度を 0. 35%にそれぞれ設定し、 また工程油剤処理槽中のエチレンォキサ ィ ドプロピレンォキサイ ドブロックポリエーテル (エチレンォキサイ ド プロピ レンオキサイ ド =40/60、 分子量 5000) の濃度を 0. 2%とした以外は 実施例 1 1と同様にして、 アクリル繊維を得た。 キトサン含有量は 0. 1%、 塩 化ジデシルジメチルアンモニゥム含有量は 0. 32%であった。 また繊維一繊維 間の静摩擦係数は 0. 295、 抗菌性は洗濯前 5. 0、 洗濯 10回後は 4. 8で あつ /こ o
実施例 30
実施例 22において、 油浴中の第四級アンモニゥム塩をビス (ジデシルジメチ ルアンモニゥム) アジペート濃度 0. 4%とした以外は実施例 12と同様にして アクリル繊維を得た。 キトサン含有量は 0. 1%、 ビス (ジデシルジメチルアン モニゥム) アジペート含有量は 0. 39%であった。 また繊維一繊維間の静摩擦 係数は 0. 287、 抗菌性は洗濯前 4. 8、 洗濯 10回後 4. 4であった。 実施例 31
実施例 22において、 油浴中の第四級アンモニゥム塩をジデシルジメチルアン モニゥムダルコネート濃度 0. 5%とした以外は実施例 22と同様にしてァクリ ル繊維を得た。 キトサン含有量は 0. 1 %、 ジデシルジメチルアンモニゥムグル コネート含有量は 0. 47%であった。 また繊維一繊維間の静摩擦係数は 0. 2 69、 抗菌性は洗濯前 5. 2、 洗濯 10回後 4. 5であった。 表 1
製造条 キトサン量 面でのキトサンの分散
件 繊維—繊 染色鮮明 全キト 油出キト 測定個 平均直 標準偏 SF 標 準 洗 洗濯 10 維 I 襟係 性 サン量 サン量 A-B 数 径 回後 数
% (AJ /。 (DJ 。 % nn Γ¥Τ1
i^tli 80 η 03 ο,οι 002 120 1.7 2.3 200 68 0.8 0,7 0.385
80 0.06 0.03 0.03 100 2.9 2.1 230 80 1.8 1.7 0.33 m
80 ' nリ> 11 n 03 5.4 3.7 270 95 2 1 o 0.31 m
80 nク n ΠΑ 1 inn 7.4 4 280 100 5 Λ 0.29 m
80 u. n 1 n inリnリ ΙΟ.ό 4.8 250 130 5 S 9 0.28 m
■ & 80 n u. oy U n A l 1 n unu 2ό.8 10.4 270 120 D c;.D c o. 0.27 m t
o 80 1.u n u. Ao n Λ 1 uu 30.1 12.7 280 no 0.4 0.255
80 ] 5 Q.9 0,6 100 45.9 25.9 260 50 5,4 5 A 0.26 m
80 2.8 2 0.8 100 98.6 46.8 300 150 5.5 5.4 0.255 ^^る
0.06 0.05 0.01 100 キトサ if{纖されず 1.7 0.7 0.34 m
100 0.1 0.03 0.07 185 3.5 3.2 240 95 5.1 4.9 0.365 m
60 :0.1 0.05 0.05 165 2.2 2 190 80 5.3 5.1 0.312 m
40 0.1 0.06 0.04 170 2 1.9 180 80 5.2 5 0.298 m
130 0.1 0.03 0.07 180 7.5 9.8 280 110 4.8 4.1 0.384 m
250 0.1 0.02 0.08 150 12.5 23.8 315 305 5.5 1.5 0.396
a i 5 20 0.1 0.07 0.03 195 0.6 0.5 155 85 5.5 1.2 0.255
表 2
Figure imgf000023_0001
a ) 菌難減錢および染色鮮明性の欄の x :赚糸力^られ 価できなかった。 染色鮮明性の欄:◎: こ良好、 〇:良好
産業上の利用可能性
本発明によれば、 繊維の染色、 晒等の後加工や洗濯、 アイロンなど繊維製品が 使用環境でうける処理に対して抗菌性能が低下しないァクリル繊維が得られる。 また、 柔軟性を有するため、 最終繊維製品中に本発明の繊維を 7 0 %以上使用す る場合は、 最終仕上げ工程で使用する柔軟処理剤の使用量を大幅に減少すること ができる。 また、 本発明の製造方法によれば、 前記の繊維を効率よく製造するこ とができる。

Claims

請求の範囲
1. 全キトサン含有量として 0. 05〜2重量%、 抽出可能なキトサン含有量と して 0. 03重量%以上全キトサン含有量未満の量のキトサンを含有することを 特徴とするキトサン含有ァクリル繊維。
2. 全キトサン含有量と抽出可能なキトサン含有量との差が 0. 03〜0. 8重 量%である請求の範囲第 1項記載のキトサン含有ァクリル繊維。
3. 全キトサン含有量が 0. 05〜2重量%であり、 かつキトサンが繊維に微粒 子で分散しており、 横断面における微粒子の円換算平均直径が 1〜1 OOnmで あることを特徴とするキトサン含有ァクリル繊維。
4. アクリル繊維の横断面におけるキトサン微粒子の下式 (数式 1) で定義され るシエープファクター SFの平均が 100〜 300であり、 その標準偏差が 15 0以下であることを特徴とする請求の範囲第 3項に記載のキトサン含有ァクリル 繊維。
SF=ML2 X 7T 100/ (4 X A) (数式 1 )
(但し、 MLは繊維の横断面におけるキトサン微粒子の最大長を表し、 Aは繊 維の横断面におけるキトサン微粒子の面積を表す。 )
5. 全キトサン含有量 0. 05〜2重量%のキトサンと、 全キトサン含有量より 多く 3重量%以下の第四級アンモニゥム塩とを含有することを特徴とするキトサ ン含有ァクリル繊維。
6. 前記第四級アンモニゥム塩が一般式 (I)
Figure imgf000025_0001
(但し、 Rt〜R4は互いに独立に置換基を有していてもよい炭素数 1〜18の アルキル基を表し、 Xはハロゲンイオン、 有機酸ァニオンまたはォキソ酸イオン を表し、 aは Xの価数を表す。 ) である請求の範囲第 5項記載のキトサン含有ァ クリル繊維。
7. 前記 Xがカルボキシレートイオン、 スルホネートイオン、 サルフェートィォ ン、 ホスフェートイオンおよびホスホネートイオンからなる群より選ばれるァニ ォンである請求の範囲第 6項記載のキトサン含有ァクリル繊維。
8. 全キトサン含有量が 0. 05〜2重量%、 抽出可能なキトサン含有量が 0. 03重量%以上、 全キトサン含有量と抽出可能なキトサン含有量との差が 0, 0 3〜0. 8重量%であるキトサンを含有し、 キトサンが繊維に微粒子で分散して おり、 横断面における微粒子の円換算平均直径が 1〜100 nmであり、 アタリ ル繊維の横断面におけるキトサン微粒子の前記 (数式 1) で定義されるシ X—プ ファクタ一 SFの平均が 100〜 300であり、 その標準偏差が 150以下であ ることを特徴とするキトサン含有ァクリル繊維。
9. 全キトサン含有量として 0. 05〜 2重量%、 抽出可能なキトサン含有量と して 0. 03重量%以上、 全キトサン含有量と抽出可能なキトサン含有量との差 が 0. 03〜0. 8重量%であるキトサンを含有し、 全キトサン含有量より多く 3重量%以下の範囲の第四級ァンモニゥム塩とを含有することを特徴とするキト サン含有アタリル繊維。
10. 全キトサン含有量が 0. 05〜2重量%、 抽出可能なキトサン含有量が 0 . 03重量%以上、 全キトサン含有量と抽出可能なキトサン含有量との差が 0. 03〜0. 8重量%であるキトサンを含有し、 キトサンが繊維に微粒子で分散し ており、 横断面における微粒子の円換算平均直径が 1〜1 OOnmであり、 ァク リル繊維の横断面におけるキトサン微粒子の前記 (数式 1) で定義されるシエー プファクタ一 SFの平均が 100〜300であり、 その標準偏差が 150以下で あり、 全キトサン含有量より多く 3重量%以下の範囲の第四級アンモニゥム塩と を含有することを特徴とするキトサン含有ァクリル繊維。
11. 前記第四級アンモニゥ厶塩が前記一般式 (I) である請求の範囲第 9項ま たは第 10項に記載のキトサン含有アクリル繊維。
12. 前記 Xがカルボキシレート、 スルホネート、 サルフェート、 ホスフェート およびホスホネ一卜からなる群より選ばれるァニオンである請求の範囲第 1 1項 記載のキトサン含有ァクリル繊維。
13. ァクリロニトリル系重合体溶液を湿式紡糸して水膨潤状態のァクリル繊維 を得る工程と、
水膨潤状態のアクリル繊維糸条をキトサン酸性水溶液に浸潰する工程と、 キトサンが付着された水膨潤状態のアクリル繊維糸条を乾燥緻密化する工程と を有するキトサン含有ァクリル繊維の製造方法。
1 4. 前記水膨潤状態のアクリル繊維糸条の膨潤度が 3 0〜2 0 0 %である請求 の範囲第 1 3項記載のキトサン含有ァクリル繊維の製造方法。
1 5. ァクリロニトリル系重合体溶液を湿式紡糸して水膨潤状態のアクリル繊維 を得る工程と、
水膨潤状態のァクリル繊維糸条をキトサン酸性水溶液に浸漬する工程と、 キトサンが付着された水膨潤状態のァクリル繊維糸条を乾燥緻密化する工程と を有する請求の範囲第 1項〜第 1 2項のいずれかに記載のキトサン含有ァクリル 繊維の製造方法。
1 6. 前記水膨潤状態のアクリル繊維糸条の膨潤度が 3 0〜2 0 0 %である請求 の範囲第 1 5項記載のキトサン含有ァクリル繊維の製造方法。
1 7. ァクリロニトリル系重合体溶液を湿式紡糸して水膨潤状態のァクリル繊維 を得る工程と、
水膨潤状態のアタリル繊維糸条をキトサンと第四級アンモニゥム塩の混合溶液 に浸潰するか、 またはキトサン酸性水溶液に浸潰した後に第四級アンモニゥム塩 の溶液に浸漬する工程と、
乾燥緻密化する工程と
を有する請求の範囲第 6、 7、 9、 1 0、 1 1または 1 2項に記載のキトサン含 有ァクリル繊維の製造方法。
PCT/JP1997/002725 1996-09-17 1997-08-06 Fibres acryliques contenant du chitosane et procede de preparation de ces fibres WO1998012369A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB9905546A GB2339717B (en) 1996-09-17 1997-08-06 Chitosan-containing acrylic fibers and process for preparing the same
US09/271,272 US6551705B1 (en) 1996-09-17 1999-03-17 Chitosan-containing acrylic fibers and process for preparing the same
US09/605,707 US6524508B1 (en) 1996-09-17 2000-06-27 Process of making chitosan-containing acrylic fibers

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP24513796 1996-09-17
JP24513696A JP3286180B2 (ja) 1996-02-08 1996-09-17 抗菌性アクリル繊維およびその製造方法
JP8/245136 1996-09-17
JP8/245137 1996-09-17
JP8/299099 1996-11-11
JP29909996A JP3450137B2 (ja) 1996-11-11 1996-11-11 キトサン含有繊維及びその製造方法
JP1997179863A JP3544825B6 (ja) 1996-09-17 1997-07-04 抗菌性アクリル繊維及びその製造方法
JP9/179863 1997-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/271,272 Continuation US6551705B1 (en) 1996-09-17 1999-03-17 Chitosan-containing acrylic fibers and process for preparing the same

Publications (1)

Publication Number Publication Date
WO1998012369A1 true WO1998012369A1 (fr) 1998-03-26

Family

ID=27474909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002725 WO1998012369A1 (fr) 1996-09-17 1997-08-06 Fibres acryliques contenant du chitosane et procede de preparation de ces fibres

Country Status (6)

Country Link
US (2) US6551705B1 (ja)
KR (1) KR100441358B1 (ja)
CN (2) CN1276147C (ja)
GB (1) GB2339717B (ja)
TW (1) TW369571B (ja)
WO (1) WO1998012369A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053924A1 (ja) * 2021-09-30 2023-04-06 株式会社カネカ 抗菌性アクリル系人工毛髪繊維、それを含む頭飾製品、及びその製造方法
WO2023074220A1 (ja) * 2021-10-28 2023-05-04 株式会社カネカ 抗菌性アクリル系人工毛髪繊維、それを含む頭飾製品、及びその製造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099477C (zh) * 2000-01-14 2003-01-22 东华大学 含甲壳质及其衍生物的抗菌纤维及制造方法
CN1102968C (zh) * 2000-06-23 2003-03-12 上海士林纺织有限公司 含壳聚糖超细微粒的改性粘胶纤维及其制造工艺
KR20020036397A (ko) * 2000-11-09 2002-05-16 김영호 복합기능성 아크릴 섬유의 제조방법
KR20010067991A (ko) * 2001-04-13 2001-07-13 도영수 키토산을 함유하는 기능성섬유
US7081139B2 (en) * 2001-05-11 2006-07-25 E. I. Du Pont De Nemours And Company Antimicrobial polyester-containing articles and process for their preparation
US20040166307A1 (en) * 2001-08-24 2004-08-26 The Procter & Gamble Company Absorbent member with improved fluid handling agent
KR20050083171A (ko) * 2001-12-24 2005-08-26 (주)아이벡스 키토산 함유 방적사 및 그 제조방법
WO2003057953A1 (fr) * 2001-12-28 2003-07-17 Mitsubishi Rayon Co., Ltd. Fibre acrylique a retrecissement eleve, composition de velours en contenant et tissus duvetes fabriques a partir de telles compositions
FR2838025B1 (fr) * 2002-04-08 2005-08-05 Arjo Wiggins Support d'information presentant des proprietes biocides et son procede de fabrication
CN1303281C (zh) * 2002-12-19 2007-03-07 全球生技股份有限公司 纱线的抗菌加工方法
CN1323210C (zh) * 2002-12-19 2007-06-27 全球生技股份有限公司 甲壳质应用于纤维抗菌的加工方法
FR2852027B1 (fr) * 2003-03-04 2005-07-29 Ahlstrom Research & Services Support non tisse a base de fibres de carbone active et utilisation
US7629000B2 (en) * 2003-05-13 2009-12-08 E.I. Du Pont De Nemours And Company Method for making antimicrobial polyester-containing articles with improved wash durability and articles made thereby
CN1327079C (zh) * 2003-06-30 2007-07-18 陈良 抗菌抗病毒防霉除臭保健功能的羽绒加工方法及用途
CN100366817C (zh) * 2003-07-17 2008-02-06 上海龙头生物技术有限公司 防霉除臭导湿抗静电甲壳素助剂和工艺及应用
US7291674B2 (en) * 2003-10-28 2007-11-06 Stockhausen, Inc. Superabsorbent polymer
EP1619292A2 (en) 2004-07-22 2006-01-25 Sparrow International, Inc. Anti-microbial chitosan composition for textile products
US20060134410A1 (en) * 2004-12-20 2006-06-22 Mackey Larry N Polymeric structures comprising an unsubstituted hydroxyl polymer and processes for making same
US7311050B2 (en) * 2005-04-19 2007-12-25 Kamterter Ii, L.L.C. Systems for the control and use of fluids and particles
TW200928022A (en) * 2007-12-31 2009-07-01 Acelon Chem & Fiber Corp Manufacturing method for natural cellulose fiber with increased mildew-proof, antibacterial and deodorizing functions
EP2314744A4 (en) * 2008-05-28 2017-05-03 Silveray Co., Ltd. Electrically conductive pad and a production method thereof
CN101748503B (zh) * 2008-12-18 2011-11-16 中国纺织科学研究院 一种以离子液体为溶剂制备甲壳素/腈纶复合纤维的方法
FR2945180B1 (fr) 2009-05-07 2013-02-22 Arjowiggins Security Support d'information presentant des proprietes antivirales et son procede de fabrication
TWI392779B (zh) * 2009-12-31 2013-04-11 A method for preparing natural cellulose nonwoven fabric by wet meltblowing
TWI392781B (zh) * 2009-12-31 2013-04-11 Preparation of Natural Cellulose Nonwoven by Wet Spunbond Method
TWI392780B (zh) * 2009-12-31 2013-04-11 Wet melt with a mold, antibacterial and deodorant function of cellulose non-woven system
FR2967074B1 (fr) 2010-11-08 2013-06-28 Arjowiggins Security Compositions fluides aptes a former un revetement presentant des proprietes antivirales
CN103266473B (zh) * 2013-06-24 2015-08-05 河南省科学院化学研究所有限公司 季鏻盐改性聚丙烯腈纤维抗菌材料及其制备方法
CN107313255A (zh) * 2016-08-23 2017-11-03 如皋长江科技产业有限公司 一种纺织品杀菌整理剂
CN107138137B (zh) * 2017-06-08 2020-01-14 四川大学 一种抗菌性偕胺肟基海水提铀吸附剂及其制备方法
WO2018236689A1 (en) * 2017-06-21 2018-12-27 Saint-Gobain Abrasives, Inc. NON-WOVEN ANTIMICROBIAL CLEANING PAD
CN114401703A (zh) * 2019-09-25 2022-04-26 3M创新有限公司 伤口敷料材料及其制造和使用方法
CN111172614A (zh) * 2020-03-03 2020-05-19 百事基材料(青岛)股份有限公司 一种含甲壳素的涤纶长丝及其制备方法
CN113332172B (zh) * 2021-05-27 2023-04-25 昆明理工大学 基于蔗髓季铵盐多糖的纳米纤维凝胶膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482965A (ja) * 1990-07-17 1992-03-16 Asahi Chem Ind Co Ltd 抗菌性加工糸、該加工糸から成る編織物と衣服類
JPH0768648B2 (ja) * 1991-02-20 1995-07-26 富士紡績株式会社 改質セルロース再生繊維
JPH08120525A (ja) * 1994-10-21 1996-05-14 Toray Ind Inc 抗菌性繊維の製造方法および抗菌性繊維
JPH08260354A (ja) * 1995-03-16 1996-10-08 Japan Exlan Co Ltd キトサン担持アクリル繊維およびその製法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191224A (ja) 1982-05-04 1983-11-08 Kanebo Ltd 抗菌性アクリル系合成繊維の製造法
JPS616160A (ja) * 1984-06-19 1986-01-11 東レ株式会社 繊維補強水硬性物質
JPH02307915A (ja) 1989-05-18 1990-12-21 Unitika Ltd 抗菌性繊維製品
JPH04257301A (ja) 1991-02-12 1992-09-11 Asahi Chem Ind Co Ltd 抗菌防臭性を有するレッグ製品およびその製法
KR100317145B1 (ko) * 1992-12-01 2002-12-06 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 지속성을 갖는 항균제제
JP2729355B2 (ja) 1994-07-18 1998-03-18 武内プレス工業株式会社 エアゾール缶
JP3286180B2 (ja) * 1996-02-08 2002-05-27 三菱レイヨン株式会社 抗菌性アクリル繊維およびその製造方法
JPH09217269A (ja) 1996-02-13 1997-08-19 Asahi Chem Ind Co Ltd 抗菌性繊維及びその製造方法
JP2822174B2 (ja) * 1996-03-01 1998-11-11 オーミケンシ株式会社 キチンキトサン繊維及び構造体の製造法
US6197322B1 (en) 1997-12-23 2001-03-06 Kimberly-Clark Worldwide, Inc. Antimicrobial structures
US6143835A (en) 1998-04-03 2000-11-07 Solutia Inc. Polyacrylonitrile polymer treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482965A (ja) * 1990-07-17 1992-03-16 Asahi Chem Ind Co Ltd 抗菌性加工糸、該加工糸から成る編織物と衣服類
JPH0768648B2 (ja) * 1991-02-20 1995-07-26 富士紡績株式会社 改質セルロース再生繊維
JPH08120525A (ja) * 1994-10-21 1996-05-14 Toray Ind Inc 抗菌性繊維の製造方法および抗菌性繊維
JPH08260354A (ja) * 1995-03-16 1996-10-08 Japan Exlan Co Ltd キトサン担持アクリル繊維およびその製法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053924A1 (ja) * 2021-09-30 2023-04-06 株式会社カネカ 抗菌性アクリル系人工毛髪繊維、それを含む頭飾製品、及びその製造方法
WO2023074220A1 (ja) * 2021-10-28 2023-05-04 株式会社カネカ 抗菌性アクリル系人工毛髪繊維、それを含む頭飾製品、及びその製造方法

Also Published As

Publication number Publication date
GB9905546D0 (en) 1999-05-05
KR20000036151A (ko) 2000-06-26
KR100441358B1 (ko) 2004-07-23
TW369571B (en) 1999-09-11
CN1536163A (zh) 2004-10-13
US6551705B1 (en) 2003-04-22
CN1233296A (zh) 1999-10-27
GB2339717A (en) 2000-02-09
CN1276147C (zh) 2006-09-20
GB2339717B (en) 2000-10-11
US6524508B1 (en) 2003-02-25
GB2339717A8 (en) 2001-01-03
CN1168861C (zh) 2004-09-29

Similar Documents

Publication Publication Date Title
WO1998012369A1 (fr) Fibres acryliques contenant du chitosane et procede de preparation de ces fibres
TWI481753B (zh) 抗靜電性丙烯腈纖維及其製造方法
DE112013007131T5 (de) Verfahren zum Behandeln von Textilien während Nasswaschens
CN112647285A (zh) 一种防静电高强度涤纶面料的制备工艺
JPWO2018047344A1 (ja) 改質アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP2842564B2 (ja) 抗菌性ビスコースレーヨン及びその製造方法
JP2000314035A (ja) 抗菌性繊維製品
JP3286180B2 (ja) 抗菌性アクリル繊維およびその製造方法
JP2013076188A (ja) 抗菌性アクリル系繊維の製造方法
JPH02160915A (ja) 抗菌性アクリル系合成繊維及びその製造方法
JP3450137B2 (ja) キトサン含有繊維及びその製造方法
JP3544825B2 (ja) 抗菌性アクリル繊維及びその製造方法
JP3544825B6 (ja) 抗菌性アクリル繊維及びその製造方法
JP7177986B2 (ja) 収縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JPH10280277A (ja) 抗菌性アクリル繊維及びその製造方法
JPH09157978A (ja) 消臭・抗菌性アクリル系合成繊維からなる繊維製品
JP3949773B2 (ja) 抗菌性繊維
JP7177987B2 (ja) 易脱捲縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP2841092B2 (ja) 抗菌性アクリル系繊維の製造方法
JP2849754B2 (ja) 殺菌性アクリル系繊維の製造方法
JPH09176917A (ja) 消臭・抗菌性アクリル系合成繊維及びその製造方法
JP2009091688A (ja) 抗菌性アクリル繊維の染色方法
JP2628496B2 (ja) 抗菌性アクリル系合成繊維
JPH07118925A (ja) 牽切紡用抗菌性ポリアミドトウ及びその製造方法
CN118639343A (zh) 一种生物基抗菌除臭Lyocell纤维的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198782.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN GB KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 9905546

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997002195

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09271272

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997002195

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997002195

Country of ref document: KR