WO1996023831A1 - Procede pour produire des polycarbonates - Google Patents

Procede pour produire des polycarbonates Download PDF

Info

Publication number
WO1996023831A1
WO1996023831A1 PCT/JP1996/000220 JP9600220W WO9623831A1 WO 1996023831 A1 WO1996023831 A1 WO 1996023831A1 JP 9600220 W JP9600220 W JP 9600220W WO 9623831 A1 WO9623831 A1 WO 9623831A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
solvent
oligomer
gas
polymerization
Prior art date
Application number
PCT/JP1996/000220
Other languages
English (en)
French (fr)
Inventor
Akihiro Shishikura
Masahiro Takahashi
Seiji Takahashi
Noriyuki Kunishi
Hiroaki Motegi
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP01728395A external-priority patent/JP3565935B2/ja
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Priority to EP96901527A priority Critical patent/EP0807656A4/en
Priority to US08/875,194 priority patent/US5990262A/en
Publication of WO1996023831A1 publication Critical patent/WO1996023831A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols

Definitions

  • the present invention relates to a method for producing polycarbonate. Background technology
  • transesterification method As a conventional method for industrially producing polycarbonate, there is a transesterification method in which a dihydroxy compound and a carbonic acid diesterified ⁇ are used as raw materials, and these are subjected to a transesterification reaction to obtain a polyester.
  • the transesterification method is roughly classified into a melt transesterification method and a solid phase polymerization method, and these will be sequentially described below.
  • melt transesterification method the melting point and melt viscosity of the polycarbonate polymer increase with the progress of the polymerization reaction.Therefore, a reaction temperature close to 300 ° C is finally required, and the by-product phenol is degassed. The removal requires surface renewal by stirring as much as possible and a high vacuum of less than I mmHg. Therefore, in this melt-ester exchange method, a device that enables high temperature, high vacuum and strong stirring is indispensable, and the equipment cost is inevitably increased.
  • This solid-phase polymerization method uses bisphenol A and diphenyl carbonate as an example. This is a method in which a transesterification reaction is performed in a molten state to produce an oligomer, the oligomer is crystallized by solvent treatment, processing, or the like, and the crystallized oligomer is subjected to solid-phase polymerization to produce a high-molecular-weight polycarbonate.
  • the reaction temperature can be set to a temperature equal to or lower than the melting point of the polycarbonate (for example, 240 C or lower). It has no coloring problem and is superior in quality compared to polycarbonate obtained by the melt transesterification method.
  • this solid-state polymerization method requires at least three steps of an oligomerization step, a crystallization step, and a solid-state polymerization step, which not only complicates the production operation but also increases the equipment cost and production cost. Inevitable.
  • solid-phase polymerization to obtain high-molecular-weight polyponates from oligomers can be performed at low temperatures, but the transesterification reaction depends on, and the higher the temperature, the higher the reaction, so the solid-phase polymerization at low temperatures It is necessary to lengthen the reaction time. For example, in order to obtain a high-molecular-weight polycarbonate from an oligomer by a solid-phase polymerization step, a reaction time that is 1.5 to 10 times that of the melt transesterification method is required.
  • an object of the present invention is to eliminate the drawbacks of the conventional methods for producing polycarbonate, particularly, the solid-state polymerization method, and to produce high-quality, high-molecular-weight polycarbonate efficiently in a short time and at low cost. It is an object of the present invention to provide a method for producing polycarbonate that can be used. Disclosure of the invention
  • the present inventors have found that (1) a special crystallization treatment of an oligomer is achieved by solid-phase polymerization of a polycarbonate carbonate in an atmosphere containing Mi solvent gas. A high-molecular-weight polycarbonate can be directly obtained without performing this step. (2) Not only can the reaction be performed at lower temperatures than the conventional melt transesterification method, but also the reaction time is shorter than the conventional melt transesterification method (Thus, much longer Sir and time than conventional solid-state polymerization method) (3) The high molecular weight polycarbonate obtained has a quality comparable to that obtained by conventional solid-state polymerization method I found something.
  • the present inventors have found that, by performing solid-phase polymerization of a polycarbonate oligomer under the flow of a poor solvent gas, (1) a high-molecular-weight polycarbonate can be directly obtained without performing a special crystallization treatment of the oligomer; (2) Not only can the reaction be performed at a lower temperature than the melt transesterification method of ⁇ , but also the reaction time can be shortened to be equal to or shorter than the reaction time of the conventional melt transesterification method. (3) It was found that the obtained high-molecular-weight polycarbonate had a quality comparable to that obtained by the solid-state polymerization method.
  • the present invention has been completed based on the above findings, and the gist of the method for producing a polycarbonate of the present invention is to carry out solid-state polymerization of a polyolefin polymer in an atmosphere containing a swelling solvent gas. (Hereinafter, this method is referred to as method I.)
  • Another aspect of the present invention is a method for producing a polycarbonate, which comprises subjecting a polycarbonate oligomer to solid-phase polymerization in the flow of a poor solvent gas (hereinafter, this method is referred to as method II).
  • FIG. 1 is a graph showing an example of the swelling effect of a swelling solvent in method I of the present invention.
  • Method I as a starting oligomer, a polycarbonate oligomer obtained by a melt-ester exchange method or an oligomer obtained by an interfacial polymerization method using a dihydroxy compound and phosgene is used.
  • the raw material is not particularly limited, and various materials used in the production of polyphenol by ordinary transesterification are used.
  • a combination of a dihydroxy compound and a carbonic acid diester For example, (i) a combination of a dihydroxy compound and a carbonic acid diester, (ii) a combination of a diester of a dihydroxy compound and a carbonic acid diester, (iii) a combination of a dicarbonate of a dihydroxy compound and a carbonic acid diester, and (iv) a dihydroxy compound. (Self-condensation), (V) Monocarbonate of dihydroxy compound
  • a combination of the dihydroxylated ⁇ of (i) and the carbonic acid diester is preferably used.
  • the dihydroxylation ⁇ / preferably used in the transesterification reaction includes, for example, an aromatic dihydroxy compound and an aliphatic dihydroxylation ⁇ ), and is at least one type of compound selected from these.
  • Aromatic dihydroxylation ⁇ / has the general formula (I)
  • R is a halogen atom (eg, chlorine, bromine, fluorine, iodine) or an alkyl group having 1 to 8 carbon atoms (eg, methyl, ethyl, propyl, n-butyl, isobutyl, amyl)
  • R is plural, they may be the same or different, and m is an integer of 0-4.
  • Z is a single bond, an alkylene group having 1 to 8 carbon atoms or an alkylidene group having 2 to 8 carbon atoms (for example, a methylene group, an ethylene group, a bromoylene group, a butylene group, a pentylene group, a hexylene group, a ethylidene group, Isopropylidene group, etc., cycloalkylene group having 5 to 15 carbon atoms or cycloalkylidene group having 5 to 15 carbon atoms (for example, cyclopentylene group, cyclohexylene group, cyclopentylidene group, cyclohexylidene group, etc.) ), or one S-, one SO- one S_ ⁇ 2 - one 0_ one CO- bond or general formula (II) or (I II)
  • aromatic dihydroxylated ⁇ / examples include, for example, bis (4-hydroxyphenyl) methane; bis (3-methyl-4-hydroxyphenyl) methane; bis (3-chloro-4-hydroxyphenyl) Methane; bis (3,5-dibutene 4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; 1,1-bis (2-t-butyl-4-hydroxy-3-) Methylphenyl) 1-phenyl-1,1-bis (3-fluoro-4-hydroxy-13-methylphenyl) ethane; 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A: BPA); 2 2,2-bis (3-methyl-1-hydroxyphenyl) propane; 2,2-bis (2-methyl-4-hydroxyphenyl) propane; 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) Propane; 1,1-bis (2-t-butyl-4-hydroxy-5-methylphenyl) propane; 2,2-bis (3-bis
  • aromatic dihydroxy compound other than the general formula (I) examples include dihydroxybenzenes, halogen- and alkyl-substituted dihydroxybenzenes.
  • resorcin 3-methyl resorcin, 3-ethyl resorcin, 3-brovir resorcin, 3-butyl resorcin, 3-t-butyl resorcin, 3-phenyl resorcin, 3-phenyl resorcin, 3-cumyl resorcin; 2, 3, 4, 6-tetrafluororesorcin; 2, 3, 4, 6-tetrabromoresorcin; catechol, hydroquinone, 3-Methylhydroquinone, 3-ethylhydroquinone, 3-bromohydroquinone, 3-butylhydroquinone, 3-t-butylhydroquinone, 3-phenylhydroquinone, 3-cumylhydroquinone; 2,5-
  • aliphatic dihydroxylation ⁇ there are various kinds of aliphatic dihydroxylation ⁇ .
  • the dihydroxy compound which is a raw material of the polyolefin oligomer the above compounds are appropriately selected and used, and among them, bisphenol A which is an aromatic dihydroxy compound is particularly preferably used.
  • carbonate Jiariru compound is at least one compound selected from dialkyl carbonate compound or carbonate Arukiruari Le compounds.
  • the diaryl carbonate compound used is represented by the general formula (IV)
  • Ar 1 represents a residue obtained by removing two hydroxyl groups from the aromatic dihydroxy compound, and A 2 represents an aryl group.
  • the dialkyl carbonate compound has the general formula (VI)
  • R 1 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 4 to 7 carbon atoms.
  • alkyl aryl carbonate ⁇ is represented by the general formula (VIII)
  • the diaryl carbonate compounds include, for example, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, bisphenol Abisphenyl Luca carbonate and the like.
  • dialkyl carbonate compound examples include getyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, bisphenol A bismethyl carbonate and the like.
  • alkylaryl carbonate compound examples include methylphenyl carbonate, ethylphenyl carbonate, butylphenyl carbonate, cyclohexylphenylcarbonate, and bisphenol A methylphenyl carbonate.
  • the carbonic acid diester which is a raw material of the polycarbonate oligomer
  • the above compounds are appropriately selected and used, and among these, diphenyl carbonate is particularly preferable.
  • a diester of a dihydroxy compound, a dicarbonate of a dihydroxy compound, and a monocarbonate of dihydroxylated ⁇ are also used.
  • diesters of dihydroxylated ⁇ include bisphenol A diacetate, bisphenol A dibrobionate, bisphenol A dibutylate, and bisphenol A dibenzoate.
  • dicarbonate of the dihydroxy compound examples include bismethyl carbonate of bisphenol A, bisphenol carbonate of bisphenol A, bisphenyl carbonate of bisphenol A, and the like.
  • Examples of the monocarbonate of the dihydroxy compound include bisphenol A monomethyl carbonate, bisphenol A monoethyl carbonate, bisphenol A monopropyl carbonate, and bisphenol A monophenyl carbonate.
  • a branching agent may be used in the production of the oligomer.
  • branching agents include phloroglucin; trimellitic acid; 1,1,1-tris (4-hydroxyphenyl) ethane; 1- [1-methylphenyl-1- (4-hydroxyphenyl) ethyl] 1-4 [H, H, H, I-bis (4 "-hydroxyphenyl) ethyl] benzene; H, H, H, H, H , Tris (4-hydroxyphenyl) 1-1,3,5-Triisopropyl benzene And isatin bis (o-cresol).
  • the most important point in producing polycarbonate oligomers by the melt transesterification method is to prevent distilling of carbonic acid diester compounds having the next highest vapor pressure next to phenols by-produced by the transesterification reaction. Therefore, in preparing the raw material mixture, first, the raw materials dihydroxylated ⁇ and carbonic acid diesterified ⁇ are melted in the same or separately and supplied to the reactor, or the molten dihydroxy compound is mixed with the carbonic diester compound. A method of adding powder is employed.
  • the production of polycarbonate oligomer by the melt transesterification method is performed at a temperature of 100 to 300.
  • C the pressure is preferably 1 torr to 5 kg / cm 2 G.
  • the reasons are as follows. That is, if the reaction ⁇ is lower than 100 ° C, the transesterification reaction does not easily proceed, while 300 is lower. If the temperature is higher than C, the carbonic acid diester compound as a raw material may be distilled out of the reaction system together with phenols as by-products.
  • reaction pressure exceeds 5 kg / cm 2 G
  • phenols by-produced do not evaporate, and the reaction does not proceed because the reaction equilibrium does not shift.
  • reaction pressure is less than 1 Torr
  • the carbonic acid diester compound, which is a raw material, is distilled off, and the composition of the reaction system fluctuates.
  • the reaction is particularly preferably at 150 to 280 ° C, and the reaction pressure is particularly preferably at 10 Torr to 2 kg / cm 2 G.
  • the distillation of unreacted carbonic acid diester compound during the transesterification reaction is closely related to temperature and pressure (the higher the temperature and the higher the vacuum, the easier the distillation is). Therefore, in order to control the temperature and pressure conditions, it is necessary to calculate the degree of reaction progress from the distilling rate of by-product phenols and the viscosity of the reaction, and to perform feedback control on them. preferable. Also, when recovering the distillate phenols, it is possible to return the diester carbonate to the reactor by installing a packed tower or distillation column between the vessel and the condenser, thereby reducing the distillation of the diester carbonate. is there.
  • the reactor to be used may be any of known polymerization reactors.
  • a vertical reactor with a stirrer and a temperature-controlled reactor with an external heat exchanger or the like is suitable.
  • the reaction step may be performed in one step or may be performed by dividing into more steps.
  • the reactor can be used by connecting one or more reactors in series or in parallel.
  • the transesterification reaction may be either a batch or continuous method, or a method using a combination thereof, and a continuous method is preferred for obtaining a uniform oligomer.
  • a polymerization catalyst is not particularly required in the production of a polycarbonate oligomer by the transesterification method, but a transesterification catalyst generally used may be used if necessary.
  • transesterification dishes include, for example, alkali metal compounds (for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.), alkaline earth metal compounds, amines, Nitrogen-containing basic salts such as quaternary ammonium salts; Among these, a nitrogen-containing basic compound is particularly preferably used because it exhibits basicity and has characteristics that it does not relatively remain in the reaction system.
  • alkali metal compounds for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.
  • alkaline earth metal compounds for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.
  • amines alkaline earth metal compounds
  • Nitrogen-containing basic salts such as quaternary ammonium salts
  • examples of the nitrogen-containing basic compound include, for example, trimethylamine, triethylamine, tribroviramine, tributylamine, tripentylamine, trihexylamine, dimethylbenzylamine, etc. And aromatic tertiary amine compounds such as triphenylamine.
  • N N-dimethyl 4-amino pyridine, 4-getyl amino pyridine, 4-pyrrolidino pyridine, 4-amino pyridine, 2-amino pyridine, 2-hydroxy xy pyridine, 4-hydroxy pyridine, 2-methoxy pyridine , 4-methoxypyridine, imidazole, 2-methylimidazole, 4-methylimidazole, 2-dimethylaminoimidazole, 2-methoxyimidazole, 2-mercapto Examples include nitrogen-containing heterocyclic compounds such as imidazole, aminoquinoline, and diazabicyclooctane (DABCO).
  • DABCO diazabicyclooctane
  • tetramethylammonium hydroxide (Me 4 N ⁇ H)
  • tetraethylammonium hydroxide (Et 4 NOH)
  • tetrabutylammonium hydroxide (Bu 4 N ⁇ H)
  • trimethylbenzylammonium Ammonia hydroxides having an alkyl group such as hydroxide [C 6 H 5 CH 2 (Me) sNOH], an aryl group, an araryl group and the like can be mentioned.
  • tetramethylammonium Niu beam Polo hydride (Me 4 NBH 4), tetra- butyl ammonium Niu beam Polo hydride (Bu 4 NB H 4), tetra heptyl ammonium Niu Muhu enyl borate (Bu 4 NBP h 4), tetramethylammonium And basic salts such as dimethyltetraphenylporate (Me 4 NBP h 4 ).
  • trihexylamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, and dimethylaminoviridine are preferably used.
  • Examples of the boron compound include boric acid, trimethyl borate, triethyl borate, tributyl borate, trihebutyl borate, triphenyl borate, and trinaphthyl borate.
  • the amount of the catalyst is 5 x 1 0- 9 mo 1 Not Mitsurude, there is a risk that the catalyst effect is not expressed. If it exceeds 5 X 1 0- 2 mo 1, the physical properties of the polycarbonate which is the final product, in particular, heat resistance, may cause low under the hydrolysis resistance also leads to cost, beyond which There is no need to add it.
  • the above-mentioned melt transesterification method is carried out in the absence of a solvent.
  • an inert solvent of 1 to 150% by weight of the obtained polycarbonate may be used.
  • the inert solvent include aromatic compounds such as diphenyl ether, halogenated diphenyl ether, benzophenone, polyphenyl ether, dichlorobenzene, and methylnaphthalene; carbon dioxide; Nitrogen, gas such as nitrogen, Fluorohydrocarbons, alkanes such as ethane and propane, cyclohexanes, cycloalkanes such as tricyclo (5.2.1.10) decane, cyclooctane and cyclodecane, and alkenes such as ethene and propene are exemplified.
  • Polycarbonate oligomer produced by the melt transesterification method preferably has a viscosity average molecular weight of about 1,500 to about 30,000. Particularly preferred is from about 3,000 to about 30,000. When the molecular weight of the polycarbonate oligomer is low, the melting point is lowered, and it is necessary to lower the swelling solid-state polymerization temperature described later, and the reaction ⁇ J ⁇ decreases.
  • the terminal ratio is more preferably in the range of 1: 1.5 to 1.5: 1, and particularly preferably in the range of 1: 1 to: L.1: 1.
  • an oligomer having a phenyl carbonate terminal and an oligomer having less than a hydroxyl group is separately produced by an interfacial polymerization method, and an oligomer having a ratio of a phenyl carbonate terminal to a hydroxyl group terminal is adjusted. How to get,
  • the present inventors have found a novel method for producing a polycarbonate oligomer (sometimes referred to as blepolymer) by an interfacial polymerization method.
  • a dihydroxylated ⁇ 3 ⁇ 4J, monohydroxyaryl compound is used together with phosgene as a raw material for producing a polyolefin oligomer by a novel method.
  • the dihydroxy compound the aromatic dihydroxy compound and the aliphatic dihydroxy compound used in the production of the oligomer by the melt transesterification method can be used, but the aromatic dihydroxy compound is preferably used. Specific examples of these dihydroxylations have already been shown and are not illustrated here.
  • Monohydroxyaryl compounds include phenol, o-n-butylphenol; m-ri-butylphenol; p-n-butylphenol; o-isobutylphenol; m-isobutylphenol; p-isobutyl Phenol; o-t-butylphenol; m-t-butylphenol; p-t-butylphenol; o-n-pentylphenol; mn-pentylphenol; p-n-pentylphenol; o-n- Xylphenol; mn-hexylphenol; pn-hexylphenol; o-cyclohexylphenol; m-cyclohexylphenol; p-cyclohexylphenol; o-phenyl Phenol; m-phenylphenol; p-phenylphenol; o-nonylphenol; m-n-nonylphenol; p-n-nony
  • Pt-butylphenol P-cumylphenol, p-phenylphenol and the like are preferable.
  • n is an integer of 7330 (wherein, R 7 is a group having 1 to 7 carbon atoms.
  • An alkyl group, k is 1-3
  • the method for producing a polycarbonate oligomer according to the present method comprises the steps of preparing a chromate end-oligomer and the chromate form obtained in this step. Preparing the prepolymer for high molecular weight reaction by further reacting the terminal oligomer. Hereinafter, these steps will be sequentially described.
  • the chloroformate-terminated oligomer is produced from phosgene and an aromatic dihydroxy compound by a known interfacial polycondensation method. Specifically, an aromatic dihydroxy compound is dissolved in an aqueous solution of an alkali metal hydroxide, an aqueous alkali hydroxide solution of an aromatic dihydroxy compound is prepared, an organic solvent is added thereto, and the excess amount of phosgene is reduced. By blowing and reacting, a chloroformate-terminated oligomer can be obtained.
  • alkali metal hydroxide examples include sodium hydroxide, hydroxide hydroxide, lithium hydroxide, cesium hydroxide, and the like, and sodium hydroxide and potassium hydroxide are preferred.
  • halogen-based solvent As the organic solvent, a halogen-based solvent is used.
  • halogenated solvents include dichloromethane, trichloromethane, 1,1-dichloroethane, 1,1,1,1 Trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, chlorobenzene, dichlorobenzene, Fluorohydrocarbons and the like, of which dichloromethane is preferred.
  • Ar ⁇ Ar 2 an arylene group or a substituted arylene group (which may be the same or different), X: an alkylene group or a substituted alkylene group, ⁇ : average degree of polymerization; is there. ]
  • the chromate-formate-terminated oligomer of the general formula (X) is recovered as an organic solvent solution.
  • the prepolymer for high molecular weight reaction is mainly a polymer having a degree of polymerization of 5 to 30 and having a phenyl group and a hydroxyl group terminal for the transesterification reaction performed in the high molecular weight process, and a phenyl group terminal and a hydroxyl group terminal. Is preferably 30 to 70 mol% of the phenyl group terminal among all terminals. If it exceeds this range, it becomes impossible to increase the molecular weight. Ideally, the terminal of the phenyl group should be 40 to 60 mol%, especially 50 mo 1% or its vicinity.
  • a high molecular weight polymer having a degree of polymerization of 5 to 30 and a phenyl group terminal ratio of 30 to 70 mol% is used as described above using the chromate-form-terminated oligomer obtained in the above step (i).
  • the reaction is carried out by any one of the above methods.
  • the xyaryl compound is mixed with the liquid in the form of the end of the mouth of the black mouth, and the mixture is stirred with jg for 10 to 20 minutes, more preferably for 15 to 90 minutes.
  • the monohydroxy aryl form ⁇ was changed from 0.3 to 0.7 mo with respect to the l mol of the chromate formate group in the chloroformate terminal oligomer of the raw material measured by a silver nitrate titration method or the like.
  • the above phenyl group terminal ratio can be obtained.
  • the monohydroxyaryl compound is preferably mixed in the form of an aqueous alkali hydroxide solution.
  • concentration of the aqueous solution of alcohol hydroxide dissolving the monohydroxyaryl compound ⁇ / is preferably about 5 to 1 Owt%.
  • concentration of the monohydroxyaryl compound is 1.0 to 3.0 O with respect to the monohydroxyaryl compound ⁇ lmol. It is necessary to have mol alkali hydroxide present in the aqueous solution.
  • dihydroxylated ⁇ is mixed with the above reaction solution, and the reaction is similarly performed for 5 to 90 minutes, more preferably for 15 to 90 minutes while stirring. Let it.
  • the dihydroxylated ⁇ was converted to 2.3-16.7 mol
  • a phenyl group- and hydroxyl group-terminated polycarbonate oligomer can be obtained.
  • the dihydroxy compound is mixed in the form of an aqueous alkali hydroxide solution.
  • the concentration of the hydroxide solution for dissolving the dihydroxylated ⁇ is preferably about 5 to 10 wt%.
  • an aqueous solution of hydroxide capable of neutralizing the dihydroxy compound is added to an aqueous solution. Must be present inside.
  • a known transesterification catalyst such as tetraalkylamine can be added.
  • a monohydric acid-containing xylylated compound ⁇ and a dihydroxy compound are simultaneously reacted to form a phenyl group and a hydroxyl group-terminated polymer from the chromate-formated terminal oligomer.
  • aqueous solution of an aqueous solution of monohydroxyalkylated ⁇ and an aqueous solution of an aqueous solution of a dihydroxy compound simultaneously mixed with the raw material chloroformate-terminated oligomer reaction solution, For 10 to 120 minutes, more preferably for about 15 to 90 minutes The reaction may be performed with stirring.
  • a known transesterification catalyst such as tetraalkylamine can also be added.
  • the polymer for a high molecular weight reaction produced by the method (a) or (b) is represented by the formula (XI), (XII) and (XIII).
  • Ar ⁇ Ar 2 , Ar 3 arylene group or substituted arylene group (may be the same or different), X: alkylene group or substituted alkylene group, n: average degree of polymerization, in the range of 5 to 30 . ]
  • the above blur polymer is obtained as a halogen-based solvent solution.
  • the prevolimer solution is washed with an alkaline aqueous solution, an acidic aqueous solution and pure water to remove the electrolyte components, because if heated for increasing the molecular weight in an unwashed state, the quality deteriorates significantly. Need to be kept.
  • the method of producing a novel polycarbonate oligomer (Prevolima-1) by the interfacial polymerization method found by the present inventors has been described above.
  • the oligomer (Prevolima-1) obtained by this novel method is described in Method I below.
  • the swelling solid-state polymerization method described above the swelling solid-state polymerization method described later in Method II or a conventionally known solid-state polymerization under an inert gas stream may be used to obtain a polycarbonate.
  • the polycarbonate oligomer obtained by the above-mentioned melt transesterification method or interfacial polymerization method is preferably flaked and then subjected to swelling solid-state polymerization in the same manner as in the solid-state polymerization method I). Therefore, this flake formation will be described below.
  • Flaking of the polycarbonate oligomer can be performed by a known method. For example, tumbling granulation, extrusion granulation, compression granulation, melt granulation, spray drying granulation, fluidized bed granulation, crush granulation, stirring granulation,? Liquid phase granulation, vacuum freeze granulation, etc. can be used, and flakes can be formed by combining these.
  • the shape of the flake is not particularly limited, but is preferably a pellet, a bead, a granule, or a powder from the viewpoint of operability. Further, a solid or porous body of particles is preferred, and when an oligomer is produced by a melt transesterification reaction, a method of forming and coagulating fine particles is used alone or in combination with the above method. Is preferred. In addition, an agitation granulation method in which the oligomer is dissolved in a solvent used in the swelling solid-phase polymerization at a low temperature, and a flake is formed while mixing a poor solvent for polyforce-ponate therein is also effective.
  • the specific surface area of the particles is preferably 0.10 to 30 m 2 / g or more. If the specific surface area exceeds 30 m 2 / g, the bulk density will decrease, and problems such as the need to expand the effectiveness of the equipment will arise.
  • the oligomer is once dissolved (or solvent-substituted) in the swelling solvent (the type will be described later) used in the next step, and the pellet solution obtained by coagulating the precipitated fine particles by cooling and shaping the solution at 30 ° C is used. It has been confirmed that spherical particles in which precipitated fine particles are aggregated by cooling in water whose temperature is controlled to C or higher are also suitable.
  • the particle size of the flakes affects the operability and the flow rate of the swelling solvent gas in the swelling solid phase polymerization
  • the particle size is preferably in the range of 10 ⁇ m to 10 cm, particularly 10 ⁇ m. Preferably, it is in the range of 0 micron to 1 cm. If the particle size is too small, fine powder is entrained along with the flow of the swelling solvent gas, which may cause clogging of valves and pipes and adverse effects on the solvent recovery process. Also, when the particle size is increased, the diffusion of the solvent is increased, and the effect is prolonged because the I-effect cannot be obtained.
  • Flaking conditions vary depending on the oligomer molecular weight, the granulation method, and in the case of a solvent system, the type and boiling point of the solvent used. It is about ⁇ ⁇ 20 ° C or more.
  • the flakes obtained can be used for swelling solid-state polymerization without special drying treatment.
  • the swelled solid-state polymerization is a core of the method I, and comprises solid-state polymerization of the polycarbonate oligomer in an atmosphere containing a solvent gas.
  • This swelled solid-state polymerization is a by-product.
  • degassing or extracting and removing low-molecular compounds such as phenols
  • degassing or extracting and removing low-molecular compounds from swollen macromolecules oligomers and their higher-order polymers
  • M solvent gas is regarded as a point.
  • the absorption of the swelling solvent improves the mobility of the carbonate molecular chains, dramatically increasing the reaction rate (the chemical reaction rate-limiting is significantly improved),
  • the removal of phenols with high efficiency also greatly improves the reaction rate.
  • the reaction time can be greatly reduced as compared with the conventional solid phase polymerization method as well as the melt transesterification method.
  • Japanese Patent Application Laid-Open No. 1-158033 discloses a conventional solid-state polymerization method.
  • an inert gas such as nitrogen, argon, helium, or carbon dioxide is supplied to a reactor. And that lower hydrocarbon gas may be introduced.
  • the swelling solvent used in Method I is a solvent capable of bringing the polycarbonate oligomer and its higher polymer into a swollen state under the polymerization reaction conditions when the gas is gasified. Means medium.
  • the above-mentioned “swelled state” means a state in which the polycarbonate oligomer and its higher-order polymer have increased in terms of body weight or weight under the polymerization reaction conditions due to absorption of the swelling solvent.
  • sample A standard sample of poly-one-potate, that is, amorphous polycarbonate (viscosity average molecular weight 2200, crystallinity 0.5%) obtained by the interfacial polymerization method (glass Transition point 147 ⁇ : L48.C) was swelled into a 2 x 5 x 0.3 cm plate (hereinafter, this molded product is referred to as a "sample"), and this sample was subjected to the test solvent (vapor or vapor). Or gas).
  • test solvent vapor or vapor). Or gas
  • volume change of the sample was measured over time after charging into a C (atmospheric pressure condition) container
  • volume of the sample at a predetermined time after charging into the container was changed to the initial volume (before the charging) by the absorption of the solvent.
  • Volume (at room temperature) is measured to determine whether it has increased substantially beyond the heat-swollen state (including the decrease in specific volume due to crystallization).
  • Polycarbonate and its higher order weight are solvents that can be swollen under polymerization conditions.”
  • Fig. 1 shows the measurement results when toluene and p-xylene were used as the solvent and the measurement results when nitrogen gas was used instead of the solvent.
  • the volume of the sample after 1 to 3 hours is approximately 110 to 130% of the initial volume (at room temperature) in the case of toluene and p-xylene, and when nitrogen gas is used. Since the volume of the sample at the same time was 107% of the initial value of ⁇ , the toluene and p-xylene were in a state of swelling under the polymerization reaction conditions of the polycarbonate oligomer and its higher-order polymer as described in Method I. Solvent that can be converted into
  • the solvent whose crystallinity increases by more than 1% / hr due to absorption of the balanced medium is also used.
  • solvent capable of bringing a polycarbonate oligomer and its higher-order polymer into the M state under polymerization reaction conditions as used in the present invention.
  • the I solvent can form the above-mentioned “swelled state”, has a boiling point at which it completely vaporizes under the polymerization reaction conditions, or has a corresponding vaporization JBE (50 mmHg or more, preferably 200 mmHg or more), and has a viscosity average.
  • pellet-shaped amorphous polycarbonate is a standard sample of polycarbonate, that is, having a viscosity average molecular weight of 22000 and a crystallinity of 0.5% obtained by an interfacial polymerization method.
  • Amorphous polycarbonate glass transition point: 147 to 148.C means a pellet of 2.5 mm in diameter and 3.5 mm in length.
  • solvent capable of dissolving the pellet-shaped amorphous polycarbonate in a closed system at a temperature of 135 to 1.5% by weight under a temperature condition of 135 ° C.” means, together with the pellet-shaped amorphous polycarbonate.
  • the above-mentioned amorphous polycarbonate is added to the supernatant liquid by 1.5.
  • the solubility is determined by extracting the supernatant from a pre-heated glass tube or metal tube while controlling the pressure, and drying the solvent under ME at approximately 110 to 200 ° C depending on the boiling point. After drying, calculate from the change in weight.
  • Examples of the swelling solvent include, for example, an aromatic solvent having a solubility parameter of 4 to 20 (cal / cm 3 ) 1/2 , preferably 7 to: L4 (cal / cm 3 ) 1/2. ⁇ ⁇ applies.
  • Examples of aromatization include benzene, toluene, xylene, ethylbenzene, dimethylbenzene, bromobenzene, dibuguchi benzene, butylbenzene, methylstyrene, izobuchi pyrbenzene, isobutylbenzene, cymene, tetramethylbenzene, terphenyl, etc. And hydrogen aromatics having 6 to 20 carbon atoms.
  • oxygenated ⁇ J examples include ethers such as tetrahydrofuran, dioxane, anisol, phenetol, and furan; ketones such as methylethyl ketone, methyl isobutyl ketone, methyl isopropyl ketone, and pennonone.
  • the solvent it is particularly preferable to use an aromatic hydrocarbon having 6 to 20 carbon atoms. These solvents may be used for insects or a mixture of two or more.
  • a gas and / or an inert gas of a poor solvent for the polycarbonate oligomer or its higher-order polymer can be added to the atmosphere containing the swelling solvent described above.
  • the poor solvent needs to have a solubility of the polycarbonate oligomer or its higher-order polymer in the solvent of 0.1% by weight or less under the conditions of the polymerization reaction and not participate in the polymerization reaction.
  • Examples of such poor solvents include cyclic hydrocarbons having 5 to 20 carbon atoms, more preferably 5 to 10 carbon atoms, and linear or branched chain hydrocarbons having 4 to 18 carbon atoms and more preferably 6 to 12 carbon atoms.
  • the poor solvent may be used alone or as a mixture of two or more.
  • the inert gas a hydrocarbon having 1 to 3 carbon atoms such as helium, argon, nitrogen, carbon dioxide, methane, ethane, blue bread, ethylene and propylene is used.
  • the ratio between the swelling solvent and the poor solvent is preferably 1/99 to: LOO / 0 (wt / wt), 20/80 ⁇ : LOOZO (wt / Vt) is particularly preferable.
  • the ratio of the swelling solvent gas to the inert gas Is preferably 199 to 100/0 (vol / vol), and 5/95 to: L00 / Q
  • the boiling point of both the swelling solvent and the poor solvent exceeds 250 ° C, it is difficult to remove the residual solvent. Therefore, the boiling point of both the swelling solvent and the poor solvent is preferably 25 CTC or less.
  • zk group a carboxyl group, an amino group, an amide group, Shiano group, relatively solvent having a hydrogen bonding functional group having high transesterification at a polymerization temperature of greater than 1 5 O e C such as nitro a sulfone group Should not be used because it may contribute to the reaction. Further, use of a halogen-based solvent is not preferable from an environmental viewpoint.
  • This swelling solid-state polymerization is preferably carried out at a temperature of 100 ° C. to the melting point of the oligomer and a pressure of 10 Torr to 5 kg / cm 2 G. Reaction temperature 100. If it is too low, the transesterification reaction will not proceed if it is too low, while if the reaction is higher than the melting point of oligomer, it will be difficult to maintain the swelled solid phase, causing phenomena such as fusion between the particles, resulting in remarkable driving operability. descend. Is 180-290. C is preferred, 150-220. C is particularly preferred, and the reaction pressure is particularly preferably atmospheric pressure.
  • the above-mentioned condition means ⁇ of the oligomer measured at the inlet of the reaction vessel
  • the above-mentioned reaction pressure condition means the pressure measured at the gas outlet of the reaction vessel.
  • the one added and left at the time of production of Origami may be used as it is.
  • terminal terminator examples include: o-n-butylphenol; m-n-butylphenol; p-n-butylphenol; o-isobutylphenol; m-isobutylphenol; p-isobutylphenol; M-t-butylphenol; p-t-butylphenol; o-n-pentylphenol; m-n-pentylphenol; p-n-pentylphenol; o-n-hexylphenol; m-n-hexylphenol; p_n-hexylphenol; o-cyclohexylphenol; m-cyclohexylphenol; p —Cyclohexylphenol; o-phenylphenol; m-phenylphenol; p-phenylphenol; o-n-nonylphenol; mn-nonylphenol; p-n-nonylphenol; o-cumyl Phen
  • n is an integer of 7 to 30 (wherein, R 7 is a group having 1 to 7 carbon atoms.
  • An alkyl group, k is 1-3
  • Supply of the mixed gas of the solvent gas or the swollen solvent gas and the poor solvent gas may be performed by supplying the swollen solvent or the jra solvent and the poor solvent in a liquid state to the reactor and vaporizing the same in the reactor. Alternatively, it may be supplied to a vessel after being vaporized by heat exchange or the like in advance. Further, the supply of the mixed gas of the swelling solvent gas and the inert gas may be performed by supplying the swelling solvent and the inert gas to the reactor, and allowing the solvent to be removed in the vessel. May be mixed with an inert gas and supplied to the reactor.
  • the flow direction of the swelling solvent gas or the mixed gas of the swelling solvent gas and the carrier gas and / or the inert gas flows vertically upward, or downward, or horizontally if the atmosphere gas of the oligomer can be replaced. You may let it.
  • the number of gas supply ports may be one or more, and it is also possible to combine the flow directions and make the flow area 1 mm.
  • the supply amount of the mixed gas of the solvent gas or the swollen solvent gas and the poor solvent gas and / or the inert gas is 0.001 to 500 cm / at the linear flow velocity of the gas in the reactor according to the air condition. sec, preferably 0.01 to 200 cm / sec. If the flow line J exceeds 500 cm / sec, even if the particle size of the oligomer to be solid-phase polymerized is reduced to 1 Ocm by flake formation, Since the polymer is in a fluidized state, fluidization occurs in a solid-state reactor or the like, and the plug flow cannot be maintained.
  • reactor used for such a reaction there is no particular limitation on the reactor used for such a reaction. From the conventional stirred tank type reactor, it is possible to use tumbler type, kiln type, paddle dryer type, screw conveyor type, vibrating type, fluidized bed type, solid type, moving type, etc. Yes, they can be used alone or in combination.
  • the steps of drying and pelletizing the polycarbonate having a high molecular weight can be carried out by the method described above and are not particularly limited.
  • additives such as a terminator and an antioxidant
  • the flakes can be directly sprayed with the additive powder or sprayed with a liquid before or after drying to absorb gas.
  • it can be mixed with an extruder during pelletization.
  • the terminal stopper those exemplified above are used.
  • antioxidants include tri (nonylphenyl) phosphite, 2-ethylhexydiphenyl phosphite, trimethyl phosphite, triethyl phosphite, tributyl phosphite, trioctyl phosphite, and the like.
  • Trialkyl phosphite Tricycloalkyl phosphite such as tricyclohexyl phosphite; triphenyl phosphite, tricresyl phosphite, tris (ethyl phenyl) phosphite, tris (butyl phenyl) phosphite Triaryl phosphites such as tris (nonylphenyl) phosphite and tris (hydroxyphenyl) phosphite; trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, trioctadecyl phosphate, distearyl pen Evening erythri Trialkyl phosphates such as tildiphosphate, tris (2-chloroethyl) phosphate, and tris (2,3-dichlorobutane)
  • the method II of the present invention comprises:
  • polycarbonate oligomer as a starting material in the method II, those obtained in the same manner as the polycarbonate oligomer used in the method I of the present invention described above can be used.
  • the polycarbonate oligomer preferably has a viscosity average molecular weight of about 1,500 to about 1,500, particularly preferably about 3,000 to about 10,000. . If the molecular weight of the polycarbonate oligomer is low, the melting point will decrease, and it will be necessary to lower the solid solvent solid-state polymerization temperature described below, and the reaction rate will decrease. In addition, when the molecular weight of the oligomer is low, if the reaction is reduced, the oligomer is wetted, the liquid content of the particles is increased, and the effect of using a poor solvent is less likely to appear. Therefore, it is necessary to use an oligomer having a melting point at least equal to the boiling point of the solvent. In order to increase the melting point of the oligomer, a treatment such as heat treatment or acetone treatment may be performed.
  • a treatment such as heat treatment or acetone treatment may be performed.
  • the reason is that if the terminal ratio is out of this range, the polish finally obtained after solid-phase polymerization This is because the attainable molecular weight of the carbonate is limited, and it becomes difficult to obtain a desired high molecular weight. It is particularly preferred that the terminal ratio is in the range of 1: 1.5 to 1.5: 1.
  • the polycarbonate oligomer is preferably flaked and then subjected to poor solvent solid-phase polymerization, as in the conventional solid-phase polymerization method. Flaking of the polycarbonate oligomer can be performed by a known method as in the method I.
  • tumbling granulation, extrusion granulation, compression granulation, melt granulation, spraying, granulation, fluidized bed granulation, crushing granulation, stirring, liquid phase, vacuum granulation The law can be used.
  • an agitation granulation method in which an oligomer is dispersed in a solvent used in solid-phase polymerization to form flakes is also effective.
  • the type of the flake is not particularly limited, but is preferably a pellet, a bead, a granule, or a powder from the viewpoint of operability. Further, a wa particle or a porous material is preferred, and when an oligomer is produced by a melt transesterification reaction, it is preferable to use a method for producing and coagulating fine particles alone or in combination with the above method. preferable.
  • the specific surface area of the particles is preferably 0.10 to 30 m 2 / g as in Method I. If the specific surface area exceeds 30 m 2 / g, the bulk density will decrease, and problems such as the necessity of increasing the usefulness of the equipment will arise.
  • the flake size is preferably in the range of 10 ⁇ m to 1 O cm, particularly preferably 100 ⁇ m to 10 ⁇ m. It is preferably within a range of 1 cm. If the particle size is too high, fine powder is entrained along with the flow of the poor solvent gas, which may cause clogging of valves and pipes and adverse effects on the solvent recovery step. In addition, when the particle size is large, the i-separation of the solvent is increased, and the reaction is prolonged because the effect of the poor solvent cannot be obtained.
  • Flaking conditions vary depending on the oligomer molecular weight, the granulation method, and in the case of a solvent system, the type and boiling point of the solvent used. It is about 20 ° C or more.
  • the crystallization operation required for the conventional solid-state polymerization is not particularly required, and thus the advantage of the simplified process can be obtained.
  • This poor solvent solid state polymerization is the core of Method II, and
  • the solid phase polymerization of the oligomer is carried out under the flow of a poor solvent gas.
  • by-product phenols are removed with high efficiency by performing the polymerization reaction under a poor solvent.
  • the reaction speed is dramatically improved, so that the reaction temperature can be lowered as compared with the melt transesterification method, and the poly-carbonate quality can be improved.
  • a drastic reduction in reaction time becomes edible.
  • Japanese Patent Application Laid-Open No. 11-58033 discloses a conventional solid-state polymerization method.
  • an inert gas such as nitrogen, argon, helium, carbon dioxide or the like is supplied to a reactor. It states that lower hydrocarbon gas may be introduced.
  • the solvent has a boiling point at which it completely evaporates under the polymerization conditions or has a vapor pressure of at least 5 OmmHg, preferably at least 2 O OmmHg.
  • Those having a solubility of the higher-order polymer of 0.1% by weight or less are preferred.
  • those having a solubility parameter of 4 to L 0 (cal / cm 3 ) 1/2 , especially 4 to 8 (cal / cm 3 ) 1/2 are preferred.
  • a standard sample of polycarbonate that is, an amorphous polycarbonate having a viscosity-average molecular weight of 2200 and a crystallinity of 0.5% obtained by the interfacial polymerization method
  • the carbonate (glass transition point 147 ⁇ : L48.C) is converted into a pellet of 2.5 mm in diameter and 3.5 mm in length.
  • the solubility was determined depending on whether the solubility of the amorphous polycarbonate in the supernatant was 0.1% by weight or less. Determine whether the test solvent is “poor solvent” in Method II.
  • the container that can be closed may be any container, and the atmosphere in the container at the time of sealing is mainly the vapor of the three solvents.
  • the solubility is determined by extracting the supernatant from a pre-heated glass tube or metal tube while controlling the pressure, and removing the solvent at approximately 110 to 200 ° C according to its boiling point. Dry under reduced pressure and calculate from the weight change.
  • the poor solvent examples include cyclic carbons having 5 to 20 carbon atoms, more preferably 5 to 10 carbon atoms, and linear or branched chain carbonized carbon atoms having 4 to 18 carbon atoms and more preferably 6 to 12 carbon atoms. Examples thereof include hydrogen or a low unsaturated hydrocarbon having 4 to 18 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • the poor solvent may be used alone or as a mixture of two or more.
  • the boiling point of the poor solvent exceeds 250 ° C, it is difficult to remove the residual solvent, and the quality may be degraded. Therefore, the boiling point of the poor solvent is preferably 250 ° C or less.
  • Solvents having functional groups with relatively high hydrogen bonding properties such as 7 acid groups, carboxyl groups, amino groups, amide groups, cyano groups, nitro groups, and sulfone groups, have ester groups at polymerization temperatures exceeding 150 ° C. It should not be used because it may be involved in the exchange reaction. Further, use of a halogen-based solvent is not preferable from an environmental viewpoint.
  • This poor solvent solid-state polymerization is carried out at a temperature of 100. Pressure 1 OT orr within the range of C to oligomer melting point New If the reaction temperature is too low (less than 100 ° C), the transesterification does not proceed, while if the reaction temperature is higher than the melting point of oligomer, it is difficult to maintain the solid phase, and phenomena such as fusion between particles And driving operability is significantly reduced.
  • the reaction temperature is 150-220. C is particularly preferred, and the reaction pressure is particularly preferably atmospheric pressure.
  • the above reaction temperature condition means the temperature of the oligomer measured at the inlet of the reaction vessel, and the above reaction pressure condition means the pressure measured at the gas outlet of the reaction vessel.
  • those remaining after addition of oligomers may be used as they are, but during solid phase polymerization, polymerization, powder, liquid or Is preferably added again in a gaseous state, whereby the solid phase weight is further improved.
  • a terminal stopper can be added in the form of a powder, a liquid, or a gas to carry out solid-phase polymerization of a poor solvent.
  • a specific example of such a ⁇ 3 ⁇ 4 terminator is the method
  • the poor solvent may be supplied to the reactor in a liquid state and vaporized in the reactor, or may be supplied to the vessel after being vaporized by heat exchange or the like in advance.
  • the poor solvent gas may be flown from above in the vertical direction, from below, or in the horizontal direction.
  • one or more gas supply ports may be provided, and it is also possible to combine flow directions and to limit the flow points.
  • the flow rate in the reactor on the basis of the empty tower is 0.0000 l SOO cmZc ec in ⁇ ⁇ g, and preferably 0.01 to 200 cm / sec. . If the flow rate exceeds 500 cm / sec, the oligomer becomes a fluid state even if the particle size of the oligomer to be subjected to solid-phase polymerization is reduced to 1 Ocm by flakes, so that the fixed bed type reaction is carried out. Fluidization occurs in the vessel, etc., making it impossible to maintain the Bragg flow property.
  • the flow rate of the poor solvent gas is closely related to the reaction rate, and since it acts as a heat carrier simultaneously with the effect of removing by-product phenols, the reaction rate increases with an increase in the gas flow rate. Further, the difference between the heat transfer portion such as the jacket and the internal powder can be reduced by the heat medium effect, and the fusion phenomenon or the like in the heat transfer portion can be prevented.
  • reactors such as tumbler type, kiln type, paddle dryer type, screw conveyor type, vibrating type, fluidized bed type, fixed bed type, moving bed type, etc. These can be used alone or in combination.
  • a 1 liter autoclave equipped with a stirrer, an inert gas inlet tube, and a phenol gas discharge tube was charged with 2283 g of bisphenol A, ie, 2,2-bis (4-hydroxyphenyl) propane, and 2249 g of diphenyl carbonate. After repeated degassing and nitrogen introduction, the contents were heated to 18 O e C to completely melt the contents. After the introduction of gas and nitrogen again, the catalysts NaOH and TMAH (tetramethylammonium hydroxide) were added in an amount of 0.0025 mol and 0.00000 lmol, respectively, in the form of an aqueous solution. Started.
  • TMAH tetramethylammonium hydroxide
  • the pressure was reduced to 100 mmHg to remove by-product phenol from the system, and the reaction was performed for 1.5 hours while the temperature was increased to 240. Then gradually reduce the vacuum to ⁇ ⁇ and 290. The temperature was raised to C for 1.5 hours. After the reaction was completed, the inside of the reactor was returned to atmospheric pressure with nitrogen, and the contents were taken out little by little and solidified by dropping into water.
  • the solidified oligomer was further pulverized with a crusher to obtain 2430 powder having an average particle diameter of 0.6 to 11111.
  • the viscosity average molecular weight of this oligomer was 6,330.
  • the reaction was performed for 3 hours while sampling over time. The results are shown in Table 1.
  • the polymerization reaction was carried out rapidly, and the viscosity average molecular weight of the obtained polycarbonate was 16,523, which was 2.61 times the viscosity average molecular weight of the oligomer.
  • the obtained polycarbonate sample was melt-compressed and molded into a plate. The molded product was colorless and colorless and transparent.
  • the mixed solvent gas was changed to 0.09 cm / sec, and the supply amount was changed to oligomer powder 1 by changing the mixed solvent to a mixture of 25 wt% and 75 ⁇ % of toluene as the solvent and 25% by weight of heptane as the solvent.
  • the reaction was basically performed in the same manner as in Example 1 of 5S except that the reaction was carried out at 0.0080 liter / g (standard state) / hr.
  • the results are shown in Table 1.
  • the polymerization time (2 hours) was shorter than the polymerization time (3 hours) of Example 1 in which no poor solvent was used, and the molecular weight (16523) of the polycarbonate obtained in Example 1 was lower than that.
  • Polycarbonate with a much higher molecular weight (36920) was obtained.
  • a white powder was obtained, and there was no coloring.
  • the product obtained by subjecting the obtained boli-force-to-sample to solution MEE shrinking and blating was colorless and transparent without coloration.
  • the mixed solvent gas was changed to 0.041 cm / sec and the supply amount was changed to 041 cm / sec.
  • the reaction was carried out basically in the same manner as in Example 1 except that the reaction was carried out at a little (standard state) / hr. The results are shown in Table 1.
  • the polymerization time is shorter (2 hours) than the polymerization time of Example 1 (3 hours), and is far higher than the molecular weight (16523) of the polycarbonate obtained in Example 1.
  • a polycarbonate having a high molecular weight (34231) was obtained. Further, when the obtained polycarbonate was pulverized by a conventional method, a white powder was obtained, and there was no coloring.
  • the obtained polycarbonate sample was melt-compressed, and the molded product obtained by plate molding was also colorless and colorless and transparent.
  • Example 4 The procedure was basically the same as in Example 4, except that xylene / heptane (50/50 w / w) was used instead of toluene / heptane (50/50 w / w) as the mixed solvent.
  • the solubility parameter of xylene is 8.8 (cal / cm 3 ) 1/2 .
  • Table 1 By using xylene instead of toluene as the swelling solvent, the molecular weight of the polycarbonate increased to 51230, 1.57 times that of the polycarbonate of Example 4 (32680).
  • the powder obtained by the conventional method was white and no undesired coloring was observed.
  • the molded product obtained by compression melting and brazing was also colorless and colorless and transparent.
  • Example 10 Polycarbonate production by Method I
  • Temperature 220 Except for decreased from C to 20 O e C was basically the same as ⁇ S Example 9.
  • the results are shown in Table 1.
  • SJ ⁇ SJS the molecular weight of the obtained polycarbonate became 44600, which was lower than the molecular weight (51230) of the polycarbonate of Example 9, but the molecular weight of the polycarbonate of Example 1
  • Example 9 The procedure was basically the same as in Example 9 except that the temperature was lowered from C to 190 ° C. The results are shown in Table 1.
  • the molecular weight of the obtained polycarbonate was 31,252, which was lower than the molecular weight (51230) of the polycarbonate of Example 9, but was much higher than the molecular weight (16523) of the polycarbonate of Example 1.
  • the properties of the powder and the molded product obtained by the ordinary method were also good as in Example 9.
  • a conventional interfacial polymerization method was used to prepare 500 g of oligomer (Mv8700) having 100% phenyl carbonate end and oligomer 42 Og (Mv3240) having 100% hydroxyl end. These were mixed so that the ratio of phenyl carbonate terminal: hydroxyl terminal was 53 mol%: 47 mol% (1.13: 1.0), dissolved in methylene chloride, and precipitated with heptane to give a white oligomer powder. I got The viscosity average molecular weight was 7,290.
  • Table 1 shows the results of c obtained by adding and mixing H so as to be evenly dusted, followed by swelling solid phase polymerization in the same manner as in m9. Even when the oligomer obtained by the interfacial polymerization method was used, a polycarbonate having an extremely high molecular weight of 52,300 was obtained. The properties of the powder and the molded product obtained by the ordinary method were good as in Example 9.
  • Example 9 Using the same oligomer as used in Example 12, this after the oligomer powder 1 OOG sprayed uniformly to the TMAH aqueous solution of lxl 0- 5 mo 1 relative to the hydroxyl group terminated, swollen solid-phase polymerization in the same manner as 3 ⁇ 4 ⁇ Example 9 was. The results are shown in Table 1. Obtained by interfacial polymerization When the oligomer was used, an extremely high polycarbonate having a molecular weight of 47860 was obtained. The properties of the powder and product obtained by the conventional method were as good as in Example 9.
  • the oligomer ioog produced in mi ( ⁇ ) is charged into a 500 ml autoclave, melted at 280 ° C, and reacted for 3 hours while sufficiently stirring at a pressure of 0.1 ° C while raising the temperature to 290 ° 0. Was.
  • the results are shown in Table 1. In Examples 1 to 13 above, little coloration was observed in the polycarbonate, but in this melt transesterification reaction, considerable coloration was observed in the polycarbonate despite sufficient nitrogen substitution. .
  • Example 1 «10 Og of the oligomer produced in Example 1 (1) was crystallized with acetone at room temperature for 12 hours, and dried under vacuum at 100 ° C for 2 hours. Then, the crystallized oligomer was charged into a 5 cm diameter, 30 cm long fuel tube heated to 220 ° C, and at the same time, 220 was preliminarily prepared. Solid state polymerization was performed while supplying acetone gas heated to C at a rate of 0.043 cm / sec. The results are shown in Table 1. The reaction rate was slower than in Examples 1 to 13 performed by the swelling solid-state polymerization method, and the molecular weight of the polycapsule after a polymerization time of 3 hours was extremely low at 7213. Therefore, it can be seen that a considerably long time is required to obtain a high molecular weight polycarbonate. table
  • the pressure was reduced to 100 mmHg to remove by-product phenol from the system, and the reaction was performed for 1.1 hours while increasing the temperature to 220 220. Further, while gradually reducing the degree of vacuum to 1 OTorr, the temperature was raised to 260 ° C, and the reaction was performed for 1.5 hours. After the reaction was completed, the inside of the reactor was returned to atmospheric pressure with nitrogen, and the contents were taken out little by little and solidified by dropping into water.
  • the solidified oligomer was further pulverized with a crusher to obtain 2380 powder having an average particle size of 0.241111111. The viscosity average molecular weight of this oligomer was 5,660.
  • the oligomer powder obtained in this way is 210.
  • 100 g was charged into a 500 ml glass autoclave (having a stirrer and set at 130 rpm) heated to C, and at the same time, toluene ( ⁇ solvent) gas and nitrogen (inert gas) heated to 210 ° C in advance.
  • 0.083 liters per 1 g of the above oligomer powder at a rate of 0.077 cm / sec with a mixed gas having a volume ratio of 50 to 50 (vol / vol) under the reaction temperature conditions / hr to start swelling solid-state polymerization.
  • the reaction was performed for 2 hours while sampling over time. The results are shown in Table 2.
  • the polycarbonate obtained in Example 1 can be obtained in a shorter time (2 hours) than the polymerization time in Example 1 (3 hours) without using an inert gas. Molecular weight (29600) much higher than the molecular weight of (16523) was obtained. Dissolve the obtained polycarbonate carbonate
  • the molded product obtained by MS-shrinking and plate molding was colorless and colorless and transparent.
  • Example 14 Using a mixed gas of (vol / vol), under the same gas flow rate and supply rate as in Example 14, the polymer was polymerized at 22 CTC for 2 hours. The results are shown in Table 2. According to Table 2, the molecular weight of the obtained polycarbonate was 31200. Further, the obtained polycarbonate sample was melt-compressed, and the molded product obtained by plate molding was colorless and transparent without coloring.
  • a 3 OOg solution of the oligomeric p-xylene solution prepared in mi 5 was drawn into a Teflon-lined SUS tube with an inner diameter of 2 mm, cooled to room temperature, extruded and cut into 3 mm lengths at the same time.
  • the rate of precipitation particles (melting point: 226 ° (crystallinity: 28.9%, specific surface area: 5.2 m 2 / g)) g manufactured.
  • the loog was exposed to a mixed gas atmosphere with a 50/50 (vol / vol) ratio under the iag condition of p-xylene and helium, and the molecular weight was increased for 2 hours under the same conditions as in Example 15. I let it.
  • the results are shown in Table 2. According to Table 2, the molecular weight of the obtained polycarbonate was 33,400.
  • the product obtained by subjecting the obtained polycarbonate sample to 1-shrinking and then forming into a plate was colorless and transparent without coloring.
  • m oligomer powder 5 oog produced at 14, 25 o.
  • the mixture was melted by staying at c for 6 minutes, extruded into a 2 mm diameter strand, cooled, and cut into 3 mm lengths.
  • the pellet was immersed in acetone for 30 minutes to crystallize, and then dried under a nitrogen stream at 110 ° C. Resulting crystallized pellets crystallinity 24.1%, and the melting point was 223. 5 e C.
  • a mixed gas having a volume ratio of 46/54 (vol / vol) under the reaction temperature conditions of p-xylene and nitrogen as the swelling solvent mixed gas, it was polymerized for 2 hours under the same conditions as in Example 15. .
  • Table 2 From Table 2, the molecular weight of the obtained polycarbonate was 24,600. Further, the molded product obtained by subjecting the obtained poly-polyponate sample to heat-shrinking and plate J was colorless and colorless and transparent.
  • Polycarbonate was obtained by the melt transesterification method instead of the swelling solid state polymerization method of Method I. That is, 1 OOg of the oligomer produced in Wei Example 13 was charged into a 500 ml autoclave, melted at 260 ° C, and heated to 290.0 for 2 hours with sufficient stirring at a pressure of 0.6 Torr. Reacted. Examples 14 to 1 above In No. 9, almost no coloring was observed in the polycarbonate, but in the melt transesterification reaction of this comparative example, considerable coloring was observed in the poly-polycarbonate despite sufficient nitrogen substitution. The reaction results are shown in Table 2. The molecular weight of the obtained polycarbonate was 24,700, and the reaction rate was close to that of the swollen solid phase polymerization method of Method I.
  • Solid phase polymerization was performed using only inert gas without using swelling solvent gas. That is, 100 g of the oligomer prepared in Example 18 is 220. Diameter 5 cm was heated and C, were charged into a combustion tube of length 30 cm, therewith supplying nitrogen heated to simultaneously advance 220 ° C at a rate of 9. 2x 10- 2 cm / sec, the inert gas stream under Was carried out for 12 hours. The results are shown in Table 2. The molecular weight of the obtained polycarbonate was 20800. It can be seen that the solid-state polymerization method of this comparative example has a slower reaction rate than the lubricating solid-state polymerization method of Method I and requires a considerably long time.
  • the reaction solution thus obtained was separated into an aqueous phase and a methylene chloride phase containing the formed blepolymer, and the methylene chloride phase was recovered.
  • the collected methylene chloride phase was washed with a 0.1 N aqueous solution of sodium hydroxide, a 0.1 N aqueous solution of hydrochloric acid, and pure water in this order.
  • the results are shown in Table 3.
  • the viscosity average molecular weight of the polycarbonate powder after polymerization was 42,600.
  • the obtained poly-carbonate powder was subjected to solution liJEE shrinking and plate molding, and was colorless and transparent without coloration.
  • the viscosity average molecular weight of the polycarbonate powder after polymerization was 38,200.
  • the obtained sample was subjected to solution MJE shrinkage, and the blister swelling was colorless and transparent without coloration.
  • the steam resistance was equivalent to that of the interfacial polymerized product, and was excellent. After the reaction was completed, there was no fusion or the like, and it was easy to recover from the reactor.
  • Example 21 300 g of the p-xylene solution of the blepolymer obtained in Example 21 was sucked into a Teflon-lined SUS tube having an inner diameter of 2 mm, and cooled to room temperature. By extruding and cutting to a length of 3 mm, a pellet containing extremely fine precipitated particles was produced. Using these pellets, solid phase polymerization was performed in the same manner as in Example 21. The results are shown in Table 3.
  • the polycarbonate powder after polymerization had a viscosity average molecular weight of 34,800.
  • the resulting sample was subjected to i3 ⁇ 4LC compression and plate-formed, and was colorless, transparent and excellent. Further, after the reaction was completed, there was no fusion or the like, and the recovery from the reactor was easy.
  • the reaction solution thus obtained was separated into a k phase and a methylene chloride phase containing the produced blepolymer, and the methylene chloride phase was recovered.
  • the collected methylene chloride phase was washed with a 0.1N aqueous sodium hydroxide solution, a 0.1N aqueous hydrochloric acid solution, and pure water in this order.
  • the same volume of n-heptane was added to the methylene chloride solution of the bleach polymer, and the solvent was distilled off while heating and stirring at 7 CTC to obtain a white powder having an average particle size of 0.12 mm.
  • the terminal group of the powder was measured, the phenyl group terminal was 46 mol% and the hydroxyl group terminal was 54 mol%.
  • the viscosity average molecular weight was 6,990, and the degree of polymerization was 12.
  • Example 26 (Preparation of polycarbonate by Method II) The procedure was basically the same as that of Example 24, except that TMAH was added as a catalyst to the terminal hydroxyl group at 1 ⁇ 10 6 mo 1 immediately before the solid phase polymerization in the solvent to cause a reaction. Table 4 shows the results. Even when the polymerization time was 0.5 hour, which was 1/2 of the reaction time in Example 24, the molecular weight of polycarbonate was equivalent to that in Example 24, indicating that the addition of the dish improved the reaction g. The resulting polycarbonate powder was a white powder and had no undesirable coloration. The polycarbonate molded product was also colorless and colorless and transparent.
  • Example 7 was basically the same as Example 24 except that 7 (cal / cm 3 ) 1/2 ) was used. Table 4 shows the results.
  • the molecular weight of the obtained polycarbonate was 19,850, which was 3.13 times the molecular weight of the oligomer.
  • the same results as in Example 24 were obtained with respect to the properties of the polycarbonate powder and the properties of the molded article of polypropionate.
  • Example 24 The procedure was basically the same as in Example 24 except that 8 (cal / cm 3 ) 1 2 ) was used. Table 4 shows the results.
  • the molecular weight of the obtained polycarbonate was 21,220, which was 3.35 times the molecular weight of the oligomer.
  • the same results as in Example 24 were obtained in the properties of the polycarbonate powder and the properties of the polycarbonate molded article.
  • IP Solvent manufactured by Idemitsu Petrochemical Co., Ltd. (Product No. 1520; mainly composed of isoheptane, isopenene, isooctane, etc.). (cal / cm 3 ) 1/2 ) ⁇ ⁇
  • the procedure was basically the same as in Example 24 except that was used. Table 4 shows the results.
  • the molecular weight of the obtained polycarbonate was 18754, which was 2.96 times the molecular weight of the oligomer.
  • the same results as in Example 24 were obtained in the properties of the polycarbonate powder and the properties of the molded polycarbonate article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

明 細 書 ポリカーボネートの製造方法 技 術 分 野
本発明は、 ポリカーボネートの製造方法に関する。 背 景 技 術
ポリカーボネートを工業的に製造する従来方法として、 ジヒドロキシ化合物と 炭酸ジエステル化^とを原料として用い、 これらをエステル交換反応させてポ リ力一ポネ一トを得るエステル交換法がある。
このエステル交換法は、 溶融エステル交換法と固相重合法とに大別されるので、 以下、 これらについて順次説明する。
( 1 ) 溶融エステル交換法 (特開昭 6 1—6 2 5 2 2号公報、 特開平 2— 1 5 3 9 2 5号公報)
ジヒドロキシ化^としてビスフエノール Aを、 炭酸ジエステル化合物として ジフエ二ルカ一ボネートを用いた場合を例にして説明すると、 この溶融エステル 交換法は、 ビスフエノール Aとジフエ二ルカ一ボネートとを溶融させ、 溶融状態 でエステル交換反応を行なってフエノールを脱離させてポリカーボネートを製造 する方法である。
しかしこの溶融エステル交換法では、 重合反応の進行とともにポリカーボネー トポリマーの融点および溶融粘度が上昇するため、 最終的に 3 0 0°Cに近い反応 ί¾を必要とし、 また副生するフエノールを脱気除去するために可能な限りの攪 拌による表面更新と I mmH g以下の高真空とを必要とする。 従ってこの溶融ェ ステル交換法では、 高温、 高真空と強力な攪拌とを可能にする装置が不可欠であ り、 設備コストが必然的に上昇する。
しかもこの溶融エステル交換法においては、 生成ポリ力一ボネ一トポリマ一が ボリ力一ボネ一トの分解温度付近に長時間晒されるため、 ポリ力一ボネ一トの着 色や、 分解反応および架橋、 分岐等の副反応によるボリカーボネートの品質低下 が起る可能性が高い。
従って高粘度流体に関する現在の技術では、 溶融エステル交換法により工業的 に安定に製造可能なポリカーボネ一トの分子量には限界があり、 粘度平均分子量 で 2 0 , 0 0 0程度とされている。
( 2 ) 固相重合法 (特開昭 6 3— 2 2 3 0 3 5号公報、 特開平 1— 1 5 80 3 3 号公報)
同様にジヒドロキシ化^としてビスフエノール Aを、 炭酸ジエステル化^! としてジフエニルカーボネ一トを用いた場合を例にして説明すると、 この固相重 合法は、 ビスフエノ一ル Aとジフエニルカーボネートを溶融状態でエステル交換 反応し、 オリゴマーを製造した後、 オリゴマーを溶媒処理や加,理などにより 結晶化させ、 結晶化ォリゴマーを固相重合させて高分子量ポリカーボネートを製 造する方法である。
この固相重合法は、 反応温度をポリカーボネートの融点以下の温度 (例えば 2 4 0。C以下) とすることができるので、 得られたボリカーボネートは、 前記溶融 エステル交換法において認められたポリカーボネートの着色の問題がなく、 溶融 エステル交換法で得られたポリカーボネートと比べて品質的に優れている。
しかしこの固相重合法は、 オリゴマー化工程、 結晶化工程および固相重合工程 の少なくとも 3工程が必須であり、 製造操作が複雑であるだけでなく、 設備コス トおよび製造コストが高くなるのは避けられない。 またオリゴマーから高分子ポ リ力一ポネートを得るための固相重合は低温で行なうことができるが、 エステル 交換反応避は に依存し、 高温ほど高反応 であるため、 低温で固相重合 を行なうと、 反応時間を長くする必要がある。例えば固相重合工程によりオリゴ マ一から高分子量ポリカーボネートを得るためには、 溶融エステル交換法の 1 . 5〜1 0倍もの反応時間を要する。
従って本発明の目的は、 ポリカーボネートを製造するための従来方法、 なかん ずく固相重合法の欠点を解消し、 高品質の高分子量ポリカーボネートを少ないェ 程数で効率良く短時間に安価に製造することができるポリカーボネ一トの製造方 法を提供することにある。 発 明 の 開 示
本発明者らは、 上記目的達成のため研究を重ねた結果、 ボリカーボネートオリ ゴマ一を Mi溶媒ガスを含む雰囲気下で固相重合することにより、 (1) オリゴマ 一の特別な結晶化処理を行なわなくても、 直接高分子量ポリカーボネートが得ら れること、 (2) 従来の溶融エステル交換法よりも低温での反応が可能であるだけ でなく、 従来の溶融エステル交換法よりも反応時間を短縮できる (従って従来の 固相重合法よりも Sir、時間をはるかに,できる) こと、 (3) 得られた高分子量 ポリカーボネートは、 従来の固相重合法で得られたものに匹敵する品質を有する こと等を見い出した。
また、 本発明者らは、 ポリカーボネートオリゴマーを貧溶媒ガスの流通下に固 相重合することにより、 (1) オリゴマーの特別な結晶化処理を行なわなくても、 直接高分子量ポリカーボネートが得られること、 (2) ^の溶融エステル交換法 よりも低温での反応が可能であるだけでなく、 従来の溶融エステル交換法の反応 時間と同等あるいはそれ以下に短縮できる (従って従来の固相重合法よりも反応 時間をはるかに できる) こと、 (3) 得られた高分子量ボリカーボネートは、 の固相重合法で得られたものに匹敵する品質を有すること等を見い出した。 本発明は、 上記知見に基づいて完成されたものであり、 本発明のポリカーボネ ートの製造方法は、 ポリ力一ポネートオリゴマ一を膨潤溶媒ガスを含む雰囲気下 に固相重合することを要旨とする (以下、 この方法を方法 Iという。 ) 。
また、 本発明のもう 1つのポリカーボネートの製造方法は、 ポリカーボネート オリゴマーを貧溶媒ガスの流通下に固相重合することを要旨とする (以下、 この 方法を方法 I Iという。 ) 。 図面の簡単な説明
第 1図は、 本発明の方法 Iでいぅ膨潤溶媒について、 その膨潤効果の一例を示 すグラフである。 発明を実施するための最良の形態
以下、 方法 Iおよび方法 IIについてそれぞれ詳述する。 最初に方法 Iについて説明すると、 この方法]:は、 上述のように、
(A) 出発物質としてポリカーボネートオリゴマーを用い、
(B) 該ポリカーボネートオリゴマーを膨潤溶媒ガスを含む雰囲気下に固相重合 (以下、 膨潤固相重合ということがある) する
ことを特徴とするものであるので、 先ず (A) 出発物質であるポリカーボネート オリゴマーについて説明し、 次いで (B) ra固相重合について説明する。
(A) ポリカーボネートオリゴマー
方法 Iにおいて出発物質であるポリカーボネートオリゴマーとしては、 溶融ェ ステル交換法で得られたオリゴマーまたはジヒドロキシ化合物とホスゲンを用い る界面重合法で得られたオリゴマーが用いられる。
そこで、 先ず溶融エステル交換法によるポリカーボネ一トオリゴマーの製造に ついて以下に詳しく説明する。
( a 1) 溶融エステル交換法によるポリカーボネ一トオリゴマ一
( 1 ) 溶融エステル交換法によりボリカーボネートオリゴマーを製造するための 原料
溶融エステル交換法によってボリカーボネートオリゴマ一を製造するにあたり、 原料としては、 特に制限はなく、 通常のエステル交換法によるポリ力一ポネート の製造に用いられる各種のものが用いられる。
例えば、 (i) ジヒドロキシ化合物と炭酸ジエステルとの組み合せ、 (i i)ジヒド ロキシ化合物のジエステルと炭酸ジエステルとの組み合せ、 (i i i) ジヒドロキシ 化合物のジ炭酸エステルと炭酸ジエステルとの組み合せ、 (iv)ジヒドロキシ化合 物のジ炭酸エステル (自己縮合) 、 (V) ジヒドロキシ化合物のモノ炭酸エステル
(自己エステル交換) などが挙げられる。
これらの中では、 (i) のジヒドロキシ化^と炭酸ジエステルとの組み合せが 好ましく用いられる。
ここで、 エステル交換反応に好ましく用いられるジヒドロキシ化^/は、 例え ば、 芳香族ジヒドロキシ化合物、 脂肪族ジヒドロキシ化^ )が挙げられ、 これら から選択される少なくとも一種の化^である。
芳香族ジヒドロキシ化^/は、 一般式 (I)
Figure imgf000007_0001
[式中、 Rは、 それぞれハロゲン原子 (例えば、 塩素、 臭素、 フッ素、 沃素) 又 は炭素数 1〜8のアルキル基 (例えば、 メチル基 ェチル基 プロビル基、 n- ブチル基、 イソブチル基、 アミル基、 イソアミル基、 へキシル基など) であり、 この Rが複数の場合、 それらは同一であってもよいし、 異なっていてもよく、 m は、 0〜4の整数である。 そして、 Zは、 単結合、 炭素数 1〜8のアルキレン基 又は炭素数 2〜8のアルキリデン基 (例えば、 メチレン基、 エチレン基、 ブロビ レン基、 ブチレン基、 ペンテリレン基、 へキシレン基 ェチリデン基、 イソプロ ピリデン基など) 、 炭素数 5〜1 5のシクロアルキレン基又は炭素数 5〜1 5の シクロアルキリデン基 (例えば、 シクロペンチレン基 シクロへキシレン基、 シ クロペンチリデン基、 シクロへキシリデン基など) 、 又は一 S―、 一 S O—、 一 S〇2—、 一 0_、 一 CO—結合もしくは一般式 (I I) あるいは(I II)
Figure imgf000007_0002
で表される結合を示す。 ]
で表される芳香族ジヒドロキシ化合物が挙げられる。
このような芳香族ジヒドロキシ化^/としては、 例えば、 ビス (4 -ヒドロキ シフエニル) メタン;ビス (3—メチルー 4ーヒドロキシフエニル) メタン;ビ ス (3—クロ口一 4ーヒドロキシフエニル) メタン;ビス (3, 5—ジブ口モー 4ーヒドロキシフエニル) メタン; 1, 1—ビス (4ーヒドロキシフエニル) ェ タン; 1, 1—ビス (2— t—プチルー 4—ヒドロキシー 3—メチルフエニル) ェタン; 1 -フエ二ルー 1, 1一ビス (3 -フルオロー 4ーヒドロキシ一 3—メ チルフエニル) ェタン; 2, 2—ビス (4ーヒドロキシフエニル) プロパン (通 称ビスフエノール A: BPA) ; 2 , 2—ビス (3—メチル一4ーヒドロキシフ ェニル) プロパン; 2, 2—ビス (2—メチルー 4—ヒドロキシフエニル) ブロ パン; 2 , 2—ビス (3 , 5—ジメチルー 4ーヒドロキシフエニル) プロパン; 1, 1一ビス (2— t—ブチルー 4ーヒドロキシー 5—メチルフエニル) ブロパ ン; 2, 2—ビス (3 -クロロー 4ーヒドロキシフエニル) プロパン; 2, 2 - ビス (3—フルオロー 4ーヒドロキシフエニル) プロパン; 2, 2—ビス (3— ブロモー 4ーヒドロキシフエニル) プロパン; 2, 2—ビス (3 , 5—ジフルォ ロー 4ーヒドロキシフエニル) プロパン; 2, 2—ビス (3, 5—ジクロロー 4 ーヒドロキシフエニル) プロパン; 2, 2—ビス (3, 5—ジブ口モー 4ーヒド ロキシフエニル) プロパン; 2, 2—ビス (4ーヒドロキシフエニル) ブタン; 2, 2—ビス (4—ヒドロキシフエニル) オクタン; 2, 2—ビス (4ーヒドロ キシフエニル) フエニルメタン; 2, 2—ビス (4—ヒドロキシ一 1ーメチルフ ェニル) プロパン; 1, 1—ビス (4ーヒドロキシー t一ブチルフエニル) プロ パン; 2 , 2—ビス (4ーヒドロキシ一 3—ブロモフエニル) プロパン; 2 , 2 —ビス (4 -ヒドロキシー 3 , 5—ジメチルフエニル) プロパン; 2 , 2—ビス ( 4—ヒドロキシー 3—クロ口フエニル) プロパン; 2, 2—ビス (4ーヒドロ キシー 3, 5—ジクロ口フエニル) プロパン; 2, 2—ビス (4ーヒドロキシ一 3, 5—ジブロモフエニル) プロパン; 2, 2—ビス (3—ブロモー 4ーヒドロ キシー 5—クロ口フエニル) プロパン; 2 , 2—ビス (3—フエ二ルー 4—ヒド ロキシフエニル) プロパン; 2, 2—ビス (4ーヒドロキシフエニル) ブタン; 2 , 2—ビス (3—メチル一4ーヒドロキシフエニル) ブタン; 1, 1一ビス ( 2—ブチルー 4ーヒドロキシー 5—メチルフエニル) ブタン; 1, 1一ビス ( 2— t—ブチル一4ーヒドロキシー 5—メチルフエニル) ブタン; 1, 1—ビ ス (2— t一ブチル一4ーヒドロキシ一 5—メチルフエニル) イソブタン; 1,
1—ビス (2— t—アミルー 4ーヒドロキシー 5—メチルフエニル) ブタン; 2 :
2—ビス (3 , 5—ジクロロー 4ーヒドロキシフエニル) ブタン; 2 , 2—ビス ( 3, 5—ジブロモ一 4ーヒドロキシフエニル) ブタン; 4 , 4一ビス (4ーヒ ドロキシフエニル) へブタン; 1, 1—ビス (2— t—ブチル一4—ヒドロキシ _ 5—メチルフエニル) へブタン; 2, 2—ビス (4—ヒドロキシフエニル) ォ クタン; 1, 1— (4ーヒドロキシフエニル) ェタンなどのビス (ヒドロキシァ リール) アルカン類; 1, 1一ビス (4ーヒドロキシフエニル) シクロペンタン ; 1, 1一ビス (4ーヒドロキシフエニル) シクロへキサン; 1, 1一ビス (3 ーメチルー 4ーヒドロキシフエニル) シクロへキサン; 1, 1—ビス (3—シク 口へキシルー 4ーヒドロキシフエニル) シクロへキサン; 1, 1—ビス (3—フ ェニル一4—ヒドロキシフエニル) シクロへキサン; 1, 1一ビス (4ーヒドロ キシフエニル) 一3, 5, 5—トリメチルシクロへキサンなどのビス (ヒドロキ シァリール) シクロアルカン類; ビス (4ーヒドロキシフエニル) エーテル; ビ ス (4ーヒドロキシー 3—メチルフエニル) エーテルなどのビス (ヒドロキシァ リール) エーテル類; ビス (4ーヒドロキシフエニル) スルフィ ド ; ビス (3— メチル一4ーヒドロキシフエニル) スルフィ ドなどのビス (ヒドロキシァリール) スルフィ ド類; ビス (4ーヒドロキシフエニル) スルホキシド ; ビス (3—メチ ル一4ーヒドロキシフエニル) スルホキシド ; ビス (3—フエ二ルー 4ーヒドロ キシフエニル) スルホキシドなどのビス (ヒドロキシァリール) スルホキシド類 ; ビス (4—ヒドロキシフエニル) スルホン; ビス (3—メチルー 4ーヒドロキ シフエニル) スルホン; ビス (3—フエ二ルー 4—ヒドロキシフエニル) スルホ ンなどのビス (ヒドロキシァリール) スルホン類、 4, 4 ' ージヒドロキシビフ ェニル; 4, 4, ージヒドロキシー 2 , 2, 一ジメチルビフエニル; 4 , 4 ' 一 ジヒドロキシー 3, 3, 一ジメチルビフエニル; 4 , 4, 一ジヒドロキシー 3, 3, 一ジシクロへキシルビフエニル; 3, 3, ージフルオロー 4, 4 ' 一ジヒド ロキシビフェニル等のジヒドロキシビフェニル類などが挙げられる。
上記一般式 (I ) 以外の芳香族ジヒドロキシ化合物としては、 ジヒドロキシべ ンゼン類、 ハロゲン及びアルキル置換ジヒドロキシベンゼン類などがある。 例え ば、 レゾルシン、 3—メチルレゾルシン、 3—ェチルレゾルシン、 3—ブロビル レゾルシン、 3—ブチルレゾルシン、 3— tーブチルレゾルシン、 3—フエニル レゾルシン、 3—クミルレゾルシン; 2, 3 , 4, 6—テトラフルォロレゾルシ ン; 2, 3, 4, 6—テトラブロモレゾルシン;カテコール、 ハイドロキノン、 3—メチルハイドロキノン、 3—ェチルハイドロキノン、 3—ブロビルハイ ド口 キノン、 3—ブチルハイドロキノン、 3— t—ブチルハイドロキノン、 3—フエ ニルハイドロキノン、 3—クミルハイドロキノン; 2 , 5—ジクロロハイドロキ ノン; 2 , 3, 5, 6—テトラメチルハイドロキノン; 2, 3, 4 , 6—テトラ 一 t一ブチルハイ ドロキノン; 2, 3, 5 , 6—テトラフルォロハイドロキノン ; 2, 3 , 5, 6—テトラブロモハイド口キノン等が挙げられる。
また、 脂肪族ジヒドロキシ化^としては、 各種のものがある。例えば、 ブ夕 ンー 1 , 4ージオール; 2, 2—ジメチルプロパン一 1, 3—ジオール;へキサ ンー 1, 6—ジオール;ジエチレングリコール; トリエチレングリコール;テト ラエチレングリコール;ォク夕エチレングリコール;ジブロビレングリコール; N , N—メチルジェ夕ノールァミン;シクロへキサン一 1 , 3—ジオール;シク 口へキサン一 1 , 4ージオール; 1, 4一ジメチロールシクロへキサン; p—キ シリレングリコール; 2, 2—ビス一 (4ーヒドロキシシクロへキシル) 一ブロ パンおよび二価アルコールまたはフエノールのエトキシ化またはブロポキシ化生 成物、 例えばビスーォキシェチルービスフエノール A;ビスーォキシェチルーテ トラクロ口ビスフエノール A又はビスーォキシェチルーテトラクロロヒドロキノ ン等が挙げられる。
ポリ力一ボネ一トオリゴマーの原料であるジヒドロキシ化合物としては、 上記 の化合物を適宜選択して用いるが、 これらの中では、 芳香族ジヒドロキシ化合物 であるビスフエノール Aを用いるのが特に好ましい。
—方、 もう一つの原料として用いられる炭酸ジエステルは、 各種のものがある c 例えば、 炭酸ジァリール化合物、 炭酸ジアルキル化合物又は炭酸アルキルァリー ル化合物から選択される少なくとも一種の化合物である。
用いられる炭酸ジァリール化合物は、 一般式 (IV)
ArOCOAr ( IV )
[式中、 A rはァリール基を示す。 ]
で表される化合物又は一般式 (V) o o
II II
Ar2 CO― Ar1—— OCOAr2 ( V )
[式中、 Ar1は、 上記芳香族ジヒドロキシ化合物から水酸基を 2個除いた残基 を示し、 A Γ 2はァリール基を示す。 ]
で表される化合物である。
また、 炭酸ジアルキル化合物は、 一般式 (VI)
0
II (
R1OCOR1 (Vl)
[式中、 R1は炭素原子 1〜6個を有するアルキル基又は炭素原子 4〜7個を有 するシクロアルキル基を示す。 ]
で表される化合物又は一般式 (VII)
0 0
II II
R1OCO— Ar1— OCOR1 (v")
[式中、 R1及び Ar1は ΙΐίΙ3と同じである。 ]
で表される化合物である。
そして、 炭酸アルキルァリール化^は、 一般式 (VIII)
0
Ar2 C R1 (Vlll )
[式中、 R1及び A r 2は前記と同じである。 ]
で表される化合物又は一般式 (IX)
0 0
II I! (1X)
Ar2 C0一 Ar1— OCOR1 Μλ j
[式中、 R Ar1及び Ar2は前記と同じである。 ]
で表される化合物である。 ここで、 炭酸ジァリール化合物としては、 例えば、 ジフエ二ルカ一ボネート、 ジトリル力一ポネート、 ビス (クロ口フエニル) カーボネート、 m—クレジルカ ーボネート、 ジナフチルカーボネート、 ビス (ジフエニル) カーボネート、 ビス フエノール Aビスフエ二ルカ一ボネート等が挙げられる。
また、 炭酸ジアルキル化合物としては、 例えば、 ジェチルカーボネート、 ジメ チルカ一ボネート、 ジブチルカーボネート、 ジシクロへキシルカーボネート、 ビ スフエノ一ル Aビスメチルカーボネート等が挙げられる。
そして、 炭酸アルキルァリール化合物としては、 例えば、 メチルフエ二ルカ一 ボネート、 ェチルフエ二ルカーポネート、 ブチルフエニルカーボネート、 シクロ へキシルフェニルカ一ポネート、 ビスフエノ一ル Aメチルフエニルカーボネート 等が挙げられる。
ポリカーボネートオリゴマーの原料である炭酸ジエステルとしては、 上記の化 合物を適宜選択して用いるが、 これらの中では、 ジフエニルカーボネートを用い るのが特に好ましい。
上述のようにポリカーボネートオリゴマーの原料としては、 前記ジヒドロキシ 化合物及び前記炭酸ジエステル以外に、 ジヒドロキシ化合物のジエステルおよび ジヒドロキシ化合物のジ炭酸エステル、 ジヒドロキシ化^のモノ炭酸エステル も用いられる。
ジヒドロキシ化^のジエステルとしては、 例えば、 ビスフエノール Aのジ酢 酸エステル、 ビスフエノール Aのジブロビオン酸エステル、 ビスフエノール Aの ジブチル酸エステル、 ビスフエノール Aのジ安息香酸エステル等を挙げることが できる。
また、 ジヒドロキシ化合物のジ炭酸エステルとしては、 例えば、 ビスフエノー ル Aのビスメチル炭酸エステル、 ビスフエノール Aのビスェチル炭酸エステル、 ビスフエノール Aのビスフエニル炭酸エステル等を挙げることができる。
そして、 ジヒドロキシ化合物のモノ炭酸エステルとしては、 例えば、 ビスフエ ノール Aモノメチル炭酸エステル、 ビスフエノール Aモノェチル炭酸エステル、 ビスフエノ一ル Aモノプロビル炭酸エステル、 ビスフエノール Aモノフエニル炭 酸エステル等を挙げることができる。 またオリゴマーの製造において分岐剤を使用することもできる。 分岐剤の例と しては、 フロログルシン; トリメリット酸; 1, 1, 1ートリス (4—ヒドロキ シフエニル) ェタン; 1一 [ひーメチルーひ一 (4, ーヒドロキシフエニル) ェ チル] 一 4— [ひ, , ひ, 一ビス (4" ーヒドロキシフエニル) ェチル] ベンゼ ン;ひ, ひ, , ひ,, 一トリス (4ーヒドロキシフエニル) 一 1, 3, 5—トリイ ソブロビルベンゼン;ィサチンビス (o—クレゾール) 等が挙げられる。
( 2 ) 溶融エステル交換法によりポリカーボネートオリゴマーを製造するための 条件
溶融エステル交換法によりポリカーボネートオリゴマーを製造する際の最大の ポイントは、 エステル交換反応により副生するフエノール類の次に蒸気圧の高い 炭酸ジエステル化合物の留出を防止することである。 そのため、 原料混合物の調 製においても、 先ず原料であるジヒドロキシ化^と炭酸ジエステル化^を同 —または別々に溶融して反応器に供給する方法や、 溶融させたジヒドロキシ化合 物に炭酸ジエステル化合物の粉末を加える方法が採用される。
溶融エステル交換法によるポリカーボネートオリゴマーの製造は、 温度 1 00 〜3 0 0。C、 圧力 l T o r r〜5 k g/c m2Gで^するのが好ましい。 その 理由は以下のとおりである。 すなわち反応^が 1 0 0 C未満と低いとエステル 交換反応が進行しにくく、 一方 3 0 0。Cを超える高 になると、 原料の炭酸ジ エステル化合物が、 副生するフエノ一ル類とともに反応系から留出してしまう恐 れがある。 また反応圧力が 5 k g/c m2Gを超えると、 副生するフエノール類 が留去せず、 反応平衡が移動しないため反応が進行せず、 逆に反応圧力が 1 T o r r未満であると、 原料である炭酸ジエステル化合物が留去され、 反応系内の組 成変動が生じてしまう。
反応 は 1 5 0〜2 8 0°Cが特に好ましく、 反応圧力は 1 0 T o r r〜2 k g/c m2Gが特に好ましい。
上述のようにエステル交換反応時の未反応の炭酸ジエステル化合物の留出は温 度および圧力に密接に関係している (高温、 高真空ほど留出し易い) 。 そこで温 度および圧力条件を制御するために、 副生フェノ一ル類の留出速度ゃォリゴマー 粘度から反応進行度を演算し、 それらをフィードバックコントロールすることが 好ましい。 また、 留出フエノール類を回収する際に、 器とコンデンサーの間 に充填塔や蒸留塔を設けることにより炭酸ジエステル化合物を反応器に戻し、 炭 酸ジエステル化合物の留出を減少させることが可能である。
用いる反応器は公知の重合反応器の何れでも良く、 例えば、 ジャケットや外部 熱交換器等で温度制御された攪拌機付の縱型反応器ゃ橫型反応器が好適である。 反応工程は一段でも良いし、 それ以上の工程に分けて製造することも可能である。 また、 反応器は一基以上の反応器を直列または並列に接続して用いて行うことも 可能である。
エステル交換反応はバッチまたは連続法、 またはこれらを併用した方法の何れ でも良く、 均一なォリゴマーを得るためには連続法が好ましい。
エステル交換法によるポリカーボネートオリゴマーの製造において重合触媒は 特に必要ではないが、 必要により通常用いられるエステル交換触媒を用いてもよ い。
ここで、 通常用いられているエステル交換皿としては、 例えば、 アルカリ金 属化合物 (例えば、 水酸ィ匕リチウム、 水酸ィ匕ナトリウム、 水酸化カリウムなど) 、 アルカリ土類金属化合物、 アミン類, 四級アンモニゥム塩類等の含窒素塩基性ィ匕 ^¾、 あるいは硼素化^等が挙げられる。 これらの中では、 特に、 含窒素塩基 性化合物が、 塩基性を示し、 反応系中に比較的残留しない特徴を有するので好ま しく用いられる。
重合触媒としてエステル交,媒を用いる場合、 前記含窒素塩基性化合物とし ては、 例えば、 トリメチルァミン、 トリェチルァミン、 トリブロビルアミン、 ト リブチルァミン、 トリペンチルァミン、 トリへキシルァミン、 ジメチルベンジル ァミン等の脂肪族第 3級ァミン化合物、 トリフェニルァミン等の芳香族第 3級ァ ミン化合物が挙げられる。
また、 N , N—ジメチルー 4一アミノビリジン、 4ージェチルアミノビリジン、 4—ピロリジノビリジン、 4一アミノビリジン、 2—アミノビリジン、 2—ヒド 口キシビリジン、 4ーヒドロキシビリジン、 2—メトキシビリジン、 4ーメ トキ シビリジン、 イミダゾ一ル、 2—メチルイミダゾール、 4ーメチルイミダソ'一ル、 2—ジメチルァミノイミダゾ一ル、 2—メトキシイミダゾール、 2—メルカブト イミダゾール、 ァミノキノリン、 ジァザビシクロオクタン (DAB CO) 等の含 窒素複素環化合物が挙げられる。
さらに、 テトラメチルアンモニゥムヒドロキシド (Me 4N〇H) 、 テトラエ チルアンモニゥムヒドロキシド (E t 4NOH) 、 テトラプチルアンモニゥムヒ ドロキシド (Bu4N〇H) 、 トリメチルベンジルアンモニゥムヒドロキシド [C6H5CH2 (Me ) sNO H] 等のアルキル基、 ァリール基、 アルアリール基 などを有するアンモニゥムヒドロキシド類が挙げられる。
その他、 テトラメチルアンモニゥムポロハイドライド (Me 4NBH4) 、 テト ラブチルアンモニゥムポロハイドライド (Bu4NB H4) 、 テトラプチルアンモ ニゥムフエニルボレート (Bu4NBP h4) 、 テトラメチルアンモニゥムテトラ フエ二ルポレート (Me4NBP h4) 等の塩基性塩が挙げられる。
これらの含窒素塩基性化合物の中では、 トリへキシルァミン、 テトラメチルァ ンモニゥムヒドロキシド、 テトラプチルアンモニゥムヒドロキシド、 ジメチルァ ミノビリジンが好ましく用いられる。
また、 硼素化合物としては、 例えば、 硼酸、 硼酸トリメチル、 硼酸トリェチル、 硼酸卜リブチル、 硼酸トリへブチル、 硼酸トリフエニル、 硼酸トリナフチル等が 挙げられる。
前記触媒の添加量としては、 原料のジヒドロキシ化合物の末端水酸基 1 mo 1 当量に対して (以下同じ。 ) 、 通常 5 x l CT2〜5 x l O -smo l、 好ましくは 5 x 1 0— 3〜5 X 1 0— 8mo 1である。 この触媒の添加量が 5 x 1 0— 9mo 1未 満では、 触媒効果が発現されない恐れがある。 また、 5 X 1 0— 2mo 1を超える と、 最終製品であるポリカーボネートの物性、 特に、 耐熱性、 耐加水分解性の低 下を招く恐れがあり、 また、 コストアップに繋がり、 これを超えてまで添加する ことはない。
上記の溶融エステル交換法は、 溶媒の不存在下で行われるが、 必要に応じて、 得られるポリカーボネートの 1〜1 5 0重量%の不活性溶媒を用いてもよい。 こ こで、 不活性溶媒としては、 例えば、 ジフエ二ルェ一テル, ハロゲン化ジフエ二 ルェ一テル, ベンゾフエノン, ポリフエニルエーテル, ジクロロベンゼン, メチ ルナフタレン等の芳香族化合物、 二酸化炭素, 一酸化二窒素, 窒素などのガス、 クロ口フロロ炭化水素、 ェタン, プロパン等のアルカン、 シクロへキサン, トリ シクロ (5. 2. 10) デカン, シクロオクタン, シクロデカン等のシクロアル カン、 ェテン, ブロペンのようなアルケン等各種のものが挙げられる。
( 3 ) 溶融エステル交換法により製造されたポリカーボネートォリゴマ一 上記 (2) に示す条件によって製造されたポリカーボネートオリゴマーは、 粘 度平均分子量が約 1, 500〜約 30, 000であるのが好ましく、 約 3, 00 0〜約 30, 000であるのが特に好ましい。 ポリカーボネートオリゴマーの分 子量が低いと、 融点が低下し、 後記する膨潤固相重合温度を低下させる必要が生 じ、 反応 ¾J¾が低下する。
ポリカーボネートオリゴマ一の末端比率は、 フェニルカーボネート末端:水酸 基末端 = 1 : 4〜4: 1の範囲であるのが好ましい。 その理由は、 末端比率がこ の範囲外であると、 最終的に固相重合後に得られるポリカーボネートの到達分子 量が制限され、 望まれる高分子量化が困難になるからである。 末端比率は 1 : 1. 5〜1. 5 : 1の範囲であるのがより好ましく、 1 : 1〜: L. 1 : 1の範囲であ るのが特に好ましい。
以上、 溶融エステル変換法によるポリカーボネートオリゴマーの製造について 詳しく説明してきたので、 以下、 界面重合法によるポリカーボネートオリゴマー の製造について詳しく説明する。
(a2) 界面重合法によるポリカーボネートオリゴマー
界面重合法によりポリカーボネートオリゴマーを製造する方法としては、
(i) ホスゲンと芳香族ジヒドロキシ化合物を用い、 界面重合法によりフエニル カーボネ一ト末端のォリゴマ一と水酸基未満のオリゴマーとを別々に製造し、 フ ェニルカーボネート末端と水酸基末端の比率を調整したオリゴマーを得る方法、
(ii) ホスゲンと芳香族ジヒドロキシ化^を用い、 界面重合法によりフエニル 力一ボネ一ト末端のォリゴマ一を製造し、 ジヒドロキシ化^を添加してフエ二 ルカーボネート末端と水酸基末端の比率を調整したオリゴマーを得る方法、 等が挙げられる。
上記方法 (i) および (ii) で用いる芳香族ジヒドロキシ化合物、 ジヒドロキ シ化合物は既に例示してあるのでその説明を省略する。 また上記方法 (i) およ び (ii ) はそれ自体公知の方法であるので、 その説明は省略する。
上記方法 (i ) および (ii ) 以外の方法として、 本発明者らは、 界面重合法に よりポリカーボネートオリゴマー (ブレポリマ一と言うこともある) を製造する ための新規方法を見い出した。
そこで界面重合法による、 この新規なボリカーボネートオリゴマーの製造方法 を以下に詳細に説明する。
界面重合法による新規ポリカーボネートオリゴマー製造方法
( 1 ) 新規方法によりポリ力一ポネ一トオリゴマーを製造するための原料 ホスゲンとともにジヒドロキシ化 ^¾J、 モノヒドロキシァリ一ル化合物が用 t、 られる。 このうちジヒドロキシ化合物としては、 溶融エステル交換法によるオリ ゴマーの製造に用いた芳香族ジヒドロキシ化合物、 脂肪族ジヒドロキシ化合物を 用いることができるが、 芳香族ジヒドロキシ化^を用いるのが好ましい。 これ らジヒドロキシ化^の具体例は既に示してあるので、 ここでは例示しない。 モノヒドロキシァリール化^としては、 フエノール、 o— n—ブチルフエノ —ル; m—ri—ブチルフエノール; p— n—ブチルフエノール; o—ィソブチル フエノール; m—ィソブチルフエノール; p—ィソブチルフエノール; o— t一 ブチルフェノール; m— t一ブチルフェノール; p— t一ブチルフェノ一ル; o 一 n—ペンチルフエノール; m—n—ペンチルフエノール; p— n—ペンチルフ エノ一ル; o— n—へキシルフエノ一ル; m—n—へキシルフエノ一ル; p— n 一へキシルフエノ一ル; o—シクロへキシルフエノ一ル; m—シクロへキシルフ エノ一ル; p—シクロへキシルフェノール; o—フエニルフエノール; m—フエ ニルフエノール; p—フエニルフエノール; o—n—ノニルフエノール; m—n 一ノニルフエノール; p— n—ノニルフエノール; o—クミルフエノール; m— クミルフエノール; p—クミルフエノール; o—ナフチルフエノール; m—ナフ チルフエノール; p—ナフチルフエノール; 2, 6—ジー t—ブチルフエノール
; 2 , 5—ジー t一ブチルフエノール; 2, 4ージ一 t一ブチルフエノール; 3 : 5—ジ一 t一ブチルフエノール; 2, 5—ジクミルフエノール; 3 , 5—ジクミ ルフエノール;式
Figure imgf000018_0001
で表される化^や、 クロマン誘導体として、 例えば、 式
Figure imgf000018_0002
で表される化 ^等の一価フエノールが挙げられる。
このようなフエノール類のうち、 P— t—ブチルフエノール; P—クミルフエ ノール; p—フエニルフエノールなどが好ましい。
また、 式
(以下余白)
Figure imgf000019_0001
(式中、 nは 7 3 0の整数 (式中、 R 7は炭素数 1〜7の
である) アルキル基、 kは 1〜3の
整数である) で表される化合物等を用いることができる。
( 2 ) 新規方法によりポリカーボネ一トオリゴマ一を製造するための条件 本法によるポリカーボネートオリゴマーの製造方法は、 クロ口フォーメート末 端ォリゴマ一を調製する工程と、 この工程で得られたクロ口フォーメート末端ォ リゴマ一を更に反応させて高分子量化反応用プレボリマーを調製する工程とから なる。 以下これらの工程を順次説明する。
( i ) クロ口フォーメート末端オリゴマー調製工程
クロロフォーメート末端ォリゴマ一はホスゲンと芳香族ジヒドロキシ化合物と を原料として、 公知の界面重縮合法により製造される。 具体的には、 芳香族ジヒ ドロキシ化合物をアル力リ金属水酸化物の水溶液に溶解し、 芳香族ジヒドロキシ 化合物の水酸化アルカリ水溶液を調製し、 これに有機溶媒を加え、 ホスゲンの過 剰量を吹き込み、 反応させることによりクロロフォ一メート末端オリゴマーを得 ることができる。
アル力リ金属水酸化物としては、 水酸化ナトリゥム、 水酸化力リゥム、 水酸化 リチウム、 水酸化セシウムなどが挙げられ、 水酸化ナトリウムと水酸化カリウム が好適である。
有機溶媒としては、 ハロゲン系溶媒が使用される。 ハロゲン系溶媒の例として は、 ジクロロメタン、 トリクロロメタン、 1, 1ージクロロェタン、 1, 1 , 1 一トリクロロェタン、 1, 1, 2—トリクロロェタン、 1, 1, 1, 2—テトラ クロロェタン、 1, 1, 2, 2—テトラクロロェタン、 ペンタクロロェタン、 ク ロロベンゼン、 ジクロロベンゼン、 クロ口フルォロ炭化水素等があり、 この内、 ジクロロメ夕ンが好適である。
得られたクロ口フォーメートオリゴマーの一般式は、 以下の通りである。
Figure imgf000020_0001
[Ar\ Ar2:ァリ一レン基又は置換ァリーレン基 (同一又は異なっていて も良い) 、 X:アルキレン基又は置換アルキレン基、 η:平均重合度を示し、 1 〜: L 0の範囲である。 ]
上記一般式 (X) のクロ口フォーメート末端オリゴマーは有機溶媒溶液として 回収される。
(ii) 高分子量化反応用ブレポリマ一調製工程
高分子量化反応用プレボリマ一は、 高分子量化工程で行われるエステル交換反 応のために、 主としてフエニル基及び水酸基末端を有した重合度 5〜30のブレ ポリマーであり、 フエニル基末端と水酸基末端の割合は、 全末端の内、 フエニル 基末端が 30〜70mol%とするのが好ましい。 この範囲を超えると高分子量 化が不可能となる。 理想的には、 フエニル基末端が 40〜60mol%特に 50 mo 1 %またはその近傍とするのが良い。
この工程は、 上記 (i)の工程で得られたクロ口フォーメート末端オリゴマー を用いて、 上記のように重合度が 5〜30であり、 フエニル基末端割合が 30〜 70mol%である高分子量化反応用プレボリマーを得るために、
(a) モノヒドロキシァリール化合物を反応させた後にジヒドロキシ化合物を 反応させる方法
(b) モノヒドロキシァリール化^ l及びジヒドロキシ化合物を同時に反応さ せる方法
のいずれかの方法で反応を行なうものである。
上記方法 (a) においては、 先ずフエニル末端を導入するために、 モノヒドロ キシァリール化合物をクロ口フォーメ一ト末端ォリゴマ一 液に混合し、 1 0 〜: L 2 0分間、 より好ましくは 1 5〜9 0分間 jg攙拌しながら させる。 このとき、 硝酸銀滴定法等で測定された原料のクロロフォーメ一ト末端ォリゴ マー中のクロ口フォーメート基の l mo lに対して、 モノヒドロキシァリール化 ^を 0. 3〜0. 7 mo lの範囲で反応させることにより、 上記のフエニル基 末端割合を得ることができる。 モノヒドロキシァリール化^は水酸化アルカリ 水溶液の状態で混合することが好ましい。 モノヒドロキシァリール化^/を溶解 させる水酸化アル力リ水溶液の濃度は 5〜 1 Owt%程度が好ましく、 このときモ ノヒドロキシァリール化^ l mo lに対して 1 . 0〜3. O mo lの水酸化ァ ルカリを水溶液中に存在させる必要がある。
次に重合度の増力 I]及び水酸基末端の導入のために、 上記反応液にジヒドロキシ 化^を混合し、 同様に 5〜9 0分間、 より好ましくは 1 5〜9 0分間^攪拌 しながら反応させる。
このとき、 硝酸銀滴定法等で測定された原料のクロ口フォーメ一ト末端ォリゴ マー中のフロロフォーメート基の 1 mo 1に対して、 ジヒドロキシ化^を 2. 3- 1 6. 7 mo lの範囲で反応させることにより、 フエニル基及び水酸基末端 ポリカーボネートオリゴマ一を得ることができる。 ジヒドロキシ化^は水酸化 アルカリ水溶液の状態で混合することが好ましい。 ジヒドロキシ化^ を溶解さ せる水酸化アル力リ zk溶液の濃度は 5〜 1 0 wt%程度が好ましく、 このときジヒ ドロキシ化合物を中和することが可能な量の水酸化アル力リを、 水溶液中に存在 させる必要がある。
この方法 (a) においてテトラアルキルァミンなどの公知のエステル交換触媒 を添 することもできる。
次に上記方法 (b) について説明すると、 この方法 (b ) により、 同時にモノ ヒド口キシァリ一ル化 ^及びジヒドロキシ化合物を反応させて、 クロ口フォー メート末端ォリゴマ一からフェニル基及び水酸基末端ブレポリマーを製造する場 合には、 モノヒドロキシァリ一ル化^の水酸化アル力リ水溶液及びジヒドロキ シ化合物の水酸化アル力リ水溶液を同時に原料のクロロフォーメート末端ォリゴ マー反応液に混合し、 1 0〜1 2 0分間、 より好ましくは 1 5〜9 0分間程度攪 拌しながら反応させれば良い。
この方法 (b) においてもテトラアルキルァミンなどの公知のエステル交換触 媒を添加することもできる。
方法 (a) または (b) により製造された高分子量化反応用ブレポリマーは、 "^式 (XI)、 (XII)、 (XIII) で示される。
0 0
Γ II π II
3—〇十 c-0- 1- X- 2- Q~5~C-0- Ar3 (X I ) o o
H〇一Ar1— X— Ar2-〇十 C— O-Ar1- X- Ar2-Q"^ C—〇- Ar3 (X I I )
〇 〇
HO— Ar1 -X X I I I )
Figure imgf000022_0001
[Ar\ Ar2、 Ar3:ァリーレン基又は置換ァリーレン基 (同一又は異な つていても良い) 、 X:アルキレン基又は置換アルキレン基、 n:平均重合度を 示し、 5〜30の範囲である。 ]
上記のブレポリマーはハロゲン系溶媒溶液として得られる。 公知の界面重合法 と同様に、 未洗浄状態で高分子量化のために加熱すると著しい品質低下を示すた め、 プレボリマー溶液はアルカリ水溶液、 酸水溶液及び純水により洗浄を行い、 電解質成分を除去しておく必要がある。
以上、 本発明者らが見い出した、 界面重合法による新規ポリカーボネートオリ ゴマ一 (プレボリマ一) の製造方法について説明してきたが、 この新規方法で得 られたオリゴマー (プレボリマ一) は、 後記する方法 Iの膨潤固相重合法はもち ろん、 後述する方法 IIの膨潤固相重合法や従来公知の不活性ガス気流下の固相重 合によっても高分子量化されてポリカーボネートを与える。
上記溶融エステル交換法又は界面重合法で得られたポリカーボネートオリゴマ 一は、 I»の固相重合法と同様に、 これをフレーク化した後、 膨潤固相重合に付 するのが好ましい。 そこで、 このフレーク化について以下に説明する。
ポリカーボネートオリゴマ一のフレーク化は公知の方法で行なうことができる 例えば、 転動造粒法、 押し出し造粒法、 圧縮造粒法、 溶融造粒法、 噴霧乾燥造粒 法、 流動層造粒法、 破砕造粒法、 攪拌造粒法、 ?液相造粒法、 真空凍結造粒法など が使用可能であり、 これらを組み合せでフレーク化を行うこともできる。
フレークの幵 としては、 特に制限はないが、 操作性からペレヅ ト状、 ビーズ 状、 顆粒状、 粉末状が好ましい。 さらには¾¾钿粒子の ί¾¾体や多孔質体が好まし く、 溶融エステル交換反応でオリゴマーを製造した場合には微細粒子を生成、 凝 集させる方法を単独でまたは上記の方法と組み合せて使用するのが好ましい。 ま た、 膨潤固相重合で使用する 溶媒にオリゴマーを—度溶解し、 そこへポリ力 —ポネートに対する貧溶媒を混合しながらフレーク化する攪拌造粒法等も有効で ある。 粒子の比表面積としては 0. 1 0〜30m2/g以上が好ましい。 この比 表面積が 3 0m2/gを超えると嵩密度の減少等が生じ、 機器の有効 を拡大 する必要等の問題を生じる。
さらに、 次工程で使用する膨潤溶媒 (種類については後述) にオリゴマーを一 度溶解 (又は溶媒置換) し、 その溶液を冷却と同時に成形する方法で析出微粒子 を凝集させたペレヅトゃ溶液を 30°C以上に温度コントロールされた水中で冷却 することによって析出微粒子が凝集した真球状粒子なども好適であることが確認 されている。
フレークの粒径は操作性と膨潤固相重合での膨潤溶媒ガス流通速度に影響を及 ぽすので、 その粒径は 1 0ミクロン〜 1 0 cmの範囲内とすることが好ましく、 特に 1 0 0ミクロン〜 1 cmの範囲内とすることが好ましい。 粒径が 細すぎる と膨潤溶媒ガスの流通とともに微粉が同伴され、 バルブや配管の閉塞や、 溶媒回 収工程への悪影響等が生じる可能性がある。 また、 粒径が大きくなると溶媒の拡 I ^離が増大し、 I»効果が得られないために が長時間化する。
フレーク化条件は、 オリゴマー分子量や造粒法、 また、 溶媒を使用する系では 使用する溶媒の種類および沸点により異なる。 敢えて挙げるならば、 ¾2 0°C 以上程度である。 得られたフレークは特別の乾燥処理を行なうことなく膨潤固相 重合に用いることができる。
以上、 フレーク化について説明してきたが、 方法 Iにおいては、 従来の固相重 合に要求されるような結晶化操作を省略することができ、 これにより工程の簡略 化によるメリヅトが得られる。
(B) 膨潤固相重合
この膨潤固相重合は、 方法 Iの中核となるものであり、 上記ポリカーボネート オリゴマーを »|溶媒ガスを含む雰囲気下に固相重合することからなるものであ この膨潤固相重合は、 副生するフェノール類のような低分子化合物を脱気また は抽出除去する場合、 膨潤状態にある高分子 (オリゴマーおよびその高次重合物) から低分子化合物を脱気または抽出除去する方が、 高粘度溶融高分子や結晶化し た固体からの脱気または抽出除去よりも物質移動速度が速くなり、 高効率である という着想のもとに、 高分子 (オリゴマーおよびその高次重合物) を 状態に するため M溶媒ガスを用いたことをボイントとする。
方法 Iの膨潤固相重合によれば、 膨潤溶媒の吸収により、 カーボネート分子鎖 の移動性が改善され、 反応速度が飛躍的に向上する (化学反応律速が著しく改善 される) と同時に、 副生フエノール類が高効率で除去されることによつても反応 速度が大きく改善される。 その結果、 溶融エステル交換法に比べて反応の低温度 化が可能となり、 ポリ力一ポネート品質を向上させることができる。 また従来の 固相重合法はもとより溶融エステル交換法に比較しても大幅な反応時間の短縮が 可會 となる。
従来の固相重合法を開示する特開平 1— 1 5 8 0 3 3号公報には、 ポリカーボ ネートオリゴマーの固相重合に際して反応器に窒素、 アルゴン、 ヘリウム、 二酸 化炭素などの不活性ガスや、 低級炭化水素ガスを導入してもよいことが記載され ている。
しかし、 これらのガスは、 あくまで反応器内の気相における副生フエノール類 の分圧を低下させる (粒子内における副生成物拡散律速を改善する) 効果しかな く、 方法 Iで用いる膨潤溶媒ガスによってもたらされる効果、 すなわちオリゴマ —を膨潤させ副生フェノ一ル類の留去を促進させて反応速度を飛躍的に向上させ るという顕著な効果を発揮することはできない。
方法 Iで使用する膨潤溶媒は、 これがガス化したときにポリカーボネートオリ ゴマ一およびその高次重合物を重合反応条件下で膨潤状態にすることが可能な溶 媒を意味する。
ここに上記「膨潤状態」 とは、 重合反応条件下においてポリカーボネートオリ ゴマ一およびその高次重合物が膨潤溶媒の吸収により体港的にまたは重量的に増 加した状態を意味する。
ただし、 ある溶媒がポリカーボネートオリゴマーあるいはその高次重合物を 「 状態」 にし得るものであるか否かを確認することは、 実操作においては困 難であるので、 方法 Iでいう 「ボリカーボネートオリゴマーおよびその高次重合 物を重合反応条件下で膨潤状態にすることが可能な溶媒」であるかどうかは、 間 接的に下記 (a) または (b ) の方法によって判定する。
( a) ポリ一力一ポネートについての標準的な試料、 すなわち、 界面重合法によ つて得られた粘度平均分子量 2 2 0 0 0、 結晶化度 0. 5 %の非晶質ポリカーボ ネート (ガラス転移点 1 47〜: L 4 8。C) を 2 x 5 x 0. 3 c mのプレート状に 膨し (以下、 この成形物を 「試料」 という。 ) 、 この試料を被検溶媒 (蒸気ま たはガス) で満たされた 2 0 0。C (大気圧条件下) の容器に仕込んでその体積変 化を経時的に測定したときに、 前記容器への仕込みから所定時間後における前記 試料の体積が溶媒の吸収によって初期の体積 (仕込み前の体積;室温下) よりも 熱膨潤状態以上に実質的に増加しているかどうかを測定し (結晶化による比容減 少を含める。 ) 、 実質的に増加しているものを方法 Iでいう 「ポリ力一ポネート ォリゴマ一およびその高次重^?を重合 条件下で膨潤状態にすることが可能 な溶媒」 とする。
参考として、 溶媒としてトルエンおよび p—キシレンを用いたときの測定結果 と溶媒の代わりに窒素ガスを用いたときの測定結果をそれそれ第 1図に示す。 第 1図より、 トルエンおよび p—キシレンの場合、 1〜3時間後における試料の体 積は初期の体積 (室温下) の大略 1 1 0〜1 3 0%であり、 窒素ガスを用いたと きの同時間における試料の体積が初期の■の 1 0 7 %であることから、 これら トルエンおよび p—キシレンは方法 Iでいう 「ポリカーボネートオリゴマーおよ びその高次重合物を重合反応条件下で膨潤状態にすることが可能な溶媒」 として 位置づけられる。
(b) 上記方法 (a) と同条件で試料の重量変化を測定し、 前記試料の重量が被 衡容媒を吸収したことによって初期の重量 (仕込み前の重量) より実質的に増加 しているかどうかを判定して、 実質的に増加しているものを方法 Iでいう 「ポリ カーボネートオリゴマーおよびその高次重合物を重合反応条件下で膨潤状態にす ることが可能な溶媒」 とする。
また、 方法 Iにおいては、 上記 (a) と同条件で試料の結晶化度を測定したと きに、 被衡容媒の吸収、 により 1%/hrより大きい で結晶化度が上昇 する溶媒も、 本発明でいう 「ポリカーボネートオリゴマーおよびその高次重合物 を重合反応条件下で M状態にすることが可能な溶媒」 に含めるものとする。
«I溶媒は、 上記「膨潤状態」 を形成し得るとともに、 重合反応条件下に完全 に気化する沸点または相応の蒸^ JBE (50mmHg以上、 好ましくは 200mm Hg以上) を有し、 かつ、 粘度平均分子量が 22000で結晶化度が 0. 5%で あるペレヅト状の非晶質ポリカーボネートを密閉系内において 135。Cの温度条 件下に 1. 5〜50%溶解させ得るものが好ましい。
ここで、 上記「ペレット状の非晶質ポリカーボネート」 とは、 ポリ一カーボネ —トについての標準的な試料、 すなわち、 界面重合法によって得られた粘度平均 分子量 22000、 結晶化度 0. 5%の非晶質ポリカーボネート (ガラス転移点 147〜148。C) を、 直径 2. 5mm,長さ 3. 5mmのペレットに腿した ものを意味する。 また、 当該ペレット状の非晶質ポリカーボネートを 「密閉系内 において 135。Cの温度条件下に 1. 5〜50重量%溶解させ得る溶媒」 とは、 前記ペレツト状の非晶質ポリカーボネートと一緒に当該非晶質ポリカーボネート の 1〜20倍量を密閉可能な容器に入れて 135 °Cで 2時間保持したときに、 上 澄液中に前記の非晶質ポリ力一ボネ一トを 1. 5〜50重量%溶解させることが できる溶媒を意味する。 このときの密閉可能な容器は何でもよく、 密閉時におけ る当該容器内の雰囲気は主として前記溶媒の蒸気である。 溶解度は、 予め加熱し ておいたガラス管中または金属管中に、 上記の上澄液をその圧力をコントロール しながら抜き出し、 溶媒をその沸点に応じて大略 110〜200°Cで ME下に乾 燥して、 その重量変化から算出する。
上記の膨潤溶媒としては、 例えば、 溶解度パラメータ一が 4〜20 (cal/ cm3) 1/2、 好ましくは 7〜: L4 (cal/cm3) 1/2の芳香族ィ匕 ^や含酸素 化^が該当する。 芳香族化^としては、 ベンゼン、 トルエン、 キシレン、 ェ チルベンゼン、 ジェチルベンゼン、 ブロビルベンゼン、 ジブ口ビルベンゼン、 ブ チルベンゼン、 メチルスチレン、 ィゾブ口ピルベンゼン、 イソブチルベンゼン、 シメン、 テトラメチルベンゼン、 テルフエニルなどの炭素数 6〜20の芳香 化水素が挙げられる。 含酸素化^ Jとしては、 テトラヒドロフラン、 ジォキサン、 ァニソ一ル、 フエネトール、 フランなどのエーテル類;メチルェチルケトン、 メ チルイソブチルケトン、 メチルイソプロビルケトン、 ペン夕ノンなどのケトン類 などが挙げられる。 溶媒としては炭素数 6〜20の芳香族炭化水素を用いる のが特に好ましい。 これらの 溶媒は^ ί虫で用いてもよく、 2種以上混合して 用いてもよい。
方法 Iにおいては、 膨潤状態をコントロールするために、 上述の膨潤溶媒を含 む雰囲気に、 ポリカーボネートオリゴマーまたはその高次重合物に対する貧溶媒 のガスおよび/または不活性ガスを加えることができる。 貧溶媒は、 重合反応条 件下で当該溶媒へのポリカーボネートオリゴマーまたはその高次重合物の溶解度 が 0. 1重量%以下であり、 かつ重合反応に関与しないものである必要がある。 このような貧溶媒としては、 炭素数 5〜20、 より好ましくは 5〜10の環状炭 化水素、 炭素数 4〜: 18、 より好ましくは 6〜 12の直鎖または分岐鎖馳炭ィ匕 7k素または炭素数 4〜: I 8、 より好ましくは 6〜: I 0の iffiS不飽和炭化水素が挙 げられる。 貧溶媒も単独で用いてもよく、 2種以上混合して用いてもよい。 不活 性ガスとしては、 ヘリウム、 アルゴン、 窒素、 二酸化炭素、 メタン、 ェタン、 ブ 口パン、 エチレン、 プロピレンなどの炭素数 1〜3の炭化水素が用いられる。 膨潤溶媒ガスを含む雰囲気が膨潤溶媒ガスとともに貧溶媒のガスを含む場合に は、 膨潤溶媒と貧溶媒との割合は、 1/99〜: LOO/0 (wt/wt)である のが好ましく、 20/80〜: LOOZO (wt/Vt)であるのが特に好ましい c 溶媒ガスを含む雰囲気が膨潤溶媒ガスとともに不活性ガスを含む場合には、 膨潤溶媒ガスと不活性ガスの割合 (反応温度条件における体積比) は 1 99〜 100/0 (vol/vol)であるのが好ましく、 5/95〜: L00/Q
(vo 1/vol)であるのが特に好ましい。
膨潤溶媒および貧溶媒が共に沸点が 250°Cを超えると残留溶媒の除去が難し くなり、 品質が低下する可能性があるので、 膨潤溶媒および貧溶媒共に沸点が 2 5 CTC以下が好ましい。
なお、 zk酸基、 カルボキシル基、 アミノ基、 アミド基、 シァノ基、 ニトロ基 スルホン基等の比較的水素結合性の高い官能基を有した溶媒は 1 5 OeCを超える 重合温度でエステル交換反応に関与する可能性があることから、 使用するべきで はない。 さらに環境面からハロゲン系溶媒の使用も好ましくない。
この膨潤固相重合は、 温度 1 0 0°C〜ォリゴマーの融点の範囲内で、 圧力 1 0 T o r r〜 5 k g/c m2Gで実施するのが好ましい。 反応温度が 1 00。C未満 と低すぎるとエステル交換反応が進行せず、 一方反応 がォリゴマーの融点を 超える高 件では膨潤固相状態を維持しにくく、 粒子間で融着等の現象が生じ、 運転操作性が著しく低下する。 は、 1 80〜2 9 0。Cが好ましく、 1 5 0〜2 2 0。Cが特に好ましく、 反応圧力は大気圧が特に好ましい。 なお、 上記の 条件は反応容器入口で測定したォリゴマーの ί¾を意味し、 上記の反応 圧力条件は反応容器のガス出口で測定した圧力を意味する。
オリゴマ一のガラス転移点から融点までの で重合を開始し、 一定 条件 下または反応温度条件下に重合を行うか、 または反応の進行に伴って昇温しなが ら重合を行うのが特に好ましい。
この 固相重合での重合腿は、 ォリゴマ一製造時に添加して残存している ものをそのまま使用してもよい。 しかし重^某を粉末、 液体あるいは気体状態 で膨潤固相重合時に再度添加する方が固相重^ ISがさらに向上する点で好まし い。 また、 必要に応じて末端停止剤を粉末、 液体あるいは気体状態で添加するこ とにより品質を向上させることも可能である。
このような末端停止剤の具体例としては、 o— n—ブチルフエノール; m—n 一ブチルフエノール; p— n—ブチルフエノール; o—ィソブチルフエノ一ル; m—イソブチルフエノール; p—イソブチルフエノール; o—t—ブチルフエノ —ル; m— t—ブチルフエノール; p— t—ブチルフエノール; o— n—ペンチ ルフエノール; m— n—ペンチルフエノール; p— n—ペンチルフエノール; o 一 n—へキシルフェノール; m— n—へキシルフエノール; p _ n—へキシルフ エノ一ル; o—シクロへキシルフェノール; m—シクロへキシルフェノール; p —シクロへキシルフエノ一ル; o—フエニルフエノール; m—フエニルフエノ一 ル; p—フエニルフエノール; o— n—ノニルフエノール; m—n—ノニルフエ ノール; p— n—ノニルフエノール; o—クミルフエノール; m—クミルフエノ —ル; p—クミルフエノール; o—ナフチルフエノール; m—ナフチルフエノ一 ル; p—ナフチルフエノール; 2 , 6—ジー t—ブチルフエノール; 2 , 5—ジ —t一ブチルフエノール; 2 , 4—ジー t一ブチルフエノール; 3, 5—ジー t 一ブチルフエノール; 2, 5—ジクミルフエノール; 3, 5—ジクミルフエノー ル;式
Figure imgf000029_0001
で表される化^や、 クロマン誘導体として、 例えば、 式
Figure imgf000029_0002
で表される化合物等の一価フエノールが挙げられる。
このようなフエノール類のうち、 p— t—ブチルフエノール; p—クミルフエ ノール; p—フエニルフエノールなどが好ましい。 また、 式
Figure imgf000030_0001
(式中、 nは 7〜30の整数 (式中、 R7は炭素数 1〜7の
である) アルキル基、 kは 1〜3の
整数である) で表される化合物等を用いることができる。
»1溶媒ガスまたは膨潤溶媒ガスと貧溶媒ガスとの混合ガスの供給は、 膨潤溶 媒または jra溶媒と貧溶媒を液体状態で反応器に供給し反応器内で気化させても よい。 またあらかじめ熱交^!等により気化させた後、 器に供給してもよい。 また膨潤溶媒ガスと不活性ガスとの混合ガスの供給は、 膨潤溶媒と不活性ガスを 反応器に供給し、 ¾■、器内で 溶媒を気ィ匕させてもよく、 またあらかじめ膨潤 溶媒ガスを気化させた後、 不活性ガスと混合して反応器に供給してもよい。 膨潤 溶媒ガスまたは膨潤溶媒ガスと 容媒ガスおよび/または不活性ガスとの混合ガ スの流通方向はオリゴマーの雰囲気ガスが置換できれば、 垂直方向上方から、 ま たは下方から、 あるいは水平方向に流通させても良い。 反応器の形状によりガス の供給口は一箇所以上であつても良く、 流通方向を組み合わせることや流通箇所 を 1¾¾することも可能である。
溶媒ガスまたは膨潤溶媒ガスと貧溶媒ガスおよび/または不活性ガスとの 混合ガスの供給量としては、 空 ί§¾準による反応器内でのガスの流通線速度で 0. 00 l〜500cm/secであれば良く、 好ましくは 0. 01〜200cm/ secがよい。 前記の流通線 J が 500cm/secを超えると、 固相重合し ようとするオリゴマーの粒径をフレーク化によって 1 Ocmにしても当該オリゴ マーが流動状態になるため、 固^型反応器等で流動化が起こりプラグフロ ~½ が維持できなくなる。 ,溶媒ガスまたは rai溶媒ガスと 媒ガスおよび/ま
Figure imgf000031_0001
副生フエノー ル類の除去効果と同時に熱媒体としての作用もしているため、 ガスの流通量の増 加にともない反応速度が向上する。 また、 熱媒体効果によりジャケット等の伝熱 部と内部粉体との 差を減らすことができ、 伝熱部での融着 mm等を防止する ことが可倉である。
このような反応に用 >られる反応器に特に制限はない。 従来の攪拌槽型反応器 からタンブラ一型、 キルン型、 パドルドライヤー型、 スクリュウコンベア型、 振 動型、 流動床型、 固^型、 移動床型等の^:、器を用いることが可能であり、 こ れらを単独で使用することも組み合わせて使用することも可能である。
高分子量化したポリカーボネートの乾燥およびペレツト化工程は、 t»の方法 が使用可能であり、 特に制限はない。 末端停止剤、 酸化防止剤などの添加剤を混 合する場合には乾燥前後に直接、 フレークに添加剤粉末をまぶすか、 液体を噴霧、 気体を吸収させることができる。 また、 ペレヅト化時に押し出し機で混合するこ ともできる。 末端停止剤としては上で例示したものが用いられる。
また酸ィ匕防止剤としては、 具体的には、 トリ (ノニルフエニル) ホスファイト、 2—ェチルへキシジフエニルホスファイトの他、 トリメチルホスファイト、 トリ ェチルホスファイ ト、 トリブチルホスファイト、 トリオクチルホスファイト、 ト リノニルホスファイト、 トリデシルホスファイト、 トリオクタデシルホスフアイ ト、 ジステアリルペン夕エリスチルジホスファイト、 トリス (2—クロロェチル) ホスファイト、 トリス (2, 3—ジクロロブ口ビル) ホスファイトなどのトリァ ルキルホスフアイ ト ; トリシクロへキシルホスフアイトなどのトリシクロアルキ ルホスファイ ト ; トリフエニルホスファイト、 トリクレジルホスファイト、 トリ ス (ェチルフエニル) ホスフアイト、 トリス (ブチルフエニル) ホスフアイ ト、 トリス (ノニルフエニル) ホスファイト、 トリス (ヒドロキシフエニル) ホスフ アイ トなどのトリァリールホスファイト ; トリメチルホスフェート、 トリェチル ホスフェート、 トリブチルホスフェート、 トリオクチルホスフェート、 トリデシ ルホスフェート、 トリオクタデシルホスフェート、 ジステアリルペン夕エリスリ チルジホスフェート、 トリス (2—クロロェチル) ホスフェート、 トリス (2, 3—ジクロロブ口ビル) ホスフェートなどのトリアルキルホスフェート; トリシ クロへキシルホスフェートなどのトリシクロアルキルホスフェート; トリフエ二 ルホスフェート、 トリクレジルホスフェート、 トリス (ノニルフエニル) ホス フエ一ト、 2—ェチルフエニルジフエニルホスフェートなどのトリアリールホス フェートなどが挙げられる。
次に、 本発明の方法 IIについて説明する。
前述のように、 本発明の方法 IIは、
(C) 出発物質としてポリカーボネートオリゴマーを用い、
(D) 該ポリカーボネートオリゴマーを貧溶媒ガスの流通下に固相重合 (以下、 容媒固相重合ということがある) する
ことを とするものであるので、 先ず (C) 出発物質であるポリカーボネート オリゴマーについて説明し、 次いで (D) H容媒固相重合について説明する。
(C) ポリカーボネートオリゴマー
方法 IIにおいて出発物質であるポリカーボネートオリゴマーとしては、 既に説 明した本発明の方法 Iにおいて使用するポリカーボネートオリゴマーと同様にし て得たものを使用することができる。
ただし、 当該ポリカーボネートオリゴマーは、 粘度平均分子量が約 1 , 5 0 0 〜約 1 5, 0 0 0であるのが好ましく、 約 3 , 00 0〜約 1 0 , 0 0 0であるの が特に好ましい。 ポリカーボネートオリゴマーの分子量が低いと、 融点が低下し、 後記する貧溶媒固相重合温度を低下させる必要が生じ、 反応速度が低下する。 ま たオリゴマーの分子量が低い場合、 反応 を低くすると、 オリゴマーが湿潤し、 粒子の含液率が高くなり、 貧溶媒使用による効果が現われにくくなる。 従って、 少なくとも溶媒の沸点以上の融点を有するオリゴマーを使用する必要がある。 ォ リゴマーの融点を高めるため、 加熱処理、 アセトン処理などの処理を行なっても よい。
ポリカーボネートオリゴマーの末端比率は、 方法 Iにおけると同様に、 フエ二 ルカ一ポネート末端: 7k酸基末端 = 1 : 4〜4 : 1の範囲であるのが好ましい。 その理由は、 末端比率がこの範囲外であると、 最終的に固相重合後に得られるポ リカーボネートの到達分子量が制限され、 望まれる高分子量ィ匕が困難になるから である。 末端比率は 1 : 1 . 5〜1 . 5 : 1の範囲であるのが特に好ましい。 上記ポリカーボネートオリゴマーは、 従来の固相重合法と同様に、 これをフレ ーク化した後、 貧溶媒固相重合に付するのが好ましい。 ボリカーボネートオリゴ マーのフレーク化は、 方法 Iにおけると同様に、 公知の方法で行なうことができ る。例えば、 転動造粒法、 押し出し造粒法、 圧縮造粒法、 溶融造粒法、 噴霧, 造粒法、 流動層造粒法、 破砕造粒法、 攪拌 法、 液相 法、 真空 造粒法 などが使用可能である。 また、 固相重合で使用する 容媒にオリゴマーを分散さ せ、 フレーク化する攪拌造粒法等も有効である。
フレークの开 としては、 特に制限はないが、 操作性からペレヅト状、 ビーズ 状、 顆粒状、 粉末状が好ましい。 さらには wa粒子の 体や多孔質体が好まし く、 溶融エステル交換反応でオリゴマーを製造した場合には微細粒子を生成、 凝 集させる方法を単独でまたは上記の方法と組み合せて使用するのが好ましい。粒 子の比表面積としては、 方法 Iにおけると同様に 0. 1 0〜3 0 m2/gが好ま しい。 この比表面積が 3 0m2/gを超えると嵩密度の減少等が生じ、 機器の有 効^を拡大する必要等の問題を生じる。
フレークの粒径は操作性と貧溶媒固相重合での貧溶媒ガス流通速度に影響を及 ぽすので、 1 0ミクロン〜 1 O c mの範囲内とすることが好ましく、 特に 1 0 0 ミクロン〜 1 c mの範囲内とすることが好ましい。 粒径が «すぎると貧溶媒ガ スの流通とともに微粉が同伴され、 バルブや配管の閉塞や、 溶媒回収工程への悪 影響等が生じる可能性がある。 また、 粒径が大きくなると溶媒の拡 i¾¾離が増大 し、 貧溶媒による効果が得られないために反応が長時間化する。
フレーク化条件は、 オリゴマー分子量や造粒法、 また、 溶媒を使用する系では 使用する溶媒の種類および沸点により異なる。 敢えて挙げるならば、 2 0°C 以上程度である。
方法 I Iにおいては、 従来の固相重合に要求されるような結晶化操作を特に必要 とせず、 これにより工程の簡 匕によるメリットが得られる。
(D ) 貧溶媒固相重合
この貧溶媒固相重合は、 方法 I Iの中核となるものであり、 上記ポリカーボネー トオリゴマーを貧溶媒ガスの流通下に固相重合することからなるものである。 方法 I Iの 媒固相重合によれば、 貧溶媒の ¾ 下に重合反応を行なうことに より、 副生フエノール類が高効率で除去される。 その結果反応速度が飛躍的に向 上するので、 溶融エステル交換法に比べて反応の低温度化が可能となり、 ポリ力 —ボネート品質を向上させることができる。 また従来の固相重合法はもとより溶 融エステル交換法に比較しても大幅な反応時間の短縮が可食 となる。
また方法 IIの貧溶媒固相重合によれば、 貧溶媒ガスがォリゴマ一およびその高 次重合物の融着を防止する効果を有するので、 融着を起すことなく円滑に重合反 応を行なうことができる。
従来の固相重合法を開示する特開平 1一 1 5 80 3 3号公報には、 ポリカーボ ネートオリゴマーの固相重合に際して反応器に窒素、 アルゴン、 ヘリウム、 二酸 化炭素などの不活性ガスや、 低級炭化水素ガスを導入してもよいことが記載され ている。
しかし、 これらのガスは、 あくまで反応器内の気相における副生フエノール類 の分圧を低下させる効果しかなく、 方法 IIで用いる貧溶媒ガスによってもたらさ れる効果、 すなわち副生フエノール類の留去を促進させて反応速度を飛躍的に向 上させ、 かつポリマーの融着を防止するという顕著な効果を発揮することはでき ない。
容媒は、 重合条件下に完全に気化する沸点または 5 OmmH g以上、 好まし くは 2 O OmmH g以上の蒸気圧を有し、 重合反応条件下で当該溶媒へのポリ力 —ポネートオリゴマ一またはその高次重合物の溶解度が 0. 1重量%以下である ものが好ましい。 また溶解度パラメ一夕一が 4〜: L 0 ( c a l /c m3) 1/2、 特 に 4〜8 ( c a l /c m3) 1/2であるものが好ましい。
ここで、 ある溶媒がポリ力一ポネートオリゴマーあるいはその高次重合物に対 して方法 IIでいう貧溶媒であるか否かを 、することは、 実操作においては困難 であるので、 方法 I Iでいう 「貧溶媒」であるかどうかは、 問接的に次の方法によ つて判定する。
先ず、 ポリ一カーボネートについての標準的な試料、 すなわち、 界面重合法に よって得られた粘度平均分子量 2 2 0 0 0、 結晶化度 0. 5 %の非晶質ポリカー ボネート (ガラス転移点 1 4 7〜: L 4 8。C) を直径 2. 5 mm, 長さ 3 · 5 mm のペレヅトに し、 このペレヅトと当該ペレヅトの 1〜2 0倍量の被ネ總媒と を密閉可能な容器に入れて 1 3 5°Cで 2時間保持したときに、 上澄液中への前記 非晶質ポリカーボネートの溶解度が 0. 1重量%以下であるか否かによって被検 溶媒が方法 I Iでいう 「貧溶媒」であるか否かを判定する。 このときの密閉可能な 容器は何でもよいく、 密閉時における当該容器内の雰囲気は主として編 3溶媒の 蒸気である。 溶解度は、 予め加熱しておいたガラス管中または金属管中に、 上記 の上澄液をその圧力をコントロールしながら抜き出し、 溶媒をその沸点に応じて 大略 1 1 0〜2 0 0°Cで減圧下に乾燥して、 その重量変化から算出する。
上記の貧溶媒としては、 炭素数 5〜2 0、 より好ましくは 5〜 1 0の環状炭ィ匕 水素、 炭素数 4〜1 8、 より好ましくは 6〜 1 2の直鎖または分岐鎖醜炭化水 素または炭素数 4〜 1 8、 より好ましくは 6〜 1 2の低度不飽和炭化水素が挙げ られる。 貧溶媒は単独で用いてもよく、 2種以上混合して用いてもよい。
貧溶媒は沸点が 2 5 0°Cを超えると残留溶剤の除去が難しくなり、 品質が低下 する可能性があるので、 貧溶媒の沸点は 2 5 0°C以下が好ましい。
なお、 7酸基、 カルボキシル基、 アミノ基、 アミド基、 シァノ基、 ニトロ基、 スルホン基等の比較的水素結合性の高い官能基を有した溶媒は 1 5 0°Cを超える 重合温度でエステル交換反応に関与する可能性があることから、 使用するべきで はない。 さらに環境面からハロゲン系溶媒の使用も好ましくない。
この貧溶媒固相重合は、 温度 1 0 0。C〜オリゴマーの融点の範囲内で、 圧力 1 O T o r r
Figure imgf000035_0001
しい。 反応温度が 1 0 0°C未 満と低すぎるとエステル交換反応が進行せず、 一方反応温度がォリゴマーの融点 を超える高 件では固相状態を維持しにくく、 粒子間で融着等の現象が生じ、 運転操作性が著しく低下する。 反応温度は 1 5 0〜2 2 0。Cが特に好ましく、 反 応圧力は大気圧が特に好ましい。 なお、 上記の反応温度条件は反応容器入口で測 定したォリゴマーの温度を意味し、 上記の反応圧力条件は反応容器のガス出口で 測定した圧力を意味する。
この 容媒固相重合での重^?某は、 ォリゴマー製造時に添加して残存してい るものをそのまま使用してもよいが、 固相重合時に重合 某を粉末、 液体あるい は気体状態で再度添加するのが好ましく、 これにより固相重^ ¾sがさらに向上 する。
また必要に応じて末端停止剤を粉末、 液体あるいは気 態で添加して貧溶媒 固相重合することも可能である。 このような^ ¾停止剤の具体例としては、 方法
Iについての説明の中で例示したものと同じものが挙げられる。
貧溶媒ガスの供給は、 貧溶媒を液体状態で反応器に供給し反応器内で気化させ ても、 あらかじめ熱交 等により気化させた後、 器に供給してもよい。 ま た、 貧溶媒ガスの流通方向はオリゴマーの雰囲気ガスが置換できれば、 垂直方向 上方から、 または下方から、 あるいは水平方向に流通させても良い。 器の形 状によりガスの供給口は一箇所以上であっても良く、 流通方向を組み合わせるこ とや流通箇所を限定することも可能である。
貧溶媒ガス供給量としては、 空塔基準による反応器内での流通! ¾¾gで 0. 0 0 l S O O c mZs e cであれば良く、 好ましくは 0. 0 1〜2 0 0 c m/s e cがよい。 前記の流通 度が 5 0 0 c m/s e cを超えると、 固相重合しよ うとするオリゴマーの粒径をフレーク化によって 1 O c mにしても当該オリゴマ —が流動状態になるため、 固定床型反応器等で流動化が起こりブラグフロー性が 維持できなくなる。 貧溶媒ガスの流通量は反応速度と密接に関係し、 副生フエノ ール類の除去効果と同時に熱媒体としての作用もしているため、 ガスの流通量の 増加にともない反応速度が向上する。 また、 熱媒体効果によりジャケット等の伝 熱部と内部粉体との 差を減らすことができ、 伝熱部での融着現象等を防止す ることが可能である。
このような反応に用いられる反応器に特に制限はない。 の攪 型反応器 からタンブラ一型、 キルン型、 パドルドライヤー型、 スクリュウコンベア型、 振 動型、 流動床型、 固定床型、 移動床型等の反応器を用いることが可能であり、 こ れらを単独で使用することも組み合わせて使用することも可能である。
高分子量化したポリカーボネートの乾燥およびペレツト化工程は、 従来の方法 が使用可能であり、 特に制限はない。 末端停止剤、 酸化防止剤などの添加剤を混 合する場合には乾燥前後に直接、 フレークに添加剤粉末をまぶすか、 液体を噴霧、 気体を吸収させることができる。 また、 ペレット化時に押し出し機で混合するこ ともできる。 末端停止剤としては上で示したものが用いられる。 また酸化防止剤 としては、 具体的には方法 Iについての説明の中で例示したものと同じものが挙 げられる。
以下、 実施例により本発明を更に説明するが、 本発明は以下の実施例に限定さ れるものではない。
mi (方法 ιによるポリカーボネートの製造)
(1) ボリカーボネートオリゴマーの調製
挽拌機、 不活性ガス導入管、 フエノールガス排出管を備えた 1リヅトル容量の オートクレーブに、 ビスフエノール Aすなわち 2, 2—ビス (4ーヒドロキシフ ェニル) プロパン 2283gとジフエニルカーボネート 2249gを仕込み、 真 空脱気および窒素導入を繰り返した後、 18 OeCに加熱して内容物を完全に溶融 させた。 再度、 真 気および窒素導入を行った後に、 触媒である NaOHおよ び TMAH (テトラメチルアンモニゥムヒドロキシド) をそれそれ 0. 0025 molおよび 0. 000 lmolずつ水溶液の状態で添加し、 反応を開始した。
^開始と同時に副生フエノールを系外に除去するために圧力を 1 OOmmHg まで減圧し、 240 まで昇温しながら1. 5時間反応させた。 さらに真空度を Ι ΟΤΟΓΓまで徐々に下げながら を 290。Cまで昇温し、 1. 5時間 させた。 反応終了後、 窒素で反応器内を大気圧にもどし、 少量ずつ内容物を取り 出し、 水中へ滴下することによって固化させた。 この固体となったオリゴマーを さらにクラヅシャ一で粉砕し、 平均粒径 0. 6∑11111の粉末を2430 得た。 こ のォリゴマーの粘度平均分子量は 6330であった。 またこのォリゴマーのフエ 二ルカ一ボネート末端および水酸基末端はそれそれ 53および 47 mo 1 %であ り、 フエ二ルカ一ポネート末端:水酸基末端 = 1. 13 : 1. 0であった。
( 2 ) 高分子量ポリカーボネートの製造
このようにして得られたォリゴマ一粉末を 220°Cに加熱した直径 5 c m、 長 さ 30 c mの燃焼管に 100 g仕込み、 それと同時に予め 220°Cに加熱された トルエン (膨潤溶媒;溶解度パラメ一ター =8. 9 (cal/cm3) 1/2) を 0. 024 cm/s e cの速度 (反応容器内での空塔基準の流通線速度を意味する。 以下同じ。 ) の下に、 上記オリゴマー粉末 lg当たり 0. 0049リヅトル (標 準状態) /hrの割合で供給し、 膨潤固相重合を開始した。 反応は経時的にサン プリングしながら 3時間行った。 結果を表 1に示した。 重合反応は迅速に行なわ れ、 得られたポリカーボネートの粘度平均分子量は 16523であり、 オリゴマ 一の粘度平均分子量の 2. 61倍であった。 得られたポリカーボネートサンブル を溶融圧縮し、 プレート成形して得た成形品は着色がなく、 無色透明であった。
龍例 2 (方法 Iによるポリカーボネートの製造)
膨潤固相重合の直前にさらに■として N a OHを 水酸基に対して 1 X 1 0"6πιο 1加えて ¾:、させた以外は 例 1と基本的に同様に ¾5Sした。 結果を 表 1に示した。 得られたポリカーボネートの分子量は 24655であり、 実施例 1のポリカーボネートの分子量 (16523) よりも高くなつていることから、 触媒の添加により SJ^3 J¾が更に向上したことが分かる。 得られたポリカーボネ —トサンプルを溶融圧縮し、 プレート成形して得た成形品は、 着色がなく、 無色 透明であった。
例 3 (方法 Iによるポリカーボネートの )
»1固相重合の直前にさらに,として TMAHを末端水酸基に対して 1 X 1 0_6mo 1加えて させた以外は ¾5£例 1と基本的に同様に^ Sした。 結果を 表 1に示した。 得られたポリカーボネートの分子量は 23892であり、 実施例 1のポリカーボネートの分子量 (16523) よりも高くなつていることから、 触媒の添加により反応速度が向上したことが分かる。 得られたポリ力一ポネ一ト サンプルを溶 ¾E縮し、 プレート β5 して得た 品は、 着色がなく、 無色透明 であった。
例 4 (方法 Iによるポリカーボネートの製造)
膨潤溶媒としてトルエンを、 貧溶媒としてへブタンを 50\^ %づつ混合した 混合溶媒に変え、 混合溶媒ガスの供給速度を 0. 042 c m/s e cに、 供給量 をオリゴマー粉末 lg当たり 0. 0086リットル (標準状態) /hrにして反 応させた以外は実施例 1と基本的に同様に実施した。 結果を表 1に示した。 膨潤 溶媒とともに貧溶媒を用いることにより、 ¾5S例 1の重合時間 (3時間) よりも 短時間 (2時間) で、 実施例 1で得られたポリカーボネートの分子量 (1652 3) よりもはるかに高い分子量 (32680) を有するポリカーボネートが得ら れた。 また得られたボリカーボネートを常法により粉末化したところ、 白色粉末 が得られ、 着色もなかった。 得られたボリカーボネートサンプルを溶 ffi縮し、 プレート して得た 品も着色がなく、 無色透明であった。
例 5 (方法 Iによるボリカーボネートの製造)
Mi溶媒としてトルエンを、 ¾¾媒としてへブタンをそれぞれ 25wt%およ び 75 ^%づつ混合した混合溶媒に変え、 混合溶媒ガスの供給艘を 0. 03 9cm/secに、 供給量をオリゴマー粉末 1 g当たり 0. 0080リットル (標準状態) /hrにして反応させた以外は ¾5S例 1と基本的に同様に した。 結果を表 1に示した。 膨潤溶媒とともに 容媒を用いることにより、 貧溶媒を用 いない実施例 1の重合時間 (3時間) よりも短時間 (2時間) で、 実施例 1で得 られたポリカーボネートの分子量 (16523) よりもはるかに高い分子量 (3 6920) を有するボリカーボネートが得られた。 また得られたポリカーボネ一 トを常法により粉末化したところ、 白色粉末が得られ、 着色もなかった。 得られ たボリ力一ボネ一トサンブルを溶 MEE縮し、 ブレート して得た赚品も着色 がなく、 無色透明であった。
餓例 6 (方法 Iによるボリ力一ポネートの製造)
膨潤溶媒としてトルエンを、 貧溶媒としてへブタンをそれぞれ 5 wt%および 95 ^%づつ混合した混合溶媒に変え、 混合溶媒ガスの供給 を 0. 041 cm/secに、 供給量をオリゴマー粉末 lg当たり 0. 0083リヅトル (標 準状態) /hrにして反応させた以外は実施例 1と基本的に同様に実施した。 結 果を表 1に示した。 1^ 溶媒とともに貧溶媒を用いることにより、 例 1の重 合時間 (3時間) よりも短時間 (2時間) で、 実施例 1で得られたポリカーボネ —トの分子量 (16523) よりもはるかに高い分子量 (34231) を有する ポリカーボネートが得られた。 また得られたポリカーボネートを常法により粉末 化したところ、 白色粉末が得られ、 着色もなかった。 得られたポリカーボネート サンプルを溶融圧縮し、 プレート成形して得た成形品も着色がなく、 無色透明で あった。
m7 (方法ェによるポリ力一ポネートの製造)
予め 220。Cに加熱されたトルエン (膨潤溶媒) とへブタン (貧溶媒) を 50 w t %づつ混合した混合溶媒ガスの供給速度を 0. 042c m/ secから 0. 0016cm/secに、 供給量をオリゴマー粉末 1 g当たり 0. 0004リツ トル (標準状態) /hrにそれぞれ低下させて反応させた以外は実施例 4と基本 的に同様に^!した。 結果を表 1に示した。 溶媒ガスの供^度を低下させるこ とにより、 得られたボリカーボネートの分子量は 22725となり、 ^例 4の ポリカーボネートの分子量 (32680) よりも低くなつたが、 実施例 1のポリ カーボネートの分子量 (16523) よりもはるかに高かった。 常法により粉末 化したところ、 白色粉末が得られ、 着色は認められなかった。 圧縮溶融し、 ブレ —ト成形して得た成形品も着色がなく、 無色透明であった。
餓例 8 (方法 Iによるポリカーボネートの製造)
予め 220。Cに加熱されたトルエンとへブタンを 5 Owt %づつ混合した混合 溶媒ガスの供^ Sを 0. 042cm/secから 0. 540cm/secに、 供給量をオリゴマー粉末 lg当たり 0. 11リヅトル (標準状態) Zhrにそれ それ上昇させて反応させた以外は実施例 4と基本的に同様に実施した。 結果を表 1に示した。 溶媒ガスの供給 ¾gを上昇させることにより、 得られたポリカーボ ネートの分子量は 42330となり、 実施例 4のポリカーボネートの分子量 (3 2680) よりもさらに上昇した。 常法により粉末化したところ、 白色粉末が得 られ、 着色は認められなかった。 圧縮溶融し、 ブレート β¾¾して得た 品も着 色がなく、 無色透明であった。
mm9 (方法 ιによるポリカーボネートの製造)
混合溶媒としてトルエン/へブタン (50/50 w/w) の代りにキシレン /へブタン (50/50 w/w) を用いた以外は 例 4と基本的に同様に実 施した。 なお、 キシレンの溶解度パラメ一夕一は 8. 8 (cal/cm3) 1/2で ある。 結果を表 1に示した。 膨潤溶媒として、 トルエンの代りにキシレンを用い ることにより、 ポリ力一ポネートの分子量は 51230に上昇し、 実施例 4のポ リカ一ボネートの分子量 (32680) の 1. 57倍となった。 常法により得た 粉末は白色であり、 望ましくない着色は認められなかった。 圧縮溶融し、 ブレー ト成形して得た成形品も着色がなく、 無色透明であった。
例 10 (方法 Iによるボリカーボネートの製造) 温度を 220。Cから 20 OeCに低下させた以外は実施例 9と基本的に同様 に^ Sした。 結果を表 1に示した。 SJ^SJSを低下させることにより、 得られた ポリカーボネートの分子量は 44600となり、 実施例 9のポリカーボネートの 分子量 (51230) より低下したが、 例 1のボリカーボネートの分子量
(16523) よりはるかに高かった。 常法により得た粉末および成形品の性状 も実施例 9と同様に良好であった。
餓例 11 (方法 Iによるポリカーボネートの製造)
温度を 220。Cから 190°Cに低下させた以外は実施例 9と基本的に同様 に実施した。 結果を表 1に示した。 反応温度を低下させることにより、 得られた ポリカーボネートの分子量は 31252となり、 実施例 9のポリカーボネートの 分子量 (51230) より低下したが、 実施例 1のポリカーボネートの分子量 (16523) よりはるかに高かった。 常法により得た粉末および成形品の性状 も実施例 9と同様に良好であった。
麵例 12 (方法 Iによるボリカーボネートの製造)
従来の界面重合法でフエ二ルカ一ボネート末端 100 %のォリゴマー 500 g (Mv8700) と水酸基末端 100%のオリゴマー 42 Og (Mv3240) を調製した。 これらを、 フエニルカーボネート末端:水酸基末端の比率が 53m ol%: 47mol% (1. 13 : 1. 0) になるように混合し、 メチレンクロ ライドに溶解、 へブタンで沈殿させ、 白色のオリゴマー粉末を得た。 粘度平均分 子量は 7290であった。
このオリゴマー粉末 100 gに水酸基末端に対して 1 X 10— 5molの NaO
Hを均一にまぶすように添加混合した後、 m9と同様に膨潤固相重合させた c 結果を表 1に示した。界面重合法で得られたオリゴマーを用いた場合にも分子量 が 52300と極めて高いポリカーボネートが得られた。 常法により得た粉末お よび成形品の性状も «例 9と同様に良好であった。
例 13 (方法 Iによるポリカーボネートの製造)
例 12で用いたと同じオリゴマーを使用し、 このオリゴマー粉末 1 OOg に水酸基末端に対して lxl 0— 5mo 1の TMAH水溶液を均一に噴霧した後、 ¾ ^例 9と同様に膨潤固相重合させた。 結果を表 1に示した。 界面重合法で得ら れたォリゴマーを用いた場合にも分子量が 47860と極めて高いポリ力一ボネ ートが得られた。 常法により得た粉末および 品の性状も^例 9と同様に良 好であった。
比較例 1 ( の溶融法)
mi (ι)で製造したオリゴマー ioogを 500mlのォ一トクレーブ に仕込み、 280°Cで溶融させ、 290°0まで昇温しながら0. Ι ΤΟΓΓの圧 力で十分に攪拌しながら 3時間反応させた。 結果を表 1に示した。 上記の実施例 1〜13ではボリカーボネートにほとんど着色が見られなかったのに対し、 この 溶融エステル交換反応では十分な窒素置換を行ったにもかかわらず、 ポリカーボ ネートにかなりの着色が見られた。
比較例 2 (ί«の固相重合法)
mmi (ι)で製造したオリゴマー ioogを 22o。cに加熱した直径 5c m、 長さ 3 Ocmの燃焼管に仕込み、 それと同時に予め 22 CTCに加熱された窒 素を 0. 038cm/secの速度で供給し、 不活性ガス気流下での固相重合を 行った。 結果を表 1に示した。 膨潤固相重合法で行なった 例 1〜: 13に比べ、 反応速度が遅く、 重合時間 3時間でのポリカーボネートの分子量は 8871と極 めて低かった。 従って高分子量のポリカーポネ一トを得るためにはかなりの長時 間が要求されることが分かる。
比較例 3 の固相重合法)
«例 1 (1) で製造したオリゴマー 10 Ogをアセトンを用いて室温で 12 時間結晶化処理し、 100°Cで 2時間真空乾燥した。 その後、 この結晶化オリゴ マ一を 220°Cに加熱した直径 5cm、 長さ 30 cmの燃 管に仕込み、 それと 同時に予め 220。Cに加熱されたァセトンガスを 0. 043cm/secの速度 で供給しつつ固相重合を行った。 結果を表 1に示した。 膨潤固相重合法で行なつ た実施例 1〜13に比べ、 反応速度が遅く、 重合時間 3時間でのポリ力一ポネ一 トの分子量は 7213と極めて低かった。従って高分子量のポリカーボネートを 得るためにはかなりの長時間が要求されることが分かる。 表
Figure imgf000043_0001
m 14 (方法 iによるポリカーボネートの製造)
(1) ポリカーボネートオリゴマーの調製
攪拌機、 不活性ガス導入管、 フエノールガス排出管を備えた 1リヅトル容量の オートクレープに、 ビスフエノール Aすなわち 2, 2—ビス (4—ヒドロキシフ ェニル) プロパン 2283gとジフエ二ルカ一ボネート 2249gを仕込み、 真 ^気および窒素導入を繰り返した後、 18 OeCに加熱して内容物を完全に溶融 させた。 再度、 真空脱気および窒素導入を行った後に、 触媒である Na〇Hおよ び TMAH (テトラメチルアンモニゥムヒドロキシド) をそれぞれ 0. 0025 molおよび 0. 000 lmolずつ水溶液の状態で添加し、 反応を開始した。 反応開始と同時に副生フエノールを系外に除去するために圧力を 1 OOmmHg まで減圧し、 220^まで昇温しながら1. 1時間反応させた。 さらに真空度を 1 OTorrまで徐々に下げながら を 260°Cまで昇温し、 1. 5時間反応 させた。 反応終了後、 窒素で反応器内を大気圧にもどし、 少量ずつ内容物を取り 出し、 水中へ滴下することによって固化させた。 この固体となったオリゴマーを さらにクラッシャーで粉砕し、 平均粒径 0. 24111111の粉末を2380 得た。 このォリゴマ一の粘度平均分子量は 5660であった。 またこのォリゴマーのフ ェニルカーボネート末端および水酸基末端はそれそれ 53および 47mo 1 %で あり、 フエ二ルカ一ボネート末端:水酸基末端 =1. 13 : 1. 0であった。
(2) 高分子量ポリカーボネートの製造
このようにして得られたォリゴマー粉末を 210。Cに加熱した 500mlのガ ラス製ォ一トクレーブ (攪拌機を有し、 130rpmに設定) に 100g仕込み、 それと同時に予め 210°Cに加熱された、 トルエン (^溶媒) ガスと窒素 (不 活性ガス) との反応温度条件における体積比 50ノ50 (vol/vol) の混 合ガスを 0. 077 cm/secの速度の下に、 上記のオリゴマー粉末 1 g当た り 0. 083リヅトル (標準状態) /hrの割合で供給し、 膨潤固相重合を開始 した。 反応は経時的にサンプリングしながら 2時間行った。 結果を表 2に示した。 膨潤溶媒ガスとともに不活性ガスを用いることにより、 不活性ガスを用いない実 施例 1の重合時間 (3時間) よりも短時間 (2時間) で、 実施例 1で得られたポ リカ一ボネートの分子量 (16523) よりもはるかに高い分子量 (29600) を有するポリカーボネートが得られた。 得られたボリカーボネートサンブルを溶
MS縮し、 プレート成形して得た成形品は着色がなく、 無色透明であった。
mmmi5 (方法 ιによるポリカーボネートの製造)
¾5S例 14の (1)で製造したオリゴマー粉末 500 gを、 1リヅトルの還流 管のついた三角フラスコ中で再度、 窒素雰囲気下、 250°Cで溶融させると同時 に 130gの p—キシレンを混合し、 溶液を調製した。 その溶液の半量を水中へ 滴下することによって平均粒径 1. 4mm、 結晶化度 31. 8%、 融点 226. 2。Cの真球状のオリゴマーフレーク 212 gを得た。 この内の 1 OOgを直径 5 cm、 長さ 3 Ocmの S US製の固定床型反応器に仕込み、 膨潤溶媒混合ガスと して、 p—キシレン (膨潤溶媒;溶解度パラメ一夕一 =8. 8 (cal/cm3) 1 2) ガスと二酸化炭素 (不活性ガス) との反応条件における体積比 28/72
(vol/vol)の混合ガスを用い、 実施例 14と同様のガス流通速度および 供給量の下、 22 CTCで 2時間高分子量化させた。 結果を表 2に示した。 表 2よ り、 得られたポリカーボネートの分子量は 31200であった。 また得られたポ リカ一ボネートサンプルを溶融圧縮し、 プレート成形して得た成形品は、 着色が なく、 無色透明であった。
mm 16 (方法 ιによるポリカーボネートの製造)
15で製造したォリゴマ一フレーク 100 gを使用し、 膨潤溶媒混合ガ スとして、 p—キシレンと窒素との反応 条件における体賴比 52/48 (V ol/vol) の混合ガスを用い、 パドル翼を備えた横型攪拌槽 (500ml) で反応させた以外は実施例 15と同様に行った。 結果を表 2に示した。 表 2より、 得られたポリカーボネートの分子量は 27500であった。 また得られたポリ力 —ボネートサンブルを溶 ME縮し、 プレート して得た 品は、 着色がなく、 無色透明であった。
例 17 (方法 Iによるポリカーボネートの製造)
mi 5で製造したオリゴマーの p—キシレン溶液 3 OOgを、 テフロンラ イニングした内径 2mmの SUS製チューブに吸引し、 室温まで冷却した後、 押 し出すと同時に長さ 3 mmに切断することによって微小の析出粒子が ¾したぺ レヅト (融点 226° (:、 結晶化度 28. 9%、 比表面積 5. 2m2/g) を 230 g製造した。 この内の loogを、 p—キシレンとヘリウムとの iag条件に おける ί¾比 50/50 (vol/vol) の混合ガス雰囲気に ¾ させて、 実 施例 15と同様の条件で 2時間高分子量化させた。 結果を表 2に示した。 表 2よ り、 得られたポリカーボネートの分子量は 33400であった。 また得られたポ リカーボネートサンブルを溶 1¾Ε縮し、 ブレート成形して得た 品は着色がな く、 無色透明であった。
難例 18 (方法 Iによるポリカーボネートの製造)
mm 11で製造したォリゴマ一ぺレヅト i o o gを使用し、 膨潤溶媒混合ガ スとしてメシチレンと窒素との反応 ί¾条件における体讀比 46/54 (vol /vol) の混合ガスを用い、 実施例 15と同様の条件で 2時間高分子量化させ た。 結果を表 2に示した。 表 2より、 得られたポリカーボネートの分子量は 37 820であった。 また得られたポリカーボネートサンブルを溶 ¾E縮し、 ブレー ト成形して得た成形品は、 着色がなく、 無色透明であった。
例 19 (方法 Iによるポリカーボネートの製造)
m 14で製造したォリゴマー粉末 5 o o gを、 25 o。cで 6分間滞留させ て溶融し、 直径 2mmのストランド状に押し出し、 冷却した後に長さ 3 mmに切 断した。 このペレットをアセトン中に 30分間浸し、 結晶化させた後に 110°C の窒素気流下で乾燥した。 得られた結晶化ペレットは結晶化度 24. 1%、 融点 223. 5eCであった。 これを、 膨潤溶媒混合ガスとして p—キシレンと窒素と の反応温度条件における体積比 46/54 (vol/vol) の混合ガスを用い、 ^例 15と同様の条件で 2時間高分子量化させた。 結果を表 2に示した。 表 2 より、 得られたポリカーボネートの分子量は 24600であった。 また得られた ポリ力一ポネートサンブルを溶 E縮し、 プレート J¾¾して得た成形品は、 着色 がなく、 無色透明であった。
比較例 4 (溶融エステル変換法)
方法 Iの膨潤固相重合法ではなく溶融エステル交換法によりポリカーボネ一ト を得た。 すなわち、 魏例 13で製造したオリゴマー 1 OOgを 500mlのォ —トクレーブに仕込み、 260°Cで溶融させ、 290。0まで昇温しながら0. 6 Tor rの圧力で十分に攪拌しながら 2時間反応させた。 上記の実施例 14〜 1 9ではポリカーボネートにほとんど着色が見られなかったのに対し、 本比較例の 溶融エステル交換反応では十分な窒素置換を行ったにもかかわらず、 ポリ力一ポ ネートにかなりの着色が見られた。 反応結果を表 2に示した。 得られたポリ力一 ボネ一トの分子量は 24700であり、 反応速度的には方法 Iの膨潤固相重合法 に近い値を示した。
比較例 5 の固相重合法)
膨潤溶媒ガスを用いずに不活性ガスのみを用いて固相重合を行った。 すなわち、 ^例 18で製造したオリゴマー 100 gを、 220。Cに加熱した直径 5 cm、 長さ 30 c mの燃焼管に仕込み、 それと同時に予め 220°Cに加熱された窒素を 9. 2x 10— 2cm/secの速度で供給し、 不活性ガス気流下での固相重合を 12時間行った。 結果を表 2に示した。 得られたポリカーボネートの分子量は 2 0800であった。 本比較例の固相重合法では、 方法 Iの潤滑固相重合法に比べ 反応速度が遅く、 かなりの長時間が要求されることが分かる。
(以下余白)
表 2
オ リ ゴ マ ー 性 状 重合工程 ポリカーボネート 分 末端比率 結晶雌融点オリゴマー腿重合器开 犬反 t£¾a¾ 麵謹 不活性ガス不活性ガス脑寺間 到達分子量 (Mv) (7ι /-0Η) (%) (。C ) (°C) (vol¾) (hr) (Mv)
!UfS冽 14 5980 53/47 0.5 126 粉碰子 翻画曹 210 トルエン 窒素 50 2 29600 例 15 5980 53/47 31.8 226.2 m 固 型 220 P—キシレン二酸 素 72 2 31200 ¾例 16 5980 53/47 31.8 226.2 真球状 固 型 220 P—キシレン 窒素 48 2 27500
Hi赚 7 5980 53/47 28.9 226 ペレヅ卜 觀腿曹 220 P—キシレン ヘリウム 50 2 33400 難例 18 5980 53/47 28.9 226 ペレツ卜 固 型 220 メシチレン 窒素 54 2 37820 鶴例 19 5980 53/47 24.1 223.5 ペ ツ卜 固 型 220 p—キシレン 窒素 54 2 24600 赚例 4 5980 53/47 260~290 2 24700 t國 5 5980 53/47 29.8 223.5 犬 固 型 220 窒素 100 12 20800
Figure imgf000049_0001
(方法 Iによるポリカーボネートの製造)
(1) クロ口フォーメート末端オリゴマーの調製
内容量 20リ ヅトルの撹拌機付きフラスコ中に、 ビスフエノール Aすなわち 2, 2—ビス (4—ヒドロキシフエニル) プロパン 910 g及び 2 Nの水酸化ナトリ ゥム水溶液 5. 6リ ヅトルを入れて、 窒素気流下で攪拌し、 ビスフエノール Aの 水酸化ナトリウム水溶液を調製した。 この溶液に塩化メチレン 3. 3リットルを 加え、 水浴中で冷却しながら攪搾し、 ホスゲンを 90分間吹き込んだ。
得られた反応液を室温下で静置したところ、 下層にクロ口フォーメ一ト末端ォ リゴマ一の塩化メチレン溶液が分離して得られた。 このクロ口フォーメート末端 オリゴマーの塩化メチレン溶液は、 オリゴマー it ^が 320 g/リ ヅトルで、 平 均重合度が 2. 99、 クロ口フォーメート基濃度が 0. 7Nのものであった。
(2)高分子量化反応用プレボリマーの調製
(1)で得られたクロ口フォーメート末端オリゴマー 液 1リットルを、 5 リットルの撹^«付き容器に移し、 フエノールの水酸ィ匕ナトリウム水溶液 (フエ ノール 3. 6g、 水酸化ナトリウムお 9g、 水 23. 4g) とテトラエチルァ ミン 0. 88 gを入れ、 30分間攪拌した。
続いて、 この反応液にビスフエノール Aの水酸ィ匕ナトリウム水溶液 (ヒスフエ ノール A63. 9g、 水酸化ナトリウム 42. 2g、 水 0. 35リットル) と塩 化メチレン 0. 6リットルを加え、 30分間攪拌した。
このようにして得られた反応液を、 水相と、 生成したブレポリマ一を含有する 塩化メチレン相とに分離し、 塩化メチレン相を回収した。 この回収した塩化メチ レン相を 0. 1 Nの水酸化ナトリウム水溶液、 0. 1Nの塩酸水溶液、 純水の順 に洗浄を行った。
次に、 このプレボリマ一の塩化メチレン溶液に同容量の n—へブタンを加え、 70°Cで加熱攪拌しながら溶媒を留去し、 平均粒径 0. 13mmの白色粉末を得 た。 NMRでこの粉末の末端基糸誠を測定したところ、 フエニル基末端が 52m ol%、 zk酸基末端が 48mol%であった。 また、 粘度平均分子量は 6470 であり、 重合度は 11であった。
(3) ブレポリマーの膨潤固相重合による高分子量ポリカーポネ一トの製造 ( 2 ) で得られたプレボリマー粉末を 220。Cに加熱した 500 m 1の撹 ί« (130rp m設定) 付ガラス製ォ一トクレーブに 100 g仕込み、 それと同時 に予め 220。Cに加熱された、 トルエン (膨潤溶媒) ガスと窒素ガス (不活性ガ ス) との反応 における ^比 50/50 (vol/vol) の混合ガスを 2. 5 cm/secの ¾Jgの下に、 上記のプレボリマー 1 g当たり 2. 73リ ヅトル (標準状態) /hrの割合で供給し、 2時間膨潤固相重合を行った。 結果は表 3 に示した。 重合後のポリカーボネート粉末は粘度平均分子量が 42600であつ た。 得られたポリ力一ポネート粉末を溶 liJEE縮し、 プレート成形したものは着色 がなく、 無色透明であった。
例 21 (方法: [によるポリカーボネートの製造)
»例 20の (2) で製造した洗浄済みプレボリマーの塩化メチレン溶液 1. 0リットルを 80。Cの湯浴中で挽拌しながら TOし、 白色のフレークとした。 そ のフレーク 400 gを 1リ ヅトルの還流管のついた三角フラスコ中に入れ、 p— キシレン 400gを加え、 250°Cの油浴中で溶液を調製した。 溶液の半量を 4 0°Cの水中へ滴下することによって平均粒径 0. 48 mmの真球状の粒子 193 gを得た。
この内の 100gを直径 5 cm、 長さ 3 Ocmの S US製の固定床型反応器に 仕込み、 膨潤溶媒混合ガスとして p—キシレン (膨潤溶媒) ガスと n—へブタン
(籠媒) ガスとの 比 50/50 (vol/vol) の混合ガスを 3. 4c m/s e cの速度の下に、 上記の粒子 1 g当たり 3. 72リ ヅトル (標準状態) /hrの割合で供給し、 220°Cで 2時間膨潤固相重合を行った。 結果は表 3に 示した。
重合後のポリカーボネート粉末は、 粘度平均分子量が 38200であった。 得 られたサンプルを溶 MJE縮し、 ブレート膨したものは着色がなく、 無色透明で あった。 耐スチーム性も界面重合品と同等であり、 優れたものであった。 また、 反応終了後は融着等もなく、 反応器からの回収が容易であつた。
鶴例 22 (方法 Iによるポリカーボネートの製造)
例 21で製造したブレポリマ一の p—キシレン溶液 300gを、 テフロン ライニングした内径 2mmの SUS製チューブに吸引し、 室温まで冷却した後、 押し出すと同時に長さ 3 mmに切断することによって、 極微小の析出粒子が ί¾Λ したペレヅトを製造した。 このペレットを使用し、 »例 21と同じ方法で « 固相重合を行った。 結果は表 3に示す。
重合後のポリカーボネ一ト粉末は粘度平均分子量が 34800であった。 得ら れたサンブルを溶 i¾LC縮し、 プレート成形したものは着色がなく、 無色透明で優 れたものであった。 また、 反応終了後は融着等もなく、 反応器からの回収が容易 であった。
難例 23 (方法 Iによるポリカーボネートの製造)
( 1 ) 高分子量化反応用プレボリマーの製造
¾ ^例 20の (1) で得たクロ口フォーメート末端オリゴマー ^液 1リ ヅ ト ルを、 5リ ヅトルの撹 ί«付き容器に移し、 フエノールの水酸化ナトリウム水溶 液 (フエノール 3. 6g、 水酸ィ匕ナトリウム 1. 9g、 水 23. 4g) とテトラ ェチルァミン 0. 88 gを入れ、 さらにビスフエノール Aの水酸化ナトリウム水 溶液 (ビスフエノール A63. 9g、 水酸化ナトリウム 42. 2g、 水 0. 35 リ ヅトル) と塩化メチレン 0. 6リ ヅトルを加え、 45分間攪拌した。
このようにして得られた反応液を、 k相と、 生成したブレポリマ一を含有する 塩化メチレン相とに分離し、 塩化メチレン相を回収した。 この回収した塩化メチ レン相を 0. 1Nの水酸化ナトリウム水溶液、 0. 1Nの塩酸水溶液、 純水の順 に洗淨を行った。
次に、 このブレポリマーの塩化メチレン溶液に同容量の n—へブタンを加え、 7 CTCで加熱攪拌しながら溶媒を留去し、 平均粒径 0. 12mmの白色粉末を得 た、 NMRでこの粉末の末端基誠を測定したところ、 フエニル基末端が 46m ol%、 水酸基末端が 54mol%であった。 また粘度平均分子量は 6990で あり、 重合度は 12であった。
(2)膨潤固相重合による高分子量ポリカーボネートの製造
( 1 ) で得たブレポリマー粉末 100 gを実施例 20と同様の方法で高分子量 化させてポリカーボネートを得た。 結果は表 3に示す。 重合後のポリカーボネー ト粉末は粘度平均分子量が 39700であり、 得られた粉末を溶 liff縮し、 ブレ ート成形したものは着色がなく、 無色透明であった。 また、 反応終了後は若干ス ボンジ状組織があつたものの、 反応器からの回収に問題は無かつた <
表 3
Figure imgf000052_0001
(以下余白) 例 24 (方法 IIによるポリカーボネートの製造)
(1)ポリカーボネートオリゴマーの調製
¾SS例 1 (1) と同様にして、 平均粒径 0. 6mmのポリカーボネートオリゴ マー粉末を 2430 g得た。 このォリゴマーの粘度平均分子量は 6330であつ た。 またこのオリゴマーのフエニルカーボネート末端および水酸基末端がそれそ れ 53および 47mol%であり、 フエニルカーボネート末端:水酸基末端 = 1. 13 : 1. 0であった。
(2)高分子量ボリカーボネートの製造
このようにして得られたオリゴマ一粉末を 220°Cに加熱した直径 5 cm、 長 さ 30 cmの燃焼管に 100 g仕込み、 それと同時に予め 220°Cに加熱された n—へブタン (貧溶媒;溶解度パラメ一夕一 =7. 4 (cal/cm3) 1/2) を 0. 031 cm/se cの速度 (反応容器内での空塔基準の流通線速度を意味す る。 以下同じ。 ) の下に、 上記オリゴマー粉末 lg当たり 0. 0064リットル
(標準状態) /hrの割合で供給し、 貧溶媒固相重合を開始した。 反応は経時的 にサンプリングしながら 1時間行った。 結果を表 4に示した。 重合反応は迅速に 行なわれ、 得られたポリカーボネートの粘度平均分子量は 22540であり、 ォ リゴマーの粘度平均分子量の 3. 56倍であった。 得られたポリカーボネートを 常法により粉末ィ匕したところ白色粉末が得られ、 望ましくなレ、着色は認められな かった。 またポリカーボネートサンブルを溶 Sff縮し、 プレート したものは 着色がなく、 無色透明であった。
鶴例 25 (方法 IIによるポリ力一ポネートの製造)
貧溶媒固相重合の直前にさらに皿として Na〇Hを末端水酸基に対して 1 X 10— 6mo 1加えて反応させた以外は実施例 24と基本的に同様に実施した。 結 果を表 4に示した。 重合時間を実施例 24における反応時間の 1/2の 0. 5時 間にしてもポリ力一ボネ一トの分子量が実施例 24よりも高くなっていることか ら、 触媒の添加により反応速度が更に向上したことが分かる。 得られたポリ力一 ボネート粉末は白色粉末であり、 望ましくない着色はなかった。 またポリカーボ ネート成形品も着色がなく、 無色透明であった。
例 26 (方法 IIによるポリカーボネートの製造) 媒固相重合の直前にさらに触媒として TMAHを末端水酸基に対して 1 X 10_6mo 1加えて反応させた以外は実施例 24と基本的に同様に実施した。 結 果を表 4に示した。 重合時間を実施例 24における反応時間の 1/2の 0. 5時 間にしてもボリカーボネートの分子量が 例 24と同等であることから、 皿 の添加により反応 ¾gが向上したことが分かる。 得られたポリカーボネ一ト粉末 は白色粉末であり、 望ましくない着色はなかった。 またポリカーボネート成形品 も着色がなく、 無色透明であった。
鶴例 27 (方法 IIによるポリカーボネートの製造)
館媒として n—へブタンの代りに、 n—ノナン (溶解度パラメ一夕ー=7.
7 (cal/cm3) 1/2) を用いた以外は^例 24と基本的に同様に^した。 結果を表 4に示した。 得られたポリカーボネートの分子量は 19850であり、 オリゴマーの分子量の 3. 13倍であった。 ポリカーボネート粉末の性状、 ポリ 力一ポネートの成形品の性状において実施例 24と同様の結果が得られた。
例 28 (方法 IIによるポリカーボネートの製造)
容媒として n—へブタンの代りに、 ゥンデカン (溶解度パラメ一夕一 =7.
8 (cal/cm3) 1 2) を用いた以外は^ 例 24と基本的に同様に^した。 結果を表 4に示した。 得られたポリカーボネートの分子量は 21220であり、 オリゴマーの分子量の 3. 35倍であった。 ポリカーボネートの粉末の性状、 ポ リカーボネートの成形品の性状において実施例 24と同様の結果が得られた。
餓例 29 (方法 IIによるポリカーボネートの製造)
容媒として n—へブタンの代りに、 出光石油化学 (株) 製 IPソルベント (商品番号 1520;イソへブタン、 イソペン夕ン、 イソオクタン等を主成分と する。 溶解度パラメ一夕一 =7. 6 (cal/cm3) 1/2) を用いた以外は^ ½ 例 24と基本的に同様に実施した。 結果を表 4に示した。 得られたポリ力一ボネ —トの分子量は 18754であり、 オリゴマーの分子量の 2. 96倍であった。 ポリカーボネートの粉末の性状、 ポリカーボネ一トの成形品の性状において実施 例 24と同様の結果が得られた。
観例 30 (方法 IIによるポリ力一ポネートの製造)
予め 220eCに加熱されたシクロへキサン (貧溶媒;溶解度パラメ一夕一 =8. 2 (cal/cm3) 1/2) ) を 0· 0018 cm/s e cの ¾ ^の下に、 オリゴ マ一粉末 1 g当たり 0. 0004リヅトル (標準状態) /h rの割合で供給し、 芯させた以外は実施例 24と基本的に同様に実施した。 結果を表 4に示した。 得られたポリカーボネートの分子量は 17790であり、 ォリゴマーの分子量の 2. 81倍であった。 ポリカーボネートの粉末の性状、 ボリカーボネートの 口の性状において H½例 24と同様の結果が得られた (
例 31 (方法 IIによるボリカーボネートの製造)
^の界面重合法でフエニルカーボネート末端 100%のォリゴマー 5 OOg (Mv8700) と水酸基末端 100%のオリゴマー 420g (Mv3240) を調製した。 これらを、 フエニルカーボネート末端:水酸基末端の比率が 53m ol : 47mol% (1. 13 : 1. 0) になるように混合し、 メチレンクロ ライドに溶解、 へブタンで沈殿させ、 白色のオリゴマー粉末を得た。 粘度平均分 子量は 7290であった。
このオリゴマー粉末 1 OOgに水酸基末端に対して 1 X 10— 5molの Na〇
Hを均一にまぶすように添加混合した後、 m 24と同様に貧溶媒固相重合さ せた。 結果を表 4に示した。 反応時間を実施例 24の反応時間の 1/2の 0. 5 時間にしても、 分子量が 24780であり、 オリゴマーの分子量の 3. 91倍で あった。 ポリカーボネート粉末の性状、 ポリカーボネート成形品の性状も実施例 24と同様であった。
(以下余白)
表 4
Figure imgf000056_0001
以上、 実施例および比較例を挙げて説明したように、 本発明の方法 Iおよび方 法 I Iによれば、 ポリカーボネートを製造するための従来方法、 特に固相重合法の 欠点を解消し、 高品質のポリカーボネートを少ない工程数で効率良く短時間で安 価に製造することができるポリカーボネートの製造方法が提供された。

Claims

請 求 の 範 囲
1. ポリカーボネートオリゴマ一を膨潤溶媒ガスを含む雰囲気下に固相重合する ことを とするポリカーボネートの製造方法。
2. ボリカーボネートオリゴマーの末端比率が、 フエニルカーボネート末端:水 酸基末端 =1 : 4〜4: 1の範囲である、 請求の範囲 1に記載の方法。
3. ポリカーボネートオリゴマーが、 ジヒドロキシ化合物とホスゲンを用いる界 面重合法で得られたものまたは溶融エステル交換法で得られたものである、 請 求の範囲 1または 2に記載の方法。
4. ポリカーボネートオリゴマーが、 界面重合法で得られたフヱニルカ一ボネー ト末端のオリゴマーにジヒドロキシ化合物を添加したものである、 請求の範囲 1または 2に記載の方法。
5. ポリカーボネートオリゴマーが、 1, 500〜30, 000の粘度平均分子 量を有する、 請求の範囲 1〜4のいずれか一項に記載の方法。
6. 固相重合するに先立ち、 ポリカーボネートオリゴマーをフレーク化する、 請 求の範囲 1〜5のいずれか一項に記載の方法。
7. フレーク化後のポリカーボネートオリゴマーが、 10ミクロン〜 10cmの 粒径および 0. 10〜30m2/gの比表面積を有する、 請求の範囲 6に記載 の方法。
8. 膨潤溶媒は、 これがガス化したときにポリカーボネートオリゴマーおよびそ の高次重合物を重合条件下で膨潤状態にすることが可能な溶媒である、 請求の 範囲 1に記載の方法。
9. 膨潤溶媒が、 重合条件下において完全に気ィヒする沸点または 5 OmmHg以 上の蒸気圧を有し、 かつ、 粘度平均分子量が 22000で結晶化度が 0. 5% であるペレツト状の非晶質ポリカーボネートを密閉系内において 135°Cの温 度条件下に 1. 5〜50重量%溶解させ得るものである、 請求の範囲 8に記載 の方法。
10. 膨潤溶媒が、 4〜20 (cal/cm3) 1/2の溶解度パラメ一夕一を有す る、 請求の範囲 8または 9に記載の方法。
1 . 膨潤溶媒が、 炭素数 6〜2 0の芳香族炭化水素、 エーテル類またはケトン 類から選ばれる、 請求の範囲 8〜1 0のいずれか一項に記載の方法。
2. 膨潤溶媒ガスを含む雰囲気が、 ボリカーボネートオリゴマーまたはその高 次重合物に対する貧溶媒のガスおよび/または不活性ガスを含む、 請求の範囲 8〜 1 1のいずれか一項に記載の方法。
3. 貧溶媒のガスが、 炭素数 5〜2 0の環状炭化水素、 炭素数 4〜: 1 8の直鎖 もしくは分岐鎖 tS¾炭化水素および炭素数 4〜 1 8の£ 不,炭化水素から 選ばれる少なくとも 1種の溶媒のガスである、 請求の範囲 1 2に記載の方法。
4. 不活性ガスが、 ヘリウム、 アルゴン、 窒素、 二酸化炭素および炭素数 1〜 3の炭化水素から選ばれる少なくとも 1種である、 請求の範囲 1 2に記載の方 5. 膨潤溶媒ガスまたは膨潤溶媒ガスと貧溶媒ガスおよび Zまたは不活性ガス との混合ガスの供給量が、 空塔基準による反応器内でのガスの流通^ 度で 0.
0 0 1〜5 0 0 cm/s e cである、 請求の範囲 1、 8〜 1 4のいずれか一項 に記載の方法。
6. 膨潤溶媒ガスを含む雰囲気が、 膨潤溶媒を含む溶媒を固相重合反応器に供 給して気化することにより、 または膨潤溶媒を含む溶媒を予め気ィ匕し固相重合 反応器に供給することにより、 形成される、 請求の範囲 1、 8〜1 5のいずれ か一項に記載の方法。
7. ホスゲン及びジヒドロキシ化^ lを界面法で させクロロフォーメート 末端オリゴマ一を調製する工程と、
前工程で得られたオリゴマーに、
(i) モノヒドロキシァリール化合物を反応させた後、 ジヒドロキシ化合物を反 応させるか、 または
(i i) モノヒドロキシ化合物及びジヒドロキシ化合物を反応させる
ことにより、 高分子量化反応用ブレポリマ一を調製する工程と、
を含むことを特徴とする高分子量化反応用ブレポリマーの製造方法。
8. 高分子量化反応用ブレポリマー調製工程でエステル交換触媒を添力 Πする、 請求の範囲 1 7に記載の方法。
19. ボリカーボネートオリゴマーを貧溶媒ガスの流通下に固相重合することを とするポリカーボネートの製造方法。
20. ポリカーボネートオリゴマーの末端比率が、 フエ二ルカ一ボネート末端: 水酸基末端 =1: 4〜4: 1の範囲である、 請求の範囲 19に記載の方法。
21. ポリカーボネートオリゴマーが、 ジヒドロキシ ί匕合物とホスゲンを用いる 界面重合法で得られたものまたは溶融エステル交換法で得られたものである、 請求の範囲 19または 20に記載の方法。
22. ボリカーボネートオリゴマーが、 界面重合法で得られたフエ二ルカ一ボネ —ト末端のオリゴマーにジヒドロキシ化合物を添加したものである、 請求の範 囲 19または 20に記載の方法。
23. ポリカーボネートオリゴマーが、 1, 500〜15, 000の粘度平均分 子量を有する、 請求の範囲 19〜22のいずれか一項に記載の方法。
24. 固相重合するに先立ち、 ポリカーボネートオリゴマーをフレーク化する、 請求の範囲 19〜23のいずれか一項に記載の方法。
25. フレーク化後のポリカーボネートオリゴマーが、 10ミクロン〜 10cm の粒径および 0. 10〜30m2/gの比表面積を有する、 請求の範囲 24に記 載の方法。
26. 貧溶媒が、 重合条件下に完全に気化する沸点または 50 mmHg以上の蒸 気圧を有し、 かつ、 粘度平均分子量が 22000で結晶化度が 0. 5%である ペレツト状の非晶質ポリ力一ポネートを密閉系内において 135°Cの温度条件 下に 0. 1重量%以下溶解させ得るものである、 請求の範囲 19に記載の方法。
27. 貧溶媒が、 4〜; 10 (cal/cm3) 1/2の溶解度パラメ一夕一を有する、 請求の範囲 19に記載の方法。
28. 貧溶媒が、 炭素数 5〜 20の環状炭化水素、 炭素数 4〜18の直鎖もしく は分岐鎖飽和炭化水素または炭素数 4〜 18の低度不飽和炭化水素から選ばれ る、 請求の範囲 19に記載の方法。
29. 貧溶媒ガスの供給量が、 空塔基準による 器内での流通 ¾¾U¾で〇. 0 01〜500 cm/secである、 請求の範囲 19、 26〜29のぃずれか一 項に記載の方法。
30. 容媒を固相重合反応器に供給して気化することにより、 または予め気化 し固相重合反応器に供給することにより、 貧溶媒ガスを流通させる、 請求の範 囲 1 9、 2 6〜 2 9のいずれか一項に記載の方法。
PCT/JP1996/000220 1995-02-03 1996-02-02 Procede pour produire des polycarbonates WO1996023831A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96901527A EP0807656A4 (en) 1995-02-03 1996-02-02 PROCESS FOR PRODUCING POLYCARBONATES
US08/875,194 US5990262A (en) 1995-02-03 1996-02-02 Process for producing polycarbonates

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP01728395A JP3565935B2 (ja) 1995-02-03 1995-02-03 ポリカーボネートの製造方法
JP7/17230 1995-02-03
JP1723095 1995-02-03
JP7/17283 1995-02-03
JP7/257437 1995-10-04
JP25743795 1995-10-04

Publications (1)

Publication Number Publication Date
WO1996023831A1 true WO1996023831A1 (fr) 1996-08-08

Family

ID=27281734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000220 WO1996023831A1 (fr) 1995-02-03 1996-02-02 Procede pour produire des polycarbonates

Country Status (6)

Country Link
US (1) US5990262A (ja)
EP (1) EP0807656A4 (ja)
KR (1) KR100354801B1 (ja)
CN (1) CN1075083C (ja)
TW (1) TW367340B (ja)
WO (1) WO1996023831A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245878B1 (en) * 1997-11-26 2001-06-12 Idemitsu Petrochemical Co., Ltd. Process for producing polycarbonate
JP4275228B2 (ja) 1998-03-26 2009-06-10 出光興産株式会社 ポリカーボネートを製造する方法
US6180756B1 (en) * 1999-02-17 2001-01-30 E. I. Du Pont De Nemours And Company Addition of treatment agents to solid phase polymerization process
KR100298637B1 (ko) * 1999-06-29 2001-09-22 김충섭 폴리카보네이트 수지의 제조방법
DE10224352A1 (de) * 2002-06-01 2003-12-11 Mueller Schulte Detlef Thermosensitive Polymerträger mit veränderbarer physikalischer Struktur für die biochemische Analytik, Diagnostik und Therapie
DE502004009535D1 (de) * 2003-09-12 2009-07-09 Basf Se Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung
ATE398640T1 (de) * 2005-03-24 2008-07-15 Giuliano Cavaglia Verfahren der anwendung einer reaktiven atmosphäre zur kontinuerlichen oder diskontinuerlichen festphasenpolymerization von polyestern
JP6657543B2 (ja) * 2014-12-12 2020-03-04 出光興産株式会社 ポリカーボネートの製造方法
AU2016376824B2 (en) 2015-12-21 2020-04-30 Shell Internationale Research Maatschappij B.V. Hydrogenation catalyst and method for preparing the same
JP6903664B2 (ja) 2015-12-22 2021-07-14 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー ポリカーボネートを生成するための方法
WO2017112625A1 (en) * 2015-12-22 2017-06-29 Shell Oil Company Method for producing polycarbonate oligomers
KR20180094928A (ko) * 2015-12-22 2018-08-24 쉘 인터내셔날 리써취 마트샤피지 비.브이. 폴리카보네이트를 제조하기 위한 올리고머의 제조 방법
WO2017112627A1 (en) * 2015-12-22 2017-06-29 Shell Oil Company Method for preparing a melt polycarbonate
WO2017109179A1 (en) 2015-12-23 2017-06-29 Shell Internationale Research Maatschappij B.V. Process for preparing a base oil having a reduced cloud point
CN108779401A (zh) 2015-12-23 2018-11-09 国际壳牌研究有限公司 残余基础油
CN106543470B (zh) * 2016-10-25 2019-08-20 华南理工大学 一种反应性聚碳酸酯低聚物及其制备方法与应用
US10934496B2 (en) 2016-12-23 2021-03-02 Shell Oil Company Fischer-tropsch feedstock derived haze-free base oil fractions
KR102544288B1 (ko) * 2017-03-31 2023-06-15 이데미쓰 고산 가부시키가이샤 열가소성 수지의 제조 방법
KR20220045150A (ko) * 2019-08-08 2022-04-12 코베스트로 인텔렉쳐 프로퍼티 게엠베하 운트 콤파니 카게 폴리카르보네이트를 제조하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947228A (ja) * 1982-09-10 1984-03-16 Teijin Chem Ltd 分岐ポリカ−ボネ−トの製造方法
JPH03163131A (ja) * 1989-08-03 1991-07-15 Idemitsu Petrochem Co Ltd 分岐状ポリカーボネート及びその製造方法
JPH03223330A (ja) * 1989-03-28 1991-10-02 Asahi Chem Ind Co Ltd ポリカーボネートプレポリマー多孔体とその製造方法、及びそれを用いる芳香族ポリカーボネートの製造方法
JPH05310905A (ja) * 1992-05-14 1993-11-22 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートプレポリマーの製法およびそれにより得られるプレポリマーならびに芳香族ポリカーボネートの製法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007536A1 (en) * 1988-12-27 1990-07-12 Asahi Kasei Kogyo Kabushiki Kaisha A porous, crystallized, aromatic polycarbonate prepolymer, a porous, crystallized aromatic polycarbonate, and production methods
JP3163131B2 (ja) * 1990-10-18 2001-05-08 株式会社東芝 X線撮影装置
JP2535457B2 (ja) * 1991-03-05 1996-09-18 帝人化成株式会社 ポリカ―ボネ―ト樹脂の製造法
JPH05170894A (ja) * 1991-12-20 1993-07-09 Mitsubishi Kasei Corp 芳香族ポリカーボネート樹脂の製造方法
DE4223016C2 (de) * 1992-07-13 1998-01-22 Bayer Ag Verfahren zur Herstellung von Polycarbonaten
JP3223330B2 (ja) * 1992-07-23 2001-10-29 株式会社アライドマテリアル 熱電発電方法及びその装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947228A (ja) * 1982-09-10 1984-03-16 Teijin Chem Ltd 分岐ポリカ−ボネ−トの製造方法
JPH03223330A (ja) * 1989-03-28 1991-10-02 Asahi Chem Ind Co Ltd ポリカーボネートプレポリマー多孔体とその製造方法、及びそれを用いる芳香族ポリカーボネートの製造方法
JPH03163131A (ja) * 1989-08-03 1991-07-15 Idemitsu Petrochem Co Ltd 分岐状ポリカーボネート及びその製造方法
JPH05310905A (ja) * 1992-05-14 1993-11-22 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートプレポリマーの製法およびそれにより得られるプレポリマーならびに芳香族ポリカーボネートの製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0807656A4 *

Also Published As

Publication number Publication date
CN1075083C (zh) 2001-11-21
KR100354801B1 (ko) 2003-02-17
TW367340B (en) 1999-08-21
EP0807656A1 (en) 1997-11-19
CN1180362A (zh) 1998-04-29
KR19980701886A (ko) 1998-06-25
US5990262A (en) 1999-11-23
EP0807656A4 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
WO1996023831A1 (fr) Procede pour produire des polycarbonates
KR100357656B1 (ko) 폴리카보네이트의제조방법
JP2000281769A (ja) ポリカーボネートの製造方法
JP4097948B2 (ja) 分岐化芳香族ポリカーボネート及びその製造方法
JPH09157380A (ja) ポリカーボネートの製造方法
US6462165B1 (en) Polycarbonate and optical material
JP3655764B2 (ja) ポリカーボネートの連続製造方法
JP3174727B2 (ja) ポリカーボネートの製造方法
JP4636705B2 (ja) ポリカーボネートの製造方法
JP3565935B2 (ja) ポリカーボネートの製造方法
JP3165951B2 (ja) ポリカーボネートの製造方法
JP3617733B2 (ja) ポリカーボネートの製造方法
JPH04202221A (ja) ポリカーボネートの製造方法
JP5330811B2 (ja) ポリカーボネートおよび光学材料
JP3165950B2 (ja) ポリカーボネートの製造方法
JP4651149B2 (ja) ポリカーボネートの製造方法
JP3165949B2 (ja) ポリカーボネートの製造方法
KR100529366B1 (ko) 폴리카보네이트 수지의 제조방법
JPH107785A (ja) 光学材料用ポリカーボネート
JP2002220456A (ja) ポリカーボネートの製造方法
JPH0859813A (ja) ポリカーボネートの製造方法
JPH08269185A (ja) ポリカーボネートの製造方法
JP6036142B2 (ja) ポリカーボネート樹脂の製造方法
JP2004277557A (ja) 直鎖状ポリカーボネートおよびその製造方法
JPH06256497A (ja) 芳香族ポリカーボネートの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96193088.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996901527

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970705283

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08875194

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996901527

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970705283

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970705283

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996901527

Country of ref document: EP