WO1996036507A1 - Systeme de transmission, vehicule a quatre roues motrices employant ce systeme, procede de transmission de puissance et procede d'entrainement de quatre roues - Google Patents

Systeme de transmission, vehicule a quatre roues motrices employant ce systeme, procede de transmission de puissance et procede d'entrainement de quatre roues Download PDF

Info

Publication number
WO1996036507A1
WO1996036507A1 PCT/JP1996/001321 JP9601321W WO9636507A1 WO 1996036507 A1 WO1996036507 A1 WO 1996036507A1 JP 9601321 W JP9601321 W JP 9601321W WO 9636507 A1 WO9636507 A1 WO 9636507A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor
output
distribution
electric
Prior art date
Application number
PCT/JP1996/001321
Other languages
English (en)
French (fr)
Inventor
Eiji Yamada
Masanao Shiomi
Takao Miyatani
Yasutomo Kawabata
Ryouji Mizutani
Shigeru Matuhashi
Shoichi Sasaki
Shigetaka Nagamatsu
Kyomi Shimada
Hidetsugu Hamada
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP07225869A external-priority patent/JP3092492B2/ja
Priority claimed from JP7245463A external-priority patent/JP3052803B2/ja
Priority claimed from JP24546495A external-priority patent/JP3052804B2/ja
Priority claimed from JP24546295A external-priority patent/JP3052802B2/ja
Priority claimed from JP7251944A external-priority patent/JP3063589B2/ja
Priority claimed from JP07266475A external-priority patent/JP3099698B2/ja
Priority claimed from JP26924295A external-priority patent/JP3099699B2/ja
Priority claimed from JP26924395A external-priority patent/JP3099700B2/ja
Priority claimed from JP7269241A external-priority patent/JP3063592B2/ja
Priority claimed from JP07347862A external-priority patent/JP3099713B2/ja
Priority to EP96915188A priority Critical patent/EP0775607B1/en
Priority to US08/765,367 priority patent/US5988307A/en
Priority to KR1019970700365A priority patent/KR100229340B1/ko
Priority to CA002195434A priority patent/CA2195434C/en
Priority to DE69614640T priority patent/DE69614640T2/de
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO1996036507A1 publication Critical patent/WO1996036507A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18018Start-stop drive, e.g. in a traffic jam
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/52Clutch motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/06Ignition switch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1061Output power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • Y10S903/91Orbital, e.g. planetary gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/916Specific drive or transmission adapted for hev with plurality of drive axles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/951Assembly or relative location of components

Definitions

  • the present invention relates to a power transmission device, a four-wheel drive vehicle using the same, a power transmission method, and a four-wheel drive method.
  • the present invention relates to a power transmission device, a four-wheel drive vehicle using the same, and a power transmission method and a four-wheel drive method. More specifically, the present invention relates to a power transmission device for efficiently transmitting power obtained from a prime mover. And a four-wheel drive vehicle using the same.
  • the speed reduction ratio (torque conversion ratio) of 1 + P2 / P1 is realized by the number of poles P2 of the electrician. According to this configuration, since there is no energy loss due to the fluid, it is considered that the energy loss of the power transmission means can be relatively reduced by increasing the efficiency of the electromagnetic hand and the rotational comfort.
  • the torque conversion specific force s ′ is fixed, such as in a vehicle.
  • it cannot be used for a device requiring a wide change in the conversion ratio, such as It was also difficult to achieve the desired ratio according to the size of the glue and the operating state of the prime mover.
  • the fluid using the fluid does not survive the energy loss corresponding to the slip between the shafts.
  • such a power unit can only transmit power to one shaft, and cannot be applied to a four-wheel drive vehicle or the like.
  • the power transmission device of the present invention and the four-wheel drive kagyu using the same solve the above problems and transmit the power obtained from the prime mover with high efficiency and use the power of the prime mover to output the power of the two shafts.
  • the purpose of the present invention is to provide a completely new four-wheel drive vehicle using the power transmission device, and to adopt the following structure.
  • the first power transmission device of the present invention is:
  • a power transmission device that includes a rotating shaft to be reached by the power of the prime mover, and that transmits power from the prime mover input from the rotating shaft to a first output shaft and a second output shaft different from the output shaft.
  • a first motor associated with rotation of the rotating shaft
  • a second electric motor coupled to the second output shaft
  • the first power control means controls the distribution of the power in the distribution means by controlling the power input to and output from the first motor in an electrical form to vary the operation state of the first motor.
  • the first power control means controls the operation of the second electric motor based on the electric power input / output to / from the first electric motor, and outputs the electric power to the second output shaft.
  • the gist is that it is provided.
  • Such a power transmission device includes a first electric motor associated with the rotation of a rotating shaft to which the power of the prime mover is transmitted, and a motor that is input and output in an electric form to and from the first electric motor.
  • the force is re-controlled by the first power control means.
  • the power input / output to / from the first electric motor is controlled, the power input / output to / from the first electric motor and the power of the prime mover are input to the rotating shaft.
  • the distribution between the power and the power that is input and output to and from the first output shaft in a mechanical form is controlled by the distribution means under conditions that balance the input and output. The output power is determined.
  • the operation of the second electric motor is controlled by the second electric power control means based on the electric power input / output to / from the first electric motor by the first electric power control means, Controls the power output to the second output shaft.
  • the power from the prime mover can be transmitted to the first output shaft and the second output shaft different from the output shaft.
  • Fig. 46 shows how power is distributed by this distribution means as a relationship between rotation speed and torque.
  • energy of torque TX rotation speed N is output to its rotating shaft.
  • the prime mover is operating at a point P 1 at a rotation speed Ne and a torque Te.
  • the distribution unit extracts energy corresponding to the illustrated area G1 in an electrical form, and extracts this energy from the second output shaft.
  • Side output and force Assume that the second output shaft is rotating at the same rotational speed Ndf as the first output shaft, and that all the energy extracted in electrical form by the distribution means is output to the second output shaft.
  • the power transmission device of the present invention can be understood as a device for performing torque conversion from the viewpoint of torque and rotation speed.
  • the torque conversion can be performed in the opposite direction, that is, from point P2 to point P1.
  • the four-wheel drive ⁇ ⁇ and the first and second rotational speeds described later are usually the same, so from the viewpoint of torque and rotational speed of the power output to ⁇ 3 ⁇ 4, the above discussion of torque conversion applies directly. It is possible.
  • a third motor coupled to the first output shaft; Controlling the operation of the third motor to apply a power input / output by a third motor to the first output shaft to which power is input / output in a mechanical form by the distribution means; Power control means and
  • the distribution means of the power transmission device of the present invention several modes can be considered.
  • One of them is a first mode in which the first electric motor is mechanically coupled to the rotating shaft of the prime mover.
  • a first rotor and a second rotor that is electromagnetically coupled to the first rotor and that can rotate relative to the first port, and wherein the second rotor is It is mechanically coupled to the first output shaft, which constitutes the distribution means.
  • the first and second power control means may control an electromagnetic coupling between the first and second rotors in the first electric motor by a polyphase alternating current,
  • a first motor drive circuit capable of exchanging power in at least one direction with the first motor
  • a second motor capable of exchanging power in at least one direction with the second motor.
  • a motor drive circuit; and power distribution control means for controlling the first and second motor drive circuits to control the distribution of power input to and output from the first and second output shafts. can do.
  • distribution of the power input to the rotating shaft of the prime mover by the distribution means is performed as follows. Depending on the strength of the electromagnetic coupling between the first and second rotors, power is input / output to / from the first output shaft in a mechanical form, and based on the rotational speed difference between the first and second ports. Power is input and output in electrical form. These power input and output ports are balanced except for losses due to friction.
  • This form in which the distribution means is configured as a kind of motor is hereinafter referred to as an electric distribution type.
  • the first and second electric motor drive circuits can exchange electric power with the first and second electric motors in at least one direction.
  • the first output shaft and the second The power output to the output shaft can be freely distributed.
  • the first or second electric motor driving circuit includes a secondary battery capable of storing at least a part of electric power regenerated between the first and second electric motors.
  • the power distribution control means in addition to the power supply between the first and second dragon machines under the control of the first and second electric motor drive circuits, Means may be provided for controlling the accumulation of power and the output of power from the secondary battery to control the distribution of power input to and output from the first and second output shafts.
  • both electric motors are driven because there is no restriction to drive the other electric power as it is from the electric power regenerated from one end, that is, there is no need to balance the power balance between the first electric motor drive circuit and the second electric motor drive circuit.
  • the advantage is that the degree of freedom of control is further increased.
  • the power distribution control means controls the first electric motor drive circuit so that the first electric motor is located between the first rotor and the second port rather than the first electric motor.
  • Regenerative control means for regenerating electric power corresponding to the generated slip rotation via the first electric motor drive circuit, and the second electric motor drive circuit using at least a part of the electric power thus regenerated by the second electric motor drive circuit.
  • Power control means for powering the motor. In this case, electric power is regenerated from the first electric motor via the first electric separation circuit, and the second electric motor is operated by using at least a part of this electric power.
  • the motor torque can be freely distributed to the output shaft of the motor.
  • the power distribution control means controls the first motor drive circuit using the electric power stored in the secondary battery, and controls the first motor drive circuit so as to power the first motor. It is also possible to include second power control means for controlling the second motor drive circuit and powering the second motor. For this purpose, both motors can be operated, and a large torque can be output from the first and second output shafts.
  • the distribution means includes a rotating shaft of the prime mover, the first output shaft, and the first electric motor. And three shafts respectively coupled to the rotating shaft of the prime mover, and input / output to / from a shaft coupled to the rotating shaft of the first electric motor among the three shafts. Power Is determined, the power input to and output from the shaft coupled to the first output shaft is determined based on the determined power.
  • the first and second power control means may further include a first electric ⁇ -dynamic circuit capable of supplying and removing electric power in at least one direction to and from the first electric motor.
  • a second motor drive circuit capable of exchanging power in at least one direction with the second motor; controlling the first and second motor drive circuits to control the first and second motors.
  • a power distribution control means for controlling distribution of power input to and output from the output shaft.
  • distribution of the power input to the rotating shaft of the prime mover by the distribution means is performed as follows.
  • the three-axis power input / output means is configured to determine whether power input / output to / from the three shafts connected to the rotating shaft of the prime mover and the shaft connected to the rotating shaft of the first electric motor is determined. Based on the determined power, a power force i ′ input / output to / from the shaft coupled to the first output shaft is determined, and the input / output of power to / from the i-th output shaft is performed in a mechanical form. It is.
  • the first electric motor inputs and outputs power in an electric form.
  • the first and second electric motor drive circuits are capable of removing power in at least one direction between the first and second electric motors.
  • the means controls these motor drive circuits, so that the power output to the first output shaft and the second output shaft can be freely distributed.
  • At least one of the electric power generated by the first or second electric motor drive circuit with the first or second electric motor is used.
  • a power distribution control means in addition to the exchange of power between the first and second motors under the control of the first and second motor drive circuits.
  • the power distribution control means controls the first electric motor drive circuit, and is connected to the rotating shaft of the prime mover. Power input and output and power input and output to the first output shaft And a regenerative control means for regenerating electric power according to the difference between the first exciter and the first exciter via the reciprocating machine drive circuit described in (1).
  • the motor may be provided with power control means for powering the second motor by an S-dependent circuit.
  • the dragon force accumulated in the secondary reservoir is used as the power distribution control means.
  • a first power control stage for controlling the driving circuit to control the first motor; and controlling the second motor drive circuit for controlling the second motor to control the second motor.
  • a second row control T ′ stage may be provided.
  • the mechanical energy output from the prime mover is transmitted through a circuit to # 1 Sil ⁇ , and a part of the SI mechanical energy transmitted using the first motor is transmitted to an electric energy storage. ⁇ Then take out
  • the power output to the first and second outputs is controlled by a predetermined amount by controlling one minute between the mechanical energy fed in the first machine and the extracted pneumatic energy. The point is to make adjustments.
  • the assist transmission device controls the distribution of the mechanical energy transmitted using the first aircraft and the electrical energy extracted, and at least one of the electrical energy extracted. Since the second unit is driven by using the unit, the power output to the first shaft; the power shaft and the second output shaft can be adjusted to a predetermined magnitude.
  • a power transmission device S, a distribution determining step for determining a distribution of the power output to the first output shaft and the power output to the second output shaft;
  • the first and second power control means may be means for controlling the power distribution determined by the distribution determination means as B fi.
  • the power transmission device g first determines the power distributed to the first mountain power ⁇ and the second mountain power axis by the distribution determining means.
  • the first and second power control means are Control is performed with the power distribution as the target value.
  • mi is controlled by giving priority to the distribution of force input to and output from the second output shaft.
  • the first motor is controlled by controlling the i3 ⁇ 4J force of the first motor through the first power control means.
  • Control is performed using the power distribution determined for the first output shaft by the distribution determination P and the stage as the M target value: ⁇ ⁇ stage, and ⁇
  • the second power control means may be a means for performing control using the power distribution determined by the distribution determining means for the second output shaft as a target value.
  • the prime mover while the prime mover is operated under desired operating conditions, for example, under conditions that reduce fuel consumption, the distribution of power input and output to the first and second output shafts is automatically performed. Can be controlled.
  • the ⁇ 1 motor is magnetically coupled to a first rotor that is coupled to a rotation shaft of the prime mover, and the first rotor is magnetically coupled to the first rotor.
  • a rotor that can rotate relatively to the rotor, and the second rotor is mechanically coupled to the first output shaft, and this configuration constitutes distribution means.
  • the notation fl'd ⁇ is coupled to the rotation axis of the 11th machine, the 2nd output shaft, and the rotation axis of the 1st lllJ machine.
  • the axis coupled to the M axis of the preceding motor and the axis coupled to the rotating axis of the first engine Based on the determined power, a 3 ⁇ 3 ⁇ 4-type power input / output means can determine i3 ⁇ 4 force input and output to and from a shaft connected to the output shaft. That is, the above-described control can be realized by a distribution type power transmission device.
  • the illuminator of ⁇ 1 or ⁇ 2 (or the third motive if it has a third motive) has a rotating magnetic field constituted by a polyphase alternating current, IEI rotation occurs due to interaction with the magnetic field generated by the permanent magnet. :) It can be a motive Wear.
  • the synchronous m motive can take out a large power for a small and lightweight S! L, and the power transmission device can be made compact.
  • a power assisting machine having a ⁇ " ⁇ rotating ⁇ ⁇ ⁇ which is output by the assisting force and rotating the ifc if;
  • a second pump coupled to the second shaft
  • the first is to control the ST that is input / output to / from the first machine in a typical manner, to vary the operating state of the electric motor described in (1), and to control the distribution of the power in the (5) distribution stage. 3 ⁇ 4] force control
  • the first power control means controls the operation of the second motor based on the power input / output to / from the first motor in an electronic form, and outputs the power to the ⁇ 2 axle.
  • the wheel drive is equipped with a first motor that is wrapped around the rotation of the shaft to which the power of the prime mover is transmitted. Is controlled by the first power control means! 3 ⁇ 4.
  • the power output to the first electric motor in human form is controlled, the power input to and output from the first electric motor in electric form and the power of the original iJ
  • the distribution of the power input to the vehicle and the power input to and output from the first axle in mechanical form is controlled by the distribution means under the condition that the total power of the human output s is balanced.
  • the power input to and output from the rate axis is determined.
  • the second power control means controls the rotation of the second single motor. Control the output force to the second axis.
  • a third electric motor coupled to the first vehicle
  • the assisting force is input and output in a mechanical form by the distributing means.
  • the input and output of power by the third ⁇ ; motive can be added to the force applied to the first axis by the mountain force, and the power finally input and output by the first
  • it is not limited to 5% of the mechanical power that is input and output mechanically by the distribution means, but can be widely varied.
  • a first rotor and a second rotor coupled to the first rotor and rotatable relative to the first rotor.
  • the two ⁇ -elements are mechanically coupled to the first unit, constituting the distribution means,
  • a first electric machine drive circuit capable of controlling magnetic coupling and exchanging force in at least one direction in relation to the second imperial machine
  • a motor drive circuit of ⁇ 2 capable of nj 'capability of at least one-way power exchange with the auxiliary machine
  • a force distribution control means for controlling the first and second promotion circuits to output the assistance of the front ffi machine to the first and second output shafts in a distribution of m3 ⁇ 4;
  • the distribution-: ⁇ -stage is an air distribution type configuration.
  • the first or second motor drive circuit is capable of supplying at least a part of the electric power that is turned between the first and second motors.
  • the next pond is lowered, and the power distribution control is controlled by controlling the first and second motor drive circuits to reduce the
  • the first power distribution control means controls the first motor driving circuit, and the first motor and the second motor are controlled by the first motor.
  • the circuit can control the second motivation and the power control means.
  • the first power machine from the W, 1 destroyer! It is possible to regenerate electric power through the circuit, use at least one of this electric power to power the second motor, and freely distribute the torque of the power plant to the first and second output shafts. it can. By distributing the torque, the vehicle can be accelerated and free-run as a whole.
  • the power distribution control means controls the electric motor drive path of the second and the second motor driven by the rotation of the second vehicle.
  • the at least one of the regenerated power and the control unit that regenerates the power from the Ryu-Kenki and using the least power of the regenerated power. It is also possible to adopt a configuration in which the control of the line is tight.
  • Four-wheel drive In that case, since the four wheels are engaged via the road, it is also possible to avoid turning on the side of the second axle and perform power running on the side of the first ⁇ -axis. It is. With such a distribution of torque, acceleration, free-running and braking of the vehicle as a whole are J-ability.
  • the power control means controls the first motive drive path to control the first rotor and the first rotor.
  • the power corresponding to the slip rotation generated between the rotor and the rotor is transmitted through the first motor drive circuit.
  • the second motor that regenerates electric power from the second motor before being rotated by the second rotation.
  • a regenerative control means for storing at least a part of the regenerated power in the secondary battery.
  • a driving force or a braking force can be applied to the first bridge.
  • ⁇ 3 ⁇ 4 can be placed in a free run or braking state.
  • the power distribution control means controls the first motor drive circuit by using the electric power stored in the secondary battery, and A first power control means for powering the motor; and a second power control means for controlling the second motor drive circuit to power the second motor.
  • motive power using the electric power of the secondary battery can be applied to both shafts, and together with the driving force of the prime mover, can be placed in a free-run or accelerated state. When placed in an accelerated state, it is possible to output higher power to the axle and realize high acceleration, compared to the case where the first electric motor generates slip rotation and regenerates electric power. :'Wear. Even when the prime mover is stopped, the driving force can be generated in the first and second power units.
  • the distributing means has three axes respectively coupled to a rotation axis of the prime mover, the first axle, and a rotation axis of the first electric motor, and is coupled to a rotation axis of the prime mover among the three axes.
  • the power input to the shaft coupled to the first ⁇ 3 ⁇ 4 is determined based on the determined power.
  • the output power is determined as a 3-axis power input / output means.
  • the first and second power control means are The first and second power control means,
  • a first motor drive circuit capable of removing power in at least one direction between the first motor and the first motor
  • a second motor drive circuit capable of removing and removing power in at least one direction with the second motor
  • Power distribution control means for controlling the first and second motor drive circuits to control the distribution of power input to and output from the first and second axles; and Can be equipped with
  • the distribution means is configured to be a mechanical distribution.
  • the u 3-shaft ⁇ who output means is performed as follows, prior to the prime mover of the three axes
  • the power output to humans is determined on the shaft connected to the rotating shaft and the shaft connected to the vehicle hill of the first ft machine, based on the determined power,
  • the force input and output to the axis connected to the first group axis is determined, and the input and output of the force to the first axis
  • the first printer performs human output of assistance in an electrical form.
  • the power distribution control means controls these drive paths so that the power output to the first axle and the second power can be distributed to the own mountain.
  • the first or second motor driving circuit is provided by the first or second motor.
  • a secondary pond capable of storing at least a part of the electric power regenerated between the first and second motive driving times and the first and second motive driving times is controlled by the power distribution control preliminary stage.
  • the accumulation of electric power in the secondary frost pond and the discharge from the secondary pond! T-stage that controls the output of the force and controls the Sd component of the power output to the first and second $ axes.
  • the electric distribution type configuration and IHJ-like, the previous dS & force distribution control means control the ⁇ 1® I machine drive circuit, and the power output to the M shaft of the prime mover and the front d
  • a regeneration control means that generates electric power according to the difference between the killing power input to and output from the first axle from the auxiliary machine of the first axle via the IMJ road. And at least a part of the regenerated power, and a power control means for performing the drive described in ⁇ d'2 above by the second It motor drive path. I can do it.
  • the excitation distribution control means is controlled by controlling the second motor driving circuit.
  • a vehicle with a secondary pond is controlled in the same manner as in the configuration of the electric distribution type by controlling the control of the first motor ( ⁇ _3 ⁇ 4) circuit, wherein a power input to and output Question shaft of the prime mover first to ⁇ axis input f ⁇ , the motive power force;!
  • a first cow which generates power corresponding to the current from the first machine via the first electric auxiliary machine drive circuit.
  • the control means and the second machine drive And the second regenerative control stage for regenerating electric power from the second (1) regenerated by the second regenerative control stage.
  • at least one of the generated power can be stored in the secondary battery.
  • the power distribution control means is applied to the if A first power control means for controlling the first motor, and a second power control means for controlling the second motor drive circuit to terminate the second power.
  • the 352-wheel drive vehicle of the present invention converts the mechanical energy output from the prime mover to a first electric motor through a circuit, and converts the mechanical energy transmitted from the first electric motor to the first electric motor. Part of it is converted into aerial energy and taken out.
  • the second electric motor When the remaining mechanical energy is output to the first motor; at ft, the second electric motor is turned on by ffl at least a part of the B electric energy extracted from the 33rd first SJ machine. , Car #]
  • the power output to the first and second power is controlled to a predetermined value.
  • the gist is to adjust the size.
  • the four-wheel drive controls the distribution of the target energy transmitted using the first electric machine and the extracted target energy, and uses at least a minus part of the extracted target energy.
  • ⁇ 2 ' ⁇ Since the motive is driven, the power output to the first axle and the second single axle can be adjusted to a predetermined magnitude.
  • the distribution means for determining the distribution of the power output to the first wheel and the power output to the second axle is lowered,
  • the power control means may be a means for performing control using the assist distribution determined by the distribution determining means as a reference value.
  • the g-force distributed to the first axle and the second axle is determined by the distribution determining means.
  • the first and second power control means perform control using the determined power distribution as the target value. Will be performed.
  • the prime mover is operated in a desired operation area by controlling the power of the ⁇ 1 electric motor through the first power control means.
  • the motor stray means and the distribution determining means for determining the distribution of the power to be applied and the power to be output to the first Ml in the above ⁇ 1 are also provided.
  • K-Power control The ⁇ stage is a stage where the distribution is determined by the distribution determining means using the power fld determined for the first job as a reference value, and the second second power control means is the minute determining means. The control can be performed using the power distribution determined for the second axle as a target value.
  • the distribution of the power input to and output from the first motor and the second motor is controlled by S while operating the prime mover under a desired operating condition, for example, a running condition in which fuel consumption is reduced. be able to.
  • the first first machine is firstly coupled to the spindle of the Hara machine, and the first machine is coupled to the first machine. It has a second rotor that can rotate relative to the mouth of the vehicle, and the second rotor is mechanically coupled to the surface of the vehicle.
  • the distribution means can be configured. That is, the control described above can be realized by the air distribution method.
  • the distribution: ⁇ -stage is coupled to the rotation axis of the prime mover, 3 ⁇ 4 ifd the first bridle, and d the first self-rotating machine, respectively.
  • the axis coupled to the 1 ⁇ 1 rotation axis of the prime mover and the axis coupled to the rotation axis of the first motor is determined.
  • the first ⁇ ! The output power is determined by the axis connected to the axis. It can be killed. That is, the above control can be achieved by a mechanical distribution system.
  • the third four-wheel drive power supply of the present invention provides the power of the prime mover to the second axle of the glue and the second power supply which is not directly connected intelligently to the first power supply.
  • Keiki Hara has a rotating shaft that outputs power and turns the ⁇ !
  • a first port that is mechanically tied to the rotating shaft of the prime mover; and a first port that is electromagnetically coupled to the first rotor and that can be moved relative to the first port.
  • a first lightning arrester having two rotors, wherein the first rotor is mechanically coupled to the second rotor;
  • the magnetic coupling between the first and second rotors in the first motive is controlled by the multi-phase alternating current. At least a-'direction electric power is removed between the first motive and the first motive.
  • a first electric circuit that can be powered;
  • a third rotor mechanically coupled to the other rotor of the prime mover, and a dragon-shaped coupling to the third rotor and rotating relative to the third port;
  • a fourth rotor obtained by mechanically coupling the second rotor to the fourth rotor, and the first and second motors in the first machine J by multi-phase alternating current. Controlling the electromagnetic coupling between the two rotors, and (2) the second motor drive path with RJ 'capability to remove power in at least one direction in the second motor;
  • a power component controlling means for controlling the first and second drive trains of the first machine and outputting the power of the first machine to the first and second axles in a predetermined distribution
  • the gist is that it is provided.
  • This four-wheel drive vehicle has the same configuration as a motor having a relatively rotatable rotor added to the path from both ends of the output 1 of the prime mover to the first or second axle.
  • the first or second motor drive circuit is capable of storing at least a minus part of the power generated by the first or second motor.
  • the power distribution control U-stage is the first and second
  • a configuration shall be provided that has a secondary battery control that controls the accumulation of power and / or the power from the secondary battery to the secondary pond. I end up. This ⁇ does not need to balance the power balance of the motives, and the ⁇ 51 and the second ⁇ t [( Distribution can be controlled to the width of the eyebrows.
  • the second four-wheel drive vehicle of the present invention is a four-wheel drive vehicle equipped with a power transmission device that transmits the power of the prime mover to the first axle and the second ⁇
  • a second rotor mechanically coupled to the rotating shaft of the prime mover; a second rotor that is magnetically coupled to the first rotor and is relatively movable with respect to the first rotor; A first electrode jif in which the second port is mechanically coupled to the first port.
  • the first axle and the female female are not mechanically coupled.
  • a second ⁇ motive drive circuit capable of removing power in at least one direction with the second 3 ⁇ 4 ⁇ 3 ⁇ 4J machine
  • a braking force control that applies a braking torque to the first and Z or second motors by controlling the first and second electric motor driving circuits;
  • the gist is that it is provided.
  • This four-wheel drive glue exerts an exciting force on the first and second Z-axis or the second mid-axis by controlling the first and second motor vertical I paths to control the four-wheel drive system. It is possible to freely control the power. In addition, energy can be further circulated through the first or second electric power killing circuit at the time of braking to further increase the energy efficiency.
  • Hara 3 ⁇ 4j machine A power shaft that is driven by a force i, and a motor that is input and output to and from the i-th output shaft to which the first motor is coupled based on the assistance from the motor that is input from the rotation shaft.
  • a distribution means is provided to control the distribution under conditions where the input and output are balanced;
  • the operation of the first motor is changed, and the state of the first motor is controlled.
  • the operation of the second motive is controlled based on the excitation that is input / output to / from the motor of the above-mentioned (1) in the form of an electric power in accordance with the operation of the distributing means, and is output to the output 552 of the above-mentioned motive.
  • the power of the prime mover is provided with a rotating shaft, and based on the power from the prime mover input from the rotating shaft, the power is input / output to / from the first shaft to which the first prime mover is coupled.
  • a four-wheel drive method that controls the distribution of power that is transmitted to a second shaft different from that of the first vehicle.
  • the power input to the shaft, the force input and output to the first ⁇ ⁇ with a mechanical force, and the force input and output to the second electric machine in electrical form The distribution is controlled by the condition of the balance of the input and output.
  • the prime mover can be any prime mover such as a rotary engine, a gas turbine, a Stirling engine, etc., in addition to a M engine such as a gasoline engine or a diesel engine.
  • These engines may be controlled in a steady state 4r; in a state of on-off control; The output may be controlled according to the degree of connection or the required torque.
  • control may be performed according to the state of charge of the secondary battery. It is natural to control the vehicle from the overall state.
  • the first and second motives include a permanent magnet type synchronous motor, a permanent magnet type DC motor, a normal DC motor, an induction motor, and a permanent magnet type or reluctance motor.
  • Various types of motors such as a vernier motor, a stepping motor, and a superconducting motor can also be used.
  • the motor circuit that controls these motors may be of a type suitable for the type of motor.For example, an IGBT inverter, an inverter using transistors, a thyristor inverter, and a II-PWM
  • Various types of circuits are known, such as an inverter, a flow inverter, and a 3 ⁇ 41 inverter.
  • secondary ⁇ as a pond, battery, nickel
  • FIG. 1 is a configuration teJ showing a schematic configuration of a four-wheeled vehicle 15 as a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a schematic configuration of the ⁇ class of FIG.
  • FIG 3 is a schematic configuration of the four-wheel drive 1—the power transmission device IS 20 in the middle vehicle 15 including / without an air connection.
  • FIG. 4 is a listening view showing the structure of the clutch-motor 30 of the embodiment.
  • FIG. 5 is a flowchart showing an outline of a torque control process in the control CPU 90.
  • FIG. 6 is a flowchart showing this processing of the control of the clutch motor 3 0 u
  • FIG. 8 is a flowchart showing the latter half of the basic processing of the assist motor 40 control.
  • FIG. 9 is a flowchart showing a control routine for performing specific distribution of driving force as a second embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an outline of the power assist control as a variation of the second embodiment, j.
  • Hi 1 is a flowchart showing details of another example of the assist control.
  • FIG. 12 is an explanatory diagram showing a chargeable area map in the embodiment of FIG.
  • FIG. 13 is an explanatory diagram showing the capacity for the remaining capacity of the battery 94 in the third embodiment.
  • FIG. 14 is an explanatory diagram showing the utilization distribution of the energy supplied from the killer 50 in the third embodiment.
  • Fig. 15 is a graph illustrating the relationship between the external force (torque Tc) when the fuel is stopped and the rotational speed Ne of the engine 50, u
  • FIG. 16 shows the relationship between the rotation speed N df of the ⁇ 22 A and the time t when the clutch motor 30 is set to the eccentric torque ⁇ c and the state of the clutch motor 3 ⁇ in this question. It is explanatory drawing which illustrates an idea.
  • FIG. 17 is a flowchart illustrating a control routine executed by the control refitting unit 80.
  • FIG. 18 is a schematic configuration diagram showing the entire structure of the fifth embodiment of the present invention.
  • FIG. 19 is a diagram showing the configuration of the motor MG 1 and the planetary gear 1.20 in the fifth embodiment. 11 ⁇ ⁇
  • Reference numeral 20 denotes another configuration diagram of the power system of the four-wheel drive vehicle, showing the configuration of the control device 180 at the center.
  • 3 ⁇ 4121 is an explanatory diagram showing the linkable area Q Q of the engine 150 and the turning point of the engine 150.
  • FIG. 22 is an explanatory diagram showing the killing collinear which explains the principle of the Keisaku of the planetary gear 120.
  • i ⁇ l 23 is a flowchart showing the loop routine executed by the control device 180 of the fifth male example.
  • FIG. 25 is a graph for determining the rotation point of the engine 150 from the vehicle speed and the vehicle torque.
  • FIG. 26 is a flowchart showing the il control routine of a mechanically-divided four-wheel drive vehicle.
  • FIG. 27 is a flowchart showing the speed / speed mode determination processing routine.
  • FIG. 28 is an explanatory diagram showing how the power of the engine 150 is split between the front and rear wheels.
  • FIG. 1 ⁇ 29 is an illustration showing how the power of the engine 15 1 is transferred from the front wheels to the rear wheels and the IEJ is collected at the rear wheels.
  • 1I3 ⁇ is an explanatory view showing the power output from the engine 150 to the front wheels.
  • FIG. 31 is a view illustrating that all the excitation of the engine 150 is output to the rear wheels.
  • FIG. 32 is a diagram showing palms that are converted into air energy and stored in the battery 194 and then output to the rear wheels, according to the driving power of the engine 50.
  • Fig. 3 3 shows the engine;
  • the power of 50 is transmitted from the front wheels to the rear wheels, collected at the rear wheels, and passed to the battery 194! It is an explanatory view showing a child to be sought.
  • # 34 is a schematic configuration diagram showing a hardware configuration of a sixth embodiment of the tree search.
  • feI 35 is a flowchart showing the four-wheel processing routine in the sixth embodiment.
  • No. 36 is an explanatory diagram showing a range of power distribution in the sixth example.
  • Fig. 37 is an explanatory diagram showing Norioka's distribution of the Keirin in the fifth proposed embodiment.
  • Figure 38 is a flowchart showing the four-wheel processing routine in the seventh example.
  • I 40 is a graph exemplifying the relationship between the efficiency of the operating point of the engine ⁇ b U along the curve of constant energy and the time M (Ne) of the engine 150.
  • ⁇ 41 is a schematic configuration diagram showing a configuration of a modification of the mechanical distribution type embodiment.
  • # 42 is a sentence diagram illustrating an outline of the configuration of a modification example such as the fifth embodiment.
  • beta is a configuration diagram of [rho
  • 4 4 is the embodiment of an electrical distribution type, and applying the configuration of the G embodiment
  • An example of the configuration in this case is, 7;
  • Fig. 45 is a schematic configuration diagram of another configuration example of the air distribution system.
  • FIG. 46 is a graph for explaining the original press of the present invention. A form of goodness that does not make the invention ⁇ 5 ⁇
  • FIG. 1 is a configuration diagram showing a schematic configuration of a four-wheel drive vehicle 15 incorporating a power transmission device 20 as a first example of the present invention
  • FIG. 3 is a configuration diagram that draws the configuration of FIG.
  • a gasoline engine that is driven by gasoline as the prime mover 50 is included in this area.
  • the prime mover 50 sucks a mixture of the air sucked from the intake system through the throttle valve 66 and the gasoline injected from the valve 51 into the combustion chamber 52 and is pushed down by the explosion of this mixture.
  • the movement of the piston 54 is applied to the rotation of the crankshaft 56.
  • the throttle valve 6 (3 is driven to open and close by the motor 66a) .
  • the spark plug 62 emits a spark due to a high voltage applied from the signer 58 through the distributor 60.
  • the air-fuel mixture is ignited by the electric spark and explosively burns, and the energy extracted by the i-combustion is a power source for driving the vehicle.
  • EFIECU 70 The operation of the original flue machine 50 is controlled by an electronic control unit (hereinafter referred to as EFIECU) 70.
  • EFIECU 70 has a variety of sensors that indicate the operating status of the Hara Keiki 5 ⁇ . For example, detecting the opening of the throttle valve 6 6
  • the throttle position sensor 67, the intake calendar negative pressure sensor 72 that outputs 50 fish loads of the original machine, the water temperature of the original machine 50 is detected; the «sensor 74, the crankshaft 56 provided in the distributor 60
  • a frequency sensor 76 and a rotation angle sensor 78 for detecting the number of times of ifg and the ⁇ ⁇ angle.
  • the EFI ECU 70 does not show other components such as a force connected to a status switch 79 for outputting the ignition key state ST, other sensors, switches, and the like.
  • the crankshaft 56 is connected to the drive shaft 22 A via the clutch motor 30.
  • the drive 22A is connected to the differential gear 2 for destroying the front wheels via the reduction gear 23.
  • the torque output from the drive shaft 22 A is finally transmitted to the left and right front wheels 26 and 28.
  • the rear wheels 27 and 29 are transmitted through a differential gear 25 for rear wheels.
  • the assist motor 30 is connected to the vehicle 15. That is, in this vehicle 15, the front wheels 26, 28 are driven by the prime mover 50 and the clutch motor 30, and the rear wheels 27, 29 are driven by the assist motor 40, respectively! It is configured as a driven four-wheel drive vehicle.
  • the clutch motor 30 and the assist motor 4 are controlled by the control device 80.
  • a control CP is provided inside, and the shift amount sensor 84 provided on the shift lever 82 and the accelerator pedal 64 are provided to output the operation amount.
  • a brake pedal position sensor 65 for detecting the operation of the brake pedal 68 and the like are also connected.
  • the control device SO exchanges various kinds of information by communicating with the h! FI ECU 70 of ⁇ 3 pounds. The control including the exchange of such information will be described later.
  • the power transmission instrumentation g 20 As shown in u Figure 3 to theory ⁇ configuration of the power transmission device 20, the power transmission instrumentation g 20, the person listening has original ⁇ 50 for raw power, one end of the crankshaft 56 of the original ⁇ 50
  • each motor will be described with reference to 1 ⁇ 13 and ⁇ ) 4.
  • Clutch model As shown in FIGS. 3 and 4, the rotor 30 has a permanent magnet 35 on the inner peripheral surface of the outer 1J 32, and a three-phase coil 3 on a slot formed on the inner rotor 34. It is configured as a synchronous motive for winding 6. The removal of the Hi force from the negative-phase coil 3 G is performed through the transformer 38. As will be described in detail later, the clutch motor 30 has a case where power is supplied to the three-phase coil 3 G to perform power, and a case where power is extracted from the ⁇ phase coil 36 and regenerated.
  • the crankshaft 56 is provided with a resolver 39 ⁇ ⁇ for detecting the rotation angle 0 e, while the drive ⁇ 22 A is provided with a resolver 39 B for detecting the E1 rotation angle ⁇ f. I have.
  • the control device ⁇ 80 sets the clutch motor 3 It is possible to know the relative rotation angle ( ⁇ : air angle) of the inner rotor 34 with respect to the outer rotor 32 in ().
  • the assist motor 4 provided separately from the clutch motor 30 is also configured as a synchronous machine similarly to the clutch motor 30, but the three-phase coil 44 that forms the regenerative magnetic field is It is wound around the stator 43 set in case 45 [ ⁇ ].
  • the stator 43 is also formed by protruding a non-magnetic ': magnetic magnetic plate.
  • a plurality of permanent magnets 46 are provided on the outer peripheral surface of the rotor 42.
  • the magnetic field and the three-phase coil 44 are formed by the permanent magnets 46 at the time of powering. Interaction with the generated magnetic field causes the rotor 42 to rotate. At the time of regeneration, power is extracted from the three-phase coil 44 by the rotation of the mouth 42.
  • the shaft to which the rotor 42 is mechanically connected is the drive shaft 2 213 of the rear wheels 27, 29, and the drive shaft 22 ⁇ has a resolver 4 for detecting its rotation angle ⁇ r. Eight are helping. Further, the drive shaft 22 is supported by a bearing 49 provided in the case 45.
  • the assist motor 40 is a normal permanent magnet type three-phase synchronous motor.
  • the force clutch motor 30 is a three-phase motor with a permanent rotor 35 having permanent magnets 35.
  • the inner rotor 34 with the fins 36 is also configured to rotate together. Therefore, the details of the structure of the clutch motor 30 will be described with reference to FIG.
  • the outer rotor 32 of the clutch motor 30 is attached to the outer end of a wheel 57 fitted to the crankshaft 56 by a press-fit pin 59a and a screw 59b.
  • the central city of the wheel 57 is implemented in a dog, where the inner rotor 34 is rotatably mounted using bearings 37A and 37B. Still, the inner rotor 34 has one end of the drive shaft 22 A set to 1 ⁇ 1.
  • the permanent rotor 35 is provided on the outer rotor 32.
  • the permanent magnets 7-35 are provided in a length of 4 mm, and are attached to liSi of the outer rotor 32.
  • the direction of the 'magnetizing force' is a direction toward the center of the axis of the clutch motor 30, and the direction of the magnetic pole is reversed every other direction.
  • the HJ coil 3 H is wound around a total of 24 slots (FIG. U) provided in the inner rotor 34.
  • the inner rotor 34 is opposed to the permanent magnet 35 by a slight gap. and which, when passing ⁇ to the coils, the flow Sansho ⁇ flow u each coil to form a «gamma through the tee Ichisu separating slot.
  • the rotating transformer 38 is equipped with a ⁇
  • the control device ⁇ 80 exchanges power bidirectionally with the first drive circuit 91, which can exchange power bidirectionally with the clutch motor 30, and the assist motor 40, as indicated by ⁇ 13.
  • the control CPU90 is a one-chip microprocessor, which internally has a KAM90a for checking, a ROM90b which has ij processing programs, and an input / output port.
  • the control CPU 90 includes an engine
  • a residual that detects 94 residual ⁇ ⁇ residual from detector 99 BRM, etc., is input via the input port.
  • the remaining capacity detector 99 measures the specific gravity of the digestion solution of the battery 94 or the total volume of the battery 94 to detect the remaining capacity.
  • Known are those that detect remaining capacity by calculating the remaining capacity, and those that detect the remaining capacity by measuring the internal resistance by momentarily short-circuiting the end of the battery.
  • control CPU 90 sends a control signal SW1 for extinguishing the six transistors Tr1 to Tr6, which are switching elements provided in the first driving circuit 91, and a second driving circuit 92.
  • a control signal SW2 for operating six transistors Tr11 to T16 serving as provided switching elements is output.
  • the six transistors Tr 1 to Tr 6 in the first drive circuit 91 constitute a transistor inverter, and each has a source side and a sink side with respect to the -pair source line »1 and P2. G are arranged in pairs so that the clutch Each of the three-phase coils (UVW) 36 of the motor 30 is connected via a rotary transformer 38.
  • the power lines P 1 and P 2 are connected to the positive and negative sides of the battery 94, respectively, so that the transistors D 1 and T r that are paired with the control CI 3 U 90 are connected.
  • the on-time ratio of 6 is controlled sequentially by the control signal SW 1, and the current flowing through each coil 36 is converted into a pseudo ft fission sine wave by PWM control. It is formed ,
  • the six transistors T i-11 to T i-16 of the second circuit 92 also constitute a transistor inverter, and are respectively the same as the first drive_fj circuit 91.
  • the connection points of the paired transistors that are arranged are connected to each of the three-phase coils 44 of the assist motor 40.
  • the transistors of the pair by a control C i J U 9 0!
  • the on-time of ⁇ 1 1 to ' ⁇ r 1 ⁇ is sequentially controlled by the control signal SW2, and the normal flow flowing through each coil 44 is converted into a pseudo sine wave by _HWM control.
  • _HWM control As a result, an EI magnetic field is formed.
  • FIG. 46 is a schematic diagram showing a configuration for forming the force fti ′.
  • the energy (torque X times) extracted from Keiki Hara 50 is transmitted to the drive 22 via the clutch motor 30, but is transmitted to the clutch motor 30 smoothly.
  • the energy corresponding to the rotational speed ax X transmission torque is regenerated from the three-phase coil 36 of the clutch motor 30. This energy is recovered from the rotary transformer 38 via the first drive circuit 91 and stored in the battery 94.
  • the assist motor 40 generates torque substantially equal to the torque applied to the drive shaft 22 A via the clutch motor 30.
  • This torque is obtained by the energy stored in the battery 94 or the energy regenerated by the clutch motor 30, and is obtained by running the assist motor 40 u.
  • Torque force s is applied to 6, 28 and rear
  • the power transmission device S 20 described above is not a full-time 4 WD Various operations are also possible. Hereinafter, the operation of the transmission and concealment 20 will be described.
  • Keiki transmission! Operation source of 20: 3 ⁇ 4
  • the principle of torque conversion is as follows. It is assumed that the prime mover 50 is recirculated by tl FIECU 70 and is rotating at a predetermined rotational speed N1.
  • the CPU 90 outputs the control signal SW 1 to turn off the transistor ⁇ ) 1 and when the crankshaft 56 of the engine 50 is turned fc and the drive shaft 22 A is turned A constant current flows through the two-phase coil 36 of the clutch motor 30 according to the deviation from the fe-number (in other words, the collision number difference between the outer rotor 32 and the inner rotor 34 in the clutch motor 30).
  • the clutch motor 30 functions as a generator, a current is generated through the first drive M path 91, and when the battery 94 is full, the outer rotor is turned off. 32 and the inner rotor 3 are in a state in which a certain amount of slip exists.
  • the original machine 50 has lost its crankshaft 56 with ⁇ ; a number N e and a torque T e, and the output ⁇ 22 A, which is the output side of the clutch motor 30, when rotating at a rotational speed N df, regenerated click Ratsuchimota 3 0 times number difference (N e -N df) fiber energy regions G 1 to phase Micromax .I the torque T e of the clutch motor 3 0,
  • the slip in the clutch motor 30 (the number of rotations)
  • the energy corresponding to the difference is applied to the drive shaft 22B as a torque Trif
  • the four-wheel drive vehicle 15 is driven with a torque Te10Tdr greater than the output torque Te of the prime mover 50.
  • the number of turns of the front wheel 26 and the rear wheel 27 of the vehicle 15 ie, the rotation of the drive shaft 22A for the front wheels and the drive shaft 22B for the rear wheels
  • the numbers Ndf and Nd l- are equal, but they do not always match during cornering. Therefore, the torque T dr fed from the assist motor 40 to the rear wheel 27 is, unless efficiency is considered,
  • step S100 when this process is performed, the number Ndf of the drive shaft 22 ° is first read (step S100).
  • the rotation of drive 22 A fefiNd ⁇ can be obtained from the rotation angle t 'of drive shaft 22 ⁇ ⁇ ⁇ ⁇ read from resolver 39 ⁇ .
  • step S101 a process of reading the accelerator pedal position AP from the accelerator pedal position sensor 65 is performed (step S101).
  • the accelerator pedal 64 ⁇ 3 ⁇ 41 is depressed when the driver feels that the output torque is insufficient. Therefore, the value of the accelerator pedal position ⁇ is determined by the driver's desired output torque (ie, the total of »Wl22 ⁇ , 22B).
  • step S102 the target value of the read output torque corresponding to the accelerator base Dal position AP (torque ton ⁇ body needs) ( ⁇ Do, earthenware pots with a torque command value) Td Derivation of * is performed (step S102). That is, for each accelerator pedal position AF, an output torque command value d * is set in advance, and when the accelerator pedal position AP is read, the output torque corresponding to the accelerator pedal position AP is set. The value of the torque command value d * is derived.
  • Step S03 u
  • the engine torque Ne is set (Step SI 04).
  • the energy supplied by the prime mover 5 ⁇ is slightly equal to the engine torque Te and the engine IEJ speed Ne, the relation between the output energy Pd, the engine torque Tc, and the engine speed Ne is Pd TexNe.
  • the present control is a control in which the operation efficiency of the prime mover 50 is prioritized.
  • the torque distribution power of the four wheels needs to be considered. The control of the torque distribution contact will be described in a second embodiment.
  • the torque command value Tc * of the clutch motor 30 is set (step S106).
  • U The rotational speed of the prime mover 50 is made substantially constant.
  • the torque of the clutch motor 30 should be made equal to the torque of the original machine 50 so as to be balanced. Therefore, here, the torque command value T r. * Of the clutch motor 30 is set to be equal to the engine torque e.
  • Step S106 After setting the clutch motor torque command value Tc (Step S106), control of the clutch motor 30 (Step S108), control of the assist motor 40 (Step S110), and control of the machine 50 (Step S1) 1 Perform 1).
  • the control of the clutch motor 30 and the control of the assist motor 40 and the source Although the control of ⁇ 50 is described as a separate step, in practice these controls are performed jointly. For example, using the control CPU 90 power i3 ⁇ 4J reloading process. Simultaneously control the clutch motor 30 and the assist motor 40, send instructions to the EFI ECU 70 by communication, and control the prime mover 50 by the EFI ECU 70. Also at the same time.
  • Step S108 In the control process 1 of the clutch motor 30 (Step S108 in FIG. 5).
  • Step S112 the process of reading the rotation angle 6 f of the drive shaft 22 from the resolver 39B (Step S112) is performed.
  • the coordinate transformation is performed in a permanent magnet type synchronous exciter.
  • the ⁇ of the d-axis and the q-axis is an essential amount for controlling the torque.
  • the command value of each axis obtained from the torque command ⁇ Tc * of the clutch motor 30.
  • I dc *, I qc * and the actual value The currents I dc, I qc and the deviated axe that were calculated for each chain are calculated (step S122), and the mH command values Vdc, Vqc for each axis are calculated (step S122).
  • the act of the following formula (3) is performed.
  • ⁇ ⁇ dc i dc * ⁇ I dc
  • Vdc Kpl- ⁇ Idc + ⁇ Kil
  • Vqc Kp2am Iqc + ⁇ Ki2 -am Tqc (3)
  • Kp 1, 2 and K i 1.2 are each a coefficient. These coefficients are adjusted to match the characteristics of the motor to be applied.
  • the voltage command values V dc and V q C are the portion proportional to the deviation ⁇ I from the convection command ⁇ 3 ⁇ 4 I * (the first term on the right side of the above equation (3)) and the deviation i It is obtained from the integral of (the second term on the right side) and.
  • the thus obtained ⁇ 1 upper command value is subjected to a ⁇ conversion (two-phase / three-phase conversion) corresponding to the inverse conversion of the conversion performed in step S120 (step S124), and the phase coil 36 Soil 11 (:, Vvc, Vwc is calculated.
  • Each king calculates by the following formula (4).
  • step S110 in FIG. 5 the details of the torque control by the assist motor 40 (step S110 in FIG. 5) will be described.
  • the rotation speed Ndi of the drive shaft 22A for the front wheel 26 is read (step S131).
  • the rotation speed of the drive shaft 22A can be obtained from the liij turning angle ⁇ f of the drive shaft 22A that has entered the resolver 39B.
  • a process of reading the rotation speed Ne of the original J machine 5 ⁇ is performed (step S 132).
  • the number N c of the prime mover 50 can be obtained from the rotation e of the crankshaft 56 read from the resolver 39 A, or can be directly detected by the rotation speed sensor 76 provided in the distributor 60. .
  • Tc is the actual Bok torque in the clutch motor iJ ⁇
  • NcxTc is the rotation number
  • Ks c is the clutch motor corresponding to obtaining the energy corresponding to the region G 1 in FIG. 46 3 generation of ⁇ (regeneration.) is an effective table of u
  • Ta * ks aXP / d r
  • Step S135) ksa is the efficiency of 40 assist motors. It is determined whether or not the obtained Dork command value a * exceeds the maximum manpower torque T am ⁇ that can be provided by the assist motor 40 (step S136). Perform 3 ⁇ 4 to restrict (step S 1.38). Then, the angle 0 r of the drive shaft 22 beta detected have river resolver 48 (step S 1 40), further Ashisutomo - - to detect using motor 4 current detector 97, 98 of each phase current of 0 Sato (step S 142) is also performed. Thereafter, as shown in FIG.
  • step S144 the coordinates ⁇ (step S144) and the voltage command values Vda, Vqa are performed (step S1G), and the reverse of the pressure command value is performed.
  • Coordinate transformation Perform steps to determine the on / off control time of transistors Tr11 to Tr16 of the second drive circuit 92 of the assist motor 40 and perform PWM control.
  • step SI11 the control of the original I-powered machine 50 (step SI11) will be described.
  • the torque and the rotational speed of the prime mover 50 are set to the set values.
  • the torque and the number of revolutions of the original machine 50 are controlled.
  • an instruction is sent from the control CPU 90 to the EFIECU 70 via communication to reduce the fuel consumption and the amount of throttle / throttle valve.
  • W Adjust gradually so that the number of turns becomes Ne.
  • the torque converted into electric power at the predetermined efficiency K sc by the clutch motor 3 ⁇ that is, the rotational speed of the crankshaft 56 of the original motor 50 and the inner rotor 34 of the clutch motor 30 by the regenerated force in the clutch motor 3 0 in proportion to the deviation of the rolling speed Li, driving ⁇ 2 2 u assist motor 4 Y which can be applied as a torque in B is ejection for the rear in the assist motor 4 0
  • the torque applied to Keishin 22 B is equal to the torque applied to the repulsive force by the clutch motor 30.
  • the energy of the area G 1 can be transferred to the area G 2 and the torque can be reduced.
  • the clutch motor 30 or the assist motor 40 or the first drive circuit 91 and the second drive circuit 92 also have some commutation, the energy indicated by the area G1 and the area G2 1; ⁇ It is difficult in reality to match all of the energy that is consumed: Although it is difficult in reality, the efficiency of the synchronous motor itself is very close to 1, so the loss in both motors is lost. Is relatively small. Also, the resistances of the transistors Tr 1 to Tr 16 are extremely small, such as GTO; ⁇ Since it is known, the loss in the driving circuit 91 of the ⁇ 1 and the second driving circuit 92 is also I ⁇ Can be as small as a minute.
  • the deviation of the number of revolutions between the crankshaft 56 and the drive shaft 22A, that is, most of the rotation of the clutch motor 30 is converted to 3 ⁇ 4m energy + g in the three-phase coil 36.
  • the drive motor 22 for the rear wheel 22B is output by the assist motor 40 as the driving torque.
  • the configuration of the killing force transmission device 20 itself is the same as in the first example described above.
  • the rear wheels 27 and 29 are stuck in mud, etc.
  • the front wheels 26 and 28 are driven by the torque Tc as they are, so ⁇ ⁇ can escape with the driving force of the front wheels 26 and 28 , Stable driving is possible.
  • the front wheels 26 and 28 driven by the prime mover 50 and the clutch motor 30 become muddy.
  • the torque Td 1- (@ ⁇ torque 'l'a * of the assist motor 40) obtained by the assist motor 40 is the energy (region) (Equivalent energy of G1) divided by the IEJ speed Ndr of the drive shaft 22B. If the front wheels 26, 28 slip into the muddy power and the front wheels 26, 28 spin, the gripping of the power ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ makes it impossible to catch the output torque of the prime mover 50.
  • FIG. 9 shows the main routine of this embodiment.
  • FIG. 9 corresponds to FIG. 5 of the first embodiment, and the corresponding last digit is RJ—, and the description is omitted.
  • Td * required by the vehicle from the accelerator pedal position AI 5
  • the ratio RT is determined according to the rotational state (step S213), and the torque Tc * and Ta * of each drive shaft 22A, 22B are determined from the torque ratio RT (step S213).
  • step S208 In the clutch motor control (step S208,
  • (6), the same torque as in the first embodiment is performed using this target torque Tc *, but the assist motor control (step S210) Then, steps S13 to S135 in Fig. 7 are not necessarily performed, and assuming that the target torque Ta * has already been obtained, 3 ⁇ 4 ⁇ ! Is started from step S136. 1 I) is the torque 'i'e of the original machine 5 torque T of the clutch motor 30 From and, so as to be able to Enerugika coercive necessary,
  • the front wheels 26, 28 and the wheels 27, 29 can be maintained with a certain amount of torque.
  • the torque higher than the output of the machine 50 can be secured. Therefore also u can get me minute torque for climbing the registration 3 ⁇ 43 ⁇ 4, even if you w 26, 28 force S sky "fc, it is possible to secure a torque after the $ life 27, 29, such as in mud Even if you take 26, 28, you can easily escape from the road u, etc. J-wheel power;
  • control for maintaining torque is performed using the power of the battery 94.
  • the torque of the assist motor 40 is always secured at the predetermined torque ratio RT, and the charging / discharging state of the battery 94 is not taken into account.
  • the power assist control is performed.
  • step S232 whether or not the accelerator pedal position AP from the accelerator pedal position sensor 65 has exceeded the threshold value APma (step S232) is determined. It is determined whether or not the remaining capacity BEM of the battery 94 retrieved by the battery 94 is larger than a predetermined value Bref (step S234). If the remaining.
  • the target torque Tama X may be set according to the remaining capacity BR (step S236) .
  • the assist motor 40 is controlled by the B target torque Tamax thus obtained (step u).
  • the control of the assist motor 4 mm -Up S 238) is,
  • the drive shaft 22A and the drive shaft 22B can be driven by more energy than can be obtained from the output of the prime mover 50. Moreover, the remaining capacity of the battery 94 is given a torque corresponding to the remaining capacity BKM, so the remaining capacity of the battery 94 is! When the remaining capacity of the battery 94 is sufficient, the torque can be sufficiently increased. On the other hand, when the remaining capacity of the battery 94 becomes small, the battery 9 is not excessively consumed.
  • the third embodiment will be described. In this embodiment, the configuration of the power transmission device 20 itself is the same as that of the above-described first embodiment. In the second laughing example, when the torque is insufficient only with the torque from the clutch motor 30, the power stored in the battery 94 is used to compensate for the insufficient torque.
  • the clutch motor 30 functions as, and the force is i. Since it is turned through the drive circuit 91, a part of the electric power (that is, a part used for the torque assist by the assist motor 40: not used) is charged to the battery 94.
  • Fig. 11 Iii * Invention Fig. 11 is a flowchart showing an outline of control of the power transmission device S as a third example of Fig. 11. As shown in Fig.
  • step S300 the rotation of the drive shaft 22 of the front wheels 26, 28/1] is performed; the number Ndf is read (step S300), and then the accelerator pedal position sensor 65 Then, the process of reading the xel-pedal position AP is performed (step S302).
  • Accelerator pedal positive was: ⁇ Yung output torque corresponding to the AP (torque of the drive shaft 2 2) command T d * will rows ri to derive (step S 3 0 4).
  • the energy output by the prime mover 50 is obtained from the dedicated output torque [torque of the drive shaft 22 A] command Td * and the read drive ⁇ 22 A ⁇ Nd ⁇ . It is determined whether or not it is within the chargeable area when viewed from ( ⁇ d * xNdf) (step S306). That is, the output torque command value T d * and the rotation speed N d of the drive shaft 22 are applied to a filling HJ capacity region map as shown in FIG. Judgment is made based on whether or not the ⁇ target point defined by the value d * and the rotation number Ndf of the drive shaft 22 is located within the chargeable area. In Fig.
  • the vertical axis is the torque of the H drive shaft 22A
  • the horizontal axis is the IHJ number of the drive shaft 22A.
  • the edible I fe PE is the energy supplied by the prime mover 50 as electric power.
  • the one-assist region indicates a region in which the above-described power assist control, that is, a region in which insufficient control is performed on insufficient torque by using the force stored in the battery 94. That is, in the power assist area PA, the electric power stored in the notebook 94 is consumed, so that the area is naturally unsatisfactory.
  • step S306 If it is determined in step S306 that the area is not ⁇ : possible, it is determined that the area is not within the castle. If it is determined that the area is not within the castle, the processing is terminated (step S330). Determines whether the remaining capacity BBM of the battery 94 detected by the remaining capacity detector 99 is smaller than the appropriate value 3 ⁇ 4T3 ⁇ 4pr (step S308). That is, when the remaining amount of the battery 94 is less than the predetermined appropriate amount 81, the battery 94 needs to be charged. Therefore, the process proceeds to step S310. It is not necessary to charge the battery 94. Lightning ⁇ !] "(Step S330) and the processing ends.
  • P is the maximum energy that the prime mover 50 can supply in a certain state. That is, the power W1 that can be regenerated by the clutch motor 30 and the assist motor 40 is: 5 killers !; from the large energy P that can be supplied, the energy output from the drive shaft 22, that is, Td * XNdf Equivalent to the remaining energy.
  • FIG. 13 is an explanatory diagram showing the chargeable capacity for the remaining capacity of the battery 94 in the third embodiment.
  • the vertical axis indicates that the battery 94 is charged.
  • the possible power is W2 (w)
  • the horizontal axis is the remaining capacity BRM of the battery 94 (%).
  • the I mountain j is compared with each other to determine which power is lower. Is determined as the power W actually applied. That is, in step S314, it is determined whether 10] the renewable power W1 is lower than the rechargeable power W1. If the regenerable power W1 is lower, the power W to be charged at the time is set to W1. It is determined (Step S316), and if the available g force W2 is higher, it is determined to be W2 (Step S318).
  • step S322 After the regenerative power of the clutch motor 30 and the assist motor 40 is thus determined (step S322), the control of the assist motor 40 (step S324), the control of the clutch motor 30 (step S326), and the Perform control (step S328).
  • step S324 similarly to FIG. 5, control of the clutch motor 30, control of the assist motor 4.
  • ⁇ , and control of the prime mover 50 are illustrated as separate steps for the sake of illustration, for convenience of illustration. Therefore, these controls are performed comprehensively.
  • the assist motor torque command value Ta * is lowered;
  • the assist motor 40 is controlled using the torque command value Ta *.
  • the contents of the control are the same as steps S140 to S150 of FIGS. 7 and 8 in the first embodiment.
  • the direction of the torque generated by the assist motor 40 is opposite to that in the first example.
  • the sign of the torque command 1 ⁇ 2T a * is reversed (the negative sign is It is necessary to take into account the points) and control.
  • step S32G in FIG. 9 a control process for the classifying motor 30.
  • the clutch motor torque command ⁇ c * is processed by the following calculation.
  • T c * T d *-T a *
  • the torque command of the clutch motor 30 is The value Tc * can be obtained as the difference between the output torque command value Td * and the torque command value a * of the assist motor 40 .
  • the torque of the assist motor 40 is in the direction of the rotation of the drive shaft 22 and the sign of the assist torque T a * is negative. There is a need to.
  • step S328 control of the prime mover 50 (step S328) will be described.
  • Original machine 5 0 First, a process of setting the torque command value Te * of the prime mover 50 based on the torque command value Tc * of the clutch motor 30 is performed. In order to keep the rotation speed of the prime mover 50 substantially constant, the torque of the clutch motor 30 and the torque of the prime mover 50 may be equalized and balanced. Therefore, here, the torque instruction e * of the original bridle machine 50 is set to be equal to the torque command ⁇ Tc * of the clutch motor 30.
  • Ne * Wc / (Ks c XT c *) + Nd f... (5)
  • the number of turns in the clutch motor 30 is the number of turns of the prime mover 50 ilir;
  • control torque and Hi] turns.
  • the control CPU 90 sends an instruction to the EF I ECU 70 by communication to increase or decrease the fuel injection amount and throttle valve IUl degree so that the torque of the prime mover 50 becomes Te * and the rotation speed becomes Ne *. Adjust gradually.
  • FIG. 14 is an explanatory diagram showing the utilization distribution of energy arranged by the prime mover 50 in the third laughing example.
  • Tc is the output torque (the torque of the driving life ⁇ 22 A for the front life)
  • Ndf is the number of A times of the driving wheel 22 for the front wheels
  • Te is the torque of the prime mover 50.
  • Engine torque Ne is the engine speed ⁇ (engine frequency) of the machine 50
  • Tc is the torque of the clutch motor
  • Ta is the torque of the assist motor 40.
  • the energy supplied from the prime mover 50 is TexNe, and this energy is output from the drive energy 22 d of the drive shaft 22 A of the front wheels /
  • the power W c is charged to the battery 94 and the power W a is regenerated by the assist motor 40 and charged to the battery 94.
  • the force Wc that is turned by the assist motor 40 and charged to the battery 94 is originally an axis different from that of the clutch motor 30 side, and therefore may be considered as an independent area as shown in the figure Wa '.
  • the energy output from the prime mover 50 and the energy output from the clutch motor 30 and the energy generated by the clutch motor 30 are subtracted. Can be thought of as in Figure ⁇ ti area Wa.
  • the clutch motor 30 can be driven in the original 0 rotation direction by using the energy that has been turned on the assist motor 40 side or by using the energy stored in the battery 94. is there. In this case, the drive shaft 22 for ⁇ 3 ⁇ 42G.28 will rotate at a speed higher than the speed Ne of the engine 50, L, It becomes one drive state.
  • ⁇ ] applied to the driving shaft 22 2 acts on the crankshaft 56 via the outer rotor 32,
  • the prime mover 50 tries to rise.
  • the motor 50 expresses the frictional or compressive force of the piston as a ⁇ number that balances the external force (torque 'i'c) if the fuel injection is stopped.
  • FIG. 15 which illustrates the relationship between the external force (torque TC) and the rotational speed Ne of Dohara Keiki 50 when the fuel 11 stops
  • the prime mover 50 has a torque T as an external force.
  • c is ⁇ T c ( ⁇ )
  • the motor rotates at the rotation speed Ne (A)
  • the torque T is equal to the value T)
  • the motor rotates at the rotation speed Ne (B).
  • the clutch motor 30 is narrowed to the drive shaft 22 A with respect to the rotor 32 connected to the crankshaft 5 fi rotating by the number N e of the prime mover 50
  • the number of rotations is the number of rotations ax Nc (e-Ndf) of the number of rotations Ne of the motor 50 and the number of rotations Ndf of the excitation tt22.
  • Nc the number of rotations ax Nc (e-Ndf) of the number of rotations Ne of the motor 50
  • Ndf of the excitation tt22 Become.
  • the inner rotor 34 is relatively rotating in the IE direction (the rotation direction of the drive shaft 22 A) with respect to the outer rotor 32, that is, the rotation of the prime mover 50.
  • the clutch motor 30 In the range ffl at the lower right of the point FNe (the range ffl to the right of t2), the clutch motor 30 is rotating in the negative direction. The braking is performed by the power control of the clutch motor 30. Here, both the regenerative control and the power control of the clutch motor 30 are performed by the motor control. Data
  • the negative driving torque Tc is always generated by the permanent magnet 35 attached to the motor 32 and the rotating magnetic field generated by the current flowing through the three-phase coil 36 of the inner rotor 34. Since they control Tr 1 to Tr 6, the same switching control is performed. Therefore, the clutch motor 30 is applied to the drive shaft 22A; if the condition of the torque Tc in the ⁇ direction does not change, even if the control of the clutch motor 3 ⁇ changes from the regenerative control to the power control, the first The switching of transistors Tr 1 to Tr 6 of driving circuit 91 is not controlled.
  • the control of the clutch motor 30 during such braking is no different from the control shown in FIG.
  • the number of clutches is determined based on the M rotation number Ne of the slaughter machine 50 and the
  • the braking method to be adopted depends on the relationship between the two rotation speeds, but it is even more!)
  • Fuel of the machine 50 t3 ⁇ 4 i By controlling the amount, the number of rotations Ne of the machine 50 can be freely adjusted by a certain amount. Therefore, based on the remaining capacity of the battery 94, some kind of control will be performed. to.
  • the control CPU 90 of the control device 80 first sets the brake pedal, which is provided on the brake pedal 68 and detected by the brake pedal position sensor 6).
  • the position BP is read (step S330), and a process is performed to derive a torque command value c * of the clutch motor 30 that generates a braking force in accordance with the read brake pedal position BP (step S330). 3 3 2).
  • the torque command value Tc * is set in advance for each brake pedal position BP and recorded in the ROM 90b.
  • the brake pedal position BP force is read, the brake pedal position BP is read. u and summer so that Bok torque command value T c * corresponding read and to
  • the remaining BRM of the battery 94 detected by the remaining battery i detector 99 is input (step S336), and the read remaining battery BRM is compared with the value B1 (step S336).
  • the threshold value B 1 is set as a value close to the full charge at which the further charging is determined to be unnecessary for the battery 94. It can be determined by @ ⁇ and characteristics.
  • step S340 When the remaining capacity B KM of the battery 94 is equal to or more than the H value ⁇ 1, it is determined that charging is required, and the clutch motor 30 is controlled to be inactive (step S340). When the remaining capacity B of the battery 94 is less than the threshold value B1, it is determined that charging is necessary, and the brake is controlled by the regenerative control of the clutch motor 30 (step S3342).
  • the braking by the power control of the clutch motor 30 is, specifically, as described above, the rotation speed Ne of the primary auxiliary machine 50 is set to be higher than the rotation Ndf of the auxiliary auxiliary motor 22A.
  • the control by the rotation control of the clutch motor 30 is performed by controlling the rotation G of the original machine 50 to be smaller than the rotation number N f of the driving shaft 22 A.
  • the rotation speed N t; of the prime mover 50 may be kept constant during the control, or the rotation speed Ne of the prime mover 50 and the rotation speed may be kept constant.
  • the deviation from the rotation speed N df of 22 A may be kept constant, or the difference between the rotation speed N e of the original! / 50 and the rotation speed N df of the drive shaft 22 A may be determined as follows. According to the braking process described above, in the four-wheel drive vehicle 15, control by the power control of the clutch motor 30 is performed according to the state of the battery 94. And i.! The ability to perform braking by live control As a result, it is possible not only to recover energy to the battery 94 when it is destroyed, but also to control it while using energy.
  • the prime mover 50 is idling or running at a low speed of 51 °, and most of the energy is absorbed by the clutch motor 3U.
  • the energy received from the battery and the energy taken from the battery 94 are used to reverse the assist motor 4 to retract the power.
  • the drive 1 shaft 22 will be forcibly rotated in the opposite direction by the reverse Jfc of the rear wheels 27 and 29, but the ⁇ will be retracted
  • the assist motor 40 is servo-locked using the electric power of the battery 94 to control the drive shaft 22B not to rotate, while the clutch motor 30 is operated. Then turn the crankshaft 56 to crank. In this case, the ⁇ front wheel 26, 28 is driven by the J-force.
  • the transmitted force is the assist motor 4 ⁇ directly connected to the rear wheels 27, 29. The movement of 15 does not occur in principle.
  • a clutch is provided on the driving shaft 22 ⁇ and the reduction gear 23! 3 and the drive ⁇ '22A is fixed at the time of starting, the driving force is reduced to the front wheels 26, 28. It is not transmitted.
  • the distribution means is configured using a planetary gear instead of the clutch motor 30.
  • the entire configuration will be described with reference to FIG. 18.
  • the hardware configuration other than the distribution means is almost the same as that of the first embodiment.
  • the illustration of the accelerator pedal and the like is omitted.
  • the four-wheel SgJ table has a gasoline engine (hereinafter simply referred to as an engine) 15cm as the original machine, and a planetary gear connected to the crankshaft 156 of the engine 15mm.
  • the power of the motor MG 1 as the electric machine connected to the sun gear shaft 12 b of the second planetary gear 120 and the ring gear shaft 126 of the second planetary gear 20 is transmitted via the chain belt 129 and the like.
  • differential gear 114 of the front wheel to be, for u these configurations are ⁇ from ⁇ one data MG 2 incorporated in Differentiated Shah Rugya 1 ⁇ 5 for the rear wheels, further illustrating the transmission of the iS force ⁇ I do.
  • the crankshaft 156 of the engine 150 is mechanically coupled via a planetary gear 120 to a power transmission gear 111 having a drive shaft 1 2 as a main axis by a chamber 129. 1 is gear-coupled to a differential gear 114.
  • the power output from the power output device 110 is finally transmitted to the driving wheels 1 16, 118 of the iif wheel ⁇ -.
  • the power of the motor MG 2 drives the left and right rear j-wheels 1, 117 and 119.
  • Motor MG1 and motor MG2 are electrically connected to control device 180, and are controlled by control device 180.
  • the configuration of the control device 1 S0 is the same as that of the control device 0 of the first embodiment.
  • control device 180 as in the case of the first example, such as a shift position sensor provided on a shift lever, the PI sensor sensor is connected, and the drawing force is omitted.
  • control device: ia exchanges various information by communicating with the ECU 170 that controls the operation of the engine 50.
  • the FI ECU 170 has the same configuration as the IFI ECU 70 of the first difficult example. The configuration of the planetary gear 120 and the motor MG 1 will be described with reference to FIG.
  • the planetary gear 120 includes a sun gear 121 connected to a hollow sun gear shaft 12 penetrating the center of the crankshaft 156, a ring gear 122 connected to a ring gear shaft 126 coaxial with the crankshaft 156, and a sun gear 121. Dil with the ring gear 122
  • the rear is composed of 124.
  • the ring gear 122 extends to the motor MG 1 side. At one end, a gear take-out gear 128 is provided for taking out power.
  • the power take-off gear] 28 is narrowed by the chain belt 1 29 to the receiver transmission gear 1 1 1, and the power take-off gear 1 2
  • the motor MG 1 is constructed as a synchronous electric generator, like the assist motor 40 in the embodiment 1, and several permanent magnets are mounted on the outer peripheral surface.
  • the rotor 13 includes a rotor 13 having a ⁇ 35 and a stator 13 around which a two-phase coil 13 4 that forms a rotating magnetic field is provided.
  • the sun gear is connected to 1.
  • the shaft is connected to shaft 125.
  • the stator 1 33 is formed as a non-directional electromagnetic flash and is fixed to the case 1 19
  • the motor MG 1 uses the magnetic field generated by the permanent magnets 13 5 and the magnetic field formed by the three-phase coil 13 4 to operate the re-rotor 13 2 ⁇
  • u operates Incidentally, the sun gear shaft 1 2 5, the rotation angle 0 s provided resolver 1 3 9 S force detecting a crankshaft 1 5 6 detects the ⁇ degrees 0 e A resolver 13 E is provided.
  • the motor MG 2 is also configured as a synchronous electric machine similarly to the motor MG 1, and as shown in FIG. 20, a rotor 14 2 having a plurality of permanent magnets 14 4 on the outer peripheral surface, And a three-phase coil 14.4 forming a winding.
  • the motor 11. 2 is connected to the ⁇ ⁇ 1 4 7 of the differential gear 1 1 5, and the stator 1 4 3 is fixed to the case 1 4 8.
  • the stators 144 of the motor MG 2 are also formed by scraping the non-directional electromagnetic plate. This one MG 2 As with the MG1 data, it operates as a dragon machine or machine.
  • the resolver 1449 is provided in the 147 to output the rotation angle 0r.
  • the control device 180 includes a first circuit 9 for driving the motor MG 1, a second drive circuit 19 9 for driving the motor MG 2, The two lord circuits 191,
  • the control that controls the 192 is composed of the battery 194, which is the next battery. Since these configurations are the same as the first example of J3 ⁇ 4, the detailed description is omitted, and only I is shown. Note that, for the internal configuration of the control device 180 shown in FIG. 2 ⁇ ), the reference numerals are the same as the numbers of the respective members shown in FIG. 2 and the last two digits.
  • the operation of the four-wheel drive vehicle whose configuration has been described will now be described.
  • the operating principle of this wheel drive vehicle in particular, the principle of torque conversion is as follows.
  • the engine 150 is driven by a stray point F1 with a rotation speed Ne and a torque Te, and the engine 150
  • the ring gear shaft 126 is operated at the operating point P2 of the different rotational speed Nr and the torque Tr, i.e., the power output from the engine 150 Is converted into a torque to act on the ring gear shaft 1 26.
  • the relationship between the engine 150 and the I-port of the ring gear shaft 126 (relationship between number of turns and torch is shown in Fig. 21.
  • the number and torque of the three axes of the planetary gear ⁇ 20 are 1 ⁇ 12
  • the force can be expressed as a diagram called a collinear diagram illustrated in Fig. 2.
  • S can be solved.
  • the vertical axis in 22 indicates the number of rotations of three axes, and the horizontal axis indicates the ratio of the position on the axis of three axes.
  • the position C of the planetary carrier ⁇ 24 is determined as a position that internally divides the position S and the position R into 1: P, where p is the number of ring gears 1 2 2 To This is the ratio of the number of teeth of the sun gear 121 to the number of teeth of the sun gear 121, and is expressed by the following equation (5).
  • the operating collinear line is the number of rotations Ns of the sun gear shaft 125. That is, the operation supply line can be treated as a straight line for the proportional gauge in terms of the number of times.
  • the number of revolutions Ns can be obtained by using a proportional meter ⁇ : equation (the following equation (6)) using both the number of revolutions Ne and the number of revolutions Ni-.
  • Ns Nr— (N r-Ne) (6)
  • this reaction force torque T i- is equal to the torque required to drive the vehicle at that speed, then the motor will run at a speed corresponding to the axis IHJ speed Nr.
  • Nr the axis
  • the ideal state of the friction coefficient of n road surface that can be this the force to obtain a ⁇ Ka to try to run the cowpea be IP- ⁇ to the motor MG 2 ⁇ ®) to be Considering that, the torque Tm 2 for stabilization by the motor MG2 can be regarded as acting as a torque for traveling of ⁇ at the position .On the other hand, at the position S, the torque Tm l by the motor MG1 can be considered.
  • the motor MG1 applies a torque in a direction opposite to the direction of rotation, so that the motor MG1 operates as a generator.
  • the electric energy 1 represented by the product of the number of turns N s is regenerated from the sun gear shaft 15.
  • the direction of rotation and the direction of torque are
  • step S400 a process for calculating the accelerator opening AP and the vehicle speed ( ⁇ revolution speed na) is performed (step S400). Accelerator ⁇ ct can also u can be read from ⁇ Kuseru pedal positive Chillon sensor 164 a, the car speed is twice to know as the rotational speed of the axle of the wheel after reading from the resolver 149 Ru can, to a propeller shaft It is also possible to insert the sensor from a provided speed sensor (not shown).
  • a process is performed to calculate the torque command value ' ⁇ required for 3 ⁇ 4f and the vehicle output ⁇ ' a (step S410).
  • the obtained torque command value Ta can be obtained, for example, from the graph shown in Fig. 24.
  • the output Pa of the vehicle is obtained by comparing the vehicle torque Ta and the vehicle speed ( It is equivalent to the operation point determined by the number of times na) Assuming that all the output Pa of ⁇ is obtained from the engine 150, the output Pc of the engine 150 is determined (Pe-Pa), and the throttle opening S determine th (step S420).
  • a process of distributing the torque Ta at the output Fa of the engine 150 to the received torque Tae of the engine 150 and the received torque Tam of the motor MG2 is performed (step S430).
  • the torque ratio distributed to the and the rear wheels is determined.
  • processing is performed to determine the required torque Te * of the engine 150 from the received torque T ac of the engine 150 and the gear ratio of the planetary gear 120 (step S440), and further, the output Pe of the engine 150 and Based on the required torque ' ⁇ e *, the target rotation speed nc * of the engine 150 is subtracted by ⁇ i (step S450). It is the job of the motor MG1 to actually change the running state of the engine 150 in response to these decisions.
  • the Keisaku Koline is re-historized by the torque acting on the
  • step S480 the process goes to step ⁇ ”and the Motosato routine ends.
  • the planetary gear 120 is used as the distribution-stage, and a so-called mechanical distribution configuration is used to freely distribute the power of the engine 50 to the front wheels and the rear wheels. can do.
  • the engine 150 is rotating and running at a low torque
  • a part of the exciting force is output to the front wheels through the ring gear shaft 126 from the planetary gears 120 and further through the chain belt 129, and the remaining power is
  • the motor MG1 is taken out as a regenerative current through the first drive circuit 191 via the first drive circuit 191 and is supplied from the second, !
  • the driving control that can be laughed by the four-wheeled vehicle in the five laughing example will be described based on the driving control routine illustrated in FIG.
  • the control CPU 190 of the control unit 180 outputs the necessary output to the vehicle based on the operating status such as the accelerator pedal position AP of the vehicle.
  • Step S500) for performing a process of measuring energy.
  • a process of reading the remaining amount 8 of the battery 1994 detected by the remaining amount mountain detector 1999 is performed, and a judgment process of the rolling mode is performed (step S510).
  • the operation mode judgment process iffl is an operation mode judgment process that is performed by the operation mode judgment routine illustrated in FIG. 27. In J-Latin, the operation control routine block S 5 is used.
  • An appropriate operation mode is determined for the power output device 110 at that time by using the data read at S0508 and the calculated data, and the like.
  • the explanation of the operation control chin in Fig. 26 is interrupted, and the operation of the operation control chin based on the ⁇ $ ⁇ ⁇ ⁇ I will tell.
  • Step S53 (3) the control CPU of the control unit ft180 controls the remaining battery of the battery ⁇ BRM card! It is determined whether the value B is within the range represented by the value B and the value BH (step S53 (3). If the value is not within the range 11 °, the charge / discharge power S of the battery 1994 must be S). Then, the charging / discharging g mode is set as the operation mode of the Keirikisanryokuso IS 110. (Step S5 32)
  • the threshold value BL and the threshold value BH are The lower limit and upper limit of the remaining volume 13 ⁇ 41 ⁇ ⁇ are indicated.
  • the 3 ⁇ 4 value BL is determined by driving only the motor MG 2 in the after-mentioned drive mode or the battery in the power assist mode.
  • the threshold value BH is set to a value equal to or greater than the flea required to perform power addition by the discharge power from the battery for a predetermined period of time. Volume; reduced the amount of power regenerated by motor MG 1 and motor MG 2 when stopping both vehicles in normal running state from BRM It is set to be equal to or less than.
  • step S53 when the remaining charge ⁇ ⁇ ⁇ ⁇ of the battery 194 is within the range »1 represented by the L value BJL and the threshold value ⁇ , the energy Pr to be output as power for the entire vehicle is It is determined whether or not the maximum energy P em ax that can be output from the engine 150 is exceeded (Step S534). If the maximum energy P em ax is exceeded, it is determined that the energy output from the engine 150 is not enough for the carpenter energy P em ax to use the energy stored in the battery 194, and the power output Set the power assist mode as the operation mode of device 110 (step S536) 0
  • the torque Tr of the front and rear wheels, Tr *, the number of shafts and the number of wheels Nr and the power ⁇ It is determined whether or not the rotation is within a predetermined range (step S538). If the rotation is within the predetermined range, the lock-up mode in which the rotation of the sun gear 125 is stopped is set as the operation mode (step S540).
  • the predetermined range is a range in which the engine 150 can be efficiently operated with the rotation of the sun gear 121 stopped.
  • the respective torques output to the ring gear shaft 126 and 0S The path is stored in the ROM 190b in advance as a map, and it is determined whether the 3Sfc point represented by the torque command r * and the [iiJfe number Nr] is within the range of this map.
  • E emissions Gin ⁇ 50 efficiently luck fe can u an example shown in the area QW one point line 21 of ⁇ Zu ⁇ , the area inside QE is an area the driver is QJ ability of the engine 150, Ryo faJSQW is a range in which the engine 150 can be operated efficiently. Note that this range QW is determined based on the emission efficiency and the like in addition to the operation efficiency of the engine 150, and can be set by a sudden test or the like.
  • the energy Pr to be output is smaller than the predetermined energy PML, and the shaft lJ rotation number Nr is Given
  • Predetermined energy PML and location The constant rotational speed NML sets the range based on the fact that the efficiency decreases at low engine speed and low torque at low engine speed of 150. Is set as the energy Pr and the time fe3 ⁇ 43 ⁇ 4Nr.
  • step S540 The specific value is determined by the characteristics of the engine 150 and the gear ratio of the planetary gears 121). If the energy Pr is equal to or higher than the predetermined energy P ML and the re-rotation speed Nr is equal to or higher than the predetermined function NML in step S 542, it is determined that the normal operation s is to be performed, and the pre-rotation mode is set. To set the normal operation mode (step S540).
  • FIGS. 30 and 31 show the death mode in which the output of the engine 150 is output only to the front wheels or the rear wheels.
  • Fig. 30 shows a state in which all the energy of the engine 150 is output only to the front wheels.
  • Fig. 31 shows a state in which all the energy of the engine 150 is output only to the rear wheels.
  • the motor MG1 which is stored once in the battery 194. This shows the state where only the output is output to the rear wheels.
  • the four-wheel drive of the G-th embodiment has a configuration shown in FIG.
  • the H-wheel drive is the same as that of Example 5 except that the motor 3 corresponding to the third electric machine is connected to the ring gear shaft 12G, except that the ⁇ t of the u- motor MG3 is the motor MG Same as 1.
  • a control circuit 193 is provided in the control device 180, and its configuration is the same as that of the first drive circuit 191. Control of the four-wheel drive vehicle having such a configuration will be described with reference to the flowchart of FIG.
  • control device 180 When the control device 180 starts the four-wheel drive village routine shown in FIG. 35, it first performs 3iH to read the accelerator opening ⁇ and the vehicle speed (axle rotation speed n a) (step S600).
  • the accelerator pedal AP can be read from the accelerator pedal position sensor ⁇ 64 a.
  • the speed can be known as the number of rotations of the rear wheel read from the resolver 149, the speed may be read from a vehicle speed sensor (not shown) provided on the propeller shaft.
  • the torque command value Ta and the output Pa, which are required for ⁇ ⁇ , are performed based on the accelerator opening AP, the speed (the number of revolutions na), and the force (step S610).
  • the torque command value Ta required for the lanyard can be obtained, for example, from the graph of FIG. 24 described in the fifth example.
  • the output Pa of the vehicle corresponds to the operating point that is composed of the torque aa of 3 ⁇ 4f. ⁇ and ⁇ (number of rotations na).
  • the output of the engine 150 is then determined (Pe Pa), and the throttle opening 0th is determined (step S620) ⁇ .
  • the torque Ta at the output Pa is distributed to the front wheel received torque Tf and the rear ip received torque Tr (step S630).
  • the torque ratio of the front wheel and the rear wheel is determined by this Lf.
  • step S640 a process for determining the required torque Te * of the engine 15 mm from the received torque '1' f of the front wheels and the gear ratio of the planetary gear 120 is performed (step S640). From the output P c and required torque T c * of the engine 150 at this time, processing for Ke'ashi eye ⁇ cloud number n of the engine 1 50 (step S 650) 0 receives these decisions, the actual It is the task of the motor MCi l to change the operating state of the engine 150 at a time. Therefore, the rotation speed ng of the motor] IG1 where the rotation speed of the engine 150 is ne * is determined (step S660). Further, the output torque Tm of the motor! IG2 coupled to the rear wheel is determined from the torque received by the rear wheel, and 3 ⁇ 4 for controlling the motor MG2 is performed (step S670).
  • the drive circuit ⁇ 9 ⁇ etc. is also controlled to perform processing to control the engine 50, motor MG 1, ⁇ 2, etc. (step S 680).
  • the four-wheel drive vehicle of the sixth example described above has a motor MG3, which is the third motor, on the power transmission path in comparison with the configuration of the fifth example.
  • a motor MG3 which is the third motor, on the power transmission path in comparison with the configuration of the fifth example.
  • the maximum value of the driving torque that can be output to the drive SJ wheels 1 16 and 1 18 [1] is obtained by adding the torque of the motor MG 3 to the torque from the engine 150, as shown in FIG. Become On the other hand, the drive torque that can be output to the rear axle of the driving wheels 1 17 and 1 19 is determined by the torque of the motor MG2. Therefore, if there is no motor iMG3 fr
  • the maximum value of the drive torque on the front wheels can be increased, and the advantage that the degree of distribution of torque between the front and rear wheels is extremely large is obtained.
  • the range of the distribution ratio Ya: Yb of the two is limited. While ffl is limited, in the present embodiment, the distribution ratio (Xa + Xb) : Xc: is not limited to the output torque of engine 150, and the driving force distribution is Is flexible.
  • FIG. 38 shows the control of the seventh embodiment.
  • step S 71 ⁇ The output of the vehicle] J 1 J is used to obtain the value from the engine ⁇ b ().
  • the output P e of the engine 50 is determined (Pe—, and the throttle opening 6f th is obtained so as to obtain this output).
  • step S720 the engineer 150 determines the zero-standard rotation speed Ne * of the engine 150 (step S720) .
  • step S720 not only the output of the engine 150 but also the target rotation speed N a
  • the reason why * is set is that the operating state of the engine 150 is set to a state in which the minimum or the best emission is obtained.This point will be described.
  • Figure 39 shows the operating points of the engine 150 and the efficiency of the engine 150. ⁇
  • the middle curve ⁇ shows the boundary of the SJ-capable region of the operation of the engine 150.
  • the operable region fej $ of the engine 150 has an efficiency according to its change; Fttl line that indicates the operation point
  • a constant energy curve represented by a product of the torque Te and the rotation speed Ne for example, a curve C1-1C1 to C3—C3 is provided.
  • the efficiency of each ⁇ point along the energy constant curves C 1 — C 1 through C 3 — C 3 thus drawn is expressed by the graph of 0 assuming the number of revolutions Ne of the engine 150 as the horizontal axis. Become like
  • the efficiency of the engine # 50 differs greatly depending on which ilfe point is used for speeding.
  • the efficiency can be maximized by operating the engine 150 at the operation point A 1 (torque T c 1, rotation speed N e1).
  • the operation points with such high efficiency are the same as the operation points A 2 and A 3 on the curves C 2—C 2 and C 3-C 3 with constant output energies.
  • the curve A in FIG. 39 is obtained by connecting 51 ° points that make the efficiency of the engine 150 as high as possible with respect to each energy Pr based on the above, by a continuous line. In this example, each operating point on this curve A
  • Step S730 the motor MG1 changes the running state of the engine 150 along the curve A shown in Fig. 39 to the point where fuel consumption is optimal.
  • the motor MG 1 performs the process of obtaining the torque tg at which the output of the motor MG contributes to the screw (step S740). Because it is connected to the planetary gear 120, the operation of the motor MG1 contributes to the torque applied to the axle.
  • step S750 a process of determining the ratio of the driving force to be allocated to the front and rear wheels is also performed (step S750). Assuming that the power distribution ratio is] 6, the distribution of the front wheel: rear wheel driving force is determined as ⁇ : (1-/ 9) (however, 0 ⁇ ⁇ 1). Then, using the distribution ratio ⁇ , the received torque ⁇ ⁇ of the front wheel and the '; S held torque Tr of the rear wheel are determined: ii is performed (step S760).
  • the front wheel received torque ⁇ ⁇ and the rear wheel received torque T r are obtained by using the torque ' ⁇ p required by the vehicle ⁇ body, the contribution tg by the motor MG1, and the distribution ratio ⁇ , as follows: by 8] Erareru u
  • the ratio (3) can be adjusted from ⁇ to 1 in an arbitrary manner. Therefore, while giving priority to the control of the engine 150 for 3 $, the $ You can control yourself in a very wide range. Distribution ratio, it forces s' conceivable to set the current state of the ⁇ one Doyaro surface. Therefore, the engine 150 Free allocation of power is possible while securing sufficient expenses and emissions.
  • the regenerative braking power is automatically assigned to the rear wheel. As a result, anti-brake systems and driving force control can be realized.
  • the output from the engine 150 is connected to the drive shaft on the front wheel side, but the output from the engine 150 may be connected to the rear wheel side.
  • the torque distribution of the front and rear wheels can be determined by the following equation (9), where the distribution ratio is ⁇ . ⁇ r—e ⁇ ⁇ p + 1 g
  • This ⁇ gear mechanism is mounted on a first connecting gear 2 2 1 connected to a ring gear 1 2 2. 1 gear 2 3:! And a second quick-connecting gear connected to a ring gear 1 2 2 2 2 2 is provided with a ⁇ 2 gear 2 32 which is D-coupled via a reverse rotation gear 2 32.
  • the gear switching means 2 10 When the gear switching means 2 10 is operated, the drive of the power transmission gear 1 1 1 3 ⁇ 4J3 ⁇ 4 2 4 2 is engaged with the first gear 2 3 1 or the second key 2 3 2.
  • the rotational direction of the output from Buranetarigiya ⁇ 2 0 can be a force 5 to switch to any of the methods 3 ⁇ 4. Therefore, using the engine 150 that rotates IHJ in one direction, the car M can be moved backward.
  • the planetary gears 120 such as the motors MG 1 and ⁇ 2 are provided on the rotating shaft of the engine 150. Pariacin is conceivable.
  • the motor MG1 and the motor MG3 may be arranged so as to sandwich the engine 150.
  • the power output to the ring gear shaft 126 is taken out from between the motor MG 1 and the motor MG 3 via the power take-out gear 128 connected to the ring gear 122.
  • the ring gear # 126E may be extended and removed from the case 119.
  • the variation of the first to fourth examples J is similar to that in the fifth and sixth examples.
  • a motor 300 corresponding to the third electric motor is disposed, and the iSlllj of the front wheels is driven again by the damping force distributed by the clutch motor 30 and the power of the motor 300.
  • the assist motor 40 was separated from the output shaft of the motive motor 50 quickly, but as shown in FIG.
  • the assist motor 40 may be provided on the drive shaft 22B which is the output shaft of the clutch motor 30B.
  • the positions of the clutch motor 3 ⁇ B and the assist motor 40 can be reversed. That is, the assist motor 40 can be directly connected to the crankshaft 56, and the output ⁇ can be provided with the clutch motor 3 ⁇ .
  • a gasoline engine driven by gasoline was used as the original auxiliary engine 50, but in addition to a reciprocating ⁇ engine such as a diesel engine, a turbine engine, Jet engine.
  • ⁇ —Tali engine and other various internal combustion or external combustion engines can be used.
  • the clutch motor 30 and the assist motor 40 used a ⁇ ⁇ (Permanent Magnet type) synchronous machine.
  • a VR type (variable reluctance type) synchronous electric machine, a vernier motor, a current generator, an induction motor, a superconducting motor, and the like can be used.
  • step motor u the outer rotor 32 was connected to the crankshaft 56 and the inner rotor 34 was connected to the drive shaft 22 A, however, the outer rotor 32 was connected to the drive shaft 22 A, and the inner rotor 34 was connected to the drive shaft 22 A. It may be connected to the crankshafts 56 respectively.
  • disk-shaped rotors facing each other may be used.
  • the rotary transformer 38 has been used as a means of transmitting electric power to the clutch actuator 30, the slip ring-brush contact, the slip ring-mercury contact, or the semiconductor coupling of magnetic energy can also be used. It is possible.
  • the first and second driving circuits 91 and 92 used transistor inverters, they also used IGB (Insulated Gate Bipolar mode Transistor) inverters. And thyristor inverters, tg PWM (Pulse Width Modulation) inverters, square wave inverters (m / Oval inverters, inverters), and resonant inverters. Can be used u
  • the battery 94 as a secondary battery, a power that can use a Pb battery, a NiMH battery, a Li battery, or the like can be replaced by a capacitor instead of the battery 94).
  • u is required to be gamma ⁇ small value eg Enji
  • the energy Pe output from the motor 15 can be obtained by multiplying the energy Pr output from the ring gear shaft 126 by the reciprocal of the efficiency.
  • energy is lost as heat due to an assist motor 40 or a planetary gear 120, which is 10 cM, but the amount of loss is extremely small in terms of the total amount.
  • motors MG 1 and MG 2 Command 3 ⁇ 43 ⁇ 4
  • the efficiency of the J aircraft is very close to the value 1.
  • the power transmission device can be used for wheel driving.
  • the present invention is not limited to this, and has two output shafts. If it is available, it can be mounted on traffic-stages such as ships and aircraft, and other various machines.
  • the configuration of the wheel drive glue of the present invention includes a passenger car, a truck,

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

明細書 動力伝達装置およびこれを用いた四輪駆動車両並びに動力伝達方法および四輪駆 動方法 技術分野
本発明は、 動力伝達装置及びこれを用いた四輪駆動車輛ならびに動力伝達方法 および四輪駆動方法に関し、 詳しくは原動機よリ得られる動力を効率的に伝達ま た ί^」用する動力伝達装置及びこれを用いた四輪駆動車輛に関するものである。
背景技術
従来、 原動機などの出力トルクを変換して動力を伝達するには、 流体を利用し たトルクコンバータ力用いられていた。 流体を用いたトルクコンバータでは、 入 力軸と出力軸は完全にはロックされず、 両軸間で生じた滑りに応じたエネルギ損 失が発生していた。 このエネルギ損失は, 正確には、 両軸の回車 差とその時の 伝達トルクとの積で表わされる。 このエネルギ掼失は, ^となって消費されてし まう。 従って、 こうした動力伝達装置を用いた車輛では, 進時などの過渡時の 損失は大きい。 また定常走行時であっても動力伝達における効率は 1 0 0パ一セ ントにならず、 例えば手動式のトランスミッションと較べて、 その は低くな らざるを得ない。
こうした動力伝達装置のように流体を用いるのではなく、 一電気一機械変 換により動力を伝達しょうとするもの力提案されている (例えば特公昭 5 1 - 2 2 1 3 2号公報に示された 「回転電気機械の配列」 等) 。 この技術は、 原動機の 出力を電 手及び回転電機からなる動力伝達手段に結合し、 回転 ¾ の極数 p
1、 電碰搜手の極数 P 2により、 1 + P 2 /P 1の減速比 (トルク変換比) を実 現するものである。 この構成によれば、 流体によるエネルギ損失が存在しないの で、 電磁 手と回転慰幾の効率を高めれば、 動力伝達手段のエネルギ損失を比較 的小さくすることが可能と考えられる。
しかしながら、 係る動力伝達装置では、 トルク変換比力 s '固定であり、 車輛など のように変換比を広く変化させる必要のあるものには用いることができなかった。 また、 糊や原動機の運転状態に応じて、 所望の 比を実現することも困難で あった。 もとよリ、 流体を用いたものでは、 軸間の滑りに応じたエネルギ損失を 免爾ないことは、 した通りである。 また、 こうした動力 装置は、一軸 に動力を伝達できるに過ぎず、 四輪駆動車輛などに適用することはできなかった。 本発明の動力伝達装置及びこれを用いた四輪駆動舉輛は、 こうした問題を解決 し、 原動機よリ得られた動力を高効率に伝達また ( ϋ用して、 原動機の出力を 2 つの軸に適正に配分すること、 更にはその動力伝達装置を用いて全く新規な四輪 駆動車輛の構成を提案することを目的としてなされ、 次の構成を採った。 発明の開示
本発明の第 1の動力伝達装置は、
原動機の動力力 達される回転軸を備え、 該回転軸から入力される原動機から の動力を、 第 1の出力軸と、 該出力軸とは異なる第 2の出力軸とに伝達する動力 伝達装置であって、
前記回転軸の回転に関連付けられた第 1の電動機と、
前記回転軸に入力される動力と、 前記第 1の出力軸に機械的な形態で入出力さ れる動力と、 前記第 1の電動機に電気的な形態で入出力される動力との配分を、 入出力の縦口がバランスする条件の下で制御する分配手段と,
前記第 2の出力軸に結合された第 2の電動機と、
前記第 1の電動機に電気的な形態で入出力される動力を制御して、 前記第 1の 電動機の運転状態を可変し. 前記分配手段における前記動力の配分を制御する第 1の動力制御手段と、
前記第 1の動力制御手段によリ前記第 1の電動機に電気的な形態で入出力され る動力に基づき、 前記第 2の電動機の運転を制御して、 前記第 2の出力軸に出力 される動力を制御する第 2の動力制御手段と
を備えたことを要旨とする。
かかる動力伝達装置では、 原動機の動力が伝達される回転軸の回転に関連付け られた第 1の電動機を備え、 この第 1の電動機に電気的な形態で入出力される動 力を第 1の動力制御手段によリ制御する。 第 1の電動機に電気的な形態で入出力 される動力が制御されると、 第 1の電動機に電気的な形態で入出力される動力と 原動機の動力が伝達される回転軸に入力される動力と第 1の出力軸に機械的な形 態で入出力される動力との配分は、 入出力の ロがバランスする条件の下で分配 手段により制御されるから、 第 1の出力軸に入出力される動力は決定される。 他 方、 第 1の動力制御手段によリ前記第 1の電動機に電気的な形態で入出力される 動力に基づき、 第 2の動力制御手段により、 第 2の電動機の運転を制御して、 第 2の出力軸に出力される動力を制御する。 この結果、 原動機からの動力を、 第 1 の出力軸と、 該出力軸とは異なる第 2の出力軸とに伝達することができる。
この分配手段による動力分配の様子を、 回転数とトルクの関係として図 46に 示す。 原動機がある出力で運転されていると、 その回転軸には、 トルク TX回転 数 Nのエネルギが出力されることになる。 今、 原動機が回転数 Ne, トルク Te の点 P 1で運転されているとする。 このとき、 分配手段により第 1の出力軸の回 転数が N d fであるとすると、 分配手段は、 図示領域 G 1に相当するエネルギを 電気的な形態で取り出し、 これを第 2の出力軸側の出力とすること力できる。 第 2の出力軸が、 第 1の出力軸と同じ回転数 Nd fで回転しているとし、 かつ分配 手段により電気的な形態で取り出されたエネルギが全て第 2の出力軸に出力され るとすると、 (Ne— Nd f) xTe=Nd f XTd rの関係力成り立つトルク T d f が第 2の出力軸に出力されることになる。 第 1の出力軸のトソレクは T eで あることから、 第 1の出力軸が第 2の出力軸と同じ対象を駆動しているとすれば、 総トルクは、 Te+Td rとなり、 動力の伝達を受ける対象は、 回転数 Nd f , トルク Te+Td rの点 P2で駆動されることになる。 したがって、 本発明の動 力伝達装置は、 これをトルクと回転数の観点からみれば、 トルク変換を行なう装 置として把握することも可能である。 なお、 トルク変換は、 逆向き、 即ち点 P2 から点 P 1に向かって行なうこともできる。 後述する四輪駆動 の ϋτ^、 第 1, 第 2の の回転数は、 通常等しいから、 ί¾に出力される動力をトルクと回転 数の観点から見れば、 上記のトルク変換の議論はそのまま適用可能である。
かかる動力伝達装置において、
第 1の出力軸に結合された第 3の電動機と、 該第 3の電動機の運転を制御して、 前記分配手段によリ機械的形態で動力が入 出力される前記第 1の出力軸に、 第 3の電動機による動力の入出力を加える第 3 の動力制御手段と
を備えることも可能である。
かかる構成によれば、 第 1の出力軸に入出力される動力に、 第 3の電動機によ る動力の入出力を加えることができ、 第 1の出力軸に最終的に入出力される動力 を、 分配手段により機械的に入出力される動力の範囲にとどまらず、 広く可変す ることができる。
以上説明した本発明の動力伝達装置の分配手段としては、 いくつかの態様を考 えることができるが、 その一つは、 第 1の電動機が、 前記原動機の回転軸に機械 的に結合する第 1のロータと、 該第 1のロータと電磁的に結合し、 該第 1の口一 タに対して相対的に回転し得る第 2のロータとを有すると共に、 該第 2のロータ が、 前記第 1の出力軸に機械的に結合したものであって、 これが分配手段を構成 するものである。 この動力伝達装置は、 更に、 前記第 1および第 2の動力制御手 段は、 多相交流によって前記第 1の電動機における前記第 1及び第 2のロータ間 の電磁的な結合を制御して、 前記第 1の電動機との間で少なくとも一方向の電力 のやり取りが可能な第 1の電動機駆動回路と、 前記第 2の電動機との間で少なく とも一方向の電力のやり取りが可能な第 2の電動機駆動回路と、 前記第 1および 第 2の電動機駆動回路を制御して、 前記第 1および第 2の出力軸に入出力される 動力の配分を制御する動力配分制御手段とを備えたものとすることができる。 かかる動力伝達装置では、 原動機の回転軸に入力された動力の分配手段による 分配は、 次のように行なわれる。 第 1及び第 2のロータ間の電磁的な結合の強さ によって、 機械的な形態で第 1の出力軸に動力力入出力され、 第 1及び第 2の口 —タの回転数差に基づき、 電気的な形態で動力が入出力される。 入出力されるこ れらの動力の 口は、 摩擦などによりロスを除きバランスしている。 分配手段が、 ある種のモータとして構成されたこの形態を, 以下、 電気分配式と呼ぶ。 電気分 配式の動力伝達装置では、 第 1および第 2の電動機駆動回路が、 第 1および第 2 の電動機との間で、 少なくとも一方向に電力のやり取りが可能なので、 動力配分 制御手段がこれらの電動機駆動回路を制御することにより、 第 1の出力軸と第 2 の出力軸に出力する動力を自由に配分することができる。
この電気分配式の動力伝達装置において、 前記第 1または第 2の電動機駆動回 路が前記第 1または第 2の電動機との間で回生した電力の少なくとも一部を蓄積 可能な二次電池を備え、 前記動力配分制御手段は、 前記第 1および第 2の電動機 駆動回路の制御による前記第 1および第 2の竜動機との間の電力のやリ取リに加 えて、 前記二次電池への電力の蓄積および該二次電池からの電力の出力を制御し て、 前記第 1および第 2の出力軸に入出力される動力の配分を制御する手段を備 えることも可能である。 この場合には、 一方から回生した電力でそのまま他方を 駆動するという制約、 即ち第 1の電動機駆動回路および第 2の電動機駆動回路の 電力の収支を均衡させる必要がないことから、 両電動機を駆動 (カ行) するなど, その制御の自由度が一層高くなると言う利点が得られる。
こうした動力伝達装置において、 更に、 前記動力配分制御手段は、 前記第 1の 電動機駆動回路を制御して、 前記第 1の電動機よリ前記第 1のロータと第 2の口 —タとの間に生じる滑り回転に応じた電力を前記第 1の電動機駆動回路を介して 回生する回生制御手段と、 該回生した電力の少なくとも一部を用いて前記第 2の 電動機駆動回路によリ前記第 2の電動機をカ行するカ行制御手段とを備えること ができる。 この場合には、 第 1の電動機から第 1の電動 区動回路を介して電力 を回生し、 この電力の少なくとも一部を用いて第 2の電動機をカ行し、 第 1およ び第 2の出力軸に、 原動機のトルクを自由に配分することができる。
この動力伝達装置において、
前記動力配分制御手段は、 前記二次電池に蓄積された電力を用い、 前記第 1の 電動機駆動回路を制御して、 前記第 1の電動機をカ行する第 1のカ行制御手段と、 前記第 2の電動機駆動回路を制御して、 前記第 2の電動機をカ行する第 2のカ行 制御手段とを備えることも可能である。 この には、 両電動機をカ行でき、 第 1および第 2の出力軸から大きなトルクを出力すること力できる。
本発明の動力伝達装置の他の重要な態様は、 以下、 機械分配式と呼ぶものであ リ、 その分配手段は、 前記原動機の回転軸と前記第 1の出力軸と前記第 1の電動 機の回転軸とに各々結合される 3軸を有し、 該 3軸のうち前記原動機の回転軸に 結合された軸と前記第 1の電動機の回転軸に結合された軸とに入出力される動力 が決定したとき、 該決定された動力に基づいて、 前記第 1の出力軸に結合された 軸に入出力される動力が決定される 3軸式動力入出力手段として実現することが できる。 この動力伝達装置では、 更に、 前記第 1および第 2の動力制御手段は、 前記第 1の電動機との間で少なくとも一方向の電力のやリ取リが可能な第 1の電 動 β動回路と、 前記第 2の電動機との間で少なくとも一方向の電力のやり取り が可能な第 2の電動機駆動回路と、 前記第 1および第 2の電動機駆動回路を制御 して、 前記第 1および第 2の出力軸に入出力する動力の配分を制御する動力配分 制御手段とを備えたものとすることができる。
かかる動力伝達装置では、 原動機の回転軸に入力された動力の分配手段による 分配は、 次のように行なわれる。 3軸式動力入出力手段は、 3軸のうち前記原動 機の回転軸に結合された軸と前記第 1の電動機の回転軸に結合された軸とに入出 力される動力が決定したとき、 該決定された動力に基づいて、 前記第 1の出力軸 に結合された軸に入出力される動力力 i'決定され、 第 iの出力軸への動力の入出力 は機械的な形態により行なわれる。 また、 第 1の電動機は、 電気的な形態で動力 の入出力を行なう。 機械分配式の動力伝達装置でも、 第 1および第 2の電動機駆 動回路が、 第 1および第 2の電動機との間で、 少なくとも一方向に電力のゃリ取 リが可能なので、 動力配分制御手段がこれらの電動機駆動回路を制御することに より、 第 1の出力軸と第 2の出力軸に出力する動力を自由に配分すること力でき る。
この機械分配式の動力伝達装置において、 電気分配式の動力伝達装置と同様、 前記第 1または第 2の電動機駆動回路が前記第 1または第 2の電動機との間で回 生した電力の少なくとも一部を蓄積可能な二次電池を備え、 前記動力配分制御手 段を、 前記第 1および第 2の電動機駆動回路の制御による前記第 1および第 2の 電動機との間の電力のやり取りに加えて、 前記二次電池への電力の蓄積およひ亥 二次電池からの電力の出力を制御して, 前記第 1および第 2の出力軸に入出力す る動力の配分を制御する手段とすることができる。
更に、 これらの機械分配式の動力伝達装置において、 電気分配式の動力伝達装 置と同様、 前記動力配分制御手段を、 前記第 1の電動機駆動回路を制御して、 前 記原動機の回転軸に入出力される動力と前記第 1の出力軸に入出力される動力と の差分に応じた電力を, 第 1.の 励機から前記笫 1の ¾勁機駆動回路を介して回 生する回 制御手段と. 該回生した電力の少なくとも一部を用いて前記第 2の電 動 ¾S区動回路によリ前記第 2の電動機をカ行するカ行制御手段とを備えるものと することができる„
また、 機械分配式の動力伝達装^において. 電気分 P¾式の勁力伝達装置ど问様、 前記動力配分制御手段として、 前記二次 ¾池に蓄積された竜力を用い 前記笫 1 の 動 —動回路も制御して、 前記第 1の ¾勋機をカ行する第 1のカ行制御 段 と、 前 ΠΒ第 2の電動機駆動问路を制御して、 前記第 2の 機をカ行する第 2の カ行制御 T'段とを備えるものとすることもできる。
本究明の 2の動力伝遠装 は,
原動機の出力する機械的エネルギを回 籼を介して篛 1の Sil^に伝违し、 該 第 1の電動機を利^して伝逹された前 SI機械的エネルギの一部を電気的エネノレギ に^して取り出し
残リの機械的エネルギを笫 1の! .1.',力籼に山力すると共に、 前記第 1の電動機よ リ取り出された前 ¾電気的エネルギの少なくとも一都を fflいて第 2の電動機を駆 動して、 前 第 1の出力軸とは異なる第 2の出力軸に出力し、
前記第 1の ¾機において fe される前記機械的エネルギと取り出される前記 ^気的エネルギとの 1¾分を制御して、 ^記第 1および第 2の出力籼に出力される 動力を所定の大きさに調整することを要旨とする。
この助力伝達装 ΪΙは、 第 1の ¾1機を利 して伝逹される機械的エネルギと取 リ出される電気旳エネルギとの配分を制御し, この取リ出された電気的エネルギ の少なくとも一部を用いて第 2の 勛機を駆励するから, 第 1の Π;力軸および第 2の出力軸に出力される動力を所定の大きさに調整することができる。
± ^した動力伝逹装; Sにおいて、 前記第 1の出力軸に出力される動力と、 前記 第 2の出力軸に出力される動力との配分を決定する配分決定チ段を備え、 闘第 1 , 第 2の動力制御手段は、 該配分决定手段により決定された動力配分を B fi として制御を行なう手段とすることができる。
この動力伝逹装 gは、 先に第 1の山力籼と第 2の山力軸とに分配される動力を 配分決定手段にょリ決定する。 第 1 , 第 2の動力制御手段は. この決定されだ勳 力配分を目標値として制御を行なう。 この結果、 mi , 第 2の出力軸に入出力さ れる勳力の配分を優先して制御力行なわれるこどになる。
更に、 第 3の電動機を備えた上記の 力伝迭装 において、 前記第 1の動力制 御手段を介して前記第 1の ¾)機の i¾J力を制御することにより, 前 ¾ 動機を所 望の運転領域内で運転する^動機述転手段と, 前記第 1の出力軸に出力される動 力と前記第 2の出力籼に山力される動力との配分を決定する配^ i定手段を備え ると共に, 前記第 3の動力制御手段を. 該配分決定 P,段により Ϊ記第 1の出力軸 について決定された^力配分を M標値として制御を行なう: Γ·段とし、 ^記第 2の 動力制御手段を、 該配分決定手段によリ前^第 2の出力軸について決 された勁 力配分を目 値として制御を行なう手段とすることができる。 この勵カ伝连装 では. 原励機を所望の運転条件、 例えば燃料消費呈が少なくなる速 件で しながら、 笫 1 , 第 2の出力軸に入出力される動力の配分を自凼に制御すること ができる。
この動力伝達装置において, 前記笫 1の電 機を, 前記原動機の回転軸に 的に結合する第 1のロータと、 該第】のロータと^;磁的に結台し、 該第 1のロー タに対して相対的に回^し得る笫 2のロータとを有すると共に、 該第 2のロータ が、 前記第 1の出力軸に機械的に結合したものとし、 この構成により分配手段を 構成すること力 Sできる。 即ち、 気分配式の ¾カ^装置により、 上記の制御を 実現することができる。
他方、 この勐カ伝達装置において、 ^記分 fl'd亍殺を、 前 11原 機の回転軸と前 記第丄の出力軸と前 §ci第 1の lllJ機の回転軸とに各々結合される 3軸を有し、 該 3軸のうち前 動機の M転軸に結合された軸と前記第 1の 動機の回転軸に桔 合された軸とに入出力される動力力决定したとき、 該決定された動力に基づレ、て、 前記第】.の出力軸に結合されだ軸に入出力される i¾力が決定される 3 Φ¾式動力入 出力手段とすることができる。 即ち、 «分配式の動力伝達装置により, 上記の 制御を実現することができる。
なお、 これらの勛カ伝逹装笸において、 笫 1または笫 2の il機は (第 3の 動機を有するものでは第 3の^動機も) 、 多相の交流により構成される回転磁界 と、 永久磁石による磁界との相 作用により IEI転する |。:)期¾動機とすることがで きる。 同期 m動機は、 小 軽 な?5成の S!lには大きな勖カを取リ出すことができ、 動力伝逹装 を小型に構成することができる。
次に の第 1の および第 2の—串 4に独 に^力を伝達する木^ ¾の四輪 駆動审帼につ 、て説明する。 木発明の I凡【輪駆き卓輛は,
助力力 リ出される Γ"Ί転 Ψΐίΐを有し、 該回 ifc籼を回 させる原助機と、
該回転軸の回転に関連付けられた第 1の電助機と、
前記回転軸に入力される動力と、 ^記第 1の 軸に機械的な形態で人出力され る勳カど、 1¾記第 1の電動機に電気的な形態で入出力される勦力との配分を, 入 出力の ^口がバランスする条件の下で制御する分配手段と,
前記第 2の 軸に結合された第 2の' 勋機と、
前記第 1の 機に' 的な形態で入出力される S Tを制御して、 ίί記^ 1の 電動機の運転状態を可変し、 前; Ϊ5分配 段における前記動力の配分を制御する第 1の ¾]力制御乎段と、
前 第 1の動力制御手段によリ前記第 1の 動機に電 的な形態で入出力され る動力に基づき、 前記第 2の電勁機の運転を制御して、 前記笫 2の車軸に出力さ れる動力を制御する第 2の動力制御手段と
を備えたことを要旨とする,,
この^輪躯動^では、 原動機の動力が伝達される回 軸の回^に H巡付けら れた第 1の ¾動機を備え、 この第 1の锺劻機に 気的な形態で入出力される励力 を第 1の動力制御手! ¾により制御する。 第 1の電勳機に電気的な形態で人出力さ れる動力が制御されると、 第 1の電動機に電気的な形態で入出力される動力と原 iJ機の動力力 违される回転軸に入力される動力と第 1の車軸に機械的な形態で 入出力される動力との配分は, 人出力の総和力 sバランスする条件-の下で分配手段 により制御されるから、 第 1の率軸に入出力される動力は決定される。他方、 第 1の勤力制御 段により 記第 1の電動機に電気的な形態で入出力される動力に ¾づき、 第 2の動力制御手段により、 第 2の1勐機の遝転を制御して、 第 2の.申- 軸に出力される勁力を制御する。 この結果、 原動機からの動力を、 第 1の Φ袖と、 第 2の とに伝達することができる。
この四輪駆動 において、 ΐϋ
前記第 1の車籼に結合された第 3の電動機と,
該笫 3の電動機の運転を制御して、 ίί記分配手段によリ機械的形態で助力力 ί入 出力される前記第 1の 4¾に、 第 3の锒動機による勖力の入出力を加える第 3の 動力制御手段と
を儲えることも可能である β
かかる構成によれば、 第 1の- 軸に入山力される勁力に、 第 3の^;動機による 動力の入出力を加えることができ、 第 1の ΐΐΐίΐに最終的に入出力される動力を、 分配手段により機械的に入出力される勁力の 5两にとどまらず、 広く可変するこ とがでさる。
こうした四輪駆動 i&ffiにおいて、
前 ¾第 1の窀勛機は、
Figure imgf000012_0001
のロータと、 鄉 1のロータと 鼋¾0勺に結合し、 該第 1のロータに対して相対的に |£|転し得る第 2のロータとを
^すると. に、 該 2の π—タが、 ^記第 1の単籼に機械的に結合しだものであ つて, 前記分配手段を構成し、
前 ¾第 1および第 2の助力制御手段は、
多相交流によって前 ¾1第 1の 機における^記第 1及び第 2のロータ間の
^:磁的な結合を制御して, 前記第丄の 勅機との問で少なくとも一方向の^:力の やり取りが可能な第 1の電勁機駆動回路と、
m , 2の ' 助機との問で少なくとも一方向の電力のやり取リが nj'能な^ 2 の電動機駆動回路と,
前記第 1および第 2の 勵回路を制御して, 前 ffi原 ¾ϋ機の助力を m¾ の配分で、 前記第 1および第 2の出力軸に出力する勁力配分制御手段と
を備えることも可能である,,
かかる構成は、 分配-: Ρ·段を ¾気分配式の構成としたものである。
気分 ϋ式の四輪駆動市輛において、 ^記第 1または第 2の電動機駆動回路が 前 §Η 1または第 2の電 機との間で回^した電力の少なくとも一部を¾ 可能 な二次 池を俯え、 前記勁力配分制御于- を、 前記第 1および第 2の電動機駆動 回路の制御による前 第丄および第 2の? gfiij機との |¾の^力のやリ取リに加えて、 前記—次 池への電力の蓄賴ぉよび該二次電池からの^力の出力を制御して、 前 記第 1および第 2の出力軸に出力する勁力の配分を制御する手段とすることカ^:' きる。 この場合には、 一方から回生した電力でそのまま他方を駆動するという制 約、 即ち第 1の電励機 SR助回路および第' 2の 勁機 ¾区勁回路の 力の収支を均衡 させる必要がないことから. 両 助機を, i勁 (カ行) するなど、 その制御の Θ由 度が一屑髙くなると言う利点が得られる。
また、 こうした四輪駆動車輛において、 前¾動力配分制御手段を、 前記第 1の 勁機駆勁回路を制御して、 前記 1の ¾励機よリ前記第 1の□—タと第 2の Π ータとの間に生じる滑り回転に応じた電力を前記笫 1の電勋 回路を介して 回生する回牛制御手段と、 該回生した電力の少なくとも一部を用いて前記第 2の 竜 駆勁回路によリ前記第 2の' 動機をカ行するカ行制御手段とを ffiえる構成 とすることができる。 この場合には、 W, 1の鼋勦機から第 1の電力機!^ 回路を 介して電力を回生し、 この電力の少なくとも一都を用いて第 2の電動機をカ行し、 第 1および第 2の出力軸に、 原勖機のトルクを自由に配分することができる。 こ うしだトルクの配分により、 全体として車輛の加^行, フリーランが可能であ る。
これと ίϋ£に、 輪駆勁 において、 前記動力 分制御手段を, 記笫 2の 電動機駆勐 路を制御して、 ^記 2の車籼の冋転によリ回 される前記第 2の 竜勁機から 力を回生する 1?1生制御手段と、 該回生した 力の少なくともー郤を 用いて前 d第丄の電動機駆勤 InJ路によリ前 d第 1の 動機をカ行するカ行制御于 段とを倔える構成とする二ともできる。 四輪駆動その場合には、 路 を介して 四輪は [¾係づけられているから、 第 2の車軸の側で回 を ない、 第 1の φ軸の 側でカ行を行なうことも 能である。 こうしたトルクの配分により、 全体として 車輛の加速走行、 フリーラン、 制動が J "能である。
更に、 二次電池を有する四輪駆勁 において、 前記動力配 御手段を、 前 記第 1の 動機駆動 路を制御して、 前 ¾第 1の mii機よリ前記第 1のロータと 笫 2のロータとの間に生じる滑リ回^に応じた' 力を 第 1の電勡機駆動回路 を介して回牛.する笫 1の回 ΐ制御 段と、 前記 2の ¾動機駆勁回路を制御して、 前記第 2の の回転によリ Μ転される前 dS第 2の ^動機から電力を回生する第 2の回生制御手段とを備えるものとし、 該回生された電力の少なくとも一部を前 記二次電池に蓄積する構成とすることもできる。 この場合には、 少なくとも第 2 の舉軸に制動力を発生させ、 両車軸に結合された両電動機から電力を回収して二 次電池の充電に供することカ^きる。 第 1の勒由には、 駆動力を付与することも できるし、 制動力を付与することもできる。 従って、 全体としては、 ^¾をフリ 一ランまたは制動状態に置くこと力できる。
他方、 二次電池を有する四輪駆動車輛において、 前記動力配分制御手段を、 前 記二次電池に蓄積された電力を用い、 前記第 1の電動機駆動回路を制御して、 前 記第 1の電動機をカ行する第 1のカ行制御手段と、 前記第 2の電動機駆動回路を 制御して、 前記第 2の電動機をカ行する第 2のカ行制御手段とを備える構成とす ることができる。 この場合には、 両軸に、 二次電池の電力を利用した動力を付与 することができ、 原動機による駆動力とを併せて、 を、 フリーランまたは加 速状態に置くことができる。 加速状態に置く場合には、 第 1の電動機に滑り回転 を生じさせて電力を回生している場合と比べて、 より高い動力を車軸に出力する ことができ、 高い加速を実現することカ^:'きる。 なお、 原動機が停止していても、 第 1 , 第 2の に駆動力を発生すること力'できる。
四輪駆動車輛として、
前記分配手段を、 前記原動機の回転軸と前記第 1の車軸と前記第 1の電動機の 回転軸とに各々結合される 3軸を有し、 該 3軸のうち前記原動機の回転軸に結合 された軸と前記第 1の電動機の回転軸に結合された軸とに入出力される動力が決 定したとき、 該決定された動力に基づいて、 前記第 1の Φ¾に結合された軸に入 出力される動力か 定される 3軸式動力入出力手段とし、
前記第 1および第 2の動力制御手段を、
前記第 1の電動機との間で少なくとも一方向の電力のやリ取リ力^!能な第 1 の電動機駆動回路と、
前記第 2の電動機との間で少なくとも一方向の電力のやリ取リが可能な第 2 の電動機駆動回路と、
前記第 1および第 2の電動機駆動回路を制御して、 前記第 1および第 2の車 軸に入出力する動力の配分を制御する動力配分制御手段と を備えたものどすることができる。
かかる構成は、 分配手段を機械分配 の構成としたものである。
かかる四輪駆動 では、 原勁機の回 軸に入力された勦力は分 g [^殺により、 次のように行なわれる u 3軸式勦力人出力手段は、 3軸のうち前 原動機の回転 軸に結合された軸と前記第 1の ft劻機の冋車 山に結合された軸とに人出力される 動力が決定したとき, 該決定された勁力に基つ'いて、 ^記第 1の班軸に結合され た軸に入出力される勳力が決定され, 第 1の丰軸への勁力の入出力
Figure imgf000015_0001
態にょリ行なわれる。 また、 第 1の' 勁機は、 電気的な形態で助力の人出力を行 なう。機械分配式を採用した四輪駆動.糊でも、 第]および第 2の電動機駆勤 InJ 路が、 第 1および第 2の 動機との問で, 少なくとも一方 | に¾/]のやり取りが 能なので、 動力配分制御手段がこれらの 勡機駆勒问路を制御することにより, 第 1の車軸と第 2の に出力する動力を自山に配分することができる。
この機械分配式の構成を備えた 輪馬隨車輛にぉレ、て、 電気分配式の構成と同 様に, 前己第 1または第 2の^動機駆動回路が前記第 1または第 2の電動機との 間で回生した電力の少なくとも一部を蓄稷 '能な二次 池を俽え、 前記動力配分 制御予段を、 前記笫 1および第 2の 動機駆動回,制御による前記笫 1および 第 2の電動機との問の 力のやリ取リに加えて、 前記二次霜池への電力の蓄積お よび該二次 ' 池からの!:力の出力を制御して、 前 ϋ第 1および第 2の $軸に出力 する動力の!! Sd分を制御する T-段とすることができる
更にこうした機械分配 の構成を備えた四輪)!動 において、 電気分配式の 構成と IHJ様、 前 dS&力配分制御手段を、 前記^ 1の ®I機駆励回路を制御して、 前記原動機の M転軸に人出力される動力と前 d第 1の車軸に入出力される勦力と の差分に応じた電力を、 笫 1の 助機から前記第 1の電 ¾!機駆勁 IMJ路を介してし "J 生する冋生制御手段と、 該回生した^力の少なくとも一部を用いて ιίϊ記第 2の It 動機駆動 路によリ前 §d ' 2の 励機をカ行するカ行制御手段とを備えたものと すること力できる。
また, こうした機械分配式の稱成を備えた四輪駆 J1)审輛において、 電気分配式 の構成と同棕、 前記励力配分制御手段を, 前記第 2の電動機駆勁回路を制御して、 前 d第 2の苹 ·¾!の lEil転により回転される前記第 2の 動機から電力を回生する回 生制御手段と、 該回生した電力の少なくとも一部を用いて前記 1の 動機 冋路により j記第 1の電動機をカ行するカ行制御手段とを備えだものとすること ができる w
機械分 ϋ式の四輪駆動車輛において, —次 池を備えたものでは、 電気分配式 の構成と同様, 前記勳ゾ J配分制御 殺を, 前記第 1の電動機 ί_¾)回路を制御して、 前記原動機の问 轴に入出力される動力と前記第 1の ΐ軸に入 f屮,力される動力と の;!分に応じた ¾力を、 第〗の 機から前記第 1の電助機駆動回路を介して冋 生する第 1の回牛.制御手段と, 前記第 2の 機駆勁 |ϋ|路を制御して、 前記第 2 の ¾1]の冋転によリ |"1転される前記第 2の (機から電力を回生する第 2の回生 制御 段とを備えた構成力 ί能でぁリ、 該 μ|生された電力の少なくとも一都を前 記二次電池に蓄 するものとすることができる。
同様に、 一-次^:池を備えた四輪駆 —中-硐において, if記動力配分制御手段を、 前記二次 池に 積された電力を用い、 前 1の 動 ¾I区動回路を制御して、 前記第 1の電勛機をカ行する第 1のカ行制御手段と、 前記第 2の電動機 動回路 を制御して、 前記第 2の 動機を力 'ί了する第 2のカ行制御手段とを備えたものと すること力^: ·きる。
本発明の 352の 輪駆動車輛は、 原動機の出力する機械的エネルギを回 li-铀tbifi if' 介して第 1の電勋機に し、 該第 1の電動機において、 伝達された前記 的 エネルギの一部を ¾気的エネルギに変換して取り出し、
残リの機械的エネルギを第 1の眾 に出力すると; ftに、 前 33第 1の SJ機よリ 取リ出された B電気的エネルギの少なくとも一部を fflいて第 2の電動機を して、 の車 #]に出力し、
前記第 1の電動機を利用して伝達される前記機械的エネルギと取り ίίίされる^ 記電気的エネルギとの配分を制御して、 前記第 1および第 2の «に出力される 動力を所定の大きさに調整することを要旨としている。
この四輪駆動 は、 第 1の電 機を利用して伝達される 的エネルギと取 リ出される菴気的エネルギとの配分を制御し、 この取り出された 気的エネルギ の少なくとも -部を用いて笫 2の'^:動機を駆動するから、 第 1の車軸および第 2 の単軸に出力される動力を所定の大きさに調 すること力できる。 h述した四輪駆動車輛において, 前記第 1の审籼に出力される ϋ力と、 前記第 2の車軸に出力される動力との配分を決定する配分^手段を俯え、 前記第 1の 動力制御手段を、 該配分決定手段によリ決定された助力配分を曰標値として制御 を行なう手段とすることができる。
この ω輪駆勁 は、 先に笫 1の車軸と第 2の 軸とに分配される g¾力を配分 决定手段により決定する。 第 1 , 第 2の動力制御手段は、 この決定された動力配 分を目標値として制御を行なう., この結菜 i , 笫 2の 軸に入出力される励 力の配分を優先して制御が行なわれることになる。
更に笫 3の^:動機を備えた上記の四輪駆動 において, 前記第 1の動力制御 手段を介して前記笫 1の電動機の動力を制御することにより、 前記原動機を所望 の運 領域内で運転する原動機迷転手段と、 前記笫 1の に ,'1;力される動力と 節記第 の Mlに出力される動力との配分を決定する配分決定手段を備えると共 に、 前記第 3の勁力制御-: ^段を、 該配分決定手段により前 ¾第 1の職について 決定された動力 fld分を 標値として制御を行なう 段とし、 前 第 2の勡カ制御 手段を, 該 分決定手段によリ ^記第 2の車軸について決定された動力配分を目 標値として制御を行なう于- でとすることができる。 この四輪駆 ¾ΐϋでは、 原 動機を所望の運転条件、 例えば燃料消費暈が少なくなる 転条件で運転しながら、 第 1, 第 2の «に入出力される動力の配分を S由に制御することができる。 この四輪駆動牢裥において、 前 第 1の窀勁機を、 前記原勁機の 転軸に « 的に結合する第 1の 一タと、 該第 1の Π—夕と 的に結合し、 該笫丄の口一 タに対して相対的に回転し得る第 2のロータとを有すると共に、 第 2の Π—タ が、 前己笫 1の 籼に機械的に結合したものとし. この構成によリ^記分配手段 を構成すること力できる。 即ち、 ¾気分配式により. 卜.記の制御を実現すること ができる。
他方、 この四輪駆動 ί¾ίにおいて、 前記分配: Ρ·段を、 前記原動機の回転軸と ¾ ifd第 1の事勒と前 d己第 1の窀勳機の回¾¾とに各々結合される 3軸を有し、 m 軸のうち前記原動機の 1«1転軸に結合された軸と前己第 1の電動機の回 $軸に結台 された軸とに入出力される動力が決定したとき, 夬定された動力に基づいて、 前記第 1の^! に結合された軸に人出力される勳力が決定される 3軸式勁力入出 力 殺とすることができる。即ち、 機械分配式により、 上記の制御を突 するこ とがでさる。
更に、 本発明の第 3の四輪駆励电螨は, 原助機の動力を糊の第】の車軸と該 第 1の賴と〖識械的に直接は結合されていない第 2の率軸に する動力 装 gを備えた pq輪駆励車辆であって、
動力を出力する回転軸を有し、 該 μ!転籼を回!?、させる原勁機と.
該原励機の回転軸に機械的に結台する第 1の口一タと. 該第 1のロータと電磁 的に結合し、 該第 1の口一タに対して相対的に し得る第 2のロータとを有し, 該第 2のロータに前記笫 1の—中 を機械的に結合した第 1の雷 機と、
多相交流によって前記第 1の 動機における前記第 1及び笫 2のロータ間の鼋 磁的な結合を制御して. 前記第 1の' 動機との間で少なくとも -'方向の電力のや リ取リ力可能な第 1の電動纏区動回路と、
前記原励機の他の回 籼に機械的に結合する ' 3のロータと、該笫 3のロータ と竜磁的に結合し、 該第 3の口- -タに対して相対的に回転し得る第 4のロータと を有し、 該第 4のロータに前記第 2の ψ を機械的に結合し 第 の 機と、 多相交流によって前記第 1の亀 ®J機における前記第 1及び第 2のロータ間の電 磁的な結合を制御して, ¾記第 2の 動機との It)で少なくとも一方向の電力のや リ取りが RJ'能な第 2の電動機駆動 路と、
¾記第 1および第 2の霭勁機駆劻 路を制御して、 前 d原勛機の動力を所定の 配分で、 前記第 1および 2の車軸に出力する勤力 分制御手段と
を備えたことを要旨とする。
この四輪駆助車輛は、 原動機の出力 1の両端から第 1または第 2の車軸に至る 経路に、 相対的に回転し得るロータを備えた 動機という同一の構成を付加した ものであリ、 各軸に置かれた電動機とその 機駆勐回路との間の電力のやリ取 リを制御することで、 第 1および第 2の車軸に出力される原 機の動力を自在に 配分すること力'できる。
この四輪駆動糊において, 前¾第 1または第 2の電動機駆勳回路が前記笫 1 ま は第 2の鼋動機との問で^生した ¾力の少なくとも -部を蓄積可能な二次竜 池を備え、 ^記動力配分制御于-段は、 前記第 1および笫 2の 賺駆励回路の制 御による電力の回生および消 aに加えて、 前記二次 池への :力の蓄積および/ または該—次電池からの ¾カの【ゆを制御する二次電池制御 を備えた構成と することがて'きる。 この^には、 動機冏の ¾力の収支をバランスさせる必 はなく, 二次 池を含めた' ¾力のやリ取リにより, §5 1および第 2の^ t [(への動 力の配分を 眉肖巾に制御することができる。
更に、 木発明の第 の四輪駆動車、輛は、 原動機の勁力を申.锕の第 1の車軸およ び第 2の^ |1|に fe^する動力伝達装置を備えた四 励 锕であって、
勁力が出力される回転軸を有し、 該回! IS軸を回転させる原助機と、
該'原動機の回転軸に機械的に結合する^ 1のロータと. 該第 1のロータと t磁 的に結合し、 該第 1のロータに対して相対的に冋^し得る第 2の タとも有し、 該第 2の口-一タに前記笫 1の Ψ.籼を機械的に結合した第 1の電 jifと、
多相交流によって前 ¾第 1の竜勳機における前記第 1及び笛 2のロータ間の電 磁的な結合を制御して, 前記笫 1の電動機との閱で少なくとも一方向の電力のや リ取リ力 ^ ^能な笫 1の^:動«動回路と,
前記第 1の車軸と!塌械的に雌は結合されていない笫 2の聘 ίιが結合された 第 2の電勦機と、
該第 2の ¾{¾J機との | で少なくとも一方向の電力のやリ取リが RJ'能な第 2の^: 動機駆動回路と、
ΰΐ己第 1および第 2の電 ¾J機駆勁回路を制御して、 前^第 1および Zまたは第 2の に制動トルクを付与する制動力制御 と
を備えたことを要旨とする。
この四輪駆動糊は、 第 1および第 2の電動機垂 I路を制御することにより、 第】および Zまたは第 2の中-軸に制励力を付 して、 四輪駆勁≠における制勁力 を自在に制御することができる。 また、 制動時にエネルギを第 1または第 2の電 動鄉区勦回路を介して回牛することにより、 «のエネルギ効率を一層高めるこ ともできる。
本発明の勦力伝途方法は、
原 ¾j機の!;力力 i される 転軸を備え、 該回転籼から入力される原動機から の助力を基準として、 第 1の原 ¾!機が結合された第 iの出力軸に入出力される動 力と. 第 2の 機が結合され、 該第 1出力袖とは異なる笫 2の出力軸に入出力 される動力との配分を制御する方法であつて、
前記回転軸に入力される動力と、 前記第 1の出 軸に機械的な形態で入出力さ れる励力と、 前記第 1の' ¾fl機に電気的な形態で入出力される助力との配分を, 入出力の;^ ·Πがバランスする条件の下で制御する分配手段を用意し、
前記第 1の電動機に ¾気的な形態で入出力される動力を制御して、 前記第 1の 電動機の運! ¾え態を可変し、 前 ¾分配手段における前^動力の did分を制御し . 記分配手段の動作に伴い前記笫 1の ¾動機に電 的な形態で入出力される励 力に基づき、 前記第 2の 動機の運転を制御して、 前記 552の出力籼に出力され る動力を制御する
ことを要旨とする。
また、 本 J¾明の四輪駆動方法は、
原動機の動力カ^-達される lEil転軸を備え、 該回転軸から入力される原励機から の動力を基準として、 第 1の原動機が結合された第 1の-屯軸に入出力される動力 と、 第 2の が結^され、 該第 1車籼とは異なる第 2の 軸に入出力される 勦力との配分を制御する四輪駆動方法であって.
前記回 軸に入力される動力と、 前 第 1の Φ籼に機械½な形怒で入出力され る勁力と、 όίί記第〗の電勁機に電気的な形態で入出力される勦力との配分を、 入 出力の がパランスする条件の卜'で制御する分配- ·段を 意し、
|¾記第 1の第勁機に ¾気的な形態で入出力されろ勁力を制御して、 前記第丄の 電動機の運 ¾状 を可変し、 前 分配手段における ^記動力の配分を制御し、 前記分配手段の動作に伴い前記第 1の ¾動機に電気的な形態で入出力される動 力に某づき、 前 I 第 2の電勒機の運転を制御して、 前記第 2の 籼に入出力され る勤力を制御する
ことを耍旨とする。
上記のいずれの構成においても、 原勛機としては、 ガソリンエンジン、 ディ一 ゼルエンジンなどの内 M¾関の他、 ロータリーエンジン、 ガスタービン、 スター リングエンジンなど、 いかなる原動機でも利^可能である。 これらの原勐機は、 定常逝 4r;状態で制御しても良いし, オン 'オフ的な制御としても良いし、 ァクセ ル關度や要求トルクなどに応じて出力を制御しても良い。 また、 二次電池を有す る構成では、 二次電池の充電状態などに応じて制御するものとしても良い。 車輛 全体の総合的な状態から制御するものとすることも自然である。
更に、 第 1および第 2の 動機としては、 永久磁石型の同期モータの他にも、 永久磁石型の D Cモータ、 通常の直流モータ、 誘導モータ リラクタンス问期モ . —タ、 永久磁 型またはリラクタンス型のバーニアモータ、 ステッピングモータ、 超伝導モータなど、 嵇々のモータも用いることができる。 これらの電動機を制御 する電動機躯勛回路は、 電動機のタイプに適したものを採用すればよいが、 例え ば、 I GB Tインバ一タ、 トランジスタを用いたインバータ、 サイリスタインバ ータ、 II王 PWMインパ一タ、 ^流インバ一タ、 ¾1インバ- -タなど、 様々なタ イブの回路が知られている。 また、 二次^:池としては、 釕バッテリ、 ニッケ
(N i MH) パッテリ、 リチウムバッテリ, 大型のキャパシタ, 機械的なフラ ィホイールなど, 実現「び能な様々な構成が採用可能である u 回生したエネルギを sえることができれば良く、 二次 池に え切れない 力が回生された場合には、 例えばメタン改質などに利用して水索ガスなどの形態で ¾えるものとしても良い u 図面の簡舉な説明
図 1は, 本発明の第 1の実施例としての四輪^助牢铜 1 5の概略構成を示す 構成 teJである。
図 2は、 図 1の ϊ}ϊ綱の概略構成を示す構成図である。
3は、 闵 1の四輪駆励—中ニ輛 1 5における動力伝達装 IS 2 0を镭気的な接統 を含めて/ す概略構成闵である。
図 4は、 実施例のクラッチ- Έ—タ 3 0の構造を示す听面図である。
図 5は、 制御 C P U 9 0におけるトルク制御の処现の概要を示すフローチヤ ートである。
図 6は、 クラッチモータ 3 0の制御の 本的な処理を示すフローチャートで ある u
図 7は, アシストモ一タ 4 0の制御の基本的な処 ®の ψ:部分を示すフ口一 チヤ〜トである u 図 8は、 アシストモ一タ 4 0の制御の基本的な処理の後半部分を示すフロー チャートである。
冈 9は、 本発明の第 2の実施例として、 駆動力の同定的な配分を行なう制御 ルーチンを すフローチャートである。
図 1 0は、 笫 2突施例の変, jとしてのパワーアシスト制御の概要を示すフ 口一チヤ--卜である。
H i 1は、 アシス卜制御の他の 沲例の詳細を すフローチャートである。 図 1 2は、 笫 3の実施例において; Bいる充' 可能領域マップを示 兑明図で ある。
図 1 3は、 第 3の突施例においてバッテリ 9 4の残容量に対する充 可 力を示す説明図である。
図 1 4.は、 第 3の 施例において原勦機 5 0より供給されるエネルギの利用 配分を示す説明図である。
図 1 5は、 燃料 を停 I卜-した際の外力 (トルク T c ) と原 ¾j機 5 0の回転 数 N eとの |¾係を例示するグラフである u
図 1 6は、 クラッチモータ 3 0に貪方向のトルク' Γ cが設定された際の ® 籼 2 2 Aの回転数 N d f と時間 tとの関係およびこの問のクラツチモ一タ 3 ϋの 状想を例示する説明図である。
図 1 7は、 制御装直8 0によリ突行される制勁時処现ルーチンを例示するフ u—チャートである„
図 1 8は、 本発明の第 5実施例の全{«成を示す概略構成図である„ 図 1 9は、 笫 5実施例におけるモータ MG 1とブラネタリギヤ 1. 2 0との構 成を示 11兑明図である η
2 0は、 制御装置 1 8 0の構成を巾心に示す四輪駆動审輛の動力系の « 構成図である。
!¾1 2 1は、 エンジン 1 5 0の連 可能領域 Q Εとエンジン 1 5 0の ®転ボイ ントについて示す説叨図である。
図 2 2は、 ブラネタリギヤ 1 2 0の勁作原理を説 する勦作共線を示す説 図である。 i^l 2 3は、 第 5雄例の制御装置 1 8 0が実行する 輪処现ル一チンを示す フローチャートである。
2 4は、 車速とアクセルペダルポジション A Pからトルク指令値 T aを;^ めるためのグラフである。
図 2 5は、 車速と車輛トルクからエンジン 1 5 0の遝転ホ'イントを定めるた めのグラフである。
図 2 6は、 機械分 式の四輪駆動車輛の il 制御ルーチンを示すフローチヤ —トである。
図 2 7は、 同じく速$云モード判定処理ルーチンを示すフ口-. -チヤ一トである。 図 2 8は、 エンジン 1 5 0の動力が前後輪に 分される様子を示す説明図で ある。
1^ 2 9は、 エンジン 1 5 ϋの動力が前輪から後輪に 迚され、 後輪側で IEJ収 される様子を示 兑明図である。
1 I 3 ϋは、 エンジン 1 5 0の動力力 ^"ベて前輪に出力される梂子を示す説明 図である。
図 3 1は、 エンジン 1 5 0の励力がすべて後輪に出力される様子を示す説 ¾ 閩である„
図 3 2は、 エンジン〗 5 0の勵カ力 ί一曰. ¾気エネルギに変換さ てバヅテリ 1 9 4に蓄えられてから後輪に出力される棕子を示 図である。
図 3 3は、 エンジン;! 5 0の勛力が前輪から後輪に伝逢され、 後輪側で回収 されてバッテリ 1 9 4に ¾!稷される梂子を示す説明図である。
闵3 4は、 木究明の第 6実施例のハードウエア構成を示す概略構成図である。 feI 3 5は, 第 6実施例における四輪処理ルーチンを すフローチャートであ る。
闵3 6は、 第 6类施例における動力配分の範囲を示す説 ¾図である。
図 3 7は、 第 5案施例における勁力配分の範岡を示す説明図である。
図 3 8は, 第 7 例における四輪処埋ルーチンを示すフローチヤ一卜であ る。
図 3 9は、 エンジン 1 5 0の;!更転ポィントど効率の閱係を例 するグラフで ある u
I 4 0は, エネルギー定の曲線に沿つたエンジン丄 b Uの運転ボイントの効 率とエンジン 1 5 0の回 M(N eとの関係を例示するグラフである。
阂 4 1は、 機械分配式の実施例の変形例の構成を す概略構成図である。 闵4 2は、 第 5実施例等の変形例の構成の概略を例示する栴成図である。
4 3は、 笫 5実施例等の変 Jl^llの構成の概略を例; Ρする構成図である Β | 4 4は、 電気分配式の実施例に、 第 G実施例の構成を適用した場合の構成 例を ,7;·す概略構成^である,
図 4 5は, ϋ気分配式の他の構成例を ·1¾略構成図である„
図 4 6は、 本発明の原押:を解説するためのグラフである。 発明を ¾5¾するだめの ¾良の形態
以下、 本 ¾明の実施の形態を魏例に基づいて説明する。 図 1は本発明の第 1 の ¾&¾例としての動力伝達装置 2 0を組み込んだ四輪駆動車輛 1 5の概略槔成を 示す構成図、 図 2はこの四輪駆動車輛 1 5について 勅機 5 0を含む概略構成を 示す構成!?!、 図 3は図 1の構成を^;氮的に評しく描いた構成図、 である。 説明の 都合上、 まず 2を用いて、 車.铜全体の構成から説明する。
図 2に示すように、 この«には、 原動機 5 0としてガソリンにより運転され るガソリンエンジン力 えられている。 この原動機 5 0は、 吸気系からスロット ルバルブ 6 6を介して吸入した空 と 弁 5 1から噴射されたガソリンと の混合気を燃焼室 5 2に吸入し、 この混合 の爆発により押し卜げられるピスト ン 5 4の運動をクランクシャフト 5 6の回 fe 勁に^ ¾する。 ここで、 スロット ルバルブ 6 (3はモータ 6 6 aによリ開閉駆励される„ 点火プラグ 6 2は、 ィグナ イタ 5 8からディストリビュータ 6 0を介して^力れた高電圧によって ¾気火花 を形成し、 混合気はその電気火花によって点火されて爆発燃焼する。 このi¾燃 焼によリ取リ出されるエネルギが、 この审-輛を駆動する動力源となる。
この原 fl機 5 0の運転は、 電子制御ユニット (以下、 E F I E C Uと呼ぶ) 7 0により制御されている。 E F I E C U 7 0には、 原勁機 5 ϋの運転状態を示す 種々のセンサカ 続されている。 例えば、 スロットルバルブ 6 6の開度を検出す るスロットルポジションセンサ 67や、 原勁機の 50の魚荷を枚出する吸気暦負 圧センサ 72 , 原泐機 50の水温を検出する; «センサ 74 , ディストリビュー タ 60に設けられクランクシャフト 56の回 ifg数と冋畅角度を検出する回 数セ ンサ 76及び回転角度センサ 78などである。 なお, EF I ECU70には、 こ の他、 例えばィグニッションキ一の状態 S Tを校出するスタ一タスィツチ 79な ども接続されている力"、 その他のセンサ, スィッチなどの図示は 略した。 原動機 50のクランクシャフト 56は、 クラッチモータ 30を介して駆勁軸 2 2 Aに結合されている。 駆勋籼 22Aは、 減速ギヤ 23を介して前輪駆勦用のデ ィファレンシャルギヤ 2 に結合されておリ、 駆動軸 22 Aから出力されるトル クは最終的に左右の前輪 26, 28に伝逹される。 他方、 後輪 27, 29には, 後輪用のディファレンシャルギヤ 25を介して、 アシストモ一タ 30が結合され ている。 即ち、 この車輛 15は、 前輪 26, 28は、 原動機 50およびクラッチ モータ 30によリ、 {也方後輪 27, 29はアシストモータ 40により, 各々]!動 される四輪駆動車輛として構成されている。
これらのクラツチモータ 30及びアシストモ一タ 4 ϋは、 制御装苣 80によリ 制御されている。 制御装置 80の構成は後で羊述するが, 内部には制御 CPじが 備えられており、 シフトレバー 82に設けられたシフ卜ポジションセンサ 84や アクセルペダル 64に設けられその操作量を枚出するァクセノレペダルポジション センサ 65、 更にはブレーキペダル 68の操作呈を検出するブレーキペダルポジ シヨンセンサ 69なども接続されている。 また、 制御装置 S Oは、 ±3£した h!F I ECU70と通信により、 種々の情報をやり取りしている。 これらの情報のや り取りを含む制御については、 後述する。
動力伝達装置 20の構成について説叨する u 図 3に示すように、 動力伝達装 g 20は、 人きくは、 動力を 生する原勖機 50、 この原勵機 50のクランクシャ フト 56の一端にァウタロータ 32力機械的に結合されたクラッチモータ 30, このクラッチモータ 30とは別体に設けられ後輪 の駆動軸 22 Βに結合された ロータ 42を有するアシストモータ 40、 及びクラッチモータ 30とアシストモ —タ 40を駆 ¾] ·制御する制御装 S 80から構成されている。
各モータの概略構成について、 1^13および^) 4により説明する。 クラッチモ一 タ 3 0は、 図 3および図 4に示すように, ァウタ 1J一夕 3 2の内周面に永久磁 3 5を備え, インナロータ 3 4に形成されたス Πットに三相のコイル 3 6を巻回 する同期 動機として構成されている。 この-相コイル 3 Gとの Hi力のやリ取リ は、 回 ¾トランス 3 8を介して行なわれる。 詳細は後述するが、 クラッチモ一タ 3 0は、 三相コイル 3 Gに' 力を供給してカ行させる場合と、 -相コイル 3 6か ら 力を取り出して回生させる場台とが存茌する n ィンナロータ 3 4において三 相コイル 3 6用のス□ッ卜及びティースを形成する部分は、 無方向性霜磁鋼板の 薄板を 層することで稲成されている β インナロータ 3 4は、 駆動軸 2 2に結合 されてぉリ、 この駆動軸 2 2を回^する力が、 減速ギヤ 2 3の蘇比 (実施例で は約 1 : 4 ) によリ增幅されて前輪 2 G , 2 8の駆 Jil力となる。 なお、 クランク シャフト 5 6には, その回転角度 0 eを検出するレゾルバ 3 9 Λが、 他方、 駆動 籼 2 2 Aには、 その E1転角度 Θ f を検出するレゾルバ 3 9 Bが設けられている。 両レゾルバ 3 9 A, 3 9 Bが検出したクランクシャフト 5 6の叵 I転角度 6J eと躯 動軸 2 2 Aの回転角度 0 f とに基づいて、 制御装 ^ 8 0は、 クラッチモータ 3〔) のァウタロータ 3 2に対するィンナロータ 3 4の 対的な回転角度 (^:気角) を 知ること力'できる。
他方、 クラッチモータ 3 0とは別休に設けられたアシストモータ 4 ϋも、 クラ ヅチモータ 3 0同 、 同期' 機として構成されているが、 回 $云磁界を形成する 三相コイル 4 4は、 ケース 4 5に [ώ]定されたステ一タ 4 3に巻回されている。 こ のステータ 4 3も、 無 Ί':ϋ性 磁 板の^板を稜罔するこどで形成されている。 ロータ 4 2の外周面には、 複数個の永久磁石 4 6力 ί設けられている、, アシストモ —タ 4 0では、 カ行時には、 この永久磁石 4 6により磁界と三相コイル 4 4が形 成する磁界との相互作用により、 ロータ 4 2が回転する。 问生時には、 この口一 タ 4 2の回 ¾により三相コイル 4 4から 力が取り出される。 ロータ 4 2が機械 的に結合された軸は, 後輪 2 7 , 2 9の駆励蚰 2 2 13であリ、 この駆動軸 2 2 Β には、 その 転角度 Θ rを検出するレゾルバ 4 8力 けられている。 また、 駆動 軸 2 2 Βは、 ケース 4 5に設けられたベアリング 4 9によリ籼支されている。 アシストモ一タ 4 0は、 通常の永久磁石型三相同期モータとして構成されてい る力 クラッチモータ 3 0は、 永人磁石 3 5を有するァウタロータ 3 2も三相コ ィル 3 6を ffiえたインナロータ 3 4も、 共に回転するよう構成されている。 そこ で. クラヅチモータ 3 0の構成の詳細について, 図 4を用いて捕足する。 クラッ チモータ 3 0のァウタロータ 3 2は、 クランクシャフト 5 6に嵌合さネ 1たホイ一 ル 5 7の外 端に圧入ピン 5 9 a及びネジ 5 9 bによリ取り付けられている。 ホ ィール 5 7の中心都は、 铀 犬に实設されており、 ここにベアリング 3 7 A, 3 7 Bを用いてインナロータ 3 4が回転自在に取リ付けられている。 まだ, インナ ロータ 3 4には、 駆動軸 2 2 Aの一端が 1≤1定されている。
ァウタロータ 3 2に永久磁 3 5が設けられていることは に説明した。 この 永久磁 7Τ 3 5は、 実施例では 4侗設けられており、 ァウタロータ 3 2の内 liSiに 貼付されている。 その磁化力'向はクラッチモータ 3 0の軸中心に向かう方向であ リ、 一つおきに磁極の方向は逆向きになっている。 この永久磁石 3 5と僅かなギ ヤップにより対向するィンナロータ 3 4の三; HJコイル 3 ΰは、 インナロ一タ 3 4 に設けられた計 2 4個のスロット (図; u ず) に巻回されており、 各コイルに通 鼋すると、 スロットを隔てるティ一スを通る Γ«を形成する u 各コイルに三相交 流を流すと. この磁界は IS P云する u 三相コイル 3 6の各々は、 回 トランス 3 8 から ¾力の供給を受けるよう接続されている β この回 feトランス 3 8は、 ケース 4 5に固定された一次卷銶 3 8 Aとインナ [ '―タ 3 4に結合された駆 ¾|軸 2 2 A に取り付けられた—次卷線 3 8 Bとからなり, 磁誘^により, 一次巻線 3 8 A と二次卷線 3 8 Bとの問で、 双力-向に ¾力をやり取りすること力できる。 なお,
(U, V, Wffl) の 流もやリ取リするために、 冋転トランス 3 8には^目 分の筌線が甩意されている„
■する一組の永久磁石 3 5力形成する磁界と、 ィンナロータ 3 4に設けられ た二相コイル 3 6が形成する回- 磁界との相互作用により、 ァウタロータ 3 2と インナロータ 3 4とは稷々の振る舞いを示す。 通常は、 三-相コイル 3 Sに流す二 相交流の周波数は、 クランクシャフト 5 6に直結されたァウタロータ 3 2の回転 数 (1秒間の 11J 数) とインナ U—タ 3 4の回転数との偏差の周波数としている。 この結果、 両者の回転には滑リを存在することになる 分配手段を構成し第 1の 锒勁機に相当するクラッチモータ 3 0と, 第 2の ®機に札 I するアシストモ一 タ 4 0の制^の 細については、 後でフローチャートを用いて詳しく説明する。 次に、 クラツチモータ 30及びアシストモ一タ 40を駆動 -制御する制御装置
80について説明する。 制御装^ 80は、 ^13に示すように、 クラッチモータ 3 0との間で 力を双方向にやり取り可能な第 1の駆動回路 9 1、 アシストモータ 40との間で電力を双方向にやり取り可能な第 2の _¾]回路 92, 両 M)回路 9 1. 92を制御する制御 C F U 90、 二次 池であるパッテリ 94から構成され ている。 制御 CPU90は、 1チップマイクロプロセッサでぁリ、 内部に、 ヮ一 ク用の KAM90 a、 処理ブログラムを ij己億した ROM90 b、 入出力ポート
(fei示せず) 及び K K 1 CU7 ϋと 信を行なうシリアル通信ポ一ト (図^ ± ず) を備える。 この制御 CPU 90には、 レゾルバ 39 Λからのエンジン |P|転角 度 0 e、 レソ'ルバ 39 Bからの駆動巾 22 Aの回 ¾S角度 Θ f 、 レゾルバ 48から の駆動軸 22Bの ^転角度 Θ r , アクセルペダルポジションセンサ 65からのァ クセルペダルポジション (ァクセノレべダルの踏込呈) AP、 シフトポジションセ ンサ 84:からのシフトポジション S ブレ一キペダルポジションセンサ 69か らのブレーキポジション βΡ、 第 1の腿動回路 9 1に設けられた 2つの電流検出 器 95, 9 fiからのクラッチ電流破 I u C , T V 第 2の駆動回路に設けられ た 2つの ¾¾検出器 97, 98からのアシスト電流 Τ υ a, I v a、 ノ ッテリ
94の残容^を検出する残容萤検出器 99からの残容虽 BRMなどが, 入力ポート を介して入力されている。 なお、 残容量検出器 99は、 ノくッテリ 94の ¾解液の 比重また ½^ッテリ 94の全体の 量を測定して残容量を検出するものや、 充 - の^:流値と時間を淀算して残容量を検出するものや、 バッテリの端了-問を 瞬間的にショートさせて電流を流し内部抵抗を測ることによリ残容量を検出する ものなどが知られている„
また、 制御 C P U 90からは、 第 1の駆勁回路 91に設けられたスィツチング 素子である 6個のトランジスタ T r 1ないし Tr 6を駆勦する制御信号 SW1と、 第 2の駆勁回路 92に設けられたスィツチング素子としての 6個のトランジスタ T r 1 1ないし丁 r 16を龃動する制御信号 SW 2とが出力されている。 第 1の 駆動回路 91内の 6個のトランジスタ T r 1ないし Tr 6は、 トランジスタイン バ一タを構成しており、 それぞれ、 -対の 源ライン » 1 , P2に対してソース 側とシンク側となるよう 2個ずつペアで配 gされ、 その接 点に、 クラッチ乇一 タ 3 0の三相コイル (UVW) 3 6の各々力;、 回転トランス 3 8を介して接絲さ れている。電源ライン P 1 , P 2は、 バッテリ 9 4のプラス側とマイナス側に、 それぞ:^続されているから、 制御 C I3 U 9 0によリ対をなすトランジスタ丁 ι· 1ないし T r 6のオン時間の割合を制御 号 SW 1によリ順次制御し、 各コイル 3 6に流れる 流を、 PWM制御によって擬 ft fi勺な正弦波にすると、 三相コイル 3 6により、 回転磁界が形成される ,,
他方、 第 2の龃勁回路 9 2の 6個のトランジスタ T i- 1 1ないし T i- 1 6も、 トランジスタインバータを構成しており, それぞれ、 第 1の駆 _fj回路 9 1と同梂 に配置され tいて, 対をなすトランジスタの接続点は、 アシストモータ 4 0の三 相コイル 4 4の各々に接続されている。 従って、 制御 C iJ U 9 0により対をなす トランジスタ!^ 1 1ないし 'Γ r 1 ΰのオン時間を制御信号 SW2によリ順次制 御し, 各コイル 44に流れる常流を、 _HWM制御によって擬似的な正弦波にする と, 三相コイル 4 4により, EI転磁界が形成される。
制御装 0と制御装置 8 0によリ制御されるこれらクラッチモータ 3 0およ びアシストモ一タ 4 0とは、 別休に配 Eされ τいるが, 四輪に勐カを分 & .ィ Si することから、 以下、 動力 ίώέ装 2 0と総称する。 跶勛力の分 fti 'ィ¾¾を な うための構成を模^的に示したの力 図 4 6である。 原勁機 5 0から取リ出され たエネルギ (トルク X回 数) は, クラッチモータ 3 0を介して駆勤 '咄 2 2に伝 谇されるが、 クラッチモータ 3 0に滑リ冋^を生じさせた J¾合には, この回転数 斧 X伝達トルクに対応したエネルギが、 クラッチモータ 3 0の三相コィル 3 6か ら回生される。 このエネルギは、 回転トランス 3 8から笫 1の駆動问路 9 1を介 して回収され, バッテリ 9 4に蓄えられる。 他方、 アシストモータ 4 0では、 こ のクラッチモータ 3 0を介して駆動軸 2 2 Aに; Π力されたトルクと略等しいトル クカ発生される。 このトルクは、 ノくッテリ 9 4に蓄えられたエネルギもしくはク ラツチモータ 3 0により回生されたエネルギによリ、 アシストモ--タ 4 0をカ行 することによリ得られる u この結果、 Βύ¾ 2 6 , 2 8と後¾| 2 7 , 2 9とには, 所定の分配比でトルク力 s付与される。 各 輪に分配されるトルクがおよそ等しけ れぱ、 いわゆるフルタイム 4WDとほぽ问様な駆勵力の配分となる u
以上構成を説明した 力伝達装 S 2 0は、 フルタイム 4 WDとしての勅作以外 にも種々の動作が可能である。 以下、 勒カ伝達装匿 2 0の動作について説明する。 勁力伝達装!: 2 0の動作原: ¾、 特にトルク変換の原理は以卜の通リである。 原動 機 5 0が tl F I E C U 7 0によリ巡 され、 所定の回転数 N 1で回転していると する。 このとき、 制御装置 8 0が 転トランス 3 8を介してクラッチモータ 3 0 の 相コイル 3 6に何等電流を流していないとすれば、 即ち笫 1の駆動回路 9 1 のトランジスタ T r 1ないし T r 6が常時オフ状態であれば、 二相コイル 3 6に は何等の' 流も流れないから、 クラッチモータ 3 ϋのァウタロータ 3 2とインナ ロータ 3 4とは電磁的に全く結合されていない状態となリ、 原勁機 5 0のクラン クシャフ卜 5 6は空回リしている状態となる。 この状態では、 トランジスタ T r 1ないし' Γ r 6がオフとなっているから、 三 fflコイル 3 6からの回生も行なわれ ない。 即ち、 原¾1機 5 0はアイドル回 ¾をしていることになる。
制御装置 8 0の制御 C P U 9 0が制御信号 S W 1を出力してトランジスタをォ ンオフ制 §)1すると、 原勋機 5 0のクランクシャフト 5 6の回 fc数と駆動軸 2 2 A の回 fe-数との偏差 (言い換えれば、 クラヅチモータ 3 0におけるァウタロータ 3 2とインナ Π—タ 3 4の回牴数差) に応じて、 クラッチモータ 3 0の二相コイル 3 6に一定の電流が流れる u 即ち. クラッチモータ 3 0は発 ¾機として機能し、 電流が第 1め駆動 M路 9 1を介して问生され、 ノ;ッテリ 9 4が充 さォ1<る^ 二の 時、 ァウタロータ 3 2とインナロータ 3 とは一定の滑りが存在する結 状態と なる。 即ち、 インナロータ 3 4は、 原動機 5 0のクランクシャフト 5 Gの回 よりは低い回転数で回転する。 この状態で、 0 された ¾気エネルギと等しいェ ネルギがアシストモ一タ 4 0で消費されるように、 制御 C P U 9 0力第 2の, β 回路 9 2を制御すると、 アシストモータ 4 0の三相コィル 4 4に ¾流力流れ、 ァ シストモ一タ 4 0においてトルクが発生する。 図 4 6に照らせば、 原勳機 5 0が そのクランクシャフト 5 6を ΙήΠΐΰ;数 N e , トルク T eで逝転しており、 クラッチ モータ 3 0の出力側である 動铀 2 2 Aが回転数 N d f で回転しているとき、 ク ラツチモータ 3 0の回 数差 (N e -N d f ) 繊トルク T eに相 Μ.ίする領域 G 1のエネルギをクラッチモータ 3 0から回生し、 これをアシスト乇一タ 4 0に 付与することで. 駆励籼 2 2 Βを回転数 N d I' ( = N d f ) , トルク T d rで回 転するということになる。 こうして、 クラッチモ一タ 3 0における滑り (回 ¾数 差) に応じたエネルギがトルク Tri f として駆動軸 22 Bに付与され, 四輪駆動 車輛 15は、 原動機 50の出力トルク T eより大きなトルク T e十 T d rで駆勁 されることになる。 なお、 直線路を定常走行している時には、 輪]!動車輛 15 の前輪 26と後輪 27の回 US数 (即ち前輪用の駆勁軸 22 Aと後輪用の駆動軸 2 2Bの回転数Ndf ぉょびNd l-) は等しいが、 コーナーリングの途中では両者 は必ずしも -致しない。 従って、 アシストモ一タ 40から後輪 27に fe される トルク T d rは、 効率を考慮しなければ、
Td r- (Ne-Nd f ) xTc/Nd r
となる。
以下、 制御装置 8 (Jにおける制御について詳しく説明する。 図 5は制御 CPU
90におけるトルク制御の 里の概要を示すフローチャートである。 I ^示するよ うに、 この処 レーチン力起勳されると、 まず駆動軸 22Λの回 数 Nd f を読 み込む を行なう (ステップ S 100) 。 駆勋籼 22 Aの回 fefiNd ίは、 レ ゾルバ 39 Βから読み込んだ駆 軸 22Αの 転角度 t'から求めることができ る。 次に、 アクセルペダルホ'ジションセンサ 65からのァクセルペダルポジショ ン A Pを読み込む処理を行なう (ステップ S 101) 。 アクセルペダル 64ί¾1 転者が出力トルク力足りないと感じたときに踏み込まれるものであり、 従って、 アクセルペダルポジシヨン ΑΡの値は運転者の欲していろ出力トルク (すなわち、 »Wl22Α, 22 Bの総合トルク) に対応するものである u 絲ぃて、 読み込ま れたアクセルべダルポジション A Pに応じた出力トルク (屯輛全体が必要とする トルク) の目標値 (以ド、 トルク指令値とも う) Td *を導出する 里を行な う (ステップ S 102) 。 すなわち、 各アクセルペダルポジション AFに対して は、 それぞれ、 予め出力トルク指令値丁 d*が設定されており、 アクセルペダル ボジション A Pが読み込まれると、 そのアクセルペダルポジション A Pに対応し て設定された出力トルク指令値丁 d *の値が導き出される。
次に、 ^き出された出力トルク指令 Td*と読み込まれた駆動軸 22の I J転数 Nd f と力ら, »軸 22より出力すべきエネルギ を計^ (Pd = Td*x Nd f ) により求める処現を行なう (ステップ S丄 03) u そして、 この求めた 出力エネルギ P dに基づいて、 日標とするエンジントルク丁 eとエンジン回 Neを設定する を行なう (ステップ S I 04) ., ここで、 駆動軸 22 Aおよ び駆動軸 22 Bょリ出力すべきエネルギ P dを全て原 S¾機 50によつて供給する ものとすると、 原動機 5 ϋの供給するエネルギはエンジントルク T eとエンジン IEJ転数 Neとの稍に等しいため、 出力エネルギ Pdとエンジントルク Tc, ェン ジン回転数Neとのf 係はPd TexNeとなる。 しかし、 かかる関係を満足 するエンジントルク Te, エンジン回 数 Ncの組 ^itは 数に存在する。 そこ で、 本 例では、 原動機 50ができる限リ効率の高い状態で SJ作するように、 エンジントルク' l'e, エンジン [H]転数 Neの組合せを設定する。 即ち、 本制御は、 原動機 50の運 効率を優先した制御である。 四輪駆動 OT15の場合には, 4 輪のトルク配分力 先される必要のある場 が考えられる。 トルク配分接先の制 御については、 第 2実施例で説明する。
次に、 設定されたエンジントルク T eに基づいて、 クラッチモ一タ 30のトル ク指令値 T c *を設定する ¾を行なう (ステップ S 106) u 原動機 50の冋 転数をほぼ一定となるようにするには, クラッチモータ 30のトルクを原勁機 5 0のトルクと等しくして釣リ合わせるようにすれば良い。 そこで, ここではクラ ツチモータ 30のトルク指令値 T r. *をエンジントルク丁 eと等しくなるように 設 する。
こうして、 クラッチモータトルク指令値 Tcを設定した後 (ステップ S 106) 、 クラッチモータ 30の制御 (ステップ S 108) とアシストモータ 40の制御 (ステップ S 110) と原勁機 50の制御 (ステップ S 1 1 1) を行なう。 なお. 図示の都合上、 クラッチモータ 30の制御とアシストモータ 40の制御と原!^ 50の制御は別々のステップとして記載したが、 実際には、 これらの制御 ¾ ^合 的に行なわれる。 例えば, 制御 CPU 90力 i¾Jリ込み処¾を利用して. クラッチ モータ 30とアシストモータ 40の制御を同時に実行すると共に、 通信により E F I ECU70に指示を送信して、 EF I ECU70により原動機 50の制御も 同時に行なわせる。
クラッチモータ 30の制 P処 1 (図 5ステップ S 108) では. 図 6に示した ように、 まず駆動軸 22の回転角度 6 f をレゾルパ 39 Bから読み込む処理 (ス テツブ S 112) が行なわれる β 次に、 レゾルバ 39八から原¾赠50のクラン クシャフト 5 Gの回 ¾S角度 0 eを入力し (ステップ S 1 14) 、 両軸の相対角度 Θ cを求める iCTを行なう (ステップ S 1 1 G) „ 即ち, 6 c = 0 e— 0 dを澝 算するのである。
次に、 讜流検出器 95, 96によリ、 クラッチモ一タ 30の三相コイル 36の U相と V相に流れている^;流 I U c, I V cを検出する iQ¾を行なう (ステップ S 1 1 8) 。 g流は U, V, Wの二相に流れているが、 その,徽 Πはゼロなので、 二つの相に流れる電流を測定すれば足りる。 こうして得られた 相の電流を用い て座標変換 (三相一二相 ) を行なう (スチップ S丄 20) 。 座標変換は、 永 久磁石型の同期' 助機の d軸, 9軸の 流俩に変換することでぁリ. 次式 (1) を演算することにより行なわれる„ — s i n (6c — 120) s i n fi
Figure imgf000033_0001
c o s (6c - 1 20) c o s Θ c
Figure imgf000033_0002
(1) ここで座標変換を行なうのは, 永久磁石型の同期 励機においては. d軸及び q軸の^が、 トルクを制御する上で本質的な量 からである„ もとより、 ご相 のまま制御することも可能である。 次に、 2軸の電流値に変換した後、 クラッチ モータ 30におけるトルク指令^ T c *から求められる各軸の 指令値. I d c *, I q c *と実際各蚰に ¾fcnた電流 I d c , I q cと偏斧を求め、 各軸の mH 指令値 Vd c, Vq cを求める処现を行なう (ステップ S 122) 。 即ち、 まず 以下の式 (2)の演笄を行ない、 次に次式 (3) の演 を行なうのである。
Δ丄 dc= i dc* ― I dc
Δ I qc= I qc* ― J. qc … 、2)
Vdc = Kpl - Δ Idc+∑Kil · Δ I dc
Vqc = Kp2 ·厶 Iqc+∑Ki2 -厶 T qc ··· (3) ここで, Kp 1, 2及び K i 1. 2は 各々係数である。 これらの係数は、 適 用するモータの特性に適合するよう調整される
ここで、 電圧指令値 V d c, V q Cは、 锺流指令 ίι¾ I *との偏差△ Iに比例す る部分 (上式 (3) 右辺第 1項) と偏差厶 Iの i回分の過去の 積分 (右辺第 2 項) とから求められる。 その後、 こうして求めた ¾1上指令値をステップ S 120 で行なった変換の逆変換に相当する^標^換 (二相一三相変換) を行ない (ステ ヅブ S 124) 、 実際に 相コイル 36に印加する 土 11 (:, Vvc, Vwc を求める如规を行なう。 各 王は、 次式 (4) により求める。 r-Vuc 2 ' o s 6c — s 1 η Θ c Vdc、
=f-
、Vvcノ 3 C 0 s (6c L Vqc
Vwc==- -Vuc— Vv C4) 実際の 圧制御は, 第 1の駆励回路 91のトランジスタ T r 1ないし T r 6の オンオフ時間によりなされるから、 ^ (4) によって求めた各' 指令値となる よう各トランジスタ T r 1ないし T r 6の才ン時間を P WM制御する (ステツプ S 12 G) ., 以上の により. クラツチモータ 30力'機械的に駆動軸 2 Αに 伝连するトルクを目標トルクにする制御が行なわれることになる„
次にアシストモータ 40によるトルク制御 (図 5ステップ S 1 10) の詳細に ついて説明する。 アシストモータ 40の制御は、 図7に示すように, まず前輪 2 6用の駆動軸 22Aの回転数 Nd iを読み込む えを行なう (ステップ S 131) 。 駆動軸 22Aの回転数は、 レゾルバ 39 Bから^み込んだ駆動軸 22 Aの liij転角 度 θ f から求めることができる。 次に、 原 ®J機 5 ϋの回転数 Neを読み込む処 を行なう (ステップ S 132) 。 原動機 50の 数 N cは、 レゾルバ 39 Aか ら読み込んだクランクシャフト 56の回 $云^度 eから求めることもできるし、 ディストリビュータ 60に設けられた回転数センサ 76によっても直接検出する こともできる。 回 fc数センサ 76を用いる場合には、 问 数センサ 76に接続さ れた EF I ECU70から通 によリ问転数 Neの情報を受け取ることになる。 ■ その後、 読み込んだ駆動軸 22 Aの回転数 Nd f と原動機! 0の回転数 Neと から、 ί¾·軸の回転数差 N cを計算 (N c N e— N d f ) により求める処现を行 なう (ステップ S 133) 。 次に、 クラッチモータ 30側で される電力を浪 算する を行なう (ステップ S 134:) 。 即ち、 回生される窀力 (エネルギ) P cを、
P c =Ks c XN c XT c
どして演箅するのである。 ここで, Tcはクラッチモータ iJ ϋにおける実際の卜 ルクであり, Ncは 転数 であるから、 NcxTcは、 図 46における領域 G 1に相当するエネルギを求めることに相当する a Ks cはクラッチモータ 3 ϋの 発電 (回生.) の効卓である u
続いてアシストモータ 40により付与されるトルク指令値 T a *を、
Ta*=ks aXP / d r
として 算する (ステップ S 1 35) 。 k s aは, アシストモータ 40 身 の効率である。 求めたドルク指令値丁 a *がアシストモータ 40によって付与し 得る最人トルク T am ϋλを越えているか否かの判断を行ない (ステップ S 13 6) 、 越えている場合には、 最人値に制限する ¾ を行なう (ステップ S 1.38) 。 次に、 駆動軸 22 Βの角度 0 rをレゾルバ 48を川いて検出し (ステップ S 1 40) 、 更にアシストモ- -タ 40の各相電流を電流検出器 97, 98を用いて検 出する 里 (ステップ S 142) も行なう。 その後、 図 7に示すように、 クラッ チモータ 30と同様座標^^ (ステップ S 144) 及び電圧指令値 Vd a, Vq aの演f.を行ない (ステップ S 1 G) 、 更に 圧指令値の逆座標変換 (ステツ ブ を行なって、 アシストモータ 40の第 2の駆 ¾j回路 92のトランジ スタ T r 1 1ないし T r 16のオンオフ制御時間を求め、 PWM制御を行なう
(ステップ S 150) 。 これらの T1は、 クラッチモータ 30について行なった ものと全く同一である。
次に、 原 I力機 50の制御 (ステップ S I 1 1) について説明する。 原動機 50 の制御は、 同 5のステップ S 104において、 既に、 冃標とするエンジントルク T eとエンジン回転数 N e力 殳 されているので、 原動機 50のトルク及び回転 数がその設定された値になるように、 原勳機 50のトルク及び回転数を制御する。 突際には、 制御 C P U 9 0から通信により E F I E C U 7 0に指示を送侰し、 燃 料! ¾1サ量ゃスロットルバルブ閱度を培減して. 原勁機 5 0のトルクが T eに、 W 転数が N eになるように徐々に調整する。
以上の 理により、 クラッチモータ 3 ϋにより所定の効率 K s cで電力に変換 されたトルク、 即ち原 ®]機 5 0のクランクシャフト 5 6の回転数とクラッチモ - タ 3 0のインナロータ 3 4の 1転数の偏差に比例してクラッチモータ 3 0で回生 された 力によリ、 アシストモータ 4 0において後 用の駆勦籼 2 2 Bにトルク として付与することができる u アシストモータ 4 ϋが駆勁軸 2 2 Bに付与するト ルクは、 クラッチモータ 3 0によリ鼋力に^ i奐されたトルクに一致している。 こ の結果、 図 4 6において, 領域 G 1のエネルギを領域 G 2に移して、 卜ルク^^ を行なうこと力できる。
もとより. クラッチモータ 3 0やアシストモータ 4 0あるいは第 1の駆動回路 9 1 , 第 2の駆勒回路 9 2でも換失は幾らか存在するから、 領域 G 1で示された エネルギと領域 G 2で; 1;·されたエネルギが 全に- -致することは:現実には困難で あるが、 同期電動機自体は効率が 1に極めて近いものが得られているので, 両モ ータにおける損失は比蛟的小さい。 また、 トランジスタ T r 1ないし T r 1 6の ン抵抗も, GT Oなど極めて小さいもの; ^知られているから、 笫 1の駆動回路 9 1 , 第 2の 動回路 9 2での損失も I ·分に小さなものとし得る。 従って、 クラ ンクシャフト 5 6と駆勋軸 2 2 Aとの回転数の偏差、 即ちクラッチモータ 3 0の 回転の潸リの大部分は、 三相コイル 3 6において ¾mのェネル +ギに され、 ァ シストモ一タ 4 0により後輪用の駆動袖 2 2 B ¾駆動するトルクとして出力され る。
次に、 本発 の第 2の ^tffi例について説明する。 なお、 本^ 1¾例において、 勦 力伝達装 2 0自体の構成は前述した第 1の 例と问様である。 第 1実施例の 動力伝達装 2 0およびこれを用いた四輪駆動苹輛 1 5では、 後輪 2 7 , 2 9が ぬかるみにはまるなどして空 $Γ;状態になリ、 雪道などで後輪 2 7』 2 9がスリッ ブした場 £?、 前輪 2 6, 2 8はそのままトルク T cで駆励されるから、 审輞は、 前輪 2 6, 2 8による駆動力により脱出可能, 安定走行可能である。 他方、 原動 機 5 0およびクラッチモータ 3 0により駆動される前輪 2 6 , 2 8がぬかるみに はまるなどの理由で前輪 2 G, 28による駆動力が失われた場合、 クラッチモ一 タ 30からの 力の回牛が不十分になる場合が考えられる。 図 46に示したよ-;) に、 アシストモータ 40により得られるトルク Td 1- (アシストモータ 40の @ 樑トルク' l'a*) は、 クラッチモータ 30によリ回牛.されたエネルギ (領域 G1 に相当するエネルギ) を駆動軸 22 Bの IEJ転数 N d rで除したものに相当する。 前輪 26, 28力ぬかるみにはまったりして前輪 26, 28力空転すると、 ; « 力 ¾δώをグリップすることによつて原動機 50の出力卜ルクを受け止めることが できなくなるから、 その駆勁Ψ'l{l22Aの回転数Nd f ぉょび原 機50自体の回 転数 N eは 人し、 InJ転聽 IS' C ( j、さくなる。 この結果、 クラッチモータ 30 によって十分な^力の lEi生力できなくなリ、 アシストモータ 40による出力トル クも低下することが考えられる。 また、 1¾¾のように、 原 «50のエネルギ を配分するだけではトルクが不 ·| ·分になる場合も者えられる。
そこで、 第 2実施例では、 第 1の実施例に代えて、 アシストモータ 40により 後輪用の 動軸 22 Βに付与されるトルクを、 クラッチモータ 30による回 力に無閣係に制御する。 この奥施例のメインルーチンを図 9に示す。 図 9は, 第 1実施例の図 5に対応しており、 対応する は下 2桁を RJ—とし、 その説明は 省略する。 ^ 9に]すように、 アクセルペダルポジション A I5から車輛が必要と するトルク Td*を求めた上で (ステップ S 202) 、 前輪 26, 28倒と後-輪 27, 29側に配分するトルク比 RTを遄転状態に某づいて求め (ステップ S 2 13) 、 このトルク比 RTからそれぞれの駆動軸 22 A, 22Bの Ξ棕卜ルク T c *および T a*を求める 里を行なう (ステップ S 2 14, 21 G) „ クラッ チモータ制御 (ステップ S 208、 |¾6) では、 この目檫トルク T c *を用いて 第 1実施例と同一の を行なうが、 アシストモータ制御 (ステップ S 210) では、 図 7のステップ S 13丄ないし S 135の は必^なく、 目標トルク T a*が既に求められているものとして、 ステップ S 136から ¾μ!を開始する。 また、 エンジン制御 (ステップ S 2 1 I ) では、 原勁機 5 ϋのトルク 'i'e ==クラ ツチモータ 30のトルク Tじであることから、 必要なエネルギカ 保できるよう に、
トルク Te=Tc 回転数 Ne= ( c x (Nd f -Ne) +TaxNd r) /Tc
という逗転状窓で原勳機 5 ϋを M$5する。
かかる制御によれば、 原動機 50からの InJ生エネルギに関係なく、 前輪 26, 28と ί轰輪 27, 29に { '与し ί唇るト レクが確'保でき、 登坂路などで原助機 50 の出力以上のトルクを確保することができる。 したがって登 ¾¾ を登坂する卜 分なトルクを得ることができる u また, w 26, 28力 S空《fcした場合でも、 後 $命27, 29のトルクを確保することができるので, ぬかるみなどに 26, 28を取られた場合でも, 容易に脱出することができる u 道などで J輪力;滑つ た場台でも同様である。
こうした場合には. バッテリ 94に えた カを利用してトルクガ 保する制 御 (いわゆるパワーアシスト制御) を行なうのである。 上記実施例では. 常時ァ シストモータ 40のトルクを所 のトルク比 RTで確保し、 かつバッテリ 94の 充放霉状態を考慮していないが、 同 10に示すように、 パヮ一アシスト制御を行 なう条件として、 アクセルペダルポジションセンサ 65からのアクセルペダルポ ジション APが閑値 APm a を越えているか否かの判断 (ステップ S 232) を行ない、 越えている場含には、 残容 検出器 99によリ检出されたバッテリ 9 4の残容量 BEMが所定値 Brefょリ大きいか否かを判断し (ステップ S 234) 、 残. W量 BRMが十分にある場合には, このバッテリ 94の残容量 BR に応じた Ξ標 トルク Tama Xを設定する (ステップ S 236〕 ものとしても良い。 アシスト 乇ータ 40は、 こうして求めた B標トルク T am axによリ制御される (ステツ ブ u なお、 アシストモータ 4 ϋの制御 (ステップ S 238) は、 |2|7 及び I 8に した制御と同一である u
ノ ヮ一アシスト制御を行なうと、 原動機 50の出力から取リ出せる以上の丁ネ ルギで駆勤軸 22 Aおよび駆動軸 22 Bを駆動することができる。 しかも、 ノ ッ テリ 94の残容量 BKMに応じたトルクを付与するので、 バッテリ 94の残容;!が 十分にある場合には、 十分なトルクアップを行なうことができ、 他方バッテリ 9 4の残容量が小さくなった場合には過度にバッテリ 9 を消费することがない,, 次に、 本発明の第 3の奘施例について説明する„ なお、 本実施例においても. 動力伝连装置 20自体の構成は前述した笫 1の実施例と同様である。 さて、 上記 した第 2の笑施例では、 クラッチモータ 3 0から回牛した^力だけではトルクが 不足する場合に、 バッテリ 9 4に蓄えた 力を利招して、 不足したトルクを補う パワーアシスト制御を行なっていた。 しかし、 このようなパワーアシスト制御を 続けると、 ノ テリ 9 4に Sえられた電力は減る一方でぁリ、 やがて (お ッテリ 9 4の残容量 B KMが底をついてしまう。 そのため、 バッテリ 9 4の残容量 BRMが 予め設定された許容最小値を超えた場合や、 超えていなくても運転者が希望する 場台には、 バッテリ 9 4を充電できるようにする必耍がある。 パッテリ 9 4を充 する めの 力は、 モータによって M生される 力を用いる。 第 1の実施例に おいて述べたように、 アシスト制御では、 クラッチモータ 3 0は として機 能し, 力が iの駆動回路 9 1を介して回 されるため、 その電力の一部 (す なわち、 アシストモータ 4 0でのトルクアシストに使片:!されない都分) をノくッテ リ 9 4·の充 のために回すことは可能である。 し;^し, 急迪に充 行ないたい 場合には、 このようなクラッチモータ 3 0による fni生 力だけは不足である。 そ こで、 本雄例では、 四輪駆動車辆 1 5にぉレ、て、 アシストモータ 4 0によって も 力'も回 三して. クラッチモータ 3 0による回 . 力だけでなく, アシストモ —タ 4 0による回生. 力も利用して, バッテリ 9 4を充電するようにしている。 図 1 1 ii*発明の第 3の ¾ί¾例としての動力伝達装 Sの制御の概要を示すフロ 一チャートである。 図 1 1に すように、 この レーチンが ilS jされると、 前 述の^ 1の実施例の場 と同様に、 まず前輪 2 6, 2 8 /1]の駆励軸 2 2 Λの回 ¾; 数 N d f を読み込む を行ない (ステップ S 3 0 0 ) 、 次に、 アクセルペダル ポジションセンサ 6 5か の了クセルべダルポジシヨン A Pを読み込む処理を行 なう (ステップ S 3 0 2 ) 。 そして、 読み込まれたアクセルペダルポジ:^ヨン A Pに応じた出力トルク (駆動軸 2 2のトルク) 指令 T d *を導出する 里を行な う (ステップ S 3 0 4) 。
次に、 専き出された出力トルク 〔駆動軸 2 2 Aのトルク) 指令 T d *と読み込 まれた駆動籼 2 2 Aの冋 ¾数 N d ίとから、 原動機 5 0の出力するエネルギ (Τ d * x N d f ) から見て充電可能領域内にあるかどうかを判定する如观を行なう (ステップ S 3 0 6 ) 。 すなわち、 出力トルク指令値 T d *と駆 Sil軸 2 2の回転 数 N dを図 1 0に示すような充窀 HJ能領域マップに当てはめて、 出力トルク指令 値丁 d *と駆動軸 22の回- ¾数 N d f によって定められる^標点が、 充電可能領 域内に位置するかどうかで判定する。 図 12において、 縦軸は H動軸 22Aのト ルクであり, 横軸は駆動軸 22 Aの IHJ転数である。 ここで, 充 可食 I fe PEと は、 原動機 50によって供給されるエネルギを電力として |。|生することができる 領域を表しており、 原 ®機 50力 能な領域に対応している。 まだ、 , っ一 アシスト領域 とは、 前述したパワーアシスト制御, すなわち、 バヅテリ 94 に蓄えた 力を利用して不足したトルクを祯ぅ制御が行なわれる領域を表してい る。 つまり , パワーアシスト領域 PAでは、 ノ^テリ 94に蓄えられている電力 が消費されてしまうので、 当然, 充¾不【11能な 域となる。
ステップ S 306で ^:可能瓴城内でないど判定された場合には、 充 不可と して (ステップ S 330) を終了^る., 逆に, 充¾可能領域内であると判定 された場合には、 残容量検出器 99によリ検出されたバッテリ 94の残容量 BBM が適正 ¾T¾prより少ないかどうかを判定する如 を行なう (ステップ S 308) 。 すなわち、 バッテリ 94の残容 が予め められた適正量81 ょリも少なぃ 場合には、 バッテリ 94を充電する必要があるので、 ステップ S310に進むが, 適正量 Bur以上の場合には、 もはやバッテリ 94を充電する必要はないので. 充 雷^!] "として (ステップ S 330)処理を終 j'する。
続いて、 クラッチモータ 30及びアシストモータ 40で回牛-することのできる ^力 W1を下記の計!?:により求める処 を行なう (ステップ S310) „
Wl =P- (Td*xNd f )
ここで、 Pは或る状態において原動機 50が供給することのできる最大のエネ ルギである。 すなわち、 クラッチモータ 30及びアシストモータ 40で回生する ことのできる電力 W1は, ^勦機 5リカ !;給し得る 大のエネルギ Pから、 駆動 軸 22より出力されるエネルギ、 すなわち Td*XNd f を差し引いた残リのェ ネルギに相当する。
次に、 残容鱼検出器 99によリ検出されたノくッテリ 94の残容量 B RMに基づレヽ て、 バッテリ 94の充 することのできる ¾カ^^2を卷き出す (ステップ S31 2) 。 図 13は笫 3の実施例においてバッテリ 94の残容录に する充' 可能 力を示す説明図である。 同 13において、 縦軸はバッテリ 94に充電することの できる鼋カ W2 (w) であり、 横軸はバッテリ 94の残容量 BRM {%) である。
M 1 1に示すように, バヅテリ 94の残容. BRMが多くなるに従って、 バッテリ 9 に充電することできる電力 W 2は低くなる u
こうして、 モータ 30, 40で することのできる 力 W1とバッテリ 94 の充電することのできる電力 W 2とを求めたら、 その I山 j者を比蛟して何れ力 レ、 かを判定し、 低い方の 力を、 実際に允 ¾する電力 Wとして決定する。 すなわち、 ステップ S314において、 10]生可能 カ W1の方が充^;可能 カ 2よりも低 いかどうかを判定し、 回生可能 力 W 1の方が低ければ、 際に充電する電力 W を W1に決定し (ステップ S 3 16) 、 充¾可能 g力 W2の方力 ¾ければ、 W2 に決定する (ステップ S 3丄 8) 。
次に、 決定された電力 Wをクラッチ乇一タ 30とアシストモータ 40とにどの ような割り振りで回生させるか 決定する u すなわち, ' 力 Wをクラッチモータ 30の回生 カ\ とアシストモ一タ 40の 生 ¾力 W aとに、 W=Wc+Wa を満たすように ¾Jリ振リ (ステップ S 320) . クラッチモータ 30の问生 lg力 Wcとアシストモータ 40の 生電力 W aをそれそれ决定する (ステップ S32 2) 。 この際、 クラッチモータ 3 ()とアシストモータ 4 0への割り ¾リは. 各モ ータの発電能力や発電効率、 或いは、 各モータの許容最人温¾までの ! ^ (す なわち、 許容最大温度一現在温度) などを考慮して決定する。
こうして、 クラッチモータ 30. アシストモータ 40の回生' 力をそれぞれ 定した後 (ステップ S 322) 、 アシス卜モータ 40の制御 (ステップ S 324) とクラッチモータ 30の制御 (ステップ S 326) と原動機 50の制御 (ステツ プ S 328) を行なう。 なお、 図 1 1においても、 囡 5と同様に、 図示の都合上、 クラッチモータ 30の制御とアシストモータ 4. ϋの制御と原動機 50の制御は別 々のステップとして記戟したが、 際には、 これらの制御は総合的に行なわれる。 例えば、 制御 c ρ u 9 ϋカ^ jリ込み 里を利^して ιηιι侍に笑行するようにする。 アシストモ一タ 40の制御処理 (図 1 1のステップ S 324) では、 特に図示 しないが. まずアシストモータトルク指令値 T a*を下;? Eの計算によリ^める処 ¾Rを行なう。
1, aネ 一 {Wa/ (Ks c XNd r) } アシストモ -タ 4 0で回生すべき電力は W aであるので、 この W aをアシスト モ -タ 4- 0での^ (回生) 効率 K s aと後輪 2 7, 2 9用の駆励軸 2 2 Bの回 転数 N d rとの積で除箅することによリ、 アシストモータ 4 0で得るべきトルク 目標値 (トルク指令値) T a *を求めることができる。 但し、 アシストモータ 4 0では、 第 1または第 2の実施例の場合と異なり、 カ行 ¾|作ではなく回生勤作が 行なわれるので、 アシストモ一タ 4 0で生じるトルクは^ 1または第 2の突施例 の場合と逆向きのトルク、 すなわち、 駆勤 Ψί| 2 2 Bの冋転方向とは反対向きのト ルクどなる。 そのため、 右辺の, には負の?? F が付してある。
その後、 このトルク指令値 T a *を用いて、 アシストモータ 4 0を制御する。 その制御内容は、 第 1の実施例における図 7及び図 8のステップ S 1 4 0〜ステ ヅブ S 1 5 0と同じである。 但し、 上記のように, アシストモータ 4 0で生じる トルクの向きは第 1の^例の場合と逆向きであって. トルク指令 ½T a *は符 号が逆になつている (負の符 が付されている) 点を考虚して制御する必要があ る。
次に、 クラ'ソチモータ 3 0に する制御処 (図 9のステップ S 3 2 G ) につ いて説明する。 クラッチモ一タ 3 0に対する制御は、 まずクラッチモータトルク 指令 ίίϊΤ c *を下記の計算によリ める処理を行なう。
T c * = T d * - T a *
前述したように、 出力トルク ( 輪駆動审-輛 1 5全体のトルク) は、 クラッチ モータ 3 ϋのトルクとアシストモータ 4 0のトルクとの和によって表されるため、 クラッチモータ 3 0のトルク指令値 T c *は、 出力トルク指令値 T d *とアシス 卜モータ 4 0のトルク指令値丁 a *との差として求めること力 ίできる。 但し、 前 述したように、 アシストモータ 4 0でのトルクは駆動軸 2 2の回転方向と 向 きであり、 アシスト乇一タトルク ffi令値 T a *の符号は負となっている点に注意 する必要がある。
その後、 このトルク指令値 T c *を用いて、 クラッチモータ 3.0を制御するが、 その制御内容は、 第 1の実施例における同 6のステップ S 1 1 2〜ステップ S 1 2 6と同じである。
次に、 原動機 5 0の制御 (ステップ S 3 2 8 ) について説明する。 原勤機 5 0 の制御は、 まず、 クラッチモータ 30のトルク指令値 Tc*に基づいて、 原動機 50のトルク指令値 Te*を設定する処理を行なう。 原動機 50の回転数をほぼ -定に保つようにするには、 クラツチモータ 30のトルクと原■ 50のトルク を等しくして釣り合わせるようにすれば良い。 従って、 ここでは、 原勒機 50の トルク招令 丁 e *をクラツチモータ 30のトルク指令^ T c *と等しくなるよ うに設定する。
次に, 原動機 50の 転数指令値 N e *をド の計算によリ求める処理を行な う。
Ne *=Wc/ (Ks c XT c *) +Nd f … (5) クラッチモータ 30における回 数は、 原動機 50の回 ilir;数 (クランクシャフ ト 56の问転数) と前½26 , 28fflの駆動軸 22 Aの问 数との:^で表される u —方, クラッチモータ 30における回転数は, クラッチモータ 30において回牛 すべき電力 Wcを、 クラッチモータ 30での発電 (回生) 効率 Ks cとクラッチ モータ 30のトルク目標愤 (トルク指令値) Tc*との積で除算することにより 求められる, 従って、 原動機 50の回転数 B樑値 (冋転数指令値) Ne*は、 h 記式 (5)のごとく導き出される。
こうして、 原勛機 50のトルク指令彼 Te*と冋転数指令値 Ne*が設定され たら、 原動機 50のトルク及びし ¾|転数がその設定された値になるように、 原纖 50のトルク及び Hi]転数を制御する。 実際には、 制御 CPU 90から通信により EF I ECU70に指示を送信し、 燃料喷射量やスロットルバルブ IUl度を増減し て、 原動機 50のトルクが Te *に、 回転数が Ne*になるように徐々に調整す る。
図 14は第 3の笑施例において原動機 50より 袷されるエネルギの利用配分 を示す説明図である。 図 14において、 T cは出力トルク (前 ψ命用の駆動 Φ由 22 Aのトルク) 、 N d fは前輪用の駆勁籼 22の A回 $云数、 T eは源動機 50のト ルク (エンジントルク) 、 Neは原 ¾j機 50の回 β (エンジン回 数) 、 Tc はクラッチ乇一タ 30のトルク, T aはアシストモータ 40のトルクである。 原 動機 50より供給されるエネルギは TexNeであり、 このエネルギが、 前輪/]] の駆動軸 22 Aより出力される出力エネルギ P dと、 クラッチモータ 30で回生 されてバッテリ 9 4に充電される 力 W cと、 アシストモータ 4 0で回生されて ノくッテリ 9 4に充電される 力 W aと、 に分配される。 アシストモータ 4 0で回 牛 _されてバヅテリ 9 4に充電される 力 W cは、 本来クラッチモータ 3 0側とは 軸が異なるので、 図示 W a' のように独立の領域として考えても良いが、 μφϋ駆 動取輛丄 5全体で考える場合には、 原動機 5 0から出力されるエネルギからクラ ツチモータ 3 0を介して出力されたエネルギおよびクラッチモータ 3 0により回 生されたエネルギを差し引きしたものと考えられるので、 図^ ti域 W aのように 考えて差し支えない,
以上の処理により, 1^1 1に した四輪駆動の構成において, クラッチモ一タ 3 0だけでなく. アシストモ一タ 4 0においても電力を冋生して、 クラッチ乇一タ 3 0での回生電力 W とアシストモータ 4 0での冋生電力 W a.とを合わせてバッ テリ 9 4に充 ' することができるため、 クラ'ソチモータ 3 0の:?^ま能力以上の充 鼋を行なうことができる。 なお、 アシストモータ 4 0側で回 Φ.したエネルギを用 いて、 あるいはバッテリ 9 4に蓄えられたエネルギも利用して、 クラッチモータ 3 0を原 0の回 ¾方向にカ行することも可能である。 この場合には、 Ηΐί¾ 2 G . 2 8用の駆動軸 2 2 Αは、 原勐機 5 0の回転数 N eより高い回転数で问転 することになリ、 L、わゆるォ一バ一ドライブ状態となる。
後輪 2 7 , 2 9に結合されたアシスト乇一タ 1 ϋにより ¾流の回生を行なって いる場合には、 路面によって回転される後輪 2 7 , 2 9には、 いわば制動力力 ¾ いていることになる。 した力つて、 ブレーキペダル ti 8力踏まれた場合に、 クラ ツチモータ 3 0側の^ 1の駆動回路 9 1をオフ状態として前輪 2 6 , 2 8の駆勁 力を 0とし、 後輪 2 7 , 2 9側の回生制動力によって 輛を制動すること力でき る。 この場合には、 原勁機 5 0はフユ一エルカットすれば、 原勤機 5 0が吹き上 がることはない u こうしたアシストモータ 4 0による制動は、 電^自動車では、 従来から行なわれているものと原理的には问一であり、 制励時のエネルギを回収 して、 ノ ッテリ 9 4を充^することにより、 «企体のエネルギ効率を一層高め ることがでさる。
次に. 本 [¾の笫 4の 例として、 輪駆勁車輛 1 5におけるクラッチモ一 タ 3 ϋを用い 制動について説明する。 クラッチモータ 3 0による制動は、 前輪 2 6 , 2 8に結台された駆動軸 2 2 Aの回 $方向と逆向きのトルクをクラッチ ΐ —タ 3 0により作用させるものである。 いま、 駆動 2 2八カ¾¾を前進させる 方向 (正方向) に回転しており、 この駆 籼 2 2 Λにその回転方向と逆向き (貝 h'H) のト レク T cをクラッチモータ 3 ϋにより作用させたとする。 すると, 駆 動軸 2 2 Αへ作用させたトルク 'Γ cと |ή]じ大きさで向き力 S逆の止方向のトルク Τ cがァウタロータ 3 2を介してクランクシャフト 5 6に作用し、 原動機 5 0カ き上がろうとする。 原動機 5 0は、 こうした止方向の外力 (トルク T c ) に対し、 燃料噴射を停止すれば、 ピストンの摩擦や圧縮 に する力が外力 (トルク' i' c ) と釣り合う^ 数で $云する。 例えば、 燃料 11謝を停止した際の外力 (トルク T C〕 ど原勁機 5 0の回転数 N eとの f¾係を例示した図 1 5に照らせば、 原動機 5 0は、 外力としてのトルク T cが ί T c ( Α) のときには回転数 N e (A) で回 転し、 トルク Tじが値 Tじ ) のときには回 数 N e (B ) で回転する。
クラッチモータ 3 0は、 原動機 5 0の冋$云数 N eで冋転するクランクシャフト 5 fiに接統されているァゥタロータ 3 2に対して駆動軸 2 2 Aに接絞されている インナロータ 3 4を相対的に回転駆動させるものであるから、 その回 数は 原 動機 5 0の回転数 N eと駆励 tt 2 2の回転数 N d f との回転数斧 N c ( e -N d f ) となる。 ここで、 ァウタ D - -タ 3 2に対してインナロ -タ 3 4が相対的に IE方向 (駆 ¾軸 2 2 Aの芷転方向) に冋転しているとき、 即ち原動機 5 0の回転 数 N eより駆動軸 2 2の冋$数 N d f の方が大きいとき (回 ¾¾^N cは; ¾) を クラッチモータ 3 0の正方向の回転とすれば、 正方向に回 しているクラッチモ ータ 3 0による 方向のトルク T cの駆動軸 2 2八への怍ナ1:1は、 クラッチ乇一タ 3 0の相対的な正方向の回転数を減少させる運動となるから、 クラッチモータ 3 Uは 10J生制御されることになる (以卜'、 この制勁を 「クラッチモ一タ 3 0の回生 制御による制動」 という。 ) 。
一方、 クラッチモータ 3 0力:¾方向に回 しているとき、 即ち原助機 5 0の回 転数 N Gが駆動軸 2 2 Aの冋 ;数 N d f より大きいときには、 クラッチモータ 3 0による負方向のトルク T cの駆動軸 2 2への作用は、 クラッチモータ 3 0の相 対的な負方向の回転数を増加させる運動となるから、 クラッチモータ 3 0はカ行 制御されることになる (この制動を 「クラッチモータ 3 0の力 t rli!J御による制動」 という。 ) u
クラッチモータ 30に負方向のトルク Tcとして値 Tc (A) が設定された際 の駆動軸 22Aの回転数Ndf と時Γiltとの関係 OE^A) およびこの問のクラ ツチモータ 30の状態を I II 6に^す。 図中 ι£線 Αは、 クラッチモータ 30によ リ: ¾方向のトルク' l'c (値 Tc (A) ) を駆動軸 22に作; Dさせたときの駆勁軸
22の回転数 N d fの 化を表わすものである u クラッチモータ 30に食 Ί の トルク Tc 〔値 Tc (A) ) を設; £すると, 原 ®機 50の回 ½数 Neは. 図 15 を用いて説明したように、 このトルク Tc (外力) に兒合う回 -数 Ne (A) と なる„ したがって、 クラッチモータ 30による負方向のトルク Tcの駆動 ll 22 Aへの作用は, i良線 Aと ίί雄 Nd f =Ne (A) との交点であるポイント PNeよ リ左上方の範! II (時問 t 2ょリ左側の範閉) では、 クラッチモータ 30は正方向 に回転して るから、 クラヅチモータ 30の回牛制御による制動となり、 ポイン ト FNeょリ右下方の範 ffl ([^間 t 2より右側の範 ffl) では. クラッチモータ 30 は負方向に回転しているから、 クラッチモータ 30のカ行制御による制動となる。 ここで、 クラッチモータ 30の回生制御およびカ行制御は、 共にァウタロータ
32に取り付けられた永久磁石 35と、 インナロータ 34の三相コイル 36に流 れる電流によリ生じる回転磁界とによリ負方向のトルク T c力常に発生するよう 第 1の駆動回路 91のトランジスタ T r 1ないし T r 6を制御するものであるか ら、 同一のスイッチング制御となる。 したがって、 クラッチ乇ータ 30から駆動 軸 22 Aに作用させる; ^方向のトルク Tcの條が変わらなければ, クラッチモ一 タ 3 αの制御が回生制御からカ行制御に変化しても、 第 1の駆動冋路 91のトラ ンジスタ T r 1ないし T r 6のスイッチング制 わらない„
以上の説明により. 駆動軸 22 Aの回転数 N d f力 ¾ N e (A) ょリ大きな値 Nd f 1のときや (時問 t 1 (1 ) のとき) 、 値 Nri f 2のときに (時間 L 1
(2) のとき) . ブレーキペダル G 8が踏み込まれてクラッチモータ 30のトル ク Tcに負の値 Tc (A) 力設定されれば、 クラッチモータ 30は, まず? g として機能するよう冋生制御がなされ. »J軸 22 Aの回転数 N d f力 ^値 N e
(A) に一致した以降 (ポイント PNe以^) はカ行制御がなされることが解る。 また、 躯動軸 22 Aの |。|転数 N d fが'値 N c (A) よリ小さな値 N d f 3のとき に (時間 t 1 ( 3 ) のとき) 、 ブレーキペダル 6 8力 ^踏み込まれてクラッチモ一 タ 3 0のトルク T cに負の値 T c (Α) が設定されれば, 制動 |¾始位置が時問 t 2ょリ後となるから、 クラッチモ一タ 3 0の回生制御はなされず直ちにカ行制御 がなされることが解る。
こうした制動時のクラッチモータ 3 0の制御は、 図 6に示した制御と何等変わ るところはない。 原勦機 5 0の M転数 N eと前輪 2 6 , 2 8に結合された駆動軸 2 2 の|?|転数1^ (1 f との大小閔係に基づいて、 クラッチ七ータ 3 0をカ行また は loJ生して制動すればよい。 いずれの制動を採用するかは、 両回転数の大小関係 によつて足まるが、 更に原!!)機 5 0の燃料 t¾ i量を制御すれば、 原勁機 5 0の回 $云数 N eはある S ^自由に調整できるから、 パッテリ 9 4の残容量に^づいて、 い " れかの制勳を行なうものとする.::とができる u クラッチモ一タ 3 0とアシス トモータ 4 0とを用いた動力伝逹装置 2 0を備えた 輪駆 1 5では、 k なエネルギの使用を極力避けて、 かつ駆勡カを自在に制御することができるから、 バッテリ 9 4の充放 を効率よく行なうことも極めて重要である。 従って、 バッ テリ 9 4の充放 ¾を 先して、 原動機 5 0 制御することも实用的である。 この 場合の制動時処现ル一チンの一例を 1 1 7に; ·す„
1 7に示したルーチンが実行されると、 制御装置 8 0の制御 C P U 9 0は、 まず、 ブレ- -キペダル 6 8に設けられ ブレーキペタルポジションセンサ 6 ί)に より検出されるブレ -キペダルポジション B Pを読み込み (ステップ S 3 3 0 ) 、 読み込まれたブレ- -キペダルポジション B Pに応じた制勁力を発生するクラッチ モータ 3 0のトルク指令値丁 c *を導出する処理を行なう (ステップ S 3 3 2 ) 。 トルク指令値 T c *は、 各ブレーキべダルポジシヨン B Pに対して予め各々設定 されて ROM 9 0 bに記惊されておリ、 ブレーキペダルポジション B P力読み込 まれると、 そのブレーキペダルポジシヨン B Pに対応した卜ルク指令値 T c *が 読み出されるようになつている u
次に、 残容 i検出器 9 9によリ検出されるバッテリ 9 4の残 ¾BRMを^み込 み (ステップ S 3 3 6 ) 、 読み込んだ残容量 BRMを閻値 B 1と比蛟する (ステツ ブ S 3 3 8 ) 。 ここで、 閾値 B 1は、 これ以上の充 ¾はバッテリ 9 4にとつて不 要であると判断される満充 ¾に近い値として設定されるものであり、 パヅテリ 9 の @ ^や特性などによつて ¾ίめられるものである。
バッテリ 9 4の残容量 B KMが H値 Β 1以上のときには、 充 i f要と刊断して 、 クラッチモ一タ 3 0のカ行制御による制勦を行ない (ステップ S 3 4 0 ) 、 ノ ッテリ 9 4の残容量 B が閾値 B 1未満のときには、 充¾が必要と判断して、 ク ラッチモータ 3 0の回生制御による制勒を行なう (ステヅゾ S 3 4 2 ) 。 クラヅ チモータ 3 0のカ行制御による制動は.、 具体的には. 上述したように、 原助機 5 0の回転数 N eを驱助蚰 2 2 Aの回 数 N d f より火きくなるよう制御すること によって行ない, クラッチモータ 3 0の回 ¾制御による制勁は, 原 ¾J機 5 0の回 ¾数 Gを 動軸 2 2 Aの冋転数 N f よリ小さくなるよう制御することによつ て行なう„ なお、 いずれの制御でも、 制御の間、 原動機 5 0の冋転数 N t;を一定 ^に保つものとしてもよく、 または原勡機 5 0の回転数 N eと 動蚰 2 2 Aの回 転数 N d f との偏差を一定に保つものとしてもよい., 或いは原!/ 5 0の回転数 N eと駆動軸 2 2 Aの回 数 N d f との偏楚を顺次 させるものとしてもよい 以上説明した制動時処理によれば、 四輪駆動車輛 1 5において. パッテリ 9 4 の状態に応じてクラッチモータ 3 0のカ行制御による制動と i。!生制御による制動 とを行なうこと力できる。 この結果、 制勦時にエネルギをパッテリ 9 4に回収で きるだけでなく、 エネルギを使川しつつ制勡することも可能となる。 したがって, バッテリ 9 4を過充電したり、 或いは完全方夂 したリするのを防止することがで きる。 もとより、 クラッチモータ 3 0における窀流の消费もしくは 生を伴-う制 動とアシストモータ 4 Uにおける 流の消費もしくは IDJ生 伴う制勦とを併"^コ- なうものとし も差し支えない。 両制動を組み合わせ、 制勁力を四輪に適宜配分 することも好適である。
以上. 2つの出力軸 (駆動軸 2 2 Aと駆動軸 2 2 B ) を有する動力伝達装置 2 0とこれを fflいた四輪駆動 Mi l 5において、 両軸からトルクを所^の割合で出 力する制御、 前輪 2 6 , 2 8側をオーバードライブする制御、 回牛およびカ行に よリ制動を行なう制御などについて説明したが、 本 明の動力 装置を用いた 四輪駆動 の制御をこれらの制御に限 されるものではなく、 この他、 後退時 制御や始動時制御なども行なうことが nj能である。
^ffiを後退させる場合には、 次の 3つの方法がある。 ( 1 ) 原動機 5 0に対する燃料職ォをカットし、 クラッチモータ 3 0に対して一 切電流を流さない状態とする。 この場合、 クラッチモータ 3 0の出力トルクは 0 となり、 躯 軸 2 2 Aはフリーの状憩となる。 この状態で、 バッテリ 9 4に蓄え られた 力を用いてアシストモータ 4 ϋを 行時と (^方向に回転し、 駆勁軸 2 2 13を逆 3Sさせ、 車 i¾を させる。
( 2) 原動機 5 0をアイドルもしくは低速 51¾し、 クラッチモータ 3 Uによりそ のエネルギをほとんどを 収する。 他方、 |El収したエネルギおよびバッテリ 9 4 に番えられたエネルギを禾I用してアシストモータ 4 ϋを逆転させ、 を後退さ せる。 この場合、 駆 ¾1軸 2 2 Αは、 後輪 2 7 , 2 9の逆 Jfcによリ強制的に逆方向 に回転させることになるが、 丰铜を後退させること |;|体は可能である。
( 3 ) 原 ¾ί)機 5 0に. する燃料噴射をカットし、 クランクシャフト 5 6が静止し ている状態とする。 この:!尺態で、 パッ亍リ 9 4に蓄えられた電力を Rい、 クラッ チモータ 3 0を逆方向に回転する。 この場合、 クラッチモータ 3 0のトルクは、 クランクシャフト 5 6から見た原動機 5 0の静 ih靡擦による 止トルク以下に制 御する„ したがって. クラッチモ一タ 3 0から見れば原動機 5 0側カ^!定^とみ なされ、 反対側の躯動軸 2 2 Aが回転し、 は ¾31する。
また、 を始勡する場合には、 ノくッテリ 9 4の電力を用いてアシストモータ 4 0をサーボロックし、 駆 軸 2 2 Bが回畅しないよう制御し、 他方クラッチモ —タ 3 0を運転してクランクシャフト 5 6を回し、 クランキングを行なえば良い。 この場合、 ¾ の前輪 2 6 , 2 8にば駆 ®J力力;伝達される力 後輪 2 7 , 2 9に 直結されたアシストモータ 4 ϋをサーポロックしておけば、 四輪駆動 «] 1 5の 移動は原則として生じない。 もとより、 駆勅軸 2 2 Αと減速ギヤ 2 3との! ¾)にク ラッチを設け、 始動時には駆動 Φ' 2 2 Aを固定する構成とすれば、 駆勁力が前輪 2 6 , 2 8に伝達されることはない。
次に、 本発明の第 5笑施例について、 説明する。 以下の実施例では、 分配手段 は、 クラッチモータ 3 0ではなく、 ブラネタリアギヤを用いて構成される。 まず 図 1 8によって、 全 ί«成について説明する., 分配手段を除く他のハードウェア 構成は, 笫 1実施例とほぼ同一であリ、 例えばアクセルペダルなどの図示は省略 した。 (1) ノ、—ドウエア構成
図 18に示したように、 この四輪 Sg J卓硐は、 原 ®機としてのガソリンェンジ ン (以下、 単にエンジンという) 15ϋと、 このエンジン 15 ΰのクランクシャ フト 156に ¾結されたブラネタリギヤ ] 20ど、 二のブラネタリギヤ 120の サンギヤ軸 12 bに 結された^ 1の電勁機としてのモータ MG 1と、 ブラネタ リギヤ丄 20のリングギヤ軸 126の動力がチェ一ンベルト 129などを介して 伝達される前輪用のディファレンシャルギヤ 114、 後輪用のディファレンシャ ルギャ 1丄 5内に組み込まれた乇一タ MG 2から措成されている u これらの構成 について、 IS力の伝達を屮心に更に説明する。
エンジン 150のクランクシャフト 1 56は、 ブラネタリギヤ 1 20を介して、 駆動軸 1 】 2を冋 軸とする動力伝達ギヤ 111にチェ一ンベル卜 129により 機械的に結合されており、 この動力伝達ギヤ 11 1はディファレンシャルギヤ 1 14にギヤ結合されている。 した力つて, 動力出力装置 1 10から出力された動 力は、 最終的に iif輪^-の駆勁輪 1 16, 118に伝逹される。他方、 モータ M G 2の動力により後輪左右の駆 ®j輪 1 17, 119は駆勡される。 モータ MG1 およびモータ MG 2は、 制御装置 180に電気的に接続されており、 この制御装 置 180によって制御される。 制御装置 1 S 0の構成は第 1実施例の制御装 0と同一である。 なお、 この制御装置 180には、 シフトレバーに設けられたシ フトポジションセンサなど、 第 1 ^例と同様、 各; PIのセンサ罟が接続されてレ、 る力、 その図 -は省略した。 また、 制御装 :i a ϋは、 エンジン丄 50の運車云を 制御する Ε I ECU170と通信により、 種々の情報をやり取りしている。 Ε F I ECU 170も、 笫 1難例の I F I ECU 70と同様の構成を有する。 プラネタリギヤ 120およびモ一タ MG 1の構成について、 図 1 9により説明 する。 ブラネタリギヤ 120は、 クランクシャフト 156に籼中心を貫通された 中空のサンギヤ軸 1 2 に結合されたサンギヤ 121と、 クランクシャフト 15 6と同軸のリングギヤ軸 126に結合されたリングギヤ 122と、 サンギヤ 12 1とリングギヤ 122との |¾1に dilされサンギヤ 121の外周を^!転しながら公 転する^ ¾のブラネタリピニオンギヤ 123と、 クランクシャフト 156の端都 に結合され各ブラネタリヒ'二オンギヤ 123の回 籼を軸支するブラネタリキヤ リア 1 2 4とから構成されている。 このブラネタリギヤ 1 2 ϋでは、 サンギヤ 1 2 1 , リングギヤ 1 2 2およびブラネタリキャリア 1 2 にそれぞれ結合された サンギヤ軸 1 b , リングギヤ軸 1 2 6およびクランクシャフト丄 5 6の 3軸が 動力の入出力軸とされ、 3軸のうちいずれか 2軸へ入出力される動力が決定され ると、 残杂の 1軸に入出力される ¾1力は、 先に決定された 2 Ψΐί]へ入出力される動 力に.旌づいて定まる u なお, このプラネタリギヤ 1 2 0の 3軸への勦力の入出力 についての詳細は後述する。
リングギヤ 1 2 2は. モータ MG 1の側に延長され. その一端には, 動力の取 リ出し用の勳カ取出ギヤ 1 2 8が設けられている。 この動力取出ギヤ] 2 8は、 チェーンベルト 1 2 9によリ勐カ伝達ギヤ 1 1 1に接絞されており、 動力取出ギ ャ 1 2 8と勦カイ ギヤ 1 1 1との間で動力の伝逑がなされる構成となっている„ モータ MG 1は、 笫 1实施例のアシストモ- -タ 4 0などと同様、 同期電勳発電 機として構成され、 外周面に拔数個の永久磁石〗 3 5を有するロータ 1 3 2と、 回転磁界を形成する二相コイル 1 3 4が巻回されたステ一タ 1 3 3とも備える。 ロータ 1 3 2は、 ブラネタリギヤ 1 2 0のサンギヤ 1 2 1に結合されたサンギヤ 軸 1 2 5に結合されている。 ステ一タ 1 3 3は、 無方向性電磁瞬反の赚を して形成されておリ, ケース 1 1 9に固定されている。 このモータ MG 1は、 永 久磁石 1 3 5による磁界と三相コイル 1 3 4によって形成される磁界との相 作 用によリロータ 1 3 2を ΙπΨΐΰϋί勦する電勳機として勁作し、 永久磁石丄 3 5によ る磁界と口一タ 1 3 2の iHlfcとの相 作用により三 Qコイル 1 3 4の両端に起' 力を生じさせる 機として動作する u なお、 サンギヤ軸 1 2 5には、 その回転 角度 0 sを検出するレゾルバ 1 3 9 S力設けられており, クランクシャフト 1 5 6には、 その问転^度 0 eを検出するレゾルバ 1 3 9 Eが設けられている。
モータ MG 2も、 モータ MG 1と同様に同期電勁 ¾m機として構成され、 図 2 0に示すように、 外周面に複数個の永久磁石 1 4 5を有するロータ 1 4 2と、 回 転磁界を形成する三相コイル 1 4. 4が巻回されたステ一タ 1 4 3とを備える。 口 ータ 1 1. 2は、 ディファレンシャルギヤ 1 1 5の审 1 4 7に結合されており、 ステータ 1 4 3はケース 1 4 8に |¾J定されている。 モータ MG 2のステ一タ 1 4 3も無方向 ffi電磁岡板の^板を稷屑して形成されている。 この乇一タ MG 2もモ ータ MG 1と同様に, 竜勡機あるいは 機として動作する。 なお, 1 4 7 には、 その回転角度 0 rを校出するレゾルバ 1 4 9が設けられている。
次に、 モータ MG 1 , MG 2を駆動制御する制御装置丄 8 0について説明する。 図 2 0に示すように、 制御装置 1 8 0は、 モータ MG 1を駆勁する第 1の腾回 路丄 9 丄、 モータ MG 2を駆勁する第 2の駆 ¾)回路 1 9 2、 両卿回路 1 9 1,
1 9 2を制御する制御 C P U 1 9 0 . -.次 ¾池であるバッテリ 1 9 4から構成さ れている。 これらの構成は、 第 1突 J¾例と^—なので、 I ^示するに留め、 詳細な 説明は省略する。 なお、 図 2 Γ)に示した制御装置 1 8 0の内部構成については、 その図示符号を、 図 2に示した各部材の番号と下 2桁を同 'とした。
( 2 ) 動作原理
以ト.構成を説明した四輪駆動— 輛の動作について説明する。 この 輪駆動車輛 の動作原 、 特にトルク変換の原理は以下の通りである., エンジン 1 5 0を回転 数 N e, トルク T eの迷転ポィント F 1で運 し、 このエンジン 1 5 0から出力 されるエネルギ P eと同一のエネルギである力 i異なる回転数 N r , トルク T rの 運転ポイント P 2でリングギヤ軸 1 2 6を運転する場合、 すなわち、 エンジン 1 5 0から出力される動力をトルク変換してリングギヤ軸 1 2 6に作用させる^ について考える。 この時のエンジン 1 5 0とリングギヤ軸 1 2 6の I口 (転数および トフレクの関係を図 2 1に示す。
ブラネタリギヤ丄 2 0の 3軸 (サンギヤ軸 1 2 5 , リングギヤ軸 1 2 6および ブラネタリキャリア 1 2 4 ) における 数やトルクの閔係は, 機構学の教える ところによれば、 1^1 2 2に例示する共線図と呼ばれる図として表わすこと力 Sでき. 幾何学的に解くこと力 31 'できるリ なお、 プラネタリギヤ 1 2 0における 3軸の回転 数やトルクの関係ば、 上述の共線囡を用いなくても各軸のエネルギを計算するこ となどによリ 的に 斤することもできる。 本 ^例では説明の容易のため共 線図を用いて説明する。
¾ 2 2における縦軸は 3軸の回 数を示す、 横軸は 3軸の 樑軸上の位^の比 を表わす„ すなわち、 サンギヤ軸 1 2 5とリングギヤ軸 1 2 6の位置 S , Rを両 端にとったとき、 ブラネタリキャリア丄 2 4の位置 Cは、 位置 Sと位置 Rを 1 : Pに内分する位置として定められる。 ここで、 pは、 リングギヤ 1 2 2の 数に 対するサンギヤ 121の歯数の比であり、 次式 (5) で表わされる。 サンギヤの歯数
P = ~― … (5) リングキヤの歯数 今, エン^ン 150が回 ι{2数 N eで) Ifeされておリ、 リングギヤ Φ由 126が回 転数 Nrで通転されている場合を考える このとき, エンジン 150のクランク シャフト 156が結合されているプラネタリキヤリア 124の位 Cにエンジン
1 50の回 ¾数 N f¾を、 リングギヤ軸 1 26の位罔 Rに回 数 N r ¾プロ 'ソトす ること力3'できる。 この両点を通る ί≥δ (以下、 動作共線と呼ぷ) を描けば. この 勋作共線の位 USでの鸲が、 サンギヤ軸 125の问転数 Nsとなる。 即ち、 動作 供線は、 回 数については、 比例計界用の直線として扱うことができる。 なお、 回転数 Nsは、 回 数 Neと回転数 Ni-とも用いて比例計^:式 (次式 (6) ) に より求めること力 'できる。 このようにブラネタリギヤ 120では、 サンギヤ 12
1 , リングギヤ 122およびブラネタリキャリア 124.のうちいずれか 2つの回 も決定すると、 残余の 1つの回 feは、 決定した 2つの回転に基づいて決定され る。 l + P
Ns=Nr— (N r-Ne) (6)
P 次に、 図 22の共線図に描かれた動作共線に対して、 ブラネタリキャリア 12 4の位; gCにおいて. エンジン 150のトルク T eを. 図屮下から上に作用する ものとして記入する。 このとき動作共線は、 トルクについては、 各点に作用する 力をベクトルとして受ける剛休として取り极ぅことができる。 従って、 1点に作 JT1する力を 2点に作川する力に分離することは 易であリ、 位 SCにおいて上向 きに作用するものとしたトルク丁 eを、 位 ϋ S上のトルク T e sと位黄 R上のト ノレク Te rとに分離することができる。 このときトルク Te sおよび Te rの大 きさは、 次式 (7) によって表わされる。 P
T c s =T c x
l +P
1
T c r— T c x (7)
l +P ブラネタリキャリア 1: i 4の位置を示す位 ECにおいて作用する、丁-ンジン 15 0のトルク T eを動作 銶の ^端の位^ S及び位 におけるトルクとして ffiffi すると、 この両端の位- 及び Rに外から作用するトルクの大きさを知れば、 動 作供線に対してどのようにカカ じるかを知ること力 ίできる u 具体的には, サン ギヤ籼 125に対応する位 IS Sでは. モ一タ 】のトルクを作用さゼることが でき, 位匿 Rでは、 リングギヤ軸 1 26をその回転数 N 1-で 動する際のトルク T e rに等しい反力トルクを受けることになる。 この反力トルク T i-が、 その屯 速で車辆を走行させるのに必要なトルクと等しければ、 はその軸 IHJ転数 Nr に相当する速度で定行を鹏¾する„ もとより、 本実施例は, 四輪駆動 であり、 モータ MG 2を ϋ®)することによつても IP-輛を走行させようとする勳カを得るこ と力できる n 路面の摩擦係数を理想的な状態と考えると、 モータ MG2による定 行用のトルク Tm 2は、 位 において、 ΦΙίίの走行のためのトルクとして作用 しているとみなすこと力できる。 他方、 位蒽 Sでは、 モータ MG 1によるトルク Tm lを受けることになる。 そこで、 申 を所 の状悲で連転しょうとすれば、 結局モータ MG 1 , MG2の巡転を制御して、 そのトルク Tm l , 丁 m2を調整 すれば良いことになる。 1^122に示した状怨でトルクが約り合うとすれば、 モ一 タ MG 1によるトルク Tm 1を、 エンジントルク Teが配分されたトルク Te s と等しくし、 モータ MG2によるトルク Trn 2を、 をその車速 (回転数 N r に対応する車速) で走行させ続けるのに必¾なトルク (これ力 ί反力トルク T rと 等しくなっている) に対してエンジントルク T eの配分トルク T c rでは不足す るトルク (=T r— Tc r) と等しく制御されていることになる。
このとき、 モータ MG 1では回転の方向と逆向きにトルクを作用させることに なるから, モータ MG 1は発 機として動作することになリ、 トルク Tm lと InJ 転数 N sとの積で表わされる電気工ネルギ 1をサンギヤ軸 1 5から回生す る。 モータ MG2では、 回転の方向とトルクの方向とが |HJじであるから、 モ一タ MG2は罨励機として勳作し、 トルク T m 2と回 Ν rどの種で表わされる電 気エネルギ Pm 2を励力として後輪ゆ:軸に出力 る u
ここで, ¾気エネルギ Pmlと 気エネルギ Pm2とも等しくすれば、 モータ 2で消費する電力のすべてをモータ MG 1により回生して賄うことができる。 このためには、 入力されたエネルギのすベてを出力するものとすればよ L、から、 エンジン 1 50から出力されるエネルギ P を, サンギヤ軸 125に出力される エネルギ P f とモータ MG 2により後輪車軸に出力されるエネルギ Ρτπとの和に 等しくすればよい。 図 21に照らせば、 運転ポイント Ρ 1で運 されているェン ジン 150から出力される】 レク T eと Θ 数 N eとで表わされる勁力を, トル ク^!して、 前輪の Miにはトルク T rと回転数 N rとの積によリ表わされる動 力としてリングギヤ軸 126を介して出力し、 後輪の車軸には、 トルク' JL'm2と 回転数 Nrとの積により表わされる勋力として出力するのである。
次に、 このハードウェア構成を有する四輪駆動 におけるトルク配分の制御 について説明する u 制御装; El 80は、 図 23に示す四輪処理ルーチンを繰り返 し実行しており、 制御が開始されると、 まずアクセル開度 APと車速 (^回転 数 n a) とを ¾¾み込む処现を行なう (ステップ S 400) 。 アクセル閲度 ctは、 ァクセルペダルポジシヨンセンサ 164 aから読み込むことができる u また、 車 速は、 レゾルバ 149から読み込んだ後輪の車軸の回転数として知る二どができ るが, プロペラシャフトに設けられた同示しない审速センサから^み込むものと しても良い。
アクセル開度 APと車速 (回転数 n a) とから、 ¾fに要^されるトルク指令 値 'Γ と甲-輛出力 ί' aを溃算する処理を行なう (ステップ S 410) „ 輛に要 求されるトルク指令値 T aは、 例えば図 24に示したグラフから求めることがで きる。 また、 率輛の出力 Paは、 図 25に示したように、 审輛のトルク T aと車 速 (回. 数 n a) とから定まる運転ポイントに相当する。 硐の出力 Paを全て エンジン 1 50から得るものとして、 次にエンジン 150の出力 P cを決定し (Pe-P a) 、 スロットル開度 S t hを決定する (ステップ S 420) 。 次に、 このエンジン 150の出力 Faにおけるトルク T aを、 エンジン 150の受持ト ルク T a eとモータ MG 2の受持トルク T amに配分する処理を行なう (ステツ ブ S430) 。 この処理により と後輪に配分されるトルク比が決定される。 続いて, エンジン 150の受持トルク T a cとブラネタリギヤ 120のギヤ比 とからエンジン 150の耍求トルク Te*を決定する処理を行ない (ステップ S 440) , 更にこのときのエンジン 150の出力 P eと 求トルク 'Γ e *とから、 エンジン 150の目標回転数 n c*を^する «iを行なう (ステップ S 450) 。 これらを決定を受けて、 実際にエンジン 150の遝転状態を変えるのは、 モータ MG1の仕事である。 図 22の J!:-線 I 1に したように、 勁作共線は、 |Π3端に作用 するトルクによリ変史されるから、 ^iftが定 i ^行しておリ、 動作共 ' 端 (リ ングギヤ軸の位 R) が固^されていれば、 勳作共^端のトルクバランスを調 整することにより、 エンジン 150の回転数は可変し得る。 そこで、 エンジン 1 50の回転数が n e *となるモータ MG 1の回 ;数 π gを決定するのである (ス テツブ S 460) 。 更に, モ一タ MG 2の受持トルク T a HIから、 モータ MG2 の要求トルク Tm*を決定する処现を行なう (ステップ S470) 。
以上の iQiSによリ、 制御装 [I 180の制御 であるエンジン 150, モータ G 1 , MG 2の動作点は全て決定されたから、 次に E F I ECU 170に指令 を出力し、 第 1の駆動回路 191などを制御して、 エンジン 150, モータ MG 1 , MG2などを卖際に制御する ϋθίΐを行ない (ステップ S480) 、 その後、 ΓΝΕΧΤ」 に抜けて、 本 里ルーチンを… 了する。
以上説明した第 5 例によれば、 分配 -段として、 ブラネタリギヤ 120を 用い、 いわゆる機械分配^の構成を用いて、 エンジン丄 50の勁力を前輪の車帕 および後輪の 軸に Θ由に分配することができる。 エンジン 150が 回転かつ 低トルクで運転されている場合に, その励力の一部をブラネタリギヤ 120力ら リングギヤ軸 126を介し、 更にチェーンベルト 129を絰て、 前輪に出力する と共に、 残余の動力をモータ MG 1から第 1の駆勛回路 191を介して回生€ "流 として取り出し, これを第 2の,!!勋 |。|路 192からモータ MG2にその力 として供給することによリ, ¾?·輛を全体として高いトルクで することができ る„ もとよりエンジン 150が低问転-高トルクで 31転されている場合に、 後輪 側のモータ MG 2から電流を回生し、 前輪側のモータ MG 1をカ行し、 高回. fe - 低トルクにトルク変換を行なっても良い (いわゆるオーバードライブ制御) 。 こ れらの制御は、 第 1 ^例ないし 例として説明した 気分配式の四輪駆 勦 とほぼ问様である。
そこで、 笫 5笑施例の四輪跶勳 で笑現可能な運転制御について、 図 2 6に 例示する運 制御ル一チンに づき説明する。 の 制御ル一チンが実行され ると、 制御 置 1 8 0の制御 C P U 1 9 0は, 审輛のアクセルペダルポジション A Pなどの運申云状態に基づレ、て、 屯幗に必要な出力エネルギを計界する処理を行 なうステップ S 5 0 0 ) 。 その後、 残容¾検山器 1 9 9により検出されるバッテ リ 1 9 4の残容¾8 を読み込む処现を行なって, 巡転モードの判定処现を行な う (ステップ S 5 1 0 ) 。 この運転モードの判定処 ifflは、 図 2 7に例示する運 モード判定 ル一チンによリ される 運 $ΐモ一ド判定処 Jレーチンでは、 運転制御ルーチンのス -7-ッブ S 5 0 0および S 5 0 8で読み込んだデータや計算 したデータなどを用いて、 そのときの動力出力装置 1 1 0にとつて適切な運転モ —ドを判定する。 ここで、 -旦図 2 6の運転制御 チンの説明を中断し、 先に 図 2 7の }Ι$ίΐ·- -ド判定処 ル' -チンに基づき運 ΐ· -ドの判定処理について説 明する。
51転モ一ド判 现ルーチン力実行されると、 制御装 ft 1 8 0の制御 C P U 1 9 0は、 バッテリ 1 9 4の残容鼋 BRMカ^!値 Bしと阖値 B Hとにより表わされる 範囲内にあるかを判定し (ステップ S 5 3 (3 ) . この範 11ΰ内にないときには、 ノ ッテリ 1 9 4の充放電力 S必耍であると判断して、 勁力山力装 IS 1 1 0の運 乇ー ドとして充放gモードを設定する (ステップ S 5 3 2 ) 。 ここで、 閾値 B Lと閾 値 B Hは、 バッテリ 1 9 4の残容 1¾1¾の下限値と上限値を示すものであり、 実 施例では、 !¾値 B Lは、 後述の乇一タ駆動モードによるモータ MG 2のみによる 駆動やパヮ一アシストモードによるバッテリ 1 9 4からの放電電力による動力の 付加などを所定時間 ¾^して行なうのに必耍な ¾カ蚤以上の値として設定される。 また、 閾値 B Hは、 パッテリ 1 9 4の満充^時の残容^; BRMから通常走行状態に ある i両を停止する際にモータ MG 1やモータ MG 2により回生される電力量を 減じた値以下に設定されている。 ステップ S 53 ϋでバッテリ 194の残^ ¾Β Μが閡値 BJLと閾値 ΒΗとによ リ表わされる範 »1内にあるときには、 ΙΡ·輛全体の, 勐力として出力すべきェネル ギ P rがエンジン 150から出力 能な最大エネルギ P em axを越えているか 否かを半 'J定する (ステップ S534) 。 最大エネルギ P em axを越えていると きには、 エンジン 150から出力される ¾大工ネルギ P em axでは不足するェ ネルギをバッテリ 194に蓄えられたエネルギで う必要があると判断し、 動力 出力装置 110の運 モードとしてパワーアシストモ一ドを設定する (ステップ S 536) 0
一方、 リングギヤ軸 126に出力すべきエネルギ P rがエンジン 150から出 力可能な最大エネルギ P e m a X以下のときには、 前後輪のトルク捐令値の $ 口 Tr*と軸冋車云数 Nrと力 ί所定の範囲内にあるかを判定し (ステップ S538) 、 所定の範囲内のときには、 運転モードとしてサンギヤ籼 125の回転を停止した 状態のロックアップモードを設定する (ステップ S 540) . ここで、 所定の範 囲とは, サンギヤ 121の回 ϊίδを停止した状態でエンジン 150を効率よく運 できる範囲である。 具体的には、 サンギヤ 121を停止した状態でエンジン 15 0を効率よく 51^できる範囲内の各運転ポィントでエンジン 150を ¾^したと きに、 リングギヤ軸 126に出力されるそれぞれのトルクと 0S乂とをマッブと して予め ROM 190bに記愴しておき、 トルク指令 丁 r *と [iiJfe数 N rで表 わされる 3Sfcポイントがこのマップの砣囲内にあるかを判定するのである。 ェン ジン丄 50を効率よく運 feできる呢囲の一例を図 21に一点 線の領域 QWとし て示した u 図屮, 領域 QEの内側はエンジン 150の運転が QJ能な領域であり、 領 faJSQWはエンジン 150を効率よく運転できる範囲である。 なお、 この範囲 Q Wは、 ェンジン 150の運転効率のほかェミッション等によリ定められるものて- ぁリ. 了'め突験などにより設定できる。
ステップ S 538でトルク指令値の ΓΓ r *と籼回 数 N rとが所定の範 ffl 内にないときには、 出力すべきエネルギ P rが所定エネルギ PMLょリ小さく、 かつ、 軸 lJ転数 Nrが所定 |。|転数 NMLょリ小さいか否かを 定し (ステップ S 542) 、 共に小さいときには、 運転モードとしてモータ MG2のみによる駆勦 の乇一タ駆勁乇一ドを設定する (ステップ S544) 。 所定エネルギ PMLや所 定回転数 NMLは、 エンジン 1 5 0力低回転数で低トルクでは効率が低下するこ とに基づきその範囲を設定するものでぁリ、 エンジン 1 5 0の 領域として所 定の効率未満の領域となるエネルギ P rおよび回 fe¾¾N rとして設定される。 な お、 具体的な値は、 エンジン 1 5 0の特性やブラネタリギヤ 1 2 1)のギヤ比など によリ定められる。 ステップ S 5 4 2で、 エネルギ P rが所定エネルギ P ML以 上であったリ回転数 N r力所定问 数 NML以上のときには、 通常の運 sを行な うものと判断し、 述転モードとして通常運転モードを設定する (ステップ S 5 4 6 ) 。
こうして退 モードの判定力 s行なわれた後. 各モードでの運 ι|(云に切リ^えられ、 必要なトルク制御が行なわれる (ステップ S 5 1 2ないし S 5 2 0 ) „ これらの トルク制御は、 電気分配式の M輪駆助 辆の場合と ^わるところはないので, 説 明は省略するが. いくつかの制御モードでの! PJj力の流れも^ 2 8ないし図 3 3に / した。 これらの図は、 の 転モードに必ずしも対応している訳ではないが、 トルク制御の違いによる動力伝達のルートの逑ぃを知ることができる。 各図 2お いて、 矢印はエネルギの流れを示し、 ハッ を付した矢印は、 その運 モードで 実際にエネルギがやリ取リされる経路を す。 白抜き矢日」の i§ ^は, その 31¾モ —ドではエネルギのやり取りはなされていない。 [§12 8は, 通常 ilfeの場合のェ ネルギの流れを示し. ブラネタリギヤ 1 2 0により分配された劻カは, 前輪と後 輪とに分配される。 また、 は、 オーバ一ドライブ制御の状悲を示す。
の駆動力によリ結果的に同じ 1転数で lEl転する後輪からエネルギを InJ収し、 これ をモータ MG 2より回生してモータ MG 1を駆 し、 プラネタリギヤ 1 2 0を介 して、 前輪の回 ¾i数をエンジン 1 5 0の回 数よリ^くするのである。
また、 図 3 0, 図 3 1は、 いずれもエンジン 1 5 0の出力が、 前輪または後輪 にのみ出力される逝転モ一ドを示している。 図 3 0は, エンジン 1 5 0の全エネ ルギが前輪にのみ出力されている状態を示す„ 図 3 1は、 エンジン 1 5 0の全ェ ネルギカ後輪にのみ出力されている状態を -す。 なお、 この ¾合には、 前輪倒は、 リングギヤ籼 1 2 6をロックし、 かつ前輪 1 1 6 , 1 1 8はニュートラルな状態 にしておく必要がある。 更に、 図 3 2は, エンジン 1 5 0の全エネルギが、 モ一 タ MG 1により回 ¾電流の形態で回収され、 これがバッテリ 1 9 4に一旦蓄えら れた後、 後輪にのみ出力されている状態を示す。 なお、 パッテリ 194に一旦苔 えられるのは、 顿の駆動に必要なエネルギが低く、 エンジン 150を問欠運 ¾ するからである。 図 33の場合には-バヅテリ 194との問の電力のやリ取リに加 えて、 モータ MG 2による回生も行なわれている。
次に、 木発明の第 6の実施例について説明する。 第 G実施例の四輪駆動 «は、 図 34に示す構成を有する。 この H輪駆動 «は、 ·5¾¾例と、 第 3の電 Ifr機 に相当するモータ 3を、 リングギヤ軸 12 Gに結合して備える点を除き同一 である u モータ MG3の^ tは、 モータ MG 1と同様である。 また. この 例 では, 制御装笆 180内に笫 3の駆勁回路 193を備えるが、 その構成は第 1の 駆勦回路 1 91と冋一である。 かかる構成を有する四輪駆動 ¾®の制御について、 阂 35のフローチャートを参照して説明する。
制御装 180は、 図 35に す四輪処 ί里ルーチンを開始すると、 まずァクセ ル開度 ΑΡと車速 (車軸回転数 n a) とを読み込む 3i Hを行なう (ステップ S 6 00) 。 アクセル開虔 APは、 アクセルペダルポジションセンサ丄 64 aから^ み込むことができる。 また、 速は、 レゾルパ 149から読み込んだ後輪の审蚰 の回転数として知ること力できるが、 プロペラシャフトに設けられた図示しない 車速センサから読み込むものとしても良い。
アクセル開度 APと 速 (^転数 n a) と力ら, 审賴に^求されるトルク指令 値 Taど 出力 P aを演^^る Μ¾を行なう (ステップ S 610) 。 車綱に要 求されるトルク ½令値 T aは、 例えば第 5 例で説明した図 24のグラフから 求めること力 ίできる。 また、 輛の出力 P aは、 同 25に示したように、 ¾f.顿の トルク丁 aと^ (冋転数 n a) とから まる運転ポイントに相^ iする。 ^の 出力 P aを全てエンジン 150から得るものとして、 次にエンジン 150の出力 を決定し (Pe Pa) 、 ス ΠΙットル開 0 t hを決定する (ステップ S6 20) β 次に、 このエンジン 150の出力 P aにおけるトルク Taを、 前輪の受 持トルク T f と後 ip命の受持トルク T rに配分する を行なう (ステップ S 63 0) 。 この Lf里により前輪と後輪に (W分されるトルク比が决定される。
続いて、 前輪の受持トルク '1' f とブラネタリギヤ 120のギヤ比とからェンジ ン 15 ϋの要^トルク Te*を决定する処理を行ない (ステップ S 640) 、 にこのときのエンジン 150の出力 P cと要求トルク T c *とから, エンジン 1 50の目樑回云数 n を決足する処理を行なう (ステップ S 650) 0 これら の決定を受けて, 実際にエンジン 150の運転状態を変えるのは、 モータ MCi l の仕事である。 そこで、 エンジン 150の问転数が n e *となるモータ] IG 1の 回転数 ngを決定するのである (ステップ S 660) 。 更に、 後輪の受持トルク 丁 から. 後輪に^結されたモータ!IG 2の出力トルク Tmを決定し、 モータ M G 2を制御する ¾を行なう (ステップ S 670) 。
上の処理により, 制御装置 180の制御対象であるエンジン 1 50, モータ MG 1, MG 2の勵作点は全て决定されたから、 次にト: I ECU 1 70に指令 を山力し、 第〗の駆動回路〗 9 〗なども制御して、 エンジン 50, モータ MG 1 , ΜΩ 2などを支際に制御する処现を行ない (ステップ S 680) 、 その後、
ΓΝΕΧΤ.1 に抜けて、 本 ルーチンを一 U.終了する。
以上説 HJ]した第 6 例の四輪駆動 輛は、 第 5 例の構成と比べて、 その 動力伝達の桂路に、 笫 3の ϋ動機であるモ一タ MG 3を有する。 この結果、 である駆 SJ輪 1 16 , 1 1 8の¾1]に出力し得る駆動トルクの最大値は、 図 36 に示すように、 エンジン 150からのトルクにモータ MG 3のトルクを加えたも のになる。 他方, 後輪である駆勁輪 1 1 7, 1 1 9の車軸に出力し得る駆動トル クはモータ MG 2のトルクにより定まる。 したがって、 モータ iMG3がない場 fr
(図 3 7に例示した) と比べた場合、 前輪側の駆動トルクの最大値を大きく取る ことができ、 前後輪のトルク配分の白由度が極めて大きいという利点が得られる。 第 5実施例では、 J輪側の駆 S]トルクの 大 ifiは、 その時点のエンジン 1 50の 駆勅トルクの最大値に制限されてしまうから、 両者の配分比 Y a : Y bの範 fflは 制限されるのに対して、 本支施例では、 Γ山]者の配分比 (Xa+Xb) : Xc:は、 エンジン 1 50の出力トルクに制限されることがなく、 駆動力配分の自由度は人 きい。
次に本 明の第 7の実施例について説明する。 笫 7尖施例の四輪駆動車輛およ びその内部に組み込まれた動力伝途裝置は、 第 6実施例と同ーハ一ドゥエァを備 え、 その制御のみが異なる。 第 7実施例の制御を図 38に示した。 この処理ルー チンが開始されると、 まずアクセル Ι )Α:ΑΡと車速 (車籼回転数 N a) とを読み 込む処理を行なう (ステップ S 700) 。
アクセル開度 ΛΡと車速 (回転数 Na) と力 、 审輛に耍求されるトルク指令 値 Taと車輛出力 PPを演算する i! flを行なう (ステップ S 71 ϋ) 。 車輛の出 力] J1Jを仝てエンジン丄 b (〕から得るものとして、 次にエンジン丄 50の出力 P eを決定し (Pe— , この出力が得られるようにスロットル開度 6f t hを 決' し、 更にエンジン 150の 0標回転数 Ne*を決定する 甲-を行なう (ス亍 ップ S 720) 。 ステップ S 720で、 先にエンジン 150の出力のみならず、 目標回転数 N a *を定めるのは, エンジン 150の運転状態を' が最低もしく はエミッシヨンカ最良となる状態にするためである。 この点について説明する。 図 39は、 エンジン 150の運転ポィントとエンジン 150の効率との関係を 示すグラフである。 闵中曲線 Βはエンジン 150の運転 SJ能な領域の境界を示す。 エンジン 150の運 可能な領 fej$には、 その恃 f生に応じて効率; ^同一の運転ボイ ントを示す fttl線 tt lないし α6のような等効率線を描くこと力できる„ また、 ェ ンジン 150の運転可能な領域には トルク T eと回転数 N eとの積で表わされ るエネルギー定の曲線、 例えば曲線 C 1一 C 1ないし C 3— C 3を描くことがで きる。 こうして描いたエネルギ 定の曲線 C 1— C 1ないし C3— C3に沿って 各遝 ボイン卜の効率をエンジン 150の 転数 N eを横軸として表わすと^ 0のグラフのようになる。
1¾1 するように、 出力するエネルギが同じでも . どの ilfeボイントで速 する かによつてエンジン丄 50の効率は大きく異なる。 例えばエネルギー;^の曲線 C 丄一 C 1上では、 エンジン 150を運転ポィント A 1 (トルク T c 1 , 回転数 N e l) で運転することにより, その効率を最も高くすることができる。 このよう な効率が も高い運転ポィントは、 出力エネルギー定の曲線 C 2— C 2および C 3-C 3ではそれぞれ運転ボイント A 2および A 3カ湘当するように. 各ェネル ギ の^轹 に存在する。 図 39中の曲線 Aは、 これらのことに基づき各エネ ルギ P rに対してエンジン 150の効率ができる限り高くなる 51¾ボイントを連 続する線で結んだものである。 この实施例では、 この曲線 A上の各運転ポイント
(トルク Te, 回転数 Ne) とエネルギ P rとの関係をマップとしたものを用い て、 エンジン 150の B標トルク Te*および鬥標回 ¾数 Ne*を設 した。 な お、 ここで、 曲線 Aを連続する曲線で結ぶのは、 エネルギ P rの不纖な急変を 避けるためである。
こうしてまずエンジン 1 50の運転状態として、 ^求されている出力 PPカ^ られる運転状態として最適の条件を求めた後、 エンジン 1 50の回転数がこの目 標回転数 Ne *となるようモータ MG 1を制御する を行なう (ステップ S 7 30) „ 即ち、 モータ MG 1により, エンジン 1 50の遝転状態を 図 3 9に示 した曲線 A.に沿って. 燃費最適な点へと遷移させるのである。 次に, このモータ MG 1か¾7;されることによリ、 このモータ MG Ίの出力がベラ籼に寄与するト ルク分 t gを求める処 を行なう (ステップ S 740) 。 モータ MG 1はプラネ タリギヤ 1 20に結合されているので, モータ MG1の運 J云は、 車軸に付与され るトルクに寄与するからである。
続いて、 前後輪に配分する駆勁力の割合を決定する処理も行なう (ステップ S 75 0) 。 驱勛力の配分比を ]6とすると、 前輪:後輪の駆動力の配分を、 β : ( 1 -/9) として決定するのである (但し 0≤^ ^ 1) 。 その後、 この配分比^ を用いて、 前輪の受持トルク Τ ίと後輪の'; S持トルク T rを決: ii£する ί[Μを行な う (ステップ S 760) 。 前輪の受持トルク Τ ίと後輪の受持トルク T rとは、 車輛 ±体で必要とされるトルク 'Γ p , モータ M G 1による寄与分 t g、 配分比 β を用いて, 次式 (8〕 により えられる u
Ύ ί^ · Τ - t g
T r«- (1 -/5) p … C8) その後、 前後輪にそれぞれの受持トルク力得られるよう、 モータ MG2 , モ一 タ MG 3を制御し (ステップ S 770) 、 その後 「NEXT l に抜けて本ル一チ ンを終了する。
かかる 例によれば、 分比) 3を ϋから 1まで向由に,倜整することができる ので、 エンジン 1 50の 3 $云状態の制御を優先しながら、 ¾後輪の駆動力の Ε己分 を極めて広い範囲で甴由に制御することができる。 配分比 は、 遝転乇一ドゃ路 面の状態などから設定すること力 s '考えられる。 したがって, エンジン 1 50の燃 費やェミツションを十分に確保しながら、 かつ龃動力の自由な配分が可能となる., 更に、 この 施例の構成によれば、 回生による制勁力も ¾後輪で自 ώに分拘.する ことができるので, アンチブレーキシステムゃ駆動力制御なども実現することが できる。
木実施例では、 前輪側の駆動軸にエンジン 1 5 0からの出力が結合される構成 としたが、 エンジン 1 5 0からの出力を後輪側に結合する構成とすることもでき る。 この場合には、 前後輪のトルク配分は、 配分比を βとして、 次式 (9 ) によ リ決定することができる。 τ r—e ■ τ p + 1 g
T r— ( 1 - /3 ) T p -- t g - ( 9 ) 以上、 本発明の多数の 例について説明したが、 本発 ijaは上記した実施例や 突 ]¾ ^憩に限られるものではなく、 その 旨を逸脱しない範囲において種々の態 槔にて することが可能である。 例えば、 クラッチモータ 3 0 , アシストモー タ 4 0の配 と前後 ipiの関係、 あるいはモータ M G 1ないし MG 3の配置と 後 輪の関係は、 逆にしても差し支えない u また、 冈 4 1に示したように、 ブラネタ リギヤ 1 2 0から前輪の m«Jに動力を取り出す部位にチェーンベルト 1 2 9に代 えて、 ノ ク機描を備えた核式ギヤ機横 2 0 0を用いることができる。 この^ ギヤ機構は、 リングギヤ 1 2 2に結合された第 1の連結ギヤ 2 2 1に螨台する笫 1ギヤ 2 3:! と、 リングギヤに 1 2 2に結合された第 2の速結ギヤ 2 2 2に逆転 用ギヤ 2 3 2を介して D 合する^ 2ギヤ 2 3 2とを備える。 ギヤ切換手段 2 1 0 が作動することによリ 動力伝遠ギヤ 1 1 1の駆 ¾J¾ 2 4 2は、 第 1ギヤ 2 3 1 もしくは第 2キ'ャ 2 3 2に係合するょぅ叨リ えられるから、 ブラネタリギヤ丄 2 0からの出力の回転方向を、 ¾いずれの方法にも切り替えること力5できる。 したがって, 一方向に IHJ転するエンジン 1 5 0を用いて. 車! Mを後退させる二と ができる。
また、 第 5実施例, 第 6実施例の構成では、 エンジン 1 5 0の回転軸にモータ M G 1 , ΜΩ 2どブラネタリギヤ 1 2 0を設けているが、 この構成には, 様々な パリエーシ ンが考えられる。 例えば、 図 4 2に示すように、 モータ MG 1とモ ータ M G 3とでエンジン 1 5 0を挾持する配置としてもよい。 また、 ト-記^例 では、 リングギヤ軸 1 2 6に出力された動力をリングギヤ 1 2 2に結合された動 力取出ギヤ 1 2 8を介してモータ MG 1とモータ MG 3との間から取り出したが、 図 4 3に示すように、 リングギヤ籼1 2 6 Eを延出してケース 1 1 9から取リ出 すものとしてもよい。
更に、 電気分配式の第〗ないし第 4実 J¾例の変开^ 1」としては, 篛 5 , 第 6麵 例と同様, 前 の审籼にクラッチモータ 3 0のみならず, 図 4 4に示すように、 第 3の電動機に相当するモータ 3 0 0を配置し、 前輪の iSllljをクラッチモ一タ 3 0によリ分配された勦力とモータ 3 0 0による動力によリ駆動し, 後輪の を アシストモータ 4 0によリ駆 する構成とすることもできる。 また、 笫 1 ¾¾例 等では図 1に示したように、 アシストモータ 4 0 1 ^動機 5 0の出力軸とはやく 分離するものとしたが、 図 4 5に示すように, 原勁機 5 ϋのクランクシャフト 5 6の両方の軸 ¾¾にクラッチモータ 3 O Aおよびクラッチモ一タ 3 0 Bを設ける栴 成を考えることもできる。 更に、 その一方のクラッチモータ 3 0 Bの出力軸であ る駆動軸 2 2 Bに、 アシストモータ 4 0を設けるものとしても良い。 この場合、 クラッチモ一タ 3 ϋ Bとアシストモータ 4 0の位 鬨係を逆にすることもできる。 即ち、 アシストモータ 4 0をクランクシャフト 5 6に直結し、 その出力铀にクラ ツチモータ 3 Ο Βを設けることもできる。
±3£した各¾¾例においては, 原助機 5 0としてガソリンにより運転されるガ ソリンエンジンを用いていたが、 その他にも、 ディーゼルエンジン等のレシブ α エンジンの他、 タ一ビンエンジンや、 ジェットエンジン. □—タリエンジンなど 各種内燃或いは外燃機関を用いることができる。
また、 クラツチモータ 3 0及びアシストモ一タ 4 0としては, Ρ Μ形 (永久磁 石形; Permanent Magnet type) 同期 機を用いたが、 回牛 j作及びカ行勁作を 行なわせるのであれば、 その他にも、 V R形 (可変リラクタンス形; Variable R eluctance type) 同期電勁機や、 バーニアモータや、 ^流電勐機や、 誘導電動機 や、 超電導モータなどを用いることができる。 また、 カ行動作のみ行なわせるの であれば, ステップモータなどを用いることができる u また、 クラッチモータ 3 0では. ァウタロータ 3 2はクランクシャフト 5 6に、 ィンナロータ 3 4は駆動軸 2 2 Aにそれぞれ結合していたが、 ァウタロータ 3 2 を駆動軸 2 2 Aに、 ィンナロータ 3 4をクランクシャフト 5 6にそれぞれ結合す るようにしても良い。 また、 ァウタロータ 3 2とインナロ一タ 3 4の代わりに、 互いに対向する円盤状のロータを用いるようにしても良い。
まだ、 クラッチ ΐ - タ 3 0に対する電力の伝達手段としては回転トランス 3 8 を用いていたが、 その他、 スリップリング一ブラシ接触、 スリップリング一水銀 接触、 或いは磁気エネルギの半導体カツプリング等を用いることも可能である。 また、 第 1及び第 2の駆動冋路 9 1, 9 2としては、 トランジスタインバータ を用いていたが、 その他にも、 I G B丁 (絶緑ゲートパイポーラモードトランジ スタ; Insulated Gate Bipolar mode Transistor) インバ一タや、 サイリスタイ ンバータゃ、 tg P WM (パルス幅変調; Pulse Width Modulation) インバ一タ や、 方形波インバ一タ (m/王形インバータ, 形インバ—夕) や. 共振インパ —タなどが用いることができる u
二次電池であるパッテリ 9 4としては P bバッテリ, N i MHバッテリ, L i パッテリなどを用いること力できる力 \ バッテリ 9 4に代えてキャパシタを).1 、 ることもできる。
なお、 以上の説明では、 特に断わらない限り、 クラッチモータ 3 0 , ブラネタ リギヤ 1 2 0やモータ MG 1ないし MG 3 , トランジスタ T r 1ないし T r 1 6 などの変換効率を碑 1 ( 1 0 0 %) として説 TOした。 実際には、 変換効率は値 1 未満であるから, ^終的なトルク配分を得るには、 エンジン 1 5 0から出力され るエネルギ P cをリングギヤ軸 1 2 6に山力するエネルギ P rよリ若干大きな値 とする力1、 逆にリングギヤ軸 1 2 6に出力するエネルギ P rをエンジン丄 5 0か ら出力されるエネルギ よリ^- Γ·小さな値とする必要がある u 例えば. ェンジ ン 1 5 ϋから出力さォ Iるエネルギ P eは、 リングギヤ軸 1 2 6に出力さォ lるエネ ルギ P rに変 効率の逆数を乗じて求めればよい。 また、 アシストモ一タ 4 0や ブラネタリギヤ 1 2 0て十 cM¾械麼檫などにより熱としてエネルギを損失するが、 その損失量は全体量からみれば極めて少なく、 モータ MG 1 , MG 2に用いた |司 期 ¾¾J機の効率は値 1に極めて近い。 また、 トランジスタ T r 1ないし T 1- 1 (3 のオン抵抗も GTOなど極めて小さいものが知られている。 したがって、 動力の 変換効卓は 1に近いものとなるから、 便: ϋ±値 1 (100%) として扱った„ 產 m の利用可能性
以ヒのように, 本 ¾明のかかる動力伝逹装置は、 輪駆励^!に川いることが できるが、 本発明はこれに限定されるものではなく、 2つの出力軸を有するもの であれば、船舶, 航空機などの交通 -段や、 その他各稞 ¾機械などに搭載する ことも可能である。 また、 本発明の 輪駆動糊の構成は、 乗用車, トラック,
W^ M,オフロード milなど各種 に適用することができる。

Claims

請 求 の 範 囲
1 . 原膽の動力力5 G達される IEI転軸を備え、 該回 軸から入力される原腿 からの勤力を、 の出力軸と, 該出力 Φ由と^^なる第 2の出力軸とに伝達する 動力伝達装置であって、
前記回«の回転に関連付けられた笫 1の電勤機と、
前記回転軸に入力される動力と、 前記第 1の出力軸に機械的な形憩で入出力さ れる動力と、 前記第 1の電動機に電気的な形態で入出力される動力との配分を、 入出力の !§?Π力バランスする条件の下で制御する分配李段と,
前記第 2の出力軸に結合された第 2の電動機と、
前記第 1の 動機に電 的な形憩で入出力される勁力を制御して、 前記第 1の 電動機の運 状態を可変し、 前記分配手段における前 力の配分を制御する第 1の勳カ制御手段と、
前記第 1の勤力制御手段によリ前記第 1の電動機に^気的な形態で人出力され る動力に基づき、前記第 2の電動機の運 ISを制御して、 前記第 2の出力軸に出力 される動力を制御する第 2の動力制御手段と
を備えた動力 iSS装置。
2 . 詰求の範 ffl第 1 ¾記戦の勳カ伝逹装置であって、
前記第 1の出力軸に結合された第 3の電 機と、
該第 3の 機の 51^、を制御して、 前記分配 段によリ機,形態で動力が人 出力される前記第 1の出力軸に、 第 3の電動機による勳力の入出力を加える第 3 の動力制御-Γ- と
を備えた動力伝逹装唐。
3 . 請求の範囲第 1項または第 2¾¾載の勒カ錢装置であって、
前記第 1の 動機は、
前 原動機の回- 軸に機械的に結合する第 1のロータと、 該第 1のロータと 電碰勺に結 し、 該第 1のロータに対して相対的に回転し得る第 2のロータとを 有すると共に、 該第 2のロータが、 前記 iの出力軸に機械的に結合したもので あって, 前記分西己手段を構成し、
前記第 1および第 2の動力制御手段は、
多相交流によって前記第 1の電動機における前記第 1及び第 2のロータ間の 鼋碰勺な結合を制御して、 前記笫 1の電勋機との間で少なくとも一方向の電力の やリ取リが可能な第 1の^)機駆動回路と、
前記第 2の電動機との間で少なくとも --方向の電力のゃリ取リカ s可能な第 2 の mi/l ffil 路と、
前記第 1および第 2の電動機駆動回路を制御して, 前記第 1および第 2の出 力軸に入出力される動力の配分を制御する動力配分制御手段と
を備えたものである
動力 装置。
4. 請求の箱 第 3項記載の動力伝達装 であって、
前記第 1または第 2の娜機龃動回路が前 j¾第 1または第 2の 職との間で 回生した電力の少なくとも- -部を蓄稂可能な二次 m¾を備え、
前 3d動力配分制御 Φ段は、 前記第 1および第2の鬼勛機 勛回路の制御による 前記第 1および第 2の¾,との間の電力のやリ取リに加えて, 前記二次電池へ の電力の蓄積および該—次 池からの 力の出力を制御して、 前記第 1および第
2の出力釉に入出力される勅力の配分を制御する手段である
励力伝 装 。
5 . 請求の範囲第 3¾または第 4¾記載の勁力 ίΓ;達装置であって、
前記動力配^ !1御手段は、
前記第 1の 回路を制御して、 前記第 1の 勁機よリ前 築 1の口 一タと第 2のロータとの |¾に生じる滑リ回転に応じた電力を前雷 1の電 J機駆 動回路を介して回 itする回生制御手段と、
該回 した電力の少なくとも一部を用いて前 ti第 2の電動機駆動回路によリ ms 2の铕 を 行するカ行制御手段と を備える動力 iS 装置。
6 . 請求の範 ffl第 4項 3cl載の動力伝逑装置であって、
前記動力配 il御手段は、 前記二次 に翻された電力を用い
前記第 1の ¾l 動回路を制御して、 前記第 1の m j機をカ行する第 1の 力 !!御手段と,
前記第 2の電勡撒駆動回路を制御して、 前記粱 2の電動機をカ行する第 2の カ行制御手段と
を備える動力伝達装匿。
7. 請求の範两第 1項または第 2項記蛾の動力 逹装置であって、
前記分配手段は、 前記原動機の回転軸と 第 1の出力軸と前記第 1の鼋動機 の回転軸とに各々結合される 3軸を有し、 該 3軸のうち前記原助機の回転軸に結 合された軸と前記第 1の TO機の^転軸に結合された籼とに入出力される助力が 決定したとき、 |¾¾定された勁力に基づいて、 前記第 1の出力軸に結台された軸 に入出力される励力が決定される 3軸式動力入出力手段であり、
B第 1および第 2の勁力制御字段は、
前記第 1の 機との間で少なくとも一方向の 力のやリ取リか^ I能な第 1 の■機 «回路と.
前記第 2の電動機との iS]で少なくとも一方向の電力のやリ取リが可能な第 2 の ¾動機駆勤回路と、
前記第 1および第 2の ¾|カ鹏区動回路を制御して、 前 d第 1および第2の出 力軸に入出力する動力の配分を制御する動力配分制御手段と
を備えたものである
動力伝達装置。
8. 請求の範回第 7 記戦の動力伝達装 であつて,
前記第 1または第 2の mffii機駆動冋路が 記第 1または第 2の電動機との間で 回生した電力の少なくとも一部を蓄 ¾可能な二次電池を備え、 前 動力配分制御手段は、 前記第 1および第 2の電勁機駆勁回路の制御による 前記第 1および第 2の電 との IS]の 力のやリ取リに加えて, 前記—次 池へ の電力の 積および該 次電池からの電力の出力を制御して、 Ml己第 1および第 2の出力軸に入出力する動力の配分を制御する手段である
動力伝達装置,
9 - 請求の 5两第 7項または第 8項記载の動力 装!:であって、
前記動力配分制御 -段は、
前記第 1の電動機駆動回路を制御して、 前記原動機の回 軸に入出力される 動力と ΐίτϋ笫 1の出力軸に入出力される勒力との差分に応じた m¾を、 第 1の電 動機から前記第 1の 鄉区勦回路を介して回生する回生制御チ-段と、
該回生した電力の少なくとも一部を用いて前記第 2の電勦 動 InJ路にょリ 前記第 2の電励機をカ行するカ行制御手段と
を備える動力 iSl装^' 上 0 . 請求の範囲第 8項 ^の動力^装置であって、
記動力配分制御手段は、 前記二次電池に 積された ¾力を用い
前記第 1の鼋動機駆 ί冋路を制御して、 前記第 1の ¾'動機をカ行する第 1の カ^!!御手段と、
前記第 2の電動^^動回路を制御して、 前 ;¾第 2の 動機をカ行する.第 2の カ行制御手段と
を備える励力伝達装置。
1 1 . 原動機の出力する機械的エネルギを回転籼を介して第 1の 動機に伝達 し、該第 1の msj機を利用して伝達された^記機械的エネルギの一部を m ェ ネルギに変換して取リ出し.
残リの機械的エネルギを笫 1の出力袖に出力すると共に、 前 第 1の電動機よ リ取り出された ϊ記電気的エネルギの少なくとも"^を用 Lゝて第 2の HSi機を駆 勁して、 前記笫 1の出力袖とは異なる第 2の出力軸に山力し、 前記第 1の锘勤機において伝達される前記機械的エネルギと取り出される 1己 気的エネルギとの配分を制御して、 ^記第 1および第 2の出力軸に出力される 勁力を所定の大きさに調整する勋カ伝達装置。
1 2 . 請求の 15囲第 1項ないし第 3項および第 7項のいずれかに記敏の動力伝 達装置であって、
前記第 1の出力軸に出力される動力と 前記第 2の出力輔に出力される動力と の配分を決定する配分決定手段を備え、
前記第 1の動力制御手段は、 該配分决定手段によリ决定された動力配分を目標 値として制御を行なう手段である
勋カ伝達装置。
1 3 . 請求の範 ES第 2項 載の励力伝速装置であって,
前記第 1の動力制御手段を介して前記第 1の電勁機の動力を制御することによ リ、 前- dfli京動機を所望の遝 fe^域内で運転する原動機運転手段と,
前記第 1の出力軸に出力される動力と、 前記第 2の出力軸に出力される動力と の配分を決定する配分決定手段を俯えと共に,
前記第 3の動 制御手段は、 該配分決定手段にょリ前記第 1の出力軸について 決定された動力配分を円標値として制御を行なう手段であリ、
前記第 2の動力制御手段は、 該配分決定 ¾により —記第 2の出力軸について 決定された動力配分を目標摘として制御を行なう手段であリ、
を備えた動力伝達裝
1 . 求の範囲第 1 3 記戦の動力伝達装置であって,
前記第 1の ^は、
前記原勁機の问 4¾Φ由に «的に結合する第 1のロータと、 該第 1の卩一タと ϋ磁的に結合し,該第〗.のロータに対して相対的に回転し得る第 2の π—タとを 有すると共に, のロータが、 前記第 1の出力軸に機械的に結合したもので あって, 前記分 I!手段を構成する動力伝達装 。
1 5 . 請求の範囲第 1 3項記載の勁力伝违装 であって, 前記分配手段は. ii記原 Mの回 軸と前記第 1の出力軸と 第 1の電 の回転軸とに各々結合される 3軸を有し、 該 3軸のうち前記原動機の回転軸に結 合された軸と前記第 1の亀勖機の回 軸に結合された軸とに入出力される動力が 決定したとき、 該決定された助力に某づいて、 前記第 1の出力軸に結合された軸 に入出力される II力が決定される 3軸^ II力入出力手段である励力伝達装置。
1 6. 請求の ®囲第 1項ないし第 3項および第 7項のいずれか記战の動力 装甲であって、
前記 mm機は、 多相の交流により構成される同転磁界と、 永久磁石による磁界 との相互作用によリ回転する同期 動機である勦カ伝逄装置。
1 7. 輛の第 1の車軸および第 2の卓籼に独 r_に勁力を伝達する四輪 jra車 輛であって、
動力が取リ出される回転軸を有し. 該回 軸を回転させる原動機と、 該回転軸の回転に |¾連付けられた第 1の電 と,
ii記问転軸に入力される励力と, 前記第 1の車籼に機械的な形態で入出力され る励力と, 前記第 1の電動機に電^ 1勺な形態で入出力される動力との配分を、 入 出力の^ [1カバランスする条件のドで制御する分配 段と、
前記第 2の;^ illに結合された第 2の^ Ε機と、
前; a第 1の 動機に電 的な形態で入出力される動力を制御して、 前記第 1の 励機の運転状態を可変し、前 分配手段における前記励力の配分を制御する第
1の動力制御手段と、
tir¾i第 1の助力制御 段によリ ^記第 1の 動機に ¾気¾な形態で人出力され る勁力に基づき、 前記笫 2の 1¾勋機の運転を制御して, 前記第 2の に出力さ れる動力を制御する第 2の動力制御手段と
を備えた四輪駆動 丄 8 . 請求の範囲第 1 7項記祯の四輪駆動 であって、 前 id第 1の «1に結合された第 3の電動機と、
該第 3の電動機の運転を制御して、 前記分配手段によリ機械霧態で動力力 ί入 出力される前記第 1の¾&に, 第 3の電動機による動力の入出力を加える第 3の 助力制御手段と
を備えた四輪駆動賴'
1 9. 請求の 笫 1 7頊または第 1 8項 FE敏の四輪駆勁車輛であって、 前記第 1の^機は、
前 動機の出力軸に機械的に結合する第 1の口- -タと、 該第 1のロータと 電磁的に結合し,該第 1のロータに対して相対的に回転し得る第 2のロータとを 有すると共に、 該第 2のロータが、 前記 iの *filに機,に結合したものであ つて、 ΙΪ 分配チ段を構成し、
ttrsa第 1および第 2の動力制御手段は、
多相交流によって前記第 1の電動機における前記第 1及び第 2の口一タ冏の 電磁的な結合を制御して、 前記第 1の^!機との間で少なくとも一方向の電力の やリ取リか^ Γ能な第 1の電動機駆動回路と,
前記第 2のE励機との問で少なくとも一方向の電力のやリ取リが可能な第 2 の m¾j機駆 i回路と,
前 第 1および第 2の^:動機 5ϋ動冋路を制御して、 前記原 ¾/遞の觔カを j¾g の配分で、 前記笫 1および第 2の出力軸に出力する勐カ配分制御手投と
を備えたものである
四輪駆動細。
2 0 . 請求の範 II第 1 9項記載の ω輪駆動車輛であって、
前言 ci第 1または第 2の ¾]機«]回路が前記第 1または第 2の^動機との |¾|で 回 itした鼋力の少なくとも一部を蓄稍可能な二次 池を備え .
前記動力 PSW 御手段は、 前 第 1および笫 2のi動機駆動回路の制御による 前記第 1および第 2の電動機との間の!:力のやり取りに加えて, 前 二次電池へ の電力の薪稂および該二次電池からの^:力の出力を制御して、 前記第 1および第 2の出力軸に出力する動力の配分を制御する手段である
四輪駆勡率輛。
2 1 . m m 1 9 ¾または 2 0項記載の四輪駆動牢帼であって、 前記動力配分制御手段は、
前記第 1の ms&^sg勤回路を制御して、 前記第 1の電動機よリ前 第 1の口 ータと第 2の D—タとの t¾に生じる滑り回転に応じた鼋カを前記第 1の^動 動回路を介して冋生する回 制御手段と、
該回生した電力の少なくとも 5を用 ヽて前記笫 2の電動機駆動回路によリ 前記第 2の 動機を力打-するカ行制御手段と
を備える四 ¾Μϋ·"Μ。
2 2 . 請求の範囲笫 1 9項または第 2 0頊記戟の四輪駆 であって、 前記動力配分制御手段は、
前記第 2の電動機駆勦回路を制御して、 記第λ 'の 軸の Μ転によリ回 さ れる前記第 2の mSl機から It力を 生する回生制御 段と、
該回生した ¾力の少なくとも一都を用いて Ιίί記第 1の電励機駆動回路によリ 前 第 1の鱸動機をカ行する力 ίί 御手段と
を備える四輪駆
2 3 . 請^の範囲第 2 ()項記赖の四輪駆動卓綱であって,
前記動力配分制御手段は、
前 ΠΒ第 1の 動 β /回路を制御して、 前記第 1の電動機よリ前記第 1の口 一タと第 2のロータとの間に^じる滑り |π|転に応じた電力を前 m 1の^:動機 動回路を介して回生する第 1の In]生制御 -段と、
前記第 2の 欄区勵回路を制御して、 前記第 2の亨勒の回 によリ回 $Γ;さ れる前記第 2の電動機から電力を回生する第 2の回生制御手段と,
を備え, 該 lEl生された電力の少なくとも一都を前記二次 也に蓄積する四輪 ΜΛ«。
2 4 . 請求の範囲第 2 0項記載の四 ME動車輛であって,
前記動力配分制御手段は, 前記一-次電池に蓄積された電力を用い
前記第 1の電動機駆励回路を制御して、 前記第 1の電動機をカ行する第 1の カ行制御手段と、
前記第 2の電動機駆動回路を制御して、 前; H第 2の電動機をカ行する第 2の 力 ^御手段と
を備える四輪駆勦車镧。
2 5 . 請求の範囲第 1 7項または第 1 8項記載の四輪駆動車輛であって、 前醫己分配チ段は、 前記原動機の回転軸と前^第 1の車軸と前記第 1の馄職の 回転軸とに各々結合される 3軸を有し、 該 3軸のうち前記原«の In]転軸に結合 された軸と前記第 1の鼋 の回転軸に結合された軸とに入出力される動力が決 定したとき、 該^された動力に基づいて、 前記 1の に結合された軸に入 出力される動力が決定される 3軸式動力人出力手段であリ、
前記第 1および第 2の動力制御手段は、
前記第 1の ¾®J機との間で少なくとも -方向の電力のやり取リカ可能な第 1 の^ SiiiS i動问路と、
前記第 2の電 ¾J機との間で少なくとも '方向の電力のゃリ取りが 能な ¾ 2 の電動 TO動回路と、
前記笫 1および第 2の 動回路を制御して, 前記第 1および第 2の車 軸に入出力する励力の配分を制御する勡カ配分制御手段と
を備えたものである
四輪纖車骊。
2 6 . 請求の範困第 2 5項記戦の四輪駆動取镧であって、
前記第 1または ® 2の 動機駆動回路が前記第 1または第 2の電動機との間で IE]生した電 の少なくとも一都を蓄稂可能な一次港池を備え、 前記動力配分制御手段は、 前記第 1および第 2の ' 勁概区動回路の制御による 前記第 1および第 2の電勁機との間の電力のやリ取リに加えて, 前記二次電池へ の電力の蓄積および該一次電池からの踅力の出力を制御して、 前記第 1および第 2の率軸に出力する動力の配分を制御する手段である
2 7 . 請求の $5网第 2 5項または第 2 載の四輪駆動 であって、 前記動力配 御 段は、
前記第 1の 動回路を制御して、 前 d原勡機の回転軸に入出力される 動力と前記笫 1の m¾bに入出力される動力との差分に応じた ¾力を、 第 1の ¾J 機から前記第 1の電動機駆勦回路を介して回牛-する回生制御手段と、
該回生した電力の少なくとも一部を用いて前 2の電動 »勁回路によリ 前記第 2の電,をカ行する力 御手段と
を備える四輪 J»ffi。
2 8 · 請求の? Slffl第 5 ¾または第 2 6項記載の四輪駆動車輛であって、 前 d動力配分制御手段は、
ίί記第 2の甩¾]機駆動回路を制御して、 前記; e 2の車軸の回転によリ回転さ れる前記第 2の電動機から電力を回生する回牛制御手段と、
該冋生した ϋ力の少なくとも一都を甩いて前記第 1の電動離区動回路により 前記第 1の電動機をカ行するカ行制御手段と
を備える四輪駆動
2 9 . 請求の筘囲第 2 6項記載の四輪駆勋 硐であって、
前記動力配分制御 は、
前 ci第 iの罨動概駆動回路を制御して, 前^原 1¾機の回- fe軸に入出力される 励力と ^記第 1の Miに入出力される動力との^分に応じた電力を, 第: I.の^ 機から前記第 1の電動機駆動回路を介して问生する第 1の回牛.制御手段と、
前記第 2の電動 ¾ 動冋路を制御して . 前記第 2の ill籼の问転によリ回転さ れる前 ffi第 2の m i機から镎カを回生する第 2の回生制御手段と、
を備え、
該回生された電力の少なくとも "^を ^記一次 urnに蓄稷する四輪 s
3 0. 詰求の範囲第 2 6項記戦の 輪駆励 ^¾であって、
前記動力配分制御手段は、 前記二次電池に蓄積された電力を用い
前記笫 1の電動機駆勖回路を制御して、 前記第 1の電動機をカ行する第 1の カ行制御手段と、
前記第 2の «勁回路を制御して、 前記笫 2の電動機をカ行する笫 2の カ行制御手段と
を備える四輪駆動 *lfiD
3 1 . 原動機の出力する機械的エネルギを Uil転軸を介して第 1の ¾1勤機に伝達 し、該第 1の m¾j ^において、 された 記機械的エネルギの一部を電 ェ ネルギに雄して取リ出し、
残リの機械的エネルギを第 1の 由に出力すると共に、 前記第 1の電 機よリ 取リ出された前記電気的エネルギの少なくとも一都を用いて第 2の電動機を « して、 第 2の率軸に出力し.
前記第 1の ¾Si機において伝達される前記機械的エネルギと取リ出される前 電気的エネルギとの配分を制御して、 前記 および第 2の に出力される動 力を所定の人きさに調榨する四輪駆動車綱„
3 2. 請^の範 11笫 1 7¾ないし第 1 9項および第 2 5項のいずれか記載の四 輪駆動車輛であって、
前記笫 1の車籼に出力される勦力と、 前記第 2の皋籼に出力される動力との配 分を決定する配分決定手段を備え、
前記第 1の動力制御手段は、 該配分決定手段によリ決定された動力配分を H標 値として制御を行なう手段である
輪, »ΐϋ。
3 3 . 請求の範囲第 1 8項記戦の四輪駆励 輛であって.
前記第 1の助力制御手段を介して前記第 1の電勒機の動力を制御することによ リ、 前記原動機を所望の運 领域内で 3¾する原動機運 Jfe手段と.
前記第]の車軸に出力される動力と、 前記第 2の車軸に出力される動力との配 分を決定する配分決定手段を備えると共に、
前! 2第 3の動力制御手段は、 該 分決定手段によリ前記第 1の車軸にっ 、て決 定された動力配分を目標値として制御を行なう手段でぁリ、
前記第 2の勋カ制御手段は、 該配分決定手段にょリ前記第 2の単軸について決 定された動力配分を目標値として制御を行なう手段であリ、
を備えた四輪駆動 。
3 4 . 請求の範 ffl第 3 3項記載の四輪駆動車辆であって、
前 d ' lの電動機は、
^記原助機の回 ½軸に機械的に結合する第 1のロータと、 該第 1のロータと 電磁的に結合し、 該第 1のロータに対して相纖に面転し得る第 2のロータとを 有すると共に、 該第 2の Π—タが、 前記第 1の車軸に機械的に結合したものであ つて、 前記分配手段を構成する四輪駆動泉輛。
3 5 . ^求の 5两第 3 3 ¾記載の四輪駆 中 であって、
前記分配手段は、 前記原動機の回転軸と前記第 1の 由と前記第 1の電動機の 回転軸とに各々結台される 3-軸を有し、 該 3軸のうち前 §Β 動機の回転刺 Iに結合 された軸と前記第 1の電動機の回転軸に結合された軸とに入出力される動力が决 定したとき、 該¾½された勐カに基づいて, 前^第丄の に結合された軸に入 出力される 3¾力が決定される 3軸式動力人出力手段である四輪駆動 J»。
3 6 . 原動機の動力を糊の第 1の率铀と總 1の車軸と 1¾¾械的に直接! 合されていない第 2の車軸に伝達する勁カ^ g装^を備えた四輪 S区動 Mであつ て、 動力を出力する冋転軸を有し、 該回転軸を回転させる原動機と、
動機の回 jfe軸に機械的に結 する第 1のロータと、 該第丄のロータと 磁 的に結合し、 該第 1のロータに対して相対的に回^し得る第 2のロータとを^し, 該第 2のロータに前記第 1の車蚰を機械的に結合した第 1の¾«と,
多相交流によって前記第 1の電勋機における前記第 1及び笫 2の Π—タ間の電 磁的な結合を制御して、 前記第 1の電動機との間で少なくとも一方向の電力のや リ取リが可能な第 1の電動機 ¾¾動回路と、
前記原励 の他の回転軸に機械的に結合する笫 3のロータと、 該第 3のロータ と電磁的に結合し、 該第 3のロータに対して相対的に回^し得る第 4のロータと を有し、 該第 4のロータに前記第 2の車 を機械的に結合した第 2の電動機と、 多相交流によって前 ffi第 1の電動機における前記第】及び第 2の口一タ阆の電 磁的な結合を制御して、 前記笫 2の電動機との問で少なくとも一方向の電力のや リ取リ力 S可能な第 2の鼋動機駆動回路と、
前記第 1および第 2の電纖麵 M路を制御して、 前 H原動機の動力を所定の 配分で、 前記第 1および第 2の車軸に出力する動力配分制御手段と
を備えた四 劻 镧。
3 7 . 請求の範囲笫 3 6 ¾記載の四輪駆動車輛であって、
前記第 1または第 ' 2の 勤機駆励回路が前記第 1または第 2の電则機との間で 回生した電力の少なくとも一部を薪可能な—次鲎池を備え、
前記助力配分制御手段は, 前記第 1および第 2の電動機駆動回路の制御による 電力の回生.および消费に加えて、 前記二次電池への電力の蓄積および Zまたは該 二次電池からの電力の山力を制御する二次電池制御手段を備えた四輪駆動 ffl。
3 8 . 原動機の動力を糊の第 1の审 および第 2の^ illに伝達する動力链 装!!を備えた四輪駆動 であって,
動力が出力される回転軸を し、該回転軸を回転させる原動機と、
言繊動機の回転軸に機械的に結合する第 1のロータと, 該第 1のロータと 磁 的に結合し、 該第 1のロータに対して相対的に回転し得る第 2のロータとを有し、 該第 2のロータに^ 1の車軸を機械的に結合した第 1の と、 多相交流によって前記第 1の ®機における前記第 1及び第 2の u—タ閱の常 磁的な結合を制御して、 前記笫丄の電動機との間で少なくとも一方向の電力のや リ取リか^ Τ能な第 1の電動 W (勐回路と、
前記第 1の車 4と (塌械的に直接は結合されていない第 2の帟勒が結合された 第 2の m!Wと、
該第 2の 動機との聞で少なくとも一方向の電力のやリ取リが可能な第 2の 動: 動回路と、
前記第 1および第 2の電動機駆動 |ϋ|路を制御して、 前記第 1および/または第 2の に制動トルクを付与する制動力制御手段と
を備えた四輪駆動 輛。
3 9. 原勤機の勦力が^される |£|転軸を備え, 該 lei転軸から人力される原動 機からの動力を として、 第 1の原動機が結合された第 1の出力軸に入出力さ れる勛力と、 笫 2の 機が結合され、 該第 1出力軸とは異なる第 2の出力軸に 入出力される助力との配分を制御する方法であって,
前記回転軸に入力される動力と、 前記笫 1の出カ籼に機械的な形態で入出力さ れる動力と、 前記笫 1の mii機に電気的な形態で入出力される励力との配分を、 入出力の aがパランスする条件の下で制御する分配手段を用意し、
前記第 1の m¾機に電気的な形態で入出力される動力を制御して if記第 1の 铠動機の運 状態を可変し、 前記分配 ί殺における前記動力の配分を制御し, 前記分配手段の動作に伴い前記笫 1の電 Sii機に 気的な形態で入出力される勦 力に基づき、 前 d第 2の 動機の運転を制御して、 前記第 2の出力軸に出力され る ¾力を制御する
勤力配分方法。
4 0. 原動機の勅力が ^される回転軸を備え、 該回-転軸から入力される原動 機からの動力を として, 第 1の原助機が結合された第 1の事 *tlに入出力され る動力と、 第 2の電励機が結台され、 該第 1聯 とは興なる第 2の笨軸に入出力 される動力との配分を制御する 輪駆動方法であつて
前記冋転 Ψ'由に入力される勋力と. 前記第 1の Ψϋΐιに機械的な形態で入出 され る動力と, 前記第 1の鼋動機に電 的な形態で入出力される動力との配分を、 入 出力の iがバランスする条件の下で制御する分配乎段を用怠し、
前記第 1の '動機に電気的な形態で入出力される動力を制御して、 前記第 1の 電動機の運転^!を可変し、 前記分配 τ殺における前記動力の配分を制御し、 前記分配手段の動作に伴い前 ia第 1の電励機に な形態で入出力される動 力に基づき、 前記第 2の m¾機の運転を制御して, 前記第 2の-中 に入出力され る動力を制御する
四輪駆動方法。
PCT/JP1996/001321 1995-05-19 1996-05-20 Systeme de transmission, vehicule a quatre roues motrices employant ce systeme, procede de transmission de puissance et procede d'entrainement de quatre roues WO1996036507A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69614640T DE69614640T2 (de) 1995-05-19 1996-05-20 Hybrid-kraftübertragungssystem, zugehöriges vierradgetriebenes fahrzeug, kraftübertragungsverfahren und vierradantriebsverfahren
CA002195434A CA2195434C (en) 1995-05-19 1996-05-20 Power transmission apparatus, four-wheel drive vehicle with power transmission apparatus incorporated therein, method of transmitting power, and method of four-wheel driving
KR1019970700365A KR100229340B1 (ko) 1995-05-19 1996-05-20 동력전달장치 및 이것을 사용한 4륜구동차량 및 동력전달방법 및4륜구동 방법
US08/765,367 US5988307A (en) 1995-05-19 1996-05-20 Power transmission apparatus, four-wheel drive vehicle with power transmission apparatus incorporated therein, method of transmitting power, and method of four-wheel driving
EP96915188A EP0775607B1 (en) 1995-05-19 1996-05-20 Hybrid transmission system, four-wheel drive vehicle using the same, power transmitting method, and four-wheel driving method

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP7/145575 1995-05-19
JP14557595 1995-05-19
JP07225869A JP3092492B2 (ja) 1995-05-19 1995-08-09 動力伝達装置及びその制御方法
JP7/225869 1995-08-09
JP7/245464 1995-08-29
JP24546295A JP3052802B2 (ja) 1995-05-19 1995-08-29 動力伝達装置及びその制御方法
JP24546495A JP3052804B2 (ja) 1995-05-19 1995-08-29 原動機の始動装置および始動方法
JP7245463A JP3052803B2 (ja) 1995-05-19 1995-08-29 動力伝達装置およびその制御方法
JP7/245463 1995-08-29
JP7/245462 1995-08-29
JP7251944A JP3063589B2 (ja) 1995-05-19 1995-09-04 動力伝達装置およびその制御方法
JP7/251944 1995-09-04
JP07266475A JP3099698B2 (ja) 1995-05-19 1995-09-19 動力伝達装置及びその制御方法
JP7/266475 1995-09-19
JP26924295A JP3099699B2 (ja) 1995-05-19 1995-09-22 動力伝達装置及びその制御方法
JP7/269242 1995-09-22
JP7/269243 1995-09-22
JP26924395A JP3099700B2 (ja) 1995-05-19 1995-09-22 動力伝達装置およびその制御方法
JP7/269241 1995-09-22
JP7269241A JP3063592B2 (ja) 1995-05-19 1995-09-22 動力伝達装置およびその制御方法
JP30074295 1995-10-24
JP7/300742 1995-10-24
JP7/347862 1995-12-15
JP07347862A JP3099713B2 (ja) 1995-05-19 1995-12-15 動力伝達装置およびその制御方法

Publications (1)

Publication Number Publication Date
WO1996036507A1 true WO1996036507A1 (fr) 1996-11-21

Family

ID=27583464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001321 WO1996036507A1 (fr) 1995-05-19 1996-05-20 Systeme de transmission, vehicule a quatre roues motrices employant ce systeme, procede de transmission de puissance et procede d'entrainement de quatre roues

Country Status (6)

Country Link
US (1) US5988307A (ja)
EP (5) EP0743214B1 (ja)
KR (1) KR100229340B1 (ja)
CA (1) CA2195434C (ja)
DE (1) DE69635942T8 (ja)
WO (1) WO1996036507A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527222A (ja) * 2007-05-07 2010-08-05 ゼネラル・エレクトリック・カンパニイ 推進システムを動作させる方法
CN109649148A (zh) * 2019-01-16 2019-04-19 无锡商业职业技术学院 一种能量溢出工况下单电机回收的混合动力传动系统

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250483B2 (ja) * 1996-07-18 2002-01-28 トヨタ自動車株式会社 駆動装置
JPH1042600A (ja) * 1996-07-23 1998-02-13 Hitachi Ltd 電気式無段変速装置およびそれを用いた自動車
US6018694A (en) * 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
JPH1084665A (ja) * 1996-09-06 1998-03-31 Toyota Motor Corp 動力出力装置
JP3097572B2 (ja) * 1996-09-13 2000-10-10 トヨタ自動車株式会社 動力出力装置およびその制御方法
JP3216589B2 (ja) * 1996-10-29 2001-10-09 トヨタ自動車株式会社 動力出力装置,原動機制御装置並びにこれらの制御方法
JP3000953B2 (ja) * 1997-03-21 2000-01-17 トヨタ自動車株式会社 動力出力装置およびその制御方法
JP3099769B2 (ja) * 1997-03-24 2000-10-16 トヨタ自動車株式会社 動力出力装置およびその制御方法
JP3211751B2 (ja) * 1997-03-24 2001-09-25 トヨタ自動車株式会社 動力出力装置およびその制御方法
US6048288A (en) * 1997-11-18 2000-04-11 Toyota Jidosha Kabushiki Kaisha Power train system for a vehicle and method for operating same
DE19751039C1 (de) * 1997-11-18 1999-07-15 Hermann Thoene Hybridantrieb
JP3214427B2 (ja) * 1997-12-12 2001-10-02 トヨタ自動車株式会社 ハイブリッド車の駆動制御装置
US6328671B1 (en) * 1998-03-20 2001-12-11 Nissan Motor Co., Ltd. Drive force control device
DE19814402C2 (de) 1998-03-31 2000-03-23 Isad Electronic Sys Gmbh & Co Antriebssystem für ein Kraftfahrzeug sowie Verfahren zum Betreiben desselben
DE19837115B4 (de) * 1998-08-17 2009-04-02 Zf Sachs Ag Antriebsanordnung für ein Kraftfahrzeug
SE514510C2 (sv) * 1998-12-08 2001-03-05 Abb Ab Hybriddrivanordning samt hjulfordon försett med en hybriddrivanordning
DE10049567B4 (de) 1999-10-08 2017-12-14 Toyota Jidosha Kabushiki Kaisha Fahrzeugsteuergerät zum Steuern eines allradgetriebenen Kraftfahrzeugs
JP3560899B2 (ja) * 2000-05-10 2004-09-02 株式会社三協精機製作所 モータの駆動方法および駆動装置
KR100397570B1 (ko) * 2000-08-09 2003-09-13 하태환 차량용 동력전달장치
SE521861C2 (sv) 2000-10-02 2003-12-16 Volvo Europa Truck Nv Ett hybriddrivsystem för ett motorfordon
US6889132B2 (en) * 2001-02-01 2005-05-03 Ford Global Technologies, Llc Vehicle drive control for 4×4 mode
US7163480B2 (en) * 2001-05-03 2007-01-16 Ford Global Technologies, Llc Powertrain for a hybrid vehicle with all-wheel drive capability and method for controlling wheel slip
JP3831841B2 (ja) * 2001-09-26 2006-10-11 ミネベア株式会社 高精度トルク測定装置
JP3857144B2 (ja) * 2002-01-15 2006-12-13 本田技研工業株式会社 ハイブリッド車両の制御装置
US7174978B2 (en) * 2002-03-29 2007-02-13 Aisin Aw Co., Ltd. Hybrid drive unit, and front-engine/rear-drive type automobile having the hybrid drive unit mounted thereon
JP3894143B2 (ja) * 2002-04-09 2007-03-14 トヨタ自動車株式会社 動力出力装置およびこれを備える自動車
US6861820B2 (en) * 2002-09-09 2005-03-01 Ford Global Technologies, Llc Control strategy for an electric motor using real time predictions of motor capability based on thermal modeling and measurements
JP2004176710A (ja) * 2002-10-01 2004-06-24 Toyota Motor Corp 動力出力装置及びハイブリッド型の動力出力装置、それらの制御方法並びにハイブリッド車両
WO2004041574A1 (ja) * 2002-11-06 2004-05-21 Sumitomo Electric Industries, Ltd. ハイブリッド電気自動車
KR20040098252A (ko) * 2003-05-14 2004-11-20 현대자동차주식회사 모터를 이용한 사륜 구동 장치 및 방법
DE602004027262D1 (de) * 2003-06-30 2010-07-01 Aisin Aw Co Hybridantriebsgerät und kraftfahrzeug mit daran angebrachtem gerät
DE10346213A1 (de) * 2003-10-06 2005-04-21 Bosch Gmbh Robert Verfahren zur Regelung des Ladezustands eines Energiespeichers bei einem Fahrzeug mit Hybridantrieb
JP4063192B2 (ja) * 2003-10-23 2008-03-19 日産自動車株式会社 モータ駆動4wd車両の制御装置
JP4082336B2 (ja) * 2003-11-14 2008-04-30 日産自動車株式会社 モータ駆動4wd車両の制御装置及び制御方法
JP4063199B2 (ja) * 2003-11-14 2008-03-19 日産自動車株式会社 モータ駆動4wd車両の制御装置
JP3969385B2 (ja) * 2003-11-27 2007-09-05 日産自動車株式会社 モータ駆動4wd車両の制御装置及び制御方法
JP4082338B2 (ja) 2003-11-27 2008-04-30 日産自動車株式会社 モータ駆動4wd車両の制御装置及び制御方法
US7237748B2 (en) * 2003-12-15 2007-07-03 Delos Aerospace, Llc Landing gear method and apparatus for braking and maneuvering
US7081725B2 (en) * 2004-02-06 2006-07-25 Visteon Global Technologies, Inc. Power electronics apparatuses for double-fed induction generator to induction motor drive system
JP3776434B2 (ja) * 2004-02-10 2006-05-17 本田技研工業株式会社 駆動力切換制御装置
DE112005000758A5 (de) 2004-04-16 2008-06-26 Avl List Gmbh Verfahren zur Steuerung des Anfahrvorganges eines Kraftfahrzeuges
US20060047400A1 (en) * 2004-08-25 2006-03-02 Raj Prakash Method and apparatus for braking and stopping vehicles having an electric drive
US7377876B2 (en) * 2004-10-29 2008-05-27 Tai-Her Yang Split serial-parallel hybrid dual-power drive system
EP1845055B1 (en) * 2005-01-31 2013-03-06 Sumitomo(Shi) Construction Machinery Manufacturing Working machine of lifting magnet specifications
JP2006262553A (ja) * 2005-03-15 2006-09-28 Toyota Motor Corp 駆動装置およびこれを搭載する車両
JP4222349B2 (ja) * 2005-08-25 2009-02-12 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
DE102005044181A1 (de) * 2005-09-15 2007-04-19 Deere & Company, Moline Antriebssystem für ein Fahrzeug und ein landwirtschaftliches Nutzfahrzeug
DE102005044180A1 (de) * 2005-09-15 2007-09-06 Deere & Company, Moline Antriebssystem für ein landwirtschaftliches oder industrielles Nutzfahrzeug und Verfahren zum Betreiben eines Antriebssystems
JP4337797B2 (ja) * 2005-09-29 2009-09-30 トヨタ自動車株式会社 電力制御装置および電動車両
DE102005062529B4 (de) 2005-12-16 2007-09-20 Hüttlin, Herbert, Dr. h.c. Schwenkkolbenmaschine
WO2007102762A1 (en) * 2006-03-09 2007-09-13 Volvo Technology Corporation Hybrid powertrain
US7537534B2 (en) * 2006-05-15 2009-05-26 Ford Global Technologies, Llc Hybrid electric drive system for a motor vehicle
JP4230493B2 (ja) * 2006-05-24 2009-02-25 日立建機株式会社 電気駆動ダンプトラックの駆動システム
JP4440232B2 (ja) * 2006-06-06 2010-03-24 日立建機株式会社 電気駆動ダンプトラックの駆動システム
JP4972377B2 (ja) * 2006-10-23 2012-07-11 日立オートモティブシステムズ株式会社 電動ブレーキ制御装置、及び電動ブレーキ装置
DE102007055837B4 (de) * 2007-03-07 2011-04-28 Denso Corporation, Kariya-City Last-Ansteuerverfahren
US7971666B2 (en) * 2007-06-20 2011-07-05 Ford Global Technologies, Llc System and method of extending regenerative braking in a hybrid electric vehicle
US7977896B2 (en) * 2007-11-01 2011-07-12 GM Global Technology Operations LLC Method of determining torque limit with motor torque and battery power constraints
GB2454888B (en) * 2007-11-22 2012-06-06 Land Rover Uk Ltd Hybrid electric motor vehicles
GB2454891B (en) * 2007-11-22 2012-05-02 Ford Global Tech Llc Hybrid electric motor vehicles
US8596390B2 (en) * 2007-12-05 2013-12-03 Ford Global Technologies, Llc Torque control for hybrid electric vehicle speed control operation
WO2009082808A1 (en) * 2007-12-28 2009-07-09 Clean Current Power Systems Incorporated Hybrid electric power system with distributed segmented generator/motor
WO2010003276A1 (zh) * 2008-07-11 2010-01-14 桂林吉星电子等平衡动力有限公司 油电混合动力车的四轮驱动动力结构及其运行控制方法
EP2161821B1 (en) * 2008-09-03 2020-06-17 General Electric Company Magnetically geared generator
GB2463640B (en) * 2008-09-10 2010-09-15 Lotus Car Gas turbine hybrid vehicle
CN101841206A (zh) * 2009-03-19 2010-09-22 鸿富锦精密工业(深圳)有限公司 能量回收机构
US8955625B2 (en) * 2009-09-11 2015-02-17 ALTe Technologies, Inc. Stackable motor
JP2012210903A (ja) 2011-03-31 2012-11-01 Toyota Central R&D Labs Inc 動力伝達装置
KR101305260B1 (ko) 2011-12-23 2013-09-06 대동공업주식회사 회생제동력 배분 제어 기능을 갖는 전기구동식 다목적 운반차량 및 그 회생제동력 배분 제어방법
DE102012203535A1 (de) * 2012-03-06 2013-09-12 Bayerische Motoren Werke Aktiengesellschaft Tastenloser Fahrzeugschlüssel mit Gestikerkennung
WO2013145333A1 (en) * 2012-03-30 2013-10-03 Honda Motor Co., Ltd. Internal combustion engine control apparatus and internal combustion engine control method
DE102012106740A1 (de) 2012-07-25 2014-01-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine für ein Hybrid- oder Elektrofahrzeug
US9399455B2 (en) * 2012-12-11 2016-07-26 Nissan Motor Co., Ltd. Device for controlling distribution force in a four-wheel drive vehicle
MY181431A (en) * 2013-03-08 2020-12-21 Honda Motor Co Ltd Generator motor unit, power output engine, and vehicle
DE102013103305A1 (de) * 2013-04-03 2014-10-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridfahrzeug mit Verbrennungsmotor und Elektromaschine
KR101558359B1 (ko) * 2013-12-18 2015-10-08 현대자동차 주식회사 하이브리드 차량의 토크 모니터링 방법
US9579982B2 (en) * 2014-04-16 2017-02-28 Tbk Co., Ltd. Resonant motor system
US9199637B1 (en) * 2014-05-19 2015-12-01 GM Global Technology Operations LLC Engine autostop control system and method for hybrid powertrain
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
JP6588406B2 (ja) * 2016-08-12 2019-10-09 トヨタ自動車株式会社 ハイブリッド自動車
CN106347133B (zh) * 2016-10-14 2018-11-16 清华大学 一种四轮驱动的增程式电动汽车能效分层协调优化控制方法
DE102017207834A1 (de) * 2017-05-09 2018-11-15 Bayerische Motoren Werke Aktiengesellschaft Antriebseinheit für ein Elektrofahrzeug sowie Kraftfahrzeug
CN111655522B (zh) 2017-12-15 2024-06-11 瑞维安知识产权控股有限责任公司 电动车辆驱动单元
CN108790754A (zh) * 2018-03-28 2018-11-13 三门峡速达交通节能科技股份有限公司 电动汽车用电子电力控制动力系统一体式结构
JP7257784B2 (ja) * 2018-12-21 2023-04-14 オークマ株式会社 電力算出装置
CN111654156B (zh) * 2020-05-09 2021-08-31 江苏神驰机电有限公司 一种新型发电机用多连杆调速机构
KR20220005160A (ko) * 2020-07-06 2022-01-13 현대자동차주식회사 사륜 구동 전동화 차량의 회생제동 제어 장치
US20220379872A1 (en) * 2021-05-26 2022-12-01 Ford Global Technologies, Llc Electrified vehicle control with distribution of powertrain torque to secondary axle
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145702A (en) * 1980-03-12 1981-11-12 Daihatsu Motor Co Ltd Controller for hybrid vehicle
JPS5797301A (en) * 1980-12-08 1982-06-17 Meidensha Electric Mfg Co Ltd Hybrid vehicle
JPS58130704A (ja) * 1982-01-20 1983-08-04 ゲオルグ・ヒ−ンツ 電磁式トルク−回転数変換装置
JPS6338031A (ja) * 1986-08-04 1988-02-18 Mazda Motor Corp 自動車の補助駆動装置
JPH06144020A (ja) * 1992-11-04 1994-05-24 Aqueous Res:Kk ハイブリッド型車両

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1491492A (en) * 1916-03-16 1924-04-22 Entz Motor Patents Corp Transmission mechanism
GB1193965A (en) * 1966-06-14 1970-06-03 Nat Res Dev Torque Converter
US3623568A (en) * 1968-05-31 1971-11-30 Nissan Motor Electromechanical power train system for an automotive vehicle
US3683249A (en) * 1969-09-27 1972-08-08 Fukuo Shibata Electric machine arrangement combining electromagnetic coupling with electric rotating machine
CA969600A (en) * 1971-05-28 1975-06-17 Fukuo Shibata Electromagnetic coupling and electric rotating machine arrangement control system
US3699351A (en) * 1971-08-02 1972-10-17 Gen Motors Corp Bi-modal vehicles with drive means for external or self-propulsion
AU5840173A (en) * 1972-07-25 1975-01-30 Stephen John Elliott Dual mode propulsion system
JPS53571B2 (ja) * 1972-09-04 1978-01-10
JPS5122132A (ja) * 1974-08-19 1976-02-21 Matsushita Electric Ind Co Ltd Nenshoanzensochi
JPS53133814A (en) * 1977-04-25 1978-11-22 Kawasaki Heavy Ind Ltd Propulsion apparatus for electric driven car
US4282947A (en) * 1978-05-11 1981-08-11 Vadetec Corporation Hybrid vehicular power system and method
DE2823225A1 (de) * 1978-05-27 1979-11-29 Erhard Lauster Entwicklungen G Hybridantriebsvorrichtung fuer kraftfahrzeuge
US4351405A (en) * 1978-10-12 1982-09-28 Hybricon Inc. Hybrid car with electric and heat engine
JPS55103100A (en) * 1979-01-30 1980-08-06 Fukuo Shibata Motive power transmission device employing electromagnetic joint
JPS55127221A (en) * 1979-03-20 1980-10-01 Daihatsu Motor Co Ltd Driving system of vehicle
DE2928770A1 (de) * 1979-07-17 1981-01-29 Audi Nsu Auto Union Ag Elektrischer drehmomentwandler, insbesondere fuer kraftfahrzeuge
DE3009503A1 (de) * 1980-03-12 1981-09-17 Maschf Augsburg Nuernberg Ag Hybridantriebsvorrichtung fuer nutzfahrzeuge
DE3025756A1 (de) * 1980-07-08 1982-01-28 Hienz Georg Elektromagnetischer drehmoment-drehzahl-wandler, insbesondere fuer hybridfahrzeuge
US4319140A (en) * 1980-07-28 1982-03-09 Paschke Ralph W Demand operated power management drive system
JPH0586143B2 (ja) * 1980-09-02 1993-12-10 Piitaa Noo Jefuriizu
DE3041867A1 (de) * 1980-11-06 1982-06-03 Rhein Westfael Elect Werk Ag Kraftfahrzeug, insbesondere personenkraftfahrzeug
US4491494A (en) * 1983-05-31 1985-01-01 Hallmark Cards, Inc. Decorating methods
NL8702588A (nl) * 1987-10-30 1989-05-16 S B Systems B V Dubbel-roterende electriese motor/generator.
FR2630868A1 (fr) * 1988-04-28 1989-11-03 Sibeud Jean Paul Dispositif electrique intercale entre un arbre moteur et un arbre recepteur notamment pour la transmission d'un vehicule lourd
US5064013A (en) * 1988-09-02 1991-11-12 Erwin Lenz Hydraulically driven electrically powered vehicle with energy recapture
US5465806A (en) * 1989-03-31 1995-11-14 Kabushiki Kaisha Shikoku Sogo Kenkyujo Electric vehicle
US5120282A (en) * 1990-10-16 1992-06-09 Fjaellstroem Bengt Vehicle transmission system
IT1246063B (it) * 1991-04-23 1994-11-07 Iveco Fiat Gruppo propulsore per un autoveicolo provvisto di mezzi motori azionati per via termica e di mezzi motori azionati per via elettrica
US5301764A (en) * 1992-04-13 1994-04-12 Gardner Conrad O Hybrid motor vehicle having an electric motor and utilizing an internal combustion engine for fast charge during cruise mode off condition
DE4217668C1 (de) * 1992-05-28 1993-05-06 Daimler Benz Ag Verfahren zur Steuerung eines ein Fahrzeug antreibenden Hybridantriebes
DE4396170B4 (de) * 1992-11-24 2006-02-09 Kabushiki Kaisha Komatsu Seisakusho Vierradantriebssystem für Kipplastwagen
US5264764A (en) * 1992-12-21 1993-11-23 Ford Motor Company Method for controlling the operation of a range extender for a hybrid electric vehicle
JPH06225403A (ja) * 1993-01-25 1994-08-12 Toyota Motor Corp ハイブリッド型電気自動車の制御装置
GB9309689D0 (en) * 1993-05-11 1993-06-23 Flack Roy E Electromagnetic transimssion systems,motors and generators
US5311417A (en) * 1993-08-23 1994-05-10 Heh Mao Lin Illuminative sucker & decorative string thereof
JP3094745B2 (ja) * 1993-09-24 2000-10-03 トヨタ自動車株式会社 ハイブリッド車の発電制御装置
JP3055749B2 (ja) * 1993-10-21 2000-06-26 日野自動車株式会社 自動車の制動および補助動力装置
DE69616842T2 (de) * 1995-01-31 2002-06-20 Denso Corp System und Verfahren zum Antrieb eines Elektrofahrzeugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145702A (en) * 1980-03-12 1981-11-12 Daihatsu Motor Co Ltd Controller for hybrid vehicle
JPS5797301A (en) * 1980-12-08 1982-06-17 Meidensha Electric Mfg Co Ltd Hybrid vehicle
JPS58130704A (ja) * 1982-01-20 1983-08-04 ゲオルグ・ヒ−ンツ 電磁式トルク−回転数変換装置
JPS6338031A (ja) * 1986-08-04 1988-02-18 Mazda Motor Corp 自動車の補助駆動装置
JPH06144020A (ja) * 1992-11-04 1994-05-24 Aqueous Res:Kk ハイブリッド型車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0775607A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527222A (ja) * 2007-05-07 2010-08-05 ゼネラル・エレクトリック・カンパニイ 推進システムを動作させる方法
CN109649148A (zh) * 2019-01-16 2019-04-19 无锡商业职业技术学院 一种能量溢出工况下单电机回收的混合动力传动系统
CN109649148B (zh) * 2019-01-16 2024-02-09 无锡商业职业技术学院 一种能量溢出工况下单电机回收的混合动力传动系统

Also Published As

Publication number Publication date
EP0743213A3 (en) 1998-08-19
EP0743209A3 (en) 1998-02-25
EP0743216A3 (en) 1998-05-13
EP0743216B1 (en) 2001-08-29
EP0743213A2 (en) 1996-11-20
EP0743214A3 (en) 1998-04-15
EP0743209A2 (en) 1996-11-20
EP0743214A2 (en) 1996-11-20
CA2195434C (en) 1999-04-06
DE69635942T2 (de) 2006-12-07
EP0743213B1 (en) 2001-10-10
KR970704590A (ko) 1997-09-06
EP0743208B1 (en) 2000-07-19
DE69635942D1 (de) 2006-05-11
EP0743216A2 (en) 1996-11-20
US5988307A (en) 1999-11-23
KR100229340B1 (ko) 1999-11-01
EP0743208A3 (en) 1998-03-04
EP0743214B1 (en) 2001-10-10
CA2195434A1 (en) 1996-11-21
EP0743209B1 (en) 2001-08-29
DE69635942T8 (de) 2007-04-26
EP0743208A2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
WO1996036507A1 (fr) Systeme de transmission, vehicule a quatre roues motrices employant ce systeme, procede de transmission de puissance et procede d&#39;entrainement de quatre roues
US9789756B2 (en) Hybrid vehicle with power boost
JP3003573B2 (ja) 動力出力装置
EP0775607B1 (en) Hybrid transmission system, four-wheel drive vehicle using the same, power transmitting method, and four-wheel driving method
US20110046831A1 (en) Electrically powered motorized vehicle with continuously variable transmission and combined hybrid system
KR101963945B1 (ko) 차량 및 차량 제어 방법
US20100108417A1 (en) Parallel power supplies for hev applications
JPH0947093A (ja) 動力伝達装置及びその制御方法
JP2004135471A (ja) 車両の制御装置
JPH10268946A (ja) 動力出力装置およびその制御方法
US20130221745A1 (en) Electric vehicle
US20090183933A1 (en) All wheel drive electrically-variable transmission
US20120018236A1 (en) Electric powertrain for off-highway trucks
JP2022002430A (ja) 車両用駆動システム
JP2004076687A (ja) 排気/電動過給式ハイブリッド車
JPH09175203A (ja) 動力伝達装置およびこれを用いた四輪駆動車両並びに動力伝達方法および四輪駆動方法
GB2420765A (en) Battery driven vehicle
CN102874095B (zh) 一种增程式电动汽车动力系统
JPH10150702A (ja) 動力出力装置
JP2005033899A (ja) 動力出力装置およびこれを備える自動車
WO2021046604A1 (en) Managing capacitive charge storage or delivery for a hybrid power system
US11577612B2 (en) System for adjusting regenerative torque according to state of charge of multiple batteries
Patra A Novel Design on Underwater Communication Using Afish Algorithm
JPH10150703A (ja) 駆動装置および動力出力装置
Patra A Novel Power Train System Of Hybrid Electric Vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190530.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2195434

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019970700365

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996915188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08765367

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996915188

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970700365

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970700365

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996915188

Country of ref document: EP