WO1995014103A1 - Procede de production de diterpene de taxane et procede de recolte de cellules de culture capables de produire du diterpene de taxane a haut rendement - Google Patents

Procede de production de diterpene de taxane et procede de recolte de cellules de culture capables de produire du diterpene de taxane a haut rendement Download PDF

Info

Publication number
WO1995014103A1
WO1995014103A1 PCT/JP1994/001880 JP9401880W WO9514103A1 WO 1995014103 A1 WO1995014103 A1 WO 1995014103A1 JP 9401880 W JP9401880 W JP 9401880W WO 9514103 A1 WO9514103 A1 WO 9514103A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cells
taxane
medium
production method
Prior art date
Application number
PCT/JP1994/001880
Other languages
English (en)
French (fr)
Inventor
Yukihito Yukimune
Yasuhiro Hara
Yosuke Higashi
Naoto Ohnishi
Homare Tabata
Chuzo Suga
Kouichi Matsubara
Original Assignee
Mitsui Petrochemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27576895&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995014103(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP28489393A external-priority patent/JP3488492B2/ja
Priority claimed from JP6104211A external-priority patent/JPH07308196A/ja
Priority claimed from JP6104212A external-priority patent/JPH07308197A/ja
Priority claimed from JP14682694A external-priority patent/JP3434892B2/ja
Priority claimed from JP6201151A external-priority patent/JPH0856681A/ja
Priority claimed from JP6201150A external-priority patent/JPH0856680A/ja
Priority claimed from JP6252528A external-priority patent/JPH08116981A/ja
Priority to US08/491,844 priority Critical patent/US5637484A/en
Priority to CA002153986A priority patent/CA2153986C/en
Priority to KR1019980704610A priority patent/KR0169081B1/ko
Priority to EP94931697A priority patent/EP0683232B1/en
Priority to DE69426692T priority patent/DE69426692T2/de
Application filed by Mitsui Petrochemical Industries, Ltd. filed Critical Mitsui Petrochemical Industries, Ltd.
Priority to KR1019980704609A priority patent/KR0169080B1/ko
Priority to KR1019950702779A priority patent/KR0172606B1/ko
Priority to KR1019980704608A priority patent/KR0169079B1/ko
Publication of WO1995014103A1 publication Critical patent/WO1995014103A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms

Definitions

  • the present invention relates to a method for producing a taxane-type diterpene and a method for obtaining a cultured cell with high production of a taxane-type diterpene.
  • the present invention relates to taxol which is useful as a therapeutic agent for ovarian cancer, breast cancer, lung cancer, etc.
  • the present invention relates to a method for producing a taxane-type diterpene containing (taxol) and a method for obtaining a culture cell with high production of a taxane-type diterpene.
  • Taxol which is useful as a therapeutic agent for ovarian cancer, breast cancer, lung cancer, etc., is a taxane-type diterpene isolated and identified from Taxus brevifolia II, a plant belonging to the genus yew family, Taxus genus. It has a related complex ester group. Taxol has been reported to be present in any part of the Thai yew tree and its content is highest in the bark. Currently, taxols are collected from natural or cultivated plants, but yew plants are slow-growing plants that take more than 10 years to grow to a height of 20 cm above the ground, and also have bark. It is difficult to obtain a large amount of taxol easily because the tree will wither when peeled.
  • taxol-type diterpenes such as taxol or baccatin III, a precursor of taxol
  • tissue culture large amounts of taxol can be produced without cutting down trees. This is advantageous because it can be easily obtained.
  • a production method using cultured cells of Taxus brevifolia NUH has been patented in the United States (US Pat. No. 5,019,504). The production volume is described as 1 to 3 mg / l, which is insufficient for industrial production.
  • taxol biosynthesis precursor is used as a prior art for evening xol production.
  • a semi-synthetic method from packatin III is disclosed in Holton et al., US Pat. No. 5,015,744. If a plant tissue culture method is used, a semi-synthetic material such as paccatin III can be produced, and it can be used for taxol production by the semi-synthetic method. Disclosure of the invention
  • a first object of the present invention is to provide a simple method for producing a taxane-type diterpene by plant tissue culture.
  • a second object of the present invention is to provide a method for obtaining a taxane-type diterbene-high-producing cultured cell.
  • the first invention of the present application is directed to a group consisting of diasmonic acids, compounds containing heavy metals, complex ions containing heavy metals, heavy metal ions, amines and anti-ethylene agents.
  • a method for producing a taxane-type diterpene comprising culturing in the presence of at least one selected from the group consisting of: and recovering the taxane-type diterpene from the obtained culture.
  • the oxygen concentration in the gas phase in the incubator is controlled from the beginning of the cultivation under conditions that are lower than the oxygen concentration in the atmosphere.
  • the cultivation is performed by controlling the dissolved oxygen concentration in the fluid medium in contact with the tissue or cells at a temperature lower than the saturated dissolved oxygen concentration at that temperature from the beginning of the culture.
  • the third invention of the present application is directed to a method of dividing taxane-type diterpene-producing plant cells into a plurality of layers according to a difference in specific gravity, culturing cells contained in at least one layer, and, from among them, a taxane-type diterpene-high-producing cultured cell
  • This is a method for obtaining a taxane-type high-diterbene-producing cultured cell, characterized in that:
  • the taxane-type diterpene to be used in the present invention is not particularly limited as long as it is a diterpene having a taxane skeleton.
  • taxol, 7-epitaxol, paccatin III (baccatin III), and 7-epipbaccatin III cephalomannine, 7-episepharomanine, 10-deacetylbaccatin III, 10-Decetylcephalomanine, 10-Decetylsequinol, taxagiiine and its analogs, taxane 1a and its analogs, xylosylsepharomanin, xylosyltaxol and the like.
  • Examples of the plant that produces the taxane-type diterbene used in the present invention include Taxus baccata LINN, yew (T. cus i data SIEB. Et ZUCC), and caraboku (T. cuspidata SIEB. Et ZUCC var). nana REHDER), Thai yew (T. brevifolia NUTT), Canada yew (T. americansis MARSH), Chinese yew (T. chinensis) and T. media.
  • the culturing of the plant is performed by converting a plant tissue or cell from a group consisting of jasmonates, compounds containing heavy metals, complex ions containing heavy metals, heavy metal ions, amines and anti-ethylene compounds. Except for culturing in the presence of at least one selected member, it can be performed by a conventionally known method.
  • the jasmonic acids that are the subject of the first invention of the present application include the general formula (I):
  • R la , R ] ⁇ R, R la , R le and R each represent a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms;
  • R 2 , R 3 , R 4 , R 5 and R 6a are each a hydrogen atom or a C 1 to C 6 al-T-relyl group;
  • the side chain consisting of C 1 —C 2 —C 3 —C 4 —C 5 —C 6 may contain one or more double bonds;
  • R SD represents a hydroxyl group or a 10-carbohydrate residue
  • R 7 is a hydroxyl group, OM (where M represents an alkali metal atom, an alkaline earth metal atom or NH 4 ), NHR 8 (where RB is a hydrogen atom, and a C 1-6 carbon atom) Represents an alkyl group having 1 to 6 carbon atoms or an amino acid residue. ), 0R S (where R 9 represents an alkyl group having 1 to 6 carbon atoms or a carbohydrate residue.) Or an alkyl group having 1 to 6 carbon atoms;
  • n an integer of 1 to 7;
  • the five-membered ring may form a double bond between adjacent five-membered carbon atoms.
  • R la , R l R 1 R ′ 1 ⁇ 6 and 8 ′′ each represent a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms; 2 , R 3 , R 4 , R 5 and R 6 each represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
  • the side chain consisting of C 1 -C 2 -C 3 -C 4 -C 5 -C 6 may contain one or more double bonds;
  • R 7 is a hydroxyl group, 0M (where M represents an alkali metal atom, an alkaline earth metal atom or NH 4 ), NHR 8 (where R 8 is a hydrogen atom, and a C 1-6 carbon atom) Represents an alkyl group having 1 to 6 carbon atoms or an amino acid residue.), OR 9 (where FT represents an alkyl group having 1 to 6 carbon atoms or a carbohydrate residue), or 1 to 6 carbon atoms. Represents an alkyl group of
  • n an integer of 1 to 7;
  • the five-membered ring may form a double bond between adjacent ring-membered carbon atoms.
  • R la , R 'R l R lfl,! ⁇ And! ⁇ Represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms;
  • R 2 , R 3 , R 4 , R 5 and R 6 are each a hydrogen atom Or an alkyl group having 1 to 6 carbon atoms;
  • the side chain consisting of C 1 -C 2 -C 3 -C 4 -C 5 -C 6 may contain one or more double bonds;
  • R 7 is a hydroxyl group, OM (where M represents an alkali metal atom, an alkaline earth metal atom or NH 4 ), NHR 8 (where R 8 is a hydrogen atom, a C 1 to C 6 Or an alkyl group having 1 to 6 carbon atoms or an amino acid residue.), OR 3 (where R 9 represents an alkyl group or a carbohydrate residue having 1 to 6 carbon atoms), or 1 to 6 carbon atoms. Represents an alkyl group of 6;
  • n an integer of 1 to 7;
  • the five-membered ring may form a double bond between adjacent five-membered carbon atoms. ] The compound shown by these.
  • the jasmonic acids represented by the general formula (I) are preferably those represented by the general formula ( ⁇ ):
  • R represents a hydrogen atom or a hydroxyl group
  • C 1 one C 2 one C 3 -C 4 - C 5 - side chain consisting of C 6 also contain a double bond between C 1 and C 2, C 2 binding 3 or C 3 and C 4 Often ;
  • R 6b represents a hydroxyl group or — ⁇ —carbohydrate residue
  • R 7 ′ is a hydroxyl group
  • OM where M represents an alkali metal atom, an alkaline earth metal atom or NH 4
  • NHR 8 ′ (where R 8 ′ is a hydrogen atom, and has 1 to 4 carbon atoms) Represents an acyl group, an alkyl group having 1 to 4 carbon atoms or an amino acid residue.)
  • OR s ′ (where R 9 ′ represents an alkyl group having 1 to 4 carbon atoms or a carbohydrate residue) Represents an integer of 1 to 7;
  • the 5-membered group may form a double bond between adjacent ring carbon atoms.
  • the jasmonic acid represented by the general formula ( ⁇ ) is preferably a compound represented by the general formula ( ⁇ ):
  • R represents a hydrogen atom or a hydroxyl group
  • C one C 2 - C 3 - C 4 one C 5 - side chain consisting of C 6 is, C 1 and C 2, C 2 and C: or C 3 and also contain a double bond between the C 4 Often ;
  • R 7 ′ is a hydroxyl group, OM (where M represents an alkali metal atom, an alkaline earth metal atom or NH 4 ), NHR 8 ′ (where R 8 ′ is a hydrogen atom, Represents an acyl group, an alkyl group having 14 carbon atoms or an amino acid residue; or OR 9 ′ (where R 3 ′ represents an alkyl group having 14 carbon atoms or a carbohydrate residue); n represents an integer of 17;
  • the five-membered ring may form a double bond between adjacent five-membered carbon atoms.
  • the jasmonic acid represented by the general formula (III) is preferably a compound represented by the general formula ( ⁇ )
  • C 1 - C 2 - C 3 - C 4 - side chain consisting of C 5 -C 6 may contain a double bond between C 1 and C 2 C 2 binding 3 or C 3 and 4;
  • R 7 ′ is a hydroxyl group, 0M (where M represents an alkali metal atom, an alkaline earth metal atom or NH 4 ), NHR 8 ′ (where R 8 ′ is a hydrogen atom, and has 1 to 4 carbon atoms) Represents an acyl group, an alkyl group having 14 carbon atoms or an amino acid residue, or OR 9 ′ (where R 9 ′ represents an alkyl group having 14 carbon atoms or a carbohydrate residue).
  • N represents an integer of 17;
  • the five-membered ring may form a double bond between adjacent ring-membered carbon atoms. ] The compound shown by these.
  • alkyl group of Formula 16 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isopropyl group, a sec-butyl group and a t-butyl group. Examples include a tyl group, an n-pentyl group, and an n-hexyl group.
  • R la , R lb , R lc and R ′ examples of the alkoxy group having 1 to 6 carbon atoms represented by R le or R include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a sec-butoxy group. Group, t-butoxy group, n-pentyloxy group and n-hexyloxy group.
  • examples of the alkali metal atom or alkaline earth metal atom represented by M include sodium, potassium, and calcium.
  • the alkenyl group having 1 to 6 carbon atoms represented by R B may be any of a straight-chain or branched chain, for example, a formyl group, an acetyl group, a propionyl group, a butyryl group, Examples include a valeryl group, a hexanoyl group and an acryloyl group.
  • R 7 is NHR 8
  • isoleucyl group, tyrosyl group, include Toributofiru group.
  • the 5-membered ring may form a double bond between adjacent 1-membered carbon atoms.
  • R 7 — OH or OCH 3
  • Preferred examples of the compound represented by the general formula (I), (II) or (III) include R la , R lb , R lc , R l R le , R lf , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms, R 7 is a hydroxyl group or a methoxy group, and the side chain consisting of C 1 -C 2 —C 3 -C 4 —C 5 —C 6 does not contain a double bond Or or C 1 binding 2 ,
  • Two include compounds force containing a double bond between c 2 and C 3 or C 3 and C 4.
  • the jasmonic acids represented by the above general formula (I), (II) or (III) used in the present invention have various stereoisomers (cis trans isomers, optical isomers).
  • the isomers may be used alone or in the form of a mixture.
  • R la , R ' ⁇ R lc , R l R in the above general formulas (I), (II) and (III) le , R lf , R 2 , R 3 , R 4 , R 5 and R 6 are a hydrogen atom, R 7 is a hydroxyl group or a methoxy group, n is 1 and two between C 3 and C 4
  • a compound containing a heavy bond, particularly, bellobonic acid, methyl tubeverate, cucurbic acid or methyl cucurate, and jasmonic acid or methyl jasmonate are particularly preferred from the viewpoint of the effect of improving productivity.
  • jasmonic acids are prepared by synthesis or by extraction from plants or the like (H. Yamane et al. Agric. Biol. Chem., 44, 2857-2864 (1980)).
  • jasmonic acids are produced by various plants themselves as plant hormone-like substances that induce various reactions related to growth promotion, tissue maturation, and development of disease resistance. Vol. 4, pages 523-531 (1390).
  • the jasmonic acids according to the present invention can be produced by the cultured cells or cultured tissues used in addition to being added from outside the culture system.
  • Examples of a method for promoting the production of endogenous jasmonates by cultured cells or tissues include the addition of a culture of a microorganism or an extract thereof, a heat treatment, or a plant extract to a medium.
  • a method for adding a mold cell wall fraction described in M. M Mueller et al., Proc. Natl. Acad. Sci. USA, 90 (16), 7490-7494 (1933) is to be exemplified. Can be.
  • Jasmonic acids are hardly soluble in water, so usually ethanol, methanol, etc. After dissolving in an organic solvent or a surfactant, etc., add to the medium.
  • the jasmonic acids in free form may be used as they are, or may be used as salts after being neutralized with an alkali.
  • the compound represented by the above formula (I) or (III) is more stable than the unstable cis-form because the ⁇ - position of the 5-membered carbonyl group undergoes epimerization by acid, alkali or heat. Easy to be a transformer type. In equilibrium experiments using natural or synthetic jasmonic acid, trans-form is present at 90% and cis-form is present at 10%. Generally, the cis form is considered to have higher activity. Jasmonic acids used in the present invention include all stereoisomeric compounds represented by the above formula (I) or (III) and mixtures thereof. .
  • the concentration of jasmonic acids in the culture medium must be 0.01 to 1000 ⁇ , and among them, adjusting the concentration of jasmonic acids in the range of 0.1 to 500 ⁇ ⁇ ⁇ is the first application in this application. Preferred for the method of the invention. .
  • jasmon or methyljasmon structurally similar to the jasmonates represented by the formula (I), (II) or (III) used in the present invention is effective in inducing the production of oxosol. This is described in WO 93/17121. However, unlike these jasmonic acids, these compounds differ from the formulas (I)
  • the compound did not have a carboxyl group represented by the formula: — (CH 2 ) n —CO—R 7 , and the taxol-inducing activity was low.
  • the heavy metals to be covered by the first invention of the present application are not particularly limited as long as they are heavy metals belonging to the copper group or the iron group.
  • Metals belonging to the copper group It is particularly preferable to use silver as a class, It is preferable to use cobalt as the metal belonging. Further, when silver or cobalt is used, it is preferable to use the compound containing the heavy metal, the complex ion containing the metal, or the metal ion. These compounds and the like may be used alone or in combination.
  • Compounds containing silver include, for example, silver nitrate, or silver sulfate, or silver fluoride, or silver chlorate, or silver perchlorate, or silver acetate, or silver sulfite, or silver hexafluorophosphate (V), or tetra.
  • Compounds such as silver fluoroborate, silver diamine silver (I) sulfate, and potassium diamino silver (I) can be exemplified.
  • silver nitrate, silver sulfate and the like can be exemplified as suitable compounds.
  • the complex ions containing silver for example, [Ag (S 2 0 3) 2] 3 _, or [Ag (S 2 0 3) 3] 5 one, or [Ag (H 3) 2] +, or [ Ag (CN) 2 ]-or [Ag (CN) 3] 2 — or
  • cobalt chloride or cobalt nitrate, or cobalt sulfate, or cobalt fluoride, or cobalt perchlorate, or cobalt bromide, or cobalt iodide, or cobalt selenate, or cobalt thiocyanate Or cobalt acetate, ammonium cobalt sulfate, or potassium cobalt (II) sulfate, or hexaamminecobalt (III) chloride, or penminammineaquacobalt (III) chloride, or nitropenamineammoniumcobalt (III) chloride, or dichlorotetraamminecobalt (III) chloride hemihydrate, or dinitrotetraamminecobalt (III) chloride, or carbonatotetraammineconorelate (in) chloride, or tetranitrodiamminecoba Ruto (III ) Ammonium acid
  • Complex ions containing cobalt include pentaammineaquacobalt ion, or nitropenammoniumcobalt ion, or dichlorotetraamminecopper ion, or dinitrate tetraamminecobalt ion, or carbonatotetraamminecobalt ion, Or tetranitrodiamminecobaltion, or hexanitrocobalt ion, or tris (ethylenediamine) conoronate ion, or dichlorobis (ethylenediamine) conolute ion, or tris (oxalarato) concentrate ion, Alternatively, complex ions such as hexacyanocobalt ion or (ethylenediaminetetraacetato) cobalt ion can be exemplified.
  • compounds containing silver, complex ions containing silver or silver ion is preferably the concentration in the medium is to 10_ ⁇ ⁇ 10- ' ⁇ , especially 10- 7 ⁇ 10- It is more preferable to adjust to 2 ⁇ ⁇ .
  • the compounds containing cobalt, complex ions containing cobalt or cobalt ions, to force the child preferred, in particular 10 5 to 10-range of the concentration in the medium is to 10- 6 ⁇ ⁇ - ' It is even better.
  • tissue culture was performed in the presence of a compound containing silver, a complex ion containing silver, or a silver ion as a medium additive in tissue culture of a plant that produces a taxane-type diterpene. Absent.
  • a compound containing cobalt or cobalt ions can be used as a medium generally used as a medium for tissue culture of plants of the genus Taxus, for example, a medium of Linsmaier Skoog or a medium of Murashige Skoog ⁇ .
  • amines means an amine or a salt thereof.
  • Monoamines or polyamines can be used as the amines that are the object of the first invention of the present application, but it is particularly preferable to use polyamines.
  • the amines which are the object of the first invention of the present application include mono-, di- or trialkylamines in which some of the hydrogens in the alkyl group may be substituted by hydroxyl groups, such as methylethylamine, ethylamine, dimethylamine, and the like. Getylamine, triethylamine, diethanolamine, triethanolamine, or a salt thereof; or a polymethylene moiety in which the polymethylene moiety may be interrupted by an imino group or substituted by the H-lower alkyl group of the amino group.
  • Methylenediamine such as butretsucin, cadaverine, spermidine, spermine, ethylenediamine, ⁇ , ⁇ -getyl-1,3-butanepandiamine, triethylenetetraamine, or a salt thereof; or cyclic alkylamine, such as cyclopentylamine , Cyclohexylamine, or These salts, or methenamine, cyclic amines or salts thereof, such as piperidines Rajin.
  • polyamines such as [(C 2 H 5 ) 2 N (CH 2 ) 3 NH 2 ⁇ , diethylene triamine [NH 2 (CH 2 ) 2 NH (CH 2 ) 2 NH 2 ], or salts thereof be able to.
  • the amines may be force preferably to concentrations 10- to 10-'Micromax in the medium, it is more preferably adjusted to a range of particular 10- 7 ⁇ 10- 2 ⁇ Among this.
  • the anti-ethylene agent that is the object of the first invention of the present application includes: inhibiting the ethylene biosynthesis mechanism of the culture; and Z or the gas phase in the incubator containing the culture or containing the culture.
  • Methods for inhibiting the mechanism of ethylene biosynthesis include, for example, inhibiting the activity of an enzyme that catalyzes the conversion of S-adenosylmethionine to 1-aminocyclopropane-11-carboxylic acid, or reducing Cyclopropane-1 A method that inhibits the activity of an enzyme that catalyzes the conversion of rubonic acid to ethylene, for example.
  • Examples of the compound having the former function include aminooxyacetic acid, acetylsalicylic acid, and Rhizobitoki '.
  • Salts include, for example, sodium, potassium, calcium, and magnesium salts
  • esters include, for example, methyl, ethyl, propyl, butyl esters
  • amino acid derivatives include, for example, glycine, methionine, phenylalanine derivatives
  • carbohydrate derivatives include, for example, Examples include glucose and maltose derivatives, but salts, esters, amino acid derivatives and carbohydrate derivatives of the substance according to the present invention are not limited to such compounds.
  • Compounds having the latter function include, for example, gallic acid and salts, esters, amino acid derivatives and carbohydrate derivatives of the compound [Hiroh Hyodo, Abstracts of 1987 Horticultural Society Autumn Meeting, Symposium, p. .122, Susumu Kuraishi, Ue Product hormone, University of Tokyo Press, p. Ill).
  • salts include, for example, sodium, potassium, calcium, and magnesium salts
  • esters include, for example, methyl, ethyl, propyl, butyl ester
  • amino acid derivatives include, for example, glycine, methionine, phenylalanine derivatives, and carbohydrate derivatives Examples thereof include glucose and maltose derivatives, but salts, esters, amino acid derivatives and carbohydrate derivatives of the substance according to the present invention are not limited to these compounds.
  • substances that are stored in the culture or remove ethylene present in the gas phase or medium in the incubator containing the culture include, for example, 1,5-cyclooctadiene, isothiocyanic acid, and the like.
  • Compound salts, esters (eg, arylisothiosinate, benzylisothiosinate), amino acid derivatives and carbohydrate derivatives can be mentioned [Megumi Munakata, Chemical Regulation of Plants, ⁇ (1), 89 -93 (1994)].
  • salts include, for example, sodium, potassium, calcium, and magnesium salts
  • esters include, for example, methyl, ethyl, propyl, butyl, arylester
  • amino acid derivatives include, for example, glycine, methionine, phenylalanine derivatives, and carbohydrates.
  • Derivatives include, for example, glucose and maltose derivatives.
  • the salts, esters, amino acid derivatives, and carbohydrate derivatives of the substance according to the present invention are not limited to the compounds.
  • Anti ethylene agents will require an be concentration in the medium is to 10- ⁇ ⁇ ⁇ 10- ' ⁇ , adjusting the concentration of particular anti Nichiren agents Among the range of iO_ 7 M ⁇ 10 "2 M Is preferred.
  • Ethylene is one of the plant hormones and is known to be involved in various physiological phenomena caused in plants, such as growth, morphogenesis or aging of individuals. Examples of the use of ethylene to enhance the production of secondary metabolites in plants are described in, for example, Kim, Dongn et al., Biotechnl. Bioeng., 38 (4), 331-339 (1991). The report can be illustrated. However, in all cases where the control of ethylene was used to improve the productivity of secondary metabolites, as represented by the above-mentioned report, all of the controls were based on the supply of ethylene to plant tissue cultures. Like the method according to the invention To date, no case has been reported in which inhibitory control of ethylene production was used to improve the production of secondary metabolites.
  • anti-ethylene agents are generally used as freshness-preserving agents in flowers and fruits and vegetables, but no examples have been reported in which the anti-ethylene agents were used for the purpose of improving the production of secondary metabolites.
  • the anti-ethylenic agent not only suppressed the inhibition, but also dramatically increased the production amount of the taxane-type diterpene derived from the culture. It has been found that it has the effect of improving. No example has been reported in which the production of a taxane-type diterpene was induced by culturing a tissue culture of a plant that produces a taxane-type diterpene in the presence of an anti-ethylene agent. It was unexpected that the productivity of the secondary metabolite would increase.
  • Examples of the medium used in the first invention of the present application include a conventionally known medium used for tissue culture of a plant, for example, a medium of Murashige h Skoog (1962), a medium of Murashige h Skoog, and Linsmeyer's Skoog (1965).
  • a medium of Murashige h Skoog (1962) a medium of Murashige h Skoog
  • Year) [Linsmaier Skoog] medium Peddy's 'plant' medium (1981) [Woody Plant Medium], Gamborg [Gamborg] B-5 medium, Mitsui M-9 medium and the like.
  • Plant hormones can be added to these media, and if necessary, carbon sources, inorganic components, vitamins, amino acids and the like can be added.
  • disaccharides such as sucrose, maltose and lactose, monosaccharides such as glucose, fructose and galactose, starch, and a mixture of two or more of these sugar sources in an appropriate ratio can be used.
  • inorganic components include phosphorus, nitrogen, potassium, calcium, magnesium, zeolite, iron, manganese, zinc, boron, copper, molybdenum, chlorine, sodium, iodine, and cobalt.
  • Plant hormones include, for example, auxins such as indoleacetic acid (IAA), naphthaleneacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), and cytokinins such as kinetin, zeatin, and dihydrozeatin. Used.
  • auxins such as indoleacetic acid (IAA), naphthaleneacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D
  • cytokinins such as kinetin, zeatin, and dihydrozeatin. Used.
  • the vitamins for example Piochin, thiamine (vitamin B t), pyridoxine (vitamin B 6), pantothenic acid, inositol, and the like nicotinate Ru is used.
  • amino acids for example, glycine, phenylalanine, leucine, glutamine, cysteine and the like can be added.
  • each of the above components has a carbon source of about 1 to about 30 g / l, an inorganic ingredient of about ⁇ . ⁇ to about lOOmM, a plant hormone power of about 0.01 to about 10 ti M, vitamins and amino acids.
  • a carbon source of about 1 to about 30 g / l
  • an inorganic ingredient of about ⁇ . ⁇ to about lOOmM
  • a plant hormone power of about 0.01 to about 10 ti M
  • vitamins and amino acids are used at concentrations of about 0.1 to about 100 mg / 1 each.
  • any of a liquid medium and a solid medium usually containing 0.1 to 1% of agar or gellan gum can be used, but a liquid medium is usually preferable.
  • tissue fragments or cells such as roots, growing points, leaves, stems, seeds, pollen, anthers, sepals, or the like of the plant, or these are cultured in the above-described medium or other conventional medium. Cultured cells obtained by the above method can be used.
  • the present invention is also applicable to tumor cells and Z or hairy roots obtained by infecting plant tissues with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • tissue or cells are cultured in the presence of at least one selected from the group consisting of jasmonic acids, compounds containing heavy metals, complex ions containing heavy metals, heavy metal ions, amines and anti-ethylene agents, the usual Compared with the case where tissue culture is performed under culture conditions, a taxane-type diterbene-producing high level of cultured tissue or cultured cells can be obtained.
  • Taxane-type diterpenes can be separated from cultures such as cultured tissues, cultured cells, and culture media obtained as described above by extraction with an organic solvent such as methanol.
  • an organic solvent such as methanol.
  • a suitable adsorbent or an organic solvent may be allowed to coexist in the medium, and the taxane-type diterpene may be continuously collected during the culture.
  • a preferred example of the tissue culture in the present invention includes the following method. First, Peddy's plant, which is obtained by sterilizing plant pieces collected from plants belonging to the genus Yew, such as roots, growing points, leaves, stems, seeds, etc., and then hardening with gellan gum
  • the term "stabilized callus” refers to a callus having a property that a portion of the callus does not differentiate into shoots or roots during culture and retains the state of the callus, and the growth rate of the cells is uniform.
  • the stabilized callus is transferred to a liquid medium suitable for growth, for example, a liquid eddy-brunt medium, and grown.
  • the growth rate can be further enhanced in a liquid medium.
  • the stabilized callus or cells constituting the callus is selected from the group consisting of jasmonates, compounds containing heavy metals, complex ions containing heavy metals, heavy metal ions, amines and anti-ethylene agents. It is cultured in a solid medium or liquid medium in the presence of at least one.
  • the stabilized callus or cells constituting the callus are divided into a plurality of layers depending on the difference in specific gravity, and cells contained in at least one layer are jasmonic acids, compounds containing heavy metals, complex ions containing heavy metals,
  • the cells may be cultured in a medium containing at least one selected from the group consisting of heavy metal ions, amines, and anti-ethylene agents.
  • a method for separating cells by specific gravity a method is generally known in which a density gradient is prepared using a medium for centrifugation, the cells are overlaid, and then centrifuged.
  • Example 5 a density gradient was created using Ficoll. There is no particular limitation.
  • each layer forming the density gradient.
  • the specific gravity difference of each layer is not particularly limited, and each specific gravity difference may be the same or different.
  • the definition of the density gradient includes the case where the gradient force S changes continuously (the number of forces in the layer forming the density gradient s' infinity, and the specific gravity difference of each layer is close to 0).
  • the cells By forming a density gradient in this way and overlaying and centrifuging the cells, the cells can be divided into a plurality of layers depending on the difference in specific gravity.
  • the specific gravity of the layer to be formed is usually in the range of 1.00 to 1.20 / 1! 11, preferably in the range of 1.03 to 1.1g / ml.
  • a layer to be cultured at least one layer may be selected, or all layers may be selected and cultured.
  • each of these multiple layers can be cultured individually, or two or more layers of the selected multiple layers can be mixed and cultured. it can.
  • Cultured cells with high taxane-type diterpene-producing ability are usually obtained by culturing cells contained in a layer having a specific gravity of 1.07 or less, but may vary depending on the cells to be cultured and culturing conditions. However, the present invention is not limited to this. In addition, simply fractionating cells based on the difference in specific gravity indicates that cells in a layer having a higher specific gravity tend to have a higher taxane-type diterpene content. Therefore, in order to obtain the taxane-type diterpene high-producing cultured cells more reliably, after the cells of all the fractionated layers are cultured for a certain period, the concentration of the taxane-type diterpene contained in the cells of each layer is measured. It is desirable to select a layer containing high taxane-type diterbene-producing cells from among them.
  • the cultured cells can be separated into multiple layers by the difference in specific gravity. Can be divided into
  • the first invention of the present application is the second invention of the present application, wherein the cultivation is performed by controlling the oxygen concentration in the gas phase in the incubator to be lower than the oxygen concentration in the atmosphere from the beginning of the culture
  • the method can be used in combination with a method in which the concentration of dissolved oxygen in a fluid medium in contact with a tissue or a cell is controlled from the initial stage of cultivation to a concentration lower than the saturated dissolved oxygen concentration at that temperature.
  • the initial stage of culture refers to the start of culture or seven days after the start of culture, and the control of the oxygen concentration in the gas phase in the incubator or the dissolved oxygen concentration in a fluid medium in contact with tissues or cells is not controlled. It is preferable to carry out from the start of the culture.
  • the control period may be controlled under the same conditions throughout the entire culture period, or may be controlled only for a part of the entire culture period, and is not particularly limited. It is preferable to control the power for at least 3 days.
  • the jasmonic acids are effective to add during the exponential growth phase or the stationary phase of the cultured cells, and in particular, during the transition from the logarithmic growth phase to the stationary phase. It is preferable to add jasmonic acids to the mixture.
  • the compound or the ion may be performed at once or may be performed several times. It is effective to add the amines before the transition from the 3 'logarithmic growth phase to the stationary phase, and it is particularly preferable to add the amines at the start of the culture. In addition, the compound may be performed at once, or may be performed in several steps.
  • the anti-ethylenic agent be added before the cells transition from the logarithmic growth phase to the stationary phase, and it is particularly preferable to add the anti-ethylene agent immediately after the cells have shifted to the stationary phase.
  • the compound may be performed at once, or may be performed in several steps.
  • the culture temperature of the tissue culture in the first invention of the present application usually about 10 to about 35 ° C, particularly about 23 to 28 ° C is preferable because the growth rate is high.
  • the culture period is preferably 14 to 42 days.
  • a liquid medium is used in the culture in the first invention of the present application
  • the cultured cells are separated from the medium by a method such as decantation or filtration, and the target cells are cultured from the cultured cells and / or the medium.
  • Xan-type diterbenes can be separated by a method such as extraction with an organic solvent.
  • the oxygen concentration in the gas phase in the incubator is controlled from the beginning of the cultivation under a condition that is lower than the oxygen concentration in the atmosphere. Except that the culture is performed by controlling the concentration of dissolved oxygen in a fluid medium that is in contact with tissues or cells at a temperature lower than the saturated dissolved oxygen concentration at that temperature. This can be done by the methods that have been used.
  • the oxygen concentration in the gas phase supplied to the incubator for culturing tissues or cells, or the dissolved oxygen concentration in the medium in contact with the tissues or cells is lower than the oxygen concentration in the atmosphere.
  • the oxygen concentration in the gas phase in the incubator for culturing a tissue or a cell it is necessary to control the oxygen concentration in the gas phase in the incubator for culturing a tissue or a cell to be 4 to 1 :; and particularly to 6 to 12%. Is preferred.
  • the dissolved oxygen concentration of the fluid culture in contact with the tissue or cells must be controlled to 1 to 75% of the saturated dissolved oxygen concentration at that temperature, especially to 10 to 75%. Power is preferred.
  • the medium used in the second invention of the present application includes a conventionally known plant tissue.
  • Medium used for culture such as Murashige & Skoog (1962) [Murashige & Skoog], Linsmeier Skoog (1965) [Linsmaier Skoog], Peddy's Brand Media (1981) [Woody] Plant Medium], B-5 medium of Gamborg, and M-9 medium of Mitsui.
  • Plant hormones can be added to these media, and if necessary, carbon sources, inorganic components, vitamins, amino acids and the like can be added.
  • Examples of the carbon source include disaccharides such as sucrose, maltose and lactose, monosaccharides such as glucose, fructose and galactose, starch and two or more kinds of these sugar sources in an appropriate ratio. Can be used.
  • the inorganic component examples include phosphorus, nitrogen, potassium, calcium, magnesium, zeolite, iron, manganese, zinc, boron, copper, molybdenum, chlorine, sodium, iodine, and cobalt. These components are, for example, potassium nitrate.
  • plant hormones examples include auxins such as indoleacetic acid (IAA), naphthaleneacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), and cytokinins such as kinetin, zeatin, and dihydrozeatin. Used.
  • auxins such as indoleacetic acid (IAA), naphthaleneacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D
  • cytokinins such as kinetin, zeatin, and dihydrozeatin. Used.
  • the vitamins for example Piochin, thiamine (vitamin B,), pyridoxine (vitamin B 6), pantothenic acid, inositol, and the like nicotinate Ru is used.
  • amino acids for example, glycine, phenylalanine, leucine, glumin, cysteine and the like can be added.
  • each of the above components has a carbon source of about 1 to about 30 g / l, an inorganic ingredient of about 0.1 M to about 100, a plant hormone power of 5 'of about 0.01 to about 10, vitamins and amino acids. Each is used at a concentration of about 0.1 to about 100 mg / i.
  • a liquid medium and agar, gellan gum, etc. are usually 0.1 to 1%. Any of the contained solid media can be used.
  • tissue fragments or cells such as roots, growing points, leaves, stems, seeds, pollen, anthers, and power of the plant, or tissues thereof are cultured in the medium or another conventional medium. Cultured cells obtained by culturing can be used.
  • the first date of the present application can also be applied to tumor cells and / or hairy roots obtained by infection with Arobacterium tumefaciens or Agrobacterium.
  • the cultivation is performed from the beginning of culturing under the condition that the oxygen concentration in the gas phase in the incubator is lower than the oxygen concentration in the atmosphere, or the flow in contact with the tissues or cells
  • the culture is controlled from the beginning of cultivation under the condition that the dissolved oxygen concentration in the acidic medium is lower than the saturated dissolved oxygen concentration at that temperature, the taxane type is higher than that in the case of tissue culture under normal culture conditions.
  • a cultured tissue or a cultured cell with high diterbene productivity can be obtained. '
  • the initial stage of culturing refers to the term from the start of culturing to after starting of culturing7, the oxygen concentration in the gas phase in the incubator, or the dissolved oxygen in the fluid medium in contact with tissues or cells.
  • the concentration is preferably controlled from the start of the culture.
  • control period the conditions may be controlled throughout the entire culture period, or only a part of the entire culture period may be controlled, and the control period is not particularly limited. However, it is preferable to control for at least three days.
  • the production method of the second invention of the present application can further enhance the productivity of the taxane-type diterpene by using in combination with the method of culturing in the presence of various taxane-type diterpene production promoting substances.
  • Examples of the taxane-type diterpene production promoting substance include jasmonic acids represented by the general formula (I), (II) or (III), compounds containing heavy metals, and heavy metals used in the first invention of the present application. Examples include complex ions, heavy metal ions, amines, and anti-ethylene agents.
  • the second invention of the present application is a third invention of the present application, which will be described in detail later, wherein cells are divided into a plurality of layers according to a difference in specific gravity, and cells contained in at least one layer are cultured. Method can be used in combination.
  • the production method of the second invention of the present application is different from the method of the first invention of the present invention, which is cultivated in the presence of jasmonic acids and the like, in that cells are divided into a plurality of layers by a difference in specific gravity, and the cells are formed in at least one layer.
  • the method can be used in combination with both methods of culturing the contained cells according to the third invention.
  • Taxane-type diterpenes can be separated from cultures such as cultured tissues, cultured cells, and culture media obtained as described above by extraction with an organic solvent such as methanol.
  • a preferred example of the tissue culture in the second invention of the present application includes the following method.
  • a plant belonging to the genus yew for example, a plant piece collected from a root, a growing point, a leaf, a stem, a seed, etc., is subjected to a sterilization treatment, and then placed on a paddy's plant medium hardened with gellan gum, and 10 to 10 Allow about 14 to 60 days to elapse at 35 ° C to partially exfoliate the tissue pieces.
  • the growth rate power S gradually increases and a stabilized callus is obtained.
  • the term "stabilized callus” refers to a callus having a property that a portion of the callus does not differentiate into shoots or roots during culture and retains the state of the callus, and the growth rate of the cells is uniform.
  • the stabilized callus is transferred to a liquid medium suitable for growth, for example, liquid eddy plant medium and grown.
  • the growth rate is further increased in the liquid medium.
  • the stabilized callus or the cells constituting the callus are controlled from the beginning of the culture so that the oxygen concentration in the gas phase in the incubator is lower than the oxygen concentration in the atmosphere, or the tissue and Z or Culture is performed under controlled culture conditions from the beginning of the culture so that the dissolved oxygen concentration in the fluid medium in contact with the cells is less than the saturated dissolved oxygen concentration at that temperature.
  • a tissue or cell consumes oxygen (breathing) to obtain the energy needed to maintain or grow its own individual.
  • oxygen breathing
  • the amount of cells increases as the number of days of culture increases, and the consumption of oxygen increases accordingly. Therefore, unless aeration gas is forcibly supplied from outside the system, the oxygen concentration in the gas phase in a culture vessel such as a flask containing tissues or cells, or in a medium in contact with tissues or cells.
  • a culture vessel such as a flask containing tissues or cells, or in a medium in contact with tissues or cells.
  • the dissolved oxygen concentration of S. cerevisiae naturally falls below the atmospheric oxygen concentration or the saturated dissolved oxygen concentration at that temperature with the passage of the culture days.
  • the present invention relates to a method for controlling the concentration of oxygen in the gas phase or the concentration of dissolved oxygen in a culture medium in a culture vessel containing tissues or cells, which is lower than the oxygen concentration in the atmosphere or lower than the saturated dissolved oxygen concentration at that temperature. This is different from the above-mentioned knowledge in that the culture is performed under actively controlled conditions.
  • the oxygen concentration in the gas phase in the incubator or the dissolved oxygen concentration in the fluid medium can be measured before the tissue or cells are transplanted into the incubator.
  • a method for controlling the concentration to be lower than the oxygen concentration in the medium or lower than the saturated dissolved oxygen concentration at that temperature is exemplified.
  • the period of control is not particularly limited, as described above, but it is preferable to control for at least 3 days during the entire culture period. .
  • the oxygen concentration in the gas phase in the incubator containing the tissue or the cell, or the dissolved oxygen concentration in the fluid medium in contact with the tissue or the cell is lower than the oxygen concentration in the atmosphere, or There are no particular restrictions on the culture conditions under which the concentration can be controlled to be less than the saturated dissolved oxygen concentration at that temperature.
  • a gas in which oxygen concentration is adjusted by lowering the oxygen concentration by mixing nitrogen or the like with air is supplied to the incubator. Aerating directly into the culture medium after aerating directly into the culture medium inside the gas phase and / or the culture medium inside or outside the culture vessel such as an aeration tank, or supplying the culture medium to the culture vessel.
  • the culture temperature for tissue culture in the present invention usually about 10 to about 35 ° C, particularly about 23 to about 28 ° C, is preferable because the growth rate is high.
  • the culture period is preferably 14 to 42 days.
  • the culture cells are separated from the medium by a method such as decantation or filtration after the completion of the culture, and the target taxane-type diterpene is separated from the cultured cells and the medium.
  • Method such as extraction with solvent Can be separated by
  • an adsorbent and an appropriate organic solvent can coexist in the culture system, and the target compound can be continuously collected during the culture.
  • examples of a layer containing cultured cells having a high taxane-type diterpene-producing ability after culturing include a layer having a specific gravity of 1.07 or less.
  • a method for separating cells by specific gravity a method is generally known in which a density gradient is prepared using a medium for centrifugation, the cells are overlaid, and then centrifuged.
  • Ficoll is used to separate cell granules (Hess, R. et al., Nature, 208 (1965), 856-858) and animal cells (Walder, LA. Et al., Proc. Soc. Exptl.Biol Med., 112 (1963) 494-496).
  • a density gradient of 0.02 was created with a specific gravity difference of 0.02, such as 1.03, 1.05, 1.07, 1.09, and 11 (g / ml).
  • the difference is not limited to this value, and each specific gravity difference may be the same or different.
  • the definition of the density gradient includes the case where the gradient force s changes continuously (several forces of the layers forming the density gradient $ 'infinity, and the specific gravity difference of each layer is close to 0).
  • the cells By forming a density gradient in this way and overlaying and centrifuging the cells, the cells can be divided into a plurality of layers depending on the difference in specific gravity.
  • the specific gravity of the layer to be formed is usually i.00 to 120 g / ml, preferably 3 ⁇ 41.03-1.lig / ml.
  • a layer to be cultured at least one layer may be selected, or all layers may be selected and cultured.
  • these multiple layers can be individually cultured.They can be cultured by mixing two or more layers of the selected multiple layers. .
  • Cultured cells with high taxane-type diterpene-producing ability are usually obtained by culturing cells contained in a layer having a specific gravity of 1.07 or less, but vary depending on the cells to be cultured and culturing conditions. In some cases, it is not necessarily limited to this range. In addition, simply fractionating cells based on the difference in specific gravity indicates that cells in a layer having a higher specific gravity tend to have a higher taxane-type diterpene content. Therefore, in order to more reliably obtain high-taxane-type diterpene-producing cultured cells, cells of all fractionated layers are cultured for a certain period of time, and then the taxane-type diterpene concentration contained in the cells of each layer is measured.
  • taxane-type diterpene-producing cells it is desirable to select a layer containing high taxane-type diterpene-producing cells from among the above. Hitherto, there has been no report on the case where a cultured cell of a taxane-type diterpene-producing plant is fractionated and cultured according to the specific gravity of the cell. It was unexpected that at the time of fractionation, taxane-type diterpene-high-producing cells could be obtained by culturing cells containing a taxane-type diterpene content not higher than 1.07 or less.
  • the specific gravity of the cultured cells is also determined by preparing a specific separation medium having a specific gravity, such as l. '07 g / ml, and centrifuging the medium by the above-described method. Can be divided into a plurality of layers.
  • the medium used in the present invention contains common medium components.
  • an inorganic component and a carbon source are used as such components, and a direct hormone and a vitamin can be added thereto, and further, an amino acid can be added if necessary.
  • the carbon source include disaccharides such as sucrose, maltose, and lactose; monosaccharides such as glucose, fructose, and galactose; starch; and a mixture of two or more of these sugar sources at an appropriate ratio. Can be used.
  • inorganic components include phosphorus, nitrogen, potassium, calcium, magnesium, zeolite, iron, manganese, zinc, boron, copper, molybdenum, chlorine, sodium, iodine, and cobalt.
  • Plant hormones include, for example, auxins such as indoleacetic acid (IAA), naphthaleneacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), and cytokinins such as kinetin, zeatin, and dihydrozeatin. Used.
  • auxins such as indoleacetic acid (IAA), naphthaleneacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D
  • cytokinins such as kinetin, zeatin, and dihydrozeatin. Used.
  • vitamins examples include biotin, thiamine (vitamin B i), pyridogicine (vitamin B s ), pantothenic acid, inositol, nicotinic acid, and the like.
  • amino acids include glycine, phenylalanine, leucine, and gluta. Min, cysteine, etc. can be added.
  • each of the above-mentioned components contains about 0.1 u of inorganic components, or M, carbon source of about 1 to about 3 Dg / l, phytohormone power 5 'of about 0.01 to about 10, vitamins and amino acids. Is used at a concentration of about 0.1 to about 100 mg / 1, respectively.
  • a conventionally used medium used for tissue culture of a plant for example, Murashige Skoog (1962) [Murash ige Ei Skoog ⁇ ⁇ medium, Linsmeier Skoog ( 1965) [Linsmaier Skoog ⁇ ⁇ 's medium, ⁇ ' I 'Plant' medium (1981) [Woody Plant Medium], Gamborg [Gamborg] B-5 medium, Mitsui M-9 medium, etc. And, if necessary, a medium prepared by adding the above-mentioned carbon source, vitamins, amino acids and the like.
  • any of a liquid medium and a solid medium usually containing 0.1 to 1% of agar, gellan gum and the like can be used, but a liquid medium is usually preferable.
  • tissue fragments or cells such as roots, growing points, leaves, stems, seeds, pollen, anthers, sepals, or the like of the plant, or those obtained using the above-described medium or another conventional medium, may be used.
  • Cultured cells obtained by culturing can be used.
  • taxane-type diterbene-high-producing cultured cells are obtained as compared with the control without fractionation.
  • Taxane-type diterpenes can be separated from the cultured cells by extraction with an organic solvent such as methanol.
  • a preferred example of the tissue culture in the present invention includes the following method. First, the plants of the yew genus, such as roots, growing points, leaves, stems, seeds, etc. After sterilizing the plant pieces collected from the plant, they were hardened with gellan gum, placed on Soddy Blunt's medium, and allowed to elapse at 14 to 60 days at 10 to 35 ° C to form part of the tissue pieces as callus. Let it. When the callus thus obtained is subcultured, the growth rate gradually increases, and a stabilized callus is obtained.
  • the term "stabilized callus” refers to a callus having a property that a portion of the virulentus does not differentiate into shoots and roots during culture and retains the state of the callus and has a uniform cell growth rate.
  • the stabilized callus is transferred to a liquid medium suitable for growth, for example, a liquid paddy's blunt medium, and grown.
  • the growth rate is further increased in the liquid medium.
  • the culture temperature for tissue culture in the present invention usually about 10 to about 35 ° C, particularly about 23 to 28 ° C, is preferable because the growth rate is high.
  • the culture period is preferably between 14 and 42.
  • the culture cells are separated from the medium by a method such as decantation or filtration after completion of the culture, and the desired taxane-type diterpene is extracted therefrom with an organic solvent.
  • a method such as decantation or filtration after completion of the culture, and the desired taxane-type diterpene is extracted therefrom with an organic solvent.
  • the efficiency of the present invention can be further enhanced by adopting the following fourth to seventh inventions in the form of a single or a combination thereof.
  • an oxidizing agent or a water-soluble substance is used to obtain a tissue or cell activated for the production of the taxane-type diterpene in the next step.
  • examples of the oxidizing agent include peroxodisulfate such as potassium peroxodisulfate, hydrogen peroxide, and the like
  • examples of the water-soluble oxygen-containing organic compound include dimethylformamide, dimethylsulfoxide, and ethylene glycol.
  • the sugar concentration is 2 to 50 g / l, preferably 10 to 30 g / i
  • the concentration of Z or nitrate ion is 2 to 50 mol / l. l, preferably 10-30 awake Dl / i, after transplanting the tissue or cells to the medium, 0.2 to 5 g / l, preferably 0.5 to 3 g per day, based on the initial volume of the medium.
  • / l of sugar and Z or 0.2 to 5 ⁇ 01/1 preferably 0.5 to 3 mol / l of nutrient solution containing ol / l of nitrate ion is added continuously or intermittently.
  • the present inventors have found that high-density culture of tissues or cells has become possible, and this has led to a dramatic increase in the amount of taxane-type diterbene produced per incubator.
  • the sixth invention of the present application has been completed.
  • the density indicates the amount of cells per volume of the culture solution in the culture tank, and is expressed in terms of the dry cell weight (g) per liter of the culture solution.
  • the culture is performed while renewing the medium by separating and extracting the same volume of the medium from the tissue or cells, and the resulting culture is extracted during the culture.
  • the ability to recover taxane-type diterpenes from at least one or more selected from the medium recovered by the method and the medium obtained at the end of the culture is preferred.
  • the present application the sixth invention 50g in fresh weight / 1 or more high-density culture relative density media volume tissues or cells of the plant at the start of cultivation, the effect force against improving productivity of taxane-type diterpenes s Especially large No.
  • the supply rate of the fresh medium is the specific growth rate of the tissue or cells
  • the non-dimensional number F Vz
  • the specific update rate of the medium defined by ZVZ Add a fresh medium continuously or intermittently so that the concentration is within the range of 0.1 to 10.Continuously or intermittently, a culture solution containing tissues or cells to be extracted outside the tank and / or continuously or intermittently It does not contain any tissue or cells that are extracted from the culture tank, and the taxane-type diterpene can be produced with high efficiency, which is expected to be impossible with conventional methods by recovering the taxane-type diterpene from the culture solution.
  • the seventh invention of the present application has been completed.
  • the specific renewal rate F of the medium is more preferably Q. 5 to 5.
  • the sugar concentration of the culture solution is 5-40 g / l, and the nitrate ion concentration of the culture solution is 10-40 n TM ol / 1.
  • the effect of the present invention can be achieved with a cell density of 50 to 500 g of viable cell weight per liter.However, if the cell density is as high as possible without extremely high stirring power, a taxane-type diterpene can be produced efficiently, and 200 g or more per torr is preferred.
  • the cells obtained by the third aspect of the present invention were cultured according to the fourth to seventh aspects of the present invention,
  • the desired taxane type diterpene may be produced.
  • FIG. 1 is a graph showing the change in taxol yield in a medium after addition of 100 M of methyl jasmonate.
  • FIG. 2 is a graph showing changes in the amount of paccatin III in the medium after addition of methyl jasmonate 100.
  • FIG. 3 is a diagram showing an example of a culture apparatus used for performing tissue culture according to the second invention of the present application. Each symbol in FIG. 3 has the following meaning.
  • FIG. 4 is a diagram showing growth after differential culture.
  • FIG. 5 is a diagram showing the taxane content after fraction culture.
  • FIG. 6 is a diagram showing the abundance ratio of cells at the time of fractionation.
  • FIG. 7 shows the taxane content (in cells) at the time of fractionation.
  • FIG. 8 is a diagram showing an example of a culture device used for performing tissue culture according to the sixth or seventh invention of the present application. Each symbol in FIG. 8 has the following meaning.
  • Extraction port equipped with a filter for draining culture medium only (culture medium containing no tissue or cells)
  • Solid Uddi one Blanc bets' medium was added such that the naphthalene acetic acid at a concentration of 10- 5 M (gellan gum 0.25 wt%), previously 2% antiformin solution or Siyouichii was sterilized with 70% Etanoru solution or the like (Taxus A part of the stem of B. baccata (LINN) was placed on a bed, and the culture was allowed to stand still at 25 ° C. in a dark place to obtain a scallop.
  • LINN Etanoru solution
  • Culture 14 states that as a compound represented by the general formula (I), a methyl ester of abberonic acid (in the formula (I), R la , R lb , R lc , R ia , R le , R lf , R 2 , R 3 , R 4 , R 5 and R 6a are hydrogen atoms, R 6 is a hydroxyl group, R 7 is a methoxy group, n is 1 and a double bond is formed between C 3 and 4 Was added at a final concentration of 0.01 to 1000) LM, and the cells were further cultured for 7 days.
  • a methyl ester of abberonic acid in the formula (I)
  • R la , R lb , R lc , R ia , R le , R lf , R 2 , R 3 , R 4 , R 5 and R 6a are hydrogen atoms
  • R 6 is a hydroxyl group
  • R 7 is a methoxy group
  • the cultured cells of T. cerevisiae were collected by filtration, freeze-dried, and the dry weight was measured to determine the growth weight of the cultured cells per 1 L of liquid medium.
  • the taxane-type diterpene was extracted from the dried callus using methanol or the like, and the yield of the taxane-type diterpene was measured by high-performance liquid chromatography and quantified by comparison with the standard products taxol, cephalomannine, and paccatin III. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated, except that the methyl ester of bveronic acid was not added. The results are shown in Table 1.
  • Example 1 from the 7th day of culture, the methyl ester of The procedure was the same as in this example, except that a total of four successive additions (final concentration per time was 25 M, a total of 100 uM). The results are shown in Table 1.
  • Example 1 the same operation as in Example 1 was performed except that 100. uM of methyl ester of bveronic acid was added to culture 1 and culture was further performed for 20 days. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated, except that 100 ⁇ l of the methyl ester of bveronic acid was added on day 7 of the culture, and the culture was further continued for 14 days. The results are shown in Table 1.
  • the cells were separated into cell clumps having a size of 250 to 840 m by a mash.
  • a medium having a specific gravity of 1.07 (g / ml) was prepared using Ficoll, the cells were overlaid, and centrifuged at 700 rpm for 6 minutes. Cells were separated into two layers depending on the specific gravity. 1. Fractionate the cells contained in the layer below 07 g / ml, wash at least 3 times with 2% sucrose solution, and wash Ficoii. I washed away. After washing, 1 g (fresh weight) of the cells was transferred to an Erlenmeyer flask containing 20 ml of Liquid Peddy Plant Medium and cultured with shaking at 25 ° C for 14 days.
  • Example 5 The same procedures as in Example 5 were carried out except that no methyl ester of bveronic acid was added. The results are shown in Table 2. .
  • Example 6 The same operation as in Example 6 was carried out except that the methyl ester of bveronic acid was not added. The results are shown in Table 3.
  • the taxane-type diterpene is extracted from the obtained dried callus using methanol or the like, and the standard products taxol, cephalomannine, packer are extracted using high-performance liquid chromatography.
  • the taxane-type diterpene yield was determined by comparative quantification with tin III. The results are shown in Table 4.
  • Example 8 The same operation as in Example 8 was carried out except that the methyl ester of cucurbic acid was not added. The results are shown in Table 4.
  • Example 8 The same as Example 8 except that methyl ester of cucurbic acid was added successively four times every other day from the 7th day of culture (final concentration of 25 ⁇ / time, total 100 ⁇ M) in Example 8. Operated. The results are shown in Table 4.
  • Example 8 the same operation as in Example 8 was performed except that cucurbic acid methyl ester 100 JLIM was added to culture No. 1 and culture was further performed for 20 days. The results are shown in Table 4.
  • Example 8 The procedure of Example 8 was repeated except that 100 IX M of cucurbic acid methyl ester was added on the 7th day of the culture, and the culture was further continued for 14 days. The results are shown in Table 4.
  • the cells were separated into cell clumps having a size of 250 to 840 m by a mash.
  • a medium having a specific gravity of 1.07 (g / mi) was prepared using Ficoll, the cells were overlaid, and centrifuged at 700 rpm for 6 minutes. Cells were separated into two layers depending on the specific gravity. 1. The cells contained in the layer below 07 g / ml were fractionated, washed at least three times with 2% sucrose solution, and the Ficoll was washed away. After washing, 1 g of cells (fresh weight) was transferred to an Erlenmeyer flask containing 20 ml of liquid eddy plant and medium, and cultured at 25 ° C for 14 hours with shaking.
  • Example 12 The same operation as in Example 12 was carried out except that the methyl ester of cucurbic acid was not added in Example 12. Table 5 shows the results. Table 5
  • Cucurbic acid methyl ester 250 uM was added to the cultured cells of D. magnolia (the 14th day of culture) obtained by the same method as in Example 8, and cultured for 7 days. After the completion of the culture, the same operation as in the example was performed. Table 6 shows the results.
  • Example 13 The same operations as in Example 13 were carried out except that the methyl ester of cucurbic acid was not added. Table 6 shows the results.
  • Example 13 the operation was performed in the same manner as in Example 13, except that cultured cells of T. media were used. Table 6 shows the results.
  • Example 14 The same operations as in Example 14 were carried out except that the methyl ester of cucurbic acid was not added. Table 6 shows the results.
  • the callus lg fresh weight
  • a liquid paddy 'plant' medium containing the above components at the same concentration
  • the callus was grown at a higher speed.
  • methyl jasmonate as a jasmonic acid (in the above formula (III), R la , R lb , R lc , R l fl , R le , R lf , R 2 , R 3 , R 4 , R Compounds in which B and R 6 are hydrogen atoms, R 7 is a methoxy group, n is 1, and a double bond is contained between C 3 and C 4 , trans 90%, cis 10% ) was added to a final concentration of 0.01 to 1000 M, and the cells were further cultured for 7 days.
  • the cultured cells of T. chinensis were collected by filtration, lyophilized, and the dry weight was measured to determine the growth weight of the cultured cells per iL of the liquid medium.
  • the taxane-type diterpene was extracted from the obtained dried callus using methanol and the like, and the yield of the taxane-type diterpene was measured by high-performance liquid chromatography and comparatively quantified with reference to taxol, cephalomannine, and paccatin III. Table 7 shows the results.
  • Example 15 The same operation as in Example 15 was carried out except that no jasmonic acid methyl ester was added in Example 15. Table 7 shows the results.
  • Example 15 except that jasmonic acid methyl ester was added successively four times in total every other day from the 7th day of culture (final concentration of 25 M per time, total 100 iiM). The operation was the same as in the examples. Table 7 shows the results.
  • Example 15 The procedure of Example 15 was repeated, except that jasmonic acid methyl ester 100 was added on the first day of the culture, and the culture was further continued for 20 days. Table 7 shows the results. '
  • Example 15 The procedure of Example 15 was repeated, except that 100 nU of jasmonic acid methyl ester was added on day 7 of the culture, and the culture was further continued for 14 days. Table 7 shows the results.
  • Example 15 jasmonic acids (in the formula (III), R) a R lb R lc R ′ R le RR 2 R 3 R 4 R s and R 6 are hydrogen atoms, and R 7 is a hydroxyl group.
  • R is 1, except that the compound containing a double bond between C 3 and C 4, trans 90%, cis 10%) and its final concentration is added to a 0.01 1000 u M Was operated in the same manner as in the example.
  • Table 8 shows the results.
  • Example 19 The same operation as in Example 19 was carried out except that jasmonic acid was not added. Table 8 shows the results.
  • Example 15 the results of analysis of the taxane-type diterbene present in the medium before, on the third day, and on the seventh day after the addition of jasmonic acid methyl ester 100 M are shown in FIGS. 1 and 2. According to culture 7, about 5 harms of taxol ij and about 7 harms of paccatin III were leaked to the medium.
  • Example 20 The same procedures as in Example 20 were carried out except that no jasmonic acid methyl ester was added. The results are shown in FIGS. 1 and 2.
  • the cells with an increased growth rate obtained in the Examples The cells were separated into cell clumps having a size of 250 to 840 m by a mash. Next, Ficoll and have use of, creates a medium density specific gravity 1. 07 (g / m l) , was overlaid the cells were centrifuged for 6 minutes at 700 revolutions. Cells were separated into two layers depending on the specific gravity. 1. The cells contained in the layer below 07 g / ml were fractionated, washed at least three times with 2% sucrose solution, and the Ficoll was washed away.
  • Example 21 The same operations as in Example 21 were carried out except that no jasmonic acid methyl ester was added. Table 9 shows the results.
  • Jasmonic acid methyl ester 250 M was added to cultured cells of T. chinensis (Culture 14) obtained by the same method as in Example 15, and the cells were cultured for 7 days. After the completion of the culture, the same operation as in the example was performed. Table 10 shows the results.
  • Example 22 The same operations as in Example 22 were carried out except that no jasmonic acid methyl ester was added. Table 10 shows the results.
  • Example 23 The same procedures as in Example 23 were carried out except that no jasmonic acid methyl ester was added. Table 10 shows the results. Table 7
  • a solid poddy plant medium (0.25% by weight of gellan gum) to which naphthalene acetic acid was added to a concentration of 10— was previously sterilized with 2% antiformin solution or 70% ethanol solution (Taxus baccata).
  • a part of the stem of LIN N) was placed on the floor and cultivated at 25 ° C. in a dark place to obtain scallop.
  • this callus lg fresh weight
  • the taxane-type diterpene was extracted from the obtained dried callus using methanol or the like, and the yield of the taxane-type diterpene was measured by high-performance liquid chromatography by quantitative determination of taxol, cephalomannine, and paccatin III using high-performance liquid chromatography. Table 11 shows the results.
  • Example 24 were added to [AS 2 0 3) 2] 3 starting culture to scratch its final concentration becomes 10_ 3 Micromax 7 ⁇ , and cultured for 14 days. After the completion of the culture, the same operation as in the example was performed. Table 11 shows the results.
  • Example 24 [Ag (S 2 0 3) 2] s - is added to the culture initiation to its final concentration of 10 14 ⁇ , and cultured further for 7 days. After the completion of the culture, the same operation as in the example was performed. Table 11 shows the results.
  • Example 24 [Ag (S 2 0 3) 2] 3 - was added to the culture after 18 days to the final concentration of 10- 3 M, and cultured further 3 days. After the completion of the culture, the same operation as in the example was performed. Table 11 shows the results.
  • Example 24 [Ag (S 2 0 3) 2] 3 - the final concentration per five times successively added (once every 4 days from the start of the culture (day 0) is 2 X10_ 4 M, total except 10- 3 M) to be operated similarly to the embodiment. Table 11 shows the results.
  • Example 24 the cultivation 14 indicated that the jasmonates were methyl esters of jasmonic acid (in the above formula (III), R la , R b , R lc , R lfl , R le , R ", R 2 , R 3 , R 4 , R 5 and R s are hydrogen atoms, R 7 is a methoxy group, n is 1 and the compound containing a double bond between C 3 and 4 ) has a final concentration of 10-
  • the same operation as in the above example was carried out except that the addition was made to be 4.
  • the results are shown in Table U.
  • Example 30 In Example 24, the flask was placed in a container having a gas supply port and a discharge port (with a capacity of 3000 ml) and sealed, and then the concentration of oxygen supplied to the cultured cells was adjusted to 10% using air and nitrogen. The operation was performed in the same manner as in the example except that the mixing ratio was adjusted and the gas was supplied from the supply port at a rate of 25 ml / min. Table 11 shows the results.
  • Example 30 the methyl ester of jasmonic acid on day 14 of culture, was operated similarly to the embodiment except that the final concentration is added so as to be 10- 4 M. Table 11 shows the results.
  • Example 24 [Ag (S 2 0 3) 2] 3 - Similar to the embodiment example except for adding silver nitrate (AgNO 3) in place of 10 "3 M, at the start of the culture (day 0) Table 11 shows the results.
  • Example 32 The procedure of Example 32 was repeated, except that silver nitrate 101 was added on the 14th day of the start of the culture. Table 11 shows the results.
  • Example 24 except without the addition of 3 _ [Ag (S 2 0 3) 2] was operated similarly to the embodiment. Table 11 shows the results.
  • Example 24 [Ag (S 2 0 3) 2] as a compound containing a heavy metal 3 an alternative to the cobalt chloride (CoCl 2), except for adding to the final concentration of 10- to IM
  • the procedure was the same as in this example. Table 12 shows the results.
  • Example 34 it was added to the [Ag (S 2 0 3) zV- after 7 days of culture to the final concentration of 10- 5 Micromax cobalt chloride instead of, and cultured for 14 days. After completion of the culture, the operation was performed in the same manner as in the example. Table 12 shows the results.
  • Example 34 it was added to salt Ihikobaruto the culture after 14 days to the final concentration of ⁇ T 5 Micromax, and cultured further for 7 days. After the completion of the culture, the same operation as in the example was performed. Table 12 shows the results.
  • Example 34 was added cobalt chloride to the final concentration of 10- 5 M Yo starting culture 18 ⁇ , and cultured further 3 days. After the completion of the culture, the same operation as in the example was performed. Table 12 shows the results.
  • Example 34 the same as that in Example 34 except that cobalt chloride was added 5 times in total every 4 days from the start of the culture (day 0) (the final concentration per time was 2 X 10-, total 10_). Operated. Table 12 shows the results.
  • Example 34 on the 14th day of culture, as jasmonates, methyl esters of jasmonic acid (in the formula (III), R la , R l R lc , R ld , R le , R lf , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms, R 7 is a methoxy group, n is 1 and the compound containing a double bond between C 3 and 4 ) has a final concentration of except that the addition to be a 10- 4 M was operated similarly to the embodiment. Table 12 shows the results.
  • Example 34 the flask was placed in a container having a gas supply port and a discharge port (with a capacity of 3000 ml) and sealed, and then the concentration of oxygen supplied to the cultured cells was adjusted to 10% using air and nitrogen. The operation was performed in the same manner as in the example except that the mixing ratio was adjusted and the gas was supplied from the supply port at a rate of 25 ml / min. Table 12 shows the results.
  • Example 40 the methyl ester of jasmonic acid to the culture 14 ⁇ was operated similarly to the embodiment except that the final concentration is added so as to be 10- 4 Micromax.
  • Table 12 shows the results. Table 11
  • the solid paddy 'plant' medium (0.25% by weight of gellan gum) to which naphthalene acetic acid was added to a concentration of 10_ was previously sterilized with 2% antiformin solution or 70% ethanol solution (Taxus baccata LINN). ) was placed on a portion of the stalk and allowed to stand in a dark place at 25 ° C. to obtain a cultivar.
  • this callus l g fresh weight
  • ⁇ Tsu Dee plan Bok-Medumu 20ml containing the components at the same concentrations, turning cultured on a rotary shell one force one (amplitude 25Rnm, The plant was planted every 21 days to increase the callus growth rate.
  • the cultured cells of T. cerevisiae were collected by filtration, lyophilized, and the dry weight was measured to determine the growth rate.
  • the taxane-type diterpene was extracted from the obtained dried callus using methanol or the like, and the yield of the taxane-type diterpene was measured by high-performance liquid chromatography and quantified by comparison with the standard products taxol, cephalomannine and paccatin III. Table 13 shows the results.
  • Example 42 spermidine was added on the seventh day after the start of the culture so that the final concentration became 10 ⁇ , and the cells were further cultured for 14 days. After the completion of the culture, the same operation as in the example was performed. Table 13 shows the results.
  • Example 42 it was added spermidine to culture after 14 days so that its final concentration 10- S M, and incubated further for 7 days. After the completion of the culture, the same operation as in the example was performed. Table 13 shows the results.
  • Example 42 spermidine its final concentration was added to the culture after 18 days so as to be 1CT 5 M, and cultured further 3 days. After the completion of the culture, the same operation as in the example was performed. Table 13 shows the results.
  • Example 42 Same as Example 42 except that spermidine was added five times in total every four days from the start of culture (day 0) (the final concentration per time was 2 xlO—, total 10 ⁇ ). Operated. Table 13 shows the results.
  • Example 42 on the 14th day of culture, as jasmonic acids, methyl esters of jasmonic acid (in the formula (III), R la , R ′., R lc , R ia , R le , R lf , R 2 , R 3 , R 4 , R 5 and R s are hydrogen atoms, R 7 is a methoxy group, n is 1 and the compound containing a double bond between C 3 and 4 ) The same operation as in the example was carried out except that the concentration was adjusted to 10 " 4 M. The results are shown in Table 13.
  • Example 42 the flask was placed in a container having a gas supply port and a discharge port (with a capacity of 3000 ml) and sealed, and the concentration of oxygen supplied to the cultured cells was adjusted to 10% using air and nitrogen.
  • the operation was performed in the same manner as in the example except that the mixing ratio was adjusted and the gas was supplied from the supply port at a rate of 25 ml / min. Table 13 shows the results.
  • Example 48 the methyl ester of jasmonic acid to the culture 14 ⁇ was operated similarly to the embodiment except that the final concentration is added so as to be 10- 4 M. Table 13 shows the results.
  • Example 42 The same procedures as in Example 42 were carried out except that spermidine was not added. Tables 13 to 15 show the results.
  • Example 42 the spermine instead of spermidine, except for adding to the final concentration of 10- S M to IM is operated similarly to the embodiment. Table 14 shows the results.
  • Example 51 The same procedure as in Example 42 was carried out except that butrethcine was added in place of spermidine, so that the final concentration was 10 9 M to 1 M. Table 15 shows the results.
  • Solid Uddi-plant 'medium was added such that the naphthalene acetic acid at a concentration of 10- 5 M (gellan gum 0.25 wt%.) was sterilized beforehand with 2% antiformin solution or 70% evening Nord solution or the like
  • the stalks of T. chinensis (Taxus baccata LIN N) were laid on the stalk, and cultured statically at 25 ° C. in the dark to obtain T. chinensis callus.
  • this callus lg fresh weight
  • the medium was transferred to an Erlenmeyer flask containing 20 mi of Runt's medium, and cultivated by swirling on a rotary shaker (amplitude: 25, lOOrpm) and planted every 21 days to increase the growth rate of the callus.
  • the cultured cells of T. cerevisiae were collected by filtration, lyophilized, and the dry weight was measured to determine the growth rate.
  • the taxane-type diterpene was extracted from the obtained dried callus using methanol or the like, and the yield of the taxane-type diterpene was measured by high-performance liquid chromatography and comparatively quantified with the standard products taxol, cephalomannine, and packatin III. Table 16 shows the results.
  • Example 52 acetylsalicylic acid was added at the start of the culture (day 0) so that the final concentration became 10 ⁇ , and the cells were cultured for 21 days. After completion of the culture, the operation was performed in the same manner as in the example. Table 16 shows the results.
  • Example 52 it was added to the culture after 7 days to the Asechirusarichiru acid its final concentration becomes 10- 5 Micromax, and cultured for 14 days. After the completion of the culture, the same operation as in the example was performed. Table 16 shows the results.
  • Example 52 acetylsalicylic acid was cultured to a final concentration of 10 ⁇ . It was added on the 18th day after the start and cultured for another 3 days. After the completion of the culture, the same operation as in the example was performed. Table 16 shows the results.
  • Example 52 cultivation of acetylsalicylic acid was started in the same manner as in Example 7, except that the acetylsalicylic acid was added 5 times every 2 days (the final concentration per time was 2 X10_, 10- in total). Operated. Table 16 shows the results.
  • Example 52 on the 14th day of culture, as jasmonic acid, a methyl ester of jasmonic acid (in the above formula (III), R la R lb R ' c R' R le RR 2 R 3 R 4 R 5 and R s are hydrogen a atom, R 7 turtles Bok alkoxy group, n is 1, added to C 3 and the final concentration of the compound) which contain a double bond between the C 4 is 10- 4 M
  • the procedure was the same as in the above example, except that Table 16 shows the results.
  • Example 52 the flask was placed in a container (containing 3000 ml) having a gas supply port and a discharge port and sealed, and then the concentration of oxygen supplied to the cultured cells was adjusted to 10% using air and nitrogen. The operation was performed in the same manner as in the example except that the mixing ratio was adjusted and the gas was supplied from the supply port at a rate of 25 ml / min. Table 16 shows the results.
  • Example 58 the methyl ester of jasmonic acid to the culture 14 ⁇ was operated similarly to the embodiment except that the final concentration is added so as to be 10- 4 M. Table 16 shows the results.
  • Example 52 The same operation as in Example 52 was performed except that acetylsalicylic acid was not added. Table 16 shows the results.
  • Example 52 except that a S. barrels (Ethrel) (C 2 K 6 0 3 C1P) 10 "3 as Echiren generating agent was added at the initiation of the culture (0 ⁇ ) instead of Asechiruzarichiru acid the embodiment
  • the procedure was the same as in the example, and the results are shown in Table 16.
  • Example 52 the Ethrel 10- 3 M in place of Asechirusarichiru acid, was operated in the same manner as the Example except for adding the start 14 days of culture. Table 16 shows the results.
  • Example 52 Aminookishi acetate as an anti-ethylene agents. Hydrochloride [(H 2 N0CH 2 C00H) 2 -HC.l] a, the except for adding to the final concentration of 10- 9 M ⁇ 1M The operation was the same as in the example. Table 17 shows the results.
  • the solid was added to a naphthalene acetic acid at a concentration of 10- 5 M Uddi.
  • Plant 'medium gellan gum 0.25 wt%), the advance of 2% antiformin solution or Siyouichii was sterilized with 70% ethanol solution and the like ( A part of the stem of Taxus baccata LINN) was placed on the floor, and cultured statically in the dark at 25 to obtain scallop.
  • 1 g of this callus fresh weight
  • the flask After transferring 1 g (fresh weight) of the cultured cells thus obtained into a Erlenmeyer flask containing 20 ml of a liquid paddy 'Blunt' medium to which the above components were added at the same concentration, the flask was connected to a gas supply port. Placed in a container with a discharge port (capacity 3000ml) and sealed. Then, using air and nitrogen, adjust the mixing ratio so that the oxygen concentration supplied to the cultured cells becomes 4 to 15%, and then supply the gas from the supply port at a rate of 25 ml / min. For 21 days.
  • the cultured cells of T. chinensis were collected by filtration, lyophilized, and the weight of the plant was measured to determine the growth rate.
  • the taxane-type diterpene was extracted from the dried callus using methanol or the like, and the yield of the taxane-type diterpene was measured by high-performance liquid chromatography and quantified by comparison with the standard products taxol, cephalomannine, and paccatin III. Table 19 shows the results.
  • Example 19 The operation was performed in the same manner as in Example 62, except that the mixed gas was adjusted so that the oxygen concentration supplied to the cells became 20%. Table 19 shows the results.
  • Example 62 The procedure of Example 62 was repeated, except that the flask containing the cultured cells was cultured in the atmosphere. Table 19 shows the results.
  • Example 62 after supplying a mixed gas in which the oxygen concentration supplied to the cells was adjusted to be 10% for 3 days from the start of the culture, air was supplied until the end of the culture (18 days).
  • Table 19 shows the results.
  • Example 62 except that air was supplied until the end of the cultivation (14 days) after supplying the mixture for 7 days from the start of the cultivation, and then supplying the mixed gas adjusted to the concentration of oxygen supplied to the cells to be 10%. The same operation was performed as in the example. Table 19 shows the results.
  • Example 62 except that air was supplied until the end of the cultivation (7 days) after supplying the mixed gas in which the oxygen concentration supplied to the cells was adjusted to be 10% for 14 days from the start of the cultivation. The same operation was performed as in the example. Table 19 shows the results.
  • Example 62 on the 14th day of culturing, a methyl ester of jasmonic acid as a jasmonic acid (in the above formula (III), R la R ′ R lc R ′ R le RR 2 R 3 R 4 , R s and R 6 are hydrogen)
  • An atom, R 7 is a methoxy group, n is 1, and a compound containing a double bond between 3 and C 4 , trans form 90, cis form 10%) is obtained at a final concentration of 10
  • the same operation as in the above example was carried out except that the addition was performed so as to obtain 100 wM. Table 20 shows the results.
  • Example 62 85 g of freshly grown cultured cells obtained in Example 62 (fresh weight) were placed in a liquid aquady culture tank (with a capacity of 3000 ml) containing a dissolved oxygen concentration meter and a dissolved oxygen concentration control device. After putting 1700ml of the medium, it was transplanted. Then, aeration and agitation culture was performed at 25 ° C for 21 days using air and nitrogen while adjusting the mixing ratio so that the dissolved oxygen concentration in the medium was 0.1 ppm or less.
  • a schematic diagram of the culture device is shown in FIG. 3, and the results are shown in Table 21.
  • Example 67 The same operation as in Example 67 was performed except that the mixing ratio was adjusted so that the dissolved oxygen concentration was 1 ppm or less. Table 21 shows the results.
  • Example 69 The same operations as in Example 67 were performed except that the mixing ratio was adjusted so that the dissolved oxygen concentration was 2 ppm or less. Table 21 shows the results.
  • Example 67 The same operation as in Example 67 was performed except that the mixing ratio was adjusted so that the dissolved oxygen concentration was 4 ppm or less. Table 21 shows the results.
  • Example 67 The same operation as in Example 67 was performed except that the mixing ratio was adjusted so that the dissolved oxygen concentration was 6 ppm or less. Table 21 shows the results.
  • Example 67 The same operations as in Example 67 were performed except that air was passed. Table 21 shows the results.
  • Example 67 culture was performed while adjusting the mixing ratio so that the dissolved oxygen concentration of the medium was 4 ppm or less for 3 days from the start of the culture, and then air was supplied until the end of the culture (18 days).
  • the procedure was the same as in this example. Table 21 shows the results. (Example 73)
  • Example 67 culture was performed while adjusting the mixing ratio so that the dissolved oxygen concentration of the medium was 4 ppm or less for 7 days from the start of the culture, and then air was supplied until the end of the culture (14 days). The same operation was performed as in the example. Table 21 shows the results.
  • Example 67 the culture was performed while adjusting the mixing ratio so that the dissolved oxygen concentration of the medium was 4 ppm or less for 14 days from the start of the culture, and then air was supplied until the end of the culture (7 days). The same operation was performed as in the example. Table 21 shows the results. Table 19
  • the yield was calculated based on the total production (in cells + in medium).
  • the yield was calculated from the total production amount (in cells + in medium).]
  • the total yield was calculated as the sum of the yields of paccatin III, cephalomannine and evening sol. ]
  • the numbers on the left indicate the maximum dissolved oxygen concentration in the medium during the gas mixture supply period.
  • Solid Uddi 'Blanc bets' medium was added such that the naphthalene acetic acid at a concentration of 10- 5 M (gellan gum 0.25 wt%), previously 2% antiformin solution or Siyouichii was sterilized with 70% ethanol solution and the like ( A part of the stem of Taxus baccata LINN) was placed on a bed and allowed to stand still at 25 ° C. in a dark place to obtain scallop.
  • this callus l g fresh weight
  • this callus l g fresh weight
  • the components in the added Erlenmeyer flask liquid ⁇ Tsu D 'plant' Medumu 20ml containing the same concentration turning cultured on a rotary shell one force one (amplitude 25 ⁇ , lOOrpm) and planted every 21 days to increase the growth rate of the callus.
  • the lg of cultured cells (fresh weight) thus obtained was first sorted by a stainless mesh into cell clumps having a size of 250 to 840 m. Next, a density gradient of specific gravity 1.03, 1.05, 1.07, 1.09, l.ll (g / ml) was created using Ficoll, and the cells were overlaid. Centrifugation was performed for minutes. Cells were separated into different layers depending on the specific gravity. The cells separated in each layer were fractionated without mixing, washed at least three times with a 2% sucrose solution, and the Ficoll was washed away.
  • the cultured cells of T. cerevisiae were detected by filtration, freeze-dried, and the dry weight was measured to determine the growth weight of the cultured cells per 1 L of liquid medium.
  • the taxane-type diterpene is extracted from the obtained dried calli using methanol or the like, and the taxane-type diterpene content is measured by high-performance liquid chromatography, and compared and quantified with the standard products taxol, cephalomannine, and paccatin III. did. The results are shown in Table 22, Figures 4 and 5.
  • Example 75 the same operation as in Example 75 was performed except that cell clumps were separated by a stainless steel mesh, and then fractionation by a density gradient was not performed. The results are shown in Table 22, Figures 4 and 5.
  • Example 76 In Example 75, the same operation as in Example 75 was performed except that the same parent plant was used, but culture cells having different callus induction periods were used. However, the cells contained in the layer having a specific gravity of 1.07 or more were put together and cultured. Table 22 shows the results.
  • Example 76 the same operation as in Example 76 was performed except that cell clumps were separated using a stainless steel mesh, and then fractionation by a density gradient was not performed. Table 22 shows the results.
  • Example 75 about 0.2 g (new fresh weight) of the cells cultured after fractionation into a layer having a specific gravity range of 1.03 or less (Table 22) was transferred to an inner diameter of 36 ml containing 3 ml of liquid Petit-Brandt medium. And cultured with shaking at 25 ° C for an additional 28 days. After completion of the culture, the cells were fractionated again by a density gradient of 1.03, 1.05, 1.07, 1-09, 1. U (g / ml). Immediately after the density gradient fractionation, the cells were collected, and the abundance ratio of the fractionated cells and the taxane-type diterpene content were quantified. The results are shown in Table 23, Figures 6 and 7. Table 23
  • the cultured cells were collected by filtration, a part was used as seed cells for the second stage culture, and the remaining cells were used for measuring the growth weight of the cultured cells and the taxane content in the cells. That is, 1 g (fresh weight) of the collected cultured cells was transferred to an Erlenmeyer flask containing 20 ml of liquid Peddy Plant Medium to which naphthalene acetic acid was added to a concentration of 10-, and shaken at 25 ° C for 14 days. Cultured. On the 14th day of the culture, methyl jasmonate was added so that the concentration in the medium became 100 M, and the cells were further cultured for 7 days.
  • the remaining cultured cells in the cells obtained in the first-stage culture were freeze-dried, and the dry weight was measured to determine the growth weight of the cultured cells per 1 L of the liquid medium.
  • the taxol content of the obtained dried cells was measured using high performance liquid chromatography.
  • the cell yield and taxol yield were measured in the same manner as in the first-stage culture. The results are shown in Table 24.
  • Example 1 100 g (fresh weight) of the same cultured cells used in Example 1 were used as a standard liquid peddy 'plant' medium 1 liter (sucrose concentration: 20 g / l, nitrate ion concentration: 0.7 mM ⁇ -naphthalene acetic acid) : 10- S M) and 2 [Ag (S 2 0 3 ) 2 ] 3 — added to the aeration-stirred culture tank (2 liters in content; Fig. 8).
  • C In the dark, start the culture with aeration at a rate of 40 rpm and aeration rate of 0.1 liter per minute, and incubate between day 2 and day 14 of culture, 20 g / l sucrose and 20 mM.
  • Example 2 The same 50 g of cultured cells (fresh weight) as used in Example 1 and 1 liter of the liquid eddy-brand medium were transferred to a 2 liter culture tank, and the aeration rate was 0.1 liter / min. After culturing for 40 days at a stirring speed of 25 rpm at 25 ° C, the sedimentation volume (PCV) of the cells was measured on the 14th day from the start of cultivation. As a result, the PCV was 0.2 liter. From the 14th day, on a medium with the same composition as the initial medium, 2 ] The supply of fresh medium supplemented with 3 -and the withdrawal of cell-free culture medium were started.
  • PCV sedimentation volume
  • the supply amount of the fresh medium was set to 2/5 volume of PCV at that time per day, and the culture medium containing no cells was extracted so as to keep the culture medium volume at 1 liter.
  • PCV reached 0.6 liter.
  • the culture medium containing cells was extracted once a day, and the average PCV was maintained at 0.6 liter, while the culture medium containing no cells was extracted to maintain the culture volume at 1 liter, and a steady state was obtained.
  • Culture was continued up to 90 days after the start of the culture.
  • the amount of fresh medium supplied was 15 liters
  • the amount of medium removed from the culture tank was 14 liters
  • the amount of cells obtained was 0.15 kg (dry weight)
  • the specific growth rate was ⁇ Was 0.08 (day-)
  • the average renewal rate of the medium was 2.88.
  • Analysis of the cells and medium removed from the culture tank in a steady state showed that 525 mg of taxol was produced.
  • the amount of taxol contained in the cells and the medium corresponding to the productivity of 8.8 mgZ liter was determined in the same manner as in Example 1.
  • Example 1 50 g of the same cultured cells (fresh weight) as used in Example 1 were added to the liquid Peddy Bra.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書
タキサン型ジテルペンの製造方法及びタキサン型ジテルべン高産生 培養細胞の取得方法 技術分野
本発明は、 卵巣癌、 乳癌、 肺癌等の治療薬として有用であるタキソール
(taxol) を含むタキサン(taxane)型ジテルべンの製造方法及びタキサン型ジテル ペン高産生培養細胞の取得方法に関する。 背景技術
卵巣癌、 乳癌、 肺癌等の治療薬として有用であるタキソール (Taxol) は、 イチ ィ科イチィ属植物であるタイへィョウイチイ(Taxus brevifolia ΝΙΠΤ) より単離 同定されたタキサン型ジテルペンであり、 活性と関連する複雑なエステルグルー プを有している。 タキソ一ルはタイへィョウイチイ植物体中のどの部位にも存在 し、 その含量は樹皮で最も高いこと力 S報告されている。 現在、 タキソ一ルは天然 の又は栽培された植物体から採取されているが、 イチィ属植物は地上 20 c mの高 さに成長するのに 10年以上かかる生育の遅い植物であり、 また樹皮を剥ぐと木が 枯れてしまうことから容易に大量のタキソールを得ることは困難である。 もし、 タキソ一ル又はタキソ一ルの前駆物質であるパッカチン III (baccatin III) 等の タキサン型ジテルペンを組織培養を利用して生産することができれば、 樹木を伐 採することなく、 大量のタキソールを容易に得ることができるので有利である。 これまでの植物の培養細胞を利用したタキソ一ル生産法については、 タイヘイ ヨウイチィ (Taxus brevifolia NUH ) 培養細胞による生産法が米国で特許 (米 国特許第 5019504号) になっているが、 そのタキソール生産量は l〜3mg/l と記 載されており、 工業的生産には不十分である。 また、 細胞培養によるタキソ一ル の生産性は不安定であり、 選抜で一次的に生産性の高い細胞力心得られても、 継代 培養してその含量を維持することは難しい [E. R. M. ickremesine et al. , World Congress on Cell and Tissue Culture (1992) ] 。
—方、 夕キソール生産法の先行技術としては、 タキソ一ル生合成前駆体である パッカチン III からの半合成法が Holtonらの米国特許第 5015744号明細書に開示 されている。 植物の組織培養法を用いれば、 パッカチン III 等の半合成原料の生 産も可能であり、 前記半合成法によるタキソ一ル生産にも利用できる。 発明の開示
本発明の第一の目的は、 植物組織培養によるタキサン型ジテルペンの簡便な製 造方法を提供することにある。
本発明の第二の目的は、 タキサン型ジテルべン高産生培養細胞の取得方法を提 供することにある。
本願第一の発明は、 タキサン型ジテルペンを産生する植物の組織又は細胞をジ ヤスモン酸類、 重金属を含む化合物類、 重金属を含む錯イオン類、 重金属ィォ ン、 アミン類及び抗ェチレン剤よりなる群から選ばれた少なくとも一つの存在下 に培養し、 得られる培養物からタキサン型ジテルペンを回収することを特徴とす るタキサン型ジテルペンの製造方法である。
本願第二の発明は、 タキサン型ジテルペンを産生する植物の組織又は細胞を培 養するに当たり、 培養器内の気相中の酸素濃度を大気中の酸素濃度未満の条件下 に培養初期から制御して培養を行う力 >、 或いは組織又は細胞と接する流動性の培 地中の溶存酸素濃度をその温度における飽和溶存酸素濃度未満である条件下に培 養初期から制御して培養を行い、 得られる培養物からタキサン型ジテルペンを回 収することを特徴とするタキサン型ジテルペンの製造方法である。
本願第三の発明は、 タキサン型ジテルペンを産生する植物の細胞を比重の違い により複数の層に分け、 少なくとも一つの層に含まれる細胞を培養し、 それらの 中からタキサン型ジテルペン高産生培養細胞を選択することを特徴とするタキサ ン型ジテルべン高産生培養細胞の取得方法である。
以下、 本発明を詳細に説明する。
本発明の対象となるタキサン型ジテルペンとしては、 タキサン骨格を有するジ テルペンであれば特に制限はなく、 例えばタキソ一ル (taxol) 、 7—ェピタキソ ール、 パッカチン III (baccatin III) 、 7—ェピバッカチン III 、 セファロマ二 ン(cephalomannine)、 7—ェピセファロマニン、 10—デァセチルバッカチン III 、 10—デァセチルセファロマニン、 10—デァセチル夕キソ一ル、 タキサギフ イン(taxagiiine)及びその類縁体、 タキサン 1 a及びその類縁体、 キシロシルセ ファロマニン、 キシロシルタキソール等が挙げられる。
本発明に用いられるタキサン型ジテルべンを産生する植物としては、 例えば、 セィョウイチイ(Taxus baccata LINN)、 ィチイ(T. cus i data SIEB. et ZUCC) 、 キャラボク(T. cuspidata SIEB. et ZUCC var. nana REHDER)、 タイヘイヨウイチ ィ(T. brevifolia NUTT) , カナダイチイ(T. canadiensis MARSH) , 中国イチィ (T. chinensis)、 T. media等のイチィ属植物が挙げられる。
本願第一の発明において、 前記植物の培養は、 植物の組織又は細胞をジャスモ ン酸類、 重金属を含む化合物類、 重金属を含む錯イオン類、 重金属イオン、 アミ ン類及び抗ェチレン剤よりなる群から選ばれた少なくとも一つの存在下に培養を 行うこと以外は、 従来から知られている方法によって行うことができる。
本願第一の発明の対象となるジャスモン酸類としては、 一般式 (I) :
Figure imgf000005_0001
[式中、 Rla、 R]\ R 、 Rla、 Rle及び R "は、 それぞれ水素原子、 水酸 基、 炭素数 1〜6のアルキル基又は炭素数 1〜6のアルコキシ基を表し; R2 、 R3 、 R4 、 R5 及び R6aは、 それぞ ,水素原子又は炭素数 1〜6のアル -Tリレ基 ¾: し;
C1 — C2 — C3 — C4 — C5 — C6 からなる側鎖は、 1個又は 2個以上の二重 結合を含んでいてもよく ;
RSDは水酸基又は一 0-炭水化物残基を表し;
R7 は水酸基、 OM (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8 (ここで、 RB は水素原子、 炭素数 1〜6のァシ ル基、 炭素数 1~6のアルキル基又はアミノ酸残基を表す。 ) 、 0RS (ここ で、 R9 は炭素数 1~6のアルキル基又は炭水化物残基を表す。 ) 又は炭素数 1 〜6のアルキル基を表し;
nは 1〜7の整数を表し;
前記 5員環は、 隣接する璟員炭素原子間で二重結合を形成してもよい。 ] で示される化合物、 一般式 (II) :
Figure imgf000006_0001
[式中、 Rla、 Rl Rl R' 1^6及び8"は、 それぞれ水素原子、 水酸 基、 炭素数 1〜6のアルキル基又は炭素数 1〜6のアルコキシ基を表し; R2 、 R3 、 R4 、 R5 及び R6 は、 それぞれ水素原子又は炭素数 1〜6のアル キル基を表し;
C1 一 C2 -C3 一 C4 -C5 -C6 からなる側鎖は、 1個又は 2個以上の二重 結合を含んでいてもよく ;
R7 は水酸基、 0M (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8 (ここで、 R8 は水素原子、 炭素数 1〜6のァシ ル基、 炭素数 1〜6のアルキル基又はアミノ酸残基を表す。 ) 、 OR9 (ここ で、 FT は炭素数 1~6のアルキル基又は炭水化物残基を表す。 ) 又は炭素数 1 〜6のアルキル基を表し ;
nは 1〜7の整数を表し;
前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物、 及び一般式 (III) :
Figure imgf000007_0001
(III)
R R1' (CH2 ) n 一 C〇一 R7
[式中、 Rla、 R' Rl Rlfl、 !^ 及び!^ ま、 それぞれ水素原子、 水酸 基、 炭素数 1〜6のアルキル基又は炭素数 1〜6のアルコキシ基を表し; R2 、 R3 、 R4 、 R5 及び R6 は、 それぞれ水素原子又は炭素数 1〜6のアル キル基を表し;
C1 -C2 一 C3 -C4 一 C5 — C6 からなる側鎖は、 1個又は 2個以上の二重 結合を含んでいてもよく ;
R7 は水酸基、 OM (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8 (ここで、 R8 は水素原子、 炭素数 1~6のァシ ル基、 炭素数 1〜6のアルキル基又はアミノ酸残基を表す。 ) 、 O R3 (ここ で、 R9 は炭素数 1〜6のアルキル基又は炭水化物残基を表す。 ) 又は炭素数 1 ~6のアルキル基を表し;
nは 1〜7の整数を表し;
前記 5員環は、 隣接する璟員炭素原子間で二重結合を形成してもよい。 ] で示される化合物が挙げられる。
前記一般式 ( I ) で示されるジャスモン酸類としては、 好ましくは一般式 (Γ) :
Figure imgf000008_0001
[式中、 Rいは水素原子又は水酸基を表し;
C1 一 C2 一 C3 -C4 — C5 — C6 からなる側鎖は、 C1 と C2 、 C2 とじ3 又は C3 と C4 の間で二重結合を含んでいてもよく ;
R6bは水酸基又は—◦—炭水化物残基を表し;
R7'は水酸基、 OM (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8' (ここで、 R8'は水素原子、 炭素数 1〜4のァシ ル基、 炭素数 1〜4のアルキル基又はアミノ酸残基を表す。 ) 又は ORs' (ここ で、 R9'は炭素数 1~4のアルキル基又は炭水化物残基を表す。 ) を表し; nは 1〜7の整数を表し;
前記 5員璟は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物が挙げられ、 前記一般式 (Π) で示されるジャスモン酸類とし ては、 好ましくは一般式 (ΙΓ) :
Figure imgf000008_0002
[式中、 Rいは水素原子又は水酸基を表し;
C 一 C2 — C3 — C4 一 C5 — C6 からなる側鎖は、 C1 と C2 、 C2 と C: 又は C3 と C4 の間で二重結合を含んでいてもよく ; R7'は水酸基、 OM (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8' (ここで、 R8'は水素原子、 炭素数 1 4のァシ ル基、 炭素数 1 4のアルキル基又はアミノ酸残基を表す。 ) 又は OR9' (ここ で、 R3'は炭素数 1 4のアルキル基又は炭水化物残基を表す。 ) を表し; nは 1 7の整数を表し;
前記 5員環は、 隣接する璟員炭素原子間で二重結合を形成してもよい。 ] で示される化合物が挙げられ、 前記一般式 (III) で示されるジャスモン酸類とし ては、 好ましくは一般式(ΙΙΓ)
Figure imgf000009_0001
(CH2 ) n - C〇一 R7' [式中、 R は水素原子又は水酸基を表し;
C1 — C2 — C3 — C4 — C5 -C6 からなる側鎖は、 C1 と C2 C2 とじ3 又は C34 の間で二重結合を含んでいてもよく ;
R7'は水酸基、 0M (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8' (ここで、 R8'は水素原子、 炭素数 1~4のァシ ル基、 炭素数 1 4のアルキル基又はアミノ酸残基を表す。 ) 又は OR9' (ここ で、 R9'は炭素数 1 4のアルキル基又は炭水化物残基を表す。 ) を表し; nは 1 7の整数を表し;
前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物が挙げられる。
前記一般式 ( I ) (II) 及び(III) において、 Rla R1 RIC Rlfl Rle R R2 R3 R4 R5 RB , R6a R7 R8 又は R9 で表さ れる炭素数 1 6のアルキル基としては、 例えばメチル基、 ェチル基、 n—プロ ピル基、 イソプロピル基、 n -ブチル基、 イソブチル基、 sec-ブチル基、 t—ブ チル基、 n—ペンチル基、 n—へキシル基が挙げられる。
前記一般式 (I ) 、 (II) 及び(III) において、 Rla、 Rlb、 Rlc、 R'。、 Rle又は R で表される炭素数 1~6のアルコキシ基としては、 例えばメトキシ 基、 エトキシ基、 n—プロポキシ基、 イソプロポキシ基、 n—ブトキシ基、 イソ ブトキシ基、 sec-ブ卜キシ基、 t一ブトキシ基、 n—ペンチルォキシ基、 n—へ キシルォキシ基が挙げられる。
R7 が 0Mである場合において、 Mで表されるアルカリ金属原子又はアルカリ 土類金属原子としては、 例えばナトリウム、 カリウム、 カルシウムが挙げられ る。
R7 が NHR8 である場合において、 RB で表される炭素数 1〜 6のァシル基 は、 直鎖、 分岐鎖のいずれでもよく、 例えばホルミル基、 ァセチル基、 プロピオ ニル基、 プチリル基、 バレリル基、 へキサノィル基、 ァクリロイル基が挙げられ る。
R7 が NHR8 である場合において、 RB で表されるアミノ酸残基としては、 イソロイシル基、 チロシル基、 トリブトフィル基が挙げられる。
R7 が OR3 である場合において、 R9.で表される炭水化物残基、 及び前記一 般式 (I) において Rebがー 0—炭水化物残基である場合における炭水化物残基 としては、 グルコビラノシル基が挙げられる。
また、 前記一般式 (I ) 、 (II) 及び (III) で示される化合物においては、 5 員環は、 隣接する璟員炭素原子間で二重結合を形成してもよい。
前記一般式 (ェ) で示される化合物の具体例としては、 以下に示す化合物が挙 げられる。
(化合物 A)
Figure imgf000010_0001
Figure imgf000011_0001
(ッベロン酸メチル)
(化合物 C)
Figure imgf000011_0002
(化合物 D)
Figure imgf000011_0003
ί 一般式 (II) で示される化合 : 具体例としては、 以下に示す化合物が挙 げ :しる。 (化合物 E)
Figure imgf000012_0001
(ククルビン酸)
(化合物 F)
Figure imgf000012_0002
(ククルビン酸メチル)
(化合物 G)
Figure imgf000012_0003
(化合物 H)
Figure imgf000012_0004
前記一般式 (III) で示される化合物の具体例としては、 以下に示す化合物が挙 げられる。
(化合物 I )
Rla, RIb, Rlc, R'。, Rle, R If, R2 R3 , R4 , Rs , R H C3 と C4 の間で二重結合形成
R7 :— OH又は一 OCH3
n: 1〜 3
(化合物 J)
Rla, Rl Rlc, R1<3, Rle, R,f, R2 R3 , R4 , R5 , R6 : H R7 : -OH
n : 1
前記一般式(III) で示される化合物において、 Rla、 R' Rlc、 R'\ RIe 又は R lfが水酸基である化合物、 又は 5員環において隣接する環員炭素原子間で 二重結合が形成された化合物の具体例としては、.例えば、 以下に示す化合物が挙 げられる。
(化合物 )
Figure imgf000013_0001
(1) n= 1 , R = H
(2) n = 7, R = H
(3) n= 7, R = 0H
(化合物し)
Figure imgf000014_0001
(1) R = H
(2) R =〇H
(化合物 M)
Figure imgf000014_0002
(化合物 N)
Figure imgf000014_0003
前記一般式 (I ) 、 (II) 又は(III) で示される化合物の好ましいものとして は、 Rla、 Rlb、 Rlc、 Rl Rle、 Rlf、 R2 、 R3 、 R4 、 R5 及び R6 が 水素原子であり、 R7 が水酸基又はメトキシ基であり、 C1 -C2 — C3 - C4 — C5 — C6 からなる側鎖が、 二重結合を含まないか、 あるいは C1 とじ2
2 c2 と C3 又は C3 と C4 の間で二重結合を含む化合物力挙げられる。
本発明で使用される前記一般式 (I) 、 (II) 又は(III) で示されるジャスモ ン酸類には種々の立体異性体 (シストランス異性体、 光学異性体) が存在する カ^ それぞれの異性体を単独で用いても、 混合物の形で用いてもよい。
以上のジャスモン酸類は、 全てタキサン型ジテルペンの生産性向上に効果を有 するが、 中でも前記一般式 ( I ) 、 (II) 及び(III) において、 Rla、 R'\ Rlc、 Rl Rle、 Rlf、 R2 、 R3 、 R4 、 R5 及び R6 が水素原子であり、 R7 が水酸基又はメトキシ基であり、 nが 1であり、 C3 と C4 の間で二重結合 を含んでいる化合物であるッベロン酸、 又はッベロン酸メチル、 ククルビン酸又 はククルビン酸メチル、 及びジャスモン酸又はジャスモン酸メチルが生産性向上 に対する効果の大きさの点から特に好ましい。
これらジャスモン酸類は、 合成により、 又は植物からの抽出等により調製され る (H.Yamane et al.. Agric. Biol. Chem. , 44, 2857-2864 (1980) ) 。
一方、 ジャスモン酸類は、 生長促進や組織の成熟、 病害抵抗性の発現にかかわ る諸反応を誘起する植物ホルモン様物質として、 種々の植物が自ら生産すること 、 吉原照彦著、 植物細胞工学第 2巻第 4号 523〜531 頁 (1390年) に記載され ている。
従って、 本発明に係るジャスモン酸類は、 培養系外から添加するほかに、 使用 する培養細胞又は培養組織に自ら生産させることもできる。 この内在性ジャスモ ン酸類の培養細胞又は培養組織による生産を促進する方法としては、 微生物の培 養物又はその抽出物、 熱処理物あるいは植物抽出物などの培地への添加を例 示することができ、 具体的には M.丄 Mueller et al. , Proc. Natl. Acad. Sci. U.S.A., 90 (16), 7490-7494 (1933)に記載の、 カビ細胞壁画分を添加する方法を 例示することができる。 また、 使用する培養細胞又は培養組織に、 機械的に又は 紫外線、 熱などによって部分的に傷害を与えることによつても、 内在性ジャスモ ン酸の生産量を高めることが可能であり、 具体的には、 R.A.Cleeman et al. , Proc. Natl. Acad. Sci. U.S.A., 89 (11), 4938-4941 (1989) に記載の、 機械的 に一部の細胞を破壊する方法を例示することができる。
ジャスモン酸類は、 水に対して難溶性のため、 通常エタノール、 メタノール等 の有機溶媒、 又は界面活性剤等に溶解した後、 培地に添加する。 また、 遊離形の ジャスモン酸類は、 そのまま用いてもよいし、 アルカリで中和して塩にして用い てもよい。
ジャスモン酸類のうち、 前記式 ( I ) 又は(III) で示される化合物は、 5員環 カルボニル基の α位が、 酸、 アルカリ、 熱によってェピマ一化を起こすため、 不 安定なシス型より安定なトランス型になりやすい。 天然又は合成ジャスモン酸を 用いた平衡実験では、 トランス型が 9 0 %、 シス型が 1 0 %の状態で存在する。 一般にはシス型の方が活性が強いとされている力 本発明で使用されるジャスモ ン酸類は、 前記式 (I ) 又は(III) で示される全ての立体異性体化合物及びその 混合物を包含する。
ジャスモン酸類は、 培地における濃度が 0. 01~ 1000 μ Μとすること力必要であ り、 この中でも特にジャスモン酸類の濃度を 0. 1 〜500 Μの範囲に調整するこ とが本願第一の発明の方法にとって好ましい。 .
植物細胞培養物にジャスモン酸類を添加して一部の二次代謝産物が誘導される ことはドイツで特許公告 [DE 4122208 C1 ] になっているが、 タキサン型ジテル ぺン産生植物の組織培養において培地添加物としてジャスモン酸類を存在させて 組織培養を行った例は幸 ¾告されておらず、 当該特許中に開示されている二次代謝 産物とは生合成経路や生合成制御機構が全く異なるタキサン型ジテルぺンの産生 量が本願第一の発明の方法によって増大することは予想外のことであった。 また、 本発明で使用される前記式 (I ) 、 (II) 又は(III) で示されるジャス モン酸類と構造的に類似したジャスモン又はメチルジャスモンが夕キソ一ルの生 産誘導に効果があることが国際公開 TO 93/17121 号公報に記載されている。 しか しながら、 これらの化合物は、 前記ジャスモン酸類と異なり、 前記式 ( I ) 、
(II) 又は(III) において、 式: ― (C H 2 ) n — C O— R 7 で示されるカルボ キシル基等を有しておらず、 これらのタキソール誘導活性は低いものであった
(比較例 24参照) 。
本願第一の発明の対象となる重金属類としては、 銅族(the copper group)或い は鉄族(the iron group)に属する重金属類であれば特に限定するものではない 、 銅族に属する金属類としては特に銀を使用することが好ましく、 また鉄族に 属する金属類としてはコバルトを使用することが好ましい。 更に、 銀或いはコバ ル卜を使用する際は、 当該重金属類を含む化合物、 当該金属類を含む錯イオン 類、 又は当該金属イオンの形で使用することが好ましい。 また、 これらの化合物 等は、 それぞれ単独で使用してもよく、 組み合わせて使用してもよい。
銀を含む化合物類としては、 例えば硝酸銀、 或いは硫酸銀、 或いはフッ化銀、 或いは塩素酸銀、 或いは過塩素酸銀、 或いは酢酸銀、 或いは亜硫酸銀、 或いはへ キサフルォロリン (V) 酸銀、 或いはテトラフルォロホウ酸銀、 或いはジァミン 銀 (I ) 硫酸塩、 或いはジァミノ銀 (I ) 酸カリウム等の化合物類を例示するこ とができる。 これらの中でも特に硝酸銀、 硫酸銀等を好適な化合物類として例示 できる。
銀を含む錯イオン類としては、 例えば [Ag(S203)2]3_ 、 或いは [Ag(S203) 3]5一 、 或いは [Ag( H3)2]+ 、 或いは [Ag(CN)2]-、 或いは [Ag(CN)3]2— 、 或いは
[Ag(SCN)2]一 、 或いは [Ag(SCN)4]3-の等の錯イオン類を例示することができる。 これらの中でも特に [Ag(S203)2]3— 、 [Ag(S203)3]s— 等を好適な錯イオン類とし て例示できる。
コバルトを含む化合物としては、 例えば塩化コバルト、 或いは硝酸コバルト、 或いは硫酸コバルト、 或いはフッ化コバルト、 或いは過塩素酸コバルト、 或いは 臭化コバルト、 或いはヨウ化コバルト、 或いはセレン酸コバルト、 或いはチオシ アン酸コバルト、 或いは酢酸コバルト、 或いは硫酸アンモニゥムコバルト、 或い は硫酸コバルト (Π) カリウム、 或いはへキサアンミンコバルト(III) 塩化物、 或いはペン夕アンミンアクアコバルト(III) 塩化物、 或いはニトロペン夕アンミ ンコバルト(III) 塩化物、 或いはジクロロテトラアンミンコバルト(III) 塩化物 半水和物、 或いはジニトロテトラアンミンコバルト(III) 塩化物、 或いはカルボ ナ卜テ卜ラアンミンコノ レ卜(in) 塩化物、 或いはテトラニトロジアンミンコバ ルト(III) 酸アンモニゥム、 或いはへキサニトロコバルト(III) 酸ナトリウム、 或いはトリス (エチレンジァミン) コバルト(III) 塩化物三水和物、 或いはジク ロロビス (エチレンジァミン) コバルト(III) 塩化物、 或いはトリス (ォキサラ ト) コバルト(III) 酸カリウム三水和物、 或いはへキサシァノコバルト(III) 酸 カリウム、 或いは (エチレンジアミンテトラァセタト) コノ^レ卜(III) 酸力リウ ムニ水和物、 或いはヒドリ ドテ卜ラカルボニルコバルト (I ) 、 或いはジカルボ ニル (シクロペンタジェニル) コバルト (I ) 、 或いはォクタカルボニルニコバ ル卜 (0 ) 、 或いはへキサカルボニル (アセチレン) ニコバルト (0 ) 、 ビス ( シクロペンタジェニル) コバルト (I ) 、 或いは (シクロペンタジェニル) (1, 5-シクロォクタジェン) コバルト ( I ) 等の化合物類を例示することができる。 これらの中でも特に塩化コバルト、 硝酸コバルト、 硫酸コバルト等を好適な化合 物類として例示できる。
コバルトを含む錯イオン類としては、 ペンタアンミンアクアコバルトイオン、 或いはニトロペン夕アンミンコバルトイオン、 或いはジクロロテ卜ラアンミンコ ノ υレ卜イオン、 或いはジニ卜口テ卜ラアンミンコバルトイオン、 或いはカルボナ トテトラアンミンコバルトイオン、 或いはテトラニトロジアンミンコバルトィォ ン、 或いはへキサニトロコバルトイオン、 或いはトリス (エチレンジァミン) コ ノ レ卜イオン、 或いはジクロロビス (エチレンジァミン) コノ \ 'ル卜イオン、 或い はトリス (ォキサラ卜) コノ ルトイオン、 或いはへキサシァノコバルトイオン、 或いは (エチレンジアミンテトラァセタト) コバルトイオン等の錯イオン類を例 示することができる。
前記重金属類の内、 銀を含む化合物類、 銀を含む錯イオン類、 又は銀イオン は、 培地における濃度が 10_ ΒΜ〜10- 'Μ とすることが好ましく、 特に 10— 7Μ〜 10— 2Μ の範囲に調整することが更に好ましい。 またコバルトを含む化合物類、 コ バルトを含む錯イオン類、 又はコバルトイオンは、 培地における濃度が 10— 6〜 ΙΟ- ' とすること力 子ましく、 特に 10— 5〜10— の範囲にすることが更に好まし い。
従来、 タキサン型ジテルペンを産生する植物の組織培養に於いて、 培地添加物 として銀を含む化合物類、 銀を含む錯イオン類、 又は銀イオンを存在させて組織 培養を行った例は報告されていない。 またコバルトを含む化合物、 又はコバルト イオン類は、 イチィ属植物の組織培養用の培地として一般に用いられる培地、 例 えばリンスマイヤ一 ·スク一グ [Linsmaier Skoog ] の培地、 或いはムラシゲ. スクーグ [Murashige Skoog 〗 の培地、 或いはガンボルグ [Gamborg 〗 の8— 5 培地等に培地成分の一つとして含まれているが、 当該濃度は 1 Χ 1(Γ 7Μ〜4 x 10-7 と 〔最新バイオテクノロジー全書編集委員会編、 木本植物の増殖と育種、 農業図書、 P265-268] 、 本発明の方法に比べて極めて低い濃度で使用されてい' る。 一方、 本願第一の発明の如くタキサン型ジテルペンを産生する植物の組織培 養に於いて、 高濃度のコバルトを含む化合物、 又はコバルトイオン類を存在させ て組織培養を行った例は、 上述の銀化合物同様報告されていない。 しかもこれら 重金属類存在下で培養することによりタキサン型ジテルペンの産生量が増大する ことは予想外のことであった。
本願第一の発明において、 ァミン類とは、 ァミン又はその塩を意味する。 本願 第一の発明の対象となるアミン類としては、 モノアミン類或いはポリアミン類の いずれも利用可能であるが、 特にポリアミン類を使用すること力 子ましい。
更に、 本願第一の発明の対象となるアミン類としては、 アルキル基の一部の水 素が水酸基で置換されていてもよいモノ、 ジ又はトリアルキルァミン、 例えばメ チルァミン、 ェチルァミン、 ジメチルァミン、 ジェチルァミン、 トリェチルアミ ン、 ジエタノールァミン、 卜リエ夕ノールァミン、 もしくはそれらの塩;或いは ポリメチレン部がイミノ基で中断されていても良く、 ァミノ基の H力低級アルキ ル基で置換されていてもよいポリメチレンジァミン、 例えばブトレツシン、 カダ ベリン、 スペルミジン、 スペルミン、 エチレンジァミン、 Ν,Ν-ジェチル- 1,3- ブ 口パンジァミン、 卜リエチレンテ卜ラミン、 もしくはそれらの塩;或いは環状ァ ルキルァミン、 例えばシクロペンチルァミン、 シクロへキシルァミン、 もしくは それらの塩、 或いはメセナミン、 ピぺラジン等の環状アミン、 もしくはそれらの 塩が挙げられる。 これらァミン類の内で好ましいものとしては、 例えばブトレツ シン [M2 (CH2)4NH2] 、 カダベリン 〔NH2 (CH2) 5NH2] 、 スペルミジン
[NH2 (CH2) 3NH(CH2) 4NH2] 、 スペルミン [NH2 (CH2) 3NH (CH2) 4NH (CH2) SNH2] 、 エチレンジァミン 〔NH2 (CH2) 2 H2] 、 Ν,Ν-ジェチル- 1,3- プロパンジァミン
[ (C2H5) 2N(CH2) 3NH2 〗 、 ジエチレン卜リアミン 〔NH2 (CH2) 2NH(CH2) 2NH2] 等の ポリアミン類、 もしくはそれらの塩を例示することができる。
前記アミン類は、 培地における濃度が 10— 〜10— 'Μ とすること力好ましく、 この中でも特に 10-7Μ〜10— 2Μの範囲に調整することが更に好ましい。
植物の組織培養物にアミン類を添加して二次代謝産物が誘導されることを示し た例としては、 二チニチソゥの培養細胞にアミン類を添加することで、 インドー ルアルカロイドの産生力誘導されることを示した、 特開平 4— 2 6 2 7 8 8号公 報を例示することができる。 しかしながら、 二チニチソゥとは植物種の異なる、 タキサン型ジテルペン産生植物の組織培養に於いて、 培地添加物としてアミン類 を存在させて組織培養を行った例は報告されておらず、 しかもそれによりインド 一ルアルカロイ ドとは生合成経路の全く異なるタキサン型ジテルべンの産生量が 増大することは予想外のことであった。
本願第一の発明の対象となる抗エチレン剤としては、 培養物のエチレン生合成 機構を阻害するか、 及び Z又は該培養物内に貯留するかもしくは該培養物を含む 培養器内の気相中或いは培地中に存在するェチレンを除去する物質であれば特に 限定するものではない。
ェチレン生合成機構を阻害する方法としては、 例えば S—アデノシルメチォニ ンから 1一アミノシクロプロパン一 1—カルボン酸への変換を触媒する酵素の活 性を阻害するか、 或いは 1一アミノシクロプロパン— 1一力ルボン酸からェチレ ンへの変換を触媒する酵素の活性を阻害する方法力 s例示され、 前者の機能を有す る化合物としては、 例えばアミノォキシ酢酸、 ァセチルサリチル酸、 リゾビトキ' シン(Rhizobitoxine) 、 アミノエトキシビニルグリシン、 メ 卜キシビニルグリシ ン、 α—ァミノイソ酪酸、 2, 4—ジニトロフエノール等を挙げることができ る。 また、 前記に例示する化合物の塩、 エステル、 アミノ酸誘導体、 炭水化物誘 導体であってもよい。
塩としては、 例えばナトリウム、 カリウム、 カルシウム、 マグネシウム塩、 ェ ステルとしては、 例えばメチル、 ェチル、 プロピル、 ブチルエステル、 アミノ酸 誘導体としては、 例えばグリシン、 メチォニン、 フヱニルァラニン誘導体、 炭水 化物誘導体としては、 例えばグルコース、 マルトース誘導体等が挙げられるが、 本発明に係る物質の塩、 エステル、 アミノ酸誘導体、 炭水化物誘導体は当該化合 物類に限定されるものではない。
また後者の機能を有する化合物としては、 例えば没食子酸、 並びに当該化合物 の塩、 エステル、 アミノ酸誘導体及び炭水化物誘導体を挙げることができる 〔兵 藤宏、 昭和 62年度園芸学会秋季大会、 シンポジウム講演要旨、 p. 122、 倉石晋、 植 物ホルモン、 東京大学出版、 p. Ill ) 。
ここで塩としては、 例えばナトリウム、 カリウム、 カルシウム、 マグネシウム 塩、 エステルとしては、例えばメチル、 ェチル、 プロピル、 ブチルエステル、 ァ ミノ酸誘導体としては、 例えばグリシン、 メチォニン、 フエ二ルァラニン誘導 体、 炭水化物誘導体としては、 例えばグルコース、 マルトース誘導体等が挙げら れるが、 本発明に係る物質の塩、 エステル、 アミノ酸誘導体、 炭水化物誘導体は 当該化合物類に限定されるものではない。
更に、 培養物内に貯留するか、 又は該培養物を含む培養器内の気相中もしくは 培地中に存在するエチレンを除去する物質としては、 例えば 1, 5 —シクロォク タジェン、 並びにイソチォシアン酸及び当該化合物の塩、 エステル (例えばァリ ルイソチオシァネー卜、 ベンジルイソチオシァネート) 、 アミノ酸誘導体及び炭 水化物誘導体を挙げることができる 〔宗像恵、 植物の化学調節, ^ (1) , 89-93 (1994) ] 。
ここで塩としては、 例えばナトリウム、 カリウム、 カルシウム、 マグネシウム 塩、 エステルとしては、 例えばメチル、 ェチル、 プロピル、 ブチル、 ァリルエス テル、 アミノ酸誘導体としては、 例えばグリシン、 メチォニン、 フエ二ルァラ二 ン誘導体、 炭水化物誘導体としては、 例えばグルコース、 マル卜ース誘導体等が 挙げられる力 本発明に係る物質の塩、 エステル、 アミノ酸誘導体、 炭水化物誘 導体は当該化合物類に限定されるものではない。
抗エチレン剤は、 培地における濃度が 10— ΒΜ 〜10- 'Μ とすることが必要であ り、 この中でも特に抗ニチレン剤の濃度を iO_ 7M ~10" 2M の範囲に調整すること が好ましい。
ェチレンは植物ホルモンの一つであり、 個体の生長や形態形成或いは老化等、 植物内で引き起こされる様々な生理現象に関与することが知られている。 また植 物の二次代謝産物産生能の向上にエチレンを利用した例としては、 例えば Kim, Dong n et al. , Biotechn l . Bioeng. , 38 (4) , 331-339 (1991) に記載の報告を 例示することができる。 しかしながら、 エチレンの制御を二次代謝産物の生産性 向上に利用した事例は、 前記記載の報告に代表されるように、 そのいずれもが植 物の組織培養物へのェチレン供給による制御であり、 本発明にかかる方法の如く ェチレン産生の抑制的な制御を二次代謝産物の生産向上に利用した事例は、 現在 に至るまで報告されていない。
更に抗エチレン剤は、 鮮度保持剤として花卉或いは青果物等に一般的に使用さ れているが、 当該抗エチレン剤を二次代謝産物の生産向上の目的で使用した例は 報告されていない。
かかる状況の下、 本発明者らはタキサン型ジテルペンを産生する植物の組織及 び細胞においては、 エチレンがタキサン型ジテルペンの産生能を著しく阻害する ことを突き止めた。 そこで前記知見をふまえ、 該組織培養物を抗エチレン剤の存 在下で培養した結果、 抗ェチレン剤が当該阻害を抑制するのみならず該培養物由 来のタキサン型ジテルペンの生産量を飛躍的に向上させる効果を有することを見 いだした。 タキサン型ジテルペンを産生する植物の組織培養物を抗エチレン剤の 存在下に培養する事で、 タキサン型ジテルペンの生産を誘導した例は報告されて おらず、 しかも本願第一の発明の方法によつて当該二次代謝産物の生産性が増大 することは予想外のことであった。
本願第一の発明に使用される培地としては、 従来から知られている植物の組織 培養に用いられる培地、 例えばムラシゲ ·スクーグ(1962 年) [Murashige h Skoog ] の培地、 リンスマイヤー 'スクーグ(1965 年) [Linsmaier Skoog ] の 培地、 ゥッディ一 'プラント 'メディゥム(1981 年) [Woody Plant Medium] 、 ガンボルグ [Gamborg ] の B - 5培地、 三井の M— 9培地等が挙げられる。
これら培地に植物ホルモンを添加し、 更に必要に応じて炭素源、 無機成分、 ビ タミン類、 アミノ酸等を添加することもできる。
炭素源としては、 シュクロース、 マルトース、 ラクトース等の二糖類、 グルコ ース、 フルクトース、 ガラクトース等の単糖類、 デンプンあるいはこれら糖源の 2種類以上を適当な比率で混合したものを使用できる。
無機成分としては、 例えばリン、 窒素、 カリウム、 カルシウム、 マグネシゥ ム、 ィォゥ、 鉄、 マンガン、 亜鉛、 ホウ素、 銅、 モリブデン、 塩素、 ナ卜リウ ム、 ヨウ素、 コバルト等が挙げられ、 これらの成分は例えば硝酸カリウム、 硝酸 ナトリウム、 硝酸カルシウム、 塩化カリウム、 リン酸一水素カリウム、 リン酸二 水素カリウム、 塩化カルシウム、 硫酸マグネシウム、 硫酸ナトリウム、 硫酸第一 鉄、 硫酸第二鉄、 硫酸マンガン、 硫酸亜鉛、 ホウ酸、 硫酸銅、 モリブデン酸ナト リウム、 三酸化モリブデン、 ヨウ化カリウム、 塩化コバルト等の化合物として添 加できる。
植物ホルモンとしては、 例えばインドール酢酸(IAA) 、 ナフタレン酢酸 (NAA) 、 2 , 4—ジクロロフエノキシ酢酸(2, 4- D) 等のオーキシン類、 カイネチ ン、 ゼァチン、 ジヒドロゼァチン等のサイトカイニン類が用いられる。
ビタミン類としては、 例えばピオチン、 チアミン (ビタミン B t ) 、 ピリ ドキ シン (ビタミン B 6 ) 、 パントテン酸、 イノシトール、 ニコチン酸等が用いられ る。
アミノ酸類としては、 例えばグリシン、 フエ二ルァラニン、 ロイシン、 グルタ ミン、 システィン等を添加できる。
一般に前記の各成分は、 炭素源が約 1〜約 30g/l 、 無機成分が約 Ο. Ι μ Μ〜約 lOOmM 、 植物ホルモン類力'約 0. 01〜約 10 ti M 、 ビタミン類及びアミノ酸類がそれ ぞれ約 0. 1〜約 lOOmg/1 の濃度で用いられる。
なお、 本発明には液体培地及び寒天やゲランガム等を通常 0. 1〜1 %含有する 固形培地のいずれも使用できるが、 通常は液体培地が好ましい。
本発明における組織培養においては、 前記植物の根、 生長点、 葉、 茎、 種子、 花粉、 葯、 がく等の組織片又は細胞、 あるいは.これらを前記培地又は他の従来の 培地によって組織培養して得られる培養細胞を使用することができる。
た本発明は、 Agrobacterium tumefaciens或いは Agrobacterium rhizogenes を植物組織に感染することによって得られる腫瘍細胞及び Z又は毛状根にも適用 できる。
これらの組織又は細胞をジャスモン酸類、 重金属を含む化合物類、 重金属を含 む錯イオン類、 重金属イオン、 アミン類及び抗ェチレン剤よりなる群から選ばれ た少なくとも一つの存在下に培養すると、 通常の培養条件下で組織培養した場合 と比較して、 タキサン型ジテルべン生産性の高レ、培養組織又は培養細胞が得られ る。
重金属を含む化合物類、 重金属を含む錯イオン類、 重金属イオン、 アミン類及 び抗エチレン剤よりなる群から選ばれた少なくとも一つと前記一般式 (I ) 、 (II) 又は(III) で示されるジャスモン酸類とを併用すると、 本願第一の発明の 効果を高めることができる。
以上のようにして得られた培養組織、 培養細胞、 培地等の培養物から、 メタノ ール等の有機溶媒による抽出によってタキサン型ジテルペンを分離することがで きる。 また、 培地中に適当な吸着剤や有機溶媒を共存させ、 培養中連続的にタキ サン型ジテルペンを回収することもできる。
本発明における組織培養の好ましい一例としては、 次の方法が挙げられる。 先ず、 イチィ属に属する植物の植物体、 例えば根、 生長点、 葉、 茎、 種子など から採取される植物片を殺菌処理後、 ゲランガムで固めたゥッディー 'プラン卜
•メディゥム上に置床し、 10〜35°Cで 14〜60日程度経過させて組織片の一部を力 ルス化させる。 このようにして得られたカルスを継代培養すると生育速度力 斬次 高まり安定化したカルスが得られる。 ここで、 安定化したカルスとは、 培養中に カルスの一部がシュートや根に分化しないでカルスの状態を保持する性質をもち 細胞の生育速度が均質であるものをいう。
この安定化したカルスを増殖に適した液体培地、 例えば液体ゥッディー ·ブラ ン卜 ·メディゥムに移して増殖させる。 液体培地において更に生育速度力 '高めら れる。 本発明では、 この安定化したカルス又は該カルスを構成する細胞は、 ジャ スモン酸類、 重金属を含む化合物類、 重金属を含む錯イオン類、 重金属イオン、 ァミン類及び抗ェチレン剤よりなる群から選ばれた少なくとも一つの存在下に固 体培地又は液体培地で培養される。 また、 この安定化カルス又は該カルスを構成 する細胞は、 比重の違いにより複数の層に分け、 少なくとも 1つの層に含まれる 細胞をジャスモン酸類、 重金属を含む化合物類、 重金属を含む錯イオン類、 重金 属イオン、 アミン類及び抗ェチレン剤よりなる群から選ばれた少なくとも一つを 含有する培地で培養してもよい。
細胞を比重によって分離する方法としては、 一般に遠心分離用媒体を用いて密 度勾配を作成し、 細胞を重層した後、 遠心分離する方法が知られている。
遠心分離用媒体としては、 Ficoll、 Percoll (共に Pharmacia LKB
Biotechnology社製) 、 ショ糖、 塩化セシウム等が用いられる。 実施例 5等で は、 Ficollを用いて密度勾配を作成したが、 細胞に傷害を与えないものであれば 特に制限はない。
密度勾配を形成する層の数に特に制限はない。 各層の比重差は、 特に限定され るものではなく、 また各比重差は同じであっても異なっていてもよい。
従って、 この密度勾配の定義には勾配力 S連続的に変化する場合 (密度勾配を形 成する層の数力 s'無限大、 各層の比重差が 0に近い状態) も含む。
このようにして密度勾配を形成し、 細胞を重層、 遠心分離することにより細胞 を比重の違いにより複数の層に分けることができる。
作成する層の比重は、 通常1. 00〜1. 20 /1!11、 好ましくは 1. 03〜l . l lg/mlの範囲 である。 培養の対象となる層としては、 少なくとも 1つの層を選択し、 また全て の層を選択して培養してもよい。
複数の層を選択して培養する場合、 これらの複数の層は、 それぞれ個別に培養 することもできるが、 選択した複数の層のうちの 2層以上の層を混合して培養す ることもできる。
タキサン型ジテルペン産生能の高い培養細胞は、 通常、 比重が 1. 07以下の層に 含まれる細胞を培養して得られるが、 培養する細胞や培養の条件により変動する 場合があり、 必ずしもこの範囲に限定されるものではない。 また、 単に比重の違 いによって分画しただけでは、 比重の高い層の細胞の方がタキサン型ジテルペン 含量が高くなる傾向が認められる。 従って、 より確実にタキサン型ジテルペン高 産生培養細胞を取得するためには、 分画された全ての層の細胞を一定期間培養し た後、 各層の細胞に含まれるタキサン型ジテルペン濃度を測定し、 それらの中か らタキサン型ジテルべン高産生細胞を含む層を選択すること力望ましい。
また、 例えば i . 07g/mlのように、 ある 1つの特定の比重の遠心分離媒体を作成 し、 前述の方法で遠心分離することによつても、 培養細胞を比重の違いにより複 数の層に分けることができる。
更に、 本願第一の発明は、 本願第二の発明である、 培養器内の気相中の酸素濃 度を培養初期より大気中の酸素濃度未満の条件下に制御して培養を行うか、 或い は組織又は細胞と接する流動性の培地中の溶存酸素濃度を培養初期よりその温度 に於ける飽和溶存酸素濃度未満である条件下に制御して培養する方法とも併用す ることができる。 ここで、 培養初期とは、 培養開始時ないし培養開始後 7日目をいい、 培養器内 の気相中の酸素濃度、 又は組織もしくは細胞と接する流動性の培地中の溶存酸素 濃度の制御は、 培養開始時から行うことが好ましい。 また、 制御の期間として は、 培養全期間を通して該条件に制御してもよいし、 培養全期間中の一部期間の みを制御してもよく、 特に限定するものではないが、 全培養期間中の、 少なくと も 3日間制御すること力'好ましい。
培養器内の気相中の酸素濃度は、 4ないし 15%に制御すること;^必要であり、 特に 6ないし 12%に制御すること力 子ましい。 また、 流動性の培地中の溶存酸素 濃度は、 その温度における飽和溶存酸素濃度値の 1ないし 75%に制御することが 必要であり、 特に 10ないし 75%に制御すること力好ましい。
本願第一の発明と、 本願第二の発明及び本願第三の発明との 3つの方法をすベ て組み合わせることも可能である。
本願第一の発明において、 ジャスモン酸類は、 培養細胞の対数増殖期(exponen tial growth phase)ないし定常期に添加することが効果的であり、 この中でも特 に対数増殖期から定常期に移行する時期にジャスモン酸類を添加することが好ま しい。 また、 内在性ジャスモン酸類の生産量を高めるための処理の時期について もこれと同様である。 例えば、 21日おきに細胞を移植している場合には 7〜16日 目がジャスモン酸類の添加又は内在性ジャスモン酸類の生産量を高めるための処 理の適期にあたり、 対数増殖期、 例えば 7〜i4日目の細胞を移植する際には、 移 植直後が適期にあたる。 また、 ジャスモン酸類の添加及び内在性ジャスモン酸類 の生産量を高める処理は、 一度に行っても、 複数回に分けて行ってもよいし、 ま た連続的に行ってもよい。
重金属を含む化合物類、 重金属を含む錯イオン類、 又は重金属イオンは、 培養 開始時ないし培養細胞が対数増殖期から定常期に移行する B寺期までに添加するこ とが効果的であり、 特に培養開始時に添加すること力好ましい。 また当該化合物 又はイオンの添加は、 一度に行っても良いし、 数回に分けて行っても良い。 アミン類は、 細胞力3'対数増殖期から定常期に移行する時期までに添加すること が効果的であり、 特に培養開始時に添加することが好ましい。 また当該化合物 は、 一度に行ってもよいし、 数回に分けて行ってもよい。 抗ェチレン剤は、 細胞が対数増殖期から定常期に移行する時期までに添加する ことカ カ果的であり、 特に定常期に移行した直後に添加する事力好ましい。 また 当該化合物は、 一度に行っても良いし、 数回に分けて行っても良い。
本願第一の発明における組織培養の培養温度としては、 通常は約 10〜約 35°C、 特に約 23〜28°Cが増殖速度が大きいので好適である。 また、 培養期間としては、 14〜42日間が好適である。
本願第一の発明における培養において液体培地を用いた場合には、 培養終了後 に培養細胞をデカンテーシヨンまたは濾過等の方法によって培地から分離し、 培 養細胞および,または培地から目的とする汐キサン型ジテルべンを有機溶媒によ る抽出等の方法によって分離することができる。
以下、 本願第二の発明について説明する。
本願第二の発明において、 植物の培養は、 植物の組織又は細胞を培養するに当 たり、 培養器内の気相中の酸素濃度を大気中の酸素濃度未満の条件下に培養初期 から制御して培養を行う力 或いは組織又は細胞と接する流動性の培地中の溶存 酸素濃度をその温度における飽和溶存酸素濃度未満である条件下に培養初期から 制御して培養を行うこと以外は、 従来から知られている方法によって行うことが できる。
従来、 タキサン型ジテルペン産生植物の培養において、 組織又は細胞を培養す る培養器に供給する気相中の酸素濃度、 或いは組織又は細胞と接する培地の溶存 酸素濃度を、 大気中の酸素濃度未満の条件下に制御して培養を行うか、 或いは飽 和溶存酸素濃度未満の条件下に制御して培養を行った例は報告されておらず、 し かもそれに りタキサン型ジテルべンの産生量が増大することは予想外のことで あつ 7こ。
本願第二の発明において、 組織又は細胞を培養する培養器内の気相中の酸素濃 度は、 4ないし 1:; 'に制御することが必要であり、 特に 6ないし 12%に制御する ことが好ましい。 また、 組織又は細胞と接する流動性の培 干の溶存酸素濃度 は、 その温度における飽和溶存酸素濃度値の 1ないし 75%に制御すること力 s'必要 であり、 特に 10ないし 75%に制御すること力好ましい。
本願第二の発明に使用される培地としては、 従来から知られている植物の組織 培養に用いられる培地、 例えばムラシゲ ·スクーグ(1962 年) [Murashige & Sk oog ] の培地、 リンスマイヤ一 ·スクーグ(1965年) [Linsmaier Skoog ] の培 地、 ゥッディー 'ブラント ·メディゥム(1981 年) [Woody Plant Medium] 、 ガ ンボルグ [Gamborg ] の B— 5培地、 三井の M— 9培地等が挙げられる。
これら培地に植物ホルモンを添加し、 更に必要に応じて炭素源、 無機成分、 ビ タミン類、 アミノ酸等を添加することもできる。
炭素源としては、 シュクロース、 マルトース、 ラク卜ース等の二糖類、 グルコ —ス、 フルク卜ース、 ガラク卜ース等の単糖類、 デンプン或いはこれら糖源の 2 種類以上を適当な比率で混合したものを使用できる。
無機成分としては、 例えばリン、 窒素、 カリウム、 カルシウム、 マグネシゥ ム、 ィォゥ、 鉄、 マンガン、 亜鉛、 ホウ素、 銅、 モリブデン、 塩素、 ナトリウ ム、 ヨウ素、 コバルト等が挙げられ、 これらの成分は例えば硝酸カリウム、 硝酸 ナトリウム、 硝酸カルシウム、 塩化カリウム、 リン酸水素二カリウム、 リン酸二 水素カリウム、 塩化カルシウム、 硫酸マグネシウム、 硫酸ナトリウム、 硫酸第一 鉄、 硫酸第二鉄、 硫酸マンガン、 硫酸亜鉛、 ホウ酸、 硫酸銅、 モリブデン酸ナト リウム、 三酸化モリブデン、 ヨウ化カリウム、 塩化コバルト等の化合物として添 加できる。
植物ホルモンとしては、 例えばインドール酢酸(IAA) 、 ナフタレン酢酸 (NAA) 、 2 , 4 —ジクロロフエノキシ酢酸(2, 4- D) 等のオーキシン類、 カイネチ ン、 ゼァチン、 ジヒドロゼァチン等のサイトカイニン類が用いられる。
ビタミン類としては、 例えばピオチン、 チアミン (ビタミン B , ) 、 ピリ ドキ シン (ビタミン B 6 ) 、 パントテン酸、 イノシトール、 ニコチン酸等が用いられ る。
アミノ酸類としては、 例えばグリシン、 フエ二ルァラニン、 ロイシン、 グル夕 ミン、 システィン等を添加できる。
一般に前記の各成分は、 炭素源が約 1〜約 30g/l 、 無機成分が約 0. 1 M〜約 100 、 植物ホルモン類力5'約 0. 01〜約 10 、 ビタミン類及びァミノ酸類がそれ ぞれ約 0. 1 〜約 100mg/i の濃度で用いられる。
なお、 本願第二の発明には液体培地及び寒天やゲランガム等を通常 0. 1 〜1 % 含有する固形培地のいずれも使用できる。
本願第二の発明における組織培養においては、 前記植物の根、 生長点、 葉、 茎、 種子、 花粉、 葯、 力 等の組織片又は細胞、 或いはこれらを前記培地或いは 他の従来の培地によって組織培養して得られる培養細胞を使用することができ る。
また、 本願、第—の発日月は、 A robacterium tumefaciens 又は Agrobacterium による感染によって得られる腫瘍細胞及び 又は毛状根に適用するこ ともできる。
これらの組織又は細胞を培養するに当たり、 培養器内の気相中の酸素濃度を大 気中の酸素濃度未満の条件下に培養初期から制御して培養を行うか、 或いは組織 又は細胞と接する流動性の培地中の溶存酸素濃度をその温度における飽和溶存酸 素濃度未満である条件下に培養初期から制御して培養を行うと、 通常の培養条件 下で組織培養した場合と比較してタキサン型ジテルべン生産性の高い培養組織又 は培養細胞力得られる。 '
本願第二の発明において、 培養初期とは、 培養開始時ないし培養開始後 7曰目 をいい、 培養器内の気相中の酸素濃度、 又は組織又は細胞と接する流動性の培地 中の溶存酸素濃度の制御は、 培養開始時から行うことが好ましい。
また、 制御の期間としては、 培養全期間を通して該条件に制御してもよいし、 培養全期間中の一部期間のみを制御してもよく、 特に限定するものではないが、 全培養期間中の、 少なくとも 3日間制御することが好ましい。
本願第二の発明の製造方法は、 各種のタキサン型ジテルペンの生産促進物質の 存在下に培養する方法と併用することにより、 タキサン型ジテルペンの生産性を 更に高めることができる。
タキサン型ジテルペンの生産促進物質としては、 例えば、 前述した本願第一の 発明に用いる前記一般式 (I ) 、 (II) 又は(III) で示されるジャスモン酸類、 重金属を含む化合物類、 重金属を含む錯イオン類、 重金属イオン、 アミン類、 抗 エチレン剤が挙げられる。
また、 本願第二の発明は、 後において詳述する本願第三の発明である、 細胞を 比重の違いにより複数の層に分け、 少なくとも 1つの層に含まれる細胞を培養す る方法と併用することもできる。
また、 本願第二の発明の製造方法は、 前述したジャスモン酸類等の存在下に培 養する本願第一の発明の方法と細胞を比重の違いにより複数の層に分け、 少なく とも 1つの層に含まれる細胞を培養する本願第三の発明の方法の両者と併用する こともできる。
以上のようにして得られた培養組織、 培養細胞、 培地等の培養物から、 メタノ 一ル等の有機溶媒による抽出によってタキサン型ジテルペンを分離することがで きる。
本願第二の発明における組織培養の好ましい一例としては、 次の方法が挙げら れる。
先ず、 イチィ属に属する植物の植物体、 例えば根、 生長点、 葉、 茎、 種子など から採取される植物片を殺菌処理後、 ゲランガムで固めたゥッディー 'プラント •メディゥム上に置床し、 10〜35°Cで 14〜60日程度経過させて組織片の一部を力 ルス化させる。 このようにして得られたカルスを継代培養すると生育速度力 S漸次 高まり安定化したカルスが得られる。 ここで、 安定化したカルスとは、 培養中に カルスの一部がシュートや根に分化しないでカルスの状態を保持する性質をもち 細胞の生育速度が均質であるものをいう。
この安定化したカルスを増殖に適した液体培地、 例えば液体ゥッディー ·ブラ ント ·メディウムに移して増殖させる。 液体培地において更に生育速度が高めら れる。 本発明では、 この安定化したカルス又は該カルスを構成する細胞は、 培養 器内の気相中の酸素濃度が大気中の酸素濃度未満に培養初期から制御されている か、 或いは組織及び Z又は細胞と接する流動性の培地中の溶存酸素濃度がその温 度における飽和溶存酸素濃度未満に培養初期から制御された培養条件下にて培養 される。
組織又は細胞は、 酸素を消費 (呼吸) することで自らの個体の維持又は増殖に 必要なエネルギーを獲得する。 一般に組織又は細胞を培養すると、 培養日数の経 過に伴い細胞量力 曽加し、 これと共に酸素の消費量も増加することが知られてい る。 従って、 系外から強制的に通気ガスを供給しない限り、 組織又は細胞を含む フラスコ等の培養器内の気相中の酸素濃度、 或いは組織又は細胞と接する培地中 の溶存酸素濃度も、 培養日数の経過に伴い自然に大気中の酸素濃度未満、 或いは その温度における飽和溶存酸素濃度未満の値に低下して行くこととなる。
本発明は、 組織又は細胞を含む培養器内の気相中の酸素濃度或いは培地中の溶 存酸素濃度を、 大気中の酸素濃度未満か或いはその温度における飽和溶存酸素濃 度未満である条件下に積極的に制御した条件下で培養を行うという点で前述の知 見とは内容を異にする。
特に本発明の効果を高める方法として、 培養器内の気相中の酸素濃度或いは流 動性の培地中の溶存酸素濃度を、 組織又は細胞を該培養器内に移植するより前 に、 予め大気中の酸素濃度未満か或いはその温度における飽和溶存酸素濃度未満 に制御する方法が例示される。
また、 制御の期間としては、 前述したように、 特に制限はないが、 全培養期間 中の、 少なくとも 3日間制御すること力 s好ましい。 .
更に制御の方法としては、 組織又は細胞を含む培養器内の気相中の酸素濃度、 或いは組織又は細胞と接する流動性の培地中の溶存酸素濃度を、 大気中の酸素濃 度未満か、 或いはその温度における飽和溶存酸素濃度未満に制御可能な培養条件 下であれば特に制限はなく、 例えば空気に窒素等を混合して酸素濃度を低下させ ることにより酸素濃度を調節した気体を、 培養器内の気相中及び 又は培地中に 直接通気するか、 或いは通気槽等の培養器外で培地中に直接通気した後、 該培地 を培養器内に灌流する力 或いは該培養器内に供給する空気等の気体を供給速度 を制限して気相中及び/又は培地中に直接通気する力 或いは通気槽等の培養器 外で該気体を供給速度を制限して培地中に直接通気した後、 該培地を培養器内に 灌流するカ\ 或いは培養器を低酸素雰囲気下に置き培養する力 \ 或いは酸素吸着 剤存在下で培養する方法等が挙げられる。
本発明における組織培養の培養温度としては、 通常は約 10〜約 35°C、 特に約 23 〜約 28°Cが増殖速度が大きいので好適である。 また、 培養期間としては、 14〜42 日間が好適である。
本発明における培養において液体培地を用いた場合には、 培養終了後に培養細 胞をデカンテーシヨン又は濾過等の方法によって培地から分離し、 培養細胞及び ノ又は培地から目的とするタキサン型ジテルペンを有機溶媒による抽出等の方法 によって分離することができる。 また、 吸着剤や適当な有璣溶媒を培養系内に共 存させ、 培養中連続的に目的化合物を回収することもできる。
以下、 本願第三の発明について説明する。
本願第三の発明において、 培養後、 タキサン型ジテルペン産生能の高くなる培 養細胞を含む層としては、 例えば、 比重 1. 07以下の層を挙げることができる。 細胞を比重によって分離する方法としては、 一般に遠心分離用媒体を用いて密 度勾配を作成し、 細胞を重層した後、 遠心分離する方法が知られている。
遠心分離闬媒体としては、 Ficoli、 Percoll (共に Pharmacia LKB
Biotechnology社製) 、 ショ糖、 塩化セシウム等が用いられる。 実施例では、 Ficollを用いて密度勾配を作成したが、 細胞に傷害を与えないものであれば特に 制限はない。 Ficollは、 細胞顆粒等の分離 (Hess, R. et al. , Nature, 208 (1965) , 856-858)や動物細胞の分離 (Walder, L A. et al. , Proc. Soc. exptl. Biol. Med. , 112 (1963) 494-496 ) 等に用いられている。
密度勾配を形成する層の数に特に制限はない。
実施例では、 比重 1. 03, 1. 05, 1. 07, 1. 09, し 11 (g/ml)のように各層の比重差 が 0. 02の密度勾配を作成しているが、 比重差はこの値に限定されるものではな く、 また各比重差は同じであっても異なっていてもよい。
従って、 この密度勾配の定義には勾配力 s連続的に変化する場合 (密度勾配を形 成する層の数力 $ '無限大、 各層の比重差が 0に近い状態) も含む。
このようにして密度勾配を形成し、 細胞を重層、 遠心分離することにより細胞 を比重の違いにより複数の層に分けることができる。
作成する層の比重は通常 i.00〜1· 20g/ml、 好ましく ¾ 1. 03-1. lig/mlの範囲で ある。 培養の対象となる層としては、 少なくとも 1つの層を選択し、 また全ての 層を選択して培養してもよい。
複数の層を選択して培養する場合、 これらの複数の層は、 それぞれ個別に培養 することもできる力 選択した複数の層のうちの 2層以上の層を混合して培養す ることもできる。
タキサン型ジテルペン産生能の高い培養細胞は、 通常、 比重が 1. 07以下の層に 含まれる細胞を培養して得られるが、 培養する細胞や培養の条件により変動する 場合があり、 必ずしもこの範囲に限定されるものではない。 また、 単に比重の違 いによって分画しただけでは、 比重の高い層の細胞の方がタキサン型ジテルペン 含量が高くなる傾向が認められる。 従って、 より確実にタキサン型ジテルペン高 産生培養細胞を取得するためには、 分画されたすべての層の細胞を一定期間培養 した後、 各層の細胞に含まれるタキサン型ジテルペン濃度を測定し、 それらの中 カ らタキサン型ジテルペン高産生細胞を含む層を選択すること力 S望ましい。 従来、 タキサン型ジテルペン産生植物の培養細胞を細胞の比重によって分画後 培養した例は報告されておらず、 比重の違いによりタキサン型ジテルペン産生能 がそれぞれ異なる細胞の層に分けることができ、 しかも、 分画した時点において タキサン型ジテルペン含量のそれほど高くない比重 1. 07以下に含まれる細胞を培 養することによりタキサン型ジテルべン高産生細胞が取得できることは予想外の ことであった。
また、 本発明では、 例えば l. '07g/mlのように、 ある 1つの特定の比重の遠 分 離用媒体を作成し、 上述の方法で遠心分離することによつても、 培養細胞を比重 の違いにより複数の層に分けることができる。
本発明で使用される培地は、 普通の培地成分を含有する。 このような成分とし て一般に無機成分及び炭素源が用いられ、 これに ί直物ホルモン類、 ビタミン類を 添加し、 更に必要に応じてアミノ酸類を添加することができる。 炭素源として は、 シュクロース、 マルトース、 ラクトース等の二糖類、 グルコース、 フルクト —ス、 ガラク卜一ス等の単糖類、 デンプンあるいはこれら糖源の 2種類以上を適 当な比率で混合したものを使用できる。
無機成分としては、 例えばリ ン、 窒素、 カリウム、 カルシウム、 マグネシゥ ム、 ィォゥ、 鉄、 マンガン、 亜鉛、 ホウ素、 銅、 モリブデン、 塩素、 ナトリウ ム、 ヨウ素、 コバルト等があげられ、 これらの成分は例えば硝酸カリウム、 硝酸 ナトリウム、 硝酸カルシウム、 塩化カリウム、 リン酸 1水素カリウム、 リン酸 2 水素カリウム、 塩化カルシウム、 硫酸マグネシウム、 硫酸ナトリウム、 硫酸第一 鉄、 硫酸第二鉄、 硫酸マンガン、 硫酸亜鉛、 ホウ酸、 硫酸銅、 モリブデン酸ナト リウム、 三酸化モリブデン、 ヨウィヒカリウム、 塩ィヒコバルト等の化合物として添 加できる。 植物ホルモンとしては、 例えばインドール酢酸(IAA) 、 ナフタレン酢酸 (NAA) 、 2 , 4—ジクロロフエノキシ酢酸(2, 4- D) 等のオーキシン類、 カイネチ ン、 ゼァチン、 ジヒドロゼァチン等のサイトカイニン類が用いられる。
ビタミン類としては、 例えばビォチン、 チアミン (ビタミン B i ) 、 ピリ ドギ シン (ビタミン B s ) 、 パントテン酸、 イノシトール、 ニコチン酸等が用いられ アミノ酸類としては、 例えばグリシン、 フエ二ルァラニン、 ロイシン、 グルタ ミン、 システィン等を添加できる。
一般に前記の各成分は、 無機成分が約 0. 1 u 、 ないし動 M 、 炭素源が約 1 〜約 3Dg/l 、 植物ホルモン類力 5'約 0. 01〜約 10 、 ビタミン類及びアミノ酸類が それぞれ約 0. 1 〜約 lOOmg/1 の濃度で用いられる。
本発明における組織培養に用いられる培地としては、 従来から知られている植 物の組織培養に用いられる培地、 例えばムラシゲ ·スクーグ(1962 年) [Murash ige Ei Skoog 〗 の培地、 リンスマイヤー ·スクーグ(1965 年) [ Linsmaier Skoog 〗 の培地、 ゥ ディ一'プラン卜 'メディゥム(1981 年) [Woody Plant Medium] 、 ガンボルグ [Gamborg ] の B - 5培地、 三井の M— 9培地等に前記の 植物ホルモンを添加し、 更に必要に応じて前記した炭素源、 ビタミン類、 ァミノ 酸等を添加して調製される培地を例示できる。
本発明には液体培地及び寒天やゲランガム等を通常 0. 1 ~1 %含有する固形培 地のいずれも使用できるが、 通常は液体培地が好ましい。
本発明の組織培養においては、 前記植物の根、 生長点、 葉、 茎、 種子、 花粉、 葯、 がく等の組織片又は細胞、 あるいはこれらを前記培地あるいは他の従来の培 地によつて組織培養して得られる培養細胞を使用することができる。
これらの細胞を本発明により特定の比重範囲に分画後、 培養すると、 分画をし なかつた対照区と比較してタキサン型ジテルべン高産生培養細胞が得られる。 こ の培養細胞から、 メタノール等の有機溶媒による抽出によってタキサン型ジテル ペンを分離することができる。
本発明における組織培養の好ましい一例としては、 次の方法が挙げられる。 先ずイチィ属に属する植物の植物体、 例えば根、 生長点、 葉、 茎、 種子などか ら採取される植物片を殺菌処理後、 ゲランガムで固めたゥ、ソディー ·ブラント ' メディゥム上に置床し、 10〜35°Cで 14〜60日程度経過させて組織片の一部をカル ス化させる。 このようにして得られたカルスを継代培養すると生育速度が漸次高 まり安定化したカルスが得られる。 ここで、 安定化したカルスとは、 培養中に力 ルスの一部がシュ一卜や根に分化しないでカルスの状態を保持する性質をもち細 胞の生育速度が均質であるものをいう。
この安定化したカルスを増殖に適した液体培地、 例えば液体ゥッディー 'ブラ ント ·メディゥムに移して増殖させる。 液体培地において更に生育速度が高めら れる。
本発明における組織培養の培養温度としては、 通常は約 10〜約 35°C、 特に約 23 〜28°Cが増殖速度が大きいので好適である。 また、 培養期間としては、 14〜42曰 間が好適である。
本発明における培養において液体培地を用いた場合には、 培養終了後に培養細 胞をデカンテーシヨン又は濾過等の方法によって培地から分離し、 このものから 目的とするタキサン型ジテルペンを有機溶媒による抽出等の方法によって分離す ることができる。
本願第一の発明及び本願第二の発明によれば、 タキサン型ジテルぺンを大量に かつ簡便に得ることカ^!能になる。
本願第三の発明によれば、 タキサン型ジテルぺン高産生培養細胞を簡易な操作 により取得すること力可能になる。
本願第一ないし第三の発明を工業的に実施するに当たっては、 以下に示す本願 第四ないし第七の発明を、 単独又はその組み合わせの形態で採用することにより 更に効率を高め得る。
即ち、 タキサン型ジテルペンを産生する植物の組織又は細胞を培養するにあた つて、 培養液に酸素含有ガスを供給する必要がある。 通常は、 この目的で空気を 用いるが、 本発明者らは鋭意検討した結果、 タキサン型ジテルペンを産生する植 物の組織又は細胞を培養槽を用いて培養するにあたって、 槽内に導入する酸素含 有ガスとして 0. 03〜10%、 好ましくは 0. 1〜5 %の炭酸ガスを含有するガスを用 いることにより、 タキサン型ジテルペンの生産が効率的に行われることを見出 し、 本願第四の発明の発明を完成した。
また、 タキサン型ジテルペンを産生する植物の組織又は細胞を培養するにあ たって、 次工程におけるタキサン型ジテルペンの生産に対して活性化された組織 又は細胞を得るために、 酸化剤又は水溶性の含酸素有機化合物を添加した培地を 用いて行う一段目培養と、 タキサン型ジテルペンの生産を促進する条件下で行う 二段目培養の二つの工程からなる二段培養を行うことによって、 培養物中のタキ サン型ジテルぺン生産性が顕著に向上するとともに、 継代培養にともなうタキサ ン型ジテルペン生産性の変動力抑えられることを見出し、 本願第五の発明の発明 を完成した。 ここで、 酸化剤としてはペルォキソ二硫酸カリウム等のペルォキソ 二硫酸塩、 過酸化水素等を、 また水溶性の含酸素有機ィヒ合物としてはジメチルホ ルムアミド、 ジメチルスルホキシド、 エチレングリコール等を例示できる。 前記 添加物の培地における総濃度は、 添加直後に、 1 0—6Μ〜1 O - ' Mとすることが 好ましく、 特に 1 0—5Μ〜1〇—2Mの範囲に調整することが更に好ましい。 また、 タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当た り、 糖濃度が 2〜50g/l 、 好ましくは 10〜30g/i 及び Z又は硝酸イオン濃度が 2 〜50删 ol/l、 好ましくは 10〜30醒 Dl/iである培地に組織又は細胞を移植した後、 当該培地の初期容量に対して 1日当たり 0. 2〜5 g/l 、 好ましくは 0. 5〜3 g/l の糖及び Z又は 0. 2~ 5丽01/1、 好ましくは 0. 5~ 3醒 ol/lの硝酸イオンを含む 栄養源溶液を連続的又は間欠的に添加して培養すると、 当該組織又は細胞の高密 度培養が可能になり、 これによつて培養器当たりのタキサン型ジテルべン生産量 が飛躍的に向上することを見出し、 本願第六の発明を完成した。 ここに密度とは 培養槽中の培養液容積当たりの細胞量を表し、 培養液 1 リツ トル当たりの乾燥細 胞重量 (g ) で示す。 本願第六の発明においては、 栄養源溶液を添加するに際し て、 同容量の培地を組織又は細胞から分離して抜き出すことによって培地を更新 しながら培養を行い、 得られる培養物、 培養途中に抜き出しによって回収される 培地及び培養終了時に得られる培地から選ばれる少なくとも 1種以上からタキサ ン型ジテルペンを回収すること力 S好ましい。 なお、 本願第六の発明は、 培養開始 時の当該植物の組織又は細胞の密度が培地容量に対して 50g新鮮重 / 1以上の高 密度培養において、 タキサン型ジテルペンの生産性向上に対する効果力 s特に大き い。
更に、 通常は高密度の細胞が得られた段階で培養を終了する力 本発明者らは 鋭意検討を積み重ねた結果、 細胞を抜き出しながら培養を継続することにより連 続培養を実現し、 更に検討を加えて本願第七の発明である連続培養法を完成し た。 即ち、 培養槽中の培養液の総容量を V、 新鲜培地の供給速度を 、 組織又 は細胞の比増殖速度を とするとき、 無次元数 F = V z ZVZ で定義する培地 の比更新率を 0. 1〜10の範囲となるように連続的又は間欠的に新鮮培地を添加 し、 連続的もしくは間欠的に槽外に抜き出される組織もしくは細胞を含む培養液 及び/又は連続的もしくは間欠的に槽外に抜き出される組織もしくは細胞を含ま なし、培養液からタキサン型ジテルペンを回収することにより従来の方法では到底 不可能と予測される高い効率でタキサン型ジテルペンを製造することカ坷能にな り、 本願第七の発明を完成した。 培地の比更新率 Fは Q. 5〜5とすることが更に 好ましい。 培養液の糖濃度は 5〜40g/l 、 培養液の硝酸イオン濃度は 10〜40n™ol /1であること力 子ましい。 細胞密度は 1 リツ トル当たり生細胞重量で 50~500 g で当該発明の効果が達成されるが、 極端に強い撹拌力必要とされない範囲で高い 方が効率よくタキサン型ジテルペンを生産でき、 1 リッ トル当たり 200 g以上が 好ましい。
なお、 前記本願第四ないし第七の発明を前記本願第三の発明と組み合わせるた めには、 本願第三の発明により取得した細胞を本願第四ないし第七の発明に従つ て培養し、 目的とするタキサン型ジテルペンを製造すればよい。 図面の簡単な説明
図 1は、 ジャスモン酸メチル 100 Mを添加後の培地中のタキソール収量の変 化を示す図である。
図 2は、 ジャスモン酸メチル 100 を添加後の培地中のパッカチン III 4又量 の変化を示す図である。
図 3は、 本願第二の発明により組織培養を行うに当たって用いられる培養装置 の例を示した図である。 図 3における各符号は以下の意味を有する。
1 空気供給管 2 窒素供給管
3 培養槽
4 酸素含有ガス供給口
5 溶存酸素濃度計
6 溶存酸素濃度制御装置
7 ガス排気管
8 バルブ
9 酸素流量制御バルブ
10 エアフィルター
11 撹拌翼
図 4は、 分画培養後の生育を示す図である。
図 5は、 分画培養後のタキサン含量を示す図である。
図 6は、 分画時の細胞の存在比を示す図である。
図 7は、 分画時のタキサン含量 (細胞中) を示す図である。
図 8は、 本願第六又は第七の発明により組織培養を行うに当たって用いられる 培養装置の例を示した図である。 図 8における各符号は以下の意味を有する。
12 培地供給管
13 培地供給口
1 培養液のみ (組織又は細胞を含まない培養液) を排出させるフィルターを 取り付けた抜き出し口
15 培養液排出管
16 酸素含有ガス通気管
17 撹拌翼
18 培養混合物 (組織又は細胞を含む培養液) 排出管
19 加圧流体送入口
a , b , c , d , e バルブ 発明を実施するための最良の形態
以下、 実施例及び比較例により本発明を更に具体的に説明する力 本発明の範 囲はこれらの実施例に限定されるものではない。
(実施例 1 )
ナフタレン酢酸を 10— 5Mの濃度になるように添加した固体ゥッディ一 ·ブラン ト 'メディウム (ゲランガム 0.25重量%) に、 前もって 2%アンチホルミン溶液 又は 70%ェタノール溶液等で滅菌処理したセィヨウイチィ(Taxus baccata LINN) の茎の一部を置床し、 25°Cで暗所にて静置培養してセィヨウイチイカルスを得 た。 次にこのカルス 1 g (新鮮重) を、 前記成分を同じ濃度で添加した液体ゥッ ディー ·プラン卜 ·メディゥム 20ml入りの三角フラスコに移し、 ロータリ一シェ —カー上で旋回培養 (振幅 25mm、 120rpm) し、 21日毎に植えつぎ、 該カルスの生 育速度を速めた。
このようにして得られた培養細胞 1 g (新鮮重) を、 前記成分を同じ濃度で添 加したゥッディー ·プラント ·メディウムの液体培地 20ml入りの三角フラスコに 移して 25°Cで 14日間振盪培養した。 培養 14曰目に一般式 (I ) で示される化合 物としてッベロン酸のメチルエステル (前記式 (I ) において、 Rla、 Rlb、 Rlc、 Ria、 Rle、 Rlf、 R2 、 R3 、 R4 、 R5 及び R 6aが水素原子であり、 R 6 が水酸基であり、 R 7 がメ卜キシ基であり、 nが 1であり、 C 34 の間 で二重結合を含んでいる化合物) をその終濃度が 0.01〜1000)L Mになるように添 加し、 更に 7日間培養した。
培養終了後、 セィョウイチイ培養細胞を濾過により採取し、 凍結乾燥した後そ の乾燥重量を測定し、 液体培地 1 L当たりの培養細胞の生育重量を求めた。 得ら れた乾燥カルスからメタノール等を用いてタキサン型ジテルペンを抽出し、 高速 液体クロマトグラフィーを用いて標準品タキソール、 セファロマニン、 パッカチ ン III と比較定量することによってタキサン型ジテルペン収量を測定した。 その 結果を表 1に示す。
(比較例 1 )
実施例 1において、 ッベロン酸のメチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を表 1に示す。
(実施例 2 )
実施例 1において、 ッベロン酸のメチルエステルを培養 7日目より 1曰置きに 計 4回逐次添加 (一回当たりの終濃度は 25 M、 合計 100 u M ) した以外は該実 施例と同様に操作した。 その結果を表 1に示す。
(実施例 3 )
実施例 1において、 ッベロン酸のメチルエステル 100 . u Mを培養 1曰目に添加 し、 更に 20日間培養した以外は該実施例と同様に操作した。 その結果を表 1に示 す。
(実施例 4 )
実施例 1において、 ッベロン酸のメチルエステル 100 μ Μを培養 7日目に添加 し、 更に 14日間培養した以外は該実施例と同様に操作した。 その結果を表 1に示 す。
表 1
Figure imgf000040_0001
"収量は、 総生産量 (細胞中 +培地中) により算出した。
(実施例 5 )
実施例 1の方法で得られる生育速度の速められた細胞を、 まず、
ッシュにより 250 〜840 mのサイズの細胞集塊に分別した。 次に、 Ficollを用 いて、 比重 1. 07 (g/ml)の密度の媒体を作成し、 前記細胞を重層し、 700 回転で 6 分間遠心を行った。 細胞は、 比重の違いによって 2層に分離した。 1. 07g/ml以下 の層に含まれる細胞を分画し、 2 %ショ糖液で最低 3回以上洗浄し、 Ficoiiを洗 い流した。 洗浄後細胞 1 g (新鮮重) を液体ゥッディー ·プラント .メディウム 20ml入りの三角フラスコに移して 25°Cで 14日間振盪培養した。 培養 14日目にッベ ロン酸のメチルエステルをその終濃度が 250 u Mになるように添加し、 更に 7曰 間培養した。 培養終了後は、 実施例 1 と同様に操作した。 その結果を表 2に示 特定比重の細胞の選別とッベロン酸メチルエステルの添加とを組み合わせる :::とによりタキサン型ジテルべンの生産性を大幅に向上することができた。 (比較例 2 )
実施例 5において、 ッベロン酸のメチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を表 2に示す。 .
7 2
Figure imgf000041_0001
"収量は、 総生産量 (細胞中 +培地中) により算出した。
(実施例 6 )
実施例 1と同様の方法によって得られるタイへィョウイチイの培養細胞 (培養 14日目) にッベロン酸のメチルエステル 250 を添加して 7日間培養を行つ た。 培養終了後は、 該実施例と同様に操作した。 その結果を表 3に示す。
(比較例 3 )
実施例 6において、 ッベロン酸のメチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を表 3に示す。
(実施例 7 )
実施例 6において、 L mediaの培養細胞を用いる以外は、 該実施例と同様に操 作した。 その結果を表 3に示す。
(比較例 4 )
実施例 7において、 ッベロン酸のメチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を表 3に示す。 表 3
Figure imgf000042_0001
*' 収量は、 総生産量 (細胞中 +培地中) により算出した。
(実施例 8)
ナフタレン酢酸を 10— 5Mの濃度になるように添加したゥッディー 'プラント ' メディウムの固体培地 (ゲランガム 0.25重量%) に、 前もって 2%アンチホルミ ン溶液又は 70%エタノール溶液等で滅菌処理したセィョウイチイ(Taxus baccata LINN)の茎の一部を置床し、 25°Cで暗所にて静置培養してセィヨウィ イカルス を得た。 次にこのカルス 1 g (新鮮重) を、 前記成分を同じ濃度で添加した液体 ゥ、ソディー ·プラント ·メディゥム 20ml入りの三角フラスコに移し、 ロータリー シェーカー上で旋回培養 (振幅 25mm 120rpm) し、 21日毎に植えつぎ、 該カルス の生育速度を速めた。
このようにして得られた培養細胞 1 g (新鮮重) を、 前記成分を同じ濃度で添 加した液体ゥッディ一 ·プラン卜 ·メディゥム 20ml入りの三角フラスコに移して 25°Cで 14日間振盪培養した。 培養 14日目にジャスモン酸類としてククルビン酸 のメチルエステル (前記式 (II) において、 R'a Rlb Rlc Rlfl Rle Rlf R2 R3 R4 R5 及び Re が水素原子であり、 R7 がメトキシ基で あり、 nが 1であり、 C3 と C4 の間で二重結合を含んでいる化合物) をその終 濃度が 0.0i~1000 Mになるように添加し、 更に 7日間培養した。
培養終了後、 セィヨウィチイ培養細胞を濾過により採取し、 凍結乾燥した後、 その乾燥重量を測定し、 液体培地 1 L当たりの培養細胞の生育重量を求めた。 得 られた乾燥カルスからメタノール等を用いてタキサン型ジテルペンを抽出し、 高 速液体クロマトグラフィーを用いて標準品タキソ一ル、 セファロマニン、 パッカ チン III と比較定量することによってタキサン型ジテルペン収量を測定した。 そ の結果を表 4に示す。
(比較例 5 )
実施例 8において、 ククルビン酸のメチルエステルを添加しない以外は該実施 例と同様に操作した。 その結果を表 4に示す。
(実施例 9 )
実施例 8において、 ククルビン酸のメチルエステルを培養 7日目より 1日置き に計 4回逐次添加 (一回当たりの終濃度は 25 μ Μ、 合計 100 u M ) する以外は該 実施例と同様に操作した。 その結果を表 4に示す。
(実施例 10)
実施例 8において、 ククルビン酸のメチルエステル 100 JLI Mを培養 1曰目に添 加し、 更に 20日間培養した以外は該実施例と同様に操作した。 その結果を表 4に 示す。
(実施例 11)
実施例 8において、 ククルビン酸のメチルエステル 100 IX Mを培養 7日目に添 加し、 更に 14日間培養した以外は該実施例と同様に操作した。 その結果を表 4に 示す。
4 表 4
Figure imgf000044_0001
"収量は、 総生産量 (細胞中 +培地中) により算出した。
(実施例 12)
実施例 8の方法で得られる生育速度の速められた細胞を、 まず、
ッシュにより 250 〜840 mのサイズの細胞集塊に分別した。 次に、 Ficollを用 いて、 比重 1. 07 (g/mi)の密度の媒体を作成し、 前記細胞を重層し、 700 回転で 6 分間遠心を行った。 細胞は、 比重の違いによって 2層に分離した。 1. 07g/ml以下 の層に含まれる細胞を分画し、 2 %ショ糖液で最低 3回以上洗浄し、 Ficollを洗 い流した。 洗浄後細胞 l g (新鮮重) を液体ゥッディ一 ·プラン卜 ,メディウム 20ml入りの三角フラスコに移して 25°Cで 14曰間振盪培養した。 培養 14日目にクク ルビン酸のメチルエステルをその終濃度が 250 / Μになるように添加し、 更に 7 日間培養した。 培養終了後は、 実施例 8と同様に操作した。 その結果を表 5に示 す。 特定比重の細胞の選別とククルビン酸メチルエステルの添加とを組み合わせ ることによりタキサン型ジテルペンの生産性を大幅に向上することができた。
(比較例 6 )
実施例 12において、 ククルビン酸のメチルエステルを添加しなし、以外は該実施 例と同様に操作した。 その結果を表 5に示す。 表 5
Figure imgf000045_0001
"収量は、 総生産量 (細胞中 +培地中) により算出した。
(実施例 13)
実施例 8と同様の方法によつて得られるタイへィョウイチイの培養細胞 (培養 14日目) にククルビン酸のメチルエステル 250 u M を添加して 7日間培養を行つ た。 培養終了後は、 該実施例と同様に操作した。 その結果を表 6に示す。
(比較例 7 )
実施例 13において、 ククルビン酸のメチルエステルを添加しない以外は該実施 例と同様に操作した。 その結果を表 6に示す。
(実施例: )
実施例 13において、 T. mediaの培養細胞を用いる以外は、 該実施例と同様に操 作した。 その結果を表 6に示す。
(比較例 8 )
実施例 14において、 ククルビン酸のメチルエステルを添加しない以外は該実施 例と同様に操作した。 その結果を表 6に示す。
衣 D
Figure imgf000045_0002
収量は、 総生産量 (細胞中 +培地中) により算出した (実施例 15)
ナフタレン酢酸を 10— 5M の濃度になるように添加したゥッディ一 ·プラント · メディウムの固体培地 (ゲランガム 0.25重量%) に、 前もって 2%アンチホルミ ン溶液又は 70%エタノール溶液等で滅菌処理したセィヨウイチィ(Taxus baccata LI腿)の茎の一部を置床し、 25°Cで暗所にて静置培養してセィヨウイチイカルス を得た。 次にこのカルス lg (新鮮重) を、 前記成分を同じ濃度で添加した液体 ゥッディ一 'プラント 'メディゥム 20ml入りの三角フラスコに移し、 ロータリー シェーカー上で旋回培養 (振幅 25mm、 120rpm) し、 21日毎に植えつぎ、 該カルス の生育速度を速めた。
このようにして得られた培養細胞 1 g (新鮮重) を、 前記成分を同じ濃度で添 加した液体ゥッディー 'プラント ·メディゥム 20ηύ入りの三角フラスコに移して 25°Cで 14日間振盪培養した。 培養 14日目にジャスモン酸類としてジャスモン酸 のメチルエステル (前記式(III) において、 R l a、 R lb、 R l c、 Rl fl、 Rle、 R l f、 R2 、 R3 、 R4 、 RB 及び R6 が水素原子であり、 R7 がメトキシ基で あり、 nが 1であり、 C3 と C4 の間で二重結合を含んでいる化合物、 トランス 型 90%, シス型 10%) をその終濃度が 0.01〜1000 Mになるように添加し、 更に 7日間培養した。
培養終了後、 セィョウイチイ培養細胞を濾過により採取し、 凍結乾燥した後、 その乾燥重量を測定し、 液体培地 i L当たりの培養細胞の生育重量を求めた。 得 られた乾燥カルスからメタノール等を用いてタキサン型ジテルペンを抽出し、 高 速液体クロマトグラフィーを用いて標準品タキソール、 セファロマニン、 パッカ チン III と比較定量することによってタキサン型ジテルペン収量を測定した。 そ の結果を表 7に示す。
(比較例 9)
実施例 15において、 ジャスモン酸メチルエステルを添加しなし、以外は該実施例 と同様に操作した。 その結果を表 7に示す。
(実施例 16)
実施例 15において、 ジャスモン酸メチルエステルを培養 7日目より 1日置きに 計 4回逐次添加 (一回当たりの終濃度は 25 M、 合計 100 iiM) する以外は該実 施例と同様に操作した。 その結果を表 7に示す。
(実施例 Π)
実施例 15において、 ジャスモン酸メチルエステル 100 を培養 1日目に添加 し、 更に 20日間培養した以外は該実施例と同様に操作した。 その結果を表 7に示 す。 '
(実施例 18) .
実施例 15において、 ジャスモン酸メチルエステル 100 nU を培養 7日目に添加 し、 更に 14日間培養した以外は該実施例と同様に操作した。 その結果を表 7に示 す。
(実施例 19)
実施例 15において、 ジャスモン酸類としてジャスモン酸 (式(III) において、 R】a Rlb Rl c R' Rl e R R2 R3 R4 Rs 及び R6 が水素 原子であり、 R7 が水酸基であり、 nが 1であり、 C3 と C4 の間で二重結合を 含んでいる化合物、 トランス型 90%, シス型 10%) をその終濃度が 0.01 1000u Mになるように添加する以外は該実施例と同様に操作した。 その結果を表 8に示 す。
(比較例 1G)
実施例 19において、 ジャスモン酸を添加しない以外は該実施例と同様に操作し た。 その結果を表 8に示す。
(実施例 20)
実施例 15において、 ジャスモン酸メチルエステル 100 Mを添加する前、 添加 後 3日目、 及び 7日目の培地中に存在するタキサン型ジテルべンを分析した結果 を図 1及び 2に示す。 培養 7曰目には、 タキソールの約 5害 ij、 パッカチン III の 約 7害 ljが培地に漏出していた。
(比較例 11)
実施例 20において、 ジャスモン酸メチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を図 1及び図 2に示す。
(実施例 21)
実施例 において得られる生育速度の速められた細胞を、 先ず、 ッシュにより 250 -840 mのサイズの細胞集塊に分別した。 次に、 Ficollを用 いて、 比重 1. 07 (g/ml)の密度の媒体を作成し、 前記細胞を重層し、 700 回転で 6 分間遠心を行った。 細胞は、 比重の違いによって 2層に分離した。 1. 07g/ml以下 の層に含まれる細胞を分画し、 2 %ショ糖液で最低 3回以上洗浄し、 Ficollを洗 い流した。 洗浄後、 細胞 1 g (新鮮重) を液体ゥッディ一,ブラン卜 ·メディゥ ム 20m 1入りの三角フラスコに移して 25°Cで 14曰間振盪培養した。 培養 14曰目に ジャスモン酸メチルエステルをその終濃度が 250 M になるように添加し、 更に 7日間培養した。 培養終了後は、 実施例 15と同様に操作した。 その結果を表 9に 示す。 特定比重の細胞の選別とジャスモン酸メチルエステルの添加とを組み合わ せることによりタキサン型ジテルペンの生産性を大幅に向上することができた。 (比較例 12)
実施例 21において、 ジャスモン酸メチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を表 9に示す。
(実施例 22)
実施例 15と同様の方法によって得られるタイへィョウイチイの培養細胞 (培養 14曰目) にジャスモン酸メチルエステル 250 M を添加して 7日間培養を行つ た。 培養終了後は、 該実施例と同様に操作した。 その結果を表 10に示す。
(比較例 13)
実施例 22において、 ジャスモン酸メチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を表 10に示す。
(実施例 23)
実施例 22において、 T. mediaの培養細胞を用いる以外は、 該実施例と同様に操 作した。 その結果を表 10に示す。
(比較例 14)
実施例 23において、 ジャスモン酸メチルエステルを添加しない以外は該実施例 と同様に操作した。 その結果を表 10に示す。 表 7
Figure imgf000049_0001
収量は総生産】 (細胞中 +培地中) .より算出した 表 8
Figure imgf000049_0002
:収量は総生産量 (細胞中 +培地中) により算出した 表 9
Figure imgf000050_0001
( *' :収量は総生産量 (細胞中 +培地中) により算出した。 )
(実施例 24)
ナフタレン酢酸を 10— の濃度になるように添加した固体ゥッディー ·プラン ト 'メディウム (ゲランガム 0. 25重量%) に、 前もって 2 %アンチホルミン溶液 または 70%エタノール溶液等で滅菌処理したセィヨウイチィ(Taxus baccata LIN N)の茎の一部を置床し、 25°Cで暗所にて静置培養してセィヨウイチイカルスを得 た。 次にこのカルス l g (新鮮重) を、 前記成分を同じ濃度で添加した液体ゥッ ディー 'プラント ♦メディゥム 20ml入りの三角フラスコに移し、 ロータリーシェ 一力一上で旋回培養 (振幅 25顏、 lOOrpm) し、 21日毎に植えつぎ、 該カルスの生 育速度を速めた。
このようにして得られた培養細胞 1 g (新鮮重) を、 前記成分を同じ濃度で添 加した液体ゥッディ一 ·ブラント ·メディゥム 20ml入りの三角フラスコに移した 後、 重金属を含む化合物として [Ag (S203) 2] 3一 をその終濃度が 10— 〜iMになる ように添加した。 そして 25°Cで 21日間、 旋回培養を行った。 培養終了後、 セィョウイチイ培養細胞を濾過により採取し、 凍結乾燥した後、 その乾燥重量を測定し、 生育倍率を求めた。 得られた乾燥カルスからメタノール 等を闬いてタキサン型ジテルペンを抽出し、 高速液体クロマトグラフィーを用い て標準品タキソール、 セファロマニン、 パッカチン III と 匕交定量することによ つてタキサン型ジテルペン収量を測定した。 その結果を表 11に示す。
(実施例 25)
実施例 24において、 [A S203) 2]3一 をその終濃度が 10_3Μ になるよう培養開始 7曰目に添加し、 更に 14日間培養した。 培養終了後は該実施例と同様に操作し た。 その結果を表 11に示す。
(実施例 26)
実施例 24において、 [Ag (S203) 2]s- をその終濃度が 10— になるよう培養開始 14曰目に添加し、 更に 7日間培養した。 培養終了後は該実施例と同様に操作し た。 その結果を表 11に示す。
(実施例 27)
実施例 24において、 [Ag(S203)2]3- をその終濃度が 10— 3M になるよう培養開始 18日目に添加し、 更に 3日間培養した。 培養終了後は該実施例と同様に操作し た。 その結果を表 11に示す。
(実施例 28)
実施例 24において、 [Ag(S203) 2] 3— を培養開始時 (0 日目) より 4日置きに計 5回逐次添加 ( 1回当たりの終濃度は 2 X10_4M 、 合計 10— 3M ) すること以外は 該実施例と同様に操作した。 その結果を表 11に示す。
(実施例 29)
例 24において、 培養 14曰目にジャスモン酸類としてジャスモン酸のメチ ルエステル (前記式(III) において、 Rla、 R】b、 Rlc、 Rlfl、 Rle、 R"、 R2 、 R3 、 R4 、 R5 及び Rs が水素原子であり、 R7 がメトキシ基であり、 nが 1であり、 C3 とじ4 の間で二重結合を含んでいる化合物) をその終濃度が 10-4 になるよう添加すること以外は該実施例と同様に操作した。 その結果を表 Uに示す。
(実施例 30) 実施例 24において、 該フラスコを気体供給口と排出口を有する容器 (内容量 3000ml) 内に入れ密閉した後、 空気と窒素を用いて、 該培養細胞に供給する酸素 濃度が 10%となるよう混合比を調節し、 更に毎分 25mlの割合で該気体を供給口よ り供給すること以外は該実施例と同様に操作した。 その結果を表 11に示す。
(実施例 31)
実施例 30において、 培養 14日目にジャスモン酸のメチルエステルを、 その終濃 度が 10— 4M になるよう添加すること以外は該実施例と同様に操作した。 その結果 を表 11に示す。
(実施例 32)
実施例 24において、 [Ag(S203)2]3— の代わりに硝酸銀 (AgN03) 10"3M を、 培養 開始時 (0日目) に添加したこと以外は該実施例と同様に操作した。 その結果を 表 11に示す。
(実施例 33)
実施例 32において、 硝酸銀 101 を、 培養開始 14日目に添加したこと以外は該 実施例と同様に操作した。 その結果を表 11に示す。
(比較例 15)
実施例 24において、 [Ag(S203)2]3_ を添加しない以外は該実施例と同様に操作 した。 その結果を表 11に示す。
(実施例 34)
実施例 24において、 重金属を含む化合物として [Ag(S203) 2]3一 の代わりに塩化 コバルト(CoCl2) を、 その終濃度が 10— 〜iMになるように添加したこと以外は 該実施例と同様に操作した。 その結果を表 12に示す。
(実施例 35)
実施例 34において、 [Ag (S203) zV- の代わりに塩化コバルトをその終濃度が 10-5Μ になるよう培養開始 7日目に添加し、 更に 14日間培養した。 培養終了後は 該実施例と同様に操作した。 その結果を表 12に示す。
(実施例 36)
実施例 34において、 塩ィヒコバルトをその終濃度が^ Τ5Μ になるよう培養開始 14 日目に添加し、 更に 7日間培養した。 培養終了後は該実施例と同様に操作した。 その結果を表 12に示す。
(実施例 37)
実施例 34において、 塩化コバルトをその終濃度が 10- 5M になるょ 培養開始 18 曰目に添加し、 更に 3日間培養した。 培養終了後は該実施例と同様に操作した。 その結果を表 12に示す。
(実施例 38)
実施例 34において、 塩化コバルトを培養開始時 (0日目) より 4日置きに計 5 回逐次添加 ( 1回当たりの終濃度は 2 X10— 、 合計 10_ ) すること以外は該 実施例と同様に操作した。 その結果を表 12に示す。
(実施例 39)
実施例 34において、 培養 14日目にジャスモン酸類としてジャスモン酸のメチ ルエステル (前記式(III) において、 Rla、 Rl Rlc、 Rld、 Rle、 Rlf、 R2 、 R3 、 R4 、 R5 及び R6 が水素原子であり、 R7 がメ卜キシ基であり、 nが 1であり、 C3 とじ4 の間で二重結合を含んでいる化合物) をその終濃度が 10-4M になるよう添加すること以外は該実施例と同様に操作した。 その結果を表 12に示す。
(実施例 40)
実施例 34において、 該フラスコを気体供給口と排出口を有する容器 (内容量 3000ml) 内に入れ密閉した後、 空気と窒素を用いて、 該培養細胞に供給する酸素 濃度が 10%となるよう混合比を調節し、 更に毎分 25mlの割合で該気体を供給口よ り供給すること以外は該実施例と同様に操作した。 その結果を表 12に示す。
(実施例 41)
実施例 40において、 培養 14曰目にジャスモン酸のメチルエステルを、 その終濃 度が 10— 4Μ になるよう添加すること以外は該実施例と同様に操作した。 その結果 を表 12に示す。 表 1 1
en
t
Figure imgf000054_0001
[·> :収量は総生産量 (細胞中 +培地中) により算出した。 〕
b) :総収量はパッカチン III、 セファロマニン及びタキソ一ルの各収量の合計により算出した。 〕
表 1 2
cn
O
Figure imgf000055_0001
:収量は総生産量 (細胞中 +培地中) により算出した。 〕
b) :総収量はパッカチン III、 セファロマニン及びタキソールの各収量の合計にょリ算出した。 〕
(実施例 42)
ナフタレン酢酸を 10_ の濃度になるように添加した固体ゥッディー 'プラン ト 'メディウム (ゲランガム 0. 25重量%) に、 前もって 2 %アンチホルミン溶液 又は 70%エタノール溶液等で滅菌処理したセィョウイチイ(Taxus baccata LINN) の茎の一部を置床し、 25°Cで暗所にて静置培養してセィヨウイチイカルスを得 た。 次にこのカルス l g (新鮮重) を、 前記成分を同じ濃度で添加した液体ゥッ ディー ·プラン卜 ·メディゥム 20ml入りの三角フラスコに移し、 ロータリーシェ 一力一上で旋回培養 (振幅 25rnm、 lOOrpin) し、 21日毎に植えつぎ、 該カルスの生 育速度を速めた。
このようにして得られた培養細胞 1 g (新鮮重) を、 前記成分を同じ濃度で添 加した液体ゥッディー 'プラン卜 'メディゥム 20ml入りの三角フラスコに移した 後、 アミン類としてスペルミジンをその終濃度が 10— 〜iMになるように添加し た。 そして 25°Cで 21日間、 旋回培養を行った。
培養終了後、 セィョウイチイ培養細胞を濾過により採取し、 凍結乾燥した後、 その乾燥重量を測定し、 生育倍率を求めた。 得られた乾燥カルスからメタノール 等を用いてタキサン型ジテルペンを抽出し、 高速液体クロマトグラフィーを用い て標準品タキソール、 セファロマニン、 パッカチン III と比較定量することによ つてタキサン型ジテルペン収量を測定した。 その結果を表 13に示す。
(実施例 43)
実施例 42において、 スペルミジンをその終濃度が 10— になるよう培養開始 7 日目に添加し、 更に 14日間培養した。 培養終了後は該実施例と同様に操作した。 その結果を表 13に示す。
(実施例 44)
実施例 42において、 スペルミジンをその終濃度が 10—SM になるよう培養開始 14 日目に添加し、 更に 7日間培養した。 培養終了後は該実施例と同様に操作した。 その結果を表 13に示す。
(実施例 45)
実施例 42において、 スペルミジンをその終濃度が 1CT5M になるよう培養開始 18 日目に添加し、 更に 3日間培養した。 培養終了後は該実施例と同様に操作した。 その結果を表 13に示す。
(実施例 46)
実施例 42において、 スペルミジンを培養開始時 (0日目) より 4日置きに計 5 回逐次添加 ( 1回当たりの終濃度は 2 xlO— 、 合計 10— ) すること以外は該 実施例と同様に操作した。 その結果を表 13に示す。
(実施例 47) .
実施例 42において、 培養 14日目にジャスモン酸類としてジャスモン酸のメチ ルエステル (前記式(III) において、 Rl a、 R'。、 Rlc、 Ria、 Rle、 Rlf、 R2 、 R3 、 R4 、 R5 及び Rs が水素原子であり、 R7 がメ卜キシ基であり、 nが 1であり、 C3 とじ4 の間で二重結合を含んでいる化合物) をその終濃度が 10"4M になるよう添加すること以外は該実施例と同様に操作した。 その結果を表 13に示す。
(実施例 48) .
実施例 42において、 該フラスコを気体供給口と排出口を有する容器 (内容量 3000ml) 内に入れ密閉した後、 空気と窒素を用いて、 該培養細胞に供給する酸素 濃度が 10%となるよう混合比を調節し、 更に毎分 25mlの割合で該気体を供給口よ り供給すること以外は該実施例と同様に操作した。 その結果を表 13に示す。
(実施例 49)
実施例 48において、 培養 14曰目にジャスモン酸のメチルエステルを、 その終濃 度が 10— 4M になるよう添加すること以外は該実施例と同様に操作した。 その結果 を表 13に示す。
(比較例 16)
実施例 42において、 スペルミジンを添加しない以外は該実施例と同様に操作し た。 その結果を表 13〜15に示す。
(実施例 50)
実施例 42において、 スペルミジンに代えてスペルミンを、 その終濃度が 10—SM 〜iMになるように添加したこと以外は該実施例と同様に操作した。 その結果を表 14に示す。
(実施例 51) 実施例 42において、 スペルミジンに代えてブトレツシンを、 その終濃度が 10_ 9 M〜1Μになるように添加したこと以外は該実施例と同様に操作した。 その結果を 表 15に示す。
表 1 3
αι
Figure imgf000059_0001
(·' :収量は総生産量 (細胞中 +培地中) によリ算出した。 〕
b) :総収量はパッカチン IIし セファロマニン及びタキソ一ルの各収量の合計により算出した。 〕
表 1 4
Figure imgf000060_0001
[*' :収量は総生産量 (細胞中 +培地中) により算出した。 〕
b) :総収量はパッカチン IIし セファロマニン及びタキソールの各収量の合計により算出した。 〕 表 1 5
Figure imgf000060_0002
a) :収量は総生産量 (細胞中 +培地中) により算出した。 〕
b) :総収量はパッカチン IIし セファロマニン及びタキソールの各収量の合計により算出した。 〕 (実施例 52 )
ナフタレン酢酸を 10— 5M の濃度になるように添加した固体ゥッディー ·プラン ト 'メディウム (ゲランガム 0. 25重量%.) に、 前もって 2 %アンチホルミン溶液 または 70% 夕ノール溶液等で滅菌処理したセィョウイチイ(Taxus baccata LIN N)の茎の を置床し、 25°Cで暗所にて静置培養してセィヨウイチイカルスを得 た。 次にこのカルス l g (新鮮重) を、 前記成分を同じ濃度で添加した液体ゥッ ディ一 'フ。ラント 'メディゥム 20mi入りの三角フラスコに移し、 ロータリーシェ 一力一上で旋回培養 (振幅 25卿、 lOOrpm) し、 21日毎に植えつぎ、 該カルスの生 育速度を速めた。
このようにして得られた培養細胞 1 g (新鮮重) を、 前記成分を同じ濃度で添 加した液体ゥ、ソディー 'プラント ·メディゥム 20ml入りの三角フラスコに移し、 25°Cで 14日間旋回培養を行った。 そして培養開始 14日目に抗エチレン剤としてァ セチルサリチル酸 (H00CC6H40C0CH3 ) をその終濃度が 10— 9M ~1Μになるように添 加した後、 更に 7日間培養を行った。
培養終了後、 セィョウイチイ培養細胞を濾過により採取し、 凍結乾燥した後、 その乾燥重量を測定し、 生育倍率を求めた。 得られた乾燥カルスからメタノール 等を用いてタキサン型ジテルペンを抽出し、 高速液体クロマトグラフィーを用い て標準品タキゾール、 セファロマニン、 パッカチン III と比較定量することによ つてタキサン型ジテルペン収量を測定した。 その結果を表 16に示す。
(実施例 53)
実施例 52において、 ァセチルサリチル酸をその終濃度が 10— になるよう培養 開始時 (0日目) に添加し、 21日間培養した。 培養終了後は該実施例と同様に操 作した。 その結果を表 16に示す。
(実施例 54)
実施例 52において、 ァセチルサリチル酸をその終濃度が 10— 5Μ になるよう培養 開始 7日目に添加し、 更に 14日間培養した。 培養終了後は該実施例と同様に操作 した。 その結果を表 16に示す。
(実施例 55)
実施例 52において、 ァセチルサリチル酸をその終濃度が 10— になるよう培養 開始 18日目に添加し、 更に 3日間培養した。 培養終了後は該実施例と同様に操作 した。 その結果を表 16に示す。
(実施例 56)
実施例 52において、 ァセチルサリチル酸を培養開始 7曰目より、 2日置きに計' 5回逐次添加 (1 回当たりの終濃度は 2 X10_ 、 合計 10— ) すること以外は 該実施例と同様に操作した。 その結果を表 16に示す。
(実施例 57)
実施例 52において、 培養 14日目にジャスモン酸類としてジャスモン酸のメチ ルエステル (前記式(III) において、 Rla Rlb R'c R' Rle R R2 R3 R4 R5 及び Rs が水素原子であり、 R7 がメ卜キシ基であり、 nが 1であり、 C3 と C4 の間で二重結合を含んでいる化合物) をその終濃度が 10-4M になるよう添加すること以外は該実施例と同様に操作した。 その結果を表 16に示す。
(実施例 58)
実施例 52において、 該フラスコを気体供給口と排出口を有する容器 (内容量 3000ml) 内に入れ密閉した後、 空気と窒素を用いて、 該培養細胞に供給する酸素 濃度が 10%となるよう混合比を調節し、 更に毎分 25mlの割合で該気体を供給口よ り供給すること以外は該実施例と同様に操作した。 その結果を表 16に示す。
(実施例 59)
実施例 58において、 培養 14曰目にジャスモン酸のメチルエステルを、 その終濃 度が 10— 4M になるよう添加すること以外は該実施例と同様に操作した。 その結果 を表 16に示す。
(比較例 Π)
実施例 52において、 ァセチルサリチル酸を添加しない以外は該実施例と同様に 操作した。 その結果を表 16に示す。
(参考例 1 )
実施例 52において、 ァセチルザリチル酸の代わりにェチレン発生剤としてエス レル (Ethrel) (C2K603C1P ) 10"3 を、 培養開始時 (0曰目) に添加したこと以 外は該実施例と同様に操作した。 その結果を表 16に示す。 (参考例 2)
実施例 52において、 ァセチルサリチル酸の代わりにエスレル 10— 3M を、 培養開 始 14日目に添加したこと以外は該実施例と同様に操作した。 その結果を表 16に示 す。
(実施例 SO)
実施例 52において、 抗エチレン剤としてアミノォキシ酢酸 .塩酸塩 [ (H2N0CH2 C00H) 2-HC.l] を、 その終濃度が 10— 9M〜1Mになるように添加したこと以外は該実 施例と同様に操作した。 その結果を表 17に示す。
(実施例 61)
実施例 52において、 抗エチレン剤として没食子酸プロピル
[ (HO) 3C6H2C00CH2CH2CH3 ] を、 その終濃度が 10—SM〜薦こなるように添加した こと以外は該実施例と同様に操作した。 その結果を表 18に示す。
表 1 6
Figure imgf000064_0001
): 収量は総^ (細胞中 +培地中) により算出した。 ]
': 総収量はパッカチン III 、 セファロマニン及びタキツールの各収量の合計により算出した。 ]
表 1
Figure imgf000065_0001
11: 収量は総 (細胞中 +培地中) により算出した。 ]
31: 総収量はパッカチン III 、 セファロマニン及びタキソ一ルの各 !{¾め合計により算出した。
表 1 8
Figure imgf000065_0002
): 収量は総^ * (細胞中 +培地中) により算出した。 ]
[b ) : 総収量はパッカチン in 、 セファロマニン及びタキソ一ルの各 il¾の合計により算出した。 (実施例 62 )
ナフタレン酢酸を 10— 5M の濃度になるように添加した固体ゥッディー .プラン ト 'メディウム (ゲランガム 0. 25重量%) に、 前もって 2 %アンチホルミン溶液 又は 70%エタノール溶液等で滅菌処理したセィョウイチイ(Taxus baccata LINN) の茎の一部を置床し、 25でで暗所にて静置培養してセィヨウイチイカルスを得 た。 次にこのカルス 1 g (新鮮重) を、 前記成分を同じ濃度で添加したゥッディ — 'プラント 'メディウムの液体培地 20ml入りの三角フラスコに移し、 ロータリ ーシヱ一力一上で旋回培養 (振幅 25MK lOOrpm) し、 21日毎に植えつぎ、 該カル スの生育速度を速めた。
このようにして得られた培養細胞 1 g (新鮮重) を、 前記成分を同じ濃度で添 加した液体ゥッディー 'ブラント 'メディゥム 20ml入りの三角フラスコに移植し た後、 該フラスコを気体供給口と排出口を有する容器 (内容量 3000ml) 内に入れ 密閉した。 そして空気と窒素を用いて、 該培養細胞に供給する酸素濃度が 4ない し 15%となるよう混合比を調節後、 毎分 25mlの割合で該気体を供給口より供給し ながら、 25°Cで 21日間旋回培養を行った。
培養終了後、 セィョウイチイ培養細胞を濾過により採取し、 凍結乾燥した後、 その草乞燥重量を測定し、 生育倍率を求めた。 得られた乾燥カルスからメタノール 等を用いてタキサン型ジテルペンを抽出し、 高速液体クロマトグラフィーを用い て標準品タキソール、 セファロマニン、 パッカチン III と比較定量することに よってタキサン型ジテルべン収量を測定した。 その結果を表 19に示す。
(比較例 18)
実施例 62において、 細胞に供給する酸素濃度が 20%になるよう調節した混合気 体を供給したこと以外は該実施例と同様に操作した。 その結果を表 19に示す。
(参考例 3 )
実施例 62において、 培養細胞を移植したフラスコを大気中で培養すること以外 は該実施例と同様に操作した。 その結果を表 19に示す。
(実施例 63)
実施例 62において、 細胞に供給する酸素濃度が 10%になるよう調節した混合気 体を、 培養開始時から 3日間供給した後、 培養終了時まで (18日間) 空気を供給 したこと以外は該実施例と同様に操作した。 その結果を表 19に示す。
(実施例 64)
実施例 62において、 細胞に供給する酸素濃度が 10%になるよう調節した混合気 体を、 培養開始時から 7日間供給した後、 培養終了時まで (14日間) 空気を供給 したこと以外は該実施例と同様に操作した。 その結果を表 19に示す。
(実施例 65)
実施例 62において、 細胞に供給する酸素濃度が 10%になるよう調節した混合気 体を、 培養開始時から 14日間供給した後、 培養終了時まで (7日間) 空気を供給 したこと以外は該実施例と同様に操作した。 その結果を表 19に示す。
(実施例 66)
実施例 62において、 培養 14日目にジャスモン酸類としてジャスモン酸のメチ ルエステル (前記式(III) において、 Rla R' Rlc R' Rle R R2 R3 R4 、 Rs 及び R6 が水素原子であり、 R7 がメトキシ基であり、 nが 1であり、 じ3 と C4 の間で二重結合を含んでいる化合物、 トランス型 90 , シス型 10%) をその終濃度が 10ないし lOOOwMになるよう添加したこと以外 は該実施例と同様に操作した。 その結果を表 20に示す。 低濃度酸素供給処理とジ ヤスモン酸のメチルエステルの添加とを組み合わせることによりタキサン型ジテ ルぺンの生産性を大幅に向上させることができた。
(実施例 67)
実施例 62において得られる生育の早くなつた培養細胞 85 g (新鮮重) を、 溶 存酸素濃度計及び溶存酸素濃度制御装置を備えた通気撹拌培養槽 (内容量 3000 ml) に液体ゥッディー 'プラン卜 'メディゥム 1700mlを入れた後、 移植した。 そ して空気と窒素を用いて、 該培地中の溶存酸素濃度が 0. lppm以下になるよう混合 比を調節しながら 25°Cで 21日間通気撹拌培養を行った。 培養装置の概略図を図 3 に示すと共に、 結果を表 21に示す。
(実施例 68)
実施例 67において、 溶存酸素濃度が lppm以下になるよう混合比を調節したこ と以外は該実施例と同様に操作した。 その結果を表 21に示す。
(実施例 69) 実施例 67において、 溶存酸素濃度が 2 ppm以下になるよう混合比を調節したこ と以外は該実施例と同様に操作した。 その結果を表 21に示す。
(実施例 70)
実施例 67において、 溶存酸素濃度が 4 ppm以下になるよう混合比を調節したこ と以外は該実施例と同様に操作した。 その結果を表 21に示す。
(実施例 71 )
実施例 67において、 溶存酸素濃度が 6 ppm以下になるよう混合比を調節したこ と以外は該実施例と同様に操作した。 その結果を表 21に示す。
(比較例 19)
実施例 67において、 空気を通気したこと以外は該実施例と同様に操作した。 そ の結果を表 21に示す。
〔実施例 72 )
実施例 67において、 培養開始時から 3日間培地の溶存酸素濃度が 4 ppm以下に なるよう混合比を調節しながら培養した後、 培養終了時までの間 (18日間) 空気 を供給したこと以外は該実施例と同様に操作した。 その結果を表 21に示す。 (実施例 73)
実施例 67において、 培養開始時から 7日間培地の溶存酸素濃度が 4 ppm以下に なるよう混合比を調節しながら培養した後、 培養終了時まで (14日間) 空気を供 給したこと以外は該実施例と同様に操作した。 その結果を表 21に示す。
(実施例 74)
実施例 67において、 培養開始時から 14日間培地の溶存酸素濃度が 4 ppm以下に なるよう混合比を調節しながら培養した後、 培養終了時まで (7日間) 空気を供 給したこと以外は該実施例と同様に操作した。 その結果を表 21に示す。 表 1 9
Figure imgf000069_0001
収量は総生産量 (細胞中 +培地中) により算出した。 ]
総収量はパッカチン I II 、 セファロマニン及びタキソールの各収量の合計により算出した 左記数字は混合気体供給期間中の培養器内気相中の最大酸素濃度値を示す。 ] 表 2 0
Figure imgf000069_0002
[a) :収量は総生産量 (細胞中 +培地中) により算出した。 〕
[bl :総収量はパッカチン III 、 セファロマニン及びタキソールの各収量の合計により算出した。 ]
表 2
Figure imgf000070_0001
収量は総生産量 (細胞中 +培地中》 により算出した。 〕
総収量はパッカチン III 、 セファロマニン及び夕キソ一ルの各収量の合計により算出した。 〕
( ) 内数字は 25でにおける飽和溶存酸素濃度値 (8卯 m) に対する比較例及び
各実施例の最大溶存酸素濃度値の割合を%で表示した。 〕
左記数字は混合気体供給期間中の培地中の最大溶存酸素濃度値を示す。 ]
( ) 内数字は混合気体供給期間中の 25°Cにおける飽和溶存酸素濃度値 (8ppm)
に対する各実施例の最大溶存酸素濃度値の割合を%で表示した。 〕
(実施例 75 )
ナフタレン酢酸を 10— 5M の濃度になるように添加した固体ゥッディー 'ブラン ト 'メディウム (ゲランガム 0. 25重量%) に、 前もって 2 %アンチホルミン溶液 又は 70%エタノール溶液等で滅菌処理したセィョウイチイ(Taxus baccata LINN) の茎の一部を置床し、 25°Cで暗所にて静置培養してセィヨウイチイカルスを得 た。 次にこのカルス l g (新鮮重) を、 前記成分を同じ濃度で添加した液体ゥッ ディー 'プラント 'メディゥム 20ml入りの三角フラスコに移し、 ロータリーシェ 一力一上で旋回培養 (振幅 25誦、 lOOrpm) し、 21日毎に植えつぎ、 該カルスの生 育速度を速めた。
このようにして得られた培養細胞 l g (新鮮重) を、 まず、 ステンレスメッ シュにより 250 〜840 mのサイズの細胞集塊に分別した。 次に、 Ficollを用い て、 比重 1. 03, 1. 05, 1. 07, 1. 09 , l. ll (g/ml) の密度勾配を作成し、 前記細胞 を重層し、 700 回転で 6分間遠心を行った。 細胞は、 比重の違いによって各層に 分離した。 それぞれの層に分離した細胞を混ざらないように分画し、 2 %ショ糖 液で最低 3回以上洗浄し、 Ficollを洗い流した。 洗浄後約 0. 1 g (新鮮重) .を液 体ゥッディー ·ブラント 'メディウム 0. 8ml 入りの内径 IS劃ゥヱルに移して 25°C で 21日間振盪培養した。 21日間培養後、 細胞全量を前記液体培地 3 mi入りの内径 36m ゥヱルに移して 25°Cで更に 28日間振盪培養した。
培養終了後、 セィョウイチイ培養細胞を濾過により探取し、 凍結乾燥した後、 その乾燥重量を測定し、 液体培地 1 L当たりの培養細胞の生育重量を求めた。 得 られた乾喿カルスからメタノール等を闬いてタキサン型ジテルペンを抽出し、 高 速液体クコマトグラフィ一を用いて標準品タキソール、 セファロマニン、 パッカ チン III と比較定量することによってタキサン型ジテルペン含量を測定した。 そ の結果を表 22、 図 4及び図 5に示す。
(比較例 20)
実施例 75において、 ステンレスメッシュにより細胞集塊を分別後、 密度勾配に よる分画を行わない以外は該実施例と同様に操作した。 その結果を表 22、 図 4及 び図 5に示す。
(実施例 76) 実施例 75において、 親植物は同じであるが、 カルス化誘導時期の異なる培養細 胞を用いた以外は該実施例と同様に操作した。 但し、 比重 1. 07以上の層に含まれ る細胞は一つにまとめた後、 培養を行った。 その結果を表 22に示す。
(比較例 21)
実施例 76において、 ステンレスメッシュにより細胞集塊を分別後、 密度勾配に よる分画を行わない以外は該実施例と同様に操作した。 その結果を表 22に示す。
表 2 2
Figure imgf000072_0001
:含量は総生産量 (細胞中 +培地中) Z培養細胞生育量により算出した。 ] (参考例 4 )
実施例 75において、 比重範囲 1. 03以下の層に分画後培養した細胞 (表 22) 約 0. 2 g (新鲜重) を、 液体ゥッディ一·ブラント ·メディウム 3 ml入りの内径 36誦ゥエルに移して 25°Cで更に 28日間振盪培養した。 培養終了後、 細胞を比重 1. 03, 1. 05, 1. 07, 1- 09, 1. U (g/ml)の密度勾配により再度分画した。 密度勾配 分画直後に細胞を回収し、 分画された細胞の存在比、 タキサン型ジテルペン含量 を定量した。 その結果を表 23, 図 6及び図 7に示す。 表 2 3
Figure imgf000073_0001
[ * ' :含量は細胞中の生産量/培養細胞生育量により算出した。 ]
(実施例 77)
実施例 1で用いたのと同じ培養細胞 1 g (新鮮重) を、 ペルォキソ二硫酸カリ ゥムを iO— 5M l(T 2M含む液体培地 20ml入りの三角フラスコに移して 25°Cで 21日 間振盪し、 一段目の培養を行った。
培養終了後、 咅養細胞を濾過により採取し、 一部を二段目培養の種細胞として 用い、 残りの細胞は培養細胞の生育重量及び細胞中のタキサン含量の測定に供し た。 即ち、 採取した培養細胞の 1 g (新鮮重) を、 ナフタレン酢酸を 10— の濃 度になるように添加した液体ゥッディー ·プラント ·メディウム 20ml入りの三角 フラスコに移し、 25°Cで 14日間振盪培養した。 培養 14日目にジャスモン酸メチル を、 培地中の濃度が 100 Mになるように添加し、 更に 7日間培養した。 一方、 一段目培養で得られた細胞の中の残った培養細胞を凍結乾燥した後、 その乾燥重 量を測定し、 液体培地 1 L当たりの培養細胞の生育重量を求めた。 得られた乾燥 細胞のタキソ一ル含量を高速液体クロマトグラフィーを用いて測定した。 二段目 培養についても一段目培養と同様にして細胞収量及びタキソール収量を測定し た。 その結果を表 24に示す。
(比較例 22)
実施例 77において、 ペルォキソ二硫酸力リゥムを用いない以外は該実施例と同 様に操作した。 その結果を表 24に示す。 表 2 4
Figure imgf000074_0001
(実施例 78)
実施例 1で用いたのと同じ培養細胞 100 g (新鮮重) を、 標準の液体ゥッディ 一 ' プラン卜 'メディゥム 1 リッ トル (蔗糖濃度: 20g/l 、 硝酸イオン濃度: . 7mM α—ナフタレン酢酸: 10- SM ) に 2 の [Ag (S203) 2 ] 3— を添加した培地 を仕込んだ通気撹拌培養槽 (内容量 2リッ トル;図 8 ) に移植して、 2 5 °C、 暗 所下、 撹拌速度 40rpm 、 通気速度毎分 0. 1リッ トルで空気を通気しながら培養を 開始し、 培養 2日目から 1 4日目の期間に、 20g/l の蔗糖及び 20mMの硝酸ナ卜リ ゥムを含む培地を 1日当たりの蔗糖添加量が 2 g/1 かつ 1日当たり硝酸イオン添 加量が 2 mmol/1となるように連続的に添加し、 当該栄養源溶液の添加と同じ速度 で、 栄養源添加口とは別の、 100 メッシュのステンレスフィルターを取り付けた 抜き出し口より培養液を連続的に抜き出しながら (培養器内の培地更新率: 10% Z日) 21日間通気撹拌培養を行った。 培養終了後、 培養細胞及び培地を回収し、 前記実施例 1 と同様の方法でタキソール収量を測定した。 その結果を表 25に示 す。
(比較例 23)
実施例 78において、 栄養源の途中添加を実施しない以外は該実施例と同様に操 作した。 その結果を表 25に示す。 表 25
Figure imgf000075_0002
(実施例 79)
実施例 1で用いたのと同じ培養細胞 50 g (新鮮重) と、 液体ゥッディー ·ブラ ント · メディゥム 1 リッ トルを容積 2 リッ トルの培養槽に移し、 通気速度毎分 0. 1 リッ トル、 撹拌速度 40rpm、 25°C, 暗所で 日間培養を行った後、 培養開始 14日目に細胞の沈降容積 (PCV) を測定した結果、 PCVは 0.2リットルであ つた。 14日目から、 初期培地と同じ組成の培地に、
Figure imgf000075_0001
23- を添加 した新鮮培地の供給と、 細胞を含まない培養液の抜き出しを開始した。 新鮮培地 の供給量は 1日当たり該時点の PCVの 2/5容とし、 細胞を含まない培養液は 培養液量を 1 リツ トルに保つように抜き出した。 培養開始 35日目に PCVは 0,6 リッ トルに達していた。 以後、 毎日 1回細胞を含む培養液を抜き出して平均の PCVを 0.6リツ トルに保ちながら、 細胞を含まない培養液を抜き出すことに よって培養液量を 1 リツ トルに保って定常状態を得た。 培養開始後 90日まで培養 を継続した。 60日間の定常状態において供給した新鲜培地の量は 15リットル、 培 養槽から取り出された培地量は 14リツ トル、 得られた細胞の量は 0.15kg (乾燥重 量) で、 比増殖速度 μは 0.08 (day— 、 平均の培地比更新率は 2.88であった。 定 常状態で培養槽から取り出された細胞及び培地を分析した結果、 タキソール 525 mgが生産されたこと力分かった。 これは 8.8mgZリッ トル Ζ曰の生産性に相当す 細胞中及び培地中に含まれるタキソールの量は、 実施例 1と同様の方法で定量 した。
(実施例 80)
実施例 1で用いたのと同じ培養細胞 50 g (新鮮重) と、 液体ゥッディ一·ブラ

Claims

ン卜 'メディウム 1 リツ トルを容積 2リッ トルの培養槽に移し、 炭酸ガス 2 %を 加えた空気を毎分 0. 1 リッ トルで通気し、 撹拌速度 40rpm 、 25°C、 暗所で 14日間 培養を行った。 培養終了後に細胞及び培地を回収し、 乾燥細胞 15. 2 gを得た。 細胞及び培地中に含まれるタキソールの量を実施例 1と同様の方法で定量した結 果、 タキソール 31mgが生産されたことが分かった。 (比較例 24) 実施例 1において、 ッベロン酸メチルに代えてジャスモンをその終濃度が 0. 1 〜1000 ^ Μになるように添加する以外は該実施例と同様に操作した。 その結果を ^: 6 (こ不す。 (比較例 25) 比較例 24において、 ジヤスモンを添加しない以外は該比較例と同様に操作し た。 その結果を表 26に示す。 表 2 6 ( *' :収量は総生産量 (細胞中 +培地中) により算出した。 ) 産業上の利用分野 本発明によれば、 卵巣癌、 乳癌、 肺癌等の治療薬として有用であるタキソール を含むタキサン型ジテルペンを工業的に生産することが可能になる。
1. タキサン型ジテルペンを産生する植物の組織又は細胞をジャスモン酸類、 重 金属を含む化合物類、 重金属を含む錯ィォン類、 重金属ィオン、 アミン類及び抗 エチレン剤よりなる群から選ばれた少なくとも一つの存在下に培養し、 得られる 培養物からタキサン型ジテルペンを回収することを特徴とするタキサン型ジテル ペンの製造方法。
2. ジャ::' モン酸類の存在下に培養する請求の範囲第 1項記載の製造方法。
3. ジャスモン酸類;^一般式主冃(I) :
囲 I)
Figure imgf000077_0001
[式中、 Rla、 R16、 R"、 R 、 1^ 及び!^ は、 それぞれ水素原子、 水酸 基、 炭素数 1〜6のアルキル基又は炭素数 1〜6のアルコキシ基を表し; R2 、 R3 、 R4 、 R5 及び R6aは、 それぞれ水素原子又は炭素数 1〜6のアル キル基を表し;
C1 — C2 — C3 - C4 一 C5 — C6 からなる側鎖は、 1個又は 2個以上の二重 結合を含んでいてもよく ;
は水酸基又は— 0—炭水化物残基を表し;
R7 は水酸基、 0M (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8 (ここで、 R8 は水素原子、 炭素数 1〜6のァシ ル基、 炭素数 1〜6のアルキル基又はアミノ酸残基を表す。 ) 、 OR9 (ここ で、 R3 は炭素数 1〜6のアルキル基又は炭水化物残基を表す。 ) 又は炭素数 1 〜 6のアルキル基を表し;
nは 1〜7の整数を表し; 前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物である請求の範囲第 2項記載の製造方法。
4. 前記一般式 (I ) で示されるジャスモン酸類が一般式 (Γ) :
Figure imgf000078_0001
[式中、 R】'は水素原子又は水酸基を表し;
C】 — C2 — C3 — C4 -C5 -C6 からなる側鎖は、 C1 と C2 、 C2 と C3 又は C3 と の間で二重結合を含んでいてもよく ;
は水酸基又は一 0—炭水化物残基を表し;
R7'は水酸基、 0M (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8' (ここで、 R8'は水素原子、 炭素数 1~4のァシ ル基、 炭素数 1〜4のアルキル基又はアミノ酸残基を表す。 ) 又は OR9' (ここ で、 R9'は炭素数 1〜4のアルキル基又は炭水化物残基を表す。 ) を表し; nは 1〜7の整数を表し;
前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物である請求の範囲第 3項記載の製造方法。
5. 前記一般式 (I ) で示される化合物が、 ッベロン酸又はッベロン酸メチルで ある請求の範囲第 3項記載の製造方法。
6. ジャスモン酸類が一般式 (II) :
Figure imgf000079_0001
Rld Rle (CH2 ) n -C0-R7
[式中、 Rla、 Rlb、 R"、 Rlfl、 RIe及び Rlfは、 それぞれ水素原子、 水酸 基、 炭素数 1〜6のアルキル基又は炭素数 1〜6のアルコキシ基を表し; R2、 R3 、 R4 、 R5 及び Rs は、 それぞれ水素原子又は炭素数 1~6のアル キル基を表し;
C1 — C2 - C3 — C4 一 C5 — C6 からなる側鎖は、 1個又は 2個以上の二重 結合を含んでいてもよく ;
R7 は水酸基、 OM (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8 (ここで、 R8 は水素原子、 炭素数 1〜6のァシ ル基、 炭素数 1~6のアルキル基又はアミノ酸残基を表す。 ) 、 OR9 (ここ で、 R9 は炭素数 1〜6のアルキル基又は炭水化物残基を表す。 ) 又は炭素数 1 〜6のアルキル基を表し;
nは 1~7の整数を表し;
前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物である請求の範囲第 2項記載の製造方法。
7. 前記一般式 (II) で示されるジャスモン酸類が一般式 (ΙΓ) :
Figure imgf000079_0002
[式中、 Rいは水素原子又は水酸基を表し;
C' — C2 -C3 一 C4 -C5 -C6 からなる側鎖は、 C1 と C2 、 C2 と C3 又は C3 と C4 の間で二重結合を含んでいてもよく ;
R7'は水酸基、 OM (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8' (ここで、 R8'は水素原子、 炭素数 1~4のァシ ル基、 炭素数 1〜4のアルキル基又はアミノ酸残基を表す。 ) 又は OR9' (ここ で、 FT'は炭素数 1〜4のアルキル基又は炭水化物残基を表す。 ) を表し; nは 1~7の整数を表し;
前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物である請求の範囲第 6項記載の製造方法。
8. 前記一般式 (Π) で示される化合物が、 ククルビン酸又はククルビン酸メチ ルである請求の範囲第 6項記載の製造方法。
9 酸類が一般式 (III)
Figure imgf000080_0001
[式中、 Rla、 R' R"、 R' 1^16及び1^ は、 それぞれ水素原子、 水酸 基、 炭素数 1〜6のアルキル基又は炭素数 1〜6のアルコキシ基を表し ;
R2 、 R3 、 R4 、 RB 及び Rs は、 それぞれ水素原子又は炭素数 1〜 6のアル キル基を表し;
C' — C2 -C3 — C4 一 C5 -C6 からなる側鎖は、 1個又は 2個以上の二重 結合を含んでいてもよく ;
R7 は水酸基、 0M (ここで、 Mはアルカリ金属原子、 アルカリ土類金属原子又 は NH4 を表す。 ) 、 NHR8 (ここで、 R8 は水素原子、 炭素数 1~6のァシ ル基、 炭素数 1~6のアルキル基又はアミノ酸残基を表す。 ) 、 OR9 (ここ で、 R9 は炭素数 1〜6のアルキル基又は炭水化物残基を表す c 又は炭素数 1 〜 6のアルキル基を表し;
nは 1〜7の整数を表し;
前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物である請求の範囲第 2項記載の製造方法。
10. 前記一般式(III) で示されるジャスモン酸類力'—般式(ΠΓ):
Figure imgf000081_0001
(CH2 ) η 一 CO— R7'
[式中、 R''は水素原子又は水酸基を表し;
C' 一 C2 — C3 -C4 -C5 -C6 からなる側鎖は、 C' と C2、 C23 又は C3 と C4 の間で二重結合を含んでいてもよく ;
R7'は水酸基、 0Μ (ここで、 Μはアルカリ金属原子、 アルカリ土類金属原子又 は ΝΗ4 を表す。 ) 、 NHR8' (ここで、 RB'は水素原子、 炭素数 1〜4のァシ ル基、 炭素数 1〜4のアルキル基又はアミノ酸残基を表す。 ) 又は ORs' (ここ で、 R9'は炭素数 1〜4のアルキル基又は炭水化物残基を表す。 ) を表し; nは 1〜7の整数を表し;
前記 5員環は、 隣接する環員炭素原子間で二重結合を形成してもよい。 ] で示される化合物である請求の範囲第 9項記載の製造方法。
11. 前記一般式(III) で示される化合物が、 ジャスモン酸又はジャスモン酸メチ ルである請求の範囲第 9項記載の製造方法。
12. 組織培養培地中のジャスモン酸類の濃度が 0.01〜1000 ILL Mである請求の範囲 第 2項記載の製造方法。
13. ジャスモン酸類を、 培養細胞の対数増殖期ないし定常期に添加することを特 徵とする請求の範囲第 2項記載の製造方法。
14. ジャスモン酸類を、 複数回に分けて又は連続的に培養培地に添加することを 特徴とする請求の範囲第 2項記載の製造方法。
15. 重金属を含む化合物類、 重金属を含む錯イオン類及び重金属イオンよりなる 群から選ばれた少なくとも一^ ^の存在下に培養する請求の範囲第 1'項記載の製造 方法。
16. 重金属が銀である請求の範囲第 1 5項記載の製造方法。
17. 銀を含む化合物類が、 硝酸銀及び硫酸銀よりなる群から選ばれる少なくとも 1種類以上である請求の範囲第 1 6項記載の製造方法。
18. 銀を含む化合物類が、 フッ化銀、 塩素酸銀、 過塩素酸銀、 酢酸銀、 亜硫酸 銀、 へキサフルォロリン (V ) 酸銀、 テ卜ラフルォロホウ酸銀、 ジァミン銀
( I ) 硫酸塩及びジァミノ銀 ( I ) 酸力リウムよりなる群から選ばれた少なくと も一つである請求の範囲第 1 6項記載の製造方法。
19. 銀を含む錯イオン類が、 [Ag (S203) 2] 3一及び [Ag (S203) 3] 5—よりなる群から 選ばれた少なくとも一つである請求の範囲第 1 6項記載の製造方法。
20. 銀を含む錯イオン類が、 [Ag (NH3) 2 ] + 、 [Ag (CN) 2] - 、 [Ag (CN) 3] 2—、 [Ag (SCN) 2 ] ― 及び [Ag (SCN ] 3—よりなる群から選ばれた少なくとも一つであ る請求の範囲第 1 6項記載の製造方法。
21. 銀を含む化合物類、 銀を含む錯イオン類、.又は銀イオンの濃度カ^ 10— 〜 10- 'Μ である請求の範囲第 1 6項記載の製造方法。
22. 銀を含む化合物類、 銀を含む錯イオン類、 又は銀イオンの濃度が、 10— 7Μ 〜 10- 2 である請求の範囲第 1 6項記載の製造方法。
23. 重金属が、 コバルトである請求の範囲第 1 5項記載の製造方法。
24. コバルトを含む化合物類が、 塩ィヒコバルト、 硝酸コバルト及び硫酸コバルト よりなる群から選ばれた少なくとも一つである請求の範囲第 2 3項記載の製造方 法。
25. コバルトを含む化合物類が、 フッ化コノ \'ルト、 過塩素酸コバルト、 臭化コバ ルト、 ヨウ化コバルト、 セレン酸コバルト、 チォシアン酸コバルト、 酢酸コバル ト、 硫酸アンモニゥムコバルト、 硫酸コバルト (II) カリウム、 へキサアンミン コバルト(III) 塩化物、 ペンタアンミンアクアコバルト(III) 塩化物、 ニトロべ ン夕アンミンコバルト(III) 塩化物、 ジクロロテトラアンミンコバルト(III) 塩 化物半水和物、 ジニトロテ卜ラアンミンコバルト(III) 塩化物、 カルボナトテ卜 ラアンミンコノ^レ卜(III) 塩化物、 テトラニトロジアンミンコバルト(III) 酸ァ ンモニゥム、 へキサニトロコバルト(III) 酸ナトリウム、 トリス (エチレンジァ ミン) コバルト(III) 塩化物三水和物、 ジクロロビス (エチレンジァミン) コバ ル卜(III) 塩化物、 卜リス (ォキサラ卜) コバルト(III) 酸カリウム三水和物、 へキサシァノコバル卜(III) 酸カリウム、 (エチレンジアミンテ卜ラァセタト) コバルト (II I) 酸カ リ ウム二水和物、 ヒ ド リ ドテ トラカルボニルコバルト ( I ) 、 ジカルボニル (シクロペンタジェニル) コバルト ( I ) 、 才クタカルボ ニルニコバルト (0 ) 、 へキサカルボニル (アセチレン) ニコバル卜 (0 ) 、 ビ ス (シクロペンタジェニル) コバルト ( I ) 及び (シクロペンタジェニル) (1, 5 -シクロォクタジェン) コバルト (I ) よりなる群から選ばれた少なくとも一つ である請求の範囲第 2 3項記載の製造方法。
26. コバルトを含む錯イオン類が、 ペン夕アンミンアクアコバルトイオン、 ニト 口ペンタアンミンコバルトイオン、 ジクロロテトラアンミンコバルトイオン、 ジ ニトロテトラアンミンコバルトイオン、 カルボナトテトラアンミンコバルトィォ ン、 テトラニトロジアンミンコバルトイオン、 へキサニトロコバルトイオン、: ト リス (エチレンジァミン) コバルトイオン、 ジクロロビス (エチレンジァミン) コバルトイオン、 トリス (ォキサラト) コノ υレトイオン、 へキサシァノコバル卜 イオン及び (エチレンジアミンテトラァセタト) コバルトイオンよりなる群から 選ばれた少なくとも一つである請求の範囲第 2 3項記載の製造方法。
27. コバルトを含む化合物類、 コバルトを含む錯イオン類、 又はコバルトイオン の濃度が、 10— 〜10— 1 である請求の範囲第 2 3項記載の製造方法。
28. コバルトを含む化合物類、 コバルトを含む錯イオン類、 又はコバルトイオン の濃度が、 10— 5Μ〜10_2Μ である請求の範囲第 2 3項記載の製造方法。
29. 重金属を含む化合物類、 重金属を含む錯イオン類及び重金属イオンよりなる 群から選ばれた少なくとも一つとジャスモン酸類の存在下に培養する請求の範囲 第 1 5項記載の製造方法。
30. アミン類の存在下に培養する請求の範囲第 1項記載の製造方法。
31. ァミン類が、 ポリアミン類である請求の範囲第 3 0項記載の製造方法。
32. ポリアミン類が、 ブトレツシン、 力ダべリン、 スペルミジン、 スペルミン、 エチレンジァミン、 Ν, Ν-ジェチル- 1 , 3- プロパンジァミン、 ジエチレントリアミ ン、 及びこれらの化合物の塩よりなる群から選ばれた少なくとも一つである請求 の範囲第 3 1項記載の製造方法。
33. ポリアミン類の濃度が、 10—8Μ〜10—^ である請求の範囲第 3 1項記載の製 造方法。
34. ポリアミン類の濃度が、 10—7M〜1CT 2M である請求の範囲第 3 1項記載の製 造方法。
35. アミン類及びジャスモン酸類の存在下に培養する請求の範囲第 3 0項記載の 製造方法。
36. 抗エチレン剤の存在下に培養する請求の範囲第 1項記載の製造方法。
37. 抗エチレン剤が、 S - アデノシルメチ才ニンから 1—アミノシクロプロパン - 1 -力ルボン酸への変換を触媒する酵素の活性を阻害する化合物である請求の 範囲第 3 6項記載の製造方法。
38. 抗エチレン剤が、 アミノォキシ酢酸、 ァセチルサリチル酸、 リゾビ卜キシ ン、 アミノエ卜キシビニルグリシン、 メトキシビュルグリシン及び c—アミノィ ソ酪酸並びにこれらの化合物の塩、 エステル、 アミノ酸誘導体及び炭水化物誘導 体よりなる群から選ばれた少なくとも一つである請求の範囲第 3 7項記載の製造 方法。
39. 抗エチレン剤が、 1一アミノシクロプロパン一 1—カルボン酸からエチレン への変換を触媒する酵素の活性を阻害する化合物である請求の範囲第 3 6項記載 の製造方法。
40. 抗エチレン剤が、 没食子酸、 並びに当該化合物の塩、 エステル、 アミノ酸誘 導体及び炭水化物誘導体よりなる群から選ばれた少なくとも一つである請求の範 囲第 3 9項記載の製造方法。
41. 抗エチレン剤が、 培養物内に貯留するか、 又は該培養物を含む培養器内の気 相中もしくは培地中に存在するエチレンを除去する物質である請求の範囲第 3 6 項記載の製造方法。
42. 抗エチレン剤が、 1 , 5 - シクロォクタジェン、 並びにイソチォシアン酸、 及び当該化合物の塩、 エステル、 アミノ酸誘導体及び炭水化物誘導体よりなる群 から選ばれた少なくとも一つである請求の範囲第 4 1項記載の製造方法。
43. 抗エチレン剤の濃度が、 10_8M〜10— である請求の範囲第 3 6項記載の製 造方法。
44. 抗エチレン剤の濃度が、 iO—7M〜10— である請求の範囲第 3 6項記載の製 造方法。
45. 抗エチレン剤及びジャスモン酸類の存在下に培養する請求の範囲第 3 6項記 載の製造方法。
46. タキサン型ジテルペンがタキソ一ル、 7 -ェピタキツール、 パッカチン III 、 7 —ェピバ、ソカチン III 、 セファロマニン、 7—ェピセファロマニン、 10 —デァセチルバッカチン III 、 10—デァセチルセファロマニン、 10—デァセチル タキソール、 夕キサギフイン、 キシロシルセファロマニン及びキシロシルタキソ —ルょりなる群から選ばれた少なくとも一つである請求の範囲第 1項記載の製造 方法。
47. タキサン型ジテルペンを産生する植物がィチイ(Taxus) 属植物である請求の 範囲第 1項記載の製造方法。
48. イチィ属植物が、 セィョウイチイ (Taxus baccata LINN)、 ィチイ (T. cuspidata SIEB. et ZUCC) 、 キャラボク(T. cuspidata SIEB. et ZUCC var. nana REHDER) タイへィョウイチイ (T. brevifolia NUTT)、 カナダイチイ (T. canadiensis MARSH) , 中国イチィ (T. chinensis)及び T. mediaよりなる群から選 ばれた少なくとも一つである請求の範囲第 4 7項記載の製造方法。
49. タキサン型ジテルペンを産生する植物の細胞を比重の違いにより複数の層に 分け、 少なくとも 1つの層に含まれる細胞を培養することを特徴とする請求の範 囲第 1項記載の製造方法。
50. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 培養器内の気相中の酸素濃度を培養初期より大気中の酸素濃度未満の条伴下に制 御して培養を行う力 或いは組織又は細胞と接する流動性の培地中の溶存酸素濃 度を培養初期よりその温度に於ける飽和溶存酸素濃度未満である条件下に制御し て培養することを特徴とする請求の範囲第 1項記載の製造方法。
51. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 酸化剤又は水溶性の含酸素有機化合物を添加した培地を用いて行う一段目培養 と、 請求の範囲第 1項記載の製造方法に従って行う二段目培養の二つの工程から なる二段培養を行い、 得られる培養物からタキサン型ジテルペンを回収すること を特徴とするタキサン型ジテルべンの製造方法。
52. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 糖濃度が 2〜50g/i 及び 又は硝酸イオン濃度が 2〜50腳 ol/lである培地に組織 又は細胞を移植した後、 当該培地の初期容量に対して 1日当たり 0. 2~ 5 g/l の 糖及び 又は (. 2〜5删01/1の硝酸イオンを含む栄養源溶液を連続的又は間欠的 に添加して培養し、 得られる培養物からタキサン型ジテルペンを回収することを 特徴とする請求の範囲第 1項記載の製造方法。
53. 栄養源溶液を添加するに際して、 同容量の培地を組織又は細胞から分離して 抜き出すことによって培地を更新しながら培養を行い、 得られる培養物、 培養途 中に抜き出しによって回収される培地及び培養終了時に得られる培地から選ばれ る少なくとも 1種以上からタキサン型ジテルペンを回収することを特徴とする請 求の範囲第 5 2項記載の製造方法。
54. 培養槽中の培養液の総容量を V、 新鮮培地の供給速度を V , 、 組織又は細胞 の比増殖速度を; Xとするとき、 無次元数 F ^ V i ZVZ Iで定義する培地の比更 新率を 0. 1〜10の範囲となるように連続的又は間欠的に新鮮培地を添加し、 連続 的もしくは間欠的に糟外に抜き出される組織もしくは細胞を含む培養液及び Z又 は連続的もしくは間欠的に槽外に抜き出される組織もしくは細胞を含まない培養 液からタキサン型ジテルペンを回収することを特徴とする請求の範囲第 1項記載 の製造方法。
δδ. タキサン型ジテルペンを産生する植物の組織又は細胞を培養槽を用いて培養 するにあたって、 槽内に導入する酸素含有ガスとして 0. 03〜10%の炭酸ガスを含 有するガスを用いて培養することを特徴とする請求の範囲第 1項記載の製造方 法。
56. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 培養器内の気相中の酸素濃度を大気中の酸素濃度未満の条件下に培養初期から制 御して培養を行う力 \ 或いは組織又は細胞と接する流動性の培地中の溶存酸素濃 度をその温度における飽和溶存酸素濃度未満である条件下に培養初期から制御し て培養を行い、 得られる培養物からタキサン型ジテルペンを回収することを特徴 とするタキサン型ジテルペンの製造方法。
57. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 培養器内の気相中の酸素濃度を 4ないし 15%に制御するか、 或いは組織又は細胞 と接する流動性の培地中の溶存酸素濃度をその温度における飽和溶存酸素濃度値 の 1ないし 75%に制御することを特徴とする請求の範囲第 5 6項記載の製造方 法。
58. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 培養器内の気相中の酸素濃度を 6ないし 12%に制御するか、 或いは組織又は細胞 と接する、流動性の培地中の溶存酸素濃度をその温度における飽和溶存酸素濃度値 の 10ないし 75%に制御することを特徴とする請求の範囲第 5 6項記載の製造方 法。
59. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 培養器内の気相中の酸素濃度又は流動性の培地中の溶存酸素濃度を、 培養器及び /又は培地に供給する気体の酸素濃度を調節することによって制御するか、 或い は培養器及び Z又は培地に供給する気体の供給速度を調節することによって制御 することを特徴とする請求の範囲第 5 6項記載の製造方法。
60. 培養器内の気相中の酸素濃度、 又は組織もしくは細胞と接する流動性の培地 中の溶存酸素濃度の制御を培養開始時ないし培養開始後 7日目に開始し、 その後 少なくとも 3日間行うことを特徴とする請求の範囲第 5 6項記載の製造方法。
61. タキサン型ジテルペンがタキソ一ル、 7—ェピタキソール、 パッカチン III 、 7—ェピパッカチン III 、 セファロマニン、 7—ェピセファロマニン、 10 一デァセチルバッカチン III 、 10—デァセチルセファロマニン、 10—デァセチル タキソ一ル、 タキサギフィン、 キシロシルセファロマニン及びキシロシルタキソ —ルよりなる群から選ばれた少なくとも一つである請求の範囲第 5 6項記載の製 造方法。
62. タキサン型ジテルペンを産生する植物がイチィ属 f直物であることを特徴とす る請求の範囲第 5 6項記載の製造方法。
63. ジャスモン酸類の存在下に培養する請求の範囲第 5 6項記載の製造方法。
64. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 酸化剤又は水溶性の含酸素有機化合物を添加した培地を用いて行う一段目培養 と、 請求の範囲第 5 6項記載の製造方法に従って行う二段目培養の二つの工程か らなる二段培養を行い、 得られる培養物からタキサン型ジテルペンを回収するこ とを特徴とするタキサン型ジテルペンの製造方法。
65. タキサン型ジテルペンを産生する植物の組織又は細胞を培養するに当たり、 糖濃度が 2〜50g/l 及び Z又は硝酸イオン濃度が 2〜50mmol/lである培地に組織 又は細胞を移植した後、 当該培地の初期容量に対して 1日当たり G. 2〜5 g/1 の 糖及び Z又は 0. 2~ 5ranol/lの硝酸ィオンを含む栄養源溶液を連続的又は間欠的 に添加して培養し、 得られる培養物からタキサン型ジテルペンを回収することを 特徴とする請求の範囲第 5 6項記載の製造方法。
66. 栄養源溶液を添加するに際して、 同容量の培地を組織又は細胞から分離して 抜き出すことによって培地を更新しながら培養を行い、 得られる培養物、 培養途 中に抜き出しによって回収される培地及び培養終了時に得られる培地から選ばれ る少なくとも 1種以上からタキサン型ジテルペンを回収することを特徴とする請 求の範囲第 6 5項記載の製造方法。
67. 培養槽中の培養液の総容量を V、 新鮮培地の供給速度を V i 、 培養物から組 織又は細胞を分離した培養液を槽外に抜き出す速度を V L 、 組織又は細胞を含む 培養液を槽外に抜き出す速度を V c 、 組織又は細胞の比増殖速度を とすると き、 無次元数 F = V , /VZiiで定義する培地の比更新率を 0. 1〜10の範囲とな るように連続的又は間欠的に新鲜培地を添加し、 連続的もしくは間欠的に槽外に 抜き出される組織もしくは細胞を含む培養液及び Ζ又は連続的もしくは間欠的に 槽外に抜き出される組織もしくは細胞を含まない培養液からタキサン型ジテルべ ンを回収することを特徴とする請求の範囲第 5 6項記載の製造方法。
68. タキサン型ジテルペンを産生する植物の組織又は細胞を培養槽を用いて培養 するにあたって、 槽内に導入する酸素含有ガスとして 0.03〜10%の炭酸ガスを含 有するガスを用いて培養することを特徴とする請求の範囲第 5 6項記載の製造方 法。
69. タキサン型ジテルペンを産生する植物の組織又は細胞を培養槽を用いて培養 するにあたって、 槽内に導入する酸素含有ガスとして 0, 03〜10%の炭酸ガスを含 有するガスを用いて培養し、 得られる培養物からタキサン型ジテルペンを回収す ることを特徴とするタキサン型ジテルべンの製造方法。
70. タキサン型ジテルペンを産生する植物の細胞を比重の違いにより複数の層に 分け、 少なくとも一つの層に含まれる細胞を培養し、 それらの中からタキサン型 ジテルべン高産生培養細胞を選択することを特徴とするタキサン型ジテルぺン高 産生培養細胞の取得方法。
71 . タキサン型ジテルペンを産生する植物がイチィ属植物である請求の範囲第 7 0項記載の方法。
72. 比重 1. 07以下の層に含まれる細胞を培養することを特徴とする請求の範囲第 7 0項記載の方法。
PCT/JP1994/001880 1993-11-15 1994-11-09 Procede de production de diterpene de taxane et procede de recolte de cellules de culture capables de produire du diterpene de taxane a haut rendement WO1995014103A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1019980704608A KR0169079B1 (ko) 1994-06-28 1994-11-09 탁산형 디테르펜의 제조방법
KR1019950702779A KR0172606B1 (ko) 1993-11-15 1994-11-09 탁산형 디테르펜의 제조방법
KR1019980704609A KR0169080B1 (ko) 1994-11-09 1994-11-09 탁산형 디테르펜의 제조방법
US08/491,844 US5637484A (en) 1993-11-15 1994-11-09 Method of producing a taxane-type diterpene and a method of obtaining cultured cells which produce the taxane-type diterpene at a high rate
DE69426692T DE69426692T2 (de) 1993-11-15 1994-11-09 Methode zur herstellung von taxan-diterpen und methode zum einten von kulturzellen, die taxan-diterpen in hohen ausbeuten herstellen
EP94931697A EP0683232B1 (en) 1993-11-15 1994-11-09 Process for producing taxane diterpene and method of harvesting cultred cell capable of producing taxane diterpene in high yield
KR1019980704610A KR0169081B1 (ko) 1993-11-15 1994-11-09 탁산형 디테르펜 고생성 배양 세포의 취득방법
CA002153986A CA2153986C (en) 1993-11-15 1994-11-09 A method of producing a taxane-type diterpene and method of obtaining cultured cells which produce the taxane-type diterpene at a high rate

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP5/284893 1993-11-15
JP28489393A JP3488492B2 (ja) 1993-11-15 1993-11-15 タキサン型ジテルペン高産生培養細胞の取得方法
JP6/36156 1994-03-07
JP3615694 1994-03-07
JP6/104212 1994-05-18
JP6/104211 1994-05-18
JP6/104213 1994-05-18
JP6104212A JPH07308197A (ja) 1994-05-18 1994-05-18 タキサン型ジテルペンの製造方法
JP10421394 1994-05-18
JP6104211A JPH07308196A (ja) 1994-05-18 1994-05-18 タキサン型ジテルペンの製造方法
JP6/146826 1994-06-28
JP14682694A JP3434892B2 (ja) 1994-06-28 1994-06-28 タキサン型ジテルペンの製造方法
JP6/201151 1994-08-25
JP6/201150 1994-08-25
JP6201150A JPH0856680A (ja) 1994-08-25 1994-08-25 タキサン型ジテルペンの製造方法
JP6201151A JPH0856681A (ja) 1994-08-25 1994-08-25 タキサン型ジテルペンの製造方法
JP6/252528 1994-10-18
JP6252528A JPH08116981A (ja) 1994-10-18 1994-10-18 タキサン型ジテルペンの製造方法

Publications (1)

Publication Number Publication Date
WO1995014103A1 true WO1995014103A1 (fr) 1995-05-26

Family

ID=27576895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001880 WO1995014103A1 (fr) 1993-11-15 1994-11-09 Procede de production de diterpene de taxane et procede de recolte de cellules de culture capables de produire du diterpene de taxane a haut rendement

Country Status (8)

Country Link
US (3) US5637484A (ja)
EP (5) EP0683232B1 (ja)
KR (1) KR0172606B1 (ja)
CN (4) CN1058054C (ja)
CA (1) CA2153986C (ja)
DE (3) DE69426692T2 (ja)
HK (2) HK1029807A1 (ja)
WO (1) WO1995014103A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264951B1 (en) * 1992-02-20 2007-09-04 Phyton, Inc. Enhanced production of taxol and taxanes by cell cultures of Taxus species
CA2163614C (en) 1994-11-25 2002-12-31 Yukihito Yukimune Method of producing a taxane-type diterpene
US6248572B1 (en) * 1995-04-27 2001-06-19 Samyang, Genex, Corporation Production of taxol from taxus plant cell culture adding silver nitrate
KR960037826A (ko) * 1995-04-27 1996-11-19 김경환 택서스속 식물세포의 반연속식 배양방법
KR19990072075A (ko) * 1995-12-12 1999-09-27 지켐 인코포레이티드 식물세포 배양에 의해 식물 화학물질을 생산하기 위한 생산 및스크리닝 방법
KR100290004B1 (ko) * 1996-01-15 2001-05-15 허일섭 생물반응기에서 주목세포 배양에 의한 탁솔 및 그 유도체의 고수율 생산방법
BR9709361B1 (pt) * 1996-05-24 2009-05-05 produção aumentada de taxanos por culturas de células de espécie taxus.
KR100287465B1 (ko) * 1997-06-25 2001-05-02 나까니시 히로유끼 탁산형 디테르펜의 제조방법
KR100266448B1 (ko) * 1997-06-26 2000-09-15 박종헌 식물세포 배양 중의 온도변화에 의한 택솔의 대량생산 방법
DE69901819T2 (de) 1998-01-14 2003-01-30 Bristol-Myers Squibb Co., Princeton Neue kristallkomplexe von baccatin iii mit imidazol, 2-methylimidazol or isopropanol
WO2001024763A2 (en) 1999-10-01 2001-04-12 Immunogen, Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
US6452024B1 (en) 2000-02-22 2002-09-17 Chaichem Pharmaceuticals International Process for extraction and purification of paclitaxel from natural sources
US7238514B2 (en) * 2001-01-05 2007-07-03 William Marsh Rice University Diterpene-producing unicellular organism
US6946283B2 (en) 2001-01-05 2005-09-20 William Marsh Rice University Ginkgo biloba levopimaradiene synthase
US20030092178A1 (en) * 2001-11-15 2003-05-15 Biospherix, Ltd. Cell culture incubator with dynamic oxygen control
TW200304947A (en) * 2002-02-08 2003-10-16 Bristol Myers Squibb Co Compositions and methods for latering biosynthesis of taxanes and taxane-related compounds
US6759539B1 (en) 2003-02-27 2004-07-06 Chaichem Pharmaceuticals International Process for isolation and purification of paclitaxel from natural sources
EP1498475A1 (en) * 2003-07-18 2005-01-19 Meristem Therapeutics S.A. Continuous plant cell bioreactor and method for continuous plant cell culture
US8936940B2 (en) 2005-06-03 2015-01-20 Samyang Biopharmaceuticals Corporation Mass production of secondary metabolite in plant cell culture by treatment of saccharide mixture in medium
US9284274B2 (en) 2005-12-07 2016-03-15 Ramot At Tel-Aviv University Ltd. Chemical derivatives of jasmonate, pharmaceutical compositions and methods of use thereof
DK2617714T3 (da) * 2005-12-07 2016-06-27 Univ Ramot Kemiske derivater af jasmonat, farmaceutiske præparater og fremgangsmåder til anvendelse deraf
US8247439B2 (en) * 2005-12-07 2012-08-21 Sepal Pharma Ltd. Jasmonate derivatives, pharmaceutical compositions and methods of use thereof
WO2008054815A2 (en) * 2006-11-03 2008-05-08 Valent Biosciences Corporation Enhanced amino acid formulations
US9284252B2 (en) 2009-06-09 2016-03-15 Sepal Pharma Ltd. Use of jasmonate ester derivatives for treating benign hyperproliferative skin disorders
CN110105312B (zh) * 2019-06-05 2023-05-09 云南大学 一种7-差向紫杉烷差向化转化形成紫杉烷的方法
WO2024011263A2 (en) * 2022-07-08 2024-01-11 Cibus Us Llc Producing sesquiterpenes and other terpenes using plant-based biomasses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019504A (en) * 1989-03-23 1991-05-28 The United States Of America As Represented By The Secretary Of Agriculture Production of taxol or taxol-like compounds in cell culture
WO1993002067A1 (fr) * 1991-07-17 1993-02-04 Nippon Steel Corporation Compose antitumoral nsc-lsc1 et son procede de production
JPH05244971A (ja) * 1992-03-06 1993-09-24 Nippon Oil Co Ltd タキサン類化合物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244971A (en) * 1975-10-03 1977-04-08 Fuji Jidoki Kk Automatic pile up apparatus of narrow width plates
US5015744A (en) * 1989-11-14 1991-05-14 Florida State University Method for preparation of taxol using an oxazinone
DE4122208C1 (ja) * 1991-07-04 1992-07-30 B.A.T. Cigarettenfabriken Gmbh, 2000 Hamburg, De
US5407816A (en) * 1992-02-20 1995-04-18 Phyton Catalytic, Inc. Enhanced production of taxol and taxanes by cell cultures of taxus species
JPH08500973A (ja) * 1992-05-21 1996-02-06 ザ ペン ステイト リサーチ ファウンデーション タキソール、関連タキサン及び他の新規な抗癌/抗ウイルス性化合物原料としてのイチイ培養組織

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019504A (en) * 1989-03-23 1991-05-28 The United States Of America As Represented By The Secretary Of Agriculture Production of taxol or taxol-like compounds in cell culture
WO1993002067A1 (fr) * 1991-07-17 1993-02-04 Nippon Steel Corporation Compose antitumoral nsc-lsc1 et son procede de production
JPH05244971A (ja) * 1992-03-06 1993-09-24 Nippon Oil Co Ltd タキサン類化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0683232A4 *

Also Published As

Publication number Publication date
CN1083011C (zh) 2002-04-17
US6403343B2 (en) 2002-06-11
EP1063300B1 (en) 2003-09-03
DE69433120T2 (de) 2004-07-01
EP1054065A1 (en) 2000-11-22
EP1063300A2 (en) 2000-12-27
CA2153986C (en) 2002-12-31
US5968789A (en) 1999-10-19
EP1348764A1 (en) 2003-10-01
KR0172606B1 (ko) 1999-02-01
EP1063299A2 (en) 2000-12-27
HK1030021A1 (en) 2001-04-20
DE69426692D1 (de) 2001-03-22
CN1248630A (zh) 2000-03-29
US20020012976A1 (en) 2002-01-31
DE69433120D1 (de) 2003-10-09
CN1119028A (zh) 1996-03-20
CN1251391A (zh) 2000-04-26
DE69431135T2 (de) 2003-03-27
EP1063299A3 (en) 2002-01-02
US5637484A (en) 1997-06-10
EP1054065B1 (en) 2002-07-31
KR960700044A (ko) 1996-01-19
EP0683232A1 (en) 1995-11-22
EP0683232A4 (ja) 1995-11-29
DE69431135D1 (de) 2002-09-05
CN1083010C (zh) 2002-04-17
EP0683232B1 (en) 2001-02-14
EP1063300A3 (en) 2002-01-02
CA2153986A1 (en) 1995-05-26
HK1029807A1 (en) 2001-04-12
CN1248629A (zh) 2000-03-29
CN1058054C (zh) 2000-11-01
CN1083012C (zh) 2002-04-17
DE69426692T2 (de) 2001-06-21

Similar Documents

Publication Publication Date Title
WO1995014103A1 (fr) Procede de production de diterpene de taxane et procede de recolte de cellules de culture capables de produire du diterpene de taxane a haut rendement
JPH08163991A (ja) タキサン型ジテルペンの製造方法
CA2241569C (en) Methods for producing taxane-type diterpenes
KR0169079B1 (ko) 탁산형 디테르펜의 제조방법
KR100194392B1 (ko) 탁산형 디테르펜의 제조방법
KR0169081B1 (ko) 탁산형 디테르펜 고생성 배양 세포의 취득방법
JP3019736B2 (ja) タキサン型ジテルペンの製造方法
JP3549594B2 (ja) タキサン型ジテルペンの製造方法
JP2967034B2 (ja) タキサン型ジテルペンの製造方法
KR0169080B1 (ko) 탁산형 디테르펜의 제조방법
JPH08149984A (ja) タキサン型ジテルペンの製造方法
JP3897267B2 (ja) タキサン型ジテルペンの製造方法
JP3746550B2 (ja) タキサン型ジテルペンの製造方法
JP3162217B2 (ja) タキサン型ジテルペンの製造方法
JPH07308196A (ja) タキサン型ジテルペンの製造方法
JPH0856681A (ja) タキサン型ジテルペンの製造方法
JPH08154693A (ja) タキサン型ジテルペンの製造方法
JPH08116981A (ja) タキサン型ジテルペンの製造方法
JP3144947B2 (ja) タキサン型ジテルペンの製造方法
JP3625908B2 (ja) タキサン型ジテルペンの製造方法
JPH07308197A (ja) タキサン型ジテルペンの製造方法
JPH0928392A (ja) タキサン型ジテルペンの製造方法
JPH0856680A (ja) タキサン型ジテルペンの製造方法
JPH1169991A (ja) タキサン型ジテルペンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94191435.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2153986

Country of ref document: CA

Ref document number: 08491844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994931697

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994931697

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994931697

Country of ref document: EP